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Abstract

Nowadays, computing systems are indispensable in our daily life, because of their de-
ployment in different application areas starting from small embedded electronic control
units, like a small control processor in the automotive, health-care and smart devices, to
high-performance supercomputers designed for advanced software applications like arti-
ficial intelligence, climate modeling, and cryptographic analysis, etc. This achievement
has been done due to the continuous shrinking of the transistor dimensions guided by
Moore’s Law. However, chip power dissipation issue due to the dynamic and static power
consumption has become a major design constraint for further technology down-scaling,
in particular for modern integrated circuits designed for low-power applications in the
emerging “Internet of Things” (IOT), automotive or personalized health-care devices.
In these circuits, the most part of the energy consumption comes from on-chip mem-
ory, primarily due to the static power. Consequently, the traditional on-chip memory
technologies, such as SRAM (Static Random Access Memory) and DRAM (Dynamic
Random Access Memory), cannot target the strict energy budget, because of the high
leakage. Semiconductor industry is actively searching for alternative memory technolo-
gies, including non-volatile memories with zero leakage power for the bit-cell. Moreover,
the data can be retained in the non-volatile memories without any power supply. This in
turn minimizes the static power sharply and paves the way towards normally-off/instant-
on computing.

Among the emerging non-volatile memory technologies, Spin Transfer Torque Magnetic
Random Access Memory (STT-MRAM) is one of the most promising candidates for fu-
ture computing systems. As this technology is based on a magnetic device (called Mag-
netic Tunnel Junction or simply MTJ) that exploits the spin of electrons to store digital
content as resistance states. STT-MRAM promises zero static power, fast access laten-
cies (almost as fast as SRAM) and high integration density (as good as DRAM). It also
provides high endurance, high density, CMOS compatibility and scalability. However,
in order to employ STT-MRAM as the promising low-power on-chip memory solution,
several issues related to this emerging technology have to be addressed. Excessive write
operation costs and variety of reliability issues are the major roadblocks for adopting
this technology. The write operation costs are because of the high write current required
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to flow for a long time. On the other hand, under reliability issues, there are read dis-
turb (erroneous writing while reading), read and write failure, dielectric breakdown, and
retention failure (digital content switching during the idle time). The aforementioned
issues are further exacerbated due to the process variations and temperature effects.

In this dissertation new computing paradigms, architectures and design philosophy are
proposed and evaluated for adopting the STT-MRAM technology as highly reliable, en-
ergy efficient and fast memory. For this purpose, a novel cross-layer framework from
the cell-level all the way up to the system- and application-level has been developed.
In these framework, the reliability issues are modeled accurately with appropriate fault
models at different abstraction levels in order to analyze the overall failure rates of the
entire memory and its Mean Time To Failure (MTTF) along with considering the tem-
perature and process variation effects. Design-time, compile-time and run-time solutions
have been provided to address the challenges associated with STT-MRAM. The effec-
tiveness of the proposed solutions is demonstrated in extensive experiments that show
significant improvements in comparison to state-of-the-art solutions, i.e. lower-power,
higher-performance and more reliable STT-MRAM design.

• For energy-efficient STT-MRAM design:

1. Multi-retention capabilities (i.e., standard and relaxed array regions) and
multi-level write currents (i.e., high, medium and low) have been proposed to
be adopted at memory architecture-level. The switching between regions or
levels is guided according to the application behavior (i.e., performance and
reliability needs). Static and dynamic prediction schemes of the application
behavior are proposed with very high achieved accuracy.

2. Relaxed retention and write parameters have been suggested at device and
circuit levels, respectively. This is along with leveraging the approximate
computing techniques for error tolerance at application-level.

• For high-performance STT-MRAM design:

1. Fast write termination supported with an adaptive error correcting code is
proposed, where the unfinished bits will be processed later at next access by an
adaptive error correcting code (either Lazy-ECC or Conventional-ECC). The
error correcting scheme is defined each access based on the system-level error
probability, which is highly affected by the operating temperature variation.

2. Adjusting system-performance according to the application-level requirements
is achieved by on-the-fly write current scaling and controlling scheme.
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• For reliable STT-MRAM design:

1. Systematic Unidirectional Error-Detecting Code (SEDC) has been efficiently
adopted instead of conventional error code. This is because of the SEDC code
ability to leverage of the asymmetric nature of errors in STT-MRAM.

2. Adaptive and multi-scrubbing level scheme is proposed to address the exces-
sive performance and energy overheads of the conventional scrubbing scheme.
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ZUSAMMENFASSUNG

Heutzutage sind Computersysteme in unserem täglichen Leben unverzichtbar, da sie in
verschiedenen Anwendungsbereichen eingesetzt werden, angefangen bei kleinen einge-
betteten elektronischen Steuergeräten wie Automobil, Gesundheitswesen und intelli-
genten Geräten bis hin zu Hochleistungs-Supercomputern, die für fortschrittliche Soft-
ware wie künstliche Intelligenz, Klimamodellierung und kryptographische Analyse usw.
entwickelt wurden. Diese Leistung wurde durch die kontinuierliche Schrumpfung der
Transistorabmessungen nach dem Moore’schen Gesetz erreicht. Das Problem der Chip-
Leistungsaufnahme aufgrund des dynamischen und statischen Stromverbrauchs ist je-
doch zu einem wesentlichen Designeinschränkungsmerkmal für die weitere Verkleinerung
der Technologie geworden, insbesondere für moderne integrierte Schaltungen, die für
Anwendungen mit geringer Leistung im aufkommenden ”Internet der Dinge” (IOT),
im Automobil oder im personalisierten Gesundheitswesen entwickelt wurden. In diesen
Schaltungen stammt der größte Teil des Energieverbrauchs aus dem On-Chip-Speicher,
vor allem aufgrund der statischen Leistung. Folglich können die traditionellen On-Chip-
Speichertechnologien wie SRAM (Static Random Access Memory) und DRAM (Dynamic
Random Access Memory) aufgrund der hohen Leckage nicht auf das strenge Energiebud-
get ausgerichtet werden. Darüber hinaus können die Daten ohne Stromversorgung auf-
bewahrt werden. Dies wiederum minimiert die statische Leistung stark und ebnet den
Weg zu normal-off/instant-on computing.

Unter den aufkommenden nichtflüchtigen Speichertechnologien ist der Spin Transfer
Torque Magnetic Random Access Memory (STT-MRAM) einer der vielversprechend-
sten Kandidaten für zukünftige Computersysteme. Da diese Technologie auf einem
magnetischen Gerät (Magnetic Tunnel Junction oder einfach MTJ genannt) basiert, das
den Spin von Elektronen nutzt, um digitale Inhalte als Widerstandszustände zu spe-
ichern. STT-MRAM verspricht null statische Leistung, schnelle Zugriffslatenzen (fast
so schnell wie SRAM) und hohe Integrationsdichte (so gut wie DRAM). Es bietet auch
eine hohe Ausdauer, hohe Dichte, CMOS-Kompatibilität und Skalierbarkeit. Um STT-
MRAM als vielversprechende Low-Power-On-Chip-Speicherlösung einzusetzen, müssen
jedoch einige Probleme im Zusammenhang mit dieser neuen Technologie gelöst werden.
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Die überhöhten Schreiboperationskosten und eine Vielzahl von Zuverlässigkeitsproble-
men sind die wichtigsten Hindernisse für die Einführung dieser Technologie. Die Kosten
für den Schreibbetrieb sind auf den hohen Schreibstrom zurückzuführen, der benötigt
wird, um über einen längeren Zeitraum zu fließen. Unter Zuverlässigkeitsproblemen gibt
es Lesestörungen (fehlerhaftes Schreiben beim Lesen), Lese- und Schreibfehler, dielek-
trischer Durchschlag und Rückhaltefehler (Umschalten digitaler Inhalte während der
Leerlaufzeit). Die oben genannten Probleme werden durch die Prozessschwankungen
und Temperatureinflüsse noch verschärft.

In dieser Dissertation werden neue Rechenparadigmen, Architekturen und Designphiloso-
phien vorgeschlagen und bewertet, um die STT-MRAM-Technologie als hochzuverläs-
sigen, energieeffizienten und schnellen Speicher einzusetzen. Zu diesem Zweck wurde
ein neuartiges Cross-Layer-Framework von der Zellenebene bis hin zur System- und
Anwendungsebene entwickelt. In diesem Rahmen werden die Zuverlässigkeitsprobleme
mit geeigneten Fehlermodellen auf verschiedenen Abstraktionsebenen genau modelliert,
um die Gesamtausfallraten des gesamten Speichers und seiner Mean Time To Fail-
ure (MTTF) unter Berücksichtigung der Auswirkungen von Temperatur- und Prozesss-
chwankungen zu analysieren. Um den Herausforderungen im Zusammenhang mit STT-
MRAM gerecht zu werden, wurden Design-, Compile- und Runtime-Lösungen bereit-
gestellt. Die Wirksamkeit der vorgeschlagenen Lösungen wird in umfangreichen Exper-
imenten demonstriert, die signifikante Verbesserungen gegenüber modernen Lösungen
zeigen, d.h. leistungsschwächeres, leistungsfähigeres und zuverlässigeres STT-MRAM-
Design. Die Halbleiterindustrie sucht aktiv nach alternativen Speichertechnologien, ein-
schließlich nichtflüchtiger Speicher mit leckagefreier Leistung für die Bitzelle.
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Chapter 1

Introduction

The innovation in the computing system has been powered for the past five consecutive
decades by Moore’s law [1], which predicts an exponential growth in the MOSFET
transistor density per unit area of each CMOS technology generation due to shrinking the
geometry roughly by a half every 18 months. As a result, system functionality, memory
size, storage capacity and the processor performance have been steadily optimized at the
same rate [2–4] (Figure 1.1(a) and (b)). However, the energy gain is not in proportion
with the dimension scaling factor of the technology generation, as for a given chip area
the power dissipation remains constant. Furthermore, transistor lengths scaling increases
the leakage currents exponentially, thereby making the static power a major design
constraint (Figure 1.1(c)). Therefore, Dennard’s law states to scale down both voltage
and current of the transistor along with its physical dimension [5]. The combination of
Moor’s law and Dennard scaling leads to reduce the assumed factor of the performance
gain significantly, which is expected to find a limit soon (Figure 1.1(a)).
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Figure 1.1: Moore’s law [6]: (a) Evolution of transistor count of Integrated Circuit (IC)
chips ITRS scaling trends of IC’s performance; (b) scaling trends of memory capacity

and (c) scaling trends of power density.
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1.1 Memory Wall Issue

The computing system of the conventional von Neumann architecture is composed
mainly of a computational part (processor), a storage part (memory) and communi-
cation buses (data and address buses). The processor performance is tightly bound to
the memory performance (memory bandwidth), as the data and instructions of the ex-
ecuted programs are stored in a limited memory. On the other hand, the exponential
performance improvement in processor exceeds that in memory, because of the signifi-
cant difference in the adopted semiconductor technologies in computational circuit and
storage cells [7]. This gap of performance seen in Figure 1.2 has further increased due
to technology down-scaling, leading to hit a wall in the performance improvement of
the entire computing system, referred to as “Memory Bandwidth” or “Memory Wall”
problem [8–13]. The “On-Chip Memory” is the only way to defend against Memory
Wall problem because of improving the memory performance by reducing the average
time (tavg) required to access the memory [14], where tc and tc are on-chip and off-chip
memory (cache and main memory) access time and phit is the cache hit probability.

tavg = phit × tC + (1− phit)× tM (1.1)

By reducing tC to match the CPU clock cycle and increasing the hit capacity in the
cache, the memory speed scales with that of processor.

lim
{tC ,phit}→{1cycle,1}

tavg = CPUSpeed (1.2)

Single level of cache is not enough to bridge the gap between processor and memory,
since the larger the cache, the larger its access time, and the smaller the cache, the
smaller its hit probability. Therefore, Multi-level cache hierarchy (two or more levels) is
the best potential solution to obtain the best system performance [8, 15, 16].
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Figure 1.2: Performance gap between memory and processor due to Moore’s law im-
pact [8]

1.2 Power Wall Issue

Although the achieved performance improvement in the computing system that has been
done due to the continuous shrinking of the transistor dimensions guided by Moor’s Law,
the power consumption, consisting of the dynamic and static power consumption, has
become a major design constraint, referred to as “ Power Wall” problem [17], as the
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power density per unit area stays constant. In fact, this problem is originally the result
of the fact that the static power consumption of each transistor hardly becomes smaller
with the technology down-scaling than the dynamic power [18]. The effects and conse-
quences of the power wall problem are exacerbated in particular for modern integrated
circuits designed for low-power applications in the emerging “Internet of Things” (IoT),
automotive or personalized health-care. In such applications, the energy consumption,
primarily due to the static power, limits their operation time [19, 20].

Power Wall has been partially addressed at device-level with voltage scaling at the cost
of lower performance and reliability. However, at application-level, as the total energy is
equal to the integral of the power dissipation over execution time, total energy consump-
tion at lower voltage will be reduced only if the decrease in the power dissipation is lager
than the increase in the execution time. Thus, Dynamic Voltage and Frequency Scaling
(DVFS) policies have been explored to adjust the trade-off levels between performance
and power with respect to the application requirements [21]. At system-level the total
energy consumption is the sum of the dissipated energy in each active or non-active
component, while the performance is tightly bound to only the bottleneck and active
components. Therefore, for in-active components Power Gating PG scheme suppresses
the dynamic and static power significantly [22].

1.3 Why STT-MRAM On-Chip/Off-Chip Memory?

Addressing the memory-wall problem in the recent computing system requires more
memory capacity and higher cache hierarchy. This in turn makes the memory system
the dominant part of the system. A typical memory hierarchy or storage pyramid con-
sists of a multi-level of different technologies, which are accessed by different parts of
the system [23]. At the top, the register file, which is accessed very fast and directly
by the processor during the program execution, is used to store program parameters
values. In the next level, the on-chip cache hierarchy is typically integrated directly
into the processor chip as an invisible memory to the programmer to store the program
instructions as a sub-set of the most frequently accessed data (memory elements). Sys-
tem performance is tightly bound to the cache performance [8, 24, 25], which is more
important than the cache size. The next level is the off-chip main memory, which is not
part of the processor. It contains the working set size (i.e., a full copy of the executed
programs) and is accessed only in case of cache miss or replacement.

File register, cache levels and main memory, referred to as primary memory and used
to store active items of data which are required for the current applications, are im-
plemented based on SRAM and DRAM technologies (i.e., semiconductor technologies),
which are volatile memories and retain data while powered. However, volatile memory
consumes fairly large static power due to leakage current compared to its low access
energy. PG is a promising way to address the leakage current issue, however it requires
a power management, referred to as Normally-Off Computing [22], in order to guarantee
the data integrity in the storage elements (memory) of the powered-off components with
minimum overheads. The traditional volatile technology used in the on-chip memory
is SRAM provides fast read and write performance despite its relatively large cell size
compared to other technologies. One of the proposed solutions is to save the content of
the SRAM cell in an external non-volatile memory for every power gating cycle. This
minimizes the power gains obtained by PG. A full usage of PG requires Non-volatile
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technology for on-chip memory that provides the ability to retain the context locally,
[26, 27].

On the other hand, SRAM technology provides around 8× lower capacity for a given area
compared to DRAM. However, DRAM performance is not sufficient for processors, as it
is limited by the charging and dis-charging processes of the storage device in DRAM cell
(i.e., an electric capacitor). Furthermore, the charge of capacitor is leaky and requires
a periodic refresh. Typically, every 1 ms, all cells contents must be read and written
again to avoid data loss. This makes the energy consumption for the refreshing process
dominant in DRAM technology. Moreover, the processor is not able to access DRAM
array while it is being refreshed, which reduces system performance significantly.

The electric charge and current leakage phenomenon of DRAM and SRAM technologies,
respectively, raise the need of replacing the current volatile on-chip and off-chip memories
with a Non-Volatile Memory (NVM), which firstly retains data even while the device
is in power-off mode, and secondly provides zero leakage during the active mode, while
satisfying SRAM performance and DRAM density [26, 28–30].

New generation of NVM technologies, such as Phace-Change Memory (PCM) [31–33],
Resistive Random Access Memory (RRAM) [34–36] and Magnetic Random Access Mem-
ory (MRAM) [37–39], which are byte-addressable, open the way toward a new memory
system, which presents prominent opportunities in favor of low power design, as they
are not leaky and don not require power to retain the data. Among these emerging
NVM technologies, STT-MRAM is the most promising one to be adopted as a universal
technology in the memory hierarchy [40, 41]. As this technology is based on a mag-
netic device (called Magnetic Tunnel Junction or simply MTJ that exploits not only the
charge of electrons but also their spin to store a digital data as resistance states. Thus,
this storage mechanism provides zero leakage. MTJ consists of two ferromagnetic layers
separated by a thin oxide layer. The magnetic orientations of this device specifies the
resistance state as low or high to represent logic ‘0’ or ‘1’, respectively. STT-MRAM
has several beneficial features such as fast access latencies (comparable to SRAM), high
density (as good as DRAM), CMOS compatible, high endurance and scalability.
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Figure 1.3: Comparison of STT-MRAM technology with conventional and emerging
memory technologies
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Next figure illustrates the comparison of STT-MRAM technology with respect to the
convention volatile (Figure 1.3(a)) and other emerging non-volatile (Figure 1.3(b)) mem-
ory technologies [42–45]. However, adopting STT-MRAM as a promising replacement
of DRAM and SRAM in the cache and memory system design suffers from several issues
related to the reliability and write operation [40, 41, 46–48].

1.4 Key Challenges

In STT-MRAM, the switching behavior of the cell contents is inherently stochastic [49,
50]. Thereby, it can be classified into desired switching at write access and undesired or
erroneous one at read access or during the retention time.

The desired switching of the write process is non-deterministic even under the same
environmental and operating conditions [51, 52]. This phenomena is because of two main
reasons: i) the spin-transfer efficiency factor of the free layer for switching its magnetic
orientation to the same or the opposite spin direction of the reference layer, and ii) the
impact of the voltage degradation of the access transistor, which reduces the current
density. However, this stochasticity can be converted into a deterministic probability,
which should by very low, by specifying high write current required to flow for a long
write pulse [53, 54]. This in turn challenges the replacement of SRAM technology with
STT-MRAM for on-chip memories, as STT-MRAM consumes higher write energy with
slower write access than SRAM.

On the other hand, the random erroneous switching at read access or even during the
retention time is due to unavoidable thermal fluctuations of the MTJ device, which
is further exacerbated due to the process variations and temperature effects, resulting
in a variety of reliability issues [55–58] such as read disturb (erroneous writing while
reading), read and write failure, dielectric breakdown, and retention failure (digital
content switching during the idle time).

The major challenges in employing the STT-MRAM technology as a universal technology
in the memory hierarchy is to reduce the on-it write latency and energy required for on-
chip memory along with satisfying reliability constraints [46].

Table 1.1: Scope of contributions

Contribution Performance Energy
improvement reduction

Lazy-ECC scheme [59] 39% 29%
Non-uniform & Adaptive ECC scheme [60] 23.5% 24%
SEDC scheme with write through policy [61] As SRAM 12%
Adaptive write current mechanism [62] 15.5% 1.7%
Approximate computing for STT-MRAM [63] 25% 70%
Compile-time data mapping approach [64] 9% 49.7%
Adaptive scrubbing mechanism [65] Eliminate scrubbing overheads
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Figure 1.4: A cross-layer design framework

1.5 Dissertation Contributions

This dissertation makes the following contributions, which can be classified into three
main categories, in order to address the aforementioned challenges associated with STT-
MRAM based memory system, specifically, for on-chip memories, 1) optimizing perfor-
mance under reliability constraints, 2) minimizing energy under reliability constraints,
and 3) minimizing overheads of satisfying target reliability constraints.

The contribution scope of this work, which is briefly illustrated in Table 1.1 with sum-
marized results, have been achieved by developing a novel cross-layer framework from
the cell-level all the way up to the system- and application- level, as demonstrated in
Figure 1.4.



Introduction 7

0 10 20 30 40 50 60 70 80 90 100
0

2

4

Thermal stability factor

W
rit

e 
E

ne
rg

u 
[p

J]

 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

R
el

ia
bi

lit
y 

pr
ob

ab
ili

ty

Energy
Reliability

High write−energy

Efficient write−energy
with 

Acceptable reliability

Un−
acceptable reliability

Figure 1.5: Energy and reliability trade-off of STT-MRAM design

1.5.1 Minimizing energy under reliability constraints

STT-MRAM adopts the Spin-transfer torque switching as a write mechanism in the
MTJ device. Therefore, high write current is required in order to inject enough spin-
polarized current in the free layer of the MTJ device. Consequently, write operation in
STT-MRAM technology dissipates energy aggressively, which makes it not suitable for
memories accessed with high write rate, like on-chip memories.

The minimum current required for the switching decreases as the STT-MRAM size
shrinks. This results in reducing the thermal stability factor, and hence relaxing non-
volatility condition. In fact the standard non-volatile STT-MRAM technology is de-
signed with extremely long retention time (i.e., for more than 10 years), which meets
the high-level memory requirements, while for on-chip memories, a small retention time
(a few ms) is sufficient to retain the data [48]. Therefore, semi-volatile STT-MRAM
technology with relaxed retention time can be used for such caches with much lower
write energy and even shorter write pulse, as the data in on-chip caches requires shorter
life-time. However, this approach increases the rate of the retention failures as well as
the chances of the cell content being flipped during the read operation [66]. Figure 1.5
illustrates the reliability-energy trade-off along with thermal stability factor scaling.

A hybrid STT-MRAM on-chip memory design is very useful to prevent the data loss or
distorted along with achieving low-power and fast write operation, however, to explore
the advantage of the hybrid cache, data management policy has to be designed accurately
based on the data behavior, which reflects the performance and reliability requirements
of the application. The key idea is to create a cache hierarchy with two different regions:
a write region implemented by semi-volatile STT-MRAM, which has low write energy
and latency, and a read region with non-volatile STT-MRAM, which protects the data
against read and retention errors. Static and dynamic data management approaches are
introduced in this thesis.

In the static approach, data mapping decisions are made at compile-time, based on the
application requirements (i.e., execution time and memory access rate). Then, program
data layout is re-arranged at compilation time for achieving fast and energy efficient
hybrid STT-MRAM on-chip memory design with no reliability degradation. In this
approach, application requirements have been defined at function granularity based on
profiling and static code analysis, which estimate the required retention time and mem-
ory access rate, respectively.

Adaptive or dynamic data management is important, as it considers the unexpected
behavior of the software based on the current status of the hardware. Dynamic data
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Figure 1.6: Performance and energy trade-off of the write operation in STT-MRAM
technology

allocation is implemented based on access pattern prediction of read-intensive and write-
intensive data. Three dynamic behavior prediction approaches are introduced with a
prediction accuracy of 75%, on average.

The fundamental challenges (i.e., read and retention errors) related to employing semi-
volatile STT-MRAM as a promising low-power solution can resolved in the scope of
approximate computing, in which such errors can be tolerated at the application level.
In general, approximate computing relaxes the bounds of accurate computing for the
applications which are inherently error resilient and in return, it improves the efficiency
of the system by other means such as performance and energy improvements. In this
thesis a comprehensive trade-off study between energy and reliability models in semi-
volatile STT-MRAM-based on-chip memory design is proposed.

1.5.2 Optimizing performance under reliability constraints

Typically, the write current required to switch STT-MRAM cell contents is set for the
minimum writ energy point, which dramatically impacts the needed write latency, see
Figure 1.6. On the other hand, at system-level, higher performance can achieve better
energy efficiency, while boosting the performance required to meet application-level re-
quirements, if the decrease in the execution time is lager than the increase in the induced
power dissipation. Based on this observation, two approaches for optimizing the perfor-
mance of STT-MRAM memory along with the total energy while satisfying reliability
constraints are proposed in this dissertation.

Opportunistic write technique equipped with Lazy-ECC scheme is the first approach
proposed to reduce the excessive write margin of the STT-MRAM technology to a large
extent by terminating the write process before switching of the bits with large write
latency are completed, which will be later processed by Lazy-ECC, which eliminates the
costs of conventional ECC codes.

