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Abstract

We develop a categorical model of polymorphic
lambda calculi using a notion called parametric limits,
which extend the notion of limits in categories to re-

exive graphs of categories. We show that a number of
parametric models of polymorphism can be captured in
this way. We also axiomatize the structure of re
exive
graphs needed for modelling parametric polymorphism
based on ideas of �brations, and show that it leads
to proofs of representation results such as the initial
algebra and �nal coalgebra properties one expects in
polymorphic lambda calculi.

Keywords: Parametric polymorphism, Relational
Parametricity, Categorical models, Fibrations.

1 Introduction

In his seminar paper connecting polymorphism and
type abstraction [26], Reynolds proposed that a poly-
morphic type 8X:F (X) should not be interpreted
simply as a product

Q
X2S F (X) consisting of all

S-indexed families but rather as the set of \parametric
families." In Reynolds's formulation an S-indexed
family hpXiX 2

Q
X2S F (X) is parametric if:

for all relations R:X $ X 0, the components
of the family pX and pX0 are related by F (R).

Reynolds reasoned that the computations expressible
in typical polymorphic type systems naturally satisfy
the parametricity property.

In category theory, we �nd a closely related notion,
viz., that of limits. If F :D! Set is a functor, the limit
LimXF (X) is the set of D-indexed families hpX iX 2Q

X2Ob(D) F (X) that satisfy the condition:

for all morphisms f :X ! X 0 in D, the
components pX and pX0 are related by pX0 =
F (f)(pX).

Of course, the categorical notion is not limited to
sets. The limit of a functor F :D ! C is de�ned
by a suitable universal property and works for any
category C. If we could adapt the notion of limits
to cover Reynolds's idea, then we would have achieved
the lifting of parametricty to a categorical level so that
it applies to a wide range of contexts instead of just
sets.

In this paper, we accomplish this task. Categories
by themselves have objects and morphisms but nothing
resembling relations. We follow the suggestion of
O'Hearn and Tennent [17] (see also [29]) that re
exive
graphs of categories can be used to model \categories
with relations." It turns out that re
exive graphs of
categories have pleasant properties that make them
almost like categories. Once we work through these
properties, there is a natural notion of limits in
re
exive graphs which is what we are after. By
suitably reformulating the notion of limits as what
we call \parametric limits," we obtain a categorical
generalization of Reynolds's parametricity. Using it,
we are able to de�ne categorical models for predicative
polymorphic lambda calculus, and, by internalizing
the de�nitions, for the (impredicative) polymorphic
lambda calculus as well.

Having de�ned a categorical model, one should ask
how good the model is. For polymorphic lambda
calculus, there is general agreement that a model is
parametric if it validates isomorphisms representing
initial algebras and �nal coalgebras [2, 8, 5, 26, 21, 32].
The general model of the above kind has no reason to
be parametric. In fact, an arbitrary re
exive graph
has no reason to have any nontrivial relations and, in
such a situation, a parametric limit would be nothing
but an ordinary product. To obtain a parametric
model, we need to ensure that there are \enough
relations." This we do by borrowing a chapter from the
theory of �brations. We produce an axiomatization of
the structure necessary for re
exive graphs to obtain
parametric models, and show that initial algebra/�nal
coalgebra results follow.
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Our work is a modest contribution to category the-
ory (after all, the intuitive notion of uniformity was the
driving force in the development of category theory)
and perhaps a signi�cant contribution to parametricty
theory. Reynolds's formulation of parametricity, being
limited to sets, su�ers some strain in its application to a
wide range of contexts where parametricity notions are
needed, especially in the semantics of stateful program-
ming languages [17, 16, 22, 23, 24]. By reformulating
polymorphic type quanti�cation as a natural form of
limits, characterized by a universal property, we are
able to o�er a clean de�nition that is applicable in a
wide range of contexts. Most of all, we are pleased to
be in a position to say that Reynolds's de�nition is an
inevitable one, once its setting is recognized.

