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Abstract. Lax logical relations are a categorical generalisation of logical
relations; though they preserve product types, they need not preserve
exponential types. But, like logical relations, they are preserved by the
meanings of all lambda-calculus terms. We show that lax logical relations
coincide with the correspondences of Schoett, the algebraic relations of
Mitchell and the pre-logical relations of Honsell and Sannella on Henkin
models, but also generalise naturally to models in cartesian closed cate-
gories and to richer languages.

1 Introduction

Logical relations and various generalisations are used extensively in the study
of typed lambda calculi, and have many applications, including

• characterising lambda definability [Pl73, Pl80, JT93, Al95];
• relating denotational semantic definitions [Re74, MS76];
• characterising parametric polymorphism [Re83];
• modelling abstract interpretation [Ab90];
• verifying data representations [Mi91];
• defining fully abstract semantics [OR95]; and
• modelling local state in higher-order languages [OT95, St96].

The two key properties of logical relations are

1. the so-called Basic Lemma: a logical relation is preserved by the meaning
of every lambda term; and

2. inductive definition: the type-indexed family of relations is determined by
the base-type components.
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It has long been known that there are type-indexed families of conventional
relations that satisfy the Basic Lemma but are not determined inductively in
a straightforward way. Schoett [Sc87] uses families of relations that are pre-
served by algebraic operations to treat behavioural inclusion and equivalence
of algebraic data types; he terms them “correspondences,” but they have also
been called “simulations” [Mi71] and “weak homomorphisms” [Gi68]. Further-
more, Schoett conjectures (pages 280–81) that the Basic Lemma will hold when
appropriate correspondences are used between models of lambda calculi, and
that such relations compose. Mitchell [Mi90, Sect. 3.6.2] terms them “algebraic
relations,” attributing the suggestion to Gordon Plotkin1 and Samson Abram-
sky, independently, and asserts that the Basic Lemma is easily proved and (bi-
nary) algebraic relations compose. But Mitchell concludes that, because logical
relations are easily constructed by induction on types, they “seem to be the im-
portant special case for proving properties of typed lambda calculi.”

Recently, Honsell and Sannella [HS99] have shown that such relation fam-
ilies, which they term “pre-logical relations,” are both the largest class of con-
ventional relations on Henkin models that satisfy the Basic Lemma, and the
smallest class that both includes logical relations and is closed under composi-
tion. They give a number of examples and applications, and study their closure
properties.

We briefly sketch two of their applications.

• The composite of (binary) logical relations need not be logical. It is an easy
exercise to construct a counter-example; see, for instance, [HS99]. But the
composite of binary pre-logical relations is a pre-logical relation.
• Mitchell [Mi91] showed that the use of logical relations to verify data rep-

resentations in typed lambda calculi is complete, provided that all of the
primitive functions are first-order. In [HS99], this is strengthened to allow
for higher-order primitives by generalising to pre-logical relations. Honsell,
Longley et al. [HL+] give an example in which a pre-logical relation is used
to justify the correctness of a data representation that cannot be justified
using a conventional logical relation.

In this work, we give a categorical characterisation of algebraic relations
(simulations, correspondences) between Henkin models of typed lambda cal-
culi. The key advantage of this characterisation is its generality. By using it,
one can immediately generalise from Henkin models to models in categories
very different from Set, and to languages very different from the simply typed
lambda calculus, for example to languages with co-products or tensor products,
or to imperative languages without higher-order constructs.

The paper is organised as follows. In Sect. 2, we recall the definition of logi-
cal relation and a category theoretic formulation. In Sect. 3, we give our categor-
ical notion of lax logical relation, proving a Basic Lemma, with a converse. In
Sect. 4, we explain the relationship with pre-logical relations and in Sect. 5 give

1 Plotkin recalls that the suggestion was made to him by Eugenio Moggi in a conversa-
tion.



another syntax-based characterisation. In Sect. 6 we consider models in carte-
sian closed categories. In Sect. 7, we generalise our analysis to richer languages.

2 Logical Relations

Let Σ be a signature of basic types and constants for the simply typed λ-calculus
with products [Mi90], generating a language L. We use σ and τ to range over
types in L. We denote the set of functions from a set X to a set Y by [X ⇒ Y].

Definition 2.1. A model M of L in Set consists of

• for each σ , a set Mσ , such that Mσ→τ = [Mσ ⇒ Mτ ], Mσ×τ = Mσ ×Mτ , and
M1 = {∗};

• for each constant c of Σ of type σ , an element M(c) of Mσ .

A model extends inductively to send every judgement Γ ` t:σ of L to a function
M(Γ ` t:σ) from MΓ to Mσ , where MΓ is the evident finite product in Set. These
are “full” type hierarchies; larger classes of models, such as Henkin models and
cartesian closed categories, will be discussed later.