However, in some cases, the fast write termination could not achieve the application
requirements. Therefore, an adaptive write current scaling technique is proposed, which
adjusts the write current, and hence the write latency and energy based on the per-
formance needs at run-time. Consequently, maximizing the overall system performance
will be achieved along with minimizing the overall energy consumption under reliability
constraints.
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Figure 1.7: Asymmetric switching behavior of STT-MRAM bit-cell content

1.5.3 Minimizing overheads of satisfying target reliability

In order to have a low-power but also highly reliable STT-MRAM design, it is impor-
tant to co-optimize reliability and energy efficiency simultaneously, as both constraints
are tightly coupled via the employed thermal stability factor and read/write parameters
(current and pulse). To achieve this goal, the fact that STT-MRAM technology poses
asymmetric errors due to the nature of the asymmetric switching of the MTJ content
during active and retention time (see Figure 1.7), has been exploited. Therefore, the ef-
ficient Systematic Unidirectional Error-Detecting Code SEDC is proposed to be adopted
instead of a conventional ECC code. This SEDC scheme needs to be combined with a
proper cache access mechanism (i.e., write through) in order to fetch correct data in a
case of an error detection.

We also have verified the data integrity, which is retained in the standard or relaxed
STT-MRAMmemory by proposing a process variation and temperature aware scrubbing
technique, where the cache lines have been clustered into different groups based on their
retention times. Each of these groups uses different scrubbing intervals. In addition,
the scrubbing interval is adjusted at run-time based on the operating temperature to
guarantee target error rate.

1.6 Dissertation Outlines

This chapter presented the motivation and contributions of this thesis. The remainder
of the thesis is primarily categorized into eight chapters:

• Chapter 2 provides the preliminaries on STT-MRAM technology and presents ba-
sics of cache architecture, as well as this chapter gives an overview about the coding
theory. Summary of the state-of-the-art related to the STT-MRAM challenges as
caches is discussed at the end of this section.

• Chapter 3 presents the details about hybrid SVM and NVM STT-MRAM cache
array for energy-efficient design supported with statistic and dynamic data man-
agement policies.

• Chapter 4 presents the potential of the energy-efficient SVM STT-MRAM tech-
nology in the scope of approximate computing under the process variation and the
operating temperature considerations.
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• Chapter 5 proposes the first performance improvement approach. First, the Op-
portunistic Write Policy is introduced. Then, the proposed Lazy-ECC circuit is
described, in which a fully combinational one stage decoding circuitry is broken
up into two pipeline stages, detection and correction error stages. Finally, A non-
uniform adaptive ECC approach for managing process variation and temperature-
dependent errors at runtime has also been proposed.

• Chapter 6 describes the adaptive write approach for STT-MRAM performance
optimization. First , the opportunity of scaling write current on-the-fly based on
workload needs is presented with respect to energy-performance trade-off at device
and system levels.

• Chapter 7 exploits the asymmetry in the MTJ switching behavior for writing and
retaining ‘1’ and ‘0’ values by adopting asymmetric SEDC scheme instead of con-
ventional symmetric ECC scheme. This leads to significant reliability enhancement
in STT-MRAM design with negligible SEDC related overheads.

• Chapter 8 explains the proposed adaptive scrubbing mechanism which signifi-
cantly reduces both performance and energy overheads associated with conven-
tional scrubbing. In the proposed approach, STT-MRAM cache lines are clustered
into different groups based on MTJ process variation effects, while scrubbing in-
tervals of each group are adjusted dynamically according to the operating temper-
ature.

• Chapter 9 concludes the thesis and discusses the potential future direction of the
STT-MRAM memory.



Chapter 2

Background and State-of-The-Art

This chapter summarizes the background and related work concerning energy dissipa-
tion reduction and performance optimization under reliability constraints of an STT-
MRAM-based on-chip memory design. In this chapter, a general background for cache
architectures are firstly presented. Then, a short overview of the error detecting and er-
ror correcting codes is described. Afterwards, memory architectures using STT-MRAM
technology are explained, followed by a comprehensive reliability study with respect to
the operating temperature and process variations. Finally, state-of-the-art methodolo-
gies for adopting STT-MRAM technology for on-chip memories instead of SRAM are
presented.

2.1 Cache Basics and Terminology

Cache memory in computing systems is small and fast memory, which is placed between
processors and main memory. Caches are hardware-managed by cache controller and
are organized as a power of 2 number of lines. Each line holds multiple bytes or words.
Hence, data in cache is either byte-accessible or word-accessible. A cache line size is
supposed to meet the size of main memory block. Cache is introduced in order to improve
the memory response time and bridge the gap between high speed processors and slow
main memories [8, 24, 25]. Therefore, it is implemented with faster technology rather
than main memory, such as SRAM technology, stores a sub-set of the recent accessed
memory contents to exploit temporal and spatial locality of the data [67], which means,
once a memory location (block) is accessed, there is high probability to access it and its
nearby locations in the near future. A typical cache is divided into instruction and data
cache to hold the instructions and data of the programs fetched by the processor.

A cache array is divided into groups of columns and rows as illustrated in Figure 2.1(a).

• Index: to identify the cache line or group.

• Tag: to identify the data, as many blocks of memory may be mapped into the
same cache line or group.

• Valid bit: to indicate weather the data in a cache array is valid (as “1” logic) or
not (as “0” logic).

11
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Figure 2.1: Cache structure: (a) Cache array; (b) CPU data/byte address; (c) Accessing
data implementation

• Dirty bit: to indicate weather the fetched memory data in the cache array has
been modified by a write request from the processor (as “1” logic) or not (as “0”
logic).

Consequently, as shown in Figure 2.1(b), the CPU physical data address consists of tag
bits, index bits, which are together referred to as “block address” in the memory, while
block-offset bits identify a specific word requested by the processor from an accessed
memory block.

Three methods are defined for mapping the memory data into cache lines [23, 68]:

1. Fully-associative: Memory address can be mapped into any cache line, resulting
in long access time, as it is required to search for needed data in the entire cache.

2. Direct-mapped: Each memory address is translated directly into a specific single
cache line, resulting in reducing the access time significantly at the cost of the data
availability in the cache.

3. Set-associative: Memory address is translated into a limited number of cache lines.
For I-way set-associative cache, a block of data from the main memory can be
written only to one of I cache lines. Consequently, the time to search and access
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data is reduced by a factor of N/I in a I-way set associative cache compared to a
fully-associative one containing N number of lines.

Accessing data in caches requires a tag comparison logic (see Figure 2.1(c)), which fires
either a hit or miss signal, if the requested data is found or not. The cache performance
is tightly bound to the hit rate and hit latency. A hit/miss rate refers to the number
of cache hits/misses divided by the total number of accesses, whereas hit latency is
defined as the required time to transfer the requested available data to the processor.
Consequently, a larger cache improves the hit rates at the cost of increasing the hit
latency, while the hit rate for small caches will be reduced significantly. �Addressing this
contradictory issue can be solved by adopting a multi-level cache system [8, 15, 16], where
fast and small low level caches (i.e., L1 and L2) are adopted to meet the performance
requirements by reducing the hit latency, while a relative larger cache for higher level
(i.e., L3) limits the impact of the miss rate.

Data consistency between cache levels and main memory is maintained with one of the
two following write policies:

1. Write Through (WT): Data is updated in cache and main memory simultaneously.
Thus, cache content is always consistent with memory. However, the overall per-
formance is reduced significantly due to the unnecessary accesses to the slow main
memory.

2. Write Back (WB): Data in main memory is not updated simultaneously with the
modified data in the cache. This improves the performance of memory system at
cost of higher design complexity to face the data inconsistency.

2.2 Error Detecting and Correcting Codes

Memory system is especially sensitive to variability (i.e., operating temperature and
process variation), whose impacts are exacerbated due to the continuous voltage and
technology down-scaling. Consequently, a correct store or access to the data in some
memory cell may fail, resulting in hard and soft errors. Invented code-based techniques
for error detection and correction partially accommodate such errors in an efficient
way [69, 70], at cost of redundant information integrated with the original stored data
in the memory. The more added redundant information, the higher are error detection
and correction capability.

The stored information in memory is represented as a sequence of “0” and “1” (binary
form). Hence, a finite field for detecting and correcting binary errors is defined as
GF (2n) = ({0, 1}n), which has only two elements “0” and “1”, and consists of (n-bits)
vectors, so called (n-tuples) codewords, representing polynomial of degree ∈ {0, 1, ..., n−
1} with arithmetic modulo of a prime generator polynomial of degree m over GF (2);
m ≤ n. If the collection of n-tuples codewords is a set of all linear combinations of k
independent (n-bits) vectors in a vector space GF (2n), this code C is called a linear
code, and hence, any k × n matrix G of these vectors is defined as a Generator Matrix.

A code C is called systematic, if the G matrix has the form of G = (Ik | P ), where Ik =
(k× k) is identity matrix and P = (k× (n− k)) is redundant matrix. H = (−P t | In−k)
is a Parity Check Matrix of C:



Chapter 2 Background and State-of-The-Art 14

(Ik | P )(−P t | In−k) = −P + P = 0 (2.1)

In a systematic code, the original message of m appears unscrambled at the beginning of
a generated codeword (c ∈ C = m ·G = m ∈M | p ∈ P ). Encoder and decoder in linear
code have a simple design, as encoding at worst case is a vector-matrix multiplication,
and several steps in the decoding process are linear. Suppose that m, c, e and c’, are
the original, coded, corrupted, error vectors, respectively.

c′ = c+ e −→ e = c′ − c (2.2)

s = c′ ·HT = (c+ e) ·HT = c ·HT + e ·HT = e ·HT (2.3)

where, s is the syndrome calculated to find the possible errors patterns e in the coded
message c’.

Hamming distance t between any codewords ci, cj ∈ C is the number of coefficients in
which they differ. A correcting code is considered as a perfect code if for some t >=
every codeword is within Hamming distance t of exactly one codeword. Consequently,
the code bound (i.e., correcting capability) is ⌊12(t− 1)⌋.

Cyclic code is a linear code where a cyclic shift of any word from the finite field GF (2n)
is a codeword of C, which is extracted from a right shift cyclic from another codeword.

(c0, c1, ..., cn−2, cn−1) ∈ C =⇒ (cn−1, c0, c1..., cn−2) ∈ C (2.4)

For an (n,k) cyclic code (C) over GF (2), there is a monic and unique polynomial g(x)
called as Generator Polynomial of C with degree of (n − k), if and only if g(x) is a
divisor of ∀c ∈ C. The g(x) is a divisor of xn − 1 polynomial, and hence the Parity-
Check Polynomial (h(x)) is calculated as follows:

h(x) = (xn − 1)/g(x) (2.5)

2.2.1 Reliability Modes of Binary Storage Device

1. Reliable storage device: It is an error-free storage device, where, the retained
binary data is fetched exactly at the output without error (Figure 2.2(a)).

2. Symmetric un-reliable storage device: There are two possible outputs (correct and
wrong output) corresponding to each input (i.e., retained data 0,1) with the same
error probability (p) (Figure 2.2(b)).

3. Asymmetric un-reliable storage device: The error probabilities of (input, output)
pairs are not similar 2.2(c).
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Figure 2.2: Reliability modes of binary storage device

2.2.2 Possible Error Codes

2.2.2.1 Single Error Correcting Hamming Code

Binary Hamming Code (n,m,e) [71, 72] is a code of length (n), n = 2r − 1 : r >= 2,
and has a Parity Check Matrix (P = (k × (n − k))), whose vectors are of length r.
Hamming code is a perfect error correcting code of distance t, dimension of m where:
n = m − r, and with hamming bound of 1 (i.e., error correcting capability (e) of 1).
This code supports a binary storage device with symmetric error probability.

(n,m, 1) = [(7, 4, 1), (12, 8, 1), (21, 16, 1), (38, 32, 1), (71, 64, 1)] (2.6)

2.2.2.2 Bose-Chaudhuri-Hocquenhgem Code (BCH)

It is the most studied family of cyclic linear codes [73, 74]. The BCH code is derived from
a single error correcting hamming code as a class of multiple error correcting codes. The
generators polynomials (g(x)) are products of minimal polynomials f(x), over GF (2)
of vectors of GF (2n). The BCH code can correct e errors if the minimum hamming
distance is 2e+ 1.

2.2.2.3 Systematic Unidirectional Error-Detecting Codes SEDC

The SEDC [75] is an optimal code for detecting asymmetric errors, as it is systematic
and ideal to detect a fixed number of errors at run time. Furthermore, encoder/decoder
circuits of SEDC are very simple with relatively low penalty, hardware and storage
overheads. It is capable of detecting a large number of errors (e) with less number of
required redundant bits r.

e = 5 · 2(r4) + r4 (2.7)
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2.3 Memory Architectures Using STT-MRAM Technology

2.3.1 STT-MRAM Basics

A typical STT-MRAM bit-cell consists of a Magnetic Tunnel Junction MTJ device and
an access transistor, as shown in Figure 2.3 (b). The MTJ device is mainly composed
of two ferromagnetic layers, namely reference and free layers. These two layers are sep-
arated by a very thin oxide barrier. The magnetic orientation of the reference layer is
fixed, while that of the free layer is adjusted according to the direction of the current
flowing through the MTJ. Each MTJ device is used to store one bit value depending on
the relative magnetic orientation of the two ferromagnetic layers. When the magnetiza-
tions of the two layers are parallel (‘P’), the MTJ has a low resistance value. In contrast,
the anti-parallel (‘AP’) magnetization leads to higher resistance of the MTJ. These two
resistance states are utilized to represent logic ‘0’ and ‘1’ (see Figure 2.3 (a)). The key
parameter of the MTJ is the Thermal Stability Factor ∆, which specifies the stability
of the magnetic orientation in the free layer against the thermal noise [48]. Hence, the
adopted ∆ defines the amount of current required to switch the magnetic orientation
of the free layer during a write access. Alternatively, it determines the induced failure
due to the erroneous switching of the magnetic orientation at idle time or during a read
access [55]. The ∆ value is highly influenced by the operating temperature and the
process variation, i.e., the volume of the free layer of the MTJ device [48, 76].

2.3.2 Read and Write Accesses in STT-MRAM

The read access in STT-MRAM requires a small current (Ir) to sense the resistance
value of the MTJ, whereas writing into the bit-cell needs a high write current (Iw),
which is much higher than the critical current (Ic) (minimum current required to switch
the magnetization of the MTJ for a given write period).
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The write operation in STT-MRAM is intrinsically stochastic due to the random ther-
mal fluctuations in the MTJ. Therefore, the switching time can significantly vary. The
’AP’ and ’P’ switching delay distributions for a 64-bit data are shown in Figure 2.4. As
shown, the ’AP’ switching delay has a wider distribution compared to the ’P’ switching
delay. Moreover, the ’AP’ distribution has a very long tail. Therefore, the write latency
of an STT-MRAM memory is determined with respect to its AP switching delay dis-
tribution to guarantee a certain level of reliability. Thus, STT-MRAM write latency is
pessimistic and leads to a significant performance penalty and a considerably high write
energy.

2.3.3 Retention Time and Critical Current in STT-MRAM

The data retention time indicates how long data can be retained in a non-volatile memory
cell after being written. In STT-MRAM, the retention time depends on the thermal
stability factor ( ∆) value of the MTJ cell, which specifies the stability of the MTJ
resistance state against the thermal noise. This means that the higher the ∆ value, the
longer the data can stay in the bit-cell. For a ∆ value of 60, MTJ cell can retain its
content for 10 years [48]. The ∆ value can be modeled as:

∆=
V ·Hk ·Ms

2 ·KB · T
(2.8)

where V is the volume of the free layer, Ms is the saturation magnetization, KB is the
Boltzmann constant, T is the temperature in Kelvin and Hk is the effective anisotropy
field. As shown in Equation (2.8), the ∆ value is directly proportional to the volume of
the MTJ cell, which can be tuned by changing the MTJ size during fabrication. Another
way to alter ∆ is by adjusting Ms and Hk values at the material level during the MTJ
stack development.

On the other hand, an MTJ cell with a high ∆ value requires high switching latency
and energy. This is due to the fact that the thermal barrier is higher for a high thermal
stability, hence requires more current for a longer duration to perform the switching.
The ∆ relation with Ic can be modeled using the following equation as [77]:
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Figure 2.5: (a) Process variation; (b) Operating temperature effects on the thermal
stability factor scaling

Ic=
4 · e ·KB · T

h
· α
η
·∆ · (1 +

4 · π ·Meff

2 ·Hk
) (2.9)

where h is the Planks constant, α is the damping constant, η is the STT-MRAM effi-
ciency parameter and 4πMeff is the effective demagnetization field.

As MTJ cell is mainly composed of several ultra-thin layers, any slight variation in the
fabrication process of the oxide thickness results in an aggressive change in the magnetic
and electrical STT-MRAM parameters including: 1) the thermal stability factor (∆)
for retention and read operation and 2) the critical current (Ic) for write operation.
Therefore, process variations result in large variations in the switching probability during
idle and active time. This in turn induces undesired bit switching, namely retention
failure during idle time and at active read and write accesses so-called read disturb and
write error rate, respectively. The MTJ switching parameters mainly depend on the
volume of the free layer (V), which in turn depends on the radius (r) of the MTJ [76].

{Ic,∆} ∝ V ∝ r2 (2.10)

In this work, the MTJ oxide thickness is set to 2.0 nm, and an inter-die Process Varia-
tion PV of 5% according to the Pelgrom law is considered [78], as there is no published
high volume wafer scale information available from foundries. Figure 2.5 illustrates the
variations in the thermal stability factor based on the variations in the scaled r. For
our analysis, we have assumed a normally distributed radius variation with a standard
deviation of δ = 5%. This constructs the ∆ variation, as it depends on the radius of the
MTJ cell. However, the results are not dependent on particular PV assumptions and
any particular distribution can be considered. Then, we select 4 × 106 and 0.5 × 106

samples for L2 (512 byte) and L1 (64 byte), respectively. Finally, the minimum delta is
defined under the operating temperature variation for the data integrity guarantee.



Chapter 2 Background and State-of-The-Art 19

2.3.4 STT-MRAM Reliability Challenges

STT-MRAM technology suffers from various reliability threats including write failure,
read disturb and retention failure [79–82].

Read Disturb: Since both read and write currents share the same path in the STT-
MRAM bit-cell, the read current can erroneously switch the bit-cell content. This phe-
nomenon is known as read disturb. The read disturb probability is strongly dependent
on the read current (Ir), the read duration (tr), and the thermal stability factor (∆).
The read disturb probability (PRD) is modeled as [55]:

PRD = 1− exp[− tr

τ · exp[∆(1− Ir
Ic
)]
] (2.11)

where τ is an intrinsic attempt time constant equal to 1 ns. Ic is the critical current
which is defined as the minimum current required to flip the bit-cell state.

Retention Failure: In STT-MRAM, the thermal stability factor (∆) determines the
retention time of the bit-cell during the standby mode. The retention failure probability
(PRF ) for a given time period (t) can be computed according to the read disturb failure
model (Equation (2.11)) where Ir = 0 [48]:

PRF = 1− exp[− t

τ · exp[∆]
] (2.12)

Write Error: As mentioned earlier, the write operation in STT-MRAM is of stochastic
nature, and the switching time can significantly vary from one access to another. In case
the write current is terminated before the MTJ switching, the desired data will fail to
be stored correctly, leading to a write failure. The Write Error Rate (WER) in a single
bit-cell is a time dependent variable and is expressed as [83]:

WERbit(tw) = 1− exp[
−π2 · (I − 1) ·∆

4(I · e[C(I−1)tw] − 1)
], I=

Iw
Ic

(2.13)

where tw is the write latency and C is a technology dependent parameter that is cal-
culated from the Gilbert damping parameter and the gyro-magnetic ratio. In Equa-
tion (2.13), I is the ratio of the write current (Iw) to the critical current (Ic). At
device-level, the critical current is extracted based on the technology parameters, which
are independent of the write pulse width. This is illustrated in Equation 2.9, where the
critical current value is driven from the value of the thermal stability factor (∆), effec-
tive demagnetization field, etc. However, at circuit-level, the critical current, which is
the minimum current required to switch the magnetization of the MTJ, is defined based
on the switching time. For example, for the read disturb phenomena, Equation 2.11
presents the switching probability at read access. From this equation, it is clear that
there is a considerable switching probability although the read current is around 5 to 8
times less than the critical current. The other parameter that is impacting such switch-
ing probability is the duration of the current flow. Therefore, for circuit-level analysis,
the critical current has to be measured for a particular duration.

According to Equation (2.12), the retention failure can be controlled by exploiting a
memory with a reasonable ∆ according to the maximum possible time that data resides
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Figure 2.6: Thermal stability factor effects combined with process variation effects on
(a) Write energy, (b) Write latency, (c) Retention failure and (d) Read disturb rates

in the memory. For example, ∆=20 provides a retention period of one second and is
suitable for L1 caches, while L2 caches require a higher∆ value between 30 and 40, as the
data may require to stay there for considerably longer periods [48]. However, reducing
∆ not only affects the retention time, but also exponentially increases the read disturb
probability based on Equation (2.11). On the other hand, based on Equation (2.13),
reducing ∆ has a positive impact on the write latency due to a lower thermal barrier [84].

With continuous technology down-scaling, the thermal noise and the process variation
impacts increase significantly, that negatively affect the data validity and the perfor-
mance of STT-MRAM memory. We have studied the process variation effects by ana-
lyzing 0.5× 106 samples of STT-MRAM cells for a 64 KB STT-MRAM cache with line
size of 64 Byte. Based on Equation (2.11), (2.12) and (2.13), the variation on thermal
stability results in a considerable variance in the write operation parameters as well as
various failure rates, as shown in Figure 2.6. As a case study, Table 2.1 shows the com-
bined effects of the process variation and the random thermal fluctuations of the MTJ
cell on the reliability of the STT-MRAM cell for relaxing the thermal stability factor
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Figure 2.7: Operating temperature effects on STT-MRAM bit-cell reliability
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Table 2.1: Impact of thermal stability factor scaling from 60 down to 30 on bit-cell
reliability in the nominal case (without process variation) and in the presence of 5%

process variation effects

Process variation Nominal case Process variation of 5%
Switching energy reduction 61% 65.5%

Switching latency reduction 3% 4.1%

Retention failure probability increase 1013 107

Read disturb probability increase 1013 1014

value from 60 down to 30, which means retaining data, on average, from 10 years down
to less than 10 seconds.

According to Equation (2.8), the value of thermal stability factor (∆) is highly sensitive
to the temperature. This means that it is important to consider the effects of the
operating temperature variations on the thermal reliability (i.e., retention failure and
read disturb) of the MTJ-cell for a real application.

Based on Equation (2.8), (2.11), and (2.12), as the operating temperature (T) increases,
∆ reduces linearly, while retention failure and read disturb probabilities increase expo-
nentially. Hence, any minor change in the temperature significantly affects the retention
and read disturb rates, as illustrated in Figure 2.7(a) and (b), respectively. On the other
hand, during the write operation, as the temperature increases, the high resistance of the
MTJ decreases. This leads to a decrease in the ∆ value, which results in the reduction of
the critical current and hence, the switching current. This means that for the same write
pulse set for target WER > 10−14, the achieved WER improves at higher temperatures
(see Figure 2.7(c)). As shown in Figure 2.7(c) (1, 2, 3 and 4), the reduction in the write
error induced by the operating temperature increases at lower target WER.

According to the ∆ variations, different cells of the STT-MRAM memory array have
retention failures at different rates. Consequently, process variations can cause the
thermal stability factor of the bit-cells of each line to vary significantly from the nominal
value. Therefore, for retention failure fixing, the scrubbing interval has to be determined
based on the cell with worst retention capability of the entire memory array. However,
this introduces significant scrubbing overheads due to: i) stalling memory from accepting
external read/write accesses and ii) energy consumption due to reading and checking all
cache lines sequentially for errors.

In order to have an accurate estimation of the target retention time based on process
variation and temperature effects, we have to start from the failure budget for the whole
system, which is measured as Failure in Time (FIT). One FIT equals one failure in one
billion hours of operation. The FIT rate per single cache line has to be bounded by
FIT/K, where K refers to the number of cache lines. The failure probability of a cache
line (Pfail−line) with no error correction capability can be computed as:

Pfail−line = 1− (1− Pfail−bit)
n (2.14)

where Pfail−bit is a single bit failure probability and n is the the number of bits. With an
ECC correcting e errors, Pfail−line can be computed by solving the following binomial
distribution model:
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Pfail−line = 1−
e∑

i=0

(
n

i

)
· (Pfail−bit)

i · (1− Pfail−bit)
n−i (2.15)

2.4 State-of-the-art STT-MRAM Cache

Despite all aforementioned STT-MRAM technology benefits, the long write latency and
high write energy limit the application of STT-MRAM in high performance memories
such as first and second levels of caches (e.g. L1 and L2) [61, 62, 85].

