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Abstract

We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories.

Our construction is formulated using internal type theory using quotient inductive types. We

use a typed presentation hence there are no preterms or realizers in our construction. NBE for

simple types is using a logical relation between the syntax and the presheaf interpretation. In our

construction, we merge the presheaf interpretation and the logical relation into a proof-relevant

logical predicate. We have formalized parts of the construction in Agda.
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1 Introduction

1.1 Specifying normalisation

Normalisation can be given the following specification.

We denote the type of well typed terms of type A in context Γ by Tm Γ A. This type

is defined as a quotient inductive inductive type (QIIT, see [10]): in addition to normal

constructors for terms such as lam and app, it also has equality constructors e.g. expressing

the β computation rule for functions. An equality t ≡Tm Γ A t′ expresses that t and t′ are

convertible.

The type of normal forms is denoted Nf Γ A and there is an embedding from it to terms

p–q : Nf Γ A → Tm Γ A. Normal forms are defined as a usual inductive type, decidability of

equality is straightforward.

Normalisation is given by a function norm which takes a term to a normal form. It needs

to be an isomorphism:

completeness norm ↓
Tm Γ A

Nf Γ A
↑ p–q stability

If we normalise a term, we obtain a term which is convertible to it: t ≡ pnorm tq. This is

called completeness. The other direction is called stability: n ≡ norm pnq. It expresses that

there is no redundancy in the type of normal forms. This property makes it possible to

establish properties of the syntax by induction on normal forms.

Soundness, that is, if t ≡ t′ then norm t ≡ norm t′ is given by congruence of equality. The

elimination rule for the QIIT of the syntax ensures that every function defined from the

syntax respects the equality constructors.
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2 Normalisation by Evaluation for Dependent Types

1.2 NBE for simple type theory

Normalisation by evaluation (NBE) is one way to implement this specification. In this

subsection, we summarize the approach of [6]. NBE works by evaluating the syntax in a

presheaf model over the category of renamings RENop and with normal forms as interpretation

of the base type. Note that for any context Γ one can define the presheaves of terms, neutral

terms (the subset of normal forms where an eliminator is applied to a variable) and normal

forms. The action on objects is just returning substitutions, lists of neutral terms and lists

of normal forms, respectively.

TM∆ : PSh (RENop) NE∆ : PSh (RENop) NF∆ : PSh (RENop)

TM∆ Γ := Tms Γ ∆ NE∆ Γ := Nes Γ ∆ NF∆ Γ := Nfs Γ ∆

To normalise a substitution with codomain ∆, one defines two natural transformations

unquote u∆ and quote q∆ by induction on the structure of contexts and types such that the

diagram in figure 1 commutes. J∆K denotes the interpretation of ∆ in the presheaf model

and R∆ denotes the logical relation at context ∆ between TM∆ and J∆K. The logical relation

is equality at the base type.

NE∆ Σ (TM∆ × J∆K) R∆ NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 1 The type of quote and unquote for a context ∆ in NBE for simple types.

Now a substitution σ can be normalised by quote: it needs the substitution itself, the

interpretation JσK and a proof that they are related. This is given by the fundamental

theorem of the logical relation denoted by Rσ which also needs two related elements: these

are given by unquoting the identity renaming (which is neutral).

norm∆ (σ : TM∆ Γ) : NF∆ Γ := q∆ Γ (σ, JσK, Rσ (uΓ Γ idΓ))

Completeness is given by commutativity of the right hand triangle. Stability can be proven

by mutual induction on terms and normal forms.

A nice property of this approach is that the part of unquote and quote which gives J∆K

can be defined separately from the part which gives relatedness, hence the normalisation

function can be defined independently from the proof that it is complete.

1.3 NBE for type theory

In the case of simple type theory, types are closed, so they act like contexts. Quote at a type

A is just a natural transformation.

qA : Σ (TMA × JAK) RA →̇ NFA

In the case of type theory, types depend on contexts, so TMΓ⊢A becomes a family of presheaves

over TMΓ, JΓ ⊢ AK is a family over JΓK and RΓ⊢A depends on RΓ (and a term of that type
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and the interpretation of a term of that type).

TMΓ⊢A, NEΓ⊢A, NFΓ⊢A : FamPSh TMΓ

JΓ ⊢ AK : FamPSh JΓK

RΓ⊢A : FamPSh
(

Σ
(

Σ (TMΓ × JΓK) RΓ

) (

TMΓ⊢A × JΓ ⊢ AK
)

)

We can try to define quote and unquote for this type as a family of natural transformations.

The type of quote and unquote omitting the naturality conditions would be the following.

These types encode the commutativity of the triangles as well.

q(Γ⊢A) Ψ : (p : RΓ Ψ ρ α)(t : TMA ρ)(v : JAK α) → RA p t v → Σ(n : NFA ρ).t ≡ pnq

u(Γ⊢A) Ψ : (p : RΓ Ψ ρ α)(n : NEA ρ) → Σ(v : JAK α).RA p pnq v

However there seems to be no way to define quote and unquote this way because quote does

not preserve the logical relation. The problem is that when defining unquote at Π we need

to define a semantic function which works for arbitrary inputs, not only those which are

related to a term. It seems that we need to restrict the presheaf model to only contain such

functions.

