
Cubical Syntax for Reflection-Free Extensional
Equality
Jonathan Sterling
Carnegie Mellon University, Pittsburgh, USA
http://cs.cmu.edu/~jmsterli
jmsterli@cs.cmu.edu

Carlo Angiuli
Carnegie Mellon University, Pittsburgh, USA
http://cs.cmu.edu/~cangiuli
cangiuli@cs.cmu.edu

Daniel Gratzer
Aarhus University, Denmark
http://jozefg.github.io
gratzer@cs.au.dk

Abstract

We contribute XTT, a cubical reconstruction of Observational Type Theory [7] which extends Martin-
Löf’s intensional type theory with a dependent equality type that enjoys function extensionality
and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the
same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can
be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using
a novel extension of the logical families or categorical gluing argument inspired by Coquand and
Shulman [27, 48]: every closed element of boolean type is derivably equal to either true or false.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Algebraic semantics; Theory of computation → Denotational semantics

Keywords and phrases Dependent type theory, extensional equality, cubical type theory, categorical
gluing, canonicity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.31

Related Version An extended version is available at https://arxiv.org/abs/1904.08562.

Funding The authors gratefully acknowledge the support of the Air Force Office of Scientific Research
through MURI grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the AFOSR.

Acknowledgements We thank Lars Birkedal, Evan Cavallo, David Thrane Christiansen, Thierry
Coquand, Kuen-Bang Hou (Favonia), Marcelo Fiore, Jonas Frey, Krzysztof Kapulkin, András Kovács,
Dan Licata, Conor McBride, Darin Morrison, Anders Mörtberg, Michael Shulman, Bas Spitters, and
Thomas Streicher for helpful conversations about extensional equality, algebraic type theory, and
categorical gluing. We thank our anonymous reviewers for their insightful comments, and especially
thank Robert Harper for valuable conversations throughout the development of this work. We
also thank Paul Taylor for his diagrams package, which we have used to typeset the commutative
diagrams in this paper.

© Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 31; pp. 31:1–31:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/211062012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-0585-5564
http://cs.cmu.edu/~jmsterli
mailto:jmsterli@cs.cmu.edu
https://orcid.org/0000-0002-9590-3303
http://cs.cmu.edu/~cangiuli
mailto:cangiuli@cs.cmu.edu
https://orcid.org/0000-0003-1944-0789
http://jozefg.github.io
mailto:gratzer@cs.au.dk
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://arxiv.org/abs/1904.08562
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Cubical Syntax for Reflection-Free Extensional Equality

1 Introduction

The past fifty years of constructive type theory can be summed up as the search for a scientific
understanding of equality, punctuated by moments of qualitative change in our perception
of the boundary between semantics (actual construction) and syntax (proof theory) from a
type-theoretic point of view. Computation is critical to both the semantics and syntax of
type theory – from Martin-Löf’s meaning explanations [43], supplying type theory with its
direct semantics and intuitionistic grounding, to syntactic properties such as closed and open
canonicity which establish computation as the indispensible method for deriving equations.

For too long, a limiting perspective on extensional type theory has prevailed, casting
it as a particular syntactic artifact (for instance, the formalism obtained by stripping of
their meaning the rules which incidentally appear in Martin-Löf’s monograph [43]), a formal
system which enjoys precious few desirable syntactic properties and is distinguished primarily
by its equality reflection rule.

We insist on the contrary that the importance of extensional type theory lies not in the
specific choice of syntactic presentation (historically, via equality reflection), but rather in
the semantic characteristics of its equality connective, which are invariant under choice of
syntax. The specifics of how such an equality construct is presented syntactically are entirely
negotiable (the internal language of a doctrine is determined only up to equivalence), and
therefore has an empirical component.

1.1 Internalizing equality: from judgments to types
Equality in type theory begins with a form of judgment Γ ` A = B type, which expresses
that A and B are exactly the same type; because types can depend on terms, one also
includes a form of judgment Γ `M = N : A to express that M and N are exactly the same
element of A. This kind of equality, called judgmental equality, is silent in the sense that if
Γ ` A = B type holds and Γ `M : A holds, then Γ `M : B without further ado.

Judgmental equality in type theory is a completely top-level affair: it cannot be assumed
or negated. On the other hand, both programming and mathematics require one to establish
equations under the assumption of other equations (for instance, as part of an induction
hypothesis). For this reason, it is necessary to internalize the judgmental equalityM = N : A
as a type EqA(M,N) which can be assumed, negated, or inhabited by induction.

The simplest way to internalize judgmental equality as a type is to provide introduction
and elimination rules which make the existence of a proof of EqA(M,N) equivalent to the
judgment M = N : A:

introduction
Γ `M = N : A

Γ ` refl : EqA(M,N)

elimination
Γ ` P : EqA(M,N)

Γ `M = N : A

The elimination rule above is usually called equality reflection, and is characteristic of
extensional versions of Martin-Löf’s type theory. This presentation of the equality type is
very strong, and broadens the reach of judgmental equality into assertions of higher-level.

A consequence of the equality reflection rule is that judgmental equality is no longer
decidable, a pragmatic concern which affects implementation and usability. On the other
hand, equality reflection implies numerous critical reasoning principles, including function
extensionality (if two functions agree on all inputs, then they are equal), a judgmental version
of the famous unicity of identity proofs (UIP) principle (any two elements of the equality
type are equal), and perhaps the most crucial consequence of internalized equality, coercion
(if M : P (a0) and P : EqA(a0, a1), then there is some term P ∗(M) : P (a1); in this case,
P ∗(M) = M).



J. Sterling, C. Angiuli, and D. Gratzer 31:3

1.2 Extensional equality via equality reflection
The earliest type-theoretic proof assistants employed the equality reflection rule (or equivalent
formulations) in order to internalize the judgmental equality, a method most famously
represented by Nuprl [25] and its descendents, including RedPRL [10]. The Nuprl-style
formalisms act as a “window on the truth” for a single intended semantics inspired by Martin-
Löf’s computational meaning explanations [2]; semantic justification in the computational
ontology is the only consideration when extending the Nuprl formalism with a new rule, in
contrast to other traditions in which global properties (e.g. admissibility of structural rules,
decidability of typing, interpretability in multiple models, etc.) are treated as definitive.

Rather than supporting type checking, proof assistants in this style rely heavily on
interactive development of typing derivations using tactics and partial decision procedures.
A notable aspect of the Nuprl family is that their formal sequents range not over typed
terms (proofs), but over untyped raw terms (realizers); a consequence is that during the
proof process, one must repeatedly establish numerous type functionality subgoals, which
restore the information that is lost when passing from a proof to a realizer. To mitigate the
corresponding blow-up in proof size, Nuprl relies heavily on untyped computational reasoning
via pointwise functionality, a non-standard semantics for dependently typed sequents which
has some surprising consequences, such as refuting the principle of dependent cut [38].

Another approach to implementing type theory with equality reflection is exemplified in
the experimental Andromeda proof assistant [15], in which proofs are also built interactively
using tactics, but judgments range over abstract proof derivations rather than realizers. This
approach mitigates to some degree the practical problems caused by erasing information
prematurely, and also enables interpretation into a broad class of semantic models.

Although Nuprl/RedPRL and Andromeda illustrate that techniques beyond mere type
checking are profitable to explore, the authors’ experiences building and using RedPRL
for concrete formalization of mathematics underscored the benefits of having a practical
algorithm to check types, particularly in the setting of cubical type theory (Section 1.6),
whose higher-dimensional structure significantly reduces the applicability of Nuprl-style
untyped reasoning.

In particular, whereas it is possible to treat all β-rules and many η-rules in non-cubical
type theory as untyped rewrites, such an approach is unsound for the cubical account of
higher inductive types and univalence [11]; consequently, in RedPRL many β/η rewrites must
emit auxiliary proof obligations. Synthesizing these experiences and challenges led to the
creation of the redtt proof assistant for Cartesian cubical type theory [9].

1.3 Equality in intensional type theory
Martin-Löf’s Intensional Type Theory (ITT) [41, 46] represents another extremal point in
the internalization of judgmental equality. ITT underapproximates the equality judgment
via its identity type, characterized by rules like the following:

formation
Γ ` A type Γ `M : A Γ ` N : A

Γ ` IdA(M,N) type

introduction
Γ `M : A

Γ ` reflA(M) : IdA(M,M)

elimination
Γ, x : A, y : A, z : IdA(x, y) ` C(x, y, z) type
Γ ` P : IdA(M,N) Γ, x : A ` Q : C(x, x, reflA(x))

Γ ` Jx,y,z.C(P ;x.Q) : C(M,N,P )
· · ·

FSCD 2019



31:4 Cubical Syntax for Reflection-Free Extensional Equality

Symmetry, transitivity and coercion follow from the elimination rule of the identity
type. Other properties which follow directly from equality reflection, such as the unicity
of identity proofs and function extensionality, are not validated by ITT; indeed, there are
sufficiently intensional models of the identity type to refute both properties [52, 33]. While
the desirability of the unicity principle is perhaps up for debate, especially in light of recent
developments in Homotopy Type Theory [55], theorists and practitioners alike generally
agree that function extensionality is desirable.

A significant selling-point for ITT is that, by avoiding equality reflection, it presents a
theory which can be implemented using type checking and normalization. Consequently, β
and η rules are totally automatic and never require intervention from the user – in contrast to
systems like RedPRL, whose users are accustomed to establishing β/η equivalences by hand
at times when heuristical tactics prove inadequate. The downsides of pure ITT, however, are
manifold: function extensionality is absolutely critical in practice.

1.4 Setoids and internal model constructions
A standard technique for avoiding the deficiencies of the identity type in ITT is the setoid
construction [32], an exact completion which glues an equivalence relation =A onto each
type |A| in the spirit of Bishop [16]. When using setoids, a function A → B consists of a
type-theoretic function f : |A| → |B| together with a proof that it preserves the equivalence
relation, f= : (x, y : |A|)→ x =A y → f(x) =B f(y); a dependent setoid (family of setoids)
is a type-theoretic family equipped with a coherent coercion operator.

Setoids are a discipline for expressing internally precisely the extrinsic properties required
for constructions to be extensional (compatible with equality); these extra proof obligations
must be satisfied in parallel with constructions at every turn. The state of affairs for setoids
is essentially analogous to that of proof assistants with equality reflection, in which type
functionality subgoals play a similar role to the auxiliary paperwork generated by setoids.

