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Abstract
We introduce a method to lift monads on the base category of a fibration to its total category
using codensity monads. This method, called codensity lifting, is applicable to various fibrations
which were not supported by the categorical >>-lifting. After introducing the codensity lifting,
we illustrate some examples of codensity liftings of monads along the fibrations from the category
of preorders, topological spaces and extended psuedometric spaces to the category of sets, and
also the fibration from the category of binary relations between measurable spaces. We next study
the liftings of algebraic operations to the codensity-lifted monads. We also give a characterisation
of the class of liftings (along posetal fibrations with fibred small limits) as a limit of a certain
large diagram.
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1 Introduction

Inspired by Lindley and Stark’s work on extending the concept of reducibility candidates to
monadic types [9, 10], the first author previously introduced its semantic analogue called
categorical >>-lifting in [6]. It constructs a lifting of a strong monad T on the base category
of a closed-structure preserving fibration p : E→ B to its total category. The construction
takes the inverse image of the continuation monad on the total category along the canonical
monad morphism b : T → (− ⇒ TR)⇒ TR in the base category, which exists for any strong
monad T :

T >> // (− ⇒ S)⇒ S

T
b

// (− ⇒ TR)⇒ TR

The objects R and S (such that TR = pS) are presupposed parameters of this >>-lifting,
and by varying them we can derive various liftings of T . The categorical >>-lifting has been
used to construct logical relations for monads [7] and to analyse the concept of preorders on
monads [8].

One key assumption for the >>-lifting to work is that the fibration p preserves the closed
structure, so that the continuation monad (− ⇒ S) ⇒ S on the total category becomes a
lifting of the continuation monad (− ⇒ TR)⇒ TR on the base category. Although many
such fibrations are seen in the categorical formulations of logical relations [12, 3, 7], requiring
fibrations to preserve closed structures on their total categories imposes a technical limitation
to the applicability of the categorical >>-lifting. Indeed, outside the categorical semantics of
type theories, it is common to work with the categories that have no closed structure. In the
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study of coalgebras, predicate / relational liftings of functors and monads are fundamental
structures to formulate modal operators and (bi)simulation relations, and the underlying
categories of them are not necessarily closed. For instance, the category Meas of measurable
spaces, which is unlikely to be cartesian closed, is used to host labelled Markov processes.
The categorical >>-lifting does not work in such situations.

To overcome this technical limitation, in this paper we introduce an alternative lifting
method called codensity lifting. The idea is to replace the continuation monad (− ⇒ S)⇒ S

with the codensity monad RanSS given by a right Kan extension. We then ask fibrations to
preserve the right Kan extension, which is often fulfilled by the preservation of limits. We
demonstrate that the codensity lifting is applicable to lift monads on the base categories of
the following fibrations:

Pre

��

Top

��

ERel(Meas) //

��

BRel(Meas)

��

// Pred

��

U∗EPMet //

��

EPMet

��
Set Set Meas

∆
//Meas2

(×)◦U2
// Set Meas

U
// Set

Another issue when we have a lifting Ṫ of a monad T is the liftability of algebraic
operations for T to the lifting Ṫ . For instance, let Ṫ be a lifting of the powerset monad Tp
on Set along the canonical forgetful functor p : Top→ Set, which is a fibration. A typical
algebraic operation for Tp is the union of A-indexed families of sets: unionAX(f) =

⋃
a∈A f(a).

Then the question is whether we can “lift” the ordinary function unionAX : A t TpX → TpX

to a continuous function of type A t Ṫ (X,OX) → Ṫ (X,OX) for every topological space
(X,OX). We show that the liftability of algebraic operations to codensity liftings has a good
characterisation in terms of the parameters supplied to the codensity liftings.

We are also interested in the categorical property of the collection of liftings of a monad
T (along a limited class of fibrations). We show a characterisation of the class of liftings of
T as a limit of a large diagram of partial orders. This is yet an abstract categorical result,
we believe that this will be helpful to construct and enumerate the possible liftings of a given
monad T .

1.1 Preliminaries
We use white bold letters B,C,E, · · · to range over locally small categories. We sometimes
identify an object in a category C and a functor of type 1→ C.

We do a lot of 2-categorical calculations in CAT. To reduce the notational burden,
we omit writing the composition operator ◦ between functors, or a functor and a natural
transformation. For instance, for functors G,F, P,Q and a natural transformation α : P → Q,
by GαF we mean the natural transformation G(αFI) : G ◦P ◦F (I)→ G ◦Q ◦F (I). We use
• and ∗ for the vertical and horizontal compositions of natural transformations, respectively.

Let A be a set and X ∈ C. An A-fold cotensor of X is a pair of an object A t X and an
A-indexed family of projection morphisms {πa : A t X → X}a∈A. They satisfy the following
universal property: for any A-indexed family of morphisms {fa : B → X}a∈A, there exists a
unique morphism m : B → A t X such that πa ◦m = fa holds for all a ∈ A. Here are some
examples of cotensors:
1. When C = Set, the function space A⇒ X and the evaluation function πa(f) = f(a) give

an A-fold cotensor of X.
2. When C has small products, the product of A-fold copies of X and the associated

projections give an A-fold cotensor of X.
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158 Codensity Liftings of Monads

3. When C has A-fold cotensors, any functor category [D,C] also has A-fold cotensors, which
can be given pointwisely: (A t F )X = A t (FX).

