Looking towards the future: the changing nature of intrusive surveillance and technical attacks against high-profile targets

Abstract

In this thesis a novel Bayesian model is developed that is capable of predicting the probability of a range of eavesdropping techniques deployed, given an attacker's capability, opportunity and intent. Whilst limited attention by academia has focused on the cold war activities of Soviet bloc and Western allies' bugging of embassies, even less attention has been paid to the changing nature of the technology used for these eavesdropping events. This thesis makes four contributions: through the analysis of technical eavesdropping events over the last century, technological innovation is shown to have enriched the eavesdropping opportunities for a range of capabilities. The entry barrier for effective eavesdropping is lowered, while for the well resourced eavesdropper, the requirement for close access has been replaced by remote access opportunities. A new way to consider eavesdropping methods is presented through the expert elicitation of capability and opportunity requirements for a range of present-day eavesdropping techniques. Eavesdropping technology is shown to have life-cycle stages with the technology exploited by different capabilities at different times. Three case studies illustrate that yesterday’s secretive government method becomes today’s commodity. The significance of the egress transmission path is considered too. Finally, by using the expert elicitation information derived for capability, opportunity and life-cycle position, for a range of eavesdropping techniques, it is shown that it is possible to predict the probability of particular eavesdropping techniques being deployed. This novel Bayesian inferencing model enables scenarios with incomplete, uncertain or missing detail to be considered. The model is validated against the previously collated historic eavesdropping events. The development of this concept may be scaled with additional eavesdropping techniques to form the basis of a tool for security professionals or risk managers wishing to define eavesdropping threat advice or create eavesdropping policies based on the rigour of this technological study.Open Acces

    Similar works