1,509 research outputs found

    Novel online data allocation for hybrid memories on tele-health systems

    Full text link
    [EN] The developments of wearable devices such as Body Sensor Networks (BSNs) have greatly improved the capability of tele-health industry. Large amount of data will be collected from every local BSN in real-time. These data is processed by embedded systems including smart phones and tablets. After that, the data will be transferred to distributed storage systems for further processing. Traditional on-chip SRAMs cause critical power leakage issues and occupy relatively large chip areas. Therefore, hybrid memories, which combine volatile memories with non-volatile memories, are widely adopted in reducing the latency and energy cost on multi-core systems. However, most of the current works are about static data allocation for hybrid memories. Those mechanisms cannot achieve better data placement in real-time. Hence, we propose online data allocation for hybrid memories on embedded tele-health systems. In this paper, we present dynamic programming and heuristic approaches. Considering the difference between profiled data access and actual data access, the proposed algorithms use a feedback mechanism to improve the accuracy of data allocation during runtime. Experimental results demonstrate that, compared to greedy approaches, the proposed algorithms achieve 20%-40% performance improvement based on different benchmarks. (C) 2016 Elsevier B.V. All rights reserved.This work is supported by NSF CNS-1457506 and NSF CNS-1359557.Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). Novel online data allocation for hybrid memories on tele-health systems. Microprocessors and Microsystems. 52:391-400. https://doi.org/10.1016/j.micpro.2016.08.003S3914005

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Characterizing and Utilizing the Interplay between Quantum Technologies and Non-Terrestrial Networks

    Get PDF
    Quantum technologies have been widely recognized as one of the milestones towards the ongoing digital transformation, which will also trigger new disruptive innovations. Quantum technologies encompassing quantum computing, communications, and sensing offer an interesting set of advantages such as unconditional security and ultra-fast computing capabilities. However, deploying quantum services at a global scale requires circumventing the limitations due to the geographical boundaries and terrestrial obstacles, which can be adequately addressed by considering non-terrestrial networks (NTNs). In the recent few years, establishing multi-layer NTNs has been extensively studied to integrate space-airborne-terrestrial communications systems, particularly by the international standardization organizations such as the third-generation partnership project (3GPP) and the international telecommunication union (ITU), in order to support future wireless ecosystems. Indeed, amalgamating quantum technologies and NTNs will scale up the quantum communications ranges and provide unprecedented levels of security and processing solutions that are safer and faster than the traditional offerings. This paper provides some insights into the interplay between the evolving NTN architectures and quantum technologies with a particular focus on the integration challenges and their potential solutions for enhancing the quantum-NTN interoperability among various space-air-ground communications nodes. The emphasis is on how the quantum technologies can benefit from satellites and aerial platforms as an integrated network and vice versa. Moreover, a set of future research directions and new opportunities are identified

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Scalable agile frameworks in large enterprise project portfolio management

    Get PDF
    Con un alcance de estudio exploratorio, debido a que se ha investigado poco y se encuentra en un estado emergente, el propósito de la investigación fue explorar la implementación de los marcos ágiles escalables en la gestión del portafolio de proyectos (PPM) de grandes empresas. Además, este estudio de caso cualitativo planteó la siguiente pregunta principal de investigación: ¿De qué manera los marcos ágiles escalables se implementan en la PPM de grandes empresas, y por qué? Este estudio recopiló información de 59 portafolios de proyectos en 22 empresas con implementaciones de métodos ágiles y marcos ágiles escalables de las industrias tecnologías de la información (IT- por sus siglas en inglés), financiera y telecomunicaciones, de México, Colombia, Perú, Ecuador, Costa Rica y Chile, mediante 43 entrevistas en profundidad semiestructuradas. Los hallazgos revelan que existen portafolios de proyectos con alta variabilidad en servicio, producto e innovación, y con implementaciones híbridas de Scaled Agile Framework (SAFe), Spotify Model y Scrum. Además, enfrentan diferentes desafíos relacionados con la implementación de los marcos ágiles escalables en la PPM, la cultura organizacional, resistencia al cambio y liderazgo estratégico. Del mismo modo, los hallazgos demuestran que los marcos ágiles son una opción viable para optimizar el time-to-market, aumentar la productividad de los equipos y mejorar la comunicación a nivel general. Este estudio es uno de los primeros en explorar cómo implementan las grandes empresas los marcos ágiles escalables en la PPM para llenar el vacío en la literatura relacionado con cómo y cuándo las empresas deben abordar un proceso de transformación ágil que funcione de manera exitosa en su PPM. Por lo tanto, este estudio proporciona evidencia empírica de seis países latinoamericanos como base potencial para futuras investigaciones y publicaciones.With an exploratory study scope, due to little research and in an emerging state, the purpose of the research was to explore the implementation of scalable agile frameworks in project portfolio management (PPM) of large enterprises. This qualitative case study posed as its primary research question: How and why are scalable agile frameworks implemented in the PPM of large companies? Further, this study used the purposive sampling method and the snowball technique. Data were collected from 59 project portfolios in 22 companies with agile and scalable agile framework implementations in the information technology (IT), financial and telecommunications industries in Mexico, Colombia, Peru, Ecuador, Costa Rica and Chile, through 43 semi-structured in-depth interviews. The findings reveal that there are project portfolios with high variability in service, product and innovation, and with hybrid implementations of Scaled Agile Framework (SAFe), Spotify Model and Scrum. In addition, they face different challenges related to the implementation of scalable agile frameworks in PPM, organizational culture, resistance to change, and strategic leadership. Similarly, the findings demonstrate that agile frameworks are a viable option to optimize time-to-market, increase team productivity and improve communication across the board. This study represents one of the first to explore how large companies implement scalable agile frameworks in PPM to fill the gap in the literature related to how and when companies should approach an agile transformation process working successfully in their PPM. Accordingly, this study provides empirical evidence from six Latin American countries as a potential basis for future research and publications

    Organizational Posthumanism

    Get PDF
    Building on existing forms of critical, cultural, biopolitical, and sociopolitical posthumanism, in this text a new framework is developed for understanding and guiding the forces of technologization and posthumanization that are reshaping contemporary organizations. This ‘organizational posthumanism’ is an approach to analyzing, creating, and managing organizations that employs a post-dualistic and post-anthropocentric perspective and which recognizes that emerging technologies will increasingly transform the kinds of members, structures, systems, processes, physical and virtual spaces, and external ecosystems that are available for organizations to utilize. It is argued that this posthumanizing technologization of organizations will especially be driven by developments in three areas: 1) technologies for human augmentation and enhancement, including many forms of neuroprosthetics and genetic engineering; 2) technologies for synthetic agency, including robotics, artificial intelligence, and artificial life; and 3) technologies for digital-physical ecosystems and networks that create the environments within which and infrastructure through which human and artificial agents will interact. Drawing on a typology of contemporary posthumanism, organizational posthumanism is shown to be a hybrid form of posthumanism that combines both analytic, synthetic, theoretical, and practical elements. Like analytic forms of posthumanism, organizational posthumanism recognizes the extent to which posthumanization has already transformed businesses and other organizations; it thus occupies itself with understanding organizations as they exist today and developing strategies and best practices for responding to the forces of posthumanization. On the other hand, like synthetic forms of posthumanism, organizational posthumanism anticipates the fact that intensifying and accelerating processes of posthumanization will create future realities quite different from those seen today; it thus attempts to develop conceptual schemas to account for such potential developments, both as a means of expanding our theoretical knowledge of organizations and of enhancing the ability of contemporary organizational stakeholders to conduct strategic planning for a radically posthumanized long-term future

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    corecore