A right Kan extension of F : A → C along G : A → D is a pair of a functor RanGF :
D→ C and a natural transformation c : RanGF ◦G→ F making the following mapping φH :

φH(α) = c • (αG) : [D,C](H,RanGF )→ [A,C](H ◦G,F )

bijective and natural on H ∈ [D,C]. A functor p : C→ C′ preserves a right Kan extension
(RanGF, c) if (p(RanGF ), pc) is a right Kan extension of pF along G. Thus for any right
Kan extension (RanG(pF ), c′) of pF along G, we have p(RanGF ) ' RanG(pF ) by the
universal property.

Let T be a monad on a category C. Its components are denoted by (T, η, µ). The
Kleisli lifting of a morphism f : I → TJ is µJ ◦ Tf : TI → TJ , denoted by f#. We write
J : C → CT and K : CT → C for the Kleisli adjunction of T , and ε : JK → IdC for the
counit of this adjunction. When T is decorated with an extra symbol, like Ṫ , the same
decoration is applied to the notation of adjunction, like η̇, J̇ , ε̇, etc.

For the definition of fibrations and related concepts, see [4].

I Proposition 1 ([4, Exercise 9.2.4]). Let p : E→ B be a fibration, and assume that B has
small limits. If p has fibred small limits, then E has small limits and p preserves them.

2 Codensity Lifting of Monads

Fix a fibration p : E→ B and a monad T on B. We first introduce the main subject of this
study, liftings of T .

I Definition 2. A lifting of T (along p) is a monad Ṫ on E such that pṪ = Tp, pη̇ = ηp and
pµ̇ = µp.

We do not require fibredness on Ṫ . The codensity lifting is a method to construct a lifting of
T from the following data called lifting parameter.

I Definition 3. A lifting parameter (for T ) is a span BT A S //Roo E of functors such that
KR = pS. We say that it is single if A = 1.

A single lifting parameter is thus a pair (R,S) of objects R ∈ B and S ∈ ETR. This is the
same data used in the original (single-result) categorical >>-lifting in [6].

In this section we first introduce the codensity lifting under the situation where the
fibration and the lifting parameter satisfy the following codensity condition.

I Definition 4. We say that a fibration p : E → B and a functor S : A → E satisfy the
codensity condition if
1. a right Kan extension of S along S exists, and
2. p : E→ B preserves this right Kan extension.
Later in Section 6, we give the codensity lifting without relying on the codensity condition.
Although it is applicable to wider situations, the codensity lifting using the right Kan
extension given below has a conceptually simpler description.

The codensity condition relates the size of A and the completeness of E.

I Proposition 5. Let p be a fibration and A be a category. If one of the following conditions
holds:
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1. E has, and p preserves cotensors, and A = 1
2. E has, and p preserves small products, and A is small discrete
3. E has, and p preserves small limits, and A is small
then for any functor S : A → E from a category A satisfying the condition, the pair p, S
satisfies the codensity condition.

I Proposition 6. For any fibration p and right adjoint functor S : A→ E, p, S satisfies the
codensity condition.

Proof. Let P be a left adjoint of S. Then the assignment F 7→ FP extends to a right Kan
extension of F along S. This Kan extension is absolute [11, Proposition X.7.3]. J

Fix a lifting parameter BT A S //Roo E and assume that the fixed p, S satisfies the
codensity condition. We take a right Kan extension (RanSS, cS : (RanSS)S → S). As p
preserves this right Kan extension, (p(RanSS), pcS) is a right Kan extension of pS along S.
Thus the following mapping:

(−) = pcS • −S : [E,B](H, p(RanSS))→ [A,B](HS, pS).

is bijective and natural on H : E→ B. We write (−) for its inverse.
The right Kan extension RanSS is the functor part of the codensity monad [11, Exercise

X.7.3]. Its unit uS : Id → RanSS and multiplication mS : (RanSS)RanSS → RanSS
are respectively given by the unique natural transformations such that cS • uSS = idS and
cS •mSS = cS • (RanSS)cS .

The codensity lifting constructs a lifting T >> = (T>>, η>>, µ>>) of T along p as follows.
We first lift the endofunctor T . We send KεR : KJpS = KJKR → KR = pS to

KεR : Tp → p(RanSS), then take its cartesian lifting with respect to RanSS; This is
possible because [E, p] : [E,E]→ [E,B] is a fibration. We name the cartesian lifting σ. We
then define T>> to be the codomain of σ.

T>>
σ // RanSS [E,E]

[E,p]
��

Tp
KεR

// p(RanSS) [E,B]

We next lift the unit η. Consider the following diagram:

IdE

η>> !!

uS

%%
T>>

σ
// RanSS [E,E]

[E,p]

��

p

ηp
""

puS

&&
Tp

KεR

// p(RanSS) [E,B]

The triangle in the base category commutes by:

KεR • ηp = KεR • ηpS = KεR • ηKR = idKR = idpS = puS .
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160 Codensity Liftings of Monads

Therefore from the universal property of σ, we obtain the unique natural transformation η>>
above ηp making the triangle in the total category commute.