Paradoxically, however, every construction in ordinary ITT is automatically extensional
in this sense. A solution to the problem of equality in type theory should, unlike setoids,
take advantage of the fact that type theory is already restricted to extensional constructions,
adding to it only enough language to refer to equality internally. This is the approach taken
by both Observational Type Theory and XTT.

1.5 Observational Type Theory
The first systematic solution to the problem of syntax for extensional equality without
equality reflection was Observational Type Theory (OTT) [6, 7], which built on early work by
Altenkirch and McBride [3, 44]. The central idea of OTT is to work with a closed universe of
types, defining by recursion for each pair of types A,B a type Eq(A,B) of proofs that A and
B are equal, and for each pair of elements M : A and N : B, a type of proofs EqA,B(M,N)
that M and N are (heterogeneously) equal. Finally, one defines “generic programs” by
recursion on type structure which calculate coercions and coherences along proofs of equality.

One can think of OTT as equipping the semantic setoid construction with a direct-style
type-theoretic language, and adding to it closed, inductively defined universes of types. The
heterogeneous equality of OTT, initially a simplifying measure adopted from McBride’s
thesis [44], is an early precursor of the dependent paths which appear in Homotopy Type
Theory [55], Cubical Type Theory [24, 8, 11], and XTT.

Recently, McBride and his collaborators have made progress toward a cubical version of
OTT, using a different cube category and coercion structure, in which one coerces only from
0 to 1, and obtains fillers using an affine rescaling operation [23].



J. Sterling, C. Angiuli, and D. Gratzer 31:5

1.6 Cubical Type Theory

In a rather different line of research, Voevodsky showed that Intensional Type Theory is
compatible with a univalence axiom yielding an element of IdU (A,B) for every equivalence
(coherent isomorphism) between types A,B [37, 55]. A univalent universe classifies types
under a certain size cut-off in the sense of higher topos theory [40]. However, Intensional Type
Theory extended with univalence lacks canonicity, because identity elimination computes
only on refl and not on proofs constructed by univalence.

Since then, cubical type theories have been developed to validate univalence without
disrupting canonicity [24, 11]. These type theories extend Martin-Löf’s type theory with
an abstract interval, maps out of which represent paths, a higher-dimensional analogue to
equality; the interval has abstract elements, represented by a new sort of dimension variable i,
and constant endpoints 0, 1. Coercions arise as an instance of Kan structure governed directly
by the structure of paths between types, which are nothing more than types dependent on
an additional dimension variable.

There are currently two major formulations of cubical type theory. De Morgan cubical
type theory [24] equips the interval with negation and binary connection (minimum and
maximum) operations. Cartesian cubical type theory [8, 11], the closest relative of XTT,
has no additional structure on the interval, but equips types with a much stronger notion of
coercion generalizing the one described in Section 2.1.1.

1.7 Our contribution: XTT

We contribute XTT (Appendix A), a new type theory that supports extensional equality
without equality reflection, using ideas from cubical type theory [24, 8, 11]. In particular, we
obtain a compositional account of propositional equality satisfying function extensionality
and a judgmental version of the unicity of identity proofs – when P,Q : EqA(M,N), we have
P = Q judgmentally – enabling us to substantially simplify our Kan operations (Section 2.1.2).
Moreover, XTT is closed under a cumulative hierarchy1 of closed universes à la Russell. We
hope to integrate XTT into the redtt cubical proof assistant [9] as an implementation of
extensional equality in the style of two-level type theory [11].

A common thread that runs through the XTT formalism is the decomposition of constructs
from OTT into more modular, judgmental principles. For instance, rather than defining
equality separately at every type and entangling the connectives, we define equality once
and for all using the interval. Likewise, rather than ensuring that equality proofs are unique
through brute force, we obtain unicity using a structural rule which does not mention the
equality type.

By first developing the model theory of XTT in an algebraic way (Section 3), we then
prove a canonicity theorem for the initial model of XTT (Section 3.2): any closed term of
boolean type is equal to either true or false. This result is obtained using a novel extension
of the categorical gluing technique described by Coquand and Shulman [27, 48]. Canonicity
expresses a form of “computational adequacy” – in essence, that the equational theory of
XTT suffices to derive any equation which ought to hold by (closed) computation – and is one
of many syntactical considerations that experience has shown to be correlated to usability.

1 As in previous work [49], we employ an algebraic version of cumulativity which does not require
subtyping.

FSCD 2019



31:6 Cubical Syntax for Reflection-Free Extensional Equality

(cubes) Ψ,Φ ::= · | Ψ, i | Ψ, ξ
(contexts) Γ,∆ ::= · | Γ, x : A
(dimensions) r, s ::= i | ε
(constant dims.) ε ::= 0 | 1
(constraints) ξ ::= r = r′

(universe levels) k, l ::= n (n ∈ N)
(types) A,B ::= M | (x : A)→ B | (x : A)×B | Eqi.A(M,N) | ⇑l

kA | Uk | bool
(terms) M,N ::= x | A | λx.M | appx:A.B(M,N) | 〈M,N〉 | fstx:A.B(M) | sndx:A.B(M) |

λi.M | appi.A(M, r) | true | false | ifx.A(M ;N0, N1) |
[i.A] ↓r

r′ M | A ↓r
r′ M [s with 0 ↪→ j.N0 | 1 ↪→ j.N1]

Figure 1 A summary of the raw syntax of XTT. As a matter of top-level notation, we freely omit
annotations that can be inferred from context, writing M(N) for appx:A.B(M,N). The annotations
chosen in the raw syntax are the minimal ones required to establish a coherent interpretation into
the initial XTT-algebra; for instance, it is unnecessary to include an annotation on the λ-abstraction.

2 Programming and proving in XTT

Like other cubical type theories, the XTT language extends Martin-Löf’s type theory with a
new sort of variable i ranging over an abstract interval with global elements 0 and 1; we call
an element r of the interval a dimension, and we write ε to range over a constant dimension
0 or 1. Cubical type theories like XTT also use a special kind of hypothesis to constrain the
values of dimensions: when r and s are dimensions, then r = s is a constraint. In XTT, a
single context Ψ accounts for both dimension variables (Ψ, i) and constraints (Ψ, r = s). We
will write Ψ | r dim for when a dimension r is valid in a dimension context Ψ. The judgment
Ψ | r = s dim holds when r and s are equal as dimensions with respect to the constraints in
Ψ. Dimensions can be substituted for dimension variables, an operation written M〈r/i〉.

Finally, ordinary type-theoretic assumptions x : A are kept in a context Γ that depends on
Ψ. In XTT, a full context is therefore written Ψ | Γ. The meaning of a judgment at context
(Ψ, i = r) is completely determined by its instance under the substitution r/i. Under the
false constraint 0 = 1, all judgments hold; the resulting collapse of the typing judgment and
the judgmental equality does not disrupt any important metatheoretic properties, because
the theory of dimensions is decidable.

The general typehood judgment Ψ | Γ ` A typek means that A is a type of universe level
k in context Γ over the cube Ψ; note that this judgment presupposes the well-formedness of
Ψ,Γ. Likewise, the element typing judgment Ψ | Γ `M : A means that M is an element of
the type A in Γ over Ψ as above; this form of judgment presupposes the well-formedness
of A and thence Ψ,Γ. We also have typed judgmental equality Ψ | Γ ` A = B typek and
Ψ | Γ `M = N : A, which presuppose the well-formedness of all their constituents.

Dependent equality types

XTT extends Martin-Löf type theory with dependent equality types Eqi.A(N0, N1) when
Ψ, i | Γ ` A typek and Ψ | Γ ` N0 : A〈0/i〉 and Ψ | Γ ` N1 : A〈1/i〉. Geometrically, elements
of this type are lines or paths in the type A ranging over dimension i, with left endpoint N0
and right endpoint N1.2 This type captures internally the equality of N0 and N1; dependency

2 Our dependent equality types are locally the same as dependent path types Pathi.A(N0, N1) from
cubical type theories; however, we have arranged in XTT for them to satisfy a unicity principle by which



J. Sterling, C. Angiuli, and D. Gratzer 31:7

of A on the dimension i is in essence a cubical reconstruction of heterogeneous equality, albeit
with different properties from the version invented by McBride in his thesis [44].

An element of the equality type Eqi.A(N0, N1) is formed by the dimension λ-abstraction
λi.M , requiring that M is an element of A in the extended context, and that N0, N1 are
the left and right sides of M respectively. Proofs P of equality are eliminated by dimension
application, P (r), and are subject to β, η, ξ rules analogous to those for function types.
Finally, we have P (ε) = Nε always, extending Gentzen’s principle of inversion to the side
condition that we placed on M . More formally:

Ψ, i | Γ `M : A
−−−−−−−−−−−−−−−−−−−⇀
Ψ, i = ε | Γ `M = Nε : A

Ψ | Γ ` λi.M : Eqi.A(N0, N1)

Ψ | r dim
Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ `M(r) : A〈r/i〉
Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ `M(ε) = Nε : A〈ε/i〉

Ψ | Γ `M : Eqi.A(N0, N1)
Ψ | Γ `M = λi.M(i) : Eqi.A(N0, N1)

Ψ, i | Γ `M : A
Ψ | Γ ` (λi.M)(r) = M〈r/i〉 : A〈r/i〉

Function extensionality

A benefit of the cubical formulation of equality types is that the principle of function
extensionality is trivially derivable in a computationally well-behaved way. Suppose that
f, g : (x : A)→ B and we have a family of equalities h : (x : A)→ Eq_.B(f(x), g(x)); then,
we obtain a proof that f equals g by abstraction and application:

λi.λx.h(x)(i) : Eq_.(x:A)→B(f, g)

In semantics of type theory, the structure of equality on a type usually mirrors the
structure of the elements of that type in a straightforward way: for instance, a function of
equations is used to equate two functions, and a pair of equations is used to equate two
pairs. The benefit of the cubical approach is that this observation, at first purely empirical,
is systematized by defining equality in every type in terms of the elements of that type in a
context extended by a dimension.

