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1 Introduction

Strachey [30] called a polymorphic function parametric if its behaviour is uniform

across all of its type instantiations. Reynolds [25] made this mathematically precise

by formulating the notion of relational parametricity, in which the uniformity of

parametric polymorphic functions is captured by requiring them to preserve all

logical relations between instantiated types. Relational parametricity has proven to

be a key technique for formally establishing properties of software systems, such as

representation independence [1,6], equivalences between programs [15], and useful

(“free”) theorems about programs from their types alone [31]. In this paper, we treat

relational parametricity for the polymorphic λ-calculus System F [10], which forms

the core of many modern programming languages and verification systems. Hermida,

Reddy, and Robinson [14] give a good introduction to relational parametricity.

Since category theory underpins and informs many of the key ideas underlying

modern programming languages, it is natural to ask whether it can provide a

useful perspective on parametricity as well. Ma and Reynolds [19] developed the first

categorical formulation of relational parametricity, but their models were complicated



and challenging to understand. Moreover, Birkedal and Rosolini discovered that not

all expected consequences of parametricity necessarily hold in their models (see [4]).

Another line of work, begun by O’Hearn and Tennent [21] and Robinson and

Rosolini [28], and later refined by Dunphy and Reddy [7], uses reflexive graphs to

model relations and functors between reflexive graph categories to model types.

This is the state of the art for functorial semantics for parametric polymorphism.

Interpreting types as functors is conceptually elegant and Dunphy and Reddy show

that this framework is powerful enough to prove expected results, such as the

existence of initial algebras for strictly positive type expressions [5]. However, since

reflexive graph categories are relatively unknown mathematical structures, much of

this development has had to be carried out from scratch. We propose to instead take

the more established fibrational view of logic from the outset, and thus to analyse

parametricity through the powerful lens of categorical type theory [16].

In doing so, we follow an extensive line of work by Hermida [12,13] and Birkedal

and Møgelberg [4], who use fibrations to construct sophisticated categorical models

not only of parametricity, but also of its logical structure in terms of Abadi-Plotkin

logic [24]. Abadi-Plotkin logic is a formal logic for parametric polymorphism that

includes predicate logic and a polymorphic lambda calculus, and thus requires

significant machinery to handle. Using this machinery, Birkedal and Møgelberg are

able to go beyond Dunphy and Reddy’s results and, for instance, prove that all

positive type expressions — not just the strictly positive ones as for Dunphy and

Reddy — have initial algebras. However, these impressive results come at the price

of the complexity of the notions involved. Our aim is to achieve the same results in

a simpler setting 1 , closer to Dunphy and Reddy’s functorial semantics. We end up

with a notion of model in which each type is interpreted as an equality preserving

fibred functor and each term is interpreted as a fibred natural transformation. This

is quite similar to the models produced by the parametric completion process of

Robinson and Rosolini [28] (see also Birkedal and Møgelberg [4, Section 8]) and to

Mitchell and Scedrov’s relator model [20], but with a more general notion of relation

given by a fibration. We thus combine the generality of Birkedal and Møgelberg’s

fibrational models with the simplicity of Dunphy and Reddy’s functorial semantics.

Our central innovation is the use of bifibrations to achieve this “sweet spot” in

the study of parametricity. This is not necessary for the definition of our framework,

for which Lawvere equality [17] (i.e., opreindexing along diagonals only) suffices, but

it helps considerably with both the concrete interpretation of ∀-types [9] and the

handling of graph relations. At a technical level, our strongest result is to use our

simpler framework to recover all the expected consequences of parametricity that

Birkedal and Møgelberg [4] prove using Abadi-Plotkin logic. In particular, we go

beyond Dunphy and Reddy’s result by deriving, this time with a functorial semantics,

initial algebras for all positive type expressions, rather than just for strictly positive

ones. Nevertheless, this paper is in no way intended as the final word on fibrational

parametricity. Instead, we hope the simple re-conceptualization of parametricity we

offer here — replacing the usual categorical interpretations of types as functors and

1 We stress again that we are not trying to model all of Abadi-Plotkin logic, but rather only type systems
involving parametric polymorphism. Indeed, with respect to Abadi-Plotkin logic, we could not hope to
improve upon the results of Birkedal and Møgelberg [4], who give a sound and complete semantics.



terms as natural transformations with their fibred counterparts — will open the way

to the study of parametricity in richer settings, e.g., proof-relevant ones.

Structure of the paper: In Section 2 we give a short introduction to bifi-

brations. We recall Reynolds’ relational interpretation of System F, the Identity

Extension Lemma and the Abstraction Theorem in Section 3. We then extract

bifibrational generalisations of these in Section 4, and construct our parametric

models. In Section 5 we show that our models behave as expected by deriving

initial algebras for all definable functors and proving that parametricity implies

(di)naturality. Finally, we instantiate our framework to derive both “standard”

and new models of relational parametricity in Section 6. Section 7 concludes and

discusses future work.

2 A Fibrational Toolbox for Relational Parametricity

We give a brief introduction to fibrations; more details can be found in, e.g., [16].

Definition 2.1 Let U : E → B be a functor. A morphism g : Q → P in E is

cartesian over f : X → Y in B if Ug = f and, for every g′ : Q′ → P in E with

Ug′ = f ◦ v for some v : UQ′ → X, there exists a unique h : Q′ → Q with Uh = v

and g′ = g ◦ h. A morphism g : P → Q in E is opcartesian over f : X → Y in B if

Ug = f and, for every g′ : P → Q′ in E with Ug′ = v ◦ f for some v : Y → UQ′,

there exists a unique h : Q→ Q′ with Uh = v and g′ = h ◦ g.

