30 research outputs found

    Codensity Liftings of Monads

    Get PDF
    We introduce a method to lift monads on the base category of a fibration to its total category using codensity monads. This method, called codensity lifting, is applicable to various fibrations which were not supported by the categorical >>-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended psuedometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We next study the liftings of algebraic operations to the codensity-lifted monads. We also give a characterisation of the class of liftings (along posetal fibrations with fibred small limits) as a limit of a certain large diagram

    Bifibrational Functorial Semantics For Parametric Polymorphism

    Get PDF
    Reynolds’ theory of parametric polymorphism captures the invariance of polymorphically typed programs under change of data representation. Semantically, reflexive graph categories and fibrations are both known to give a categorical understanding of parametric polymorphism. This paper contributes further to this categorical perspective by showing the relevance of bifibrations. We develop a bifibrational framework for models of System F that are parametric, in that they verify the Identity Extension Lemma and Reynolds’ Abstraction Theorem. We also prove that our models satisfy expected properties, such as the existence of initial algebras and final coalgebras, and that parametricity implies dinaturality

    Relative full completeness for bicategorical cartesian closed structure

    Get PDF

    Bifibrational functorial semantics of parametric polymorphism

    Get PDF
    Reynolds' theory of parametric polymorphism captures the invariance of polymorphically typed programs under change of data representation. Semantically, reflexive graph categories and fibrations are both known to give a categorical understanding of parametric polymorphism. This paper contributes further to this categorical perspective by showing the relevance of bifibrations. We develop a bifibrational framework for models of System F that are parametric, in that they verify the Identity Extension Lemma and Reynolds' Abstraction Theorem. We also prove that our models satisfy expected properties, such as the existence of initial algebras and final coalgebras, and that parametricity implies dinaturality

    Codensity Lifting of Monads and its Dual

    Full text link
    We introduce a method to lift monads on the base category of a fibration to its total category. This method, which we call codensity lifting, is applicable to various fibrations which were not supported by its precursor, categorical TT-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended pseudometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We also introduce the dual method called density lifting of comonads. We next study the liftings of algebraic operations to the codensity liftings of monads. We also give a characterisation of the class of liftings of monads along posetal fibrations with fibred small meets as a limit of a certain large diagram.Comment: Extended version of the paper presented at CALCO 2015, accepted for publication in LMC

    Syntactically and semantically regular languages of lambda-terms coincide through logical relations

    Full text link
    A fundamental theme in automata theory is regular languages of words and trees, and their many equivalent definitions. Salvati has proposed a generalization to regular languages of simply typed λ\lambda-terms, defined using denotational semantics in finite sets. We provide here some evidence for its robustness. First, we give an equivalent syntactic characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting regular languages of words and syntactic λ\lambda-definability. Second, we show that any finitary extensional model of the simply typed λ\lambda-calculus, when used in Salvati's definition, recognizes exactly the same class of languages of λ\lambda-terms as the category of finite sets does. The proofs of these two results rely on logical relations and can be seen as instances of a more general construction of a categorical nature, inspired by previous categorical accounts of logical relations using the gluing construction.Comment: The proofs on "finitely pointable" CCCs in versions 1 and 2 were wrong; we now make slightly weaker claims on well-pointed locally finite CCCs. New in this version: added reference [3] and official DOI (proceedings of CSL 2024

    Parametric limits

    Get PDF

    Lax Logical Relations

    Get PDF
    Lax logical relations are a categorical generalisation of logical relations; though they preserve product types, they need not preserve exponential types. But, like logical relations, they are preserved by the meanings of all lambda-calculus terms.We show that lax logical relations coincide with the correspondences of Schoett, the algebraic relations of Mitchell and the pre-logical relations of Honsell and Sannella on Henkin models, but also generalise naturally to models in cartesian closed categories and to richer languages
    corecore