We finally lift the multiplication µ. Consider the following diagram.

T>>T>>

µ>>
&&

T>>σ // T>>RanSS
σRanSS// (RanSS)RanSS

mS

��
T>>

σ // RanSS [E,E]

[E,p]

��

TTp
TKεR //

µp
&&

Tp(RanSS)KεRRanSS// p(RanSS)RanSS
pmS

��
Tp

KεR

// p(RanSS) [E,B]

The pentagon in the base category commutes by:

pmS •KεRRanSS • TKεR = pcS • p(RanSS)cS •KεR(RanSS)S • TKεRS
(interchange law) = pcS •KεRS • TpcS • TKεRS = KεR •KJKεR

= KεR • µKR = KεR • µpS = KεR • µp.

Therefore from the universal property of σ, we obtain the unique morphism µ>> above µp
making the pentagon in the total category commute. We take µ>> as the lifting of µ.

I Theorem 7. Let p : E → B be a fibration, T be a monad on B, BT A S //Roo E be a
lifting parameter for T , and assume that p, S satisfies the codensity condition. The tuple
T >> = (T>>, η>>, µ>>) constructed as above is a lifting of T along p.

I Corollary 8. The cartesian morphism σ : T>> → RanSS is a monad morphism.

Any lifting of T along p can be obtained by the codensity lifting, although the choice of
the lifting parameter is rather canonical.

I Theorem 9. Let p : E → B be a fibration, T be a monad on B and Ṫ be a lifting of T .
Then there exists a lifting parameter R,S such that p, S satisfies the codensity condition and
Ṫ ' T >>.

Proof. We write pk : EṪ → BT for the canonical functor extending p : E → B to Kleisli

categories. Then the span BT EṪ
K̇ //pkoo E is a lifting parameter that satisfies the codensity

condition by Proposition 6. We can even choose RanK̇K̇ so that it equals Ṫ . Then the
morphism Kεpk : Tp → p(RanK̇K̇) = Tp becomes the identity morphism. Hence Ṫ is
isomorphic to T . J

3 Examples of Codensity Liftings with Single Lifting Parameters

We illustrate some examples of the codensity liftings of monads. The fibration p : E → B
appearing in each example has fibred small limits, and its base category B has small limits.
Hence E also has small limits that are preserved by p (Proposition 1). We focus on the
codensity liftings of monads with single lifting parameters. We give a general scheme to
calculate them.
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I Proposition 10. Let p : E→ B a fibration such that p has fibred small limits and B has
small limits, T be a monad on B, and R ∈ B, S ∈ ETR be a single lifting parameter. Then
the functor part of T >> satisfies

T>>X '
∧

f∈E(X,S)

((pf)#)−1(S) (1)

where
∧

stands for the fibred product in ET (pX).

3.1 Lifting Set-Monads to the Category of Preorders
The canonical forgetful functor p : Pre → Set from the category Pre of preorders and
monotone functions is a fibration with fibred small limits: the inverse image of a preorder
(J,≤J ) along a function f : I → J is the preorder (I,≤I) given by i ≤I i′ ⇐⇒ f(i) ≤J f(i′).
The fibred small limits are given by the set-theoretic intersections of preorders on the same set.
We note that p does not preserve exponentials, hence the >>-lifting in [6] is not applicable
to p.

We consider the codensity lifting of a monad T over Set along p : Pre → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,≤) ∈ Pre. By instantiating (1), for
every (X,≤X) ∈ Pre (X for short), the preorder T>>X is of the form (TX,≤>>X ) where the
preorder ≤>>X is given by

x≤>>X y ⇐⇒ ∀f ∈ Pre(X,S) . (pf)#(x) ≤ (pf)#(y). (2)

We further instantiate this by letting T be the powerset monad Tp, R = 1 and ≤ be the
following partial orders on Tp1 = {∅, 1}:
1. Case ≤ = {(∅, ∅), (∅, 1), (1, 1)}. The homset Pre(X,S) is isomorphic to the set Up(X)

of upward closed subsets of X, and (2) is rewritten to:
x≤>>X y ⇐⇒ (∀F ∈ Up(X) . x ∩ F 6= ∅ =⇒ y ∩ F 6= ∅)

⇐⇒ ∀i ∈ x . ∃j ∈ y . i ≤X j,

that is, ≤>>X is the lower preorder.
2. Case ≤ = {(∅, ∅), (1, ∅), (1, 1)}. By the similar argument, ≤>> is the upper preorder:

x≤>>X y ⇐⇒ ∀j ∈ y . ∃i ∈ x . i ≤X j.

In order to make ≤>> the convex preorder on Tp:

x≤>>X y ⇐⇒ (∀i ∈ x . ∃j ∈ y . i ≤X j) ∧ (∀j ∈ y . ∃i ∈ x . i ≤X j),

we supply the cotupling SetTp
← 1+1→ Pre of the above lifting parameters to the codensity

lifting.