1.1 Related work

Mitchell and Scedrov [15] made the �rst attempt
at categorical modelling of a lambda calculus with
implicit polymorphism. Their structure amounts to
using a graph category. This is too little structure to
model polymorphic lambda calculus, but some of the
�rst steps in incorporating relations in a categorical set-
ting have been taken here. O'Hearn and Tennent [17]
promoted the structure to re
exive graph categories
and used it to analyze the parametricity properties of
Algol-like languages. They made no attempt to model
polymorphic lambda calculus.

Ma and Reynolds [13] gave the �rst categorical
model of parametricity in the framework of PL-
categories [31]. Their structure amounts to a re
exive
graph of PL-categories with a certain parametricity
condition which applies to the interpretations of closed
types. Using this condition, it is possible to show
isomorphisms involving closed types, but nothing can
be said about types with free variables. The categorical
model we describe is a parametric model in the sense
of Ma and Reynolds.

Bainbridge et al. [2] gave the �rst concrete paramet-
ric model of polymorphic lambda calculus by trimming
down the PER model using relations. Robinson and
Rosolini [29] describe a class of models built using
jointly monic spans. All these models are special cases
of the categorical model we describe.

Representation results of the kind we prove were �rst
discovered by Reynolds [26] and were later improved
in [28] and [19]. Our proofs show that they hold in a
large class of models, not only the the speci�c models
considered previously.

2 Background and de�nitions

We �rst recall the de�nition of limits in categories. If
F :D! C is a functor, the limit of F , denoted Lim(F )
or LimXF (X), is an object ofC together with a natural
transformation !: LimXF (X) ! F that is universal,
i.e., any other natural transformation �:A ! F from
an object A of C uniquely factors through !.

LimXF (X)
! - F

�
�
�
�
�
�
�

�

>

A

��
6

(Recall that, in writing an object A as a functor, we
mean the constant functor �A:D ! C that sends
every object to A and every morphism to idA.) We
call this the \pointwise" de�nition of limits. If every
functor F :D! C has a limit, then these limits can be
gathered together into a functor Lim : CD ! C. The
limit functor can be de�ned in a more straightforward
fashion: it is the right adjoint to the diagonal functor
�:C ! CD. The pointwise de�nition is merely an
unfolding of this general notion.

The relationship of limits to Reynolds's parametric-
ity can be seen by considering the case where C =
Set. In that case, LimXF (X) can be characterized
as in the Introduction, the set of D-indexed families
hpXiX such that, for all f :X ! X 0 in D, F (f) sends
pX to pX0 . The natural transformation ! picks out
the components of the family and, for any natural
transformation �:A! F , �� maps a 2 A to the family
h�X(a)iX . Naturality of � guarantees that this family
is an element of the limit. In e�ect, the notion of limit
internalizes the concept of natural transformation.

Reflexive graphs

Since categories do not have \relations" required for
parametricity, we model them in a separate category
whose objects are abstractly called \edges." (The base
category is then called the vertex category.) The mor-
phisms in the edge category model \relation-preserving
functions." Two functors @0 and @1 from the edge
category to the vertex category pick out the source and
target of edges and edge morphisms, and a functor I
from the vertex category to the edge category picks out
the \identity edge:"

De�nition 1 A re
exive graph category G consists of
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two categories and three functors as depicted in:

Gv

� @0

I -

� @1
Ge

such that I ; @0 = idGv = I ; @1.

Notation We use the terminology \vertex" and \ar-
row" for the objects and morphisms of Gv , and \edge"
and \square" for those of Ge. The identity edge I(A)
is written as IA. If R is an edge such that @0R = A0

and @1R = A1 then we write R:A0 $ A1. Similarly
for edge morphisms  : f0 $ f1. However, since edge
morphisms also have sources and targets in the sense
of morphisms  :R ! S, all the common vertices have
to match, as in the two-dimensional diagram:

A0
f0- B0

 

A1

R

?

6

f1- B1

S

?

6

The diagram, consisting of all the typing data of the
square  , is called the shape of  .

If a re
exive graph is such that there is at most
one square of a given shape, it is called a relational
re
exive graph. (Then a square R ! S merely
determines a relation between hom-sets Hom[A0; B0]
and Hom[A1; B1].)