Definition 2.2. Given a signature Σ and two models, M and N, of the language L
generated by Σ , a (binary) logical relation from M to N consists of, for each type σ
of L, a relation Rσ ⊆ Mσ × Nσ such that

• for all f ∈ Mσ→τ and g ∈ Nσ→τ , we have f Rσ→τ g if and only if for all x ∈ Mσ
and y ∈ Nσ , if x Rσ y then f (x) Rτ g(y);
• for all (x0, x1) ∈ Mσ×τ and (y0, y1) ∈ Nσ×τ , we have (x0, x1) Rσ×τ (y0, y1) if

and only if x0 Rσ y0 and x1 Rτ y1;
• ∗ R1 ∗;
• M(c) Rσ N(c) for every constant c in Σ of type σ .

The data for a binary logical relation are therefore completely determined by its
behaviour on base types. The fundamental result about logical relations under-
lying all of their applications is the following.

Lemma 2.3 (Basic Lemma for Logical Relations). Let R be a binary logi-
cal relation from M to N; for any term t:σ of L in context Γ , if x RΓ y, then
M(Γ ` t:σ)x Rσ N(Γ ` t:σ)y,

where x RΓ y is an abbreviation for xi Rσi yi for all i where σ1, . . . ,σn is the se-
quence of types in Γ . It is routine to define n-ary logical relations for an arbitrary
natural number n, in the spirit of Definition 2.2. The corresponding formulation
of the Basic Lemma holds for arbitrary n too.

We now outline a categorical formulation of logical relations [MR91, MS92];
this will be relaxed slightly to yield our semantic characterisation of algebraic
relations for typed lambda calculi with products.

The language L determines a cartesian closed term category, which we also
denote by L, such that a model M of the language L in any cartesian closed



category such as Set extends uniquely to a cartesian closed functor from L
to Set [Mi96, Sect. 7.2.6]; i.e., a functor that preserves products and exponen-
tials strictly (not just up to isomorphism). We may therefore identify the notion
of model of the language L in Set with that of a cartesian closed functor from L
to Set.

Definition 2.4. The category Rel2 is defined as follows: an object (X, R, Y) consists
of a pair of sets X and Y, and a binary relation R ⊆ X × Y; a map from (X, R, Y)
to (X′, R′, Y′) is a pair of functions ( f : X → X′, g: Y → Y′) such that x R y implies
f (x) R′ g(y):

X X′

Y Y′
?R ?R

′

-f

6
-g

6

Composition is given by ordinary composition of functions.

We denote the forgetful functors from Rel2 to Set sending (X, R, Y) to X or to Y
by δ0 and δ1, respectively.

Proposition 2.5. Rel2 is cartesian closed, and the cartesian closed structure is strictly
preserved by the functor (δ0, δ1): Rel2 −→ Set× Set.

For example, (X0, R, Y0) ⇒ (X1, S, Y1) is ([X0 ⇒ X1], (R ⇒ S), [Y0 ⇒ Y1])
where f (R⇒ S)g iff, for all x ∈ X0 and y ∈ Y0, xRy implies ( f x)S(gy).

These properties of Rel2, combined with the fact that L is freely generated by
a signature for cartesian closed categories (i.e., is the generic model on a suitable
sketch [KO+97]), are the key to understanding logical relations categorically, as
shown by the following.

Proposition 2.6. To give a binary logical relation from M to N is equivalent to giving
a cartesian closed functor R: L→ Rel2 such that (δ0, δ1)R = (M, N):

L Set× Set

Rel2

-
(M, N)

?
(δ0 , δ1)

��
��
��
�*

R

Proof. Given a binary logical relation, one immediately has the object function
of R: L → Rel2. The equation (δ0, δ1)R = (M, N) determines the behaviour
of R on arrows. The fact that, for any term t of type σ in context Γ , the pair
(

M(Γ ` t:σ), N(Γ ` t:σ)
)

satisfies the condition making it an arrow in Rel2
from RΓ to Rσ follows from (and is equivalent to) the Basic Lemma.

The converse construction is given by taking the object part of a cartesian
closed functor R: L → Rel2. It is routine to verify that the two constructions are
mutually inverse.

This situation generalises to categories other than Set and Rel2, the central
point being that both categories are cartesian closed and (δ0, δ1) is a cartesian



closed functor. We outline the following important example which arises in do-
main theory to deal with logical relations in the context of least fixed points.
Let C be the category of ω-cpos with ⊥ and continuous maps, and M be the
class of admissible monos; then there is an evident cartesian closed functor from
Sub2(C, M), the category of admissible binary relations between cpos, to C×C.
A logical relation in this framework is then a cartesian closed functor from L to
Sub2(C, M) (coherent with appropriate models of L in C).

Obviously, one can define a category Reln of n-ary relations for an arbitrary
natural number n; Propositions 2.5 and 2.6 generalise routinely to arbitrary n.

3 Lax Logical Relations

In this section, we generalise the categorical notion of logical relation to what
we call a lax logical relation.

Definition 3.1. Given a signature Σ and the language L generated by Σ , and two
models M and N of L in Set, a (binary) lax logical relation from M to N is a functor
R: L→ Rel2 that strictly preserves finite products and satisfies (δ0, δ1)R = (M, N).