The write operation in STT-MRAM is non-deterministic where the write latency fol-
lows a log-normal distribution with a long tail [86]. The amount of uncertainty in the
write latency is even higher in advanced technology nodes due to severe process variation
effects [76], which influences the magnetic properties of the cell such as switching charac-
teristics, retention ability, etc. Furthermore, the magnetic properties of the STT-MRAM
cell are significantly affected by the temperature variation. The common approach to
address the write uncertainty is to consider a static timing margin based on the worst
process and operational conditions. This implies that each write access which cannot
be finished within the given timing margin leads to a write error. However, the amount
of timing margin required to satisfy a required Write Error Rate (WER) based on the
process variation effects is considerably larger than the average switching time [87]. This
significant increase in the write latency of STT-MRAM not only imposes a considerable
performance penalty, but also leads to significantly higher write energy, as the write
current flows through the bit-cell even after the actual switching completion [88, 89].
Therefore, it is very important to reduce the excessive write margin and the associated
write energy in a cost-effective manner.

The prior research efforts have explored several techniques to achieve energy-efficiency
and high-performance under reliability constraints of an STT-MRAM design at various
levels.

2.4.1 Device-Level Techniques

At the device-level, the extreme write margin can be further addressed by reducing
the thermal stability factor (∆) and trading off retention time, which speeds up the
switching of the storage element in an STT-MRAM bit-cell (i.e., the Magnetic Tunnel
Junction (MTJ)) [84, 90]. The retention time is relaxed in [48] by shrinking the MTJ
planar area, while reducing the volume of MTJ free layer (V) by either decreasing its
thickness or lowering the saturation magnetization (Ms) as adopted in [91].

However, this method is implemented without considering the workload requirements at
application level, which may erode the device gains at system level. As the low ∆ value
can dramatically affect the retention time of the memory, this results in data integrity
loss especially under temperature and process variations and hence, an expensive refresh
operation is required as proposed in [48, 91]. Nevertheless, the related overheads in terms
of performance, energy and area are relatively high, when such refresh schemes are used.
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2.4.2 Circuit-Level Techniques

Several circuit-level techniques [87–89, 92, 93] have been proposed to detect the actual
switching time of an STT-MRAM bit-cell and terminate the unnecessary current flow
immediately after the write completion.

Although such techniques significantly reduce the write energy, the overall write latency
remains the same. Recent studies show that Error Correcting Code (ECC) can be used
to correct write errors in the long tail of the write distribution [94–96]. This approach
is able to improve both write latency and write energy by reducing the excessive write
margin to a large extent for the same target WER [94]. The amount of reduction is
maximized by exploiting more robust ECCs which can correct multiple errors in a single
word [94, 96, 97].

Unfortunately, the decoding latency of such robust ECCs is relatively high (i.e., multiple
cycles) [98]. This significantly impairs the read latency, and hence, erodes the gain from
the write latency improvement. Therefore, the conventional multiple error correction
approach is quite ineffective for fast caches because the relative impact on the read
latency is considerable.

Device-level and circuit-level techniques address the STT-MRAM challenges at design
time regardless of the applications behavior which have to be considered at run-time,
and may affect the required write parameters significantly.

2.4.3 Approximate Computing Techniques

Previous research on the approximate memory focuses on finding a trade-off between
errors in the content of the saved or read data and the energy consumption. In the prior
work of DRAM memory [99, 100], the energy consumption is optimized by relaxing the
refresh rate which reduces the refresh power. However, the retention failure increases
at the cost of this method. In [101], the energy reduction is achieved by reducing the
number of pulses used to write Phase Change Memories. For STT-MRAM memory, the
prior efforts are very limited.

In [102], the approximate computing is leveraged for STT-MRAM design improvement
in which the MTJ cell is accessed with different levels of accuracy (i.e., different current
levels) based on the application requirements. Hence the approximation is adopted
in order to reduce the dynamic energy of read and write operations by reducing both
sensing and switching currents at the cost of higher read and write error rates. The main
limitation of this work is the effect of the process variation which is totally ignored.

Process variation in STT-MRAM affects device parameters of both MTJ cell and CMOS
transistor which in turn impacts the main parameters of read and write operations (i.e.,
the switching current, the thermal stability factor and the output current of the tran-
sistor). Consequently, with different and tiny read-write access current levels, process
variation results in considerable variations in the output accuracy at architecture-level.
Exploring the approximation computing for STT-MRAM design to achieve substantial
improvements in both energy consumption and performance for negligible loss in the
application quality by lowering the thermal stability factor of MTJ cell should be based
on the application requirements.
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2.4.4 Hybrid Cache Techniques

Write-efficient but leaky, volatile and low density SRAM is integrated with non-leaky
high density and non-volatile STT-MRAM to compensate for the effects of inefficient
write operations of STT-MRAM [47, 103–106]. However, the main challenge of imple-
menting the hybrid caches is the data placement. The write rate is considered as a
run-time data placement criterion for maximally reducing the write activity in STT-
MRAM array. The previously proposed solutions for the data placement based on the
write rate are either too simple or too static, which leads to frequent data migrations
between STT-MRAM and SRAM arrays. Consequently, the overall performance and
energy consumption are relatively high. However, the aforementioned migration over-
heads are reduced in [107] by managing the data layout at compiler-time based on the
read/write access rate.

A hybrid STT-MRAM cache with low and high retention STT-MRAM cells has been
proposed in [90]. Nevertheless, the data placement policy erodes the system gains due to
the data migration and control costs, as they depend on write counters saturation. The
authors in [108, 109] have proposed data placement optimization using dynamic schemes
based on run-time information. However, these schemes require a mechanism to measure
the write intensity for each cache block, which makes the related hardware overheads
considerably high for on-chip memories. [110] presents the principle of multi-retention
STT-MRAM technology, which is limited to the scratchpad memory application, as
it is software controlled. In [110], data arrangement is performed by compiler-based
data placement algorithm based on the worst-case execution time of all functions, while
neglecting the potential data corruption in the low retention STT-MRAM region due to
the impact of the data read behavior.

2.4.5 Scrubbing Techniques

Retention failures have been addressed in many previous works for Flash, DRAM and
also STT-MRAM technology.

For Flash technology, the first work on optimizing SSD by relaxing the retention of
NAND flash was proposed in [111]. Here the retention time is characterized from a
set of datacenter workloads. To fix the errors due to the relaxed retention time, the
authors propose using variable ECC codes based on the retention requirements. The
work in [112] proposes a retention time trimming approach which exploits the fine-tuned
retention time requirement of each data to-be-programmed, for reducing the wear-out
of flash memory. This work uses a retention time prediction scheme based on the past
retention time and the past prediction of retention time. However, the aforementioned
works are primarily focused on characterizing retention time based on workloads for
storage systems. In our work, the focus is on on-chip memories and is based on well
known device-level models targeting a certain reliability of the memory system.

Many proposals have been made to address the retention failure of DRAM technology.
They mainly adopted refresh mechanisms with an interval of 64ms based on shortest
retention time determined by the worst case retention capability of DRAM bit-cell. This
means that memory contents should be refreshed periodically every 64ms for reliable
operation. Various multi-rate refresh mechanisms [113–116] have also been proposed to
exploit the non-uniformity in the retention capabilities of different bit-cells. In [114],
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the single refresh interval has been optimized by considering the worst cases as hard
errors and supporting them with additional error correction codes. In [115] the non-
uniformity of the retention capabilities of DRAM bit-cells in one row is addressed using
different error correction capabilities based on the information of the fault map. In
general, the proposed multi-rates refresh scheme for DRAM aims to isolate the rows
with weak retention capabilities and apply higher refresh rate on them [113]. How-
ever, deploying DRAM-style refresh for STT-MRAM technology is challenging because
of several reasons: i) simply writing back the memory contents periodically will not
improve the reliability for STT-MRAM, since the retention errors in STT-MRAM are
not decay-based and ii) the temperature dependency of STT-MRAM retention failures
is completely different from and much more severe than that of DRAM.

For STT-MRAM, previous work of relaxing the thermal stability factor and estimating
the related retention time is done either without process variation impacts or with no
considerations of the operating temperature effects. In [48, 91, 117], simple DRAM-style
refresh is used for retention failure. However, this method is not effective for STT-
MRAM, since it just results in reading the corrupted bit-cell contents and writing them
back. Therefore, error correction capability is required for retention failure prevention,
and the write-back needs to be done only for erroneous data as in [78]. Furthermore, this
work also proposes to optimize the scrubbing costs significantly with stronger ECCs. In
the previous work [90], simple DRAM-style refresh is adopted with a dynamic interval
based on the benchmark behavior (i.e., last access write) and without considering the
impact of process variation. Therefore, the related overheads in terms of performance,
energy and area are relatively high.

2.5 Summary

In this chapter, basic information regarding cache architecture and its accessing policies
are provided. Afterwards, a preliminary explanation about the coding theory and the
common error codes adopted in the memory system are explained. This is followed by the
basics, parameters and reliability challenges of the STT-MRAM technology as on-chip
memory. Finally, there is an overview about the existent STT-MRAM state-of-the-art
solutions.



Chapter 3

Efficient STT-MRAM Based on
Compiler-Assisted Analysis and
Dynamic Behavior Predictions

In this chapter, we propose a combined device, architecture and application levels so-
lution for a fast, energy-efficient and reliable STT-MRAM design. At device-level, two
different STT-MRAM bit-cell parameters are considered, i) non-volatile STT-MRAM
(NVM) bit-cell with a large retention ability for reliable magnetic switching, and ii)
semi-volatile STT-RAM (SVM) bit-cell with a relaxed retention ability for fast and ef-
ficient magnetic switching. At architecture-level, a hybrid STT-MRAM memory array
is proposed with two regions: i) SVM array blocks and ii) NVM array blocks. Each
region is configured with specific read and write currents and latencies. The SVM array
is proposed to attain a high write access efficiency (both energy and performance), while
the NVM blocks are adjusted to maintain a high reliability against both retention failure
and read disturb. Finally, at application-level, a data mapping in the hybrid cache blocks
is proposed based on the application needs (performance and reliability). These needs
are driven from the data behavior in the cache. The high write intensive data, which
has low retention requirements, can be loaded into SVM blocks. On the contrary, the
NVM blocks store low write intensive and long lifetime data. Data placement policy is
constructed based on either compiler-assisted analysis Section 3.2 or dynamic behavior
predictions Section 3.3.

3.1 Hybrid Semi- and Non-Volatile Cache MOTIVATION

A promising approach to hide the write overheads of the standard STT-MRAM tech-
nology is to adopt a hybrid STT-MRAM cache architecture in order to combine the
benefits of fast write and reliable read with different levels of data retention. In this
hybrid architecture, SVM is used for write-intensive data, which means short data resi-
dency, while NVM is used for read-intensive and long data residency. The motivations
and challenges of such approach at different abstraction levels are discussed next.

27



Chapter 3 Compiler-Assisted Analysis and Dynamic Behavior Predictions 28

3.1.1 Device-level Motivation

NVM STT-MRAM supported with a high ∆ value offers high ability to retain the data
for a long time at a cost of a high switching current required to flow for a long duration.
However, on-chip memories (e.g., L1 and L2 caches) often do not require very long data
retention periods due to their frequent accesses in comparison to the off-chip memories.
Moreover, the write operation in the on-chip memories is on the critical performance
path. Therefore, STT-MRAM technology with relaxed retention ability (i.e., a lower
∆ value), so called SVM STT-MRAM, can be leveraged for fast and low level caches.
Figure 3.1(a) qualitatively illustrates the impact of lowering the thermal stability factor
on six design criteria (i.e., write latency, write energy, write error, read disturb, retention
error and retention time).

Figure 3.1(b) shows the induced energy and latency for bit-cell content switching of
different ∆ values normalized to the results of a standard ∆= 60. In this figure, the
switching latency and energy of STT-MRAM bit-cell can be optimized by 35.0% and
72.5%, respectively, by lowering ∆ from 60 down to 30. These significant gains are
achieved along with reducing the average retention time from 10 years down to few
seconds, which is sufficient for low level caches. On the other hand, the read disturb
probability due to lowering ∆ from 60 down to 30 increases by 1013×. This means that
adopting only SVM STT-MRAM for low level caches may lead to a data corruption
due to the read disturb, as the reduced retention time to few seconds is still sufficient
to retain the data correctly. Consequently, considering a hybrid cache architecture of
SVM and NVM STT-MRAM can achieve the reliability requirements along with a high
performance and low energy consumption.
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Figure 3.1: ∆ Scaling impacts: (a)∆ effects on STT-MRAM design metrics, (b) Switch-
ing energy and latency of different ∆ values normalized to ∆=60

3.1.2 Application-level Motivation

To explore the opportunity of adopting a hybrid STT-MRAM architecture for on-chip
memories, the cache behavior of the memory intensive SPEC2000 applications has been
analyzed based on the data residency time, read and write operations in L1 data cache.
We run the benchmarks on gem5 simulator that is a cycle accurate simulator and pro-
vides an accurate cache model [118]. During the benchmark execution, the residency
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time of each memory address in the data cache is monitored. The residency time (life-
time) is defined as the interval between the time of loading the data into the cache from
a lower memory level and the time of evicting this data to a lower memory level. As a
result, we observed the following three motivations:

1. The residency time of all memory data in the data cache lines can be categorized
into two patterns: short and long (Figure 3.2 (a)).

2. More than 90% of the data cache lines is mostly accessed by either read or write
requests from the processor. Therefore, classifying the memory data into either
read intensive or write intensive data patterns can be easily achieved (Figure 3.2
(b)).

3. The system performance can considerably be optimized by increasing the size of
the data cache because of the hit rate improvements (Figure 3.3 (a), (b) and (c)).

Initially, in L1 cache, the data residency time is divided into a vulnerable and non-
vulnerable time. A vulnerable time is the duration between loading data from the lower
memory to L1 data cache and using it again through read requests from the processor
side, or the duration between the last write request and the next read requests of the
data in the cache. Consequently, the target retention time is directly driven from the
vulnerable time, in which the validity of the data should be guaranteed. On the contrary,
any failure (such as retention failure) during the non-vulnerable time does not affect the
system-level output.

The required retention time of data in L1 cache is application behavior dependent, and
hence, it can be estimated with the execution of the SPEC2000 benchmarks. The results
shown in Figure3.2 (a) demonstrate that the retention time (i.e., the vulnerable time)
of the data in L1 cache can be categorized into short and long periods (i.e. less or more
than 10 ms). As the data cache size is multiple times smaller than the main memory,
the replacement policy is applied for loading new data in the cache, and hence, the
majority of the data life-times is short. Thus, according to our simulations conducted
on SPEC2000, only 5% data required long retention time in the data cache on average.

Afterwards, by considering the read and write access patterns of the data in the cache,
the overall reliability, performance and energy efficiency of the hybrid STT-MRAM cache
can be optimized significantly. As the write intensive patterns require high energy and
latency with low retention time, the data can be accommodated in the SVM STT-MRAM
cache. Whereas, the NVM STT-MRAM cache is dedicated to the read intensive data.
This is for reducing the error rate due to the read disturb, which increases exponentially
with lowering the thermal stability factor based on the read disturb Equation (2.11), as
explained in Section 2.3.4. Figure 3.2 (b) illustrates that the read and write intensities
of the benchmarks are 60% and 16%, respectively, of the entire memory data.

Finally, as the SVM STT-MRAM with low thermal stability factor exhibits higher den-
sity compared to the non-volatile one, the overall performance is optimized because of
the increased hit rate. Figure 3.3 (a), (b) and (c) show the cache density increase and
the improvements regarding hit rate and system performance for ‘gcc’ benchmark as a
case study, along with lowering the thermal stability factor for the same hardware area
of 32KB L1 data cache. As seen in Figure 3.3 (a), for lowering ∆ from 60 down to 30,
the size of data cache will increase by 4 KB (from original 32 KB) under the same area
constraints.
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Figure 3.2: L1 cache line behavior for SPEC2000: (a) Needed Retention time for L1
cache based on the vulnerable time, and (b) Read and write rate distributions over L1

cache lines [See setup in Section 3.2.3.3.1]

Based on the previous three observed motivations, we propose a hybrid STT-MRAM
architecture with N -ways NVM STT-MRAM array and N∗-ways semi-volatile STT-
MRAM array, where N∗/N = i, as illustrated in Figure 3.4. This hybrid STT-MRAM
architecture is mainly employed in order to achieve:

• Energy-efficient design, as the data with short residency time can be placed to the
semi-volatile STT-MRAM array.

• Reliable design (by reducing read disturb and retention failure rate), as the read
intensive data and the data with long residency time should be mapped to the
non-volatile STT-MRAM blocks.

3.1.3 Motivation Example

This example is presented to illustrate the purposes of the proposed hybrid STT-MRAM
architecture. Assume that an application consists of six main functions with a specific
control flow graph. Each function has different features, as shown in Figure 3.5: run-
time, data (i.e., heap and stack memories), number of calls, and the op-code instructions
that illustrate the processor read and write requests. In Figure 3.5, the T and R values
define the retention time and the read disturb rate, respectively, of the semi-volatile
STT-MRAM. Table 3.1 shows the opportunity of adopting hybrid STT-MRAM cache
against a pure non-volatile or semi-volatile one.
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Figure 3.3: Cache benefits with the reduction of the thermal stability factor: (a) L1
cache storage density, (b) L1 cache hit rate improvement for ‘gcc’ workload, and (c)
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Figure 3.4: The proposed hybrid STT-MRAM architecture

For the semi-volatile STT-MRAM with ∆ of 30, where the write energy is reduced
by 70% (see Figure 2.6(a)), there is no data integrity guarantee against read disturb
and retention failures in ‘A’,‘B’ and ‘F’ functions. On the other hand, by employing a
reliable and pure non-volatile STT-MRAM with normal ∆ of 60, the associated costs
with the write operation are so excessive in order to execute the ‘C’, ‘D’ and ‘E’ functions.
Regarding these functions and in comparison to the semi-volatile STT-MRAM, the write
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Function A 
Run-time > T

Local parameters 
(A1,….An)

Read access (R_A) >= R
Write access (W_A)

Function B 
Run-time > T

Local parameters 
(B1,….Bn)

Read access (R_B) >= R
ite access (W_B) 

Function D 
Run-time <= T

Local parameters 
(D1,….Dn)

Read access (R_D) < R
Write access (W_D)

Function E 
Run-time <= T

Local parameters 
(E1,….En)

Read access (R_E) < R
Write access (W_E)

Function F 
Run-time > T

Local parameters 
(F1,….Fn)

Read access (R_F) >= R
Write access (W_F)

Function C 
Run-time <= T

Local parameters 
(C1,….Cn)

Read access (R_C) < R
Write access (W_C)

Call for 
1 time

Call for 
10 times

Call for 
10 time

Call for 
10 time

Figure 3.5: Motivation example, function diagram with their features ( T is the re-
tention time, and R defines the read disturb rate, of the semi-volatile STT-MRAM

cache)

Table 3.1: Approximate total energy, performance and reliability results normalized to
hybrid STT-MRAM design [See setup in Section V-A]

Semi-volatile STT-MRAM Non-volatile STT-MRAM Hybrid STT-MRAM
Write Write Reliability Write Write Reliability Write Write Reliability
energy latency fulfillment energy latency fulfillment energy latency fulfillment

Function A 0.3 0.87 No 1 1 Yes 1 1 Yes
Function B 0.3 0.87 No 1 1 Yes 1 1 Yes
Function C 1 1 Yes 3.3 1.15 Yes 1 1 Yes
Function D 1 1 Yes 3.3 1.15 Yes 1 1 Yes
Function E 1 1 Yes 3.3 1.15 Yes 1 1 Yes
Function F 0.3 0.87 No 1 1 Yes 1 1 Yes

Total 0.65 0.94 No 3,1 1.14 Yes 1 1 Yes

energy dissipation is 3.3 times more along with 15% increase in the write penalty (see
Figure 2.6(a) and (b)). On the contrary, a hybrid STT-MRAM cache will provide the
target reliability design for ‘A’, ‘B’ and ‘F’ functions along with lower power and fast
design for ‘C’, ‘D’ and ‘E’ functions.

3.2 Compiler-Assisted and Profiling-Based Analysis for Fast
and Efficient STT-MRAM On-Chip Cache Design

3.2.1 Proposed Approach

In STT-MRAM the overall write energy can become significantly lower. However, re-
laxing the non-volatility of STT-MRAM results in a higher probability of the retention
failure and the read disturb, as illustrated in Section 2.3.4, based on Equation (2.11)
and (2.12). The impact of this increase of both read disturb and retention failure is data
pattern dependent (i.e., read or write intensive pattern) and data behavior dependent
(i.e., long or short retained data). Therefore, in our proposed hybrid STT-MRAM cache
architecture, the data integrity is guaranteed in two steps: 1) profiling-based analysis
and 2) compiler-level (i.e., static code) analysis.

• Profiling-based analysis to estimate the functions execution time, which in turn
identifies the data retention time (data life-time).
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Table 3.2: Time-consuming aspect based on data type

Data type Retention time Target reliability
Global data Long High
Local data Short Low

Table 3.3: Read-threshold rate based on the thermal stability factor (∆) under process
variation effects

∆ 10 20 30 40 50 60
Read rate 1.1× 10−2 1.3× 10−5 1.523× 10−8 8.423× 10−12 4.66× 10−15 10−21

• compiler-level analysis, in which the source code of the program is fed to the
compiler (here LLVM [119]) to detect and analyze the memory access patterns.

In general, the data in a program can be distributed over three different pools of the
memory, which are static, stack and heap. Static memory persists throughout the en-
tire life of the program, and it is usually used to store global variables. Whereas, stack
and heap memory is used for local data, which is accessed by only the owner func-
tion. Therefore, global data needs to be retained for longer time and can be accessed
more frequently than local data. This means in a STT-MRAM cache architecture, high
retention time and low read disturb rate are required for the global data. Therefore
they need to be mapped to the non-volatile cache blocks whose thermal stability factor
is high. Consequently, the data participation over the proposed hybrid STT-MRAM
cache depends initially on identifying the data types (global and local), as illustrated in
Table 3.2. However, the local data requirements (i.e., the retention time and the relia-
bility) are not identical for all program functions, since there are parents and children
functions.

The profiling analysis step strongly emphasizes the time consuming aspect of the func-
tions in order to cluster them into two groups based on the required retention time in
memory (i.e., long and short). Thus, the data placement at the function granularity can
be successfully implemented in the hybrid STT-MRAM architecture. Since the data
in the semi-volatile STT-MRAM array may suffer from not only the retention failure
but also the read disturb, the data placement decision should be made based on two
criteria, i) the execution time, which guarantees virtually zero retention failure rate of
the stored data in both semi- and non-volatile arrays, and ii) the read intensive pattern
for virtually zero read disturb probability in the semi-volatile region. Hence, the max-
imum read access rate associated with the semi-volatile STT-MRAM that should not
be exceeded is referred to as read-threshold rate. Table 3.3 provides the read-threshold
rate with respect to ∆ values from 10 to 60. It is important to note that retention
failure and read-threshold rate of the semi-volatile STT-MRAM have to be accurately
estimated under the process variation and operating temperature effects, as explained in
Section 2.3.3. Process variation effects need to be determined after the manufacturing
process is done, while operating temperature impacts are considered by the proposed
compiler-based data placement algorithm.

Based on the profiling-based and compiler-level analysis, the re-compilation process will
guide the data of functions to be allocated in the semi-volatile STT-MRAM array if the
following conditions are met:
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Estimate 
function’s execution time (t)

Yes  

t <=  retention time of low ∆  

Allocate data in 
Semi-volatile STT-MRAM

Allocate data in 
Non-volatile STT-MRAM

No

Last function in the program
No

Take next  function

Take first function of 
the program 
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Figure 3.6: Decision diagram of data placement policy in hybrid STT-MRAM archi-
tecture
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• The execution time of the function is less than the retention time of the adopted
low ∆ in the semi-volatile STT-MRAM.