3.2 Lifting Set-Monads to the Category of Topological Spaces
The canonical forgetful functor p : Top→ Set from the category Top of topological spaces
and continuous functions is a fibration with fibred small limits. For a topological space
(X,OX) and a function f : Y → X, the inverse image topological space f∗(X,OX) is given by
(Y, {f−1(U) | U ∈ OX}). We note that each fibre category TopX is the poset of topological
spaces on a set X ordered in the opposite direction, that is, (X,O1) ≤ (X,O2) holds if and
only if O2 ⊆ O1.

We consider the codensity lifting of a monad T over Set along p : Top → Set with a
single lifting parameter: a pair of R ∈ Set and S = (TR,OS) ∈ Top. By instantiating (1),
for every (X,OX) ∈ Top (X for short), T>>X is the topological space (TX, T>>OX) whose
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162 Codensity Liftings of Monads

topology T>>OX is the coarsest one making every set ((pf)#)−1(U) open, where f and U
range over Top(X,S) and OS , respectively.

We further instantiate this by letting T = Tp, R = 1, and OS be the following topologies
on Tp1. The topologies given to powersets by the following liftings are similar to lower and
upper Vietoris topology.
1. Case OS = {∅, {1}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ∩U 6= ∅} open, where U ranges over OX . We call this lower Vietoris lifting.

2. Case OS = {∅, {∅}, {∅, 1}}. The topology T>>p OX is the coarsest one making every set
{V ⊆ pX | V ⊆ U} open, where U ranges over OX . We call this upper Vietoris lifting.

3.3 Simulations on Labelled Markov Processes by Codensity Lifting
We next move on to the category Meas of measurable spaces and measurable functions
between them. Recall that Meas has small limits (as the canonical forgetful functor
U : Meas→ Set is topological). We introduce some notations: For X ∈Meas, byMX we
mean the σ-algebra of X. For X ∈ Top, by BX ∈Meas we mean the Borel (measurable)
space of X.

We consider the following two fibrations q, r obtained by the change-of-base of the
subobject fibration of Set:

ERel(Meas) //

r

��

BRel(Meas) //

q

��

Pred
p

��
Meas

∆
//Meas2

U2
// Set2

Prod
//// Set

Here, ∆ is the diagonal functor and and Prod is the product functor. The legs q and r

of the change-of-base are fibrations with fibred small limits. 1 The explicit description of
BRel(Meas) is:

An object X is a triple, whose components are denoted by X0, X1, X2, such that X1, X2
are measurable spaces and X0 ⊆ UX0 × UX1.
A morphism (f1, f2) : X → Y is a pair of measurable functions f1 : X1 → Y1 and
f2 : X2 → Y2 such that (Uf1 × Uf2)(X0) ⊆ X1.

The explicit description of ERel(Meas) is:
An object is a pair, whose components are denoted byX0, X1, such thatX1 is a measurable
space and X0 ⊆ UX1 × UX1.
A morphism f : X → Y is a measurable function f : X1 → Y1 such that (Uf×Uf)(X0) ⊆
Y0.

For a binary relation R ⊆ X × Y and A ⊆ X, the image of A by R is defined to be the set
{y ∈ Y | ∃x ∈ A . (x, y) ∈ R}, and is denoted by R[A].

For X ∈Meas, by SPMsr(X) we mean the set of sub-probability measures on X. We
equip it with the σ-algebra generated from the sets of the following form:

{µ ∈ SPMsr(X) | µ(U) ∈ V } (U ∈MX , V ∈MB[0,1]),

and denote this measurable space by GX. The assignment X 7→ GX can be extended to a
monad G on Meas, called Giry monad [2]. Notice that G1 = B[0, 1].

1 BRel and ERel stands for binary relations and endo-relations, respectively.
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We consider the codensity lifting of G along r : ERel(Meas) → Meas with a single
lifting parameter R = 1 (the one-point measurable space) and S = (≤, G1); here ≤ is the
usual order on [0, 1] = U(G1). By instantiating (1), we obtain

(v1, v2) ∈ (G>>X)0 ⇐⇒ ∀f ∈ ERel(Meas)(X,S) .
∫
X1

f dv1 ≤
∫
X1

f dv2.

I Theorem 11. The relation part (G>>X)0 satisfies:

(v1, v2) ∈ (G>>X)0 ⇐⇒ (∀U ∈MX1 . X0[U ] ⊆ U =⇒ v1(U) ≤ v2(U)).

Proof.
(⊆) Suppose (v1, v2) ∈ G>>X0. Let U ∈ MX1 be a measurable set satisfying X0[U ] ⊆ U .
The indicator function χU is a morphism in ERel(Meas) from X to S. Hence,

v1(U) =
∫
X1

χU dv1 ≤
∫
X1

χU dv2 = v2(U).

(⊇) Suppose that X0[U ] ⊆ U =⇒ v1(U) ≤ v2(U) holds for all U ∈ MX1 . Let f ∈
ERel(Meas)(X,S) be a morphism and

∑n
i=0 αiχAi

≤ f be a positive measurable
simple function. Without loss of generality, we may assume A0 ⊇ A1 ⊇ · · · ⊇ An and∑n
i=0 αi ≤ 1. Let Ci be f−1

(
[
∑i
k=0 αk, 1]

)
, the inverse image of the closed interval

[
∑i
k=0 αk, 1] along f . We have

∑n
i=0 αiχAi ≤

∑n
i=0 αiχCi ≤ f , and we obtain Ci ∈MX1

and X0[Ci] ⊆ Ci because f ∈ ERel(Meas)(X,S). Hence,

n∑
i=0

αiv1(Ai) ≤
n∑
i=0

αiv1(Ci) ≤
n∑
i=0

αiv2(Ci) ≤
∫
X1

f dv2.