Note that exponentials are not necessarily preserved. Evidently, one can adapt
this definition to one for n-ary lax logical relations for arbitrary n.

The origin of our terminology is as follows. Any finite-product preserving
functor R: C → D between cartesian closed categories induces a family of lax
maps Appσ ,τ : Rσ→τ −→ [Rσ ⇒ Rτ ], obtained by taking the Currying in D of the
composites

Rσ→τ × Rσ −→ R(σ→τ)×σ −→ Rτ

where the first map is determined by preservation of finite products, and the
second map is obtained by applying R to the evaluation map in C. This is an
instance of (op)lax preservation of structure, specifically, exponential structure.

The notion of Henkin model is closely related to this definition. A Henkin
model of the simply typed λ-calculus is a finite-product preserving functor
from L to Set such that the induced lax maps are injective. This is a kind of
lax model, but is not quite the same as giving a unary lax logical relation; nev-
ertheless, it is a natural and useful generalisation of the notion of model we
have used, and one to which our results routinely extend.

The Basic Lemma for logical relations extends to lax logical relations; in fact,
the lax logical relations can be characterised in terms of a Basic Lemma.

Lemma 3.2 (Basic Lemma for Lax Logical Relations). Let M and N be models
of L in Set. A family of relations Rσ ⊆ Mσ × Nσ for every type σ of L determines a
lax logical relation from M to N if and only if, for every term t:σ of L in context Γ , if
x RΓ y, then M(Γ ` t:σ)x Rσ N(Γ ` t:σ)y,

where x RΓ y is an abbreviation for xi Rσi yi for all i when σ1, . . . ,σn is the se-
quence of types in Γ .



Proof. For the forward (only-if) direction, suppose Γ has sequence of types
σ1, . . . ,σn. The expression Γ ` t:σ is a map in L from σ1 × · · · × σn to σ , so
R sends it to the unique map from Rσ1×···×σn to Rσ in Rel2 that lifts the pair
(

M(Γ ` t:σ), N(Γ ` t:σ)
)

:
M(σ1 × · · · ×σn) M(σ)

N(σ1 × · · · ×σn) N(σ)
?

Rσ1×···×σn
?
Rσ

-M(Γ ` t:σ)

6

-N(Γ ` t:σ)

6

If xi Rσi yi for all i then (x1, . . . , xn) Rσ1×···×σn (y1, . . . , yn) because R preserves
finite products, and so the result is now immediate, as x ∈ M(σ1 × · · · ×σn) =
(x1, . . . , xn) ∈ M(σ1)× · · · ×M(σn) and similarly for y.

For the converse, first taking Γ to be a singleton, the condition uniquely de-
termines maps R(Γ ` t:σ): R(Γ ) → R(σ) in Rel2, giving a graph morphism
from L to Set such that (δ0, δ1)R = (M, N). Such a graph morphism is trivially
necessarily a functor. Taking Γ ` t:σ to be φ ` ∗: 1, where ∗ is the unique
constant of type 1, the condition yields ∗ R1 ∗, so R preserves the terminal ob-
ject. Taking Γ ` t:σ to be a:σ0, b:σ1 ` (a, b):σ0 ×σ1 yields that if x0 Rσ0 y0 and
x1 Rσ1 y1, then (x0, x1) Rσ0×σ1 (y0, y1). And taking Γ ` t:σ to be a:σ0 × σ1 `
πi a:σi for i = 0, 1 give the converse. So R preserves finite products.

We conclude this section by showing how lax logical relations can be used
for the two applications of [HS99] previously discussed.

Definition 3.3. If R is a type-indexed family of binary relations from M to N and S is
a type-indexed family of binary relations from N to P, their composite R ; S is defined
component-wise; i.e., (R ; S)σ = Rσ ; Sσ
where ; on the right-hand side denotes the conventional composition of binary
relations.

Proposition 3.4. If R is a binary lax logical relation from M to N and S is a binary
lax logical relation from N to P, then R ; S is a lax logical relation from M to P.

Proof. We must show that if R: L→ Rel2 and S: L→ Rel2 strictly preserve finite
products, then so does R ; S. But (x0, x1) (R ; S)σ×τ (y0, y1) if and only if there
exists (z0, z1) such that (x0, x1) Rσ×τ (z0, z1) and (z0, z1) Sσ×τ (y0, y1), and that
is so if and only if x0 (R ; S)σ y0 and x1 (R ; S)τ y1. The proof for a terminal object
is trivial.

Various other closure properties (such as closure with respect to conjunction
and universal and existential quantification) have been proved in [HS99] for
pre-logical relations; the results in the following section show that lax logical
relations also have these closure properties.

Definition 3.5. Let M and N be models of L in Set, and OBS be a set of types; then
M and N are said to be observationally equivalent with respect to OBS (written
M ≡OBS N) when, for all σ ∈ OBS and all closed t, t′:σ , M(t) = M(t′) if and only if
N(t) = N(t′).