We write f §P for the cartesian morphism over f with codomain P , and fP§ for the

opcartesian morphism over f with domain P . Such morphisms are unique up to

isomorphism. If P is an object of E then we write f∗P for the domain of f §P and

ΣfP for the codomain of fP§ .

Definition 2.2 A functor U : E → B is a fibration if for every object P of E and

every morphism f : X → UP in B, there is a cartesian morphism f §P : Q→ P in E
over f. Similarly, U is an opfibration if for every object P of E and every morphism

f : UP → Y in B, there is an opcartesian morphism fP§ : P → Q in E over f . A

functor U is a bifibration if it is both a fibration and an opfibration.

If U : E → B is a fibration, opfibration, or bifibration, then E is its total category

and B is its base category. An object P in E is over its image UP and similarly for

morphisms. A morphism is vertical if it is over id. We write EX for the fibre over an

object X in B, i.e., the subcategory of E of objects over X and morphisms over idX .

For f : X → Y in B, the function mapping each object P of E to f∗P extends to a

functor f∗ : EY → EX mapping each morphism k : P → P ′ in EY to the morphism

f∗k with kf §P = f §P ′f∗k. The universal property of f §P ′ ensures the existence and

uniqueness of f∗k. We call f∗ the reindexing functor along f . A similar situation

holds for opfibrations; the functor Σf : EX → EY extending the function mapping

each object P of E to ΣfP is the opreindexing functor along f .

We write |C| for the discrete category of C. If U : E → B is a functor, then the

discrete functor |U | : |E| → |B| is induced by the restriction of U to |E|. If n ∈ N,

then En denotes the n-fold product of E in Cat. The n-fold product of U , denoted

Un : En → Bn, is the functor defined by Un(X1, ..., Xn) = (UX1, ..., UXn).



Lemma 2.3 If U : E → B is a functor then |U | : |E| → |B| is a bifibration. If U is

a (bi)fibration then so is Un : En → Bn for any natural number n. 2

To formulate Reynolds’ relational parametricity categorically, we define the category

Rel of relations over Set and the relations fibration on Set [16].

Definition 2.4 The category Rel has triples (A,B,R) as objects, where A, B, and

R are sets and R ⊆ A × B. A morphism (A,B,R) → (A′, B′, R′) is a pair (f, g),

where f : A→ A′ and g : B → B′, such that if (a, b) ∈ R then (fa, gb) ∈ R′.

We write (A,B,R) as just R when A and B are immaterial or clear from context.

Note that Rel is not the category whose objects are sets and whose morphisms

are relations, which also sometimes appears in the literature. Each set A has an

associated equality relation defined by EqA = {(a, a) | a ∈ A}.

Example 2.5 The functor U : Rel → Set × Set sending (A,B,R) to (A,B) is

called the relations fibration on Set. To see that U is indeed a fibration, let (f, g) :

(X1, X2)→ (Y1, Y2) be a morphism in Set× Set with UR = (Y1, Y2) for some R in

Rel. If we define (f, g)∗R ⊆ X1 ×X2 by (x1, x2) ∈ (f, g)∗R iff (fx1, gx2) ∈ R, then

(f, g) is a cartesian morphism from (f, g)∗R to R over (f, g). It is also easy to see

that U is an opfibration, with opreindexing given by forward image. Thus, U is

a bifibration. We denote the fibre over (A,B) in the relations fibration on Set by

Rel(A,B).

Definition 2.6 Let U : E → B and U ′ : E ′ → B′ be fibrations. A fibred functor

F : U → U ′ comprises two functors F0 : B → B′ and F1 : E → E ′ such that

U ′ F1 = F0 U and cartesian morphisms are preserved, i.e., if f is cartesian in E over

g in B then F1f is cartesian in E ′ over F0g in B′. If F ′ : U → U ′ is another fibred

functor, then a fibred natural transformation η : F → F ′ comprises two natural

transformations η0 : F0 → F ′0 and η1 : F1 → F ′1 such that U ′ η1 = η0 U .

In this paper we use fibred functors and fibred transformations to interpret System F

types and terms, and show that under mild conditions this gives parametric models.

3 Reynolds’ Model of Relational Parametricity

We now describe Reynolds’ set-theoretic model of relational parametricity: first

concretely, and then in terms of the relations fibration Rel→ Set×Set. As Reynolds

discovered, there are in fact no set-theoretic models if the meta-theory is classical

logic [26], but the following makes sense in the (intuitionistic) internal language of a

topos [22], or in the Calculus of Constructions with impredicative Set. Throughout,

we assume a standard syntax for System F.

3.1 Semantics of Types

Reynolds presents two “parallel” semantics for System F: a standard set-based

semantics [[ ]]o, and a relational semantics [[ ]]r. Given Γ ` T type, where the

type context Γ contains |Γ| = n type variables, Reynolds defines interpretations

[[T ]]o : |Set|n → Set and [[T ]]r : |Rel|n(A,B) → Rel([[T ]]oA, [[T ]]oB) by structural

induction on type judgements as follows:



• Type variables: [[Xi]]oA = Ai and [[Xi]]rR = Ri

• Arrow types:

[[T1 → T2]]oA = [[T1]]oA→ [[T2]]oA

[[T1 → T2]]rR = {(f, g) | (a, b) ∈ [[T1]]rR⇒ (fa, gb) ∈ [[T2]]rR}

• Forall types:

[[∀X.T ]]oA = {f :
∏
S:Set

[[T ]]o(A,S) | ∀R′ ∈ Rel(A′, B′) . (fA′, fB′) ∈ [[T ]]r(Eq A,R
′)}

[[∀X.T ]]rR = {(f, g) | ∀R′ ∈ Rel(A′, B′) . (fA′, gB′) ∈ [[T ]]r(R,R
′)}

The definitions of [[∀X.T ]]o and [[∀X.T ]]r depend crucially on one another. Thus, we

do not really have two semantics — one based on Set and one based on Rel — but

rather a single semantics based on the relations fibration U : Rel → Set× Set. In

other words, Reynolds’ definitions of [[−]]o and [[−]]r entail the following theorem:

Theorem 3.1 (Fibrational Semantics of Types) Let U be the relations fibra-

tion on Set. Every judgement Γ ` T induces a fibred functor [[T ]] : |U ||Γ| → U .

|Rel||Γ| [[T ]]r / /

|U ||Γ|

��

Rel

U

��
|Set||Γ| × |Set||Γ|

[[T ]]o×[[T ]]o
// Set× Set

2

Since the domain of [[T ]]r is a discrete category, requiring that [[T ]] is a fibred functor

amounts simply to requiring that the above diagram commutes. In particular, no

preservation of cartesian morphisms by [[T ]]r is needed. Reynolds does not give

a functorial action of types on morphisms. This is reflected in the appearance of

discrete categories in Theorem 3.1. As a result, Reynolds’ pointwise interpretation

of function spaces is the exponential in the functor category |U ||Γ| → U [27]. How

parametricity treats the action on morphisms will become clear in Section 5.1;

instead of acting on morphisms, the interpretation of types act on graph relations

induced by morphisms. For now, we simply note that the use of discrete domains

does not take us out of the fibrational framework; Lemma 2.3 ensures that [[T ]] is a

functor between fibrations. The Identity Extension Lemma (IEL) is key for many

applications of parametricity. It says that every relational interpretation preserves

equality relations 2 :

Lemma 3.2 (IEL) If Γ ` T then [[T ]]r ◦ |Eq||Γ| = Eq ◦ [[T ]]o. 2

2 Reynolds’ approach also handles “identity relations” that are not equality relations, such as the information
order on domains. In this paper, like many others [2,4,13,24], we only treat equality relations. In future
work, we hope to give an axiomatic account of “identity relations” similar to that of Dunphy and Reddy [7].



3.2 Semantics of Terms

Reynolds’ main result is his Abstraction Theorem, stating that all terms send

related environments to related values. Reynolds first gives set-valued and relational

interpretations of term contexts ∆ = x1 : T1, . . . , xn : Tn by defining [[∆]]o =

[[T1]]o × · · · × [[Tn]]o and [[∆]]r = [[T1]]r × · · · × [[Tn]]r. This defines a fibred functor

[[∆]] : |U ||Γ| → U . Reynolds’ then interprets each judgement Γ; ∆ ` t : T as a family

of functions [[t]]o : [[∆]]oS → [[T ]]oS for each environment S ∈ |Set||Γ|. We omit the

standard definition of [[t]]o here. Finally, Reynolds proves:

Theorem 3.3 (Abstraction Theorem) Let A,B ∈ Set|Γ|, R ∈ Rel|Γ|(A,B), a ∈
[[∆]]oA, and b ∈ [[∆]]oB. For every term Γ; ∆ ` t : T , if (a, b) ∈ [[∆]]rR, then

([[t]]o A a, [[t]]o B b) ∈ [[T ]]rR. Or, more concisely, fibrationally: every judgement

Γ; ∆ ` t : T is interpreted as a fibred natural transformation ([[t]]o, [[t]]r) : [[∆]]→ [[T ]].

|Rel||Γ|
[[∆]]r

++

[[T ]]r

33�� [[t]]r

|U ||Γ|

��

Rel

U

��
|Set||Γ| × |Set||Γ|

[[∆]]o×[[∆]]o
,,

[[T ]]o×[[T ]]o

22�� [[t]]o×[[t]]o Set× Set

2

It is worthwhile to unpack the fibrational statement of the theorem: Since the

domains of the functors [[∆]]o and [[T ]]o are discrete, the interpretation [[t]]o actually

defines a (vacuously natural) transformation [[t]]o : [[∆]]o → [[T ]]o. By the definition

of morphisms in the category Rel, the existence of the (again, vacuously natural)

transformation [[t]]r over [[t]]o × [[t]]o is exactly the statement that if (a, b) ∈ [[∆]]rR,

then ([[t]]oAa, [[t]]oB b) ∈ [[T ]]rR — the verbose conclusion of the theorem.

Reynolds’ original formulation of the Abstraction Theorem makes it seem at first

glance as though it asserts a property of [[t]]o. Surprisingly, however, our fibrational

version makes it clear that the Abstraction Theorem actually states the existence of

additional algebraic structure given by [[t]]r and, more generally, the interpretation

of terms as fibred natural transformations. Taking this point of view and exposing

this heretofore hidden stucture opens the way to our bifibrational generalisation of

Reynolds’ model.

4 Bifibrational Relational Parametricity

Thus far we have only shown how to view Reynolds’ notion of parametricity in

terms of the specific fibration U : Rel→ Set× Set. We now generalise this to other

fibrations. This requires that we generalise [[−]]o and [[−]]r in such a way that the IEL

and the Abstraction Theorem hold, which in turn requires that we define equality

functors for these other fibrations. The construction of equality functors is standard

in any fibration with the necessary infrastructure [16], but we briefly describe it

here for completeness. The first step is to note that the relations fibration from

Example 2.5 arises from the subobject fibration over Set by so-called change of base

(or pullback), and to generalise that construction.