The canonical example of re
exive graphs is REL,
whose vertex category is Set and the edge category has
relations hA0; A1; R � A0 � A1i as objects, and pairs
of functions hf0; f1i : R ! S as morphisms whenever
f0 [R! S] f1. The functors @i map hA0; A1; Ri to
Ai and hf0; f1i to fi. The I functor sends A to the
diagonal relation hA;A;�Ai and f to hf; fi. note that
this is relational re
exive graph.

Familiar categories such as Poset, Cpo, Cpo?,
Cppo etc. can be similarly given a re
exive graph
structure by picking suitable forms of relations as
edges.

Any category C gives rise to three immediate re-

exive graphs. The category C itself can be treated
as a re
exive graph by taking C as both the vertex
and edge category with IA = A. (There are no
non-identity edges.) The re
exive graph C! uses the
arrow category of C as the edge category with IA =

idA. Finally, Span(C) has spans A0
�r0 Rw

r1- A1

in C as edges and span-morphisms as edge morphisms.

A0
f0 - B0

��
��*

��
��*

Rw

fw - Sw
HHHHj

HHHHj
B0

f1 - B1

Note that Span(C) is not a relational re
exive graph.
Instead of all spans, one can consider jointly monic
spans [29], which gives rise to a re
exive graph
JMS(C). It shares most formal properties of Span(C)
but it is relational.

The 2-category RG

Re
exive graph categories can be reduced to the
familiar setting of indexed categories. LetB denote the
category with two objects v and e and �ve non-identity
morphisms as follows:

v

� @0

I -

� @1
e

@0; I -
@1; I - e

Then a re
exive graph category G is nothing but a
functor G:B ! CAT, in other words a Bop-indexed
category.

We have a 2-category RG with the data:

objects: Re
exive graph categories
= Bop-indexed categories

1-cells: Bop-indexed functors
2-cells: Bop-indexed natural transformations

(We suppress mentioning Bop in the sequel.) Expli-
cating the concepts, an indexed functor F :G ! H

is a pair of functors hFv :Gv ! Hv; Fe:Ge ! Hei
that commutes with the structural functors of re
exive
graphs. An indexed natural transformation �:F ! G :
G! H is similarly a pair h�v :Fv ! Gv; �e:Fe ! Gei
of natural transformations that preserve the structural
functors: @i�e = �v@i and I�v = �eI . (We omit the
subscripts v and e from the components of F and
� whenever they clear from the context.) Thus, an
indexed natural transformation � has �rst an ordinary
natural transformation �v and, second, for each edge
R:A$ A0 of G, a square of the form:

FA
�A - GA

�R

FA0

FR

?

6

�A0- GA0

GR

?

6
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For relational re
exive graphs, �R is unique whenever
it exists. So, its existence is all that matters.

Since RG is a 2-category, all the usual category the-
ory of adjunctions, monads, algebras etc. carries over
to them. For instance, \cartesian closed re
exive graph
category" is a well-de�ned concept since products and
exponents are adjoints to suitable indexed functors.

To get some sense of the broader applicability of
the ideas, consider the case of F -algebras, where
F :REL ! REL is an indexed functor. As usual, an
F -algebra is a pair hA; �:FA! Ai and morphisms are
algebra-morphisms. For edges, the natural candidates
are F -simulations, i.e., relations R:A $ A0 such that
� [FR! R] �0. (See, for instance, [30].) We thus
obtain a re
exive graph F -Alg.

3 Parametric limits

Whenever C and D are categories, there is a functor
category CD whose objects are functors D ! C

and morphisms are natural transformations. This
feature does not carry over to indexed categories in
general. In fact, indexed categories may not have
anything resembling \objects." However, for re
exive
graphs, this feature does carry over and motivates our
observation that re
exive graph categories are very
much \like categories."

Theorem 2 Re
exive graph categories have functor
categories, i.e., the exponent HG of two re
exive
graphs G and H is a re
exive graph whose vertices
are indexed functor G ! H and arrows are indexed
natural transformations.