• The data access rate during the entire program execution time is less than the
read-threshold rate of the semi-volatile STT-MRAM.

In case of the first condition violation, the related data should be simply retained in
the non-volatile STT-MRAM blocks, while the rest data of the program functions will
be initially placed in the semi-volatile STT-MRAM blocks as long as the limitation of
the second condition is not exceeded. Otherwise, the data, which is initially assumed
to be placed in the semi-volatile STT-MRAM blocks, needs to be redistributed over
the hybrid cache blocks. The data redistribution is implemented based on the intensive
read and write data pattern classification. The data with highest read requests and
lowest write requests will be retained in the non-volatile STT-MRAM array instead of
the semi-volatile STT-MRAM one. Figure 3.6 is the proposed diagram for the data
placement process.
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In order to obtain safe and accurate compiler-based data placement approach for hybrid
STT-MRAM cache design, the longest retention time related to the worst-case execution
time for functions has to be predicted, which is longer than any required execution time
in reality. Such predicted time is difficult to be obtained by the profiling-based analysis.
Thus, our design margins of retention time for both semi- and non-volatile STT-MRAM
arrays are estimated precisely for very low error probability at architecture-level, which
ensures that the provided retention time meets every possible execution of the function
on the real platform. An FIT rate of 10 has been considered for on-chip memories as a
typical FIT rate [78] . This makes the estimated retention failure less than 10−3. On
the other hand, the target read disturb and write error probabilities have been reduced
down to 10−23 and 10−18, respectively.

Conventional hardware-managed caches require a tag array or tag comparison logic for
data accessing. Therefore, addressing policy tuned by the read/write hits and misses,
which is normally adopted for dynamic run-time data management in hybrid caches, does
not work with static data placement (i.e., our proposed compiler-based data placement
algorithm). Consequently, in this idea, the data placement policy can be implemented
with two different approaches. Firstly, as the most processors architectures are supported
with an expandable instruction set architecture (ISA), the memory access instructions
can be simply extended with two more load and store instructions. Each of them is
specialized to store/load data from the main memory locations in a specific cache type.
Then, the assembler will enforce this partitioning by translating it into micro-code.
This approach has no performance or area overheads imposed on the processor design.
For instance, adopting specialized load/store instructions in the write-back stage in the
pipeline of the processor will not change the hardware design or the critical path timing
in the pipeline. Secondly, the data distribution can be done by modifying the physical
addresses (i.e., the memory locations) of the data at compile-time via data-remapping
algorithm. The compiler needs to be supplied additionally with the cache-array size and
cache-line size, which is equal to the memory-block size. Consequently, the compiler will
be optimized to reorganize the data in the memory by modifying its addresses based
on our profiling-based and static-code analysis. Afterwards, the linker will translate the
data remapping into executable code. This in turn enforces the data partitioning over
the semi- and non-volatile STT-MRAM cache lines at run-time. The flow chart of the
proposed profiling-based and compiler level analysis steps is illustrated in the Figure 3.7.

3.2.2 Proposed Cross-Layer Framework

Our proposed idea is evaluated through a circuit-level analysis in SPICE all the way up
to the system-level analysis in a performance simulator (gem5).

For the bit-cell characterization, we run a circuit-level analysis for L1 and L2-caches in
SPICE, based on TSMC 65 nm transistor models and the perpendicular STT-MRAM
model presented in [120]. The circuit-level results are fed to NVSim [121] to obtain
the read and write latencies of the memory word for L1 and L2-caches to extract the
architecture-level results.

At System-level we have two sub-components: profiling-based with compile-time analysis
and run-time analysis.
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Figure 3.8: Proposed cross-layer tool flow supported with compiler-assisted analysis

• For profiling-based and compiler-level analysis, first, SPEC2000 benchmarks are
compiled using LLVM [119]. Afterwards, the binary output files are run on Gprof
performance tool [122]. As a result, the function information, like execution time
and number of calls, are obtained. Thirdly, we use LLVM Pass framework for the
memory access analysis. We write LLVM pass to count the store, load and alloc
instructions at function granularity. Then, LLVM pass is run with Clang. Finally,
the benchmarks are re-compiled by the modified LLVM compiler, which rearranges
the data layout based on the extracted retention time and memory access analysis.

• Run-time analysis is conducted using system simulator (i.e., gem5) [118] in order
to evaluate the impact of the proposed hybrid STT-MRAM cache compared to
the standard non-volatile STT-MRAM cache on the overall system performance,
reliability and energy consumption.

Figure 3.8 illustrates our proposed cross-layer framework.

3.2.3 Simulation Result

Since the proposed approach depends on the application requirements, we provide a de-
tailed requirements analysis based on the hybrid STT-MRAM architecture. Afterwards,
for the placement decision, the profiling and compiler level results for a set of SPEC2000
benchmarks are explained in detail. For run time analysis, we first explain the experi-
mental setup. Then, for the total system gains at run-time, the overall performance and
energy measures are reported.
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Table 3.4: Read-threshold rate for semi-volatile STT-MRAM with (∆=30) for various
temperature values

Temperature Read rate Temperature Read rate Temperature Read rate
−20◦C 4× 10−6 +30◦C 152× 10−6 +80◦C 1995× 10−6

−10◦C 10× 10−6 +40◦C 273× 10−6 +90◦C 3059× 10−6

0◦C 21× 10−6 +50◦C 469× 10−6 +100◦C 4621× 10−6

+10◦C 42× 10−6 +60◦C 787× 10−6 +110◦C 6774× 10−6

+20◦C 82× 10−6 +70◦C 1272× 10−6 +120◦C 9709× 10−6

3.2.3.1 Hybrid Architecture Requirements Analysis

For our proposed hybrid-STT-MRAM data cache, the majority of the blocks should be
based on the semi-volatile STT-MRAM technology for efficiency, while only a small part
of them is non-volatile STT-MRAM-based to guarantee reliability. Based on the profiling
information of SPEC2000 benchmarks, which provides an approximated vision of the
required retention time in the relaxed STT-MRAM, 26ms meets the life-time of the
most data along with a sufficient margin for the operating temperature and the process
variations in order to guarantee the retention requirements. However, the residency time
for a few addresses can reach up to tens of seconds.

On the other hand, the retention time in the STT-MRAM cache can be defined by
considering a specific retention failure rate. For the typical on-chip memories FIT rate,
which is 10 failures in 1 billion hours [78], the target retention failure rate has to be less
than 10−3. By considering ∆ of 30 and 60 for semi-volatile and the non-volatile STT-
MRAM, the maximum achieved retention time under process variation and nominal
operating temperature of+30◦C is 26ms and 10 years, respectively. Figure 3.9 illustrates
the degradation of the retention time or the increase in the retention failure rate in the
semi-volatile and the non-volatile MTJ cells. The read-threshold rate in the semi-volatile
array of the cache in the operating temperature range of [−20◦C, +120◦C] is illustrated
in Table 3.4 under 5% process variation as discussed in Section 2.3.3. For the nominal
operating temperature of +30◦C, the read access is limited to 152× 106 read requests.
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Figure 3.9: Retention time along with the retention failure rate for semi-volatile and
non-volatile MTJ considering effects of 5% of process variation
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3.2.3.2 Profiling-based and Compiler-level Analysis

We used 16 benchmarks from the SPEC2000 benchmark suits [123]. The C programs of
the selected benchmarks are run with gprof to evaluate the required retention time. At
the same time, the C programs are compiled with LLVM, and the platform-independent
Intermediate Representation (IR) are obtained [119]. We applied the LLVM analysis and
transformations on the obtained IR codes through LLVM passes. LLVM pass is written
to count the number of load, store and alloc instructions executed in each function. As
the number of functions of the benchmark may exceed 2,260 functions such as in gcc
benchmark, we focused in our analysis on the main functions that consume more than
90% of the entire execution time.

The required retention time (t) is used as a primary criterion for selecting the cache
block (i.e., semi-volatile or non-volatile) to allocate the data. However, the extracted
numbers of load and store instructions are considered as the second factor for the data
placement.

As previously mentioned, for the semi-volatile STT-MRAM blocks, the maximum reli-
able retention time is 26 ms and the threshold value of the read access rate is 152×10−6.
By considering these two criteria, Figure 3.23 and 3.24 illustrate the adopted placement
strategy for effective data placement in the proposed hybrid STT-MRAM cache in order
to achieve a low power and reliable design.

Table 3.5 illustrates the details about the functions whose execution time is longer than
the retention time of the semi-volatile STT-MRAM blocks (i.e., longer than 26ms). In
this table, about 15.53% of the program functions, on average, requires long time to
be executed and hence the related data items need longer retention time. However,
based on our run time observations, as discussed in Section 3.1, the percentage of the
data which has long vulnerable time is around 5% only. This is because of either the
application run time behavior or the cache replacement policy. These two observations
are not possible to be predicted at compile-time, and even considering these observations
at run time is very complex and expensive. Therefore, we adopt only profile-based and
compiler-level analysis as a worst but conservative case.

Table 3.6 shows the functions of the workloads, where the read access rate exceeds
the read-threshold value in the semi-volatile STT-MRAM resulting in read disturb. For
SPEC2000 benchmarks, almost 9.66% of the functions, on average, is exposed to the read
disturb, if the semi-volatile STT-MRAM is adopted for data cache. Consequently, for
the L1 data cache and based on the profiling and compile-time analysis, we can assume
that around 75% of data (Table 3.7) can safely be placed in semi-volatile STT-MRAM
blocks, since they will not suffer from retention or read disturb failures. However, there
is as a maximum 25% of the data (Table 3.7) in L1 data cache, which needs to be
supported against the potential failures. This can be achieved either by employing a
non-volatile STT-MRAM for this part of data or by protecting them with a robust error
correcting code [59, 61].

For our proposed hybrid cache solution, the capacity of the semi-volatile STT-MRAM
can be 3 times as big as the size of the non-volatile STT-MRAM, based on Table 3.7
results. Therefore, for 32 KB hybrid-STT-MRAM data cache with 64 byte line-size, 24
KB and 8 KB are considered as semi-volatile STT-MRAM (∆ = 30) and non-volatile
STT-MRAM (∆=60), respectively.



Chapter 3 Compiler-Assisted Analysis and Dynamic Behavior Predictions 39

Table 3.5: Functions with execution time longer than 26 ms

Benchmark Function Execution time [ms] Percentage over entire program
gcc yyparse 589.34 ms 1.67%
bzip2 generateMTFValues 41 ms 54.2%

gzip deflate 451 ms 9.64%
deflate-fast 353 ms 2.32 %

mcf
price-out-impl 105 ms 7.43%

primal-net-simplex 575 ms 0.07%
write-circulations 220 ms 0.25%

parser initialize-memory 200 ms 0.12%

wupwise
initialize-memory 710 ms 2.13%

rndcnf 350 ms 1.42%
muldoe 430 ms 0.71%

swim inital 30 ms 9.83%
MAIN 320 ms 3.12%

mgrid inital 50 ms 66.21%

ammp

mm-fv-update-nonbon 1810 ms 44.36%
f-nonbon 150 ms 5.15%
tpac 1580 ms 0.98%

fv-update-nonbon 130 ms 0.25%
AMMPmonito 290 ms 0.25%

lucas mers-mod-square 2140 ms 38.32%
average 15.53%

3.2.3.3 Run Time Analysis

3.2.3.3.1 Simulation Setup At system-level, the evaluations are performed using
various applications of the SPEC2000 benchmark suite [123]. For each application, the
simulation is conducted over 0.2 second of the run time. Table 3.8 summarizes the set-up
for these experiments.

3.2.3.3.2 Performance Analysis Indeed, the performance improvement of the
hybrid STT-MRAM cache is associated with the hit rate improvement and the reduction
of the write access latency because of lowering ∆ from 60 down to 30. The profiling-
based and compiler analysis are used to approximately calculate the average of the write
margin reduction per access due to relaxing ∆ in the hybrid STT-MRAM cache design.
Table 3.9 shows the impact of the proposed approach translated into reduction of the
write margin, which reaches up to 12%, such as with applu, fma3d and art benchmarks.

On the other hand, the performance is affected by the hit rate improvement as discussed
in Section 3.1. Hence, by lowering the ∆ from 60 down to 30 for the same hardware
area, the 32 KB data cache will increase up to 35 KB. This in turn can increase the
total performance up to 8.1%.

3.2.3.3.3 Energy Analysis Energy analysis is conducted based on the dynamic
and static energy-efficiency of the proposed hybrid-STT architecture. As the static
energy is the product of leakage and time, the 10.8% performance optimization leads to
the same ratio of reduction in the static energy in the overall system.
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Table 3.6: Functions with read rate higher than the read-threshold in the semi-volatile
STT-MRAM

Benchmark Function Percentage over entire program

parser

hash 16.36%
table-pointer 12.83%

form-match-list 7.81%
xfree 5.68%

prune-match 4.76%
xalloc 3.62 %

region-valid 3.57%
match 3.24%

gzip
longest-match 56.1%

ct-tally 1.93%
send-bits 1.65%

mcf
compute-red-cost 3.3%

bea-compute-red-cost 2.13%
bea-is-dual-infeasible 1.62%

art g 1.18%
quake phi2 3.13%

wupwise zaxpy 20.33%
dcabs1 0.83%

mesa get-1d-texel 6.67%
ammp a-next 0.25%
average 9.81%

Table 3.7: The percentage of workloads partitioning over the proposed hybrid STT-
MRAM architecture

Benchmark mesa applu mcf twolf gcc gzip bzip parser wupwise
Semi-volatile 93.33% 100% 85.2% 100% 98.33% 28.36% 45.8% 57.99% 74.58%
Non-volatile 6.67% 0% 14.8% 0% 1.67% 71.64% 54.2% 42.01% 25.42%
Benchmark swim mgrid art equake ammp lucas fma3d average
Semi-volatile 87.05% 33.79% 98.82% 96.87% 48.76% 62.68% 100% 75.8%
Non-volatile 12.95% 66.21% 1.18% 3.13% 51.24% 38.32 0% 24.2%

However, the key factor that influences the STT-MRAM data cache energy is the write
energy, since the dynamic access energy in the L1 cache is the major contributor in
comparison to the leakage energy. As seen in Table 3.10, the write energy can be
optimized per access by 49.7%, on average, and hence, the dynamic energy consumption
(read and write) of the hybrid STT-MRAM architecture is reduced, on average, by 51%,
as illustrated in Figure 3.10.

3.2.3.4 Discussion

The proposed hybrid STT-MRAM architecture, which is supported with the profiling-
based and compiler analysis, has been implemented in this chapter for L1 data cache.
However, our idea is applicable for any on-chip cache level for better energy-efficient,
reliable and high performance design of the STT-MRAM-based memory.



Chapter 3 Compiler-Assisted Analysis and Dynamic Behavior Predictions 41

Table 3.8: Simulation setup

gem5 confiquration ISA ALPHA
Processor Single-core, 2 GHz, Out-of-order, 4-issue

L1 instruction cache 32 KB, 4-way set associative, 64 Byte line size
L1 data cache 24 KB, 4-way set associative, 64 Byte line size

Semi-volatile STT-MRAM ∆ = 30 with 5% process variation
(10.8 ns/0.988 ns) write/read latencies

L1 data cache 8 KB, 4-way set associative, 64 Byte line size

Non-volatile STT-MRAM ∆ = 60 with 5% process variation
(11.15 ns /0.988 ns) write/read latencies

SPEC2000 Applications gzip, bzip2, mcf, twolf, gcc, mesa, art

Table 3.9: Write latency reduction per access of the proposed hybrid cache

mesa applu mcf twolf gcc gzip bzip parser wupwise
11.1% 12% 10.2% 12% 11.8% 3.4% 5.5% 6.9% 8.9%
swim mgrid art equake ammp lucas fma3d average
10.4% 4% 11.9% 11.6% 5.8% 6.5% 12% 9%

Table 3.10: Write energy reduction per access of the proposed hybrid cache

mesa applu mcf twolf gcc gzip bzip parser wupwise
61.2% 65.6% 55.9% 65.6% 64.5% 18.6% 30% 38% 48.9%
swim mgrid art equake ammp lucas fma3d average
57% 22.2% 64.8% 63.5% 31.9% 40.1% 65.6% 49.7%

art bzip2 gcc gzip mcf twolf average
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workloads compared to the dynamic data placement and the standard non-volatile
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3.3 Dynamic Behavior Predictions for Fast and Efficient
STT-MRAM On-Chip Cache Design

Cache access requirements due to the application read/write behaviors vary over the
run-time, and from one application to another. For instance in SPEC2006 benchmarks,
there are write intensive benchmarks (e.g., lbm), read intensive benchmarks (e.g., gcc
and solex), and alternately read and write intensive phases benchmarks (e.g., omnetpp,
see Figure 3.11). The read or write phases are defined as a period of execution time
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Figure 3.11: Read and write behavior of omnetpp application
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different SPEC2006 applications

that exhibits a consistent read or write access rate which is distinguishable from the
rates in other phases, as shown in Figure 3.11. The read or write intensive phase (or
application/benchmark) refers to the application (phase) in which the cache is mostly
accessed by read or write requests from the CPU side, respectively.

However, for a hybrid STT-MRAM cache, it is not enough to consider only the read and
write behaviors of the entire cache as a whole. Although this may provide hints about
the read and write access requirements from the application perspective, the behavior of
each memory item (data) in the cache is required to be analyzed individually. Figure 3.12
shows that the read and write patterns vary significantly in a single cache line for different
memory items along with the run-time in one application. As seen in Figure 3.12, more
than 65% of the SPEC2006 data in the cache lines is mostly accessed by either only read
or only write requests.

Our main contribution in this section is to exploit Machine Learning Approaches at
application-level for simple but effective data-pattern classification and prediction in a
hybrid STT-MRAM memory architecture, where the migration costs will be reduced
at low hardware overheads in comparison to existing static, on-the-fly, or compile-time
data management methods. Three active dynamic behavior prediction approaches for
the cached data are proposed in this work with a prediction accuracy of 75%, on average.
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At system-level, the performance and energy consumption gains of the hybrid STT-
MRAM data-cache supported with a supervised dynamic behavior learning and predic-
tion mechanism is evaluated using detailed simulations of SPEC2006 workloads. The
system results demonstrate that the proposed hybrid STT-MRAM cache provides dy-
namic cache energy (read and write) reduction and performance optimization, on aver-
age by 38.2% and 11.2%, respectively, in comparison to a standard NVM STT-MRAM
cache. However, compared to the state-of-the-art [124], where hybrid SRAM with stan-
dard NVM STT-MRAM cache architecture is adopted, the total energy consumption is
reduced 10.5%, on average, with hybrid SVM/NVM STT-MRAM cache.

3.3.1 Hybrid STT-MRAM Architecture

Based on the device-level and application-level observations, we adjust a hybrid STT-
MRAM architecture with N1-ways SVM array and N2-ways NVM array, as proposed
in [64, 124]. This hybrid STT-MRAM architecture is mainly employed in order to
achieve a fast and energy-efficient STT-MRAM write operation along with a reliable
STT-MRAM read operation, as the write intensive data can be retained in the the SVM
array, while the read intensive one are mapped to the NVM blocks.

For the hybrid STT-MRAM cache, run-time prediction approaches to identify the data
behavior of each memory item (address) in the cache for the near or far future are
required. However, it is difficult to predict the data behavior only from the first access.
Therefore, the cache-miss information is proposed for the first allocation of the data in
the cache. All read-miss and write-miss blocks will be allocated to NVM and SVM,
respectively. Therefore, DEMUX is added between the current level of cache (e.g., L1
data-cache) and the higher level (e.g., L2 data-cache), as illustrated in Figure 3.13(a).

In case of cache-hit, where both cache ways (SVM and NVM) will be accessed simulta-
neously from the lower-level (e.g., CPU), the cache-hit information is used to guide the
prediction method and hence the migration scheme. Hit information consists of i) the
type of access (read or write) and ii) the type of accessed way (SVM or NVM). Based on
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this information, a control signal will be activated to migrate the data between different
ways of cache via Swap Buffer 3.13(a).

Figure 3.13(a) and (b) illustrate further information about the architecture of one pro-
posed prediction scheme in case of read cache hit access (see Section 3.3.2.1.3). Further
details of all proposed prediction approaches are explained in the next section.

3.3.2 Dynamic Cache Accesses Prediction for hybrid cache data man-
agement

In the hybrid cache architecture, write rate is considered as the criterion for data mi-
gration between the SVN and NVM STT-MRAM blocks. Monitoring write rate for all
data in the cache can be classified into two categories, namely i) static-code or compiler-
assisted write rate analysis and ii) on-the-fly write rate estimation. Although the first
category exhibits less run-time and hardware overheads, as the data placement is totally
done at compile-time [64], it requires complex extensions to ISA, and it is application
dependent under specific operating conditions. Thus, the first category (i.e., compiler-
assisted write rate analysis) cannot deal with normal dynamic changes of data behavior.
For on-the-fly write rate estimation, two approaches can be used, namely static and
dynamic write behavior prediction of the cached data. Static on-the-fly behavior predic-
tion [124] refers to setting up specific and fixed mechanisms (e.g., fixed write rate) for
the entire memory or each cache line based on the historical access information, as it is
assumed to be repetitive and identical in the next execution-time. Approaches based on
static behavior predictions are relatively simple to be implemented, but the flexibility is
very low, as it is highly application dependent. Therefore, it has low accuracy and leads
to frequent data migrations, resulting in high overheads in the system performance and
energy. Dynamic on-the-fly behavior prediction refers to predicting the next write rate
based on the updated supervised run-time data behavior, hence the prediction accuracy
is higher than the static approach.

In this work, depending on the supervised learning data-pattern classification, three
dynamic prediction approaches are proposed for write pattern predictions of each mem-
ory item in the data-cache. Furthermore, the erroneous data induced due to the mis-
prediction (i.e., due to a wrongly allocated read-intensive data to SVM block, which can
lead to read disturb) can be mitigated with an Error Correcting Code (ECC), whose
strength is based on the read disturb probability of the SVM blocks, as explained in
Section 3.3.2.3.

3.3.2.1 Proposed Dynamic Prediction Approaches

3.3.2.1.1 Phase prediction based on Fair Discrete Sequential Prediction In
this approach, we try to predict the future accesses using the phase phenomenon. The
input is a finite-order of cache accesses. The task is to find statistical regularities in
the input so that the ability to predict the next stream of accesses for future time (i.e.,
next phase). Although the read/write access behavior of each data-cache line is varying
over the run-time, for certain durations, this data could exhibit a consistent behavior
that can identify the data behavior phases (i.e., read or write phases). Based on the
phase prediction, the next predicted accesses should also be consistent, until the phase
switches. In the Fair Discrete Sequential Prediction, the conditional probability for the
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Figure 3.14: The steady-state probability tree for access phase prediction

sequences of cache accesses is required to be calculated for identifying phase switching
or the class of next cache accesses, where the next phase or class of cache accesses is
predicted based on the corresponding access as follows:

P (yn | xn, Dn−1) =

∫
P (y1 | x1, θ) ... P (yn−1 | xn−1, θ)P (θ) dθ (3.1)

where, yn is the next predicted phase based on the corresponding access xn and previous
sequence of accesses Dn−1

Dn−1 = {(x1, y1) , (x2, y2) , ..., (xn−1, yn−1)} (3.2)

The conditional probabilities of subsequent read and write data accesses in cache are
easy to be calculated and presented in form of a probability tree. The levels of the
probability tree are shown in Figure 3.14. The root node corresponds to the lack of
any information about type of data access and all nodes below the root have the same
probability distribution. Each path of the tree represents a unique sequence of accesses
corresponding to the label on the node of the tree, while edges are labeled with transitions
probabilities.

A case study has been illustrated in Figure 3.14, where three sequential identical accesses
for a data in the cache determines type of the next accesses (i.e., phase) for that data,
and hence specifies where to map the data in the hybrid cache array. Figure 3.16 shows
the phase prediction accuracy for SPEC2006 benchmarks, which reaches up to 85%,
while the average accuracy is around 75%.