We solve this problem by replacing the presheaf and the logical relation by a proof

relevant logical predicate. We denote the logical predicate at a context ∆ by J∆K. We define

normalisation following the diagram in figure 2.

NE∆ Σ TM∆ J∆K NF∆

TM∆

u∆ q∆

p–q p–q
proj

Figure 2 The type of quote and unquote for a context ∆ in our proof.

In the presheaf model, the interpretation of the base type was normal forms of the base

type, and the logical relation at the base type was equality of the term and the normal form.

In our case, the logical predicate at the base type will say that there exists a normal form

which is equal to the term.

1.4 Structure of the proof and the paper

In this section, we give a high level sketch of the proof. Sections 3, 4, 6 are fully formalised

in Agda, sections 5, 7 and 8 are partially formalised [9].

In section 2 we briefly summarize the metatheory we are working in.

In section 3 we define the syntax for type theory as a quotient inductive inductive type

(QIIT) [10]. The arguments of the eliminator for the QIIT form a model of type theory.

In section 4 we define the category of renamings REN: objects are contexts and morphisms

are renamings (lists of variables).

In section 5 we define the proof-relevant Kripke logical predicate interpretation of the

syntax. The interpretation has RENop as the base category and two parameters for the

interpretations of U and El. This interpretation can be seen as a dependent version of the

presheaf model of type theory. E.g. a context in the presheaf model is interpreted as a

presheaf. Now it is a family of presheaves dependent on a substitution into that context.
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The interpretations of base types can depend on the actual elements of the base types. The

interpretation of substitutions and terms are the fundamental theorems.

In section 6 we define neutral terms and normal forms together with their renamings and

embeddings into the syntax (p–q). With the help of these, we define the interpretations of U

and El. The interpretation of U at a term of type U will be a neutral term of type U which

is equal to the term. Now we can interpret any term of the syntax in the logical predicate

interpretation. We will denote the interpretation of a term t by JtK.

In section 7 we mutually define the natural transformations quote and unquote. We

define them by induction on contexts and types as shown in figure 2. Quote takes a term

and a semantic value at that term into a normal term and a proof that the normal term is

equal to it. Unquote takes a neutral term into a semantic value at the neutral term.

Finally, in section 8, we put together the pieces by defining the normalisation function

and showing that it is complete and stable. Normalisation and completeness are given by

interpreting the term in the logical predicate model at the identity semantic element and

then quoting. Stability is proved by mutual induction on neutral terms and normal forms.

1.5 Related work

Normalisation by evaluation was first formulated by Schwichtenberg and Berger [11], sub-

sequently a categorical account using presheaf categories was given [6] and this approach

was extended to System F [7, 8] and coproducts [5]. The present work can be seen as a

continuation of this line of research.

The term normalisation by evaluation is also more generally used to describe semantic

based normalisation functions. E.g. Danvy is using semantic normalisation for partial

evaluation [14]. Normalisation by evaluation using untyped realizers has been applied to

dependent types by Abel et al [2–4]. Danielsson [13] has formalized NBE for dependent types

but he doesn’t prove soundness of normalisation.

2 Metatheory and notation

We are working in intensional Martin-Löf Type Theory using Agda as a vehicle [1, 17]. We

extend Agda with quotient inductive inductive types (QIITs, see [10]) using axioms. When

defining an inductive type A, we first declare the type by data A : S where S is the sort,

then we list the constructors. For inductive inductive types we first declare all the types,

then following a second data keyword we list the constructors. We also postulate functional

extensionality which is a consequence of having an interval QIIT anyway. We assume K, that

is, we work in a strict type theory.

We follow Agda’s convention of denoting the universe of types by Set, we write function

types as (x : A) → B or ∀x.B, implicit arguments are written in curly braces {x : A} → B

and can be omitted or given in lower index. If some arguments are omitted, we assume

universal quantification, e.g. (y : B x) → C means ∀ x.(y : B x) → C if x is not given in the

context. We write Σ(x : A).B for Σ types. We overload names e.g. the action on objects

and morphisms of a functor is denoted by the same symbol.

The identity type is denoted – ≡ – and its constructor is refl. Transport of a term a : P x

along an equality p : x ≡ y is denoted p∗a : P y. We denote (p∗a) ≡ b by a ≡p b. We write ap

for congruence, that is ap f p : f x ≡ f y if p : x ≡ y. For readability, we will omit transports

most of the time (starting from section 5). This makes some terms non-well typed, e.g. we

might write f a where f : A → B and a : A′ but in this case there is an equality in scope

which justifies A ≡ A′.
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Sometimes we use Coq-style definitions: we write d (x : A) : B := t for defining d of type

(x : A) → B by λx.t. We also use Agda-style pattern matching definitions.

3 Object theory

The object theory is the same1 as in [10], we present it as a quotient inductive inductive type

(QIIT). A QIIT is presented by first declaring the types that we define mutually, and then

listing all the constructors.