Proof: Indexed categories are cartesian closed, and
their exponents are given in the same way as in
presheaf-categories, using a hom-functor. The hom-
functor in the case of re
exive graphs is of the form
HomB[w;�] : B ! CAT where w is an object of B.
Calculation shows that we have discrete re
exive graph
categories:

HomB[v;�] �= 1 (one vertex, only identity
edge)

HomB [e;�] �= E (two vertices, one non-
identity edge)

It follows that HG has:

vertex category: indexed functors G ! H and
indexed natural transformations

edge category: indexed functors E�G! H and
indexed natural transformations

In other words, an edge �:F ! F 0 in HG is given by
a family h�RiR, indexed by edges R:X $ X 0 in G, of

edges �R:FX $ F 0X 0 in H. a square of shape on the
left, below, consists of R-indexed families of squares of
shape on the right:

F
� - G

F 0

�
?

6

�0 - G0

�
?

6
FX

�X- GX

F 0X 0

�R
?

6

�0X0- G0X 0

�R
?

6

For any pair of re
exive graphs G and H, we have
a diagonal indexed functor �:H ! HG whose action
is described as follows:

� For a vertex A, �(A) is the constant indexed
functor that sends every vertex of G to A, every
morphism to idA, every edge to IA and every
square to IidA .

� For an edge R:A $ A0, �(R) is the constant
family that maps every edge of G to R, and every
square to idR.

(Note the crucial role played by the identity edge IA in
this de�nition.)

We now de�ne

parametric limits 8 : HG ! H right adjoint to �
parametric colimits 9 : HG ! H left adjoint to �

Unpacking the de�nition, we explicate what happens
with pointwise parametric limits. If F :G ! H is an
indexed functor, the parametric limit of F denoted
8XF (X) is a vertex of H together with an indexed
natural transformation !:8XF (X) ! F that is uni-
versal, i.e., any other indexed natural transformation
�:A ! F from any vertex A of H uniquely factors
through !:

8XF (X)
! - F

�
�
�
�
�
�
�

�

>

A

��
6

In treating a vertex A as an indexed functor, we mean
the constant functor �(A):G ! H. Here are some
examples.

The re
exive graph REL has small parametric
limits and colimits.

� If F :G ! REL is an indexed functor (and G is
small), then

8XF (X) = f htXiX 2
Q

X2Ob(Gv)
F (X)j

8R:X $ X 0: tX [F (R)] tX0 ^
8f :X ! X 0: F (f)(tX) = tX0 g

4



Given any indexed natural transformation �:A!
F , �� : A ! 8XF (X) is de�ned by ��(a) =
h�X(a)iX2Ob(Gv). The fact that � is an indexed
natural transformation guarantees that ��(a) 2
8XF (X).

� The parametric colimit 9XF (X) is the quotient
of

P
X2Ob(Gv)

F (X) with respect to the least
equivalence relation generated by the following
conditions:

{ R:X $ X 0^ t [F (R)] t0 =) hX; ti � hX 0; t0i,
and

{ f :X ! X 0 =) hX; ti � hX 0; f(t)i.

The constructions extend to indexed functors
RELG ! REL. If �:F $ F 0 is an edge in RELG

then 8(�) and 9(�) are relations given by:

hpXiX [8(�)] hp0XiX () 8R:X $ X 0: pX [�R] p
0
X0

[hX; pi] [9(�)] [hX 0; p0i] ()
9R:Y $ Y 0: 9hY; qi 2 [hX; pi]: 9hY 0; q0i 2 [hX 0; p0i]:
q [�R] q

0

Note that these constructions coincide with those
of Reynolds [26] for the universal quanti�cation and
Reddy [23] for the existential quanti�cation (with the
proviso that they do not include the naturality condi-
tions because their re
exive graphs G are discrete.)
CPO has small parametric limits and colimits given

in a similar fashion. See [4] for details.

Theorem 3 If C is a category with small limits then
Span(C) has all small parametric limits. If C has
small colimits then Span(C) has small parametric
colimits.

