750 research outputs found

    Nonuniform Codes for Correcting Asymmetric Errors

    Get PDF
    Codes that correct asymmetric errors have important applications in storage systems, including optical disks and Read Only Memories. The construction of asymmetric error correcting codes is a topic that was studied extensively, however, the existing approach for code construction assumes that every codeword could sustain t asymmetric errors. Our main observation is that in contrast to symmetric errors, where the error probability of a codeword is context independent (since the error probability for 1s and 0s is identical), asymmetric errors are context dependent. For example, the all-1 codeword has a higher error probability than the all-0 codeword (since the only errors are 1 → 0). We call the existing codes uniform codes while we focus on the notion of nonuniform codes, namely, codes whose codewords can tolerate different numbers of asymmetric errors depending on their Hamming weights. The goal of nonuniform codes is to guarantee the reliability of every codeword, which is important in data storage to retrieve whatever one wrote in. We prove an almost explicit upper bound on the size of nonuniform asymmetric error correcting codes and present two general constructions. We also study the rate of nonuniform codes compared to uniform codes and show that there is a potential performance gain

    Coding for storage and testing

    Get PDF
    The problem of reconstructing strings from substring information has found many applications due to its importance in genomic data sequencing and DNA- and polymer-based data storage. Motivated by platforms that use chains of binary synthetic polymers as the recording media and read the content via tandem mass spectrometers, we propose new a family of codes that allows for both unique string reconstruction and correction of multiple mass errors. We first consider the paradigm where the masses of substrings of the input string form the evidence set. We consider two approaches: The first approach pertains to asymmetric errors and the error-correction is achieved by introducing redundancy that scales linearly with the number of errors and logarithmically with the length of the string. The proposed construction allows for the string to be uniquely reconstructed based only on its erroneous substring composition multiset. The asymptotic code rate of the scheme is one, and decoding is accomplished via a simplified version of the Backtracking algorithm used for the Turnpike problem. For symmetric errors, we use a polynomial characterization of the mass information and adapt polynomial evaluation code constructions for this setting. In the process, we develop new efficient decoding algorithms for a constant number of composition errors. The second part of this dissertation addresses a practical paradigm that requires reconstructing mixtures of strings based on the union of compositions of their prefixes and suffixes, generated by mass spectrometry devices. We describe new coding methods that allow for unique joint reconstruction of subsets of strings selected from a code and provide upper and lower bounds on the asymptotic rate of the underlying codebooks. Our code constructions combine properties of binary BhB_h and Dyck strings and can be extended to accommodate missing substrings in the pool. In the final chapter of this dissertation, we focus on group testing. We begin with a review of the gold-standard testing protocol for Covid-19, real-time, reverse transcription PCR, and its properties and associated measurement data such as amplification curves that can guide the development of appropriate and accurate adaptive group testing protocols. We then proceed to examine various off-the-shelf group testing methods for Covid-19, and identify their strengths and weaknesses for the application at hand. Finally, we present a collection of new analytical results for adaptive semiquantitative group testing with combinatorial priors, including performance bounds, algorithmic solutions, and noisy testing protocols. The worst-case paradigm extends and improves upon prior work on semiquantitative group testing with and without specialized PCR noise models

    High-Performance Energy-Efficient and Reliable Design of Spin-Transfer Torque Magnetic Memory

    Get PDF
    In this dissertation new computing paradigms, architectures and design philosophy are proposed and evaluated for adopting the STT-MRAM technology as highly reliable, energy efficient and fast memory. For this purpose, a novel cross-layer framework from the cell-level all the way up to the system- and application-level has been developed. In these framework, the reliability issues are modeled accurately with appropriate fault models at different abstraction levels in order to analyze the overall failure rates of the entire memory and its Mean Time To Failure (MTTF) along with considering the temperature and process variation effects. Design-time, compile-time and run-time solutions have been provided to address the challenges associated with STT-MRAM. The effectiveness of the proposed solutions is demonstrated in extensive experiments that show significant improvements in comparison to state-of-the-art solutions, i.e. lower-power, higher-performance and more reliable STT-MRAM design