3.3.2.1.2 Bayes Classifier Machine learning techniques can be used for an efficient
data behavior prediction in the cache, where the behavior can be learned to be predicted
depending on history access records. Bayes classifier, which is a probabilistic classifier
based on Bayes theorem, is proposed to predict the class (i.e., read or write) of the
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majority of the next sequential accesses. The input features of this classifier are the
types of last sequential accesses. The Bayes Classifier assumes that all features are
conditionally independent, and any read or write access is conditionally independent of
every other accesses. Therefore, the Naive Bayesian Classification is considered with a
small training dataset in order to decide the most probable class of the next access as
the following model:

C = Pr(C = cj)

n∏
i=1

Pr(X = xi | C = cj) (3.3)

where X is the vector of n independent features or the last n sequential accesses, and C
is the class of the next accesses.

In order to prepare the training dataset, the desired feature of Bayes Classifier are
extracted from tracing the cache accesses. These features are the order and the type
of the cache accesses. Training dataset is represented in form of input/output dataset
or chain of last accesses/next access patterns. The training dataset takes the format
of sets ⟨x1, x2, x3, ..., xn, cj⟩, where x1, x2, x3, ..., xn represent the input features, while
cj represents the target output or the classification node. Table 3.11 shows the used
dataset with their meanings. Back-ward looking and forward-looking sliding windows of
sequence of data accesses in the cache are the time before and after output was made. In
our case, the target output or the classification C is performed based on forward-looking
sliding window.

Once the training dataset is prepared, the Naive Byes algorithm just requires to estimate
the prior probabilities Pr(C = cj) and the conditional probabilities Pr(C | X), as
follows:

Pr(C = cj) =
# of class cj
# total outputs

(3.4)

Pr(X = xi | C = cj) =
# of X = xi and class cj

# of class cj
(3.5)

cj ∧ xi =

{
0 for read access
1 for write access

(3.6)

For five input features along with the major type prediction of the next 5 accesses, up
to 84% of the prediction outputs are accurate, while the average of achieved accuracy
is around 76% (see Figure 3.16). To better illustrate how the method works, Table 3.11
shows a part of the training database generated by gcc benchmark along with a test data
case. In order to predict the output class as read or write, the conditional probabilities
for both read and write classes need to be separately calculated, and hence, the highest
probability will be considered as a predicted output class. Read operation is represented
logically as ‘0’, while logic ‘1’ refers to the write.

3.3.2.1.3 State-based Tow-level Adaptive Training Here we use a similar con-
cept used for branch prediction [125, 126]. Branch prediction schemes can be classified
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Table 3.11: Part of the training dataset used by benchmark gcc and test data

1st last access 2nd last access 3rd last access Next accesses majority
1 1 0 1
0 0 1 0

Training 1 0 1 0
database 1 0 0 1

0 1 0 1
0 1 1 0
0 1 0 0
0 0 1 1

Test 1st last access 2nd last access 3rd last access Predicted accesses majority
data 0 0 1 ?
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Figure 3.15: State-based predictor

into static and dynamic. Dynamic branch prediction schemes use the knowledge of run-
time behavior to make the prediction. 2-bit hysteresis or saturation counter and static
training schemes are proposed in [125] to make dynamic predictions. In 2-bit hysteresis
or saturation counter, the workload execution history dynamically alters the counter
value at branch granularity (called as one-dimensional of a history table with two-bit
counters), and hence modifies the branch states. On the other hand, static training
scheme uses the history information collected form last n run-time execution to make
the prediction.
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Figure 3.16: Prediction accuracies of the proposed approaches

Dynamic training approach is proposed in [126], where the behavior is predicted in two
levels. The first level is the history of branches during the current execution time, thus
branch history register is needed for information collection at this level. The second
one is for collecting and updating the pattern information of each branch in the history
pattern table. In programs, branches are different from each other. Each Branch has a
unique behavior that varies according to the implementation conditions. On the other
side, the data in the cache is very similar in behavior (i.e., read/write access rates and
even required retention time). Therefore, two-level dynamic training approach can be
abridged into one-level as all data has similar pattern information, where the history
register and history pattern table can be merged into one data structure (i.e., one-
dimensional of a history table).

State transition diagrams used in this scheme to predict the data behavior in the cache
based on the one-dimensional history table information are shown in Figure 3.15. In
this figure, a1, a2 and a3 finite-state machines are used to monitor the data behavior in
the non-volatile STT-MRAM based on the number of write accesses, and hence predict
when to migrate the data to semi-volatile STT-MRAM array. On the other hand, read
pattern is predicted by monitoring the data in semi-volatile array as shown in b1, b2
and b3 state machines.

For automation A1, one miss-prediction is enough to migrate the data between different
memory arrays, such as one read access to data in semi-volatile STT-MRAM or one
write access to data in non-volatile STT-MRAM. Nevertheless, this scheme has very low
prediction accuracy and significant migration overheads.

A2 automation records in one bit the last type of access. If there is a miss-prediction
(e.g., read in semi-volatile and write in non-volatile STT-MRAM), this bit will be set to
“1”, otherwise “0”. However, for miss-prediction case, if the bit value was already one,
which means two consecutive mis-predictions, the accessed data will be moved between
the memory arrays, and the bit value will be initialized with “0”.

Finally, A3 automation needs two bits to store the pattern history information of at least
last two data accesses, where three consecutive mis-predictions is the criterion for data
migration. Nevertheless, A2 scheme has enough accuracy up to 86% to be considered,
as shown in Figure 3.16.

3.3.2.2 Proposed Prediction Structure

A simple prediction structure (i.e., history queue) required to be added to the tag array
of each cache line. The length of the history queue relays on the adopted prediction
scheme for retaining the number of sequential type of last accesses or miss-accesses for
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the Phase prediction (i.e., at least 2 required bits) and the State-based history prediction
(i.e., at least 1 required bits), respectively. Whereas, in the Bayes Classifier, the history
queue stores a current test data as shown in Table 3.11. A2 scheme State-based history
prediction approach will be considered for the rest of this work because of its high accu-
racy for only one history bit. Figure 3.13(a) and (b) illustrates the architecture of A2,
A3 State-based history prediction scheme in case of read cache hit access, respectively.

3.3.2.3 Handling Mis-predictions

Figure 3.17 presents four prediction classifications produced by each proposed prediction
approach: 1) read true-prediction, 2) write true-prediction, 3) read mis-prediction and
4) write mis-prediction. Write mis-prediction, whose proportion is on average 15%,
may induce data corruption, as the data is miss-predicted as a write intensive pattern,
and hence it is stored in the SVM blocks. The adopted ∆ value in SVM satisfies the
maximum retention time required to retain data with no retention failure. As a result,
the data corruption occurrence in SVM due to the write mis-prediction is only because
of the read disturb issue.

The read disturb probability depends on two main factors: 1) the adopted low ∆ value
in the SVM region, and 2) the number of the sequential read mis-predictions between
two write true-predictions. The read disturb induced by a read access followed with
another read access is always propagated to the memory output and has a chance to
impair the final output of the workload. In contrast, the write access overwrites the
possible read disturb of a previous read access.

For write mis-prediction analysis, we identify a read record as a series of read accesses
minus one for a particular memory item (data) in SVM cache line. The read record
includes the reads between either loading the data into the cache line or modifying it
with a write access, and either evicting or modifying it again with another write access.
Consequently, each data in the SVM array may have a set of read records. Figure 3.18
shows an example of serial read records, which belong to a memory item in the SVM
cache during the workload execution.

A fault generation mechanism is built in order to flip the bit-cell contents at read access
of each record in the SVM array randomly following the read disturb probability. The
corresponding pseudo-code for fault generation is presented in Algorithm 1. The output
is the maximum number of bits flipped per read record, and hence it identifies the re-
quired error correction capability. For SPEC2006 applications (gcc, GemsFDTD, namd,
onmetpp, soplex), the fault generation scheme is run for 100 times. Consequently, the
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Figure 3.17: True- and mis-prediction rates of the phase prediction approach
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Figure 3.18: Read record analysis in SVM block

Algorithm 1 Fault generation mechanism
Input Read disturb probability of SVM STT-MRAM PRD

and the maximum number of experiments (N)
Output The maximum number of flipped bits (EMax)
1: n←− 1
2: repeat
3: For each retained data in SVM array do
4: For each read record do
5: Initialize the number of flipped bits (E ←− 0)
6: For i from 1 to last read in this record do
7: For each read bit do
8: Generate random number from distribution range xε[0, 1/PRD]
9: if (x == 0) then
10: Flip the content of the bit
11: Increase the number of flipped bits by one (E ←− E + 1)
12: end if end for end for
13: if (E > EMax) then
14: EMax←−E
15: end if end for end for
16: n←− n+ 1
17: until (n == N)
18: return The maximum number of flipped bits (EMax)

maximum flipped bits per read record is one for GemsFDTD, namd and soplex bench-
marks, while there is no read disturb flipped bits in gcc and onmetpp benchmarks.
Therefore, supporting an SVM array at each line with a single error correction code
guarantees the data integrity induced by the write mis-predictions.

On the other hand, the read mis-prediction, whose proportion is on average 10%, only
degrades performance and energy gains. This is because of performing the write opera-
tions in the NVM region, which could ideally be done in the SVM region.

3.3.3 Simulation Results

In this section, we explain our cross-layer frame work. Then, we present the experi-
mental analysis to show the benefits of using hybrid STT-MRAM data-cache combining
non-volatile and semi-volatile blocks in the scope of machine learning by using state-
based history prediction approach to predict the data behavior and to decide the data
migration accordingly. Finally, the prediction mechanism overheads along with the per-
formance and energy analysis are discussed to demonstrate the total gain of the proposed
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Figure 3.19: Proposed system-level tool flow

hybrid STT-MRAM array for on-chip memories in comparison with the sate-of-the-art
RWHCA [124] technique. In RWHCA, the SRAM technology is integrated with stan-
dard NVM STT-MRAM to compensate for the effects of inefficient write operations of
STT-MRAM, while saturated write access counter is considered for data migrations in
the hybrid memory architecture.

3.3.3.1 Cross-Layer Framework and Experimental Setup

Figure 3.19 illustrates our developed cross-layer framework adopted in this idea. It
is at device- and architecture-level similar to previous static approach framework(see
Figure 3.8). However, the main updates of the dynamic approach have been done at
system-level. Table 3.12 summarizes the set-up for the framework and the experiments.

3.3.3.2 Prediction Overheads

The required additional bits for the data behavior prediction approaches are proposed to
be integrated in the tag array. For data-cache of 32 KByte with block size of 64 Bytes,
the incurred additional bits is less than 1.1% per block (cache line), see Table 3.13. It
is also worth noticing that for the Bayes Classifier approach, the training dataset or
the covariance matrix needs also additionally to be stored, whose size is driven from
the target accuracy. The higher accuracy incurs more input features that induces expo-
nentially larger training dataset. According to our experimental results, the prediction
accuracy will no longer increase for more than 5 features. Therefore, for the training
data of 5 features, which provides prediction accuracy up to 84% with an average of
75%, a look-up table of 4 Bytes will be reserved for the required additional bits of the
covariance matrix.
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Table 3.12: Simulation setup

Device level TSMC 40nm transistor model
Perpendicular STT-MRAM model with radius of 20 nm [120]

Architecture level NVSim [121] for read and write latencies of SVM and NVM
System level

Configuration gem5 simulator with ISA X86 [118]
Processor Single-core, 2 GHz, Out-of-order, 4-issue

L1 instruction-cache 32 KB, 4-way set associative, 64B line size, SRAM
L1 data-cache 16 KB, 4-way set associative, 64B line size

for SVM STT, ∆ = 30, ECC1,
write intensive data 1.2 ns/8.6 n2 [read+decoding, write+encoding]
L1 data-cache for 16 KB, 4-way set associative, 64B line size
read intensive data NVM STT, ∆ = 60, NoECC, 0.7 ns/11.6 n2 [read, write]

L2-cache 512 KB, 8-way set associative, 64B line size, SRAM
SPEC 2006 gcc, GemsFDTD, namd, onmetpp, soplex

Execution time of 1000,000 upto 3000,000 read and write CPU requests
After skipping one million warm up instructions

Table 3.13: Latency, energy, area and storage overheads of prediction approach imple-
mentations for 23KB cache

Prediction Time Total Power Area Storage
approach [ns] [mW] [µm2] [%]

Proposed Phase prediction 0.169 0.022 39.33 0.4%
machine Bayes Classifier 0.265 0.044 125.77 1.17% + 4 Byte
learning State-based history A2 0.096 0.011 18.522 0.19%

approaches State-based history A3 0.096 0.016 26.989 0.4%
State-of-the-art RWHCA [124] 0.107 0.0257 41.806 0.4%

On the other hand, the prediction process impairs read/write access latency, while its
circuitry imposes energy and area overheads. The proposed three prediction circuitries
were synthesized with TSMC 40nm standard cell library. Table 3.13 shows the corre-
sponding maximum delay, area and power overheads. For a micro-processor with a clock
cycle not less than 0.5 ns, the increased cache latency due to the prediction penalty has
no impact on the overall system performance, because the cache access with or without
prediction approaches requires the same number of the cycles to complete the operation,
see the system set-up Table 3.12 for the cache read and write latencies.

However, the State-based history prediction approach with one and two bits (i.e., A2
and A3 schemes, respectively) offers the lowest overheads even with a comparison to
the sate-of-the-art RWHCA [124] technique. Therefore, we will consider A2 of State-
based history prediction approach for estimating the performance and energy gains of
the hybrid STT-MRAM cache.

3.3.3.3 Performance and Energy Analysis

Each SVM write over NVM reduces the corresponding dynamic energy and improves
the access performance by 72.5% and 35.0%, respectively. At system-level, the perfor-
mance and energy gains are application dependent, since the ratio of read and write
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CPU requests vary over the executed applications. As illustrated in Figure 3.20, the
write access proportion is around 42%, on average. Therefore, if all write requests are
done in the SVM block, while the read requests are executed in the NVM block, the
energy and performance gains can reach up to 57.7% and 17.1%, respectively, as seen
in Figure 3.21. However, this amount of the achieved gains is unrealistic, and the ac-
tual gain of the proposed approach is less compared to the standard NVM one because
of two main reasons. Firstly, the prediction accuracy is around 75%, on average, as
reported in Sec. 3.3.2. This results in energy and performance overheads related to
the mis-predictions. Secondly, the data replacements costs ( i.e., costs of mapping and
migrating data between NVM and SVM blocks) incur non-negligible energy overhead,
since each migration requires one read and write operation. Consequently, the average
actual gains of the data-cache dynamic energy and the system performance provided by
the proposed approaches are 38.2% and 11.2%, respectively, as seen in Figure 3.21.

On the other hand, compared the state-of-the-art RWHCA [124], where SRAM tech-
nology is integrated with NVM STT-MRAM, and supported with a saturated counter
scheme for data migration, our work provides the following advantages: Firstly, thanks
to zero leakage current of both NVM and SVM of STT-MRAM technologies, SVM is
a more interesting solution than SRAM in the hybrid cache architectures. As seen in
Figure 3.22, the total energy consumption (static and dynamic) of hybrid SVM/NVM
STT-MRAM cache reduces compared to hybrid SRAM/NVM STT-MRAM cache, on
average, around 10.5%. Secondly, thanks to the short read pulse and low read energy
of SVM technology, its dynamic energy consumption and performance are similar and
very close to SRAM. This is especially important, as the hit rate can be improved up
to 13% due to increase the size of 16 KB data cache around 2 KB under the same
area constraints. Finally, it is important to note that the prediction accuracy for some
benchmarks will increase significantly, if we replace our proposed A2 state-based his-
tory prediction with A3 scheme, where three consecutive mis-predictions are required
to predict the data behavior for less frequent migrations. As shown in Figure 3.16, gcc
and soplex benchmarks exhibit better prediction accuracies with Phase prediction (i.e.,
three sequential identical accesses) than A2 State-based scheme (i.e., two consecutive
mis-predictions). Consequently, the proposed state-based scheme can be implemented
in away of integrating A2 and A3 schemes together in a one design, which masks it, un-
like RWHCA method, adaptable to the prediction accuracy variation over the executed
workloads or execution time.
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Figure 3.20: Proportions of read and write accesses for various SPEC2006 benchmarks
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Figure 3.22: Comparison of total (static and dynamic) energy consumption gains at
hybrid cache level normalized to hybrid SRAM/NVM STT-MRAM cache architec-

ture [124]

3.4 Statict and Dynamic Data Placement Approaches Com-
parison

In the proposed static data placement approach, since write-intensive data is mapped
to the relaxed STT-MRAM at compile-time, better performance and energy gains are
achieved. These gains in the dynamic approaches can be reduced due to two reasons: 1)
write-intensive data pattern classification accuracy, where the wrong classification leads
to increase the write rate in the non-volatile STT-MRAM, and hence, performance
and energy penalty, and 2) data migration costs between semi and non-volatile STT-
MRAM blocks. Therefore, as the data behavior varies significantly over the time, the
data pattern classification accuracy degrades and the data migrates frequently between
cache regions. This in turn leads to high performance and energy penalties, which may
erode the achieved gains of adopting hybrid cache architecture. Moreover, the control
circuitry required for dynamic approaches, which continuously monitors each cached
data, impairs read/write access latency and imposes energy, area and storage overheads.
In contrast, our proposed static data placement scheme is firstly built based on the
compiler and profiling information. Then it is applied at compile-time. Consequently,
the aforementioned run-time costs related to the data migration and the control circuitry
are eliminated with the proposed static data placement policy.
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Figure 3.10 shows a comparison of energy gains achieved in the hybrid STT-MRAM
data-cache of our static data placement policy against the dynamic data placement as
proposed in [104]. In the dynamic data placement, the data swapping between hybrid
STT-MRAM blocks depends on the access counter saturation. In [104], the energy
efficiency of the hybrid STT-MRAM reaches, on average, up to 34% compared to the
standard STT-MRAM. However, these gains will further decrease due to the energy
consumption by the control circuitry, while the energy efficiency increases up to 44%,
on average in our static data placement policy.

Note that for gzip and bzip2 benchmarks, the dynamic data placement is more energy
efficient than our proposed policy. This is because the data in these benchmarks has a
constant repetitive behavior, which can improve the run-time data placement and hence
reduces the overheads related to the dynamic policy significantly, such as data migration
costs.

3.5 Summary

Combine SVM with NVM STT-MRAM for a hybrid STT-MRAM architecture is pro-
posed to be adopted as on-chip memories, which possesses energy-efficient, high storage
capacity, better performance and high reliability. Static or dynamic data management
policies are required to support the proposed hybrid architecture.

A static policy relies on the profile-based and compiler analysis in order to obtain data
residency and access pattern. Our experimental results show that compared to the stan-
dard non-volatile STT-MRAM architecture in the same area configuration, the hybrid
STT-MRAM supported with the proposed static data management approach reduces
the overall static and dynamic energy of the cache by 8.1% and 44%, respectively. In
addition, the system performance has been improved up to 8.1%.

For a dynamic data management policy, three different behavior prediction approaches
are proposed with accuracy of 75%, on average. Our experimental results show that
the proposed hybrid STT-MRAM architecture supported with a behavior prediction
approach reduces the dynamic energy consumption by 38.2%, while system performance
gain reaches up to to 11.2%, in comparison with the standard non-volatile STT-MRAM.
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Figure 3.23: Data placement based on profiling-based and compiler analysis for ‘mcf’
and ‘gzip’ benchmarks
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Read rate < 152x10^-6
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alloca : load : store
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Figure 3.24: Data placement based on profiling-based and compiler analysis for ‘gcc’,
‘bzip2’ and ‘twolf’ benchmarks





Chapter 4

Exploiting STT-MRAM for
Approximate Computing

In this chapter, we show the potential of the STT-MRAM technology in the scope of
approximate computing. In general, approximate computing relaxes the bounds of ac-
curate computing for the applications which are inherently error resilient and in return,
it improves the efficiency of the system by other means such as performance and energy
improvements [99, 100]. Many applications, for instance in audio or image processing
domains, possess an intrinsic fault tolerance, and thus can deal with noisy (i.e. erro-
neous) data. For example, when the output of multimedia processing algorithms (images,
videos, etc) is left to human perception, strict exactness may not be required and impre-
cise results may often be sufficient. Hence, with approximate computing, an increasing
error rate can be tolerated to improve the write/read energy/latency of STT-MRAM
with minimal cost. Moreover, even the overall system energy efficiency can further be
improved due to shorter execution times thanks to the improved cache access latencies.

This chapter starts with a comprehensive study of a maximum reduction achieved in
the STT-MRAM characteristics and requirements (i.e., read/write margin, read/write
current, and non-volatile ability). Afterwards, we find a methodology to determine
an optimal thermal stability factor adopted at device-level in order to find the right
balance between acceptable output accuracy at application-level as well as energy and
performance gains at system-level.

4.1 Relaxing STT-MRAM Parameters

Figure 4.1 presents a comprehensive view for possible relaxing approaches in STT-
MRAM technology with respect to reliability constraints.

4.1.1 Relaxing Thermal Stability Factor

In this section, we deal with the induced error rates to trade-off the energy and per-
formance improvements by lowering the ∆ value. Indeed, lowered ∆ reduces the write
access latency and energy significantly at the cost of increasing the retention failure and
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Figure 4.1: Relaxing STT-MRAM parameters and requirements diagram

read disturb probabilities, as discussed in 2.3.4 and illustrated in Figure 2.6. Such failure
rates can be exacerbated under temperature and process variations, since they affect the
adopted ∆ (Figure 2.5). Table 2.1 shows temperature and process variation combined
effects on the reliability issue for lowering ∆ from 60 down to 30. the ∆ value of 60
and 30 refers to the ability of retaining the data, on average, for around 10 years and
multi milliseconds, respectively. In our framework (see Section 4.4.1), the improvements
of the write latency and energy per access for scaled ∆ from 60 to less than 30, reach
up to 25% and 70%, respectively. In contrast, the retention failure and read disturb
probabilities increase exponentially and become non-acceptable for the ∆ less than 40.

4.1.2 Relaxing Write Requirements

In STT-MRAM, a write operation is identified with four main parameters:

1. Thermal stability factor (∆).

2. Write current (Iw).

3. Write pulse (tw).

4. Target WER.

In general, writing in the STT-MRAM needs a high write current, which is much higher
than the critical one (Ic). On the other hand, the magnetic orientation switching in an
MTJ-cell is intrinsically stochastic due to the random thermal fluctuations, the switching
time of bit-cell can significantly vary over the entire memory array. Such stochasticity
can further be exacerbated due to temperature and process variation effects. For a
reasonable WER (i.e., 10−18 [55]) and certain ∆ value, there is a trade-off between the
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Figure 4.2: Relaxing write characteristics

write margin and the write current (i.e., write energy), as seen in Figure 4.2(a). An
efficient write operation at design-time can be obtained with lower ∆ value at a cost of
higher retention and read disturb errors. However, at run-time, lower write current or
sorter write pulse reduces the write costs along with higher WER.

Improving STT-MRAM write operation based on lowering the ∆ has been discussed in
the previous section (Section 4.1.1). Figure 4.2(b) illustrates the induced write efficiency
by relaxing the write pulse or current at a cost of higher WER. Table 4.1 shows the
actual WER for either relaxing the write current with a fixed write pulse or vice versa
along with related energy and performance gains, where the actual WER is orders of
magnitudes higher than the target one (i.e., WER = 10−18).

4.1.3 Relaxing Read Requirements

The improvement in the read operation, which is on the critical path of the system
performance, can be achieved at a cost of a higher probability of either read decision
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Table 4.1: Effective WER with related gains for target WER of 10−18 with 1) different
write currents (Iw) for a fixed write pulse (tw) of 4.5 [ns] or with 2) different write

pulses (tw) for a fixed write current ratio (I = Iw/Ic) of 2

Write current ratio (Iw/Ic) 2 3 4 5 6
Write pulse (tw) [ns] 4.5

WER 0.12 5× 10−7 2× 10−11 5× 10−16 1× 10−18

Write energy gains 88.8% 75% 55.5% 30% 0%
Write pulse (tw) [ns] 4.5 5.7 7.8 10.89 21

Write current ratio (Iw/Ic) 2
WER 0.12 0.006 5× 10−5 5× 10−8 1× 10−18

Write performance/energy gains 78.5% 72.8% 62.8% 48% 0%

failure or read disturb.