Proof sketch: If F :G ! Span(C) is an indexed
functor, we construct a category G� whose objects
are all the vertices and edges of G. The arrows of
G� are pairs (m; f):X ! Y where m:x ! y is
an arrow of B and f :G(m)(X) ! Y is an arrow
of Gy. The indexed functor F determines a functor
F � : G� ! C such that 8XF (X) = LimXF

�(X) and
9XF (X) = ColimXF

�(X).

4 Modelling polymorphic lambda cal-

culi

Relational parametricity arose from Reynolds's at-
tempt to give a (classical) model of the impredicative
polymorphic lambda calculus or System F [6, 25].
Even though this attempt was later shown to be
infeasible [27, 28], it can be made to succeed for a

predicative calculus representing the type systems in
languages like ML and Haskell [14]. The same ideas can
be recast in an internal category setting to model the
impredicative calculus as well. In this section, we de�ne
categorical models of both the cases using parametric
limits.

A predicative polymorphic lambda calculus has a
type structure of the following form:

simple types � ::= � j �1 � �2 j �1 ! �2
polytypes � ::= � j 8�: � j 9�: �

where � ranges over type variables. (We leave open the
possibility of adding primitive types.)

A categorical model for the predicative calculus
consists of:

� a re
exive graph category G, and

� a small cartesian closed re
exive graph subcate-
gory S ofG (with an inclusion functor J : S! G)

such that there are parametric limit and parametric
colimit functors 8; 9 : GjSj ! G, where jSj denotes the
discrete re
exive graph of S (obtained by dropping all
non-identity morphisms).

A simple type expression with n type variables is
interpreted as an indexed functor jSj

n
! S:

[[�i]] = �i (the ith projection)
[[�1 � �2]] = � Æ h[[�1]]; [[�2]]i
[[�1 ! �2]] = ) Æ h[[�1]]; [[�2]]i

A polytype expression with n type variables is inter-
preted as an indexed functor jSj

n
! G:

[[� ]] = J Æ [[� ]]

[[8�n+1: �]] = 8jSj
n

([[�]])

[[9�n+1: �]] = 9jSj
n

([[�]])

where 8jSj
n

; 9jSj
n

: (GjSjn)jSj ! GjSjn are the para-
metric limit and colimit functors. The interpretation
of terms can be given in the evident fashion using
the combinators associated with parametric limits and
colimits.

The impredicative polymorphic lambda calculus has
the type structure:

� ::= � j �1 ! �2 j 8�: �

A categorical model for this calculus consists of a
cartesian-closed re
exive graph category G such that
the parametric limit indexed functor 8:GjGj ! G

exists. There are no re
exive graphs of this kind
internal to Set. Re
exive graphs, like PER, that are
internal to ! � Set [12] or, alternatively, the e�ective

5



topos [10], satisfy the condition. (We omit the details
of restating the de�nitions to an internal category
setting, which may be found in [4].)

An important point to note is that the type ex-
pressions are interpreted as functors jSj

n
! G or

jGj
n
! G from a discrete re
exive graph. (We cannot

use the category Sn directly because type variables may
be used in both covariant and contravariant positions
and type expressions would not be functorial in the
type variables.) Thus, the only uniformity conditions
in the interpretation of terms are those arising from the
preservation of edges. If we had used plain categories
instead of re
exive graph categories, no uniformity
conditions would be captured and the interpretation
of 8 would amount to a simple product.

5 Axiomatizing parametricity

Re
exive graphs add structure to categories so
that we can incorporate Reynolds's ideas of relation-
preservation. However, they do not ensure that
relation-preservation has in fact been captured. Since
any category can be trivially regarded as a re
exive
graph (Sec. 2), the setting of re
exive graphs by itself
does not impose any new conditions on the models.
Speci�cally, we can identify three issues:

� There may not be enough relations to ensure that
relation-preservation is a meaningful constraint.

� The identity edges need to be given semantics (just
as identity morphism acquire semantics via the
condition that they be the units of composition).

� Multiple squares can be present witnessing the fact
that a pair of arrows bear a particular relation.

We address these issues in the sequel.