Proposition 3.6. M ≡OBS N if and only if there exists a lax logical relation from M
to N which is one-to-one for every σ ∈ OBS.

Proof. For the forward direction, consider the family of relations Rσ ⊆ Mσ ×Nσ
defined by aRσb if and only if there exists a closed term t:σ such that M(t) = a
and N(t) = b. This is one-to-one on observable types because of observational
equivalence and a lax logical relation because Rσ×τ = Rσ × Rτ .

For the converse, suppose Rσ ⊆ Mσ × Nσ determine a lax logical relation; if
σ ∈ OBS then, for all closed t:σ , M(t) Rσ N(t) by the Basic Lemma and M(t) =
M(t′) if and only if N(t) = N(t′) because Rσ is one-to-one.

4 Pre-logical Relations

We can use the Basic Lemma of Sect. 3 and the corresponding result of [HS99]
to see immediately that, for models as we defined them in Sect. 2, the notions
of lax logical relation and pre-logical relation coincide. However, in this section
we give a more direct exposition of the connection for a larger class of mod-
els. In [HS99], the analysis is primarily in terms of the simply typed λ-calculus
without product types. But they mention the case of λ-calculi with products
and models that satisfy surjective pairing. Hence, consider models now to be
functors M: L → Set that strictly preserve finite products (but not necessarily
exponentials); these include Henkin models. Everything we have said about lax
logical relations extends routinely to this class of models.

Definition 4.1. A pre-logical relation from M to N consists of, for each type σ , a
relation Rσ ⊆ Mσ × Nσ such that

1. if x Rσ y and f Rσ→τ g, then Appσ ,τ f x Rτ Appσ ,τgy, where maps Appσ ,τ are de-
termined by finite-product preservation of M and N, respectively, as discussed in
Sect. 3;

2. M(c) Rσ N(c) for every constant c of type σ , where the constants are deemed to
include
• all constants in Σ ,
• ∗: 1,
• (−,−):σ → τ → (σ × τ),
• π0 : σ × τ → σ and π1 : σ × τ → τ , and
• all instances of combinators Sρ,σ ,τ : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ and

Kσ ,τ :σ → τ → σ .

Theorem 4.2. A type-indexed family of relations Rσ ⊆ Mσ × Nσ determines a lax
logical relation from M to N if and only if it is a pre-logical relation from M to N.

Proof. For the second clause in the forward direction, treat all constants as maps
in L with domain 1. For the first clause, note that Rσ × Rσ→τ = Rσ×(σ→τ), so
applying functoriality of R to the evaluation map ev:σ × (σ → τ) −→ τ in L,
the result follows immediately.



For the converse, the second condition implies that, for all closed terms t,
M(t) R N(t); that fact, combined with the fact that every map in L is an un-
Currying of a closed term, plus the first condition, imply that R is a graph
morphism making (δ0, δ1)R = (M, N), hence trivially a functor. Since ∗: 1 is a
constant and M(∗) = ∗ = N(∗), we have M(∗) R1 N(∗); so R preserves the ter-
minal object. Since (−,−) is a constant, it follows that if x0 Rσ0 y0 and x1 Rσ1 y1,
then (x0, x1) Rσ0×σ1 (y0, y1). The inverse holds because π0 and π1 are maps in L.
So R preserves finite products.

5 Another Syntax-Based Characterisation

The key point in the pre-logical characterisation above is that every map in the
category L is generated by the constants. In this section, we give an alternative
syntax-based characterisation that generalizes more directly to other languages.
For simplicity of exposition, we assume, as previously, that models preserve
exponentials as well as products.

Theorem 5.1. To give a lax logical relation from M to N is equivalent to giving, for
each type σ of L, a relation Rσ ⊆ Mσ × Nσ such that

1. if f R(σ×τ)→ρ g, then Curry( f ) Rσ→τ→ρ Curry(g)
2. App R((σ→τ×σ)→τ App
3. if f0 Rσ→τ g0 and f1 Rσ→ρ g1, then ( f0, f1) Rσ→(τ×ρ) (g0, g1)
4. π0 Rσ×τ→σπ0 and π1 Rσ×τ→τ π1
5. if f Rσ→τ g and f ′ Rτ→ρ g′, then ( f ′ · f )Rσ→ρ(g′ · g)
6. id Rσ→σ id
7. x Rσ y if and only if x R1→σ y
8. M(c) Rσ N(c) for every base term c in Σ of type σ .

We chose the conditions above because the first four conditions seem particu-
larly natural from the perspective of the λ-calculus, the following two, which
are about substitution, are natural category theoretic conditions, the seventh is
mundane, and the last evident; cf. the “categorical combinators” of [Cu93].