This implies∫
X1

f dv1 = sup
{

n∑
i=0

αiv1(Ai)

∣∣∣∣∣
n∑
i=0

αiχAi ≤ f

}
≤
∫
X1

f dv2. J

This lifting is related to the concept of simulation relation between two states on the
same labelled Markov process (LMP) in [15]. Let Act be a set (of actions). An LMP over
X1 ∈ Meas is a measurable function x : X1 → Act t GX1. Then a reflexive relation
X0 ⊆ UX1 × UX1 is a simulation in the sense of [15, Definition 3] if and only if x is a
morphism of type (X0, X1)→ Act t G>>(X0, X1) in ERel(Meas).

We next consider the codensity lifting of the product Giry monad G2 on Meas2 along
q : BRel(Meas)→Meas2 with a single lifting parameter R = (1, 1) and S = (≤, G1, G1).
By instantiating (1), we obtain

(v1, v2) ∈ (G>>X)0 ⇐⇒ ∀(f1, f2) ∈ ERel(Meas)(X,S) .
∫
X1

f1 dv1 ≤
∫
X2

f2 dv2.

I Theorem 12. The relation part (G>>X)0 satisfies:

(v1, v2) ∈ (G>>X)0 ⇐⇒ (∀U ∈MX1 , V ∈MX2 . X0[U ] ⊆ V =⇒ v1(U) ≤ v2(V )).

Employing this lifting, we naturally obtain the concept of simulation relation between
two states in different LMPs. Let X ∈ BRel(Meas) and xi : Xi → Act t GXi be LMPs
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(i = 1, 2). We say that X is a simulation from x1 to x2 if (x1, x2) is a morphism of type
X → Act t G>>X in BRel(Meas). This is equivalent to:

∀(s1, s2) ∈ X0 . ∀U ∈MX1 , V ∈MX2 . X0[U ] ⊆ V =⇒ x1(s1)(U) ≤ x2(s2)(V ).

One natural property we expect on simulation relations between LMPs is the composability.
However, G>> fails to satisfy the lax compositionality (G>>X)0; (G>>Y )0 ⊆ (G>>(X;Y ))0 for
general X,Y ; here “;” is the left-first relation composition. Therefore the above definition
of simulation relation is not closed under the relation composition. One way to solve this
problem is to require each simulation relation X to preserve measurability in the following
sense: ∀U ∈MX1 . X0[U ] ∈MX2 .

3.4 Kantorovich Metric by Codensity Lifting
An extended pseudometric space (we drop “extended” hereafter) is a pair (X, d) of a set X
and a pseudometric d : X ×X → [0,∞] giving distances (including ∞) between elements in
X. The axioms for pseudometrics are

d(x, x) = 0, d(x, y) = d(y, x), d(x, y) + d(y, z) ≥ d(x, z).

For pseudometric spaces (X, d), (Y, e), a function f : X → Y is non-expansive if for any
x, x′ ∈ X, d(x, x′) ≥ e(f(x), f(x′)) holds. We define EPMet to be the category of extended
pseudometric spaces and non-expansive functions. The canonical forgetful functor p :
EPMet→ Set is a fibration with fibred small limits. The inverse image of a pseudometric
(Y, d) along a function f : X → Y is given by f∗(Y, d) = (X, d ◦ (f × f)). The fibred small
limit of pseudometric spaces {(X, di)}i∈I above the same set X is given by the pointwise
sup of pseudometrics:

∧
i∈I(X, di) = (X, supi∈I di).

We first consider the codensity lifting of a monad T on Set along p : EPMet→ Set with
a single lifting parameter: a pair of R ∈ Set and S = (TR, s) ∈ EPMet. By instantiating
(1), for every (X, d) ∈ EPMet (X for short), the pseudometric space T>>X is of the form
(TX, T>>d) where the pseudometric T>>d is given by

T>>d(c, c′) = sup
f∈EPMet(X,S)

s(f#(c), f#(c′)).

The following example is inspired by Ogawa’s work deriving Kantorovich metric on
subprobability distributions [13]. We perform the following change-of-base of the fibration

U∗(EPMet)

q

��

// EPMet
p

��
Meas

U
// Set

We obtain a new fibration q with fibred small limits. An object in U∗(EPMet) is a pair of
a measurable space (X,MX) and a pseudometric d on X. A morphism from ((X,MX), d)
to ((Y,MY ), e) in U∗(EPMet) is a measurable function f : (X,MX) → (Y,MY ) that is
also non-expansive with respect to pseudometrics d and e.