The syntax constituting of contexts, types, substitutions and terms is declared as follows.

data Con : Set

data Ty : Con → Set

data Tms : Con → Con → Set

data Tm : (Γ : Con) → Ty Γ → Set

We use the convention of naming contexts Γ, ∆, Θ, types A, B, terms t, u, substitutions

σ, ν, δ.

We define a basic type theory with an uninterpreted base type U, a family over this

type El and dependent function space Π with constructor lam and eliminator app. Our type

theory is given as an explicit substitution calculus, hence the QIIT needs constructors –[–]

for substituted types and terms. The constructors of the QIIT can be summarized as follows.

Substitutions form a category with a terminal object. This includes the categorical

substitution laws for types [id] and [][].

Substitution laws for types U[], El[], Π[].

The laws of comprehension which state that we have the natural isomorphism

π1β, π2β – , – ↓
σ : Tms Γ ∆ Tm Γ A[σ]

Tms Γ (∆, A)
↑ π1, π2 πη

where naturality2 is given by , ◦.

The laws for function space which are given by the natural isomorphism

Πβ lam ↓
Tm (Γ, A) B

Tm Γ (Π A B)
↑ app Πη

where naturality is given by lam[].

1 Steven Schäfer pointed us to [18] which shows that in the presentation [10] the equalities [id]t and [][]t
(identity and associativity laws of term substitution) can be derived from the others. This is why we
omitted these equalities from this presentation and the formal development.

2 If one direction of an isomorphism is natural, so is the other. This is why it is enough to state naturality
for – , – and not for π1, π2.
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We list the point constructors in the left column and the equality constructors in the right.

data data

· : Con [id] : A[id] ≡ A

– , – : (Γ : Con) → Ty Γ → Con [][] : A[σ][ν] ≡ A[σ ◦ ν]

– [–] : Ty ∆ → Tms Γ ∆ → Ty Γ U[] : U[σ] ≡ U

U : Ty Γ El[] : (El Â)[σ] ≡ El (U[]∗Â[σ])

El : Tm Γ U → Ty Γ Π[] : (Π A B)[σ] ≡ Π (A[σ]) (B[σA])

Π : (A : Ty Γ) → Ty (Γ, A) → Ty Γ id◦ : id ◦ σ ≡ σ

id : Tms Γ Γ ◦id : σ ◦ id ≡ σ

– ◦ – : Tms Θ ∆ → Tms Γ Θ → Tms Γ ∆ ◦◦ : (σ ◦ ν) ◦ δ ≡ σ ◦ (ν ◦ δ)

ǫ : Tms Γ · ǫη : {σ : Tms Γ ·} → σ ≡ ǫ

– , – : (σ : Tms Γ ∆) → Tm Γ A[σ] → Tms Γ (∆, A) π1β : π1 (σ, t) ≡ σ

π1 : Tms Γ (∆, A) → Tms Γ ∆ πη : (π1 σ, π2 σ) ≡ σ

–[–] : Tm ∆ A → (σ : Tms Γ ∆) → Tm Γ A[σ] , ◦ : (σ, t) ◦ ν ≡ (σ ◦ ν), ([][]∗t[ν])

π2 : (σ : Tms Γ (∆, A)) → Tm Γ A[π1 σ] π2β : π2 (σ, t) ≡π1β t

lam : Tm (Γ, A) B → Tm Γ (Π A B) Πβ : app (lam t) ≡ t

app : Tm Γ (Π A B) → Tm (Γ, A) B Πη : lam (app t) ≡ t

lam[] : (lam t)[σ] ≡Π[] lam (t[σA])

Note that the equality π2β lives over π1β. Also, we had to use transport to typecheck El[]

and , ◦. We used lifting of a substitution in the types of Π[] and lam[]. It is defined as follows.

(σ : Tms Γ ∆)A : Tms (Γ, A[σ]) (∆, A) := (σ ◦ π1 id), ([][]∗π2 id)

We use the categorical app operator but the usual one (–$–) can also be derived.

< (u : Tm Γ A) > : Tms Γ (Γ, A) := id, [id]−1∗u

(t : Tm Γ (Π A B))$(u : Tm Γ A) : B[< u >] := (app t)[< u >]

When we define a function from the above syntax, we need to use the eliminator. The

eliminator has 4 motives corresponding to what Con, Ty, Tms and Tm get mapped to and

one method for each constructor including the equality constructors. The methods for

point constructors are the elements of the motives to which the constructor is mapped.

The methods for the equality constructors demonstrate soundness, that is, the semantic

constructions respect the syntactic equalities. The eliminator comes in two different flavours:

the non-dependent and dependent version. In our constructions we use the dependent version.

The motives and methods for the non-dependent eliminator (recursor) collected together form

a model of type theory, they are basically the same3 as Dybjer’s Categories with Families [15].

As an example we list the motives and a few methods of the dependent eliminator. An

algorithm for deriving them from the constructors is given in [10]. As names we use the

3 Dybjer uses the usual application operator, we use the categorical one, the projections π1, π2 are defined
differently and Dybjer lists some equations derivable from the others, we omit these. However all the
operators and the laws are inter-derivable.
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names of the constructors followed by an upper index M.