Proof. For the forward direction, the relations Rσ are given by the object part of
the functor. The conditions follow immediately from the fact of R being a func-
tor, thereby having an action on all maps, and from the fact that it strictly pre-
serves finite products. For instance, there is a map in L from (σ → τ)× (σ → ρ)
to σ → (τ × ρ), so that map is sent by R to a map in Rel2, and R strictly pre-
serves finite products, yielding the third condition. So using the definition of a
map in Rel2, and the facts that (δ0, δ1)R = (M, N) and that M and N are strict
structure preserving functors, we have the result.

For the converse, the family of relations gives the object part of the functor
R. Observe that the axioms imply

• (x0, x1) Rσ×τ (y0, y1) if and only if x0 Rσ y0 and x1 Rτ y1
• ∗ R1 ∗, where ∗ is the unique element of M1 = N1 = 1



So, R strictly preserves finite products providing it forms a functor. The data
for M and N and the desired coherence condition (δ0, δ1)R = (M, N) on the
putative functor determine its behaviour on maps. It remains to check that the
image of every map in L actually lies in Rel2. But the conditions inductively
define the Currying of every map in L, so unCurrying by the fifth and seventh
conditions, the result follows. It is routine to verify that these constructions are
mutually inverse.

The result holds for the more general class of models we have discussed, but
an exposition would be encumbered by numerous occurrences of Appσ ,τ . It is
routine to generalise Theorems 4.2 and 5.1 to n-ary relations for arbitrary n.

6 Models in Cartesian Closed Categories

Cartesian closed categories are a more general class of models for typed lambda
calculi. In this section, we consider a model to be a functor from L to a cartesian
closed category, strictly preserving finite products and exponentials.

To discuss “relations” in this context, we adopt the sub-scone approach de-
scribed in [La88, MR91, MS92, Al95]. Let C be a cartesian closed category, S be
a finitely complete cartesian closed category, and G: C → S be a functor that
preserves products (up to isomorphism). A typical example of a suitable func-
tor G is hom(1,−): C→ Set, the global-elements functor; other examples may
be found in the references given above. Then these data determine a category
G-Rel2 of categorical (binary) relations on C as follows.

Let Rel2(S) be the category of binary relations on S with evident forgetful
functor Rel2(S) −→ S × S; then pulling back along G× G determines a cate-
gory G-Rel2 and a forgetful functor to C × C. In detail, the objects of G-Rel2
are triples (a0, s, a1) where a0 and a1 are objects of C and s is a sub-object of
G(a0)× G(a1); the morphisms from (a0, s, a1) to (b0, t, b1) are triples ( f0, q, f1)
such that fi : ai → bi in C, q: dom s → dom t in S, and the following diagram
commutes:

·

· G(a0)× G(a1)

G(b0)× G(b1)
?

q
?
G( f0)× G( f1)

-s

-t

-

-

Composition and identities are evident. The forgetful functors δi: G-Rel2 → C
for i = 0, 1 are defined by δi(a0, s, a1) = ai and similarly for morphisms.

Proposition 6.1. G-Rel2 is a cartesian closed category and the cartesian closed struc-
ture is strictly preserved by (δ0, δ1): G-Rel2 −→ C × C; furthermore, this functor is
faithful.

Definition 6.2. Given a signature Σ and the language L generated by Σ , two mod-
els M and N of L in a cartesian closed category C, and a category G-Rel2 of binary
categorical relations on C, a (binary) lax logical relation from M to N is a func-
tor R: L −→ G-Rel2 that satisfies (δ0, δ1)R = (M, N) and strictly preserves finite
products.



Lemma 6.3 (Basic Lemma for Categorical Lax Logical Relations). Let M and N
be models of L in a cartesian closed category C, S be a finitely complete cartesian closed
category, and G: C → S preserve finite products up to isomorphism; then a family of
sub-objects Rσ : · G(Mσ )× G(Nσ )-- for every type σ of L determines a lax logical
relation from M to N if and only if, for every term t of L of type σ in context Γ , there
exists a unique map q that makes the following diagram commute:

·

· G(Πi Mσi )× G(Πi Nσi )

G(Mσ )× G(Nσ )

.......?
q

?
G
(

M(t)
)

× G
(

N(t)
)

-ΠiRσi

-Rσ

-

-

where σ1, . . . ,σn is the sequence of types in Γ .

Proof. For the forward direction, R maps Γ ` t:σ to a map

·

· G(MΠiσi )× G(MΠiσi )

G(Mσ )× G(Nσ )
?

q
?
G
(

M(t)
)

× G
(

N(t)
)

-RΠiσi

-Rσ

-

-

The result follows because R, M and N preserve products.
In the converse direction, the morphism part of the functor is determined

by the assumed maps. Taking Γ ` t:σ to be a:σ0, b:σ1 ` (a, b):σ0 ×σ1 shows
that Rσ0 × Rσ1 ≤ Rσ0×σ1 , using the fact that G, M and N all preserve products,
and taking Γ ` t:σ to be p:σ0 ×σ1 ` πi p:σi for i = 0, 1 shows the converse.
Finally, taking Γ ` t:σ to be ∅ ` ∗: 1 shows that R1 is the “true” sub-object of
G(M1)× G(N1). So R preserves products.