In a read decision mechanism, the performance is improved with a shorter margin,
while the energy is reduced by a lower sensing current. This can be achieved along with
increasing the probability of an incorrect bit-cell content determination. Quantifying the
read margin and the current versus the read decision probability trade-off is obtained by
running Monte-Carlo simulation to generate 10,000 samples for read pulses and currents.
This process is implemented at device-level under 5% process variation based on the
framework described in Section 4.4.1. Figure 4.3(a) shows the read error probability
for either relaxing the sensing current with a fixed margin or vice versa. As noticed,
the produced error probability is orders of magnitudes higher than the target one. In
contrast to previous mechanism and based on the read disturb Equation (2.11), adopting
higher read current for shorter read pulse or increasing the read margin for lower read
current results in a higher read disturb probability, as shown in Figure 4.3(b) and (c).

For energy-efficient read operation, lowering the read current under a fixed read decision
failure probability is achieved by increasing the read margin from 1.5 [ns] (i.e., 3 clock
cycles for 2GHz CPU) to 2 [ns] (i.e., 4 clock cycles). However, this leads to increase the
read disturb probability by 1.34×. On the other hand, lowering the read current (e.g.,
10%) within a fixed margin and read disturb probability incurs an orders of magnitude
increase in the read decision failure probability.

4.2 Approximate Computing

The Approximate Computing (AC) concept has recently emerged as a promising ap-
proach which relies on relaxing the bounds of precise computing to improve the per-
formance and energy efficiency by orders of magnitude. This is done by leveraging the
applications resilience to the errors and producing an acceptable output quality within
the tolerable ranges instead of error-free output. Furthermore, many of the applications,
which are data intensive and hence on-chip memory-exhausting, provide opportunities
to exploit approximate computing very efficiently due to the huge existing gap between
the level of accuracy required by the perceptual limitations of humans and that provided
by the system, such as image, audio and video processing applications. Thus, for such
applications, AC has the potential to significantly optimize the behavior of the on-chip
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Figure 4.3: Relaxing read characteristics

memory in terms of performance and energy. In this chapter, we employ this approx-
imate computing scheme in memories at architecture-level and perform the evaluation
using approximate computing applications.
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4.3 Approximate computing in STT-MRAM with Low Ther-
mal Stability Factor (∆)

This section presents the approximate computing methodology for STT-MRAM with
relaxed retention time (lower ∆). Firstly, the overview is explained, followed by a
detailed description of each abstraction component of our proposed methodology to
trade-off accuracy versus performance and energy. In the end, we explain how some
parts of data, which are critical and reliable, have to be protected in our framework.

4.3.1 Overview

Since on-chip memories (e.g., L1 cache) often do not require long data retention periods
due to frequent accesses, the thermal stability factor of bit-cells in those memories can
be reduced, which lowers the data retention time. As a result, the write latency will be
reduced, as well as, the amount of current required to switch the bit-cell content will be
smaller. Consequently, the overall write energy will become significantly better.

However, the drawback of this approach is an exponential increase in the retention failure
and read disturb rates. Therefore, to analyze this trade-off, we have developed a cross-
layer framework (as demonstrated in Figure 4.4), in which we carried forward the impact
of ∆ reduction to the memory architecture and application-level. We have calculated
the impact of various ∆ values on failure rates as well as write energy and latencies at
the device level (similar to Figure 2.6). These values are projected at the architecture-
level for per access energy and delay as well as failure rates. We have performed a
fault injection model at memory architecture-level to accurately mimic the possibility of
read and retention failures. At system-level, the application output is evaluated using
the Signal to Noise Ratio (SNR) metric. This way we can find the optimal value of ∆
for the best trade-off between acceptable quality of the output (correctness) as well as
the performance and energy improvement. In the context of approximate computing,
we allowed erroneous (i.e. inaccurate) data to be fetched by the processor. Hence,
leveraging approximate computing can improve the writing energy and latency of STT-
MRAM. Additionally, as the write latency of STT-MRAM is reduced, the overall system
energy efficiency can be further improved due to shorter execution times.

Value, read/write current, read/write pulse

Fault 
injection

Cache latencies 
(in cycles)

Cache energy 
(per access)

SNR analysis Performance 
analysis

Energy 
analysis

Device parameters: 

Failure 
rates

Switching 
latency

Switching 
energy

Device-
level

Architecture-
level

Application-
level

Figure 4.4: Illustration of cross layer approach for approximate computing in STT-
MRAM.
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Overall, in this chapter, we analyze the range of parameters from both STT-MRAM
technology, system architecture and application requirements to achieve an acceptable
level of quality while maximizing energy and performance gains. For that purpose, we
employ image processing applications, in particular as a case study, we use JPEG format.
This is a lossy compression method for digital images to store or transmit data in an
efficient form without losing the ability to re-extract an acceptable version of the image.
For this reason, the JPEG format provides some inherent level of fault tolerance, which
means that it fits very well to the idea of approximate computing.

4.3.2 Adaptation of Thermal Stability Factor

As discussed in Section 2.3.4, the thermal stability factor has a strong influence on the
reliability of STT-MRAM cell at both idle and access time because of the reduction in Ic.
Consequently, various critical optimizations for STT-MRAM design can be performed,
namely i) performance optimization which is obtained due to the reduction of the re-
quired time to switch the MTJ resistance state (i.e., write latency tw), ii) as the write
access power of STT-MRAM depends on Ic as: Pw = Ic

2 ·RMTJ , where the resistance
state of MTJ cell is fixed, a low Ic value leads to a reduction in power of the STT-MRAM
cell, and iii) the energy consumption (Ew = Pw · tw) can also be dramatically reduced
because of the small tw and Pw values, since they are the outcomes of low ∆ value. Fig-
ure 2.6 shows the effects of ∆ value reduction on failure probabilities, write latency and
write energy. In our framework, for the ∆ reduction from 60 to 20, the improvements
of the write latency and energy per access reach up to 25% and 70%, respectively. In
contrast, the failure probability increases significantly and become non-acceptable for
the ∆ value below 32 (see Figure 2.6).

4.3.3 Fault Injection Approach

There are retention failures and read disturb failures associated with low ∆ values for
the STT-MRAM memory. Therefore, an accurate fault injection model has to be built
based on the combined failure rates, i.e., Failures In Time (FIT). The combined FIT
rate has to be converted into access-based failure probability. The accesses in memory
(e.g., L1 data cache) are performed by read and write requests. However, we perform
the fault injection model at only read access, since it is more frequent compared to the
write access. We compute the Fault Injection Rate (FIR) per read access based on FIT
value of the adopted ∆ and the Read Rate (RR) as follows: FIR=FIT/RR. Table 4.2
provides the combined FIT rate corresponding to ∆ values from 20 to 60.

Table 4.2: The overall mean time to failure (MTTF) for various ∆ values (for setup see
Section 4.4.1)

∆ MTTF [s] ∆ MTTF [s]
20 9.22X10−7 34 1.11
25 1.37X10−4 35 3.01
31 5.52X10−2 40 447.59
32 1.50X10−1 45 6.7X10+4

33 4.08X10−1 60 2.17X10+11
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4.3.4 Tolerate Acceptable Error Rate Using Approximate Computing

To define the accepted value of the lowered∆ for cache memories, we have to estimate the
acceptance quality of the extracted image by observing the influence of the ∆ value on
the error rate which will be translated into the read-access-based injected failures. The
metric is based on the computed Signal to Noise Ratio (SNR) between the approximated
image (faulty image) and golden image (faulty-free image). In other words, SNR can
be served as a quality measure for the approximated image, which is calculated based
on the variance of the signal (i.e., the golden image) (σ2

S) and the variance of the noise
(i.e., the faulty image) (σ2

N ) as Equation. (4.1), and is expressed in decibel (dB).

SNR= 20 log10

√
σ2
S√

σ2
N

(4.1)

The value of SNR impacts directly the performance and energy consumption of the
proposed scheme. However, the minimum acceptable SNR value depends mainly on the
application requirements. For instance, in image processing applications, the minimum
required SNR value of the faulty image SNR Threshold (SNRth) is set at the level where
the human brain and eyes can differentiate between a faulty image and a golden one.
This means that if the SNR value of the output is less than SNRth, it is considered as an
unacceptable output quality. See Figure 4.5, where SNR for an acceptable JPEG image
quality has to be more than SNRth = 50. However, for more performance and energy
improvements, other smaller SNR values can be considered at the cost of less but still
acceptable output quality. The corresponding pseudo-codes for generation of golden and
faulty images are presented in Algorithm1 and Algorithm2.

Algorithm 2 Golden image generation
Input Error-free output constraint {∆max}
Output Error-free image
1: Set the corresponding STT-MRAM based data cache configurations
2: Execute the simulation without fault injection mode
3:return Error-free image

4.3.5 Protection of Critical Data

A major challenge of using an approximate storage is that most applications which are
highly amenable to the approximate computing paradigm, have a mixture of control
data, so-called the critical data, which cannot tolerate any errors and the data that
may be approximated or unreliable. Since the workloads in our case study are image
processing applications (JPEG), which use a lossy compression technique to produce a
similar coloured image with reduced size and an acceptable quality, any imprecision in
the region of a code that stores the meta-data (the header of the image) totally corrupts
the output image. This means header data is controlling the image data and should
not be approximated. In contrast, the compressed image data (i.e., quantization) has
tolerance to imprecision and any errors in it may only lead to some degree of quality
loss in the output image. Therefore, the stored data has to be classified into reliable
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Algorithm 3 Faulty image generation
Input Approximate computing constraints {∆min, ∆max, SNRth}

and the maximum number of experiments (N)
Output Acceptable and non-acceptable percentage of image quality
1: For ∆ from ∆min to ∆max do
2: Set the corresponding STT-MRAM based data cache configurations
3: Calculate the fault injection rate per read access (FIR)
4: For n from 1 to N do
5: Execute the simulation with fault injection mode
7: Calculate SNR
8: if SNR > SNRth then
9: Increase the acceptable quality percentage
10: else
11: Increase the non-acceptable quality percentage
12: end if
13: end for
14: end for
15: return Acceptable and non-acceptable percentage of image quality

and unreliable data, which are header and quantization, respectively. There are various
solutions to protect the critical part of the data.

The critical data size is very small compared to that of the non-critical data. To make
critical data error resilient, one way is to design a heterogeneous memory array for the
data cache which has high and low ∆ values. In this design, the critical data has to
be stored to the cells of high ∆ to guarantee the error free operation. However, this
requires changes to the fabrication parameters of the two arrays as well as complex
cache controller to allocate data to different arrays. A less complicated way to protect
the critical data is either to use multiple copies of the content of this data, such as dual
or triple modular redundancy, or to use Error Correction Code (ECC), which protects
the data by adding check bits. Since the size of critical data is significantly smaller than
approximate-able data, the overhead due to extra bit-cells of either the repeated bits of
dual or triple modular redundancy or the check bits of ECC approach is minimal.

4.4 SIMULATION RESULTS

In this section, we present the experimental analysis to show the benefits of using STT-
MRAM in approximate computing by using image processing applications (JPEG) as a
case study.

4.4.1 Simulation Setup

For our evaluations, we extended the gem5 simulator with a fault injection framework
in order to support the retention time of each particular value of ∆ adopted for an
STT-MRAM based data cache. On the other hand, the instruction cache has to be
faulty-free. This is why we assumed ∆ = 60 for the instruction cache to guarantee
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high retention time. This assumption is reasonable, as the number of write accesses
to the instruction cache is considerably lower. Therefore, the performance and energy
overheads of adopting higher∆ for such a cache would be negligible. Table 4.3 summarize
the set-up for our experiments. The evaluations are performed by running 3 applications
of image processing from MiBench applications 100 times in order to make our fault
injection model non-deterministic. Each output for each experiment has a different level
of quality loss according to the error rate of the used ∆. We use SNR as the metric
system to evaluate the quality of the applications output.

4.4.2 SNR Evaluations

The SNR measurements reveal the degree at which an application could produce sat-
isfactory and reasonable output due to the use of the relaxed thermal stability factor
of STT-MRAM in data cache for approximate applications. This is to determine the
achievable limits of the performance and energy improvements for STT-MRAM technol-
ogy. Our analysis depends on extracting 100 different values of SNR for each ∆ value
up to 70 for the three image applications.

Figure 4.5 shows acceptable and non-acceptable faulty image quality along with the
original one. After observing the images along with the related SNR, we can define the
values of SNRth which are 50, 50 and 60 for djpg, jpegtran and cjpeg, respectively. This
means that the faulty image can be considered as acceptable, if its SNR value is greater
than SNRth (as explained in Algorithm 2).

According to the SNR measurements, we count the acceptable images from the entire 100
faulty images related to each ∆ value for all the image applications (see Figure 4.6). This
image shows that for ∆ ≤ 25, the percentage of acceptable quality is zero, for the three
image applications, whereas, for ∆ ≥ 40, all the images are acceptable. For ∆ values
equal to 32, 33 and 34, our results show that the percentage of the acceptable quality is
more than 95%. Therefore, values of ∆ can be considered for approximate computing, in
which the output with quality loss is less than 5%. Please note that in our framework, the
retention failure rate dominates over the read disturb rate for the SNR measurements
(see Figure 2.6 (b)). For the applications with faster read requirements, higher read
currents are necessary, and consequently, the read disturb rate will be higher. In such
cases, the SNRth evaluation criteria can be changed, and accordingly, the percentage of
the acceptable quality can be altered.

Table 4.3: Simulation setup in gem5

gem5 confiquration ISA x86
Processor Single-core, 0.5/1/2 GHz, Out-of-order, 4-issue

L1 data-cache 64 KB, 2-way set associative, 64B line size
STT-MRAM, different write latencies and ∆ values

L1 instruction-cache 32 KB, 2-way set associative, 64B line size
STT-MRAM, ∆ = 60

MiBench Applications [127] djpeg, cjpeg, jpegtran
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(a) Golden image (b) Acceptable image
qualtiy
∆ = 25 & SNR = 50

(c) Non-acceptable image
quality
∆ = 26 & SNR = 23

(d) Non-acceptable image
quality
∆ = 27 & SNR = 19

Figure 4.5: Images of various ∆ and SNR values for STT-MRAM data cache for “jpeg-
tran” workload
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Figure 4.6: Acceptable image quality for various ∆ values

4.4.3 Performance and Energy Analysis of Optimal ∆ for Approximate
Computing

The performance influence of the lower ∆ value for STT-MRAM data cache is closely
associated with the processor frequency. On one hand, for a given frequency, the write
latency is reduced by 0.5 ns when ∆ is lowered to 32, as illustrated in Figure 2.6(a). On
the other hand, the performance gain further increases by a low clock frequency of the
processor as well. For instance it reaches to 25% and 10% at clock frequency 1 GHz and
2 GHz, respectively (see Figure 4.7). Furthermore, according to our experiments, 66%
of the total energy of STT-MRAM for the L1 cache is consumed for write operations
in data cache. Therefore, any improvement in the energy consumption of STT-MRAM
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Figure 4.7: Relation between image quality, performance (runtime) and write energy
for an STT-MRAM based data cache

cell in the data cache leads to the overall system energy efficiency. Results show that we
are able to improve the energy consumption per access up to 70% with a ∆ value 32.

Based on the performance and energy improvements of the low ∆ value along with the
output quality, we can define the optimal ∆ value for a particular system setup. Fig-
ure 4.7 illustrates this trilateral relationship (i.e., energy, performance, quality). Accord-
ing to this figure, the optimal configuration for approximate computing applications can
be obtained by relaxing the thermal stability factor from the usually applied 60 down
to 32, where the overall system energy reduction reaches up to around 46% and the
performance gains are 25% and 10%, at clock frequency 1 GHz and 2 GHz, respectively.

4.5 Summary

In this chapter, we have developed a cross-layer framework, from technology parameters
to architecture and application levels to evaluate the applicability of STT-MRAM tech-
nology for approximate computing. We have also provided a methodology to determine
the optimal thermal stability factor in order to find the right balance between acceptable
accuracy as well as energy and performance gains. Our results show that the energy
reduction of 46% along with a performance gain of up to 25% can be achieved at system
level with a reasonable output quality.



Chapter 5

STT-MRAM Using Non-uniform
and Adaptive Error Correcting
Scheme

In this chapter, we propose a new opportunistic write scheme for STT-MRAM to improve
its performance in order to be used for fast on-chip memories. The proposed technique
terminates the write operation opportunistically by allowing unfinished switching of
the bits with large write latency. Then, we enable a fast, yet robust ECC, namely
Lazy Error Correction Code (Lazy-ECC). This is achieved by decoupling error detection
and correction steps, and performing speculative computation on the unchecked data.
Furthermore, we exploit the low thermal stability factor (∆) for faster and lower energy
MTJ switching. As a result, the associated error rate of the proposed approach is
relatively high because of: i) the unfinished write, and ii) the higher retention failure
and read disturb rates due to the smaller ∆. To address these challenges, we present a
comprehensive cross-layer study going from device level up to architecture level on the
combined effects of the process variation, the operating temperature and the stochastic
write operation. Based on this cross-layer analysis, we propose a runtime adaptive
approach to manage the combined effect of these phenomena on the overall write latency
and reliability at the architecture-level.

In the proposed Lazy-ECC scheme, the error detection and correction phases are done
in parallel to the speculative data processing. The fast error detection (within a cycle)
guarantees error detection before widening the error sphere (e.g. committing erroneous
data), to ensure error confinement and guarantee the data integrity. Consequently, our
proposed technique enables fast, reliable and energy-efficient STT-MRAM design for the
fast memories. Furthermore, an adaptive and non-uniform error correcting scheme has
been proposed by considering the combination of the process variation and the operating
temperature effects on the read disturb, retention failure and write error rate.

71
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5.0.1 Error Correcting Codes (ECCs)

In the information theory, ECC(n, k, e) specifies that for the length of the input data
which is equal to k bits, the length of the encoded data should be n bits, and the coding
technique is able to correct e errors. A memory array with ECC capability has an
encoder in its input and a decoder on its output. The data is encoded using the encoder
unit and then is stored in the memory. Upon a read request, first the data is read from
the memory and after performing the decoding process, the data is sent to the output.

Among all various multiple bit correction schemes, BCH code is more appropriate for
STT-MRAM as it can correct multiple random errors [128]. Error detection in BCH is
a fast process which is done by generating and evaluating syndromes. In contrast, error
correction is quite slow because the positions of all errors have to be detected using an
iterative algorithm [98].

5.0.2 Reducing STT-MRAM Write Margin by Exploiting ECCs in Op-
portunistic Write Policy

Recent studies [94, 128] exploited ECC to improve the STT-MRAM performance through
reducing the write margin to a large extent by correcting errors in the tail of the stochas-
tic write distribution. The impact of such techniques could be analyzed by studying the
impact of write errors at the word-level. At this level, a write operation is considered
as a fail when at least one of the bits is not written in the given time margin. Hence,
WPword(tw), which the write probability of an n-bit word in tw, can be computed as:

WPword(tw) = WPbit(tw)
n = (1−WERbit(tw))

n (5.1)

Where WPbit(tw) is the write probability for a single bit. In order to determine the write
probability of n-bit word protected with ECC(n,k,e), a binomial distribution is used as
follows:

WPword(tw) =

e∑
i=0

(
n

i

)
· (1−WPbit(tw))

i ·WPbit(tw)
n−i (5.2)
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Figure 5.1: Write error rate vs. write latency for 64-bit data with different ECCs
excluding ECC encoding; (a) For L1 cache with ∆ = 30 and Iw/Ic = 3; (b) For L2

cache with ∆ = 40 and Iw/Ic = 2; See setup in Section 5.3.1]
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Figure 5.2: Write latency reduction with opportunistic write policy for 64-bit data for
L1 and L2 caches, setup in Section 5.3.1

Please note that, Equation 5.2 can be simplified to Equation 5.1, if e= 0. This means
that No-ECC is adopted to estimate the write probability with required margin.

Figure 5.1 (a) and (b) illustrate the WER value for various write latencies in a 64-
bit data-word with different BCH schemes that are able to correct 1 up to 4 errors
(denoted as ECC1 to ECC4). As shown, for achieving an acceptable WER value (e.g.
10−18 [66]), the write latency is effectively reduced from 11.6 ns to 3.6 ns for L1 cache (see
Figure 5.1 (a)) and from 21.0 ns to 6.7 ns for L2 cache (see Figure 5.1 (b)) by increasing
the ECC robustness up to ECC4. Table 5.1 represents the storage overhead along with
the minimum delay for the encoding and the decoding circuitry for word size of 64-bits
synthesized using TSMC 65nm standard cell library.

The opportunistic write policy is an energy efficient and high performance policy in
which the write operation is terminated when most of the bit switchings are completed.
It is used to overturn the write margins in STT-MRAM memory from over-estimations
to under-estimations. Therefore, it is supported with a new ECC mechanism to cover
the gap between the under- and the over-estimations. The opportunistic write is im-
plemented at word-level (64 bits). In this regard, the opportunistic write operation will
be terminated faster than the normal one with a particular probability of having unfin-
ished bits. In case there are some unfinished bits, the proposed Lazy-ECC scheme has to
correct and rewrite the unfinished bits. Figure 5.2 depicts the opportunistic write mar-
gin distribution at word-level for L1 and L2 caches. As L1 cache filters most accesses,
the write access latency of L1 cache is on the critical path of the system performance.
Therefore, the adopted thermal stability factor is low (∆=30) and the write current is
high to guarantee fast write operations. However, in case of L2 cache, a higher thermal
stability factor (∆=40) is considered to guarantee higher retention time, as the data
residency time in L2 is higher than in L1 cache. As shown in this figure, to have an
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acceptable write error rate (10−18), the write latency has to be almost 12 ns and 21 ns
for L1 and L2 caches, respectively. However, these margins can significantly be reduced
at the expense of higher write error rate, which can be translated into the expected
number of erroneous bits in the word, hence the required error correction capability.
For instance, the write latency can be reduced to below 4 ns and 7.8 ns for L1 and L2
caches, respectively, translating to 3× reduction, by expecting up to four bit errors per
word.

5.1 Lazy Error Correcting Code

In this section, it is shown that the conventional ECC-based approach has a large de-
coding latency. This impairs the read latency and makes STT-MRAM quite inefficient
for fast memories such as L1 and L2 caches. In order to address this shortcoming,
we propose a new technique to combine opportunistic write and perform speculative
computation while data is being checked for possible errors.

5.1.1 Motivation

As shown in Section 5.0.2, the excessive write margin of STT-MRAM in fast memories
such as L1 and L2 caches could be reduced to a large extent by exploiting small value
of ∆ and robust ECCs. However, robust ECC schemes have excessively large decoding
latencies which negatively affect the read latency, and hence, the overall performance.
In order to evaluate such claim, we synthesized the encoder/decoder circuitry of dif-
ferent ECCs for minimum possible latency. Table 5.1 reports the breakdown of write
and read latencies for ECC1 to ECC4 for L1 and L2 STT-MRAM caches. For a single
error correction, we reported the data for Single Error Correction Double Error De-
tection(SECDED) scheme which is commonly implemented in memories, while for 2-4
error correction, the BCH scheme is exploited as recommended by [94, 128]. As shown,
although the write latency is reduced by exploiting more robust ECCs, the decoding
latency grows significantly. Hence, the reduction in write latency comes at the cost
of increasing the read latency to the extent that the overall read latency surpasses the
write latency. This means that while a more robust ECC can bring the write latency
within the required performance threshold, the read latency increases and falls beyond
the desired performance limit.

In ECC(n, k, e), the syndrome vector required for error detection has a length of n− k
bits. Each bit of the syndrome vector can be obtained by a separate XOR tree with
maximum a depth of log(n) [98]. This means that the error detection circuitry has a
very simple structure and also very small latency. However, the error correction circuitry
is quite complicated. Table 5.2 reports the error detection and correction latencies for
different ECCs applied on 64-bits data and synthesized with TSMC 65nm standard cell
library. As shown, the detection time is always smaller than the correction latency and
the gap between these two significantly increases as ECC becomes more robust (11× for
ECC-4). Therefore, separating error detection and error correction phases can provide
some benefits, as will be discussed next.