Judgmental unicity of equality: boundary separation

In keeping with our desire to provide convenient syntax for working with extensional equality,
we want proofs P,Q : Eqi.A(N0, N1) of the same equation to be judgmentally equal. Rather
than adding a rule to that effect, whose justification in the presence of the elimination rules
for equality types would be unclear, we instead impose a more primitive boundary separation
principle at the judgmental level: every term is completely determined by its boundary.3

Ψ | r dim
−−−−−−−−−−−−−−−−−−−⇀
Ψ, r = ε | Γ `M = N : A

Ψ | Γ `M = N : A

In this rule we have abbreviated Ψ, r = 0 | Γ `M = N : A and Ψ, r = 1 | Γ `M = N : A as
−−−−−−−−−−−−−−−−−−−⇀
Ψ, r = ε | Γ `M = N : A. We shall make use of this notation throughout the paper.

they earn the name “equality” rather than “path”.
3 We call this principle “boundary separation” because it turns out to be exactly the fact that the

collections of types and elements, when arranged into presheaves on the category of contexts, are
separated with respect to a certain coverage on this category. We develop this perspective in the
extended version of our paper [50].

FSCD 2019



31:8 Cubical Syntax for Reflection-Free Extensional Equality

We can now derive a rule that (judgmentally) equates all P,Q : Eqi.A(N0, N1).

Proof. If P,Q : Eqi.A(M,N), then to show that P = Q, it suffices to show that λi.P (i) =
λi.Q(i); by the congruence rule for equality abstraction, it suffices to show that P (i) = Q(i)
in the extended context. But by boundary separation, we may pivot on the boundary of i,
and it suffices to show that P (0) = Q(0) and P (1) = Q(1). But these are automatic, because
P and Q are both proofs of Eqi.A(N0, N1), and therefore P (ε) = Q(ε) = Nε. J

In an unpublished note from 2017, Thierry Coquand identifies a class of cubical sets
equivalent to our separated types, calling them “Bishop sets” [26].

2.1 Kan operations: coercion and composition
How does one use a proof of equality? We must have at least a coercion operation which,
given a proof Q : Eq_.Uk

(A,B), coherently transforms elements M : A to elements of B.

2.1.1 Generalized coercion
In XTT, coercion and its coherence are obtained as instances of one general operation: for
any two dimensions r, r′ and a line of types i.C, ifM is an element of C〈r/i〉, then [i.C]↓rr′M
is an element of C〈r′/i〉.

Ψ | r, r′ dim Ψ, i | Γ ` C typek Ψ | Γ `M : C〈r/i〉
Ψ | Γ ` [i.C] ↓rr′ M : C〈r′/i〉

In the case of a proof Q : Eq_.Uk
(A,B) of equality between types, we coerce M : A to the

type B using the instance [i.Q(i)] ↓01 M . But how does M relate to its coercion? Coherence
of coercion demands their equality, although such an equation must relate terms of (formally)
different types; this heterogeneous equality is stated in XTT using a dependent equality type
Eqi.Q(i)(M, [i.Q(i)] ↓01 M). To construct an element of this equality type, we use the same
coercion operator but with a different choice of r, r′; we construct this filler by coercing from
0 to a fresh dimension, obtaining λj.[i.Q(i)] ↓0j M : Eqi.Q(i)(M, [i.Q(i)] ↓01 M):

j.Q(j) 3 M
j.[i.Q(i)]↓0

jM [i.Q(i)] ↓01 M

To see that the filler [i.Q(i)] ↓0j M has the correct boundary with respect to j, we inspect
its instances under the substitutions 0/j, 1/j. First, we observe that the right-hand side
([i.Q(i)] ↓0j M)〈1/j〉 is exactly [i.Q(i)] ↓01 M ; second, we must see that ([i.Q(i)] ↓0j M)〈0/j〉 is
M , bringing us to an important equation that we must impose generally:

Ψ | Γ ` [i.C] ↓rr M = M : C〈r/i〉

How do coercions compute?

In order to ensure that proofs in XTT can be computed to a canonical form, we need to
explain generalized coercion in each type in terms of the elements of that type. To warm up,
we explain how coercion must compute in a non-dependent function type:

[i.A→ B] ↓rr′ M = λx.[i.B] ↓rr′
(
M([i.A] ↓r

′

r x)
)

That is, we abstract a variable x : A〈r′/i〉 and need to obtain an element of type B〈r′/i〉.
By reverse coercion, we obtain [i.A] ↓r′r x : A〈r/i〉; by applying M to this, we obtain an



J. Sterling, C. Angiuli, and D. Gratzer 31:9

element of type B〈r/i〉. Finally, we coerce from r to r′. The version for dependent function
types is not much harder, but requires a filler:

x̃ , λj.[i.A] ↓r
′

j x

[i.(x : A)→ B] ↓rr′ M = λx.[i.B[x̃(i)/x]] ↓rr′ M(x̃(r))

The case for dependent pair types is similar, but without the contravariance:

M̃0 , λj.[i.A] ↓rj fst(M)
[i.(x : A)×B] ↓rr′ M = 〈M̃0(r′), [i.B[M̃0(i)/x]] ↓rr′ snd(M)〉

Coercions for base types (like bool) are uniformly determined by regularity, a rule of XTT
stating that if A is a type which doesn’t vary in the dimension i, then [i.A] ↓rr′ M is just M .
Regularity makes type sense because A〈r/i〉 = A = A〈r′/i〉; semantically, it is more difficult
to justify in the presence of standard universes, and is not known to be compatible with
principles like univalence.4 But XTT is specifically designed to provide a theory of equality
rather than paths, so we do not expect or desire to justify univalence at this level.5

The only difficult case is to define coercion for equality types; at first, we might try to
define [i.Eqj.A(N0, N1)] ↓rr′ P as λj.[i.A] ↓rr′ P (j), but this does not make type-sense: we need
to see that

(
[i.A] ↓rr′ P (j)

)
〈ε/j〉 = Nε, but we only obtain

(
[i.A] ↓rr′ P (j)

)
〈ε/j〉 = [i.A] ↓rr′ Nε,

which is “off by” a coercion. Intuitively, we can solve this problem by specifying what values
a coercion takes under certain substitutions: in this case, N0 under 0/j, and N1 under 1/j.
We call the resulting operation generalized composition.

2.1.2 Generalized composition
For any dimensions r, r′, s and a line of types i.C, if M is an element of C〈r/i〉 and i.N0, i.N1
are lines of elements of C defined respectively on the subcubes (s = 0), (s = 1) such that
Nε〈r/i〉 = M , then [i.C] ↓rr′ M [s with 0 ↪→ i.N0 | 1 ↪→ i.N1] is an element of C〈r′/i〉. This
is called the composite of M with N0, N1 from r to r′, schematically abbreviated [i.C] ↓rr′M
[s with −−−−−−⇀ε ↪→ i.Nε]. As with coercion, when r = r′, we have [i.C]↓rr′M [s with −−−−−−⇀ε ↪→ i.Nε] = M ,
and moreover, if s = ε, we have [i.C] ↓rr′ M [s with −−−−−−⇀ε ↪→ i.Nε] = Nε〈r′/i〉.

Returning to coercion for equality types, we now have exactly what we need:

[i.Eqj.C(N0, N1)] ↓rr′ P = λj.([i.C] ↓rr′ P (j) [j with −−−−−−−⇀ε ↪→ _.Nε])

Next we must explain how the generalized composition operation computes at each
type; in previous works [11], we have seen that it is simpler to instead define generalized
composition in terms of a simpler homogeneous version, in which one composes in a type
C rather than a line of types i.C; we write C ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] for this homogeneous
composition, defining the generalized composition in terms of it as follows:

[i.C] ↓rr′ M [s with −−−−−−⇀ε ↪→ i.Nε] = C〈r′/i〉 ↓rr′ ([i.C] ↓rr′ M) [s with
−−−−−−−−−−−−⇀
ε ↪→ i.[i.C] ↓ir′ Nε]

4 Regularity is proved by Swan to be incompatible with univalent universes assuming that certain standard
techniques are used [53]; however, it is still possible that there is a different way to model univalent
universes with regularity. Awodey constructs a model of intensional type theory without universes in
regular Kan cubical sets [13], using the term normality for what we have called regularity.

5 Indeed, unicity of identity proofs is also incompatible with univalence. XTT is, however, compatible
with a formulation in which it is just one level of a two-level type theory, along the lines of Voevodsky’s
Homotopy Type System, in which the other level would have a univalent notion of path that coexists in
harmony with our notion of equality [56, 11].

FSCD 2019



31:10 Cubical Syntax for Reflection-Free Extensional Equality

Surprisingly, in XTT we do not need to build in any computation rules for homogeneous
composition, because they are completely determined by judgmental boundary separation.
For instance, we can derive a computation rule already for homogeneous composition in
the dependent function type, by observing that the equands have the same boundary with
respect to the dimension j:

(x : A)→ B ↓rr′ M [j with −−−−−−⇀ε ↪→ i.Nε] = λx.B ↓rr′ M(x) [j with −−−−−−⇀ε ↪→ i.Nε]

From homogeneous composition, we obtain symmetry and transitivity for the equality
types. Given P : Eq

.A(M,N), we obtain an element of type Eq_.A(N,M) as follows:

λi.A ↓01 P (0) [i with 0 ↪→ j.P (j) | 1 ↪→ _.P (0)]

Furthermore, given Q : Eq_.A(N,O), we obtain an element of type Eq_.A(M,O) as follows:

λi.A ↓01 P (i) [i with 0 ↪→ _.P (0) | 1 ↪→ j.Q(j)]

I Example 2.1 (Identity type). It is possible to define Martin-Löf’s identity type and its
eliminator, albeit with a much stronger computation rule than is customary.

IdA(M,N) , Eq_.A(M,N) reflA(M) , λ_.M

P̃ , λj.(A ↓0j P (0) [i with 0 ↪→ _.P (0) | 1 ↪→ k.P (k)])
Jx,y,p.C(x,y,p)(P ;x.Q(x)) , [i.C(P (0), P (i), P̃ )] ↓01 Q(P (0))

This particular definition of J relies on XTT’s boundary separation rule, but one could
instead define it in a more complicated way without boundary separation. However, that this
construction of the identity type models the computation rule relies crucially on regularity,
which does not hold in other cubical type theories whose path types validate univalence. In
the absence of regularity, one can define an operator with the same type as J but which
satisfies its computation rule only up to a path.