This result can be generalised: replace G-Rel2 and (δ0, δ1) by any category D
with finite products and a faithful finite-product preserving functor to C × C.
This would amount to a lax version of Peter Freyd’s suggestion [Mi90, Sec-
tion 3.6.4] of studying logical relations as subcategories that respect cartesian-
closed (here, cartesian) structure, except generalised from subcategory to faith-
ful functor. But many applications require entailments to, or from, the “rela-
tions,” and so a lax version of Hermida’s [He93] fibrations with structure to
support a (>,∧,⇒, ∀) logic might be a more appropriate level of generality.

To consider composition of (binary) lax logical relations in this context, as-
sume first that S is the usual category of sets and functions; then the objects of
G-Rel2 are subsets of sets of the form G(a)× G(b).

Proposition 6.4. Composition of (binary) categorical lax logical relations can be de-
fined component-wise.

To allow recursion in L, consider again the category Sub2(C, M) discussed
at the end of Section 2, with C being the category ofω-cpos with⊥ and M being
the admissible monos. Using the sconing functor G = C(1,−): C → Set gives
us a category G-Rel2 as above; because this is constructed as a pullback, there
exists a strict finite-product preserving functor F from Sub2(C, M) to G-Rel2.



Given any logical relation functor R: L→ Sub2(C, M), composing with F gives
a strict finite-product preserving functor from L to G-Rel2 (i.e., a lax logical re-
lation) between the original models. This shows how composition is supported
in the context of relations onω-cpos.

More generally, if S is assumed to be a regular category [Bo94], a relational
composition can be defined. Any pre-sheaf category SetW , or indeed any topos,
is a regular category, so this is a mild assumption. An axiomatic treatment of
composition of generalized logical relations, including lax logical relations as
discussed here, can be found in [KO+97], which emerged from category theo-
retic treatments of data refinement in which composition of refinements is cru-
cial [JH90, KP96, KP].

7 Generalising from the λ-Calculus

In Sect. 3, the fundamental facts that gave rise to our definition of lax logical re-
lation were the correspondence between the simply typed λ-calculus and carte-
sian closed categories, and the fact that a signature Σ gave rise to a cartesian
closed category L such that a model of Σ could be seen as a functor from L into
Set (or, more generally, any cartesian closed category) that strictly preserved
cartesian closed structure. So in generalising from the simply typed λ-calculus,
we generalise the latter fact. This may be done in terms of algebraic structure,
or equivalently (finitary) monads, on Cat. The central paper about that is Black-
well, Kelly and Power’s [BKP89]. We can avoid much of the subtlety here by
restricting our attention to maps that preserve structure strictly.

We shall first describe the situation for an arbitrary (finitary) monad T on
Cat extending finite-product structure. One requires Set (or, more generally, any
small category C) to have T-structure, L to be the free T-algebra generated by a
signature, and define a model M of L to be a strict T-algebra map, cf. [KO+97].

A natural general setting in which to define the notion of lax logical relation
involves assuming the existence of a small category E (with finite products) of
relations, and a strict finite-product preserving forgetful functor (δ0, δ1) from E
to C × C. One then adds to these data further categorical structure inside the
category of small categories and functors that strictly preserve finite products
to generalise the composition of binary relations. These definitions and related
results appear in [KO+97]. Here, we aim to state a Basic Lemma in familiar
terms, and so restrict attention to the special case that C = Set and E = Rel2.

A lax logical relation is a strict finite-product preserving functor from L into
Rel2 such that composition with (δ0, δ1) yields (M, N).

We can generalise the Basic Lemma to this level of generality as follows.

Lemma 7.1 (Basic Lemma for Lax Logical Relations with Algebraic Struc-
ture). A family of relations Rσ ⊆ Mσ × Nσ for every type σ of L determines a lax
logical relation from M to N if and only if, for every term t of L of type σ in context Γ ,
if x RΓ y, then M(Γ ` t:σ)x Rσ N(Γ ` t:σ)y

The proof is exactly as in Sect. 3; similarly,



Proposition 7.2. Binary lax logical relations (at the current level of generality) com-
pose component-wise.

In the above we have tacitly assumed that contexts are modelled by finite
products. In general, there is no need to make this assumption: contexts could
be modelled by a symmetric monoidal structure or, more generally, by a sym-
metric pre-monoidal structure, or Freyd structure. It would be straightforward
to generalise our analysis to include such possibilities, but it may be simpler to
deal with them case by case. For an analysis of the notion of lax logical relations
where contexts are modelled by a Freyd structure, see [KP99].

We next want to generalise Theorem 5.1. In order to do that, we need to
consider the formulation of finitary monads in terms of algebraic structure on
Cat, and we need to restrict to a particular class of such structures. The general
notion of algebraic structure, and the relevant results, appear in [KP93] and
[Po97], and we have included it in the Appendix. Using the notation of the
Appendix, we consider a special class of algebraic structure.