ConM : Con → Set

TyM : (ConM Γ) → Ty Γ → Set

TmsM : (ConM Γ) → (ConM ∆) → Tms Γ ∆ → Set

TyM : (ΓM : ConM Γ) → TyM ΓM A → Tm Γ A → Set

idM : TmsM ΓM ΓM id

– ◦M – : TmsM ΘM ∆M σ → TmsM ΓM ΘM ν → TmsM ΓM ∆M (σ ◦ ν)

◦idM : σM ◦M idM ≡◦id σM

π2βM : πM
2 (ρM,MtM) ≡π1βM,π2β tM

Note that the method equality ◦idM lives over the constructor ◦id while the method equality

π2βM lives both over the method equality π1βM and the equality constructor π2β.

4 The category of renamings

In this section we define the category of renamings REN. Objects in this category are contexts,

morphisms are renamings (Vars): lists of de Bruijn variables.

We define the types of variables Var and renamings Vars together with their embeddings

into substitutions. This is an inductive-recursive definition as p–q for renamings needs to be

defined mutually with renamings.

data Var : (Ψ : Con) → Ty Ψ → Set

vze : Var (Ψ, A) (A[π1 id])

vsu : Var Ψ A → Var (Ψ, B) (A[π1 id])

p–q : Vars Ω Ψ → Tms Ω Ψ

data Vars : Con → Con → Set

ǫ : Vars Ψ ·

– , – : (β : Vars Ω Ψ) → Var Ω A[pβq] → Vars Ω (Ψ, A)

p–q : Var Ψ A → Tm Ψ A

pvzeq := π2 id

pvsu xq := pxq[π1 id]

pǫq := ǫ

pβ, xq := pβq, pxq

Variables are typed de Bruijn indices. vze projects out the last element of the context, vsu

extends the context, and the type A : Ty Ψ needs to be weakened in both cases because we

need to interpret it in Ψ extended by another type. Renamings are lists of variables with the

appropriate types. Embedding of variables into terms uses the projections and the identity

substitution, and embedding renamings is pointwise.

We use the names Ψ, Ω, Ξ for objects of REN, x, y for variables, β, γ for renamings.

We need identity and composition of renamings for the categorical structure. To define

them, we also need weakening and renaming of variables together with laws relating their

embeddings to terms. We only list the types as the definitions are straightforward inductions.
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The only catch is that the identity substitution uses weakening and not the other way.

wk : Vars Ω Ψ → Vars (Ω, A) Ψ pwkq : pβq ◦ π1id ≡ pwk βq

id : Vars Ψ Ψ pidq : pidq ≡ id

– ◦ – : Vars Ξ Ψ → Vars Ω Ξ → Vars Ω Ψ p◦q : pβq ◦ pγq ≡ pβ ◦ γq

–[–] : Var Ψ A → (β : Vars Ω Ψ) → Var Ω A[pβq] p[]q : pxq[pβq] ≡ px[β]q

Renamings form a category, we omit the statement and proofs of the categorical laws.

5 The logical predicate interpretation

In this section, after defining a few categorical notions, we define the proof-relevant Kripke

logical predicate interpretation of the type theory given in section 3. It can also be seen as a

dependent version of the presheaf model of type theory [16].

A contravariant presheaf over a category C is denoted Γ : PSh Cop. It is given by the

following data: given I : |C|, a set Γ I, and given f : C(J, I) a function Γ f : Γ I → Γ J .

Moreover, we have idP Γ : Γ id α ≡ α and compP Γ : Γ (f ◦ g) α ≡ Γ g (Γ f α) for α : Γ I,

f : C(J, I), g : C(K, J).

Given Γ : PSh Cop, a family of presheaves over Γ is denoted A : FamPSh Γ. It is

given by the following data: given α : Γ I, a set AI α and given f : C(J, I), a function

A f : AI α → AJ (Γ f α). In addition, we have the functor laws idF A : A id v ≡idP v and

compF A : A (f ◦ g) v ≡compP A g (A f v) for α : Γ I, v : A α, f : C(J, I), g : C(K, J).

A natural transformation between presheaves Γ and ∆ is denoted σ : Γ →̇ ∆. It is given

by a function σ : {I : |C|} → Γ I → ∆ I together with the condition natn σ : ∆ f (σI α) ≡

σJ (Γ f α) for α : Γ I, f : C(J, I).

A section4 from a presheaf Γ to a family of presheaves A over Γ is denoted t : Γ
s

→ A. It

is given by a function t : {I : |C|} → (α : Γ I) → AI α together with the naturality condition

natS t α f : A f (t α) ≡ t (Γ f α) for f : C(J, I).

Given Γ : PSh Cop and A : FamPSh Γ we can define Σ Γ A : PSh Cop by (Σ Γ A) I := Σ(α :

Γ I).Ai α and (Σ Γ A) f (α, a) := (Γ f α, A f a).

Given σ : Γ →̇ ∆ and A : FamPSh ∆, we define A[σ] : FamPSh Γ by A[σ]I α := AI (σI α)

and A[σ] f α := natn σ∗(A f α) for α : Γ I and f : C(J, I).

The weakening natural transformation wk : Σ Γ A →̇ Γ is defined by wkI (α, a) := α.