2.2 Closed universes and type-case
In Section 2.1.1, we showed how to calculate coercions [i.C] ↓rr′ M in each type former C. In
previous cubical type theories [24, 11], one could “uncover” all the things that a coercion
must be equal to by reducing according to the rules which inspect the interior of the type
line i.C. While this strategy can be used to establish canonicity for closed terms, it fails to
uncover certain reductions for open terms, a prerequisite for algorithmic type checking.

Specifically, given a variable q : Eq_.Uk
(A0 → B0, A1 → B1), the coercion [i.q(i)] ↓rr′ M is

not necessarily stuck, unlike in other cubical type theories. Suppose that we can find further
proofs QA : Eq_.Uk

(A0, A1) and QB : Eq_.Uk
(B0, B1); in this case, λi.QA(i)→ QB(i) is also

a proof of Eq_.Uk
(A0 → B0, A1 → B1), so by boundary separation it must be equal to q,

and therefore [i.q(i)] ↓rr′ M must be equal to [i.QA(i)→ QB(i)] ↓rr′ M . But the type-directed
reduction rule for coercion applies only to the latter! Generally, to see how to reduce the
first coercion, it seems that we need to be able to “dream up” proofs QA, QB out of thin air,
or determine that they can’t exist, an impossible task.

In XTT, we cut this Gordian knot by ensuring that QA, QB always exist, following the
approach employed in OTT. To invert the equation q into QA and QB , we add an intensional
type-case operator to XTT, committing to a closed and inductive notion of universe by
allowing pattern-matching on types [46]. It is also possible to extend XTT with open and/or
univalent universes which themselves lack boundary separation, as in two-level type theories.



J. Sterling, C. Angiuli, and D. Gratzer 31:11

For illustrative purposes, consider coercion along an equality between dependent function
types. Given q : Eq_.Uk

((x : A0)→ B0, (x : A1)→ B1), we define by type-case the following:

QA , λi.tycase q(i) [ΠAB 7→ A | _ 7→ bool] : Eq_.Uk
(A0, A1)

QB , λi.tycase q(i) [ΠAB 7→ B | _ 7→ λ_.bool] : Eqi.QA(i)→Uk
(λx.B0, λx.B1)

Because of q’s boundary, we are concerned only with the Π branch of the above expressions,
and are free to emit a “dummy” answer in other branches. With QA, QB in hand, we note
that q(i) = (x : QA(i)) → QB(i)(x) using boundary separation; therefore, we are free to
calculate [i.q(i)] ↓rr′ M as follows:

x̃ , λj.[i.QA(i)] ↓r
′

j x

[i.q(i)] ↓rr′ M = λx.[i.QB(i)(x̃(i))] ↓rr′ M(x̃(r))

This lazy style of computing with proofs of equality means, in particular, that coercing
along an equation cannot tell the difference between a postulated axiom and a canonical
proof of equality, making XTT compatible with extension by consistent equational axioms.
I Remark 2.2. One might wonder whether it is possible to tame the use of type-case above
to something compatible with a parametric understanding of types, in which (as in OTT)
one cannot branch on whether or not C is a function type or a pair type, etc. It is likely
that this can be done, but we stress that the fundamental difficulty is not resolved: whether
or not we allow general type-case, we have not escaped the need for type constructors to
be disjoint and injective, which contradicts the role of universes in mathematics as (weak)
classifiers of small families. Future work on XTT and its successors must focus on resolving
this issue, quite apart from any considerations of parametricity.

2.3 Future extensions
Universe of propositions

XTT currently lacks one of the hallmarks of OTT, an extensional universe of proof-irrelevant
propositions. In future work, we intend to extend XTT with a reflective subuniverse Ω of
propositions closed under equality and universal and existential quantification over arbitrary
types, satisfying:

Proof irrelevance. For each proposition Ψ | Γ ` p : Ω, we have Ψ | Γ `M = N : p for all
Ψ | Γ `M,N : p.
Extensionality (univalence). For all Ψ | Γ ` p, q : Ω, we have an element of Eq_.Ω(p, q)
whenever there are functions p→ q and q → p.

The reflection of the propositional subuniverse will take a type Ψ | Γ ` A typek to
a proof-irrelevant proposition Ψ | Γ ` ‖A‖ : Ω, acting as a strict truncation or squash
type [25, 47, 14]. The addition of Ω will allow XTT to be used as a syntax for topos-theoretic
constructions, with Ω playing the role of the subobject classifier.

(Indexed) Quotient Inductive Types

Another natural extension of XTT is the addition of quotient types; already considered as
an extension to OTT by the Epigram Team [18] and more recently by Atkey [12], quotient
types are essential when using type theory for either programming or mathematics. One of
the ideas of Homotopy Type Theory and cubical type theories in particular is to reconstruct
the notion of quotienting by an equivalence relation as a special case of higher inductive

FSCD 2019



31:12 Cubical Syntax for Reflection-Free Extensional Equality

type (HITs), a generalization of ordinary inductive types which allows constructors to target
higher dimensions with a specified partial boundary. When working purely at the level of
sets, as in XTT, these higher inductive types are called quotient inductive types (QITs) [5].

We intend to adapt the work of Cavallo and Harper [22] to a general schema for indexed
quotient inductive types as an extension of XTT. The resulting system would support ordinary
quotients by equivalence relations en passant, and when these equivalence relations are
valued in Ω, one can show that they are effective. Quotient inductive types also enable the
construction of free algebras for infinitary algebraic theories, usually obtained in classical set
theory from the non-constructive axiom of choice [17, 39]. Another application of quotient
inductive types is the definition of a localization functor with respect to a class of maps,
enabling users of the extended XTT to work internally with sheaf subtoposes.

The extension of XTT with quotient inductive types means that we must account for
formal homogeneous composites in QITs which are canonical forms [22, 28]. Ordinarily,
this introduces a severe complicating factor to a canonicity proof, because the notion of
canonical form ceases to be stable under all dimension substitutions [11, 34], but we expect
the proof-relevant cubical logical families technique that we introduce in Section 3 to scale
directly to the case of quotient inductive types without significant change, in contrast with
classical approaches based on partial equivalence relations.

3 Algebraic model theory and canonicity

We have been careful to formulate the XTT language in a (generalized) algebraic way,
obtaining automatically a category of algebras and homomorphisms which is equipped with
an initial object [19, 20, 36]. That this initial object is isomorphic to the model of XTT
obtained by constraining and quotienting its raw syntax under judgmental equality (i.e. the
Lindenbaum–Tarski algebra) is an instance of Voevodsky’s famous Initiality Conjecture [57],
and we do not attempt to prove it here; we merely observe that this result has been established
for several simpler type theories [51, 21].

Working within the category of XTT-algebras enables us to formulate and prove results
like canonicity and normalization for the initial XTT-algebra in an economical manner,
avoiding the usual bureaucratic overhead of reduction relations and partial equivalence
relations, which were the state of the art for type-theoretic metatheory prior to the work of
Shulman [48], Altenkirch and Kaposi [4], and Coquand [27].

Because our algebraic techniques involve defining families over only well-typed terms
already quotiented by judgmental equality, we avoid many of the technical difficulties arising
from working with the raw terms of cubical type theories, including the closure under
“coherent expansion” which is critical to earlier cubical metatheories [11, 34]. Our abstract
gluing-based approach therefore represents a methodological advance in metatheory for
cubical type theories.

I Theorem 3.1 (Canonicity). In the initial XTT-algebra, if · | · ` M : bool, then either
· | · `M = true : bool or · | · `M = false : bool.

Following previous work [49], we employ for our semantics a variant of categories with
families (cwf) [29] which supports a predicative hierarchy of universes à la Russell. A cwf in
our sense begins with a category of contexts C, and a presheaf of types TyC : Ĉ × L; here L is
the category of universe levels, with objects the natural numbers and unique arrows l )k



J. Sterling, C. Angiuli, and D. Gratzer 31:13

if and only if k ≤ l.6 The fiber of the presheaf of types TyC : Ĉ × L at (Γ, k) is written
TykC(Γ), and contains the types in context Γ of universe level k. Reindexing implements
simultaneous substitution γ∗A and universe level shifting ⇑lkA. In our metatheory, we assume
the Grothendieck Universe Axiom, and consequently obtain a transfinite ordinal-indexed
hierarchy of meta-level universes Vk. We impose the requirement that each collection of
types TykC(Γ) is k-small, i.e. TykC(Γ) ∈ Vk.

Next, we require a dependent presheaf of elements ElC :
∫̂

TyC , whose fibers ElC((Γ, k), A)
we write ElC(Γ ` A); to interpret the actions of level lifting on terms properly, we require the
functorial actions ElC(Γ ` A) )ElC(Γ ` ⇑lkA) to be identities, strictly equating the fibers
ElC(Γ ` A) and ElC(Γ ` ⇑lkA). The remaining data of a basic cwf is a context comprehension,
which for every context Γ and type A ∈ TykC(Γ) determines an extended context Γ.A with a
weakening substitution Γ.A p

)Γ and a variable term q ∈ ElC(Γ.A ` p∗A).
Next, we specify what further structure is required to make such a cwf into an XTT-

algebra. To represent contexts Ψ semantically, we use the augmented Cartesian cube category
�+, which adjoins to the Cartesian cube category � an initial object; from this, we obtain
equalizers 0 = 1 in addition to the equalizers i = r which exist in �. We then require a split
fibration C u

. �+ with a terminal object, which implements the dependency of contexts Γ
on cubes Ψ and forces appropriate dimension restrictions to exist for contexts, types and
elements. The split fibration induces all the structure necessary to implement dimension
operations; we refer the reader to the extended version of our paper [50] for details. In the
following discussion, we limit ourselves to a few simpler consequences. First, we can apply
dimension substitutions in terms and types, writing ψ‡ΓA to apply ψ in a type A in context
Γ. We can also apply dimension substitutions to contexts, written ψ∗Γ. We write ı̂ for the
dimension substitution which weakens by a dimension variable i. Finally, we write DimC(Γ)
for the set of valid dimensions expressions generated from u(Γ).

I Requirement (Boundary separation in models). In order to enforce boundary separation in
XTT-algebras we require that types and elements over them satisfy a separation property.
In the extended version of our paper [50] we phrase the full condition as a separation
requirement with respect to a particular Grothendieck topology on the category of contexts.
A specific consequence is the familiar boundary separation principle for types: given two
types A,B ∈ TyC(Γ) and a dimension i ∈ u(Γ), if (ε/i)‡A = (ε/i)‡B for each ε ∈ {0, 1} then
A = B.

I Requirement (Coercion in models). An XTT-algebra must also come with a coercion
structure, specifying how generalized coercion is interpreted in each type. For every type
A ∈ TynC (̂ı∗Γ) over Ψ, i, dimensions r, r′ ∈ DimC(Γ), and element M ∈ ElC(Γ ` (r/i)‡ı̂∗ΓA),
we require an element coer r′i.A M ∈ ElC(Γ ` (r′/i)‡ı̂∗ΓA) with the following properties (in
addition to naturality requirements):

Adjacency. If r = r′ then coer r′i.A M = M .
Regularity. If A = ı̂‡ΓA

′ for some A′ ∈ TynC(Γ), then coer r′i.A M = M .
Additional equations in later requirements specify that generalized coercion computes properly
in each connective. Similarly, a model must be equipped with a composition structure which
specifies the interpretation of the composition operator.

Finally, we specify algebraically the data with which such a cwf must be equipped in
order to model all the connectives of XTT (again, details are contained in the extended

6 Observe that L = ωop; reversing arrows allows us to move types from smaller universes to larger ones.

FSCD 2019



31:14 Cubical Syntax for Reflection-Free Extensional Equality

version of our paper [50]); to distinguish the abstract (De Bruijn) syntax of the cwf from the
raw syntax of XTT we use boldface, writing Π(A,B), papp(i.A,M, r) and Uk to correspond
to (x : A) → B, appi.A(M, r) and Uk respectively, etc. We take a moment to specify how
some of the primitives of XTT are translated into requirements on a model.

I Requirement (Dependent equality types in models). An XTT-algebra must model dependent
equality types, which is to say that the following structure is exhibited:

Formation. For each type A ∈ TynC (̂ı∗Γ) and elements
−−−−−−−−−−−−−−−−⇀
Nε ∈ ElC(Γ ` (ε/i)‡A), a type

Eq(i.A,N0, N1) ∈ TynC(Γ).
Introduction. For each M ∈ ElC (̂ı∗Γ ` A), an element plam(i.A,M) ∈ ElC(Γ `
Eq(i.A, (0/i)‡M, (1/i)‡M)).
Elimination. For each M ∈ ElC(Γ ` Eq(i.A,N0, N1)) and r ∈ DimC(Γ), an element
papp(i.A,M, r) ∈ ElC(Γ ` (r/i)‡A) satisfying the equations

−−−−−−−−−−−−−−−−⇀
papp(i.A,M, ε) = Nε.

Computation. For M ∈ ElC (̂ı∗Γ ` A) and r ∈ DimC(Γ), the equation:

papp(i.A,plam(i.A, i.M), r) = (r/i)‡M

Unicity. For M ∈ ElC(Γ ` Eq(i.A,N0, N1)), M = plam(i.A, j.papp(i.̂‡A, ̂‡M, j)).
Level restriction. The following equations:

⇑lkEq(i.A,N0, N1) = Eq(i.⇑lkA,N0, N1) plam(i.⇑lkA,M)r = plam(i.A,M)r

papp(i.⇑lkA,M, r) = papp(i.A,M, r)

Naturality. For ∆ γ
)Γ, the following naturality equations:

γ∗Eq(i.A,N0, N1) = Eq(i.(̂ı+γ)∗A, γ∗N0, γ
∗N1)

γ∗plam(i.A, i.M) = plam(i.(̂ı+γ)∗A, i.(̂ı+γ)∗M)

γ∗papp(i.A,M, r) = papp(i.(̂ı+γ)∗A, γ∗M,γ∗r)

Coercion. When Γ u
. Ψ, j and M ∈ ElC((r/j)∗Γ ` (r/j)‡Eq(i.A,N0, N1)) where

Ψ | r, r′ dim, we require that coer r′j.Eq(i.A,N0,N1)M equals the following abstraction:

plam(i.(r′/j)‡A, i.comr r′
j.A papp(i.(r/j)‡A, ı̂‡M, i) [i with

−−−−−−−⇀
ε ↪→ j.̂‡Nε])

Any model of extensional type theory can be used to construct a model of XTT, so long
as it is equipped with a cumulative, inductively defined hierarchy of universes closed under
dependent function types, dependent pair types, extensional equality types and booleans.
(Meaning explanations in the style of Martin-Löf [43] are one such model.) The interpretation
of XTT into extensional models involves erasing dimensions, coercions, and compositions; the
only subtlety, easily managed, is to ensure that all judgments under absurd constraints hold.

3.1 The cubical logical families construction
Any XTT-algebra C extends to a category C? of proof-relevant logical predicates, which we
call logical families by analogy. The proof-relevant character of the construction enables a
simpler proof of canonicity than is obtained with proof-irrelevant techniques, such as partial
equivalence relations. Logical families are a type-theoretic version of the categorical gluing
construction, in which a very rich semantic category (such as sets) is cut down to include



J. Sterling, C. Angiuli, and D. Gratzer 31:15

just the morphisms which track definable morphisms in C;7 one then uses the rich structure
of the semantic category to obtain metatheoretic results about syntax (choosing C to be the
initial model) without considering raw terms at any point in the process.

Usually, to prove canonicity one glues the initial model C together with Set along the
global sections functor; this equips each context Γ with a family of sets Γ• indexed in the
closing substitutions for Γ. In order to prove canonicity for a cubical language like XTT,
we will need a more sophisticated version of this construction, in which the global sections
functor is replaced with something that determines substitutions which are closed with
respect to term variables, but open with respect to dimension variables.

The split fibration C u
. �+ induces a functor �+

〈−〉
)C which takes every cube Ψ to the

empty variable context over Ψ. This functor in turn induces a nerve construction C L−M
) �̂+,

taking Γ to the cubical set C(〈−〉,Γ).8 Intuitively, this is the presheaf of substitutions which
are closed with respect to term variables, but open with respect to dimension variables; when
wearing �̂+-tinted glasses, these appear to be the closed substitutions.

This nerve construction extends to the presheaves of types and elements; we define the
fiber of LTykM : �̂+ at Ψ to be the set TykC(〈Ψ〉); likewise, we define the fiber of LElkM :

∫̂
LTykM

at (Ψ, A) to be the set ElC(〈Ψ〉 ` A). Internally to �̂+, we regard LElkM as a dependent type
over LTykM. We will then (abusively) write LAM for the fiber of LElkM determined by A : LTykM.

Category of cubical logical families

Gluing C together with �̂+ along L−M gives us a category of cubical logical families C? whose
objects are pairs Γ = (Γ,Γ•), with Γ : C and Γ• a dependent cubical set over the cubical set
LΓM. In other words, Γ• is a “Kripke logical family” on the substitutions 〈Ψ〉 )Γ which
commutes with dimension substitutions Ψ′ )Ψ. A morphism ∆ )Γ is a substitution
∆ γ

)Γ together with a proof that γ preserves the logical family: that is, a closed element
γ• of the type

∏
δ:L∆M ∆•(δ)→ Γ•(γ∗δ) in the internal type theory of �̂+. We write γ for the

pair (γ, γ•). We have a fibration C? πsyn
. C which merely projects Γ from Γ = (Γ,Γ•).

Glued type structure

Recall from Section 2.2 that we must model closed universes. Therefore, the standard presheaf
universes which lift Vk to (weakly) classify all k-small presheaves are insufficient in our case;
instead, we must equip each type with a code so that type-case is definable. Accordingly, we
define for each n ∈ N an inductive cubical set U•nA : Vn+1 indexed over A : LTynM; internally
to �̂+, the cubical set U•nA is the collection of realizers for the C-type A. An imprecise but
helpful analogy is to think of a realizer A : U•nA as something like a whnf of A, with the
caveat that A is an element of this inductively defined set, not a C-type. Simultaneously, for
each A : U•nA, we define a cubical family A◦ : LAM → Vn of realizers of elements of A, with
each A◦ being the logical family of the C-type A; finally, we also define realizers for coercion
and composition by recursion on the realizers for types.9 A fragment of this definition is

7 The gluing construction is similar to realizability; the main difference is that in gluing, one considers
collections of “realizers” which are not all drawn from a single computational domain.

8 This construction is also called the relative hom functor by Fiore [30]; its use in logic originates in the
study of definability for λ-calculus, characterizing the domains of discourse for Kripke logical predicates
of varying arity [35]. We learned the connection to the abstract nerve construction in conversations
with M. Fiore about his unpublished joint work with S. Awodey.

9 It is important to note that we do not use large induction-recursion in �̂+ (to our knowledge, the
construction of inductive-recursive definitions has not yet been lifted to presheaf toposes); instead, we

FSCD 2019



31:16 Cubical Syntax for Reflection-Free Extensional Equality

(j < n)
univj : U•nUj bool : U•nbool

A : U•nA B :
∏
M :LAM A◦M → U•n(〈id,M〉∗B)

pi(A; B) : U•nΠ(A,B) sg(A; B) : U•nΣ(A,B)
A :
∏
i:I U

•
nAi

−−−−−−−−−⇀
N•ε : A(ε)◦Nε

eq(A;N•0 , N•1 ) : U•nEq(i.Ai, N0, N1)

univ◦nA = U•nA

bool◦M = (M = true) + (M = false)
pi(A; B)◦M =

∏
N :LAM

∏
N•:A•N (BNN•)◦app(A,B,M,N)

sg(A; B)◦M =
∑
M•0 :A◦fst(A,B,M)(B(fst(A,B,M))M•0 )◦snd(A,B,M)

eq(A;N•0 , N•1 )◦M =
{
M• :

∏
i:I A(i)◦papp(i.A,M, i) |

−−−−−−−−−⇀
M•(ε) = N•ε

}

[i.bool] ↓r
r′ M

• = M•

[i.pi(A; B)] ↓r
r′ M

• = λN•. [i.B([i.A] ↓r′
i N•)] ↓r

r′ M
•([i.A] ↓r′

r N•
)

[i.eq(A;N•0 , N•1 )] ↓r
r′ M

• = λk. [i.Ak] ↓r
r′ M

•k [k with
−−−−−−−⇀
ε ↪→ _.N•ε ]

pi(A; B) ↓r
r′ M

• [s with
−−−−−−−⇀
ε ↪→ i.M ′•i] = λN•. BN• ↓r

r′ M
•N• [s with

−−−−−−−−−−−−⇀
ε ↪→ i.M ′•iNN•]

eq(A;N•0 , N•1 ) ↓r
r′ M

• [s with
−−−−−−−⇀
ε ↪→ i.M ′•i] = λj. Aj ↓r

r′ M
•j [s with

−−−−−−−−⇀
ε ↪→ i.M ′•ij]

...

Figure 2 The inductive definition of realizers U•nA : Vn+1 for types A : LTynM in �̂+; we also
include a fragment of the realizers for Kan operations, which are also defined by recursion on the
realizers for types. We write I for the representable presheaf y(i).

summarized in Figure 2. In the definition of A◦ we freely make use of the internal type theory
of �̂+. This not only exposes the underlying logical relations flavor of these definitions but
simplifies a number of proofs (see the extended version of our paper [50]).

From all this, we can define the cwf structure on C?. We obtain a presheaf of types
TyC? : Ĉ? × L by taking TykC?(Γ) to be the set of pairs A = (A,A•) where A ∈ TykC(Γ)
and A• is an element of the type

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗A) in the internal type theory

of �̂+. To define the dependent presheaf of elements, we take ElC?(Γ ` A) to be the
set of pairs M = (M,M•) where M ∈ ElC(Γ ` A) and M• is an element of the type∏
γ:LΓM

∏
γ•:Γ•(γ)(A•γγ•)

◦(γ∗M) in the internal type theory of �̂+. In this model, the context
comprehension operation Γ.A is defined as the pair (Γ.A, (Γ.A)•) where (Γ.A)•〈γ,M〉 is
the cubical set

∑
γ•:Γ•(γ)(A•γγ•)

◦(γ∗M); it is easy to see that we obtain realizers for the
weakening substitution and the variable term.

I Construction 3.2 (Dependent equality types in C?). Recall that we required a model of

model n object universes using the meta-universe Vn+1. This is an instance of small induction-recursion,
which can be translated into indexed inductive definitions which exist in every presheaf topos [31, 45].



J. Sterling, C. Angiuli, and D. Gratzer 31:17

XTT to have sufficient structure to interpret dependent equality types. Here, we discuss how
to obtain the formation rule; the full construction can be found in the extended version of our
paper [50]. Suppose A ∈ TynC? (̂ı∗Γ) and elements N0 and N1 with Nε ∈ ElC?(Γ ` (ε/i)‡A).
We wish to construct a type in TynC? (̂ı∗Γ).

In C?, such a type is a pair of a type E ∈ TynC (̂ı∗Γ) from C with an element witnessing the
logical family

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗E). We will set the first component to the dependent

equality type from C itself, namely E = Eq(i.A,N0, N1). For the second component, we
wish to construct an element of

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗Eq(i.A,N0, N1)). Inspecting the rules

for U•k from Figure 2, there is only one choice: E• = λγ.λγ•.eq(A•γγ•;N•0 γγ•, N•1 γγ•).

I Construction 3.3 (Coercion in C?). The coercion structure on C? is constructed from the
coercion structures on C and the coercion operator for codes from Figure 2.

Given a type A ∈ TynΓ(̂ı∗Γ) over Ψ, i, dimensions r, r′ ∈ DimC(Γ), and an element
M ∈ ElC(Γ ` (r/i)‡

ı̂∗Γ
A), we must construct an element of ElC(Γ ` (r′/i)‡

ı̂∗Γ
A). This element

must be a pair of N ∈ ElC(Γ ` (r′/i)‡ı̂∗ΓA) and a term N• :
∏
γ:LΓM

∏
γ•:Γ•(γ)(A•γγ•)

◦(γ∗N).
For the former, we rely on the coercion structure for C and pick N = coer r′i.A M . For
the latter, we use the coercion operation on codes defined in Figure 2 and choose N• =
λγ.λγ•.[i.A•γγ•] ↓rr′ M•γγ•.

It is routine to check that this coercion structure enjoys adjacency, regularity, and
naturality once the corresponding properties are checked for the coercion operator on codes.

I Theorem 3.4. C? is an XTT-algebra, and moreover, C? πsyn
. C is a homomorphism of

XTT-algebras.

3.2 Canonicity theorem
Because C? is an XTT-algebra, we are now equipped to prove a canonicity theorem for the
initial XTT-algebra C: if M is an element of type bool in the empty context, then either
M = true or M = false, and not both.

Proof. We have M ∈ ElC(· ` bool), and therefore JMK ∈ ElC?(· ` bool). From this we
obtain N : ElC(· ` bool) where N = πsynJMK, and N• ∈ bool◦· (N); by definition, N• is
either a proof that N = true or a proof that N = false (see Figure 2). Therefore, it suffices
to observe that πsynJMK = M ; but this follows from the universal property of the initial
XTT-algebra and the fact that C? πsyn

. C is an XTT-homomorphism. Moreover, because the
interpretation of bool in C? is disjoint, M cannot equal both true and false. J

References
1 Andreas Abel, Thierry Coquand, and Peter Dybjer. On the Algebraic Foundation of Proof

Assistants for Intuitionistic Type Theory. In Jacques Garrigue and Manuel V. Hermenegildo,
editors, Functional and Logic Programming, pages 3–13. Springer Berlin Heidelberg, 2008.

2 Stuart Frazier Allen. A non-type-theoretic semantics for type-theoretic language. phdthesis,
Cornell University, 1987.

3 Thorsten Altenkirch. Extensional equality in intensional type theory. In Proceedings. 14th
Symposium on Logic in Computer Science (Cat. No. PR00158), pages 412–420, July 1999.
doi:10.1109/LICS.1999.782636.

4 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Dependent Types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings

FSCD 2019

http://dx.doi.org/10.1109/LICS.1999.782636


31:18 Cubical Syntax for Reflection-Free Extensional Equality

in Informatics (LIPIcs), pages 6:1–6:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.FSCD.2016.6.

5 Thorsten Altenkirch and Ambrus Kaposi. Type Theory in Type Theory Using Quotient
Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

6 Thorsten Altenkirch and Conor McBride. Towards Observational Type Theory, 2006. URL:
www.strictlypositive.org/ott.pdf.

7 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational Equality, Now!
In Proceedings of the 2007 Workshop on Programming Languages Meets Program Verification,
PLPV ’07, pages 57–68. ACM, 2007.

8 Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert
Harper, and Daniel R. Licata. Syntax and Models of Cartesian Cubical Type Theory, February
2019. Preprint. URL: https://github.com/dlicata335/cart-cube.

9 Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, Anders Mörtberg,
and Jonathan Sterling. redtt: implementing Cartesian cubical type theory. Dagstuhl Seminar
18341: Formalization of Mathematics in Type Theory. URL: http://www.jonmsterling.com/
pdfs/dagstuhl.pdf.

10 Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, and Jonathan Sterling.
The RedPRL Proof Assistant (Invited Paper). In Proceedings of the 13th International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018,
Oxford, UK, 7th July 2018., pages 1–10, 2018. doi:10.4204/EPTCS.274.1.

11 Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian Cubical Compu-
tational Type Theory: Constructive Reasoning with Paths and Equalities. In Dan Ghica
and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic (CSL
2018), volume 119 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:17.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.6.

12 Robert Atkey. Simplified Observational Type Theory, 2018. URL: https://github.com/
bobatkey/sott.

13 Steve Awodey. A cubical model of homotopy type theory. Annals of Pure and Applied Logic,
169(12):1270–1294, 2018. Logic Colloquium 2015. doi:10.1016/j.apal.2018.08.002.

14 Steven Awodey and Andrej Bauer. Propositions As [Types]. J. Log. and Comput., 14(4):447–
471, August 2004. doi:10.1093/logcom/14.4.447.

15 Andrej Bauer, Gaëtan Gilbert, Philipp Haselwarter, Matija Pretnar, and Christopher A.
Stone. Design and Implementation of the Andromeda proof assistant, 2016. TYPES. URL:
http://www.types2016.uns.ac.rs/images/abstracts/bauer2.pdf.

16 Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
17 Andreas Blass. Words, free algebras, and coequalizers. Fundamenta Mathematicae, 117(2):117–

160, 1983. URL: http://eudml.org/doc/211359.
18 Edwin Brady, James Chapman, Pierre-Évariste Dagand, Adam Gundry, Conor McBride, Peter

Morris, Ulf Norell, and Nicolas Oury. An Epigram Implementation, February 2011.
19 John Cartmell. Generalised Algebraic Theories and Contextual Categories. phdthesis, Oxford

University, January 1978.
20 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and

Applied Logic, 32:209–243, 1986.
21 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability of Equality in the

Free Locally Cartesian Closed Category (Extended version). Logical Methods in Computer
Science, 13(4), 2017.

22 Evan Cavallo and Robert Harper. Higher Inductive Types in Cubical Computational Type
Theory. Proc. ACM Program. Lang., 3(POPL):1:1–1:27, January 2019. doi:10.1145/3290314.

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.6
http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1145/2837614.2837638
www.strictlypositive.org/ott.pdf
https://github.com/dlicata335/cart-cube
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
http://dx.doi.org/10.4204/EPTCS.274.1
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.6
https://github.com/bobatkey/sott
https://github.com/bobatkey/sott
http://dx.doi.org/10.1016/j.apal.2018.08.002
http://dx.doi.org/10.1093/logcom/14.4.447
http://www.types2016.uns.ac.rs/images/abstracts/bauer2.pdf
http://eudml.org/doc/211359
http://dx.doi.org/10.1145/3290314


J. Sterling, C. Angiuli, and D. Gratzer 31:19

23 James Chapman, Fredrik Nordvall Forsberg, and Conor McBride. The Box of Delights (Cubical
Observational Type Theory), January 2018. Unpublished note. URL: https://github.com/
msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf.

24 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
a constructive interpretation of the univalence axiom. IfCoLog Journal of Logics and their
Applications, 4(10):3127–3169, November 2017. URL: http://www.collegepublications.co.
uk/journals/ifcolog/?00019.

25 R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Inc.,
1986.

26 Thierry Coquand. Universe of Bishop sets, February 2017. URL: http://www.cse.chalmers.
se/~coquand/bishop.pdf.

27 Thierry Coquand. Canonicity and normalization for Dependent Type Theory, October 2018.
arXiv:1810.09367.

28 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in Cubical
Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 255–264. ACM, 2018. doi:10.1145/3209108.3209197.

29 Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for
Proofs and Programs: International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995
Selected Papers, pages 120–134. Springer Berlin Heidelberg, 1996.

30 Marcelo Fiore. Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus.
In Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, PPDP ’02, pages 26–37. ACM, 2002. doi:10.1145/571157.
571161.

31 Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten Altenkirch. Small
Induction Recursion. In Masahito Hasegawa, editor, Typed Lambda Calculi and Applications:
11th International Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013.
Proceedings, pages 156–172. Springer Berlin Heidelberg, 2013.

32 Martin Hofmann. Extensional concepts in intensional type theory. phdthesis, University of
Edinburgh, January 1995.

33 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,
pages 83–111. Oxford Univ. Press, 1998.

34 Simon Huber. Canonicity for Cubical Type Theory. Journal of Automated Reasoning, June
2018. doi:10.1007/s10817-018-9469-1.

35 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Marc Bezem
and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, pages 245–257. Springer
Berlin Heidelberg, 1993.

36 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing Quotient Inductive-
inductive Types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

37 Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations
(after Voevodsky), June 2016. Preprint. arXiv:1211.2851.

38 Alexei Kopylov. Type Theoretical Foundations for Data Structures, Classes and Objects.
phdthesis, Cornell University, 2004.

39 Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types, 2017.
arXiv:1705.07088.

40 Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.
41 Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C.

Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 73–118. Elsevier, 1975. doi:10.1016/S0049-237X(08)71945-1.

FSCD 2019

https://github.com/msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf
https://github.com/msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.cse.chalmers.se/~coquand/bishop.pdf
http://www.cse.chalmers.se/~coquand/bishop.pdf
http://arxiv.org/abs/1810.09367
http://dx.doi.org/10.1145/3209108.3209197
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1007/s10817-018-9469-1
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/3290315
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1705.07088
http://dx.doi.org/10.1016/S0049-237X(08)71945-1


31:20 Cubical Syntax for Reflection-Free Extensional Equality

42 Per Martin-Löf. Constructive Mathematics and Computer Programming. In 6th International
Congress for Logic, Methodology and Philosophy of Science, pages 153–175, August 1979.
Published by North Holland, Amsterdam. 1982.

43 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

44 Conor McBride. Dependently typed functional programs and their proofs. phdthesis, University
of Edinburgh, 1999.

45 Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals of Pure and Applied
Logic, 104(1):189–218, 2000.

46 Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in Martin-Löf’s Type
Theory, volume 7 of International Series of Monographs on Computer Science. Oxford
University Press, 1990.

47 Frank Pfenning. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory.
In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, LICS
’01, pages 221–. IEEE Computer Society, 2001. URL: http://dl.acm.org/citation.cfm?id=
871816.871845.

48 Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25(5):1203–1277, 2015. doi:10.1017/S0960129514000565.

49 Jonathan Sterling. Algebraic Type Theory and Universe Hierarchies, December 2018. arXiv:
1902.08848.

50 Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free
Extensional Equality, 2019. Extended version. arXiv:1904.08562.

51 Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and Independence
Results. Birkhauser Boston Inc., 1991.

52 Thomas Streicher. Investigations Into Intensional Type Theory. Habilitationsschrift, Univer-
sität München, 1994.

53 Andrew Swan. Separating Path and Identity Types in Presheaf Models of Univalent Type
Theory, 2018. arXiv:https://arxiv.org/abs/1808.00920.

54 Paul Taylor. Practical Foundations of Mathematics. Cambridge studies in advanced mathe-
matics. Cambridge University Press, 1999.

55 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, 2013.

56 Vladimir Voevodsky. A simple type system with two identity types, February 2013.
Talk at Andre Joyal’s 70th birthday conference. (Slides available at https://www.math.
ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf). URL: https:
//www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf.

57 Vladimir Voevodsky. Mathematical theory of type theories and the initiality conjecture, April
2016. Research proposal to the Templeton Foundation for 2016-2019, project description. URL:
http://www.math.ias.edu/Voevodsky/other/Voevodsky%20Templeton%20proposal.pdf.

A The rules of XTT

In the following sections, we summarize the rules of XTT; we systematically omit obvious
premises to equational rules and all congruence rules for judgmental equality, because these
can be mechanically obtained from the typing rules. We will write J= schematically to refer
to an equality judgment Ψ | Γ ` A = B typek or Ψ | Γ `M = N : A.

cube/emp

· cube+

cube/snoc/dim
Ψ cube+

Ψ, i cube+

cube/snoc/constr
Ψ cube+
Ψ | r, r′ dim

Ψ, r = r′ cube+

ctx/emp

Ψ | · ctx

ctx/snoc
Ψ | Γ ctx
Ψ | Γ ` A typek
Ψ | Γ, x : A ctx

http://dl.acm.org/citation.cfm?id=871816.871845
http://dl.acm.org/citation.cfm?id=871816.871845
http://dx.doi.org/10.1017/S0960129514000565
http://arxiv.org/abs/1902.08848
http://arxiv.org/abs/1902.08848
http://arxiv.org/abs/1904.08562
http://arxiv.org/abs/https://arxiv.org/abs/1808.00920
https://homotopytypetheory.org/book
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
http://www.math.ias.edu/Voevodsky/other/Voevodsky%20Templeton%20proposal.pdf


J. Sterling, C. Angiuli, and D. Gratzer 31:21

constant

Ψ | ε dim

variable
i ∈ Ψ

Ψ | i dim

reflexivity

Ψ | r = r dim

symm+trans
Ψ | r0 = r1 dim
Ψ | r1 = r2 dim
Ψ | r2 = r0 dim

hyp
Ψ 3 r = r′

Ψ | r = r′ dim

variable
Γ 3 x : A

Ψ | Γ ` x : A

false constraint
Ψ | 0 = 1 dim

Ψ | Γ ` J

conversion
Ψ | Γ ` A0 = A1 typek
Ψ | Γ `M : A0

Ψ | Γ `M : A1

boundary separation
Ψ | r dim
−−−−−−−−−−−−⇀
Ψ, r = ε | Γ ` J=

Ψ | Γ ` J=

coercion
Ψ | r, r′ dim
Ψ, i | Γ ` A typek
Ψ | Γ `M : A〈r/i〉

Ψ | Γ ` [i.A] ↓rr′ M : A〈r′/i〉
Ψ | Γ ` [i.A] ↓rr M = M : A〈r/i〉

coercion regularity
Ψ, j, j′ | Γ ` A〈j/i〉 = A〈j′/i〉 typek
Ψ | Γ ` [i.A] ↓rr′ M = M : A〈r′/i〉

composition
Ψ | r, r′, s dim Ψ | Γ `M : A

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j, s = ε | Γ ` Nε : A [j = r ↪→M ]

Ψ | Γ ` A ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] : A
Ψ | Γ ` A ↓rr M [s with −−−−−−⇀ε ↪→ j.Nε] = M : A
Ψ | Γ ` A ↓rr′ M [ε with

−−−−−−−⇀
ε′ ↪→ j.Nε′ ] = Nε〈r′/j〉 : A

lift formation
Ψ | Γ ` A typek k ≤ l

Ψ | Γ ` ⇑lkA typel
Ψ | Γ ` ⇑kkA = A typek
Ψ | Γ ` ⇑ml ⇑

l
kA = ⇑mk A typek

lift element
Ψ | Γ `M : A

Ψ | Γ `M : ⇑lkA
===============

lift hypothesis
Ψ | Γ, x : A ` J

Ψ | Γ, x : ⇑lkA ` J
=================

lift coercion

Ψ | Γ ` [i.⇑lkA] ↓rr′ M = [i.A] ↓rr′ M : ⇑lkA〈r′/i〉

pair formation, lifting
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek

Ψ | Γ ` (x : A)×B typek
Ψ | Γ ` ⇑lk(x : A)×B = (x : ⇑lkA)× ⇑lkB typel

pair introduction
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek
Ψ | Γ `M : A
Ψ | Γ ` N : B[M/x]

Ψ | Γ ` 〈M,N〉 : (x : A)×B

FSCD 2019



31:22 Cubical Syntax for Reflection-Free Extensional Equality

pair elimination
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek Ψ | Γ `M : (x : A)×B

Ψ | Γ ` fstx:A.B(M) : A
Ψ | Γ ` sndx:A.B(M) : B[fst(M)/x]
Ψ | Γ ` fstx:⇑l

k
A.⇑l

k
B(M) = fstx:A.B(M) : A

Ψ | Γ ` sndx:⇑l
k
A.⇑l

k
B(M) = sndx:A.B(M) : B[fst(M)/x]

pair computation
Ψ | Γ ` H , [i.B[[i.A] ↓ri fst(M)/x]] ↓rr′ snd(M)

Ψ | Γ ` fst(〈M,N〉) = M : A
Ψ | Γ ` snd(〈M,N〉) = N : B[M/x]
Ψ | Γ ` fst([i.(x : A)×B] ↓rr′ M) = [i.A] ↓rr′ fst(M) : A〈r′/i〉
Ψ | Γ ` snd([i.(x : A)×B] ↓rr′ M) = H : B〈r′/i〉[[i.A] ↓rr′ fst(M)/x]

pair unicity

Ψ | Γ `M = 〈fst(M), snd(M)〉 : (x : A)×B

function formation, lifting
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek

Ψ | Γ ` (x : A)→ B typek
Ψ | Γ ` ⇑lk(x : A)→ B = (x : ⇑lkA)→ ⇑lkB typel

function introduction
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek
Ψ | Γ, x : A `M : B

Ψ | Γ ` λx.M : (x : A)→ B

function elimination
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek
Ψ | Γ `M : (x : A)→ B Ψ | Γ ` N : A

Ψ | Γ ` appx:A.B(M,N) : B[N/x]
Ψ | Γ ` appx:⇑l

k
A.⇑l

k
B(M,N) = appx:A.B(M,N) : x[N/B]

function computation
Ψ, i | Γ ` Ñ [i] , [i.A] ↓r

′

i N

Ψ | Γ ` (λx.M)(N) = M [N/x] : B[N/x]
Ψ | Γ ` ([i.(x : A)→ B] ↓rr′ M)(N) = [i.B[Ñ [i]/x]] ↓rr′ M(Ñ [r]) : C

function unicity

Ψ | Γ `M = λx.M(x) : (x : A)→ B

equality formation, lifting
Ψ, i | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, i, i = ε | Γ ` Nε : A

Ψ | Γ ` Eqi.A(N0, N1) typek
Ψ | Γ ` ⇑lkEqi.A(N0, N1) = Eqi.⇑l

k
A(N0, N1) typel

equality introduction
Ψ, i | Γ `M : A [−−−−−−−−⇀i = ε ↪→ Nε]
Ψ | Γ ` λi.M : Eqi.A(N0, N1)

equality elimination
Ψ | r dim Ψ, i | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, i, i = ε | Γ ` Nε : A Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ ` appi.A(M, r) : A〈r/i〉
Ψ | Γ ` appi.⇑l

k
A(M, r) = appi.A(M, r) : A〈r/i〉

Ψ | Γ ` appi.A(M, ε) = Nε : A〈ε/i〉



J. Sterling, C. Angiuli, and D. Gratzer 31:23

equality computation

Ψ | Γ ` (λi.M)(r) = M〈r/i〉 : A〈r/i〉
Ψ | Γ ` ([j.Eqi.A(N0, N1)] ↓rr′ P )(s) = [j.A〈s/i〉] ↓rr′ P (s) [s with −−−−−−⇀ε ↪→ j.Nε] : A〈r′, s/j, i〉

equality unicity

Ψ | Γ `M = λi.M(i) : Eqi.A(N0, N1)

boolean formation, lifting, introduction

Ψ | Γ ` bool typek
Ψ | Γ ` ⇑lkbool = bool typel
Ψ | Γ ` true : bool
Ψ | Γ ` false : bool

boolean elimination
Ψ | Γ, x : bool ` C typek
Ψ | Γ `M : bool
Ψ | Γ ` N0 : C[true/x]
Ψ | Γ ` N1 : C[false/x]

Ψ | Γ ` ifx.C(M ;N0, N1) : C[M/x]

boolean elimination lifting

Ψ | Γ ` ifx.⇑l
k
C(M ;N0, N1) = ifx.C(M ;N0, N1) : ⇑lkC[M/x]

boolean computation

Ψ | Γ ` ifx.C(true;N0, N1) = N0 : C[true/x]
Ψ | Γ ` ifx.C(false;N0, N1) = N1 : C[false/x]

universe formation, lifting
k < l

Ψ | Γ ` Uk typel
Ψ | Γ ` ⇑ml Uk = Uk typem

universe elements
Ψ | Γ ` A typek
Ψ | Γ ` A : Uk

==============

universe equality
Ψ | Γ ` A0 = A1 typek
Ψ | Γ ` A0 = A1 : Uk

=====================

type-case
Ψ | Γ ` C typel
Ψ | Γ, x : Uk, y : x→ Uk `MΠ : C
Ψ | Γ, x : Uk, y : x→ Uk `MΣ : C
Ψ | Γ, x0 : Uk, x1 : Uk, x= : Eqi.Uk

(x0, x1), y0 : x0, y1 : x1 `MEq : C
Ψ | Γ `Mbool : C
Ψ | Γ `MU : C

Ψ | Γ ` tycase X [Πxy 7→MΠ | Σxy 7→MΣ | Eqx0,x1,x=(y0, y1) 7→MEq | bool 7→Mbool | U 7→MU ] : C

type-case computation
Ψ | Γ ` HEq ,M [A〈0/i〉, A〈1/i〉, λi.A,N0, N1/x0, x1, x

=, y0, y1]
Ψ | Γ ` tycase ((z : A)→ B) [Πxy 7→M | . . .] = M [A, λz.B/x, y] : C
Ψ | Γ ` tycase ((z : A)×B) [. . . | Σxy 7→M | . . .] = M [A, λz.B/x, y] : C
Ψ | Γ ` tycase bool [. . . | bool 7→M | . . .] = M : C
Ψ | Γ ` tycase Uk′ [. . . | U 7→M ] = M : C
Ψ | Γ ` tycase (Eqi.A(N0, N1)) [. . . | Eqx0,x1,x=(y0, y1) 7→M | . . .] = HEq : C

type boundary
Ψ | Γ `M : A

−−−−−−−−−−−−−−−⇀
Ψ, ξ | Γ `M = N : A

Ψ | Γ `M : A [
−−−−⇀
ξ ↪→ N ]

term boundary
Ψ | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, ξ | Γ ` A = B typek

Ψ | Γ ` A typek [
−−−−⇀
ξ ↪→ B]

FSCD 2019



31:24 Cubical Syntax for Reflection-Free Extensional Equality

A.1 Derivable Rules

Numerous additional rules about compositions are derivable by exploiting boundary separa-
tion. In previous presentations of cubical type theory (which did not enjoy the unicity of
equality proofs), it was necessary to include β-rules for compositions explicitly.

composition regularity−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j0, j1, i = ε | Γ ` Nε〈j0/j〉 = Nε〈j1/j〉 : A
Ψ | Γ ` A ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] = M : A

heterogeneous composition
Ψ | r, r′, s dim Ψ | Γ `M : A〈r/j〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j, s = ε | Γ ` Nε : A [j = r ↪→M ]

Ψ | Γ ` [j.A] ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] : A〈r′/j〉
Ψ | Γ ` [j.A] ↓rr M [s with −−−−−−⇀ε ↪→ j.Nε] = M : A〈r/j〉
Ψ | Γ ` [j.A] ↓rr′ M [ε with

−−−−−−−⇀
ε′ ↪→ j.Nε′ ] = Nε〈r′/j〉 : A〈r′/j〉

lift composition

Ψ | Γ ` ⇑lkA ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] = A ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] : ⇑lkA

lift type composition

Ψ | Γ ` Ul ↓rr′ ⇑
l
kA [i with

−−−−−−−−⇀
ε ↪→ j.⇑lkBε] = ⇑lkUk ↓rr′ A [i with −−−−−−⇀ε ↪→ j.Bε] typek

pair composition computation (1)
Ψ | Γ ` H , A ↓rr′ fst(M) [i with

−−−−−−−−−⇀
ε ↪→ j.fst(Nε)]

Ψ | Γ ` fst((x : A)×B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε]) = H : A

pair composition computation (2)
Ψ, k | Γ ` M̃1[k] , A ↓rk fst(M) [i with

−−−−−−−−−⇀
ε ↪→ j.fst(Nε)]

Ψ | Γ ` H , [k.B[M̃1[k]/x]] ↓rr′ snd(M) [i with
−−−−−−−−−−⇀
ε ↪→ j.snd(Nε)]

Ψ | Γ ` snd((x : A)×B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε]) = H : B[M̃1[r′]/x]

pair type composition
Ψ, k | Γ ` Ã[k] , Uk ↓rk A [i with −−−−−−⇀ε ↪→ j.Aε]
Ψ, j | Γ, x : Ã[r′] ` x̃[j] , [k.Ã[k]] ↓r

′

j x

Ψ | Γ, x : Ã[r′] ` B̃ , Uk ↓rr′ B[x̃[r]/x] [i with
−−−−−−−−−−−−⇀
ε ↪→ j.Bε[x̃[j]/x]]

Ψ | Γ ` Uk ↓rr′ ((x : A)×B) [i with
−−−−−−−−−−−−−−⇀
ε ↪→ j.(x : Aε)×Bε] = (x : Ã[r′])× B̃ typel

function composition computation
Ψ | Γ ` H , B[N/x] ↓rr′ M(N) [i with

−−−−−−−−−⇀
ε ↪→ j.Mε(N)]

Ψ | Γ ` ((x : A)→ B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Mε])(N) = H : (x : A)→ B



J. Sterling, C. Angiuli, and D. Gratzer 31:25

function type composition
Ψ, k | Γ ` Ã[k] , Uk ↓rk A [i with −−−−−−⇀ε ↪→ j.Aε]
Ψ, j | Γ, x : Ã[r′] ` x̃[j] , [k.Ã[k]] ↓r

′

j x

Ψ | Γ, x : Ã[r′] ` B̃ , Uk ↓rr′ B[x̃[r]/x] [i with
−−−−−−−−−−−−⇀
ε ↪→ j.Bε[x̃[j]/x]]

Ψ | Γ ` Uk ↓rr′ ((x : A)→ B) [i with
−−−−−−−−−−−−−−−⇀
ε ↪→ j.(x : Aε)→ Bε] = (x : Ã[r′])→ B̃ typel

equality composition computation
Ψ | Γ ` H , A〈s/i〉 ↓rr′ P (s) [k with

−−−−−−−−⇀
ε ↪→ j.Qε(s)]

Ψ | Γ ` (Eqi.A(N0, N1) ↓rr′ P [k with −−−−−−⇀ε ↪→ j.Qε])(s) = H : A〈s/i〉

equality type composition
Ψ, j, i | Γ ` Ã[j, i] , Uk ↓rj A [k with −−−−−−⇀ε ↪→ j.Aε]
Ψ | Γ ` M̃ , [j.Ã[j, r]] ↓rr′ M [k with −−−−−−⇀ε ↪→ j.Mε]
Ψ | Γ ` Ñ , [j.Ã[j, r′]] ↓rr′ N [k with −−−−−−⇀ε ↪→ j.Nε]

Ψ | Γ ` Uk ↓rr′ Eqi.A(M,N) [k with
−−−−−−−−−−−−−−−−⇀
ε ↪→ j.Eqi.Aε

(Mε, Nε)] = Eq
i.Ã[r′,i](M̃, Ñ) typel

base type composition
(b ∈ {bool,Uk′})

Ψ | Γ ` Uk ↓rr′ b [i with −−−−−⇀ε ↪→ j.b] = b typel

FSCD 2019


	Introduction
	Internalizing equality: from judgments to types
	Extensional equality via equality reflection
	Equality in intensional type theory
	Setoids and internal model constructions
	Observational Type Theory
	Cubical Type Theory
	Our contribution: XTT

	Programming and proving in XTT
	Kan operations: coercion and composition
	Generalized coercion
	Generalized composition

	Closed universes and type-case
	Future extensions

	Algebraic model theory and canonicity
	The cubical logical families construction
	Canonicity theorem

	The rules of XTT
	Derivable Rules