Definition 4.1 Let U : E → B be a fibration and suppose B has products. The

fibration Rel(U) : Rel(E)→ B × B is defined by the following change of base:

Rel(E)
q //

Rel(U)

��

E

U
��

B × B × //B

We call Rel(U) the relations fibration for U , and call the objects of Rel(E) relations

on B, to emphasise that this construction generalises the relations fibration on Set.
We say that a fibration U : E → B has fibred terminal objects if each fibre EX of

E has a terminal object, and if reindexing preserves these terminal objects. The

map sending each object X of B to the terminal object in EX extends to a functor

K : B → E called the truth functor for U . We can construct an equality functor for

Rel(U) from the truth functor for U as follows:

Definition 4.2 Let U : E → B be a bifibration with fibred terminal objects. If

B has products, then the map X 7→ ΣδXKX, where δX is the diagonal morphism

δX : X → X ×X, extends to the equality functor Eq : B → Rel(E) for Rel(U).

For this definition, it is enough to ask for opreindexing along diagonals δX only

(this is what Birkedal and Møgelberg [4] do to model equality). When dealing

with graph relations in Section 5.1, though, we will use all of the opfibrational

structure to opreindex along arbitrary morphisms. Our definition specialises to

the equality relation EqA when instantiated to the relations fibration on Set. The

equality functor is faithful, but not always full; a counterexample is the equality

functor for the identity bifibration Id : Set → Set, which gives a model with ad

hoc, rather than parametric, polymorphic functions. We thus assume in the rest

of this paper that equality functors are full. This is reminiscent of Birkedal and

Møgelberg’s [4] assumption that the fibration has very strong equality, i.e., that

internal equality implies external equality, in the following sense: fullness says that

if (f, g, α) : 1 → EqY (i.e., α shows that f = g internally), then, since 1 = Eq1B,

(f, g, α) = (h, h,Eqh) for some h : 1B → Y (i.e., f = g externally). We use fullness

of Eq at several places in Section 5 below.

We now show how to interpret arrow types and forall types as fibred functors

with discrete domains. We then show that a particular class of such functors forms

a λ2-fibration and thus a model of System F which is, in fact, parametric.

4.1 Interpreting Arrow Types

The definition of [[T → U ]]o and [[T → U ]]r in Section 3.1 is derived from the

cartesian closed structure of Set and Rel, respectively. Moreover, the fibration

U : Rel → Set × Set preserves the cartesian closed structure, so that [[t]]r is over

[[t]]o × [[t]]o as required by the Abstraction Theorem. Generalising from this fibration,

we can model arrow types “parametrically” — i.e., in a way satisfying the Abstraction

Theorem — in any fibration U : E → B in which E and B are cartesian closed

categories (CCCs) and U preserves cartesian closedness.



Definition 4.3 A fibration U : E → B is an arrow fibration if both E and B are

CCCs, and U preserves the cartesian closed structure. A relations fibration Rel(U) is

an equality preserving arrow fibration if it is an arrow fibration and Eq : B → Rel(E)

preserves exponentials.

One advantage of working with well-studied mathematical structures such as

fibrations is that many of their properties can be found in the literature. This helps

in determining when a relations fibration is an equality preserving arrow fibration:

Lemma 4.4 Let U : E → B be a bifibration with fibred terminal objects and B be a

CCC.

(i) If Eq : B → Rel(E) has a left adjoint Q, then Eq preserves exponentials iff

Q satisfies the Frobenius property. Such a Q exists if U : E → B has full

comprehension, Eq : B → Rel(E) is full and B has pushouts.

(ii) If U : E → B is a fibred CCC and has simple products (i.e., if, for every

projection πB : A×B → A in B, the reindexing functor π∗B has a right adjoint

and the Beck-Chevalley condition holds), then E is a CCC and U preserves the

cartesian closed structure. 2

Change of base preserves simple products and fibred structure, so Rel(U) is a fibred

CCC with simple products if U is. Moreover, B × B is a CCC if B is. Lemma 4.4

thus derives structure in Rel(U) from structure in U .

4.2 Interpreting Forall Types

We must generalise Reynolds’ definitions of [[−]]o and [[−]]r for forall types to relations

fibrations in such a way that the Abstraction Theorem and IEL hold. The rules

for type abstraction and type application suggest that we should interpret ∀ as

right adjoint to weakening by a type variable. We may first try to look for such

an adjoint on the base category, then another on the total category, and then

try to link these adjoints. But this is the wrong idea; for the relations fibration

of Example 2.5, this gives all polymorphic functions, not just the parametrically

polymorphic ones. Instead, we require an adjoint for the combined fibred semantics.

Let |Rel(U)|n →Eq Rel(U) be the category whose objects are equality preserving

fibred functors from |Rel(U)|n to Rel(U) and whose morphisms are fibred natural

transformations between them. Then:

Definition 4.5 Rel(U) is a ∀-fibration if, for every projection πn : |Rel(U)|n+1 →
|Rel(U)|n, the functor ◦ πn : (|Rel(U)|n →Eq Rel(U)) → (|Rel(U)|n+1 →Eq Rel(U))

has a right adjoint ∀n and this family of adjunctions is natural in n.

We write ∀ for ∀n when n can be inferred. This definition follows, e.g., Dunphy

and Reddy [7] by “baking the Identity Extension Lemma into” the definition of

forall types — in the sense that the very existence of ∀ requires that if F is equality

preserving then so is ∀F — rather than relegating it to a result to be proved post

facto. If U is faithful, then Definition 4.5 can be reformulated in terms of more basic

concepts using its opfibrational structure. The IEL then becomes a consequence of

the definition, rather than an intrinsic part of it [9]. For the purposes of this paper,

this abstract specification is enough.