Lifting of a section t : Γ
s

→ A by a family of presheaves B : FamPSh Γ is a natural

transformation tB : Σ Γ B →̇ Σ (Σ (Γ A)) B[wk]. It is defined as tB
I (α, b) := (α, tI α, b).

To define the logical predicate interpretation of the syntax, we need to give the motives

and methods for the eliminator. We will denote the interpretation of a syntactic construct t

by JtK. The following table gives the motives of the eliminator.

Γ : Con TMΓ = Tms – Γ : PSh RENop JΓK : FamPSh TMΓ

A : Ty Γ TMA = Tm – A[–] : FamPSh TMΓ JAK : FamPSh
(

Σ
(

Σ (TMΓ TMA)
)

JΓK[wk]
)

σ : Tms Γ ∆ TMσ = (σ ◦ –) : TMΓ →̇ TM∆ JσK : Σ TMΓ JΓK
s

→ J∆K[TMσ][wk]

t : Tm Γ A TMt = t[– ] : TMΓ
s

→ TMA JtK : Σ TMΓ JΓK
s

→ JAK[TMt
JΓK]

4 t : Γ
s

→ A is called a section because it can be viewed as a section of the first projection from Σ Γ A to Γ
but we define it without using the projection.



T. Altenkirch and A. Kaposi 9

First we define the syntactic presheaf interpretation TM as given in the table. TM∆ is a

presheaf over RENop, the action on morphisms is TM∆ (β : Vars Ω Ψ) σ := σ ◦ pβq. TMA is a

family of presheaves over TMΓ, TMσ is a natural transformation and TMt is a section. The

action on morphisms and the functor laws for TMA and the naturality laws for TMσ and

TMt are straightforward. TM is not a presheaf model, it is just the syntax in a different

structure so that it matches the motives of a presheaf model.

In the logical predicate interpretation, a context ∆ is mapped to a family of presheaves over

TM∆. That is, for every substitution ρ : TM∆ Ψ we have a set J∆KΨ ρ which expresses that the

logical predicate holds for ρ. Moreover, we have the renaming JΓK β : JΓK ρ → JΓK (TMΓ β ρ).

JAK is the logical predicate at a type A. It depends on a substitution (for which the

predicate needs to hold) and a term. JAKΨ (ρ, s, α) expresses that the logical predicate holds

for term s : Tm Ψ A[ρ]. It is also stable under renamings.

A : Ty Γ Ψ : |RENop| ρ : TMΓ Ψ s : TMA ρ α : JΓKΨ ρ

JAKΨ (ρ, s, α) : Set

JAK β : JAK (ρ, s, α) → JAK (TMΓ β ρ, TMA β s, JΓK β α)

A substitution σ is mapped to JσK which expresses the fundamental theorem of the logical

predicate for σ: for any other substitution ρ for which the predicate holds, we can compose

it with σ and the predicate will hold for the composition. The fundamental theorem is also

natural.

σ : Tms Γ ∆ Ψ : |RENop| ρ : TMΓ Ψ α : JΓKΨ ρ

JσKΨ (ρ, α) : J∆KΨ (σ ◦ ρ)

J∆K β (JσK (ρ, α)) ≡ JσK (TMΓ β ρ, JΓK β α)

A term t is mapped to the fundamental theorem for the term: given a substitution ρ for

which the predicate holds, it also holds for t[ρ] in a natural way.

t : Tm Γ A Ψ : |RENop| ρ : TMΓ Ψ α : JΓKΨ ρ

JtKΨ (ρ, α) : JAKΨ (ρ, t[ρ], α)

JAK β (JtK (ρ, α)) ≡ JtK (TMΓ β ρ, JΓK β α)

We define the presheaf TMU : PSh RENop and a family over it TMEl : FamPSh TMU. The

actions on objects are TMU Ψ := Tm Ψ U and TMEl
Ψ Â := Tm Ψ (El Â). The action on a

morphism β is just substitution –[pβq] for both.

Note that the base category of the logical predicate interpretation is fixed to RENop.

However we parameterise the interpretation by the predicate at the base type U and base

family El. These are denoted by Ū and Ēl and have the following types.

Ū : FamPSh TMU

Ēl : FamPSh
(

Σ
(

Σ (TMU TMEl)
)

Ū[wk]
)

Now we list the methods for each constructor in the same order as we have given them in

section 3. We omit the proofs of functoriality/naturality only for reasons of space.

The logical predicate trivially holds at the empty context, and it holds at an extended

context for ρ if it holds at the smaller context at π1 ρ and if it holds at the type which extends

the context for π2 ρ. The second part obviously depends on the first. The action on morphisms

for context extension is pointwise. Here we omitted some usages of – ∗ – e.g. JΓK β α is only
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well-typed in that position when we transport along the equality π1 ρ ◦ pβq ≡ π1 (ρ ◦ pβq).

From now on we will omit transports and the usages of p–q in most cases for readability.