We consider the codensity lifting of G along q : U∗EPMet→Meas with the following
single lifting parameter: a pair of R = 1 and S = (G1, s) = (B[0, 1], s) where s(x, y) = |x− y|.
For every (X, d) ∈ EPMet (X for short), G>>X is the pair of the measurable space GX and
the following pseudometric G>>d on the set SPMsr(X) of subprobability measures on X:

G>>d(v1, v2) = sup
f

∣∣∣∣∫
X

fdv1 −
∫
X

fdv2

∣∣∣∣ ;
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in the above sup, f ranges over U∗EPMet(X,S), the set of measurable functions of type
X → B[0, 1] that are also non-expansive, that is, ∀x, y ∈ UX . d(x, y) ≥ |f(x)− f(y)|. The
pseudometric G>>d between subprobability measures is called Kantorovich metric [5].

We briefly mention two works related to this lifting.

In a recent work [1], Baldan et al. introduces Kantorovich lifting of Set-functors. Although
they consider lifting of general Set-functors rather than Set-monads, their lifting scheme
is very close to the codensity lifting of Set-monads along p : EPMet→ Set.

Ogawa reported that the Kantorovich metric on finite subprobability distributions can
be derived using the technique of observational algebra [13].

4 Lifting Algebraic Operations to Codensity-Lifted Monads

We adopt the concept of algebraic operation [14] for general monads, and discuss their liftings
to codensity-lifted monads. The following definition is a modification of [14, Proposition 2]
for non-strong monads, and coincides with the original one when C = Set.

I Definition 13. Let C be a category, A be a set and assume that C has A-fold cotensors. An
A-ary algebraic operation for a monad T on C is a natural transformation α : A t K → K

(see Section 1.1 for K). We write Alg(T , A) for the class of A-ary algebraic operations for T .

I Example 14. For each set A, the powerset monad Tp has the algebraic operation of A-ary
set-union unionAX : A t TpX → TpX given by unionAX(f) =

⋃
x∈A f(x).

Fix a fibration p : E → B, a monad T on B, a set A and assume that E has and p

preserves A-fold cotensors.

I Definition 15. Let Ṫ be a lifting of T along p. A lifting of an algebraic operation
α ∈ Alg(T , A) to Ṫ is an algebraic operation α̇ ∈ Alg(Ṫ , A) such that pα̇ = αpk; here
pk : EṪ → BT is the canonical extension of p to Kleisli categories. We write Algα(Ṫ , A) for
the class {α̇ ∈ Alg(Ṫ , A) | pα̇ = αpk} of liftings of α to Ṫ .

I Example 16. (Continued from Example 14) Let Ṫ be a lifting of Tp along p : Top→ Set.
Since p is faithful, there is at most one lifting of unionA to Ṫ . It exists if and only if for
every (X,OX) ∈ Top, unionAX is a continuous function of type A t Ṫ (X,OX)→ Ṫ (X,OX).

We give a characterisation of the liftings of algebraic operations to codensity-lifted monads.
Fix a lifting parameter BT A S //Roo E and assume that p, S satisfies the codensity condition.
Note that the canonical extension pk : ET >> → BT of p satisfies

pkJ
>> = Jp, pK>> = Kpk, pη>> = ηp, pkε

>> = εpk.

Starting from a natural transformation α0 : A t S → S such that pα0 = αR, we construct
a lifting φ(α0) ∈ Algα(T >>, A) of α as follows.
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From A t S = (A t IdE)S, the natural trasnformation α0 induces the mate α0 : A t
IdE → RanSS. We then obtain the following situation:

A t IdE α0

&&β $$
T>>

σ
// RanSS [E,E]

[E,p]

��

A t p

αJp•Atηp $$

αR

&&
Tp

KεR

// p(RanSS) [E,B]

The triangle in the base category commutes by:

KεR • αJp •A t ηp = KεR • αJpS •A t ηpS = KεR • αJKR •A t ηKR

= (Kε • αJK •A t ηK)R = (α •A t Kε •A t ηK)R = pα0.

We thus obtain the unique morphism β above αJp •A t ηp making the triangle in the total
category commute. Using this β, we define φ(α0) : A t K>> → K>> by

φ(α0) = K>>ε>> • βK>> : A t K>> → K>>.

This algebraic operation is a lifting of α to T>>:

pφ(α0) = p(K>>ε>> •βK>>) = (Kε•αJK •A t ηK)pk = (α•A t Kε•A t ηK)pk = αpk.

The following theorem shows that φ characterises the class of liftings of α to the codensity-
lifted monads. It is an analogue of Theorem 11 in [7], which is stated for the categorical
>>-lifting.

I Theorem 17. Let p : E→ B be a fibration, T be a monad on B, and BT A S //Roo E be a
lifting parameter, and A be a set. Suppose that B,E has, and p preserves A-fold cotensor.
Then for any α ∈ Alg(T , A), the mapping φ constructed as above has the following type and
is bijective:

φ : [A,E]αR(A t S, S)→ Algα(T >>, A).

I Example 18. (Continued from Example 16) We look at liftings of unionA ∈ Alg(Tp, A)
to the codensity liftings of Tp along p : Top→ Set with some single lifting parameters.