    Data Representation for Efficient and Reliable Storage in Flash Memories

    Get PDF
    Recent years have witnessed a proliferation of flash memories as an emerging storage technology with wide applications in many important areas. Like magnetic recording and optimal recording, flash memories have their own distinct properties and usage environment, which introduce very interesting new challenges for data storage. They include accurate programming without overshooting, error correction, reliable writing data to flash memories under low-voltages and file recovery for flash memories. Solutions to these problems can significantly improve the longevity and performance of the storage systems based on flash memories. In this work, we explore several new data representation techniques for efficient and reliable data storage in flash memories. First, we present a new data representation scheme—rank modulation with multiplicity —to eliminate the overshooting and charge leakage problems for flash memories. Next, we study the Half-Wits — stochastic behavior of writing data to embedded flash memories at voltages lower than recommended by a microcontroller’s specifications—and propose three software- only algorithms that enable reliable storage at low voltages without modifying hard- ware, which can reduce energy consumption by 30%. Then, we address the file erasures recovery problem in flash memories. Instead of only using traditional error- correcting codes, we design a new content-assisted decoder (CAD) to recover text files. The new CAD can be combined with the existing error-correcting codes and the experiment results show CAD outperforms the traditional error-correcting codes

    플래시 메모리를 위한 양방향 비대칭 오류 정정 부호 및 간섭 완화 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 이정우.Recently, NAND multi-level cell (MLC) flash memories are now widely used due to low cost and high capacity. However, when the number of cell levels increases, cell-to-cell interference (C2CI) which shifts threshold voltage may degrades the error rate in reading process. There are several approaches to alleviate the errors caused by the threshold voltage shift and we discuss error correcting codes and message encoding schemes. First, we propose error correcting codes that are effective for multi-level cell flash memory and non-binary WOM (write once memory) codes. In particular, we focus on bidirectional error correction codes. The errors in MLC flash memories tend to be directional and limited-magnitude. Many related works focus on asymmetric errors, but bidirectional errors also occur because of the bidirectional interference and the adjustment of the hard-decision reference voltages. The code treats both upward and downward errors when the error magnitude in each direction differs. The maximum magnitudes of the upward error and downward error are lu and ld, respectively. One of proposed codes extends the technique of the distinct sum sets to the bidirectional error correction codes. The other code is bidirectional limited magnitude error correction codes based on modulo operation and uses non-binary conventional error correction codes. These proposed codes can reduce the parity size, and have better error correction performance than the conventional error correction codes when the code rate is equal. Furthermore, error correcting schemes for non-binary WOM codes are discussed. WOM codes is a coding scheme that allows information to be written in a memory cell multiple times without erasure, and conventional error correction codes cannot be directly applied to WOM codes. The advantages of the proposed methods are that these are practical and systematic codes, and the complexity of encoding and decoding processes are low. We also introduce effective error locating limited-magnitude parity check error correction codes for the MLC flash memory error with lower complexity. Second, we introduce coding schemes to lower the generated interferences by cell to cell interference. It is known that C2CI is caused by the threshold voltage change of neighbor cells in writing operation. The amount of threshold voltage change is proportional to the magnitude. To minimize the generated interference, the average magnitude needs to be decreased. We propose two new C2CI reduction coding schemes that adjust the average magnitude to reduce C2CI. The proposed coding scheme deals with q-ary message codes, and generates fixed length codes. Message codewords are divided into several blocks, and are modified by modulo addition with proper values to minimize the average magnitude. We also propose low energy Huffman codes based on entropy coding when the frequency of symbols is not distributed uniformly. This scheme produces variable-length codes without redundancy. We modified Huffman codes to minimize average number of high bits ('1' bits). We show that proposed codes generate optimal codewords which have minimum high bits with minimum average codeword length.Chapter 1 Introduction 1 1.1 Backgrounds 1 1.2 Scope and Organization 5 Chapter 2 MLC Flash Memory Interference and Mitigation Techniques for Reliability 9 2.1 MLC flash memory and interference 9 2.2 Signal processing based interference mitigation in MLC flash memories 15 2.3 WOM codes 22 2.4 Asymmetric limited-magitude error correction codes based on distinct sum set 27 Chapter 3 Error Correction Codes for Flash Memories 29 3.1 Introduction 29 3.2 Bidirectional error correction codes for non-binary WOM codes based on distinct sum sets 30 3.2.1 Bidirectional error correction codes based on distinct sum sets 30 3.2.2 Error correction coding schemes for WOM codes based on distinct sum sets 41 3.3 Bidirectional error correction codes for WOM codes based on modulo operation 44 3.3.1 Bidirectional error correction codes based on modulo operation 44 3.3.2 Performance simulation of bidirectional error correction codes based on modulo operation 54 3.3.3 Error correction coding schemes for WOM codes based on modulo operation 58 3.4 Performance of error correction coding schemes for WOM code 61 3.5 Error locating parity check codes for errors with limited magnitude 68 3.6 Summary 77 Chapter 4 On Interference Mitigating Codes for Multi-level Flash Memories 79 4.1 Introduction 79 4.2 The modeling of generated interference in flash memory 80 4.3 Coding schemes for interference mitigation 83 4.3.1 Minimum energy coding 83 4.3.2 Module shift coding 85 4.3.3 Low energy Huffman code 89 4.4 Performance analysis of proposed coding schemes 91 4.4.1 Performance analysis of ME codes 91 4.4.2 Performance analysis of MS codes 93 4.4.3 Performance of low-energy Huffman codes 97 4.4.4 C2CI reduction performance 99 4.5 Summary 102 Chapter 5 Conclusions 105 Appendix A 109 A.1 Performance analysis of MS coding with eta=2 case in chap. 4.4.2. 109 Bibliography 113 Abstract in Korean 120Docto