J·KΨ (ρ : TM· Ψ) := ⊤

JΓ, AKΨ (ρ : TMΓ,A Ψ) := Σ(α : JΓKΨ (π1 ρ)).JAKΨ (π1 ρ, π2 ρ, α)

JΓ, AK (β : Vars Ω Ψ) (α, a) := (JΓK β α, JAK β a)

The logical predicate at a substituted type is the logical predicate at the type and we need

to use the fundamental theorem at the substitution to lift the witness of the predicate for

the substitution. Renaming a substituted type is the same as renaming in the original type.

The logical predicate at the base type and family says what we have given as parameters.

Renaming also comes from these parameters.

JA[σ]K (ρ, s, α) := JAK (σ ◦ ρ, s, JσK (ρ, α)) JA[σ]K β a := JAK β a

JUK (ρ, s, α) := Ū (U[]∗s) JUK β a := Ū β a

JEl ÂK (ρ, s, α) := Ēl (Â[ρ], s, JÂK (ρ, α)) JEl ÂK β a := Ēl β a

The logical predicate holds for a function s when we have that if the predicate holds for

an argument u (at A, witnessed by v), so it holds for s$u at B. In addition, we have a

Kripke style generalisation: this should be true for s[β] given a morphism β in a natural

way. Renaming a witness of the logical predicate at the function type is postcomposing the

Kripke morphism by it.

JΠ A BKΨ (ρ : TMΓ Ψ, s, α)

:= Σ
(

map :
(

β : Vars Ω Ψ
)(

u : TMA (ρ ◦ β)
)(

v : JAKΩ (ρ ◦ β, u, JΓK β α)
)

→ JBKΩ

(

(ρ ◦ β, u), s[β]$u, (JΓK β α, v)
)

)

.∀β, u, v, γ.JBK γ (map β u v) ≡ map (β ◦ γ) (u[γ]) (JAK γ v)

JΠ A BK β′ (map, nat) := (λβ.map (β′ ◦ β), λβ.nat (β′ ◦ β))

Now we list the methods for the substitution constructors, that is, we prove the fun-

damental theorem for substitutions. We omit the naturality proofs. The object theoretic

constructs map to their metatheoretic counterparts: identity becomes identity, composi-

tion becomes composition, the empty substitution becomes the element of the unit type,

comprehension becomes pairing, first projection becomes first projection.

JidK (ρ, α) := α

Jσ ◦ νK (ρ, α) := JσK (ν ◦ ρ, JνK (ρ, α))

JǫK (ρ, α) := tt

Jσ, tK (ρ, α) := JσK (ρ, α), JtK (ρ, α)

Jπ1 σK (ρ, α) := proj1 (JσK (ρ, α))

The fundamental theorem for substituted terms and the second projection is again just

composition and second projection.

Jt[σ]K (ρ, α) := JtK (σ ◦ ρ, JσK (ρ, α))

Jπ2 σK (ρ, α) := proj2 (JσK (ρ, α))
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The fundamental theorem for lam and app is more interesting. For lam, the map function

is using the fundamental theorem for t which is in the context extended by the domain

type A : Ty Γ, so we need to supply an extended substitution and a witness of the predicate.

Moreover, we need to rename the substitution ρ and the witness of the predicate α to

account for the Kripke property. The naturality is given by the naturality of the term itself.

Application uses the map part of the logical predicate and the identity renaming.

Jlam tK (ρ, α) :=
(

λβ, u, v.JtK
(

(ρ ◦ β, u), (JΓK β α, v)
)

, λβ, u, v, γ.natS JtK
(

(ρ ◦ β, u), (JΓK β α, v)
)

γ
)

Japp tK (ρ, α) := map
(

JtK (π1 ρ, proj1 α)
)

id (π2 ρ) (proj2 α)

Lastly, we need to provide methods for the equality constructors. As our metatheory

uses K, to give an equality between two families of presheaves, it is enough to show that the

actions on objects coince and similarly for morphisms, there is no need to check equality of

witnesses of the laws. The same holds for sections. We won’t list these proofs here as they

are all straightforward.

6 Normal forms

We define η-long β-normal forms mutually with neutral terms. Neutral terms are terms where

a variable is in a key position which precludes the application of the rule Πβ. Embeddings

back into the syntax are defined mutually in the obvious way. Note that neutral terms and

normal forms are indexed by types, not normal types.

data Ne : (Γ : Con) → Ty Γ → Set data Nf

data Nf : (Γ : Con) → Ty Γ → Set neuU : Ne Γ U → Nf Γ U

p–q : Nf Γ A → Tm Γ A neuEl : Ne Γ (El Â) → Nf Γ (El Â)

data Ne lam : Nf (Γ, A) B → Nf Γ (Π A B)

var : Var Γ A → Ne Γ A p–q : Ne Γ A → Tm Γ A

app : Ne Γ (Π A B) → (v : Nf Γ A)

→ Ne Γ (B[< pvq >])

We define lists of neutral terms and normal forms. X is a parameter of the list, it can stand

for both Ne and Nfs.

data –s (X : (Γ : Con) → Ty Γ → Set) : Con → Con → Set

p–q : Xs Γ ∆ → Tms Γ ∆

data Xs

ǫ : Xs Γ ·

– , – : (τ : Xs Γ ∆) → X Γ A[pτq] → Xs Γ (∆, A)

We also need renamings of (lists of) normal forms and neutral terms together with lemmas

relating their embeddings to terms. Again, X can stand for both Ne and Nf.