Let R ∈ Set and S = (TpR,OS) ∈ Top be a single lifting parameter. Theorem 17 is
instantiated to the following statement: a lifting of unionA to T >>p exists if and only if
unionAR : A t TpR → TpR is a continuous function of type A t S → S. Here, A t S is the
product of A-fold copies of S, and its topology OAtS is generated from all the sets of the
form π−1

a (U), where a and U range over A and OS , respectively. We further instantiate the
single lifting parameter as follows (see Section 3.2):
1. Case R = 1,OS = {∅, {1}, {∅, 1}}. For any set A, unionA1 is a continuous function of type

A t S → S because (unionA1 )−1({1}) =
⋃
a∈A π

−1
a ({1}) ∈ OAtS . From Theorem 17, for

any set A, unionA lifts to the lower Vietoris lifting T >>p .
2. Case R = 1,OS = {∅, {∅}, {∅, 1}}. For any finite set A, unionA1 is a continuous function

of type A t S → S because (unionA1 )−1({∅}) =
⋂
a∈A π

−1
a ({∅})

∗
∈ OAtS . On the other

hand, the membership
∗
∈ does not hold when A is infinite. From Theorem 17, for any set

A, unionA lifts to the upper Vietoris lifting T >>p if and only if A is finite.
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5 Pointwise Codensity Lifting

Fix a fibration p : E→ B, a monad T on B and a lifting parameter BT A S //Roo E . When
A is a large category, or B,E are not very complete, the right Kan extension RanSS may
not exist, hence the codensity lifting in Section 2 is not applicable to lift T . In this section
we introduce an alternative method (called pointwise codensity lifting) that relies on fibred
limits of p. The point of this method is to swap the order of computation. Instead of taking
the inverse image after computing RanSS, we first take the inverse image of the components
of RanSS, bringing everything inside a fibre, then compute the right Kan extension as a
fibred limit.

We assume that A is small (resp. large) and p has fibred small (resp. large) limits. The
pointwise codensity lifting lifts T as follows.

We first lift T to an object mapping Ṫ : |E| → |E|. Let X ∈ E. Consider the following
diagram:

X ↓ S

⇒γX

πX //

!X↓S

��

A R //

S

��

BT

K

��

⇒ε
BT

K

��
1

X
// E

p
// B

T
//

J

==

B

where (X ↓ S, πX , !X↓S , γX) is the comma category. The middle square commutes as R,S is
a lifting parameter. We let δX = KεRπX • TpγX be the composite natural transformation,
and take the inverse image of SπX along δX :

δ−1
X (SπX)

δX(SπX) // SπX [X ↓ S,E]

[X↓S,p]
��

TpX!X↓S
δX

// KRπX [X ↓ S,B]

We obtain a functor δ−1
X (SπX) : X ↓ S → E such that pδ−1

X (SπX) = TpX!X↓S . We then
define T>>X by T>>X = lim(δ−1

X (SπX)), where right hand side is the fibred limit. In the
following calculations we will use the vertical projection and the tupling operation of this
fibred limit, denoted by

PX : (T>>X)!X↓S → δ−1
X (SπX),

〈−〉 : [X ↓ S,E]f !X↓S
(Y !X↓S , δ−1

X (SπX))→ Ef (Y, T>>X) (f ∈ E(Y, TpX)).

We next lift η. Consider the following diagram:

X!X↓S γX

''η′
X &&

δ−1
X (SπX)

δX(SπX)
// SπX [X ↓ S,E]

[X↓S,p]

��

pX!X↓S pγX

''ηpX!X↓S &&
TpX!X↓S

δX

// KRπX [X ↓ S,B]
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where the lower triangle commute by:

δX • ηpX!X↓S = KεRπX • ηpSπX • pγX = KεRπX • ηKRπX • pγX = pγX .

Therefore there exists the unique natural transformation η′X above ηpX!X↓S making the
upper triangle commute. We define η>>X = 〈η′X〉, which is above ηpX.

We finally lift the Kleisli lifting (−)# of T . Let g : X → T>>Y be a morphism in
E, and f = PY • g!Y ↓S : X!Y ↓S → δ−1

Y (SπY ) be a morphism, which is above pg!Y ↓S and
satisfies g = 〈f〉. We obtain the composite natural transformation δY (SπY ) • f : X!Y ↓S →
δ−1
Y (SπY )→ SπY . From the universal property of the comma category, we obtain the unique
functor Mf : Y ↓ S → X ↓ S such that πXMf = πY and γXMf = δY (SπY ) • f . We next
consider the following diagram:

δ−1
X (SπX)Mf

f[ ''

δX(SπX)Mf

''
δ−1
Y (SπY )

δY (SπY )
// SπY [Y ↓ S,E]

[Y ↓S,p]

��

TpX!Y ↓S δXMf

((µpY !Y ↓S•Tpf ''
TpY !Y ↓S

δY

// KRπY [Y ↓ S,B]

where the lower triangle commutes. Therefore there exists the unique natural transformation
f [ above µpY !Y ↓S • Tpf = µpY !Y ↓S • Tpg!Y ↓S = (pg)#!Y ↓S making the upper triangle
commute. Then we define g#>> = 〈f [ • PXMf 〉, which is above (pg)#.

I Theorem 19. Let p : E→ B be a fibration with fibred small (resp. large) limits, T be a
monad on B, BT A S //Roo E be a lifting parameter for T and assume that A is small (resp.
large). The tuple (T>>, η>>, (−)#>>) constructed as above is a Kleisli triple on E, and the
corresponding monad is a lifting of T .