Chapter 5 STT-MRAM Using Non-uniform and Adaptive Error Correcting Scheme 75

Table 5.1: Read and write latencies of 64-bit STT-MRAM L1 and L2 caches with 16KB
and 512KB capacity [Experimental setup in Section 5.3.1]

No-ECC ECC1 ECC2 ECC3 ECC4
SECDED BCH BCH BCH

Storage overheads 0% 11% 18.9% 25.5% 31%

L1 cache

Write [ns]
ECC Encoding — 0.400 0.525 0.530 0.545
Memory Write 11.610 6.456 4.909 4.100 3.628

Overall 11.610 6.856 5.434 4.630 4.173

Read [ns]
ECC Decoding — 0.580 2.459 3.698 4.714
Memory Read 0.898 0.899 0.899 0.899 0.900

Overall 0.898 1.479 3.358 4.597 5.614

L2 cache

Write [ns]
ECC Encoding — 0.400 0.525 0.530 0.545
Memory Write 21.00 12.50 9.50 7.80 6.70

Overall 21.00 12.90 10.025 8.33 7.245

Read [ns]
ECC Decoding — 0.580 2.459 3.698 4.714
Memory Read 1.120 1.121 1.121 1.121 1.122

Overall 1.120 1.701 3.580 4.819 5.836

Table 5.2: Error detection and correction latencies [ns]
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ECC1 0.372 0.580

ECC2 0.403 2.459

ECC3 0.440 3.698

ECC4 0.442 4.714

5.1.2 Proposed Lazy-ECC Approach

The proposed Lazy-ECC scheme is independent of the processor architecture. Our
objective is to eliminate the ECC penalty from the cache read path, which is on the
critical path of the system performance. This concept can be implemented for both
in-order and out-of-order, simple-scalar and super-scalar processor architectures.

For reverting all speculative computations based on erroneous data, only detecting the
existence of an error is enough and the correction can be performed later. Therefore, our
proposed approach decouples error detection from error correction to accomplish quick
error checking. This reduces the costs associated with the reverting due to the smaller
error sphere and proper error confinement.

The key to effectively address the long decoding latency of the conventional ECC-based
approach is to eliminate the decoding latency of the robust ECC from the read latency.
In the conventional ECC-based approach where data processing is done in a serial order,
data is not available prior to the completion of the decoding process and only valid data
(checked and corrected) can be propagated to other parts of the system. In our proposed
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approach, non-checked data is simultaneously propagated to the decoder and to other
parts of the system (sink). This means that data validation is not completed prior to
data access and the propagated data might be erroneous. For this reason, this new ECC
approach is referred to as Lazy-ECC approach.

In this approach, a fully combinational one stage decoding circuitry has to be avoided.
A typical BCH decoder has no feedback structure, thus it can be efficiently broken up
into two pipeline stages: 1) error detection which consists of syndrome vector generation
and evaluation, and 2) error correction by generating the error locator polynomial and
finding the error location numbers with subsequent error correction. In addition, it is
crucial to perform the error checking at the same pace that the data is accessed from the
memory. To boost the performance of the decoder, the detection and correction stages
could also be further divided into smaller stages [129].

In Lazy-ECC, the erroneous data has to be detected before reaching the critical part
of the system to ensure error confinement in order to guarantee data integrity. For
example, in pipeline stages of a high-performance processor, errors have to be detected
before reaching the commit stage. In case there is no error in the propagated data,
a significant reduction in read latency is achieved. Once an error is detected by the
decoding circuitry, all speculative computations based on the erroneous data are reverted
and the computations are repeated based on the corrected data.

5.1.3 Instruction Cache Implementation

As a case study, the implementation of the Lazy-ECC approach for an instruction cache
of a processor is presented. The connection between different units are shown in an
illustrative block diagram in Figure 5.3. As shown in Table 5.2, the error detection
latency is very small, which is in the worst case less than 500 ps and hence, in this
example we assume that it can be done within one clock cycle in a 2 GHz processor.
Once the processor reads an instruction from the instruction cache, the instruction is
propagated to both the ECC decoder and the fetch stage of the processor. While the
instruction is being processed in the fetch stage, the decoder circuitry checks for possible
errors.

In case the data read from the memory is correct, execution continues without any
interruption from the decoder circuitry. On the contrary, in case an error is detected
using the decoder circuitry, it activates the error signal to revert the erroneous instruction
from the pipeline before it propagates to the next stage. In addition, NOP instructions
are inserted in the pipeline until the error is corrected. For error correction, the decoder
corrects data and then the corrected data is written back to the memory. Once the
correcting process is terminated, the processor continues its operation by re-fetching the
corrected data from the instruction cache. In other words, in the error-free case, the
read latency of Lazy-ECC is equal to the case with no-ECC, while providing the same
level of error correction capabilities as robust ECCs.

For the other memory arrays, Lazy-ECC can be implemented in a similar manner. For
instance, for data cache, the speculative computation can be done in the load/store unit
while error detection is performed in parallel.
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Figure 5.3: Block diagram of Lazy-ECC for instruction cache

Table 5.3: Effective WER of different ECCs for a target WER of 10−18

ECC1 ECC2 ECC3 ECC4
WER 1.7× 10−9 2.0× 10−6 9.0× 10−5 6.6× 10−4

5.1.4 Performance Gain Analysis

Our proposed approach improves the performance for cases with no errors while it in-
creases the latency for cases with error. Therefore, the fraction of accesses with error is
a key parameter in evaluating the performance improvement of our proposed approach.

As mentioned earlier, the write latency is typically determined according to a reasonable
WER (e.g. 10−18 [66]). Therefore, it is expected that the acceptable probability of
uncorrected errors of all conventional ECC-based techniques would be the same (i.e.,
10−18). However, the actual effective WER seen at the L1 and L2 cache outputs (i.e.,
before correction) is much higher (i.e., WER > 10−18), and it reaches to that target level
after error correction. Table 5.3 shows the actual WER at the cache output for various
ECCs. As it can be seen, this is orders of magnitude higher than the target WER.

In the Lazy-ECC approach, all errors at the memory output are propagated to the
system (processor) because the errors are not corrected during the read access. The
error recovery rate is equal to the actual effective WER (Table 5.3). In case the recovery
is required, the performance penalty by our approach would be small because the cycles
used for speculative computation are also used for error detection and correction. Until
this point our approach is similar to the conventional one. Afterwards, we have to write
the data to the memory and read it again. However, this small penalty is negligible
compared to the gain that we have for the majority of error-free accesses.

In order to analyse the performance gain of our approach compared to the conventional
one, we need to study the effects of the error rate. In the proposed scheme, we are
dealing with errors due to the read, write operations and the retention period, since
the write latency and retention time are reduced to meet the fast cache requirements.
The sum of these error rates is named as Total Error Rate (TER). Let us assume that
the decoding, encoding, read, and write latencies are tD, tE , tr, and tw, respectively.
The expected latency of the conventional ECC-based approach in each read access is
TConv = tr + tD. Whereas, in our approach, if there is no error, there is no penalty and



Chapter 5 STT-MRAM Using Non-uniform and Adaptive Error Correcting Scheme 78

the read latency would be equal to tr. However, if there is an error, the read latency
will be equal to (tr + tD + tE + tw + tr), because the corrected data has to be encoded,
written to the memory by encoder, and then read again. Therefore, the overall expected
read latency (TLazy) in our approach can be calculated as follows:

TLazy = TER× (tr + tD + tE + tw + tr) + (1− TER)× tr. (5.3)

Since the values of write error, retention failure and read disturb probabilities are small,
the expected average read latency of our approach can be estimated by:

lim
TER→0

TLazy = tr (5.4)

5.2 Non-uniform and Adaptive ECC Approach

5.2.1 Adaptive ECC Approach to Address Temperature-induced Fail-
ures

As shown in Section 2.3.4, retention failure and read disturb probabilities increase expo-
nentially under elevated temperatures, while WER slightly decreases. This means that
the overall performance of the Lazy-ECC scheme is highly affected by higher operat-
ing temperature, as the penalty of Lazy-ECC scheme depends mainly on the TER value
according to the Equation (5.3). Whereas, the cache performance with the conventional-
ECC scheme is totally independent from the TER value and hence from the operating
temperature. Therefore, we propose an adaptive and hybrid ECC scheme for fast and
reliable STT-MRAM cache design.

There are two important parameters in the proposed hybrid scheme: i) the actual value
of TER that can be determined based on the actual operating temperature, which can
be obtained from on-chip thermal sensors, and ii) the threshold value (TERth), which
can be defined as a critical level of TER for switching the adopted ECC approach.
The optimal case can be achieved by adopting Lazy-ECC when TER is low enough
due to low operating temperature. Afterwards, the performance degrades at higher
temperatures due to TER increase. However, the cache performance with Lazy-ECC is
still better than with conventional-ECC, since the TER value is smaller than TERth.
If the operating temperature goes beyond the threshold value and consequently TER
becomes more than TERth, the correction penalty at read access will not only erode the
gains of Lazy-ECC scheme, but also the overall performance will dramatically decrease,
while the performance of conventional-ECC scheme is fixed under different operating
temperatures. Figure 5.4(a) illustrates the performance behaviors under the temperature
variation extracted by applying Lazy- and conventional-ECC on L1 and L2 caches.
It is obvious that a pure ECC scheme (either Lazy-ECC or conventional-ECC) can
not provide an optimal performance, hence, a hybrid scheme is required. In other
words, for a certain adopted ∆ value (i.g., 30), a Lazy-ECC scheme provides better
performance compared to the conventional one even with higher temperature. However,
as the temperature reaches a particular value (e.g., 88◦C for Lazy-ECC, as shown in
Figure 5.4(a)), we have to switch from the Lazy-ECC to the conventional-ECC to gain
more performance, as illustrated in Figure 5.4(b)). Otherwise, the overall performance
of the system is significantly impacted. The value of such threshold temperature is a
function of the ∆ value and the adopted write margin.
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Figure 5.4: Instruction Per Cycle (IPC) of Lazy-ECC, conventional-ECC and Adaptive
ECC Approach under different operation temperature values for L2 cache (∆ = 40,

Iw/Ic = 2) and L1 cache (∆ = 30, Iw/Ic = 3), setup in Section 5.3.1

5.2.2 Non-uniform ECC Approach to Efficiently Address Process Vari-
ation Effects

As discussed in Section 2.3.3 and 2.3.4 process variation causes a considerable variance
in the ∆ value for the MTJ-cells of STT-MRAM memory, which significantly affects
the write current (Iw) and the critical current (Ic) of MTJ-cell. This induces wide
variations in the retention time, read disturb and write error rate (i.e., TER). Hence,
their minimum and maximum values over the entire STT-MRAM memory array can
differ by several orders of magnitude, as seen in Figure 2.6.

One method to address the process variation effects is to fix the TERth of the proposed
adaptive ECC approach based on the cell with minimum ∆ in a memory array, i.e., the
worst case process condition. However, this leads to an inefficient implementation of
the adaptive ECC approach, because of the early switching to the conventional-ECC.
As illustrated in Figure 5.5, by considering the process variation effect, the operating
temperate of 27◦C will be adopted for switching. Whereas, fixing the TERth based on
the normal case (i.e., with no process variation consideration) increases the operating
temperature of the switching up to 88◦C. However, the normal case could lead to
accumulation of errors beyond the error correction capability and hence results in failures
of the memory system.

As explained in [130], the process variation in STT-MRAM shows strong spatial cor-
relations, which means that the variation among neighboring cells are much smaller
compared to cells that are far apart from each other. Based on this observation, the
cache lines can be grouped according to their thermal stability factor (∆) value. Each
group is defined as a collection of cache lines which exhibit a very close ∆ value that are
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and L1 cache (∆ = 30, Iw/Ic = 3), setup in Section 5.3.1

easily distinguishable from those of the rest of the lines. Consequently, each group has
a particular Group Error Rate instead of TER, and hence a particular threshold value
(GERth), which defines the operating temperature for switching between Lazy-ECC
and conventional-ECC scheme for that group. As a result, a non-uniform adaptive ECC
scheme is proposed for an efficient and reliable STT-MRAM cache design. We found
that with dividing the cache into 2,4 and 8 groups at cache line granularity, the group
size of minimum ∆ can be reduced by 38%, 75% and 84%, respectively.

At design time, cache lines will be clustered into N groups based on the minimum
thermal stability factor per line. Therefore, log2(N) flag-bits are required to be added
to the tag array, which is typically based on SRAM technology, for identifying the lines
of the same group. After manufacturing, the characterization testing process determines
the minimum∆ values per line based on any of the existing retention testing methods [78,
131]. Although the retention testing is non-trivial and time consuming process, it will be
performed once after manufacturing. This , however, enables significant improvement of
the STT-MRAM design at run-time based on our proposed non-uniform ECC technique.

Once the ∆ for each cache line is identified, the classification of cache lines into groups
could effectively be done as in [65] using the standard k-means clustering algorithm [132]
and the flag-bits associated with the group information of each cache line are set accord-
ingly. The switching operating temperature of the groups is simply saved in a lookup
table. At runtime, adjusting the ECC approach of each group is performed based on
the operating temperature.

5.3 Simulation Results

This section demonstrates the effect of non-uniform adaptive ECC approach applied on
the STT-MRAM-based L1 and L2 caches of a high performance processor. In addition,
the Lazy-ECC is compared with the conventional ECC approach where the decoding
circuitry has negative impact on the read performance in terms of the overall performance
and energy.
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Table 5.4: Read and write latencies of 64-bit STT-MRAM L1 and L2 caches with 16KB
capacity supported with Lazy and conventional ECC-based approaches

L1 cache
Operation No-ECC ECC1 ECC2 ECC3 ECC4
Write [ns] 11.610 6.856 5.434 4.630 4.173

Read [ns] Lazy-ECC 0.898 0.899 0.899 0.899 0.900
Conventional 0.898 1.479 3.358 4.597 5.614

L2 cache
Operation No-ECC ECC1 ECC2 ECC3 ECC4
Write [ns] 21.00 12.90 10.025 8.33 7.245

Read [ns] Lazy-ECC 1.120 1.121 1.121 1.121 1.122
Conventional 1.120 1.701 3.580 4.819 5.836

Table 5.5: Simulation setup in gem5

Processor Single-core, 2 GHZ, Out-of-order, 4-issue

L1-cache 32 KB, 4-way set associative, 64B line size
STT-MRAM, ∆ = 30, I = 3

(Data and Instruction) diff. read/write latencies obtained from Table 5.4

L2-cache
512 KB, 8-way set associative, 64B line size
STT-MRAM, ∆ = 40, I = 2
diff. read/write latencies obtained from Table 5.4

SPEC2000 gzip, bzip2, mcf, twolf, vpr
Applications sjeng, gcc, art, mesa, lbm

5.3.1 Simulation Setup

For the bit-cell in L1 cache, we used ∆ = 30 and Iw/Ic = 3 to guarantee fast write
operations, while for the L2 cache bit-cell, we assumed higher thermal stability factor
∆ = 40 and Iw/Ic = 2 to guarantee high retention time with lower dynamic energy
consumption.

At architecture-level, in order to compute the memory access latencies (i.e., write and
read latency), we model the stochastic behavior distribution using Matlab based on
Equation (2.13). The encoder and decoder circuitries were synthesized with the TSMC
65nm standard cell library using Synopsys Design Compiler. The synthesis constraints
are adjusted to obtain the minimum delay for encoding and decoding circuitry.

For system-level analysis, the proposed Lazy-ECC as well as the conventional-ECC
approach are implemented on L1 and L2 caches of an Alpha processor modeled in
gem5 [118]. Table 5.4 reports the breakdown of write and read latencies for Lazy and
conventional ECC-based approaches in L1 and L2 STT-MRAM caches. The setup for
our system-level experiments are summarized in Table 5.5.

5.3.2 Non-uniform Adaptive ECC Results

According to the MTJ process variation, L1 and L2 cache lines can be clustered into
4 groups based on ∆ value of their MTJ-cells, thus the mapping of cache lines to the
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Table 5.6: Minimum ∆, switching operation temperature and the percentage of each
group for STT-MRAM L1 and L2 caches

flag-bits Minimum Switching Group
of group ∆ temperature percentage

L1-cache 00 25 27◦C 7%
with 01 27 53◦C 30%

Mean ∆ value 10 28 67◦C 42%
of 30 11 29 77◦C 21%
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Figure 5.6: Instruction Per Cycle (IPC) of 4-groups-adaptive ECC approach applied
for L1 cache, ∆ = 30, Iw/Ic = 3

groups can be identified by adding 2 flag-bits to the tag array. Additionally, two simple
look-up tables of 4 rows are specified to save the operation temperature for switching
between the ECC schemes in L1 and L2 caches, where the row indexes define the groups.

In fact, as the L1 cache filters most read and write accesses, the access rate for higher
level cache (i.e., L2-cache) is low. On the other side, a higher thermal stability factor
is adopted for L2 cache, which reduces temperature and process variation induced fail-
ures. Therefore, adopting a pure Lazy-ECC approach in the L2 cache regardless of the
process variation and the operating temperature effects has no negative impact on its
performance. Thus, it is sufficient to apply the non-uniform adaptive ECC approach for
only L1 cache. Table 5.6 illustrates the operating temperature required for switching
and the percentage of each group in L1 cache. Figure 5.6 depicts the performance under
the temperature variation extracted of the proposed non-uniform and adaptive ECC
approach using 4 groups applied for L1 cache.

5.3.3 Performance Analysis

The impact of our approach is determined in two steps. First, we have to evaluate
its error correction penalty for a real processor. This means that we need to assess
the cost of a propagated error in the processor, which leads to pipeline flushing. We
conducted a fault injection campaign on the instruction cache and estimated the per-
formance penalty for 3000 randomly injected errors. Our results show that the average
performance penalty of pipeline flushing is less than 4 cycles, because of a potential
cache miss due to the pipeline flushing. In the second step, the employed workloads are
executed on the processor using proposed and conventional ECC approaches. For each
application, the simulation was conducted over one billion instructions after skipping
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Figure 5.8: L1+L2 energy consumption: (a) static energy consumption (Leakage),
(b) dynamic energy consumption (read + write), and (c) total energy consumption
(Leakage + dynamic) of the proposed Lazy-ECC and conventional-ECC approach for

various workloads of SPEC benchmarks. All results are normalized to No-ECC



Chapter 5 STT-MRAM Using Non-uniform and Adaptive Error Correcting Scheme 84

Table 5.7: The average reduction of dynamic, static and total energy consumption for
L1 and L2 caches of the Lazy-ECC approach

Lazy-ECC1 Lazy-ECC2 Lazy-ECC3 Lazy-ECC4
Dynamic energy 39% 51% 57% 60%
Static energy 12% 17% 18% 20%
Total energy 15% 20% 22% 24%

one million warm up instructions. The comparison is done based on the Instruction Per
Cycle (IPC) metric which shows the overall performance.

Figure 5.7(a) illustrates the IPCs extracted by applying the conventional-ECC approach
on the L1 and L2 caches of the processor. In the conventional approach, there is an
enhancement of the overall system performance only for ECC1 which is on average less
than 5%. However, by increasing ECC robustness, the IPC decreases compared to the
case without ECC. This is mainly due to the impact of the long decoding latency. Results
for Lazy-ECC are presented in Figure 5.7(b). As shown in this figure, the average IPC
improvements of the error bit correction of 1,2,3 and 4 are around 13.7%, 19%, 21.3%
and 23.5%, respectively. Unlike the conventional-ECC approach, in Lazy-ECC, IPC
improves with the increase in the number of error correction bits. This is because of
excluding the decoding latency from the read access. Note that the average performance
gain of Lazy-ECC is highly dependent on the memory access rate. For instance, in an
application with a low memory access rate (e.g., sjeng and art), there is no significant
difference between the efficiency of Lazy-ECC and the conventional-ECC approach. In
contrast, the high memory access rate in some other applications (e.g., equake, vpr and
twolf), a Lazy-ECC approach results in a large gain in the overall performance compared
to the conventional-ECC.

5.3.4 Energy Analysis

Energy analysis is done for both dynamic and static energy consumption of L1 and
L2 caches. In fact, as the L1 cache filters most accesses, the access rate for higher
level cache (i.e., L2 cache) is low. Therefore, the access energy is a major contributor
for L1 cache, while for L2 cache, the leakage energy (i.e., static energy which is the
product of the leakage power and the execution time of the workload) is the dominant
portion of its total energy. Consequently, the total energy consumption will be affected
significantly by reducing the write latency from L1 cache perspective, which is reduced
by Lazy-ECC by up to 3X. On the other hand, from L2 cache perspective, the execution
time decreases from No-ECC to Lazy-ECC up to 23.5% because of two reasons: i) fast
write termination, ii) the exclusion of the ECC decoding latency from the read path.
Consequently, the static energy decreases. The static, the dynamic and the total (L1
and L2 caches) energy consumption for our proposed opportunistic write with Lazy-ECC
approach along the conventional-ECC approach are shown in Figure 5.8(a), (b) and (c),
respectively. Table 5.7, presents the reductions in the dynamic, static and total energy
consumption of Lazy-ECC approach.
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5.3.5 Related Work

A First-In First-Out (FIFO) based technique is proposed in [133], which is based on the
decoupling of error detection and error correction for conventional SRAM/DRAM mem-
ories. However, in this technique once an error is detected, the entire system is halted.
This results in a considerable performance penalty. In STT-based memory technology,
where we expect a high error rate due to the reduction of the write margin and the ther-
mal stability factor, the performance penalty will be much higher. Furthermore in this
technique, the data revived on the system inputs during error recovery process is stored
in a FIFO structure to guarantee the correct functionality of the system. Consequently,
this imposes significant area and power overheads to the real system, since the depth of
the FIFO depends mainly on the number of the system inputs and on the number of
cycles required for the error correction. In our experimental setup, correcting error and
writing error-free data to the memory require 10 (i.e., 4.71 ns) and 9 cycles (i.e., 4.17 ns)
(see Table 5.1), respectively. This means that the depth of the FIFO at each input is at
least 19 bits. Since the number of inputs in real processors is relatively large (e.g., 280 in-
puts in Alpha 7), the area overhead associated with this technique would be significantly
higher than that of our proposed solution (5320 flip-flops vs. few combinational gates).
Moreover, the main shortcoming of a FIFO-based technique is that it fails to capture
all system inputs when errors occur in consecutive cycles. Basically, the FIFO could be
fulfilled during the error correction phase, and hence, there should be some gap between
two errors to be sure that the FIFO is empty again. Otherwise, some data appearing in
the processor inputs during the error correction time could be lost, resulting in failure.
Therefore, in applications with a high error rate, our proposed technique provides a sig-
nificantly higher reliability than the FIFO-based technique. According to the results of
our experiments, the probability of having write access in each cycle is 0.08. In addition,
the probability of having a write error for the case of ECC4, which provides a significant
performance improvement, is 6.6 × 10−4. Hence, the probability of having write error
in each cycle is 5.3 × 10−5. Consequently, the probability of having the second write
error in a timing window of 19 cycles after the first write error could be computed based
on the exponential distribution to be 1 − e−λ×cycle where λ is 5.3 × 10−5 and cycle is
equal to 19. This probability is equal to 0.001 and this means that the probability of
having two errors in the timing window of 19 cycles is 5.3× 10−5 × 0.001 = 5.3× 10−8

which is significantly larger than the target WER of 10−18. Although the failure rate
for FIFO-based technique could be mitigated by increasing the depth of the FIFOs, this
further increases the area overhead imposed by this technique.



Chapter 5 STT-MRAM Using Non-uniform and Adaptive Error Correcting Scheme 86

5.4 Summary

The extensive write margin due to the inherent stochastic write behavior limits the
application of STT-MRAM in high performance memories such as low level caches.
The write margin of STT-MRAM can be reduced to a large extent by exploiting robust
ECCs with unfinished write. However, such techniques impair the read access due to the
high decoding latency. In this chapter, we presented an opportunistic write technique
equipped with our Lazy-ECC approach to exclude the decoding latency from read access
by performing speculative computation based on unchecked data. We have also provided
a non-uniform and adaptive ECC approach to address temperature and process variation
induced failures at runtime. The proposed approach was implemented on the L1 and L2
caches of a high performance processor. The simulation results reveal that this approach
significantly improves the overall performance and reduces the energy consumption by up
to 23.5% and 24%, respectively, compared to the conventional approach with a negligible
area overhead in the processor.