–[–] : X Γ A → (β : Vars Ψ Γ) → X Ψ A[pβq] p[]q : pnq[pβq] ≡ pn[β]q

– ◦ – : Xs Γ ∆ → Vars Ψ Γ → Xs Ψ ∆ pτq ◦ pβq ≡ pτ ◦ βq
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Now we can define the presheaf XΓ and families of presheaves XA for any A : Ty Γ where X

is either NE or NF. The definitions follow that of TM.

Γ : Con XΓ : PSh RENop XΓ Ψ := Xs Ψ Γ XΓ β τ := τ ◦ β

A : Ty Γ XA : FamPSh TMΓ XA (ρ : TMΓ Ψ) := X Ψ A[ρ] XA β n := n[β]

We set the parameters of the logical predicate at the base type and family by defining Ū

and Ēl. The predicate holds for a term if there is a neutral term of the corresponing type

which is equal to the term. The action on morphisms is just renaming.

Ū : FamPSh TMU ŪΨ (Â : Tm Ψ U) := Σ(n : Ne Ψ U).Â ≡ pnq

Ēl : FamPSh
(

Σ
(

Σ (TMU TMEl)
)

Ū[wk]
)

ĒlΨ (Â, t : Tm Ψ (El Â), p) := Σ(n : Ne Ψ (El Â)).t ≡ pnq

Now we can interpret any term in the logical predicate model over RENop with base type

interpretations Ū and Ēl. We denote the interpretation of t by JtK.

7 Quote and unquote

By the logical predicate interpretation using Ū and Ēl we have the following two things:

terms at the base types are equal to a normal form,

this property is preserved by the other type formers (functions and substituted types).

We make use of this fact to lift the first property to any type. We do this by defining a quote

function by induction on the type. Quote takes a term which preserves the predicate and

maps it to a normal form that it is equal to it. Because of the function space, we need a

function in the other direction as well, mapping neutral terms to the witness of the predicate.

More precisely, we define the quote function q and unquote u by induction on the structure

of contexts and types. For this, we need to define a model of type theory in which only the

motives for contexts and types are interesting.

The motive for a context ∆ is the following two functions q∆ and u∆ together with

their naturality properties. Both have dependent types to express the commutativity of

the diagram in figure 2. Quote takes a substitution for which the predicate holds and

returns a normal substitution together with a proof of convertibility. Unquote takes a neutral

substitution (list of neutral terms) and returns a proof that the logical predicate holds for this

substitution. Note that in the statement of the naturality conditions we implicitly assume

an embedding of renamings into neutral and normal substitutions.

Σ
(

q∆ : {Ψ : |RENop|}(ρ : TM∆ Ψ) → J∆KΨ ρ → Σ(τ : NF∆ Ψ).ρ ≡ pτq
)

.∀(β : Vars Ω Ψ), ρ, α.let (τ, p) := q∆ Ψ ρ α in (τ ◦ β, ap (– ◦ β) p) ≡ q∆ Ω (ρ ◦ β, J∆K β α)

Σ
(

u∆ : {Ψ : |RENop|}(τ : NE∆ Ψ) → J∆KΨ pτq
)

.∀(β : Vars Ω Ψ), n.J∆K β (u∆ Ψ τ) ≡ u∆ Ω (τ ◦ β)

The motive for a type A is again a quote and unquote function. Because of having

dependent types, they depend on a substitution for which the predicate holds, and then map

semantic elements into normal terms and neutral terms into semantic elements similarly to

quote and unquote for contexts. The naturality conditions again show that they are stable
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under renamings.

Σ
(

qA : {Ψ : |RENop|}(ρ : TMΓ Ψ)(α : JΓK ρ)(s : TMA ρ)(a : JAK (ρ, s, α))

→ Σ(n : NFA ρ.s ≡ pnq)
)

.∀(β : Vars Ω Ψ), ρ, α, s, a.let (n, p) := qA Ψ ρ α s a

in (n[β], ap (–[β]) p) ≡ qA Ω (ρ ◦ β) (JΓK β α) (s[β]) (JAK β a)

Σ
(

uA : {Ψ : |RENop|}(ρ : TMΓ Ψ)(α : JΓK ρ)(n : NEA ρ) → JAK (ρ, pnq, α)
)

.∀(β : Vars Ω Ψ), ρ, α, n.JAK β (uA Ψ ρ α n) ≡ uA Ω (ρ ◦ β) (JΓK β α) (n[β])

The motives for substitutions and terms are the constant unit families.

We will list the methods for contexts and types excluding the naturality proofs for brevity.

We will omit listing the proofs for equalities of types for reasons of space. The methods for

the equality constructors of substitutions and terms are trivial.

Quote and unquote for the empty context is trivial, for extended contexts it is pointwise.