The pointwise codensity lifting coincides with the codensity lifting in Section 2, provided
that RanSS and p(RanSS) are both pointwise.

I Theorem 20. Let p : E→ B be a fibration, T be a monad on B and BT A S //Roo E be a
lifting parameter. Assume that p, S satisfies the codensity condition, and moreover RanSS
and p(RanSS) are both pointwise. Then ((KεR)−1(RanSS))X ' lim(δ−1

X (SπX)).

6 Characterising lift(T ) as a Limit

We give a characterisation of the class of liftings of T as a limit of a large diagram. This is
shown for posetal fibrations p : E→ B with fibred small limits, which bijectively correspond
to functors of type Bop → Lat∧; here Lat∧ is the category of complete lattices and meet-
preserving functions. Notice that each fibre actually admits large limits computed by meets.

Fix such a fibration p : E → B and a monad T on B. Since p is posetal, p is faithful.
Thus we regard each homset E(X,Y ) as a subset of B(pX, pY ), and make p implicit.

I Definition 21. We define lift(T ) to be the class of liftings of T along p. We introduce a
partial order � on them by Ṫ � Ṫ ′ ⇐⇒ ∀X ∈ E . ṪX 6 Ṫ ′X (in ET (pX)).
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The partially ordered class lift(T ) admits arbitrary large meets given by the pointwise meet.
We introduce a specific notation for the codensity liftings of T with a single lifting

parameter R,S. By [S]R we mean the codensity lifting T >> with R,S. Using Proposition 10,
it is given as: [S]RX =

∧
f∈E(X,S)(f#)−1(S).

I Definition 22. Let X ∈ E. An object S ∈ ET (pX) is closed with respect to X if 1)
ηpX ∈ E(X,S) and 2) for all f ∈ E(X,S), we have f# ∈ E(S, S).

I Proposition 23. Let X ∈ E. Then S ∈ ET (pX) is closed with respect to X if and only if
S = [S]pXX.

I Definition 24. We define Cls(T , X) to be the subposet ({S | S = [S]pXX},≤) of ET (pX)
consisting of closed objects with respect to X. We also define the following mappings:

Cls(T , X)
[−]pX

// lift(T )
qX

oo , [S]pX = T>>(pX,S), qX(Ṫ ) = ṪX.

The mapping qX is monotone, while [−]pX is not, because its argument is used both in
positive and negative way. Still, we have the following adjoint-like relationship:

I Theorem 25. For each X ∈ E, we have qX ◦ [−]pX = idCls(T ,X) and idlift(T ) � [−]pX ◦qX .

We define a function φX,Y : Cls(T , X)→ Cls(T , Y ) by φX,Y (S) = qY ([S]pX) = [S]pXY.
This is not monotone. Theorem 25 asserts that φX,X = idCls(T ,X). Using the second
inequality of Theorem 25, for each X,Y ∈ E, we also have

[S]pX � [[S]pXY ]pY = [φX,Y (S)]pY . (3)

From Theorem 25, Ṫ is a lower bound of the class {[qX(Ṫ )]pX | X ∈ E}. In fact, Ṫ is the
greatest lower bound:

I Theorem 26. For any lifting Ṫ of T , we have Ṫ =
∧
X∈E[qX(Ṫ )]pX .

I Definition 27. We say that X ∈ E is a split subobject of Y ∈ E, (denoted by X C Y ) if
there is a split monomorphism m : X → Y .

I Lemma 28. Let X C Y in E. The following holds: 1) φY,X ◦ qY = qX . 2) For any Z ∈ E,
φY,X ◦ φZ,Y = φZ,X . 3) [qY (Ṫ )]pY � [qX(Ṫ )]pX .

Let us write Split(E) for the large preorder of E-objects ordered by C. We extend
Cls(T ,−) to a functor of type Split(E)op → Pre by Cls(T , X C Y ) = φY,X : Cls(T , Y )→
Cls(T , X). This is indeed a functor thanks to Theorem 25 (for identity) and Lemma 28-2
(for composition). Moreover, qX : lift(T ) → Cls(T , X) is a large cone over the diagram
Cls(T ,−) by Lemma 28-1. When Split(E) is directed, q is a limiting cone.

I Theorem 29. Suppose that Split(E) is directed. Then the cone qX : lift(T )→ Cls(T , X)
over the large diagram Cls(T ,−) is limiting.

7 Conclusion and Future Work

We introduced the codensity lifting of monads along the fibrations that preserve the right Kan
extensions giving codensity monads (this codensity condition was relaxed later in Section 5).
The codensity lifting allows us to lift various monads on non-closed base / total categories,
which was not possible by the previous >>-lifting [6].
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170 Codensity Liftings of Monads

Theorem 29 is an analogue of the characterisation of the collection of preorders on a
Set-monad as a limit of Cardop-chain in [8]. There we exploited this characterisation
to enumerate the collection of preorders on some monads. We are wondering whether
Theorem 29 is also useful to identify all the liftings of a given monad T .
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monad in Section 3.4 was constructed after the first author learned Ogawa’s work on
deriving Kantorovich metric for finitely-supported subdistributions using observational
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