Chapter 6

Adaptive Approach for
STT-MRAM Performance and
Power Optimization

At system-level, two opposing forces of energy consumption are at play, as the system
energy is the product of power and time. Any increase in the write current increases the
power, but reduces the latency, hence there is a minimum energy point corresponding
to the optimal write current. Based on the sensitivity of the application to the latency
of the write operation, which correlates to write access rate, we can adaptively increase
the write current for effective performance improvement.

Thus, we propose a dynamic write approach for STT-MRAM to adjust the write current
value on-the-fly according to the performance needs.

In this chapter, we make the following contributions:

• We identify the opportunity of using an adaptive write current scaling approach
for STT-MRAM by presenting a detailed energy-performance trade-off at device,
architecture and system levels.

• Based on our cross-layer analysis, we obtain the optimal write current levels for
different performance and energy needs of the system.

• We predict the sensitivity of the application performance to write latency, based
on the write rate, to adjust the write current level at run-time.

• We allow to control the write current at run-time by modifying the write circuitry
of our STT-MRAM design, which allows multiple levels of write currents.

We evaluate the proposed approach by analyzing the performance and energy consump-
tion of a system for both L1 and L2 STT-MRAM caches using detailed simulations of
SPEC2000 workloads. The results demonstrate that the effective write latency across
all application phases is reduced by 52.4% and 55.7% for L1 and L2 caches, respectively.
This corresponds to a system performance improvement of 15.5%, on average. The asso-
ciated memory dynamic energy overhead is 1.7% because of the write current increase,
and memory leakage energy overhead is 1.5% on account of the proposed write circuit.

87
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6.1 Adaptive Write Current Scaling

In this chapter, the STT-MRAM design is improved based on the strong correlation
between the write access rate and the write latency to maximize the performance along
with minimal energy overhead. At run-time, the write current can be adjusted to differ-
ent values (e.g., high, medium and low). In situations, where the write rate is high, the
overall performance is very sensitive to the write latency. Thus, it is reduced by adjust-
ing the write current. In contrast, when the performance is less sensitive to the write
latency, the write current is reduced to save write energy. To enable such an adaptation,
the overall execution time is divided into distinct phases, based on the sensitivity of the
performance to the write access rate. For optimal performance improvements, we need
to find an optimal write current value for each run-time phase. Therefore, this chapter
provides an analysis of write latency and its energy relation from device to system level,
which accordingly is used for run-time phase identification and optimization.

6.1.1 Write Latency and Energy Relation

6.1.1.1 At device-level

The opportunity of improving the performance by increasing the write current at device-
level is illustrated in Figure 6.1. This figure shows the write energy and the write
latency relations with the write current for both L1 and L2 caches. For L1, since the
write operation is on the critical path, simple ECC-1 for one bit error correction is used
to reduce the impact of stochastic write by around 50%, at a cost of only one cycle
decoding/encoding penalty per each read/write access. Moreover, the adopted thermal
stability factor (∆) is low to guarantee fast write operations. Figure 6.1(a) illustrates
the energy and latency plots versus the write current for target WER of 10−9 with ∆
= 30. On the other hand, the normal WER of 10−18 is considered for L2 with higher
∆ equals to 40 to guarantee high retention time (see Figure 6.1(b)). As write energy
and latency plots in Figure 6.1(a) and Figure 6.1(b) present, the energy consumption is
minimized for the write current values of 102µA and 82µA, which correspond to write
latencies of 19.8 ns and 10.7 ns for L2 and L1-cache lines, respectively. However, the
write latencies decrease modestly along with a significant increase in the write energy
for a higher write current. The figure shows that by increasing the write current two
times, the write latency decreases by 66%, while the related write energy increases by
35% per access for L1 and L2 caches. It is important to note that such an increase in
the write current does not impair the MTJ reliability due to time dependent dielectric
breakdown (TDDB) of the oxide barrier.

6.1.1.2 At architecture-level

The continuous extracted device latency is from a system-level perspective quantized
into multiple clock cycle times with a fixed length, thus, the write latency and energy
are discretized. Therefore, the curves of the write energy and latency against the write
current are no longer smooth or monotonic (see Figure 6.2). As shown in Figure 6.2,
different energy points have the same write latency, which in turn reduces the search
space for the energy-latency optimal pareto points. Furthermore, Figure 6.2 illustrates
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Figure 6.1: Impact of increasing the write current on write energy consumption and
write latency for a 512-bit cache line in case of ‘AP’ switching at device-level [∆ = 30

for L1, ∆ = 40 for L2, detailed setup in Table 6.3]
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write latency for a 512-bit cache line in case of ‘AP’ switching at system-level [∆ = 30

for L1, ∆ = 40 for L2, detailed setup in Table 6.3]

that the energy and latency curves are spread over three regions of the write current
(low, medium and high). This helps to determine the initial candid points for all regions.
Identifying the optimal pareto points needs for each level (i.e., Level-0, Level-1 and
Level-2) system-level results (i.e., system performance and energy) with detailed memory
access patterns of applications. This enables to identify the impact of write latency and
energy on the overall system performance and energy, respectively.
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Table 6.1: STT-MRAM design configuration for L1 and L2 caches

Write access rate
Low Medium High

Energy-efficient mode Balanced-energy-performance mode Fast-performance mode
Level-0 configurations Level-1 configurations Level-2 configurations

Cache level ∆ WER Candidate Current [µA] Latency [ns] Current [µA] Latency [ns] Current [µA] Latency [ns]

L1 30 10−9
Point-1 82 10.7 147.6 4.1 200.9 2.8
Point-2 102.2 7.1 164 3.6 246 2.1

L2 40 10−18
Point-1 102 19.9 183.6 7.7 275.4 4.5
Point-2 132.6 12.5 193.8 7.1 306 4

Table 6.1 summarizes the STT-MRAM parameters for both device and architecture
levels, including two candid points (Point-1 and Point-2) for each scaling level. The
selection of the actual point requires a system level analysis which will be described
next.

6.1.2 Proposed Write Phase Prediction Methodology

Our phase analysis method is split between an off-line write rate analysis and a run-time
write rate prediction.

6.1.2.1 Off-line Write Access Analysis

The write access phase is defined as a period of execution time that exhibits a consistent
write access rate which is distinguishable from the write rates in the other phases. From
our off-line analysis, we generate a set of training data for run-time control using memory
intensive workloads of the SPEC2000 benchmarks suite. From the write access counter
measurements, we observed the following: i) Write rate can significantly vary over the
time. ii) Write rate is highly periodic in repetitive and long-stable patterns for more
than 90% of the entire run-time for all executed benchmarks. iii) While the periods
and write rates are different for L1 and L2 caches, the repetitive and stable behavior
is common for both. Figure 6.3 plots write rate values for L1 and L2 caches over the
entire execution time for the compression programs bzip2 and gzip. While we have done
the analysis for all memory-intensive benchmarks and observed similar trends, we only
show these two benchmarks for brevity.

It is important to note that the amount of the performance improvement offered by the
adaptive write current scaling approach is derived from the amount of the Instruction
Per Cycle (IPC) improvement. For on-chip memory, the IPC is closely linked with the
number of memory write accesses. As the number of write accesses increases, a significant
acceleration for the write operation is required to reduce the IPC degradation due to the
long write latency. On the other hand, for low write rates, the IPC is not significantly
affected by the adopted write latency. Therefore, in this case, the write parameters
corresponding to the minimum energy point will be considered. This is the foundation
for building our approach based on the off-line write phases analysis.

6.1.2.2 On-line Write Current Control Algorithm

The off-line analysis of stable write rate phases is the main guide to predict the write rate
at run-time. However, the major challenge of the predictor is to accurately identify the
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Figure 6.3: Off-line write access phase analysis for L1 and L2 caches

correct time for changing the write current value (i.e., switching between modes). This
relies on identifying the stable duration of write rate. The simplest way is to perform
the prediction periodically. Therefore, we divide the execution time into small windows
with a constant length. Each window consists of two parts: i) Tracing Period (TP),
and ii) Stable Period (SP). SP is orders of magnitudes longer than TP. The tracing
period information tells the predictor that the write rate, which was stable during the
last tracing period, will be stable for the next stable period. Based on the off-line write
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Algorithm 4 Control algorithm for the (i+ 1)th iteration
Input 1- Off-line analysis:
{Window length LW , tracing period TP}

2- Run-time history information:
{Run-time phase (Phasej), write rate of the previous window WRWi}

3- STT-MRAM design configurations:
{Look-up table for available write current levels with correspond write rates }
Output 1- Write rate for the current window WRWi+1

2- Adopted write current (Iw) for the stable period SPWi+1

3- Run-time phase for Wi+1

1: For run-time from end of Wi to end of TPWi+1 do
2: Calculate the number of write operations
3: end for
4: WRWi+1 ←− total write operations of TPi+1

TP
5: if WRWi ! = WRWi+1 then
6: End the current run-time phase (Phasej)
7: Set correspond write current Iw for WRWi+1

8: Start new run-time phase (Phasej+1)
9: end if
10: return Phasej+1, WRWi+1 and Iw
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Figure 6.4: Run-time write access rate prediction

rate analysis, we identify the possibility of dividing the execution time into windows.
The optimal length of the run-time window is determined by greatest common divisor
of all observed off-line stable phases.

At run-time, the proposed predictor is implemented by a periodic control algorithm.
The data learned during off-line analysis such as the window parameters (i.e., length,
TP and SP) and the observed levels of the write rate with the required write current
values are passed to the control algorithm. The pseudo-code of the iterative control
algorithm is presented in Algorithm 1, which explains the diagram of run-time phases
as shown in Figure 6.4.
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Figure 6.5: Circuit implementation for the adaptive write technique. (a) Schematic for
the dynamic write. (b) Circuit diagram of the control components

Table 6.2: Truth table for control circuit

Level-1 Level-2 BL SL Operation Mode
X X 0 0 No write operation —
0 0 0/1 1/0 Normal write operation Energy-efficient
0 1 1 0 C1&C4 are ON Balanced-
0 1 0 1 C2&C3 are ON energy-performance
1 X 1 0 C1&C4&C5&C8 are ON Fast-
1 X 0 1 C2&C3&C6&C7 are ON performance

6.1.3 Modification of Write Circuitry

The circuit-level implementation of the proposed write circuitry to enable the selection
of multiple levels of write currents is shown in Figure 6.5. Here, the write circuitry
is the same as the one used for the standard write operation. The write circuitry is
optimized to deliver the current that is adjusted based on the minimum energy point
(i.e., energy-efficient mode) by default. In order to increase the write current and switch
between levels, several transistors are employed that are activated using control circuits
(C1, C2, .., Cn). Table 6.2 shows the truth table for switching between the three levels.
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Figure 6.6: Proposed cross-layer tool flow

Table 6.3: Simulation setup

Device model Perpendicular STT-MRAM model with radius of 20 nm [120]
gem5 confiquration ISA ALPHA

Processor Single-core, 2 GHz, Out-of-order, 4-issue

L1 cache 64 KB, 4-way set associative, 64B line size
STT-MRAM, ∆ = 30, different write latencies

L2-cache 512 KB, 4-way set associative, 64B line size
STT-MRAM, ∆ = 40, different write latencies

SPEC Applications gzip, bzip2, mcf, twolf, vpr, sjeng, lbm

6.2 Simulation Results

6.2.1 Experimental Setup

Figure 1.4 demonstrates the framework adopted at device and architecture levels to
analyze the efficiency of the proposed idea. However, at system-level, as seen in Fig-
ure 6.6, there are two sub-components: off-line analysis and on-line control. In Off-line
analysis, we simulated various applications of the SPEC2000 benchmark suite for the
entire execution time with extended gem5 simulator [118] . On the other hand, in on-
line control, performance and energy analysis of the proposed approach are done for L1-
and L2-caches. For each SPEC2000 executed application, the simulation was conducted
over the entire execution time and over 0.5ms for off-line analysis and on-line control
estimations, respectively. Table 6.3 summarizes the set-up for our experiments.

6.2.2 SPEC2000 Behavior Analysis

From our off-line analysis, it can be noticed that the write rates of the SPEC2000
workloads for both L1- and L2-cache levels are repetitive and predictable over the run-
time. The phases can be clustered into three levels of the write rate, high, medium
and low, see Table 6.4. The greatest common divisor of all stable off-line phases is
350ms. This identifies the length of the run-time window. Whereas, the tracing period
is determined by observing the longest time of the unstable write current value, which
is less than 0.75ms, as shown in Figure 6.4.
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Table 6.4: Write rate phases of SPEC2000

Write rate L1-cache L2-cache Application
Low WR < 0.1 WR < 0.05 bzip2,lbm,vpr

Medium 0.1 < WR 0.05 < WR gzip,bzip2
WR < 0.2 WR < 0.1 twolf,sjeng

High 0.2 < WR 0.1 < WR gzip,mcf
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Figure 6.7: Performance and total energy overhead (Dynamic+Leakage) for L1 ad L2
caches of the proposed approach normalized to standard STT-MRAM design without

including (Dynamic+Leackage) overhead of the additional circuitry

6.2.3 Performance and Energy Analysis

For a direct comparison between a standard STT-MRAM design and our adaptive write
current scaling approach, we normalized all performance and energy results to the ex-
tracted results of the minimum energy point (default current value), which refers to
Point-1 of Level-0 (see Table 6.1). In fact, as the L1-cache filters most accesses, the
access rate for higher level cache (i.e., L2-cache) is low. Therefore, the leakage energy is
responsible for 60% of the overall energy consumption for L2-cache. In contrast, for an
L1-cache, the access energy is the major contributor. Figure 6.7 illustrates the effects
of the write current levels on the IPC and energy consumption for different SPEC2000
applications.
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For the energy-efficient mode (i.e., Level-0), the total IPC of the low write rate phase
is optimized with the second candidate (i.e., Point-2) by 14%, compared to the baseline
(i.e., Point-1). This in turn results in reducing the leakage energy, which is the dominant
portion of the total energy for L2-cache, by 15%. However, the dynamic energy is
increased by 5%. Consequently, the total energy consumption is reduced by 8%.

For the balanced-energy-performance mode (Level-1), the performance (i.e., IPC) is
improved by 10% and 11%, and the leakage is reduced by 10% and 12% for Point-1 and
Point-2, respectively. However, the dynamic energy is increased by 17% and 23% with
Point-1 and Point-2 compared to the standard design (i.e., Point-1 of Level-0). This
leads to increase the total energy consumption by 1.5% and 3.5%.

In the high-performance mode (Level-2), the performance is optimized by 25% and 27%
along with increasing the dynamic energy by 45% and 58% for Point-1 and Point-2,
respectively. Whereas, leakage dissipation is reduced by 15% and 17%. Therefore, total
energy dissipation increases by 15.3% and 24.3% for Point-1 and Point-2, respectively.

As illustrated in Figure 6.7b (e), Point-2 of level-0, Point-1 of level-1 and level-2 are
considered as optimal current points for L1 cache, since they offer maximum IPC with
minimum dynamic energy consumption. Whereas, for L2 cache, where leakage energy
is dominant, Point-2 of level-0, level-1 and level-2 are considered as optimal points.
Table 6.5 summarizes the percentage of IPC and energy overhead improvements per
phase of the proposed write approach over the standard one.

In order to estimate the overall improvements of the proposed adaptive approach, the en-
ergy overhead and performance improvements over each phase and the total breakdown
of the execution over different phases should be considered. Our results show that the
effective write latency for L1 is reduced by 52.4% (from 21 cycles to 10 cycles), while for
L2, it is reduced by 55.7% (from 40 cycles to 18 cycles). Figure 6.8 illustrates the overall
performance improvement and energy overhead for different SPEC2000 applications for
the proposed approach. It can be seen, that our approach improves the IPC compared
to standard design, on average, by 15.5% at the cost of increasing total memory energy
dissipation by only 1.7%. It is worth mentioning that the proposed approach does not
impair the MTJ reliability due to TDDB. Firstly, the increased current in the highest
level is within the device tolerance. Secondly, this current increase happens only during
write intensive phases of application execution, and the overall impact is limited.

It is important to note that the amount of IPC improvement and energy overhead due
to the proposed approach are application dependent. For instance, for the applications
with a low write access rate (e.g., lbm and vpr), there is no energy overhead compared
to the standard design, as the energy-efficient mode has been considered. However, the
total energy consumption is reduced by 8% because of improving the performance by
14%, which in turn reduces the leakage energy significantly, while the dynamic energy
negligibly increases. However, for write intensive applications (e.g. mcf and gzip) with
several high performance phases (level-2), the differences of the dynamic and the total
energy dissipations between the proposed and the standard design become significant,
up to 45% and 15.3%, respectively (see Figure 6.8).
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Table 6.5: Percentage of IPC improvement and energy increase of the proposed ap-
proach over standard STT-MRAM design

Power mode Write Rate Point
Increase of Reduction of Increase of Optimization of Overhead ofwrite current % write latency %

L1 L2 L1 L2 write energy % total performance % total energy %

Energy-efficient Low Point1 0% 0% 0% 0% 0% 0% 0%
Point2 24% 29% 32.8% 27.8% 3% 14% -8%

Balanced-energy-performance Medium Point1 70% 79% 58% 67% 38.8% 10% 1.5%
Point2 100% 135% 62.8% 69.8% 45,7% 11% 3.5%

Fast-performance High Point1 140% 169% 76.6% 75% 64.6% 25% 15.3%
Point2 200% 200% 81.3% 77.4% 76,6% 27% 24.3%
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Figure 6.8: Performance improvement and energy overhead (Dynamic+Leakage) of the
proposed approach for various SPEC2000 workloads compared to standard approach

including (Dynamic+Leackage) overhead of the additional circuitry

Table 6.6: Area and energy overheads of circuit-level implementation of proposed ap-
proach for L1 and L2 caches

Cache Area Leakage Dynamic energy
L1 7.6% 1.4% 1%
L2 1.4% 0.1% 0.5%

6.2.4 Area-overhead Evaluation

We need to organize the write circuit components in such a way that it is able to facilitate
the highest required current in our proposed technique. This is handled by adding some
additional drivers and its controlling circuitry as described in Fig 6.5. These additional
circuitry imposes area overheads of 7.6% and 1.4% for L1 and L2 caches, respectively.
This additional circuitry is employed column-wise and due to the small size of bit-cell
array in L1 cache, it incurs a relatively high area overhead ratio compared to the L2
cache. Furthermore, the dynamic energy and leakage for our proposed circuit are also
increased as mentioned in Table 6.6, due to addition of the extra components. On the
other hand, the hardware cost associated with our control algorithm consists of a 16-bit
counter and a simple look-up table for adjusting the write current based on the write
rate of each level.
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6.3 Summary

The write operation in STT-MRAM is the main bottleneck for the performance, energy
and reliability of STT-MRAM. Traditionally, the write current is set to the minimum
energy point. In this chapter, by analyzing the behavior of the workloads, we observe
that based on the write access rate of the application, the sensitivity of the overall
performance to write latency changes. Based on this observation, we have developed
a cross-layer adaptive write current level scaling scheme, in which a runtime predictor
is used to predict the write access rate, and the write circuitry is modified to allow
adjusting the write current levels at runtime. A detailed cross-layer analysis is performed
to obtain the optimal write current level for the corresponding write access rate phases.
Our results demonstrate that we can improve the overall system performance by 15.5%
for a maximum energy overhead of 3.2% with 7.6% and 1.4% area overheads for L1 and
L2- cache levels, respectively.



Chapter 7

Leveraging Systematic
Unidirectional Error-Detecting
Codes

Recent studies show that a robust ECC with multiple bit correction capability could be
used to correct various types of errors, such as read disturb failures, retention failures [78,
134] and write errors that occur in the tail of the stochastic write distribution [94, 96].

However, the decoding latency of robust ECC is relatively high (i.e., multiple cycles) [98],
causing read access to become the performance bottleneck for fast caches. Further-
more, as the correction capability of ECC grows, the storage overhead of the check bits
significantly increases, which in turn erodes the overall performance. Therefore, the
conventional multiple error correction approach is quite ineffective for fast caches.

In general, the MTJ cell has asymmetric switching, which means that one of the switch-
ing takes longer time than the other one. Moreover, the one that takes longer switching
time also has a wider distribution that eventually represents the overall worst case
switching scenario. Hence, the total write latency has to be evaluated based on this
worst case switching.

Additionally, since the read current flows uni-directionally through the cell, the unwanted
switching that may occur during the read operation (read disturb failure) also affects
only one type of switching.

Such unidirectional mode of error patterns can be exploited using an efficient asym-
metric coding, which, however, can only be used for error detections. By adopting an
appropriate cache access policy, since the (correct) copy of the data will be available
in the lower level caches, error detection in the first level caches would be sufficient.
Considering these facts in order to find the opportunity of using STT-MRAM as a uni-
versal memory technology including fast caches, we propose to use effective Systematic
Unidirectional Error-Detecting Code (SEDC) [75], which is an optimal code for detecting
asymmetric errors. Together with the necessary adjustments to the cache access poli-
cies, we can significantly reduce the decoding/encoding latency as well as the check-bit
storage overhead.

Our proposed technique results in: i) performance and energy improvements of STT-
MRAM in on-chip memories (i.e., L1 and L2 caches of high performance processors)

99
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up to 12% and 3%, respectively, ii) significantly reducing the error rate of various error
sources in STT-MRAM and iii) lower storage overhead from 87% to 96% compared to
various ECC schemes.

7.1 Proposed Approach

In this chapter, We leverage the asymmetric nature of errors in STT-MRAM, and using
an asymmetric error detection method, the erroneous data, due to unfinished switching,
is detected. Furthermore, with an adjustable cache policy, the correct data can be
fetched from the lower cache level, upon error detection.

7.1.1 Problem Statement

The main drawbacks of STT-MRAM are high write latency and poor reliability. In
fact, there is a big gap between STT and SRAM write latencies which can reach up
to 17 times for L1 caches (0.7 ns for SRAM and 11.6 ns for STT-MRAM, based on the
setup outlined in Section 7.2.1), and hence, it will be relatively hard for STT-MRAM
to replace SRAM in fast memory applications. As shown in Section 2.3.4, lowering
∆ or using robust ECC cannot resolve both the latency and reliability challenges in
STT-MRAM. Thus, we propose a solution to facilitate STT-MRAM for the fast cache
applications. We leverage the physical nature of the MTJ device characteristics in order
to reduce the costs of the adopted error codes. It is based on the fact that the ‘AP’
switching has a wider distribution with a longer tail compared to the ‘P’ switching, thus
it determines the write latency, energy and error rate. This means that any scaling
in the write margins affects only one type of switchings (i.e.,‘AP’). Furthermore, the
high resistance value of the MTJ (i.e., ‘AP’ magnetization) is more likely to be unstable
during retention time. Consequently, errors in STT-MRAM are uni-directional (‘AP’
switching). This feature can be exploited to generate efficient error coding schemes.

7.1.2 Optimal Error Detecting Code For STT-MRAM

An extensive theory of symmetric error code has been developed [70, 135, 136], where
symmetric errors ‘0’ and ‘1’ have exactly the same probability to appear in the reserved
data. However, according to the previous discussion, errors due to unfinished switching
or other failures (retention, read disturb, etc) in the MTJ device are of asymmetric
nature. For this purpose, various asymmetric error codes have emerged, which can be
used in STT-MRAM to address the reliability and performance concerns very efficiently.
Unfortunately, asymmetric error codes can only be used for error detections. Among
all codes, Systematic Unidirectional Error-Detecting Code (SEDC), which is proposed
in [75], is the optimal one for detecting asymmetric errors, because of the following
reasons: i) this code is systematic where data bits are separately identified from the
check bits, resulting in parallel performing of decoding/encoding and data manipulation
and ii) this code is ideal when a fixed number of errors at run time has to be detected.
This can be decided at design time based on the target error rate and the expected
number of unfinished switching bits per word. Furthermore, this code needs very simple
encoder/decoder circuits, and it is capable to detect a large number of errors up to;
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Table 7.1: Maximum number of errors detected by SEDC

No. of check bits (r) No. of errors detected (e)
5 11
6 20
7 37
8 70 Adopted SEDC in our work
9 135
10 264

e = 5.2(r−4) + r − 4 errors with r check bits. The error-detection capability of SEDC
(r, e) is presented in Table 7.1. Since the number of errors in one line-cache of size 512
bit will not exceed 70, SEDC (8,70) accommodates STT-MRAM to meet L1 cache needs.

As SEDC code is able to