    Error correction for asynchronous communication and probabilistic burst deletion channels

    Get PDF
    Short-range wireless communication with low-power small-size sensors has been broadly applied in many areas such as in environmental observation, and biomedical and health care monitoring. However, such applications require a wireless sensor operating in always-on mode, which increases the power consumption of sensors significantly. Asynchronous communication is an emerging low-power approach for these applications because it provides a larger potential of significant power savings for recording sparse continuous-time signals, a smaller hardware footprint, and a lower circuit complexity compared to Nyquist-based synchronous signal processing. In this dissertation, the classical Nyquist-based synchronous signal sampling is replaced by asynchronous sampling strategies, i.e., sampling via level crossing (LC) sampling and time encoding. Novel forward error correction schemes for sensor communication based on these sampling strategies are proposed, where the dominant errors consist of pulse deletions and insertions, and where encoding is required to take place in an instantaneous fashion. For LC sampling the presented scheme consists of a combination of an outer systematic convolutional code, an embedded inner marker code, and power-efficient frequency-shift keying modulation at the sensor node. Decoding is first obtained via a maximum a-posteriori (MAP) decoder for the inner marker code, which achieves synchronization for the insertion and deletion channel, followed by MAP decoding for the outer convolutional code. By iteratively decoding marker and convolutional codes along with interleaving, a significant reduction in terms of the expected end-to-end distortion between original and reconstructed signals can be obtained compared to non-iterative processing. Besides investigating the rate trade-off between marker and convolutional codes, it is shown that residual redundancy in the asynchronously sampled source signal can be successfully exploited in combination with redundancy only from a marker code. This provides a new low complexity alternative for deletion and insertion error correction compared to using explicit redundancy. For time encoding, only the pulse timing is of relevance at the receiver, and the outer channel code is replaced by a quantizer to represent the relative position of the pulse timing. Numerical simulations show that LC sampling outperforms time encoding in the low to moderate signal-to-noise ratio regime by a large margin. In the second part of this dissertation, a new burst deletion correction scheme tailored to low-latency applications such as high-read/write-speed non-volatile memory is proposed. An exemplary version is given by racetrack memory, where the element of information is stored in a cell, and data reading is performed by many read ports or heads. In order to read the information, multiple cells shift to its closest head in the same direction and at the same speed, which means a block of bits (i.e., a non-binary symbol) are read by multiple heads in parallel during a shift of the cells. If the cells shift more than by one single cell location, it causes consecutive (burst) non-binary symbol deletions. In practical systems, the maximal length of consecutive non-binary deletions is limited. Existing schemes for this scenario leverage non-binary de Bruijn sequences to perfectly locate deletions. In contrast, in this work binary marker patterns in combination with a new soft-decision decoder scheme is proposed. In this scheme, deletions are soft located by assigning a posteriori probabilities for the location of every burst deletion event and are replaced by erasures. Then, the resulting errors are further corrected by an outer channel code. Such a scheme has an advantage over using non-binary de Bruijn sequences that it in general increases the communication rate
    corecore