5.1 Relational reflexive graphs

In Reynolds's model of the polymorphic lambda
calculus, relations were introduced as a tool to describe
the uniformity properties of collections of functions.
However, in our categorical model, terms are inter-
preted as indexed natural transformations { which are
collections of arrows and squares, where the latter de-
note morphisms between relations. We cannot suppress
the information about squares because it matters which
squares are used in a collection.

Consider the interpretation of 8X:X ! X in
Span(Set). The interpretation consists of indexed
natural transformations of type 1 ! (J ) J) or,
equivalently, those of type J ! J . Other than

the identity transformation, there are countless other
transformations of type J ! J , which di�er in the
witnesses used in the spans. For instance, let Rw =
fa; bg in the span 1 � Rw

- 1. If m is a
permutation of Rw then there is an indexed natural
transformation � : J ! J which acts as the permutation
m for the span R and as identity for every other span.
Thus, the intuitive idea that 8X:X ! X consists of a
single polymorphic function is lost.

We have introduced relational re
exive graphs as
those that have at most one square of any given shape.
Relational re
exive graphs do not have this problem.
There is a 2-category of relational re
exive graphs rRG
which is a 2-subcategory of RG.

If one wants to consider non-relational re
exive
graphs such as spans, then there is an easy device
to convert them into relational re
exive graphs by
collapsing all the squares of a particular shape into
a single equivalence class. This operation determines
a 2-functor R:RG ! rRG, which is left adjoint to
the inclusion rRG ! RG. In other words, rRG is a
re
ective 2-subcategory of RG.

5.2 Fibred reflexive graphs

Hermida [9] proposed that logical relations are best
modelled in terms of �brations. Since �brations have a
strong connection with predicate logic, this is a fruitful
way to capture the idea that edges model relations.

A re
exive graph G is said to be �bred if h@0; @1i :
Ge ! Gv �Gv is a �bration. More explicitly, we give
the following de�nition:

De�nition 4 a square A
f- B

�

A0

P
?

6

f 0- B0

R
?

6
is said to be

cartesian if for any square  of the shape on the left,
below, there is a unique factorization of  through �.
We denote the factor by �( ).

X
f Æ g- B

 

X 0

T
?

6

f 0 Æ g0- B0

R
?

6
X

g- A
f- B

�( ) �

X 0

T
?

6

g0- A0

P
?

6

f 0- B0

R
?

6

A re
exive graph is said to be �bred if, for every edge
R:B $ B0 and morphisms f :A ! B, f 0:A0 ! B0,
there exists an edge [f; f 0]R : A$ A0 with a cartesian

6



edge morphism of the following shape:

A
f- B

A0

[f; f 0]R
?

6

f 0- B0

R
?

6

Such an edge is said to be the weakest pre-edge of R
along (f; f 0).

The notion of weakest pre-edge has obvious parallels
with the predicate transformer semantics used in im-
perative programming [3, 20] as well as modalities in
dynamic logic [7].

The re
exive graph REL is �bred. The weakest
pre-edge [f; f 0]R is given by:

x
�
[f; f 0]R

�
x0 () f(x) [R] f 0(x0)

The re
exive graph CPO is �bred in the same way. If
C is a category with all �nite limits, Span(C) is �bred,
with the weakest pre-edge [f0; f1]R given by the limit
of the diagram:

A0
f0 - B0

��
��*

Rw
HHHHj

A1
f1 - B1

In contrast, note that the trivial examples C and C!

are not �bred in general.
Weakest pre-edges are unique up to isomorphism. A

speci�c choice of weakest pre-edges is called a cleavage.
We assume that a speci�c cleavage is given in specifying
a �bred re
exive graph. Further, we assume that the
cleavage is chosen so that [idX ; idX0 ]R = R (called a
\normalized" cleavage.)

De�nition 5 If G and H are �bred re
exive graphs
with chosen cleavages, a cloven indexed functor
F :G ! H is one that preserves the chosen cleavage:
F ([f; f 0]R) = [Ff; Ff 0]FR.

5.3 Identity condition

To give semantics to the identity edges, we borrow
the following notion from Kinoshita et al. [11]:

De�nition 6 A re
exive graph category G is said to
satisfy the identity condition if, whenever there is a

square of shape A
f- B

A0

IA
?