Definition 7.3. Algebraic structure (S, E) on Cat is discrete if S(c) = 0 whenever c
is not a discrete category, i.e., whenever c is not the discrete category on a finite set.

It follows from the definition that any discrete algebraic structure may be pre-
sented by two families of operations: object operations, which have algebras
given by functors of the form Ck −→ C, and arrow operations, which are given
by natural transformations between object operations. One may put equations
between these to obtain all operations of any discrete algebraic structure, which
are given by functors Ck −→ CSk, where Sk is a small category.

Assuming Set has (S, E)-structure for some given discrete algebraic struc-
ture (S, E), a model of an (S, E)-algebra in Set is a functor that strictly preserves
(S, E)-structure.

Examples of discrete algebraic structure have models given by small cat-
egories with finite products, with finite coproducts, with monoidal structure,
symmetric monoidal structure, a monad [Mo91], an endofunctor, a natural
transformation between endofunctors, or any combination of the above.

In order to extend Theorem 5.1, rather than give an analogue, we must in-
clude exponentials, although they are not instances of discrete algebraic struc-
ture as we have defined it. So we henceforth assume that we are given discrete
algebraic structure on Cat extending finite-product structure; that L is generated
by the simply typed λ-calculus, a signature, and the discrete algebraic structure;
that M and N are models of L in Set strictly preserving the algebraic structure,
and, restricting our definition above, that a lax logical relation from M to N is
a finite-product preserving functor from L to Rel2 such that composition with
(δ0, δ1) yields (M, N).

A methodology for extending Theorem 5.1 is as follows. Algebraic structure
on Cat is given by an equational presentation. That equational presentation has
operations defining objects and arrows. For each operation defining an arrow,
one adds an axiom to the list in the statement of Theorem 5.1 in the same spirit.
For instance, to define a monoidal structure, one has operations that assign to
each pair of maps ( f , g), a map f ⊗ g, and gives associative maps and their



inverses, and left and right unit maps and their inverses. So one would add
axioms

• if f0 Rσ0→τ0 g0 and f1 Rσ1→τ1 g1 then ( f0 ⊗ f1) R(σ0⊗σ1)→(τ0⊗τ1) (g0 ⊗ g1);
• a R(σ⊗τ)⊗ρ→σ⊗(τ⊗ρ) a, l R(σ⊗I)→σ l and r R(I⊗σ)→σ r;
• a−1 Rσ⊗(τ⊗ρ)→(σ⊗τ)⊗ρ a−1, l−1 Rσ→(σ⊗I) l−1 and r−1 Rσ→(I⊗σ) r−1.

Theorem 7.4. For any discrete algebraic structure on Cat extending finite-product
structure, to give a lax logical relation from M to N is equivalent to giving a family of
relations Rσ ⊆ Mσ × Nσ satisfying the conditions of Theorem 5.1 and also

• for any k-ary object operation O, if fi Rσi→τi gi for all 1 ≤ i ≤ k, then

O( f1, . . . , fk) RO(σ1 ,...,σk)→O(τ1 ,...,τk) O(g1, . . . , gk)

• for any k-ary arrow operation O, we have

O(Mσ1, . . . , Mσk) Rγ O(Nσ1, . . . , Nσk)

where γ = dom O(σ1, . . . ,σk) −→ cod O(σ1, . . . ,σk)
• for any k-ary arrow operation O, if fi Rσi→τi gi for all 1 ≤ i ≤ k, then

dom O( f1, . . . , fk) Rβ dom O(g1, . . . , gk)

whereβ = dom O(σ1, . . . ,σk) −→ dom O(τ1, . . . , τk), and similarly with dom
systematically replaced by cod.

The final two rules here may seem unfamiliar at first sight. An arrow opera-
tion takes a k-ary family of objects to an arrow, so syntactically, takes a k-ary
family of types to an equivalence class of terms. That leads to our penultimate
rule. That a k-ary arrow operation is functorial means that every k-ary family
of arrows is sent to a commutative square. So we need rules to the effect that
every arrow in that square behaves as required. The penultimate rule above ac-
counts for two arrows of the square, and the final rule accounts for the other
two, where the domain of the commutative square is the arrow of the square
uniquely determined by the definitions.

Proof. Follow the proof of Theorem 5.1. The conditions show inductively that
for every arrow of the category freely generated by the given discrete algebraic
structure applied to the signature, one obtains an arrow in Rel.

Note that this allows for dropping exponentials, as well as adding various kinds
of structure such as finite co-products and tensor products. We hope this gen-
erality will lead to interesting new applications.
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Appendix: Algebraic Structure on Categories

In ordinary universal algebra, an algebra is a set X together with a family of basic op-
erations σ : Xn → X, subject to equations between derived operations. In order to define
algebraic structure on categories, one must replace the set X by a category A. One also
replaces the finite number n by a finitely presentable category c. All finite categories are
finitely presentable, and finite categories are the only finitely presentable categories we
need in this paper. One also allows not only functions from the set Cat(c, A) into the
set of objects of A, but also functions from the set Cat(c, A) into the set of arrows in A.
These are subject to equations between derived operations. It follows that the category
of small such categories with structure and functors that strictly preserve the structure
is equivalent to the category of algebras, T-Alg, for a finitary monad T on Cat.

