10 research outputs found

    Normalisation by evaluation for dependent types

    Get PDF
    We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated using internal type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction. NBE for simple types is using a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We have formalized parts of the construction in Agda

    Combinatory Logic and Lambda Calculus Are Equal, Algebraically

    Get PDF
    It is well-known that extensional lambda calculus is equivalent to extensional combinatory logic. In this paper we describe a formalisation of this fact in Cubical Agda. The distinguishing features of our formalisation are the following: (i) Both languages are defined as generalised algebraic theories, the syntaxes are intrinsically typed and quotiented by conversion; we never mention preterms or break the quotients in our construction. (ii) Typing is a parameter, thus the un(i)typed and simply typed variants are special cases of the same proof. (iii) We define syntaxes as quotient inductive-inductive types (QIITs) in Cubical Agda; we prove the equivalence and (via univalence) the equality of these QIITs; we do not rely on any axioms, the conversion functions all compute and can be experimented with

    Normalisation by evaluation for type theory, in type theory

    Get PDF
    We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda

    Cubical Syntax for Reflection-Free Extensional Equality

    Get PDF
    We contribute XTT, a cubical reconstruction of Observational Type Theory which extends Martin-L\"of's intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity types principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel cubical extension (independently proposed by Awodey) of the logical families or categorical gluing argument inspired by Coquand and Shulman: every closed element of boolean type is derivably equal to either 'true' or 'false'.Comment: Extended version; International Conference on Formal Structures for Computation and Deduction (FSCD), 201

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    Logical Predicates in Higher-Order Mathematical Operational Semantics

    Full text link
    We present a systematic approach to logical predicates based on universal coalgebra and higher-order abstract GSOS, thus making a first step towards a unifying theory of logical relations. We first observe that logical predicates are special cases of coalgebraic invariants on mixed-variance functors. We then introduce the notion of a locally maximal logical refinement of a given predicate, with a view to enabling inductive reasoning, and identify sufficient conditions on the overall setup in which locally maximal logical refinements canonically exist. Finally, we develop induction-up-to techniques that simplify inductive proofs via logical predicates on systems encoded as (certain classes of) higher-order GSOS laws by identifying and abstracting away from their boiler-plate part.Comment: Extended versio

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    A Cubical Language for Bishop Sets

    Get PDF
    We present XTT, a version of Cartesian cubical type theory specialized for Bishop sets \`a la Coquand, in which every type enjoys a definitional version of the uniqueness of identity proofs. Using cubical notions, XTT reconstructs many of the ideas underlying Observational Type Theory, a version of intensional type theory that supports function extensionality. We prove the canonicity property of XTT (that every closed boolean is definitionally equal to a constant) using Artin gluing
    corecore