6

g- B0

IB
?

6
, it follows that f = g.

Note that the converse of this condition is automatic
because, whenever f = g, If is a square of the required
shape.

Fibred re
exive graphs with identity condition are
subsumptive [22] in the sense that all commuting
squares of the vertex category have squares witnessing
them. De�ne a mapping of arrows f :X ! X 0 to
edges hfi:X $ X 0 in a �bred re
exive graph by
hfi = [f; idX0 ]IX0 . For example, in REL, hfi denotes
the graph of the function f :

hfi = f (x; x0) j f(x) = x0 g

Theorem 7 In a �bred re
exive graph G satisfying
the identity condition,

� for every vertex A, hidAi = IA, and

� there is a square of shape on the left, below, if and
only if the diagram on the right commutes:

A
f- B

A0

hgi
?

6

f 0- B0

hhi
?

6
A

f- B

A0

g
? f 0- B0

h
?

The �rst signi�cant result following from our axioma-
tization is the following:

Theorem 8 In a �bred re
exive graph G with the
identity condition, the parametric limit 8XX and the
initial vertex of G are the same concept (if one exists,
so does the other and it is identical.)

A cloven indexed functor F :G ! H evidently
preserves the subsumption map: F (hfi) = hFfi.
This fact is useful when we consider the modelling
of a polymorphic lambda calculus. As remarked in
Sec. 4, the variance issues force the model to ignore
the action of type constructors on morphisms. So, the
uniformity conditions represented by naturality are not
captured. However, the subsumption of morphisms by
edges means that nothing is lost.

De�nition 9 Let F;G : G ! H be indexed functors.
A family of arrows f�X :FX ! GXgX2Ob(Gv) is called
a parametric transformation if, for every edge R:X $
X 0 of G, there is a square of the following shape:

FX
�X- GX

FX 0

FR
?

6

�X0- GX 0

GR
?

6

Theorem 10 Let F;G:G ! H be cloven indexed
functors. Then any parametric transformation � :F !
G is a natural transformation Fv ! Gv .

7



Thus the point of our axiomatization is that para-
metricity subsumes the naturality condition. Such
subsumption works even in the presence of mixed
variance.

Theorem 11 Let F;G : Gop � G ! H be cloven
indexed functors. Then any parametric transformation
� :F�! G� is a dinatural transformation Fv ! Gv .

5.4 Parametricity graphs

Gathering all the axioms together, we coin a new
term:

De�nition 12 A parametricity graph is a �bred, re-
lational re
exive graph (with a chosen normalized
cleavage) satisfying the identity condition.

A PG-functor is a cloven indexed functor between
parametricity graphs.

The 2-category PG is made up of parametricity
graphs, PG-functors and parametric transformations.

Examples of parametricity graphs includeREL, CPO,
PER, F -Alg (provided F is �bred), R(Span(C)) and
JMS(C).

The analysis of Sections 3-4 carries over to para-
metricity graphs. If G and H are parametricity
graphs, their exponent HG is the exponent re
exive
graph with the associated cleavage [�; �0]� given by
([�; �0]�)(R:X $ X 0) = [�X ; �

0
X0 ](�R). The diagonal

functor � : H! HG is cloven. One should verify that
in the example re
exive graphs, the parametric limit
and colimit functors are cloven.

5.5 Representation results

We show that the axiomatization of parametricity
graphs supports representation results concerning ini-
tial algebras and �nal coalgebras. A simple case is the
following:

Theorem 13 If G is a well-pointed, cartesian closed
parametricity graph, the parametric limit 8XX ) X
of the functor Id) Id is the terminal object.

Note that the theorem only applies to well-pointed
parametricity graphs. We can show that it breaks
in non-well-pointed parametricity graphs. Consider
the \presheaf" re
exive graph RELC where C is a
category (regarded as a re
exive graph) with a single
object ? and a single non-identity arrow j that is
idempotent. The terminal object in RELC is �(1).
If F :C ! REL is a functor, (F ) F )(?) is a pair
hfid; fji of functions, each of type F (?)! F (?) subject

to naturality conditions. We can �nd two such pairs,
which appear to be given uniformly in F :

hF (id); F (id)i and hF (j); F (j)i

Indeed, there is a parametric transformation
�F : �(2) ! (F ) F ) which does not uniquely
factor through !F : �(1)! (F ) F ).