All structures relevant to this paper are instances of a slightly more restricted situa-
tion: that of Cat-enriched algebraic structure. So we shall restrict to Cat-enriched struc-
tures here. Let C denote the 2-category Cat of small categories. So C(A, B) denotes the
category of functors from A to B. Let C f denote the full sub-2-category of C given by
(isomorphism classes of) finitely presentable categories.

Definition A.1. A signature on C is a 2-functor S: ob C f −→ C, regarding ob C f as a discrete
2-category.

For each c ∈ ob C f , S(c) is called the category of basic operations of arity c. Using S, we
construct Sω : C f −→ C as follows: set

S0 = J, the inclusion of C f into C, and
Sn+1 = J + ∑d∈ob C f

C
(

d, Sn(−)
)

× S(d);

and define

σ0: S0 → S1 to be in j: J −→ J + ∑d∈ob C f
C
(

d, S0(−)
)

× S(d); and
σn+1: Sn+1 → Sn+2 to be J + ∑d∈ob C f

C
(

d,σn(−)
)

× S(d).

Then Sω = colimn<ω Sn, where the colimit exists because C is cocomplete, and it is a col-
imit in a functor category with base C. In many cases of interest, each σn is a monomor-
phism, so Sω is the union of {Sn}n<ω. For each c, we call Sω(c) the category of derived
c-ary operations.

A signature is typically accompanied by equations between derived operations. So
we say

Definition A.2. The equations of an algebraic theory with signature S are given by a 2-functor
E: ob C f −→ C together with 2-natural transformations τ1, τ2: E −→ Sω

(

K(−)
)

, where
K: ob C f −→ C f is the inclusion.

Definition A.3. Algebraic structure on C consists of a signature S, together with equations
(E, τ1, τ2).

We generally denote algebraic structure by (S, E), suppressing τ1 and τ2.
We now define the algebras for a given algebraic structure.

Definition A.4. Given a signature S, an S-algebra consists of a small category A together with
a functor νc: C(c, A) −→ C

(

S(c), A
)

for each c.

So, an S-algebra consists of a carrier A and an interpretation of the basic operations of
the signature. This interpretation extends canonically to the derived operations, giving
an Sω

(

K(−)
)

-algebra, as follows.



• ν0 : C(c, A) −→ C
(

S0(c), A
)

is the identity;
• using the fact that C(−, A) preserves colimits, to give a functor νn+1 from C(c, A)

to C
(

Sn+1(c), A
)

is equivalent to giving a functor from C(c, A) to C(c, A), which we
will make the identity, and, for each d in ob C f , a functor from C(c, A) to
C
(

C(d, Sn(c)
)

, C
(

S(d), A)
)

or, equivalently, a functor from C(c, A)× C
(

d, Sn(c)
)

to
C
(

S(d), A
)

which can be inductively defined by

C(c, A)× C
(

d, Sn(c)
)

C
(

Sn(c), A
)

× C
(

d, Sn(c)
)

C(d, A)

C
(

S(d), A
)

?
νn × id

?
comp

?
νd

Definition A.5. Given algebraic structure (S, E), an (S, E)-algebra is an S-algebra that sat-
isfies the equations, i.e., an S-algebra (A,ν) such that both legs of

C(c, A) C
(

Sω(Kc), A
)

C
(

E(c), A
)-νω -C(τ1c , A)

-
C(τ2c , A)

agree.
Given (S, E)–algebras (A,ν) and (B, δ), we define the hom-category

(S, E)-Alg
(

(A,ν), (B, δ)
)

to be the equaliser in C of

C(A, B) ∏c C(C(c, A), C(c, B))

∏c C(C(S(c), A), C(S(c), B)) ∏c C(C(c, A), C(S(c), B))
?

{C(S(c),−)}c∈ob C f

-
∏c C(νc , C(S(c), B))

?

∏c C(C(c, A), δc)

-
{C(S(c),−)}c∈ob C f

This agrees with our usual universal-algebraic understanding of the notion of homomor-
phism of algebras, internalising it to C. (S, E)-Alg can then be made into a 2-category in
which composition is induced by that in C. An arrow in (S, E)-Alg is a functor F: A→ B
such that, for all finitely presentable c,

Fνc(−) = δc(F−): C(c, A) −→ C
(

S(c), B
)

i.e., a functor that commutes with all basic c-ary operations for all c.
A special case of the main result of [KP93] says

Theorem A.6. A 2-category is equivalent to (S, E)-Alg for algebraic structure (S, E) on C if
and only if there is a finitary 2-monad T on C such that the 2-category is equivalent to T-Alg.
See [Po97] for an account directed towards a computer science readership.