, ≡ is the congruence law of substitution extension – , –.

q· ρ α := (ǫ, ǫη) u· τ := tt

q∆,A ρ α := let (τ, p) := q∆ (π1 ρ) (proj1 α) u∆,A (τ, n) := let α := u∆ τ

(n, p′) := qA (π1 ρ) (proj1 α) (π2 ρ) (proj2 α) in (α, uA pτqα n)

in
(

(τ, n), (, ≡ p p′)
)

Quoting or unquoting a substituted type is the same as quoting at the type and using the

fundamental theorem at the substitution to lift the witness of the predicate α. As expected,

quoting at base types is simply returning the witness of the predicate, while unquoting just

returns the neutral term itself and the witness of the predicate will be reflexivity.

qA[σ] ρ α s a := qA (σ ◦ ρ) (JσK (ρ, α)) s a uA[σ] ρ α n := uA (σ ◦ ρ) (JσK (ρ, α)) n

qU ρ α s a := a uU ρ α n := (n, refl)

q
El Â ρ α s a := a u

El Â ρ α n := (n, refl)

The normal form of a function s is lam n for some normal form n which is in the extended

context. We get this n by quoting app s in the extended context. f is the witness that

s preserves the relation for any renaming, and we use the renaming wk id to use f in the

extended context. The argument of f in this case will be the zero de Bruijn index vze and

we need to unquote it to get the witness that it preserves the logical predicate. This is the

place where the Kripke property of the logical relation is needed: the base category of the

Kripke logical relation needs to minimally include the morphism wk id.

qΓ⊢Π A B Ψ ρ α s f := let a := uΨ,A[ρ] (ρ ◦ π1 id)
(

JΓK (wk id) α
)

vze

(n, p) := qB Ψ,A[ρ] ρA
(

JΓK (wk id) α, a
)

(app s)
(

map f (wk id) pvzeq a
)

in (lam n, Πη � ap lam p)

We only show the mapping part of unquoting a function. To show that n preserves the

predicate, we show that it preserves the predicate for every argument u for which the predicate

holds (by v). We quote the argument, thereby getting it in normal form (m), and now we

can unquote the neutral term (app n[β] m) to get the result. We also need to transport the

result along the proof p that u ≡ pmq.

map (uΓ⊢Π A B Ψ ρ α n) := λ(β : Vars Ω Ψ), u, v.let (m, p) := qA Ω (ρ ◦ β) (JΓK β α) u v

in p∗

(

uB Ω (ρ ◦ β, u) (JΓK β α, v) (app n[β] m)
)
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8 Normalisation

Now we can define the normalisation function and show that it is complete as follows.

normA (t : Tm Γ A) : Nf Γ A := proj1
(

qA idΓ (uΓ idΓ) t (JtK idΓ (uΓ idΓ))
)

complA (t : Tm Γ A) : t ≡ pnormA tq := proj2
(

qA idΓ (uΓ idΓ) t (JtK idΓ (uΓ idΓ))
)

We prove stability by mutual induction on normal forms and neutral terms.

n : Nf Γ A
normA pnq ≡ n

n : Ne Γ A

JpnqK (idΓ, uΓ idΓ) ≡ uA idΓ (uΓ idΓ) n

Decidability of normal forms is proven by mutual induction on normal forms, neutral

terms and types. Because of type dependencies, we decide equality in the total space

Σ(Γ : Con).Σ(A : Ty Γ).Nf Γ A. When deciding whether two applications are equal, we need

to first compare the types of the domains and codomains of the neutral functions, and we

only proceed with comparing the neutral functions when we know that they are equal. To

decide equality of types, we need to normalise them and this includes normalisation of terms

of type u. isDec A is defined by A + (A → ⊥).

n, n′ : Nf Γ A

isDec
(

(Γ, A, n) ≡ (Γ, A, n′)
)

A ≡ A′ n : Nf Γ A n′ : Nf Γ A′

isDec
(

(Γ, A, n) ≡ (Γ, A′, n′)
)

A, A′ : Ty Γ

isDec
(

(Γ, A) ≡ (Γ, A′)
)

9 Conclusions and further work

We proved normalisation for a basic type theory with dependent types by the technique

of NBE. We evaluate terms into a proof relevant logical predicate model. The model is

depending on the syntax, we need to use the dependent eliminator of the syntax. Our

approach can be seen as merging the presheaf model and the logical relation used in NBE

for simple types [6] into a single logical predicate. This seems to be necessary because of

the combination of type indexing and dependent types: the well-typedness of normalisation

depends on completeness. Another property to note is that we don’t normalise types, we

just index normal terms by not necessarily normal types.

We are currently working on completing the formalisation5 [9]. Most of the work here

is equality reasoning. QIITs make it possible to define the syntax of type theory in a very

concise way, however because of missing computation rules, reasoning with them involves

lots of boilerplate. We expect that a cubical metatheory [12] with its systematic way of

expressing equalities depending on equalities and its additional computation rules would

significantly reduce the amount of boilerplate.

Another challenge is to extend our basic type theory with inductive types, universes and

large elimination. Also, it would be interesting to see how the work fits into the setting of

homotopy type theory (without assuming K). We would also like to investigate whether the

logical predicate interpretation can be generalised to work over arbitrary presheaf models

and how the syntactic model fits here.

5 The current status of formalisation is that we formalised all the main constructions but the functoriality
and naturality properties are left as holes.
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