One might draw one of two potential conclusions
from this breakdown. One is that parametricity is
dependent on well-pointedness of models. (Perhaps,
for non-well-pointed models, parametricty does not
capture the intuitive idea of uniformity.) A second
possible conclusion is that the representation result
8XX ) X �= 1 is dependent on well-pointedness of
models. We tend to the latter view since we have not
actually found any examples where parametricity al-
lows intuitively non-uniform expressions. As remarked
above, the two distinct elements in 8FF ) F inRELC

are both intuitively uniform. Rather, it seems that we
do not know at present how to state representation
results for non-well-pointed models.

We now turn to the issue of giving general represen-
tation results for well-pointed models. Let F (X) de-
note a type expression of System F with no occurrences
of X to the left of '!'. Then the type expression F (X)
can be given an interpretation of type jGj

n
�G ! G

or, equivalently, jGj
n
! GG. De�ne notations:

�F � 8X: (F (X)! X)! X
�F � 9X: (X ! F (X))�X

where 9X:P (X) is short-hand for 8Y: (P (X)! Y ) !
Y .

Theorem 14 In any well-pointed parametricity graph
model of System F,

� �F denotes the initial F -algebra, and

� �F denotes the �nal F -coalgebra.

Our proof of this result, covered in detail in [4, Chapter
5], is based on giving a formal logic for reasoning
about System F terms amounting to an internal logic of
well-pointed parametricity graph models. This logic is
stronger than System R of Abadi et al. [1] but weaker
than the Plotkin-Abadi logic [19]. It has judgments
for statements of the form M [R] N where M and N
are terms of System F and R is a relation expression.
Relation expressions are built from the syntax:

R ::= � j �1 ! �2 j 8�: � j
�0
�1
[M0;M1]R

where the �rst three forms, resembling type expres-
sions, stand for the action of type expressions on edges,
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and the last form represents the weakest pre-edge
construction. Any pure type expression used as a
relation, denotes the identity edge of that type. Sample
rules in the system are (in a stripped-down notation)

M [R! S] N M 0 [R] N 0

MM 0 [S] NN 0

M [R] N

��:M [8�:R] ��:N

M [8�:R] N S:�0 $ �1

M [�0] [R[S=�]] N [�1]

MM 0 [R] NN 0

M 0 [�0�1 [M;N ]R] N 0

M 0 [�0�1 [M;N ]R] N 0

MM 0 [R] NN 0

Using the rules of the logic, we can prove formal
isomorphisms involving System F terms which imply
the facts about initial algebras and �nal coalgebras.

6 Conclusion

We have given an abstract characterization of what
is meant by a \parametric model" of a polymorphic
lambda calculus using the concept of parametric limits
in re
exive graph categories. We have also shown
that this characterization supports the representation
results one expects from parametric models such as the
initial algebra and �nal coalgebra results.

In comparison with the characterization by Ma and
Reynolds [13], we might say that the structure required
for parametricity is built into the models from the
ground up, rather than being imposed after the fact.
This leads to a pleasing construction which parallels
the presentation of categorical models of simply-typed
lambda calculus and other type theories.

Our theory is presented in a generic form addressing
parametricity in all its incarnations. In particular,
we have shown its applicability to the predicative
polymorphic calculus which represents the situation
in programming languages like ML and Haskell. The
predicative case is interesting because it is representa-
tive of the traditional practice in mathemataics, has
many classical models, and has useful applications
such as the semantics of imperative programming
languages [17] or algebraic data types [30].

We have not addressed the issues posed by recursion.
Divergence is incompatible with the formal properties
of parametricity. However, as observed by Plotkin [21],
it is possible for the two to coexist in a polymorphic
linear lambda calculus. It is possible to tailor the
results of this paper to such a calculus, but the details
must await a future paper.
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