4.3 Fibred functors with discrete domains form a parametric model

A λ2-fibration, i.e., a fibration p : G → S with fibred finite products, finite products

in S, fibred exponents, a generic object Ω, and simple Ω-products, is a categorical

model of System F. Seely [29] gives a sound interpretation of the calculus in such

fibrations. We conclude this section with the following theorem:

Theorem 4.6 If Rel(U) is an equality preserving arrow fibration and a ∀-fibration,

then there is a λ2-fibration in which types Γ ` T are interpreted as equality preserving

fibred functors [[T ]] : |Rel(U)||Γ| →Eq Rel(U) and terms Γ; ∆ ` t : T are interpreted

as fibred natural transformations [[t]] : [[∆]]→ [[T ]]. 2

Note that Lemma 4.4 gives conditions for Rel(U) to be an arrow fibration, and our

other paper [9] similarly gives conditions for Rel(U) to be a ∀-fibration. Unwinding

the interpretation of System F in λ2-fibrations [29], we see that we get the following

for every fibration U : E → B satisfying the hypotheses of the theorem: for every

System F type Γ ` T and term Γ; ∆ ` t : T , we get

(i) a standard interpretation of Γ ` T as a functor [[T ]]o : |B||Γ| → B;

(ii) a relational interpretation of Γ ` T as a functor [[T ]]r : |Rel(E)||Γ| → Rel(E);

(iii) a proof of the Identity Extension Lemma in the form of Lemma 3.2, i.e., a proof

that [[T ]] is equality preserving;

(iv) a standard interpretation of Γ; ∆ ` t : T as a natural transformation [[t]]o :

[[∆]]o → [[T ]]o; and

(v) a proof of the Abstraction Theorem in the form of Theorem 3.3, i.e., a proof

that Γ; ∆ ` t : T has a relational interpretation as a natural transformation

[[t]]r : [[∆]]r → [[T ]]r over [[t]]o × [[t]]o.

Theorem 4.6 also gives a powerful internal language [16], where base types in

type context Γ are given by fibred functors |Rel(U)||Γ| →Eq Rel(U), and base term

constants in term context ∆ are given by fibred natural transformations [[∆]]→ [[T ]].

Thus, we can use this language to reason about our models using System F. This

will be used in the proofs of Theorems 5.7 and 5.11 below.

5 Consequences of parametricity

We use our new framework to derive expected consequences of parametricity. This

serves as a “sanity check” for our new bifibrational conceptualisation, and shows

that our framework is powerful enough to derive the same results as, e.g., Birkedal

and Møgelberg [4]. At a high-level, our proof strategies are often similar to the ones

found in the literature, while the proofs of individual facts are necessarily specific to

our setting, and often fibrational in nature.

5.1 Graph Relations

In the fibration U : Rel → Set × Set every function f : X → Y defines a graph

relation 〈f〉 = {(x, y) | fx = y} ⊆ X × Y . This generalises to the fibrational setting,

where the graph of f : A→ B is obtained by reindexing the equality relation on B.



Definition 5.1 Let U : E → B be a fibration with fibred terminal objects and

products in B. The graph of h : X → Y in B is 〈h〉 = (h, idY )∗(EqY ) in Rel(E).

The definition of 〈h〉 agrees with the set-theoretic one for the relations fibration on

Set. Since reindexing preserves identities, 〈idA〉 = (idA, idA)∗(EqA) = Eq A for any

object A of B. In a bifibration, we can also define the graph of f : A→ B in another,

isomorphic way by using opfibrational structure to opreindex equality on A:

Lemma 5.2 (Lawvere [17]) If U : E → B is a bifibration with fibred terminal

objects that satisfies the Beck-Chevalley condition [16, Section 1.8.11], and if B has

products, then the graph of h : X → Y can also be described by 〈h〉 = Σ(idX ,h)(EqX).2

Being able to describe graph relations in terms of either reindexing or opreindexing

in any bifibration lets us use the universal properties of both when proving theorems

about them. Graph relations are the key structures that turn morphisms in B into

objects in Rel(E) and, more generally, mediate the standard and relational semantics.

The graph functor for Rel(U) : Rel(E)→ B × B is the functor 〈 〉 : B→ → Rel(E)

mapping f : X → Y in B to 〈f〉 in Rel(E). To see how 〈 〉 acts on morphisms, recall

that if f : X → Y and f ′ : X ′ → Y ′ are objects of B→, then a morphism from f

to f ′ is a pair of morphisms g : X → X ′ and h : Y → Y ′ such that f ′ ◦ g = h ◦ f .

The universal property of reindexing in Rel(U) guarantees the existence of a unique

morphism 〈g, h〉 : 〈f〉 → 〈f ′〉 over (g, h) such that the following diagram commutes:

〈f〉 (f,id)§ //

∃ !〈g,h〉
��

Eq Y

Eq h

��
〈f ′〉

(f ′,id)§
// Eq Y ′

Lemma 5.3 If the underlying bifibration satisfies the Beck-Chevalley condition,

then 〈 〉 : B→ → Rel(E) is full and faithful if Eq : B → Rel(E) is. 2

The proof uses the opfibrational characterisation of the graph functor from

Lemma 5.2. The main tool for deriving consequences of parametricity is the Graph

Lemma, which relates the graph of the action of a functor on a morphism with its

relational action on the graph of the morphism. Interestingly, although our setting

is possibly proof-relevant (i.e., there can be multiple proofs that two elements are

related), the following “logical equivalence” version of the Graph Lemma is strong

enough for our applications. If U : E → B and U ′ : E ′ → B′ are fibrations, we

write (Fo, Fr) : Rel(U)→Eq Rel(U ′) to indicate that functors (not necessarily fibred)

Fo : B → B′ and Fr : Rel(E)→ Rel(E ′) are such that Rel(U ′)◦Fr = (Fo×Fo)◦Rel(U),

and (Fo, Fr) is equality preserving, i.e., Fr ◦ Eq = Eq ◦ Fo.

Theorem 5.4 (Graph Lemma) Assume the underlying bifibration satisfies the

Beck-Chevalley condition, and let (Fo, Fr) : Rel(U)→Eq Rel(U). For any h : X → Y

in B, there are vertical morphisms φh : 〈Foh〉 → Fr〈h〉 and ψh : Fr〈h〉 → 〈Foh〉 in

Rel(E). 2

Our proof of the Graph Lemma is completely independent of the specific functor

(Fo, Fr), and so in particular does not proceed by induction on the structure of



types. This is a key reason why we can go beyond Dunphy and Reddy [7] and prove

the existence of initial algebras of positive, rather than just strictly positive, type

expressions.

5.2 Existence of Initial Algebras

Let F : C → C be an endofunctor. An F -algebra is a pair (A, kA) with A an object

of C and kA : FA → A a morphism. We call A the carrier of the F -algebra and

kA its structure map. A morphism h : A→ B in C is an F -algebra homomorphism

h : (A, kA)→ (B, kB) if kB ◦ (Fh) = h ◦ kA. An F -algebra (Z, in) is weakly initial

if, for any F -algebra (A, kA), there exists a mediating F -algebra homomorphism

fold [A, kA] : (Z, in)→ (A, kA). It is an initial F -algebra if fold [A, kA] is unique.

The literature contains other proofs that initial algebras exist in parametric

models (e.g., [4,24]). Closest to our setting is Dunphy and Reddy [7], who show that

strictly positive types have initial algebras. Under assumptions no stronger than

theirs, we sharpen this result to all positive types, or, more generally, all functors on

our parametric models that are strong (see below) and equality preserving.

Let F = (Fo, Fr) : Rel(U) →Eq Rel(U) be a functor (note that the domain

of F is not discrete and that F need not preserve cartesian morphisms) with a

strength t = (to, tr), i.e., a family of morphisms (to)A,B : A ⇒ B → FoA ⇒ FoB

and (tr)R,S : R⇒ S → FrR⇒ FrS with (tr)R,S over ((to)A,B, (to)C,D) if R is over

(A,B) and S is over (C,D), such that t preserves identity and composition. A

functor with a strength is said to be strong. Because of the discrete domains, t is a

natural transformation from ⇒ to F ⇒ F in |Rel(U)|2 →Eq Rel(U), and thus

α, β; · ` t : (α→ β)→ (F [α]→ F [β]) represents the action of F on morphisms in

the internal language. All type expressions with one free type variable occurring only

positively give rise to strong functors, but there are further examples of such functors,

for instance if the model contains non-System F type constructions with natural

functorial (and relational) interpretations — for example, those of dependent types

in Set. We will show that an initial Fo-algebra exists. For this, we first construct a

weak initial Fo-algebra, which can be done in any λ2-fibration. Using the internal

language, we define Z by (Zo, Zr) = [[∀X.(FX → X)→ X]].

Lemma 5.5 Zo is the carrier of a weak initial Fo-algebra (Zo, ino) with mediating

morphism foldo[A, k] and Zr is the carrier of a weak initial Fr-algebra (Zr, inr) with

mediating morphism foldr[A, k]. 2

To show that foldo is unique, we use the graph relations from Section 5.1. Recall

that a category with a terminal object 1 is well-pointed if, for any f, g : A→ B, we

have f = g iff f ◦ e = g ◦ e for all e : 1→ A. Like Dunphy and Reddy [7], we only

consider well-pointed base categories; well-pointedness is used to convert internal

language reasoning in non-empty contexts to closed contexts, so that we can apply

semantic techniques such as Theorem 5.4.

Lemma 5.6 Assume that the underlying bifibration satisfies the Beck-Chevalley

condition, and that Eq is full.

(i) If B is well-pointed, then foldo[Zo, ino] = idZ .



(ii) For every Fo-algebra homomorphism h : (Zo, ino) → (A, kA), we have that

h ◦ foldo[Zo, ino] = foldo[A, kA]. 2

The proofs of the two parts of Lemma 5.6 are similar: both use the graph functor

to map commuting diagrams in B to morphisms in Rel(E), and then use the Graph

Lemma to see that these morphisms are Fr-algebras. Lemma 5.5 and Lemma 5.6

together now immediately imply the main result.

Theorem 5.7 If the underlying bifibration satisfies the Beck-Chevalley condition,

Eq is full, and B is well-pointed, then (Zo, ino) is an initial Fo-algebra. 2

We show in Section 6 that these hypothesis cannot be weakened. One may

wonder if the above result can be strengthened to get not only an initial Fo-algebra,

but also an initial Fr-algebra. Certainly this is possible for the relations fibration

Rel → Set × Set, since relations in Rel are proof irrelevant: maps either preserve

relatedness or not. This translates in the axiomatic bifibrational setting to requiring

the fibration Rel(E)→ B × B to be faithful. When it is, the weak initial Fr-algebra

is, in fact, initial: faithfulness implies the required uniqueness.

5.3 Existence of final coalgebras

We can also dualise the proof from the previous section to show the existence

of final coalgebras in the usual manner [11]. As usual, this requires us to first

encode products and existential types in System F. We encode products as A×B =

∀Y.(A→ B → Y )→ Y . This supports the usual pairing and projection operations,

as well as surjective pairing using parametricity. We encode existential types by

∃X.T = ∀Y.(∀X.(T → Y ))→ Y . We can support introduction and elimination rules

Γ ` A type Γ; ∆ ` u : T [A/X]

Γ; ∆ ` 〈A, u〉 : ∃X.T (X)

Γ; ∆ ` t : ∃X.T Γ, Z; ∆, y : T [Z/X] ` s : S

Γ; ∆ ` (open t as 〈Z, y〉 in s) : S

with the conversion open 〈A, t〉 as 〈Z, y〉 in s = s[X/A, y/t] by defining 〈A, t〉 =

ΛY.λf.f A t and open t as 〈Z, y〉 in s = t V (ΛZ.λy.s). Using parametricity we can

prove the following commutation property and η-rule for existential types:

Lemma 5.8 Assume the underlying bifibration satisfies the Beck-Chevalley condi-

tion, and that Eq is full.

(i) Let Γ; ∆ ` t : ∃X.T , let Γ, Z; ∆, u : T [Z/X] ` s : S and let Γ; ∆ ` f : S → S′

for a closed type S′. Then [[f(open t as 〈Z, u〉 in s)]]o = [[open t as 〈Z, u〉 in f(s)]]o.

(ii) If ∆; Γ ` t : ∃X.T , then [[open t as 〈Z, u〉 in 〈Z, u〉]]o = [[t]]o. 2

If F : C → C is an endofunctor, an F -coalgebra is a pair (A, kA) with A an object

of C and kA : A→ FA a morphism. We call A the carrier of the F -coalgebra and

kA its structure map. A morphism h : A→ B in C is an F -coalgebra homomorphism

h : (A, kA)→ (B, kB) if kB ◦ h = Fh ◦ kA. An F -coalgebra (W, out) is weakly final

if, for any F -coalgebra (A, kA), there exists a mediating F -coalgebra homomorphism

unfold [A, kA] : (A, kA)→ (W, out). It is a final F -coalgebra if unfold [A, kA] is unique.

Let F = (Fo, Fr) : Rel(U)→Eq Rel(U) be a functor with a strength t. We show

that the final Fo-coalgebra exists. Again, we first construct a weakly final coalgebra



by defining W = (Wo,Wr) = [[∃X.(X → F (X))×X]].

Lemma 5.9 Wo is the carrier of a weakly final Fo-coalgebra (Wo, outo) with medi-

ating morphism unfoldo[A, k] and Wr is the carrier of a weakly final Fr-coalgebra

(Wr, outr) with mediating morphism unfoldr[A, k]. 2

We proceed similarly to Lemma 5.6. This time, we use the opfibrational part of

the Graph Lemma to construct Fr-coalgebras.

Lemma 5.10 Assume the underlying bifibration satisfies the Beck-Chevalley condi-

tion, and that Eq is full.

(i) For every Fo-coalgebra morphism h : (A, kA)→ (B, kB) we have unfoldo[B, kB]◦
h = unfoldo[A, kA].

(ii) unfoldo[Wo, outo] = idWo. 2

Putting things together, we have constructed a final coalgebra.

Theorem 5.11 If the underlying bifibration satisfies the Beck-Chevalley condition,

and if Eq is full, then (Wo, outo) is a final Fo-coalgebra. 2

5.4 Parametricity Implies Dinaturality

We show that our axiomatic foundations can be used to prove that dinaturality can

be deduced from parametricity. This is well-known in other settings (see, e.g., [4,

Section 5.1]), but we do it because i) it shows our foundation passes this test; and ii)

it highlights again the use of bifibrations to give two definitions of the graph of a

function both of which are used in the proof. First, the definition of dinaturality:

Definition 5.12 If F,G : Bop×B → B are mixed variant functors, then a dinatural

transformation t : F → G is a collection of morphisms tX : FXX → GXX indexed

by objects X of B such that, for every g : X → Y of B, the following commutes:

F X X
tX //G X X

G(idX ,g)

$$
F Y X

F (g,idX)
::

F (idY ,g) $$

G X Y

F Y Y
tY

//G Y Y
G(g,idY )

::

We note that our proof applies to all mixed variant functors with equality preserving

liftings, not just strong such functors.

Theorem 5.13 Let (Fo, Fr), (Go, Gr) : Rel(U)op × Rel(U)→Eq Rel(U). Further, let

t0A : FoAA→ GoAA be a family indexed by objects A of B, and t1R : FrRR→ GrRR

be a family indexed by objects R of Rel(E) such that if R is over (A,B), then t1R is

over (t0A, t0B). Then t0 is a dinatural transformation from Fo to Go. 2

Theorem 5.13 applies in particular to the interpretation of terms t : ∀X.FXX →
GXX where F and G are given by type expressions with two free type variables,

one occuring positively and one negatively. As is well known, dinaturality reduces

to naturality when F and G are covariant.



6 Examples

The construction of examples remains delicate — for instance, there are no set-

theoretic models with a classical meta-theory. We give five models: Examples 6.1,

6.3, 6.4 and 6.5 are to be regarded as being internal to the Calculus of Constructions

with impredicative Set (with ¬¬-stable equality for Example 6.3), while Example 6.2

is internal to the category of ω-sets.

Before doing so, we take a moment to emphasise the generality of our framework.

Considering different fibrations, we can derive parametric models with very different

flavours. For example, changing the base category of the fibration corresponds to

changing the ‘standard’ model in which we interpret types and terms. Changing

the total category and the fibration (i.e., the functor itself) corresponds to changing

the relevant notion of relational logic. We take advantage of the possibility of

non-standard relations in Examples 6.2, 6.3 and Non-example 6.5.

Example 6.1 Reynolds’ set-theoretic model is an instance of our framework via the

relations fibration on Set. The equality functor is full and faithful in this bifibration,

and Set is well-pointed. Hence Theorems 5.7 and 5.13 ensure that initial algebras

exist, and that all terms are interpreted as dinatural transformations.

Example 6.2 The PER model of Bainbridge et al. [2] is an instance of our frame-

work, if bifibrations are understood as internal to the category of ω-sets, so that

natural transformations are uniformly realised (see also Longo and Moggi [18] for

a detailed construction of a model using a category of PERs internal to ω-sets).

An object of the category PERN is a symmetric, transitive relation R ⊆ N × N.

A morphism from R to S is a function f : N/R → N/S that is tracked by some

partial recursive function φk : N ⇀ N, i.e., such that f([n]R) = [φk(n)]S for all

[n]R ∈ N/R. The appropriate notion of predicate with respect to a PER R is that of

a saturated subset, i.e., a subset P ⊆ N such that P (x) and R(x, x′) implies P (x′).

Saturated subsets form a bifibration over PERs with a full and faithful equality

functor EqA = A. The CCC structure of PERN and SatRel is standard; a bijective

pairing function 〈 , 〉 : N×N→ N gives the product and recursion theory (the s-m-n

Theorem) gives the exponential. The interesting case is that of forall types, which are

interpreted as (cut-down, to ensure equality preservingness) intersections of PERs:

[[∀X.F ]]oR̄ = {(n, k) ∈
⋂
R′:PERN

[[F ]]o(R̄, R
′)| for all Q : SatRel(S, T ).(n, n), (k, k)

∈ [[F ]]r(Eq(R̄), Q)} and [[∀X.F ]]rP̄ =
⋂
Q:SatRel(R,S)[[F ]]r(P̄ , Q). Since PERN is also

well-pointed, Theorems 5.7 and 5.13 again apply.

Example 6.3 The previous models are well-known, but our framework also suggests

new ones. A relation R ⊆ X × Y can be understood classically as a function from

X ×Y to Bool. (Constructively, this only covers decidable relations.) Here, Bool can

be replaced with any constructively completely distributive [8] non-trivial lattice

V of “truth values”, leading to “multi-valued parametricity”. For instance, the

collection D(L) of all down-closed subsets of a complete lattice L is constructively

completely distributive, and classically, we recover Bool as D(1). The category

Fam(V) has objects (A, p), where A is a set and p : A → V is thought of as a

V-valued predicate. The families fibration π : Fam(V) → Set is a bifibration with

Σf (Q)(y) = supfx=y Q(x), fibred terminal objects (X,λ .>), where > is the greatest



element of V, and comprehension given by {(A, p)} = p−1(>). Since V is complete,

it is a Heyting algebra, so that π : Fam(V)→ Set is a fibred CCC. Also, π has simple

products given by Ππ(A×B, p)(a) = infx∈B p(a, b). By Lemma 4.4, Rel(π) is thus

an equality preserving arrow fibration. Finally, the interpretation of forall types

is given by [[∀X.F ]]oĀ = {f :
∏
S:Set[[F ]]o(Ā, S) | infP :X×Y→V [[F ]]r(EqĀ, P ) = >}

and [[∀X.F ]]rP̄ = infQ:X×Y→V [[F ]]r(P̄ , Q). Distributivity is used to show that this

functor is equality preserving. Fullness of Eq is obvious by ¬¬-stable equality.

The extra conditions we impose in Section 5 really are necessary: the following

are examples of ∀- and arrow-fibrations where Theorems 5.7 and 5.13 fail.

Non-example 6.4 Let G be a fixed (non-trivial) group, and consider the category

of G-sets, i.e., the category with objects (X, ·X), where X is a set and ·X : G×X → X

is a group action. Morphisms are functions between the carrier sets that respect the

group action. Together with equivariant (i.e., group action respecting) relations, this

forms a bifibration that is a model of System F in the sense of Theorem 4.6. However,

the category is not well-pointed, and we can see that this makes Theorem 5.7 fail

in our setting: the interpretation of ∀X .X → X is not the singleton G-set 1 as

expected, but instead contains all the elements of the group G. We conjecture that

this non-example also extends to a constructive treatment of the category of nominal

sets [23].

Non-example 6.5 The identity fibration Id : Set → Set models ad hoc polymor-

phism: it is a ∀- and arrow-fibration, but the equality functor EqX = X ×X is not

full. This explains why Theorem 5.13 fails: [[∀X.T ]]o includes ad hoc polymorphic

functions, so that e.g. [[∀X.X → X]]o contains non-natural transformations such as

η, where ηBool(x) = ¬x and ηX(x) = x for X 6= Bool.

7 Conclusions and future work

Our interpretation of types and terms as fibred functors and fibred natural transfor-

mations shows that parametricity entails replacing the usual categorical semantics

involving categories, functors, and transformations with one based on fibrations,

fibred functors, and fibred transformations. The results in Section 5 show that

our new approach based on bifibrations hits the sweet spot of a light structure

that still suffices to prove key results. Work is ongoing in using the bifibrational

framework to develop new notions such as proof-relevant parametricity, and higher

order parametricity with interesting links to cubical sets that also appear in the

semantics of Homotopy Type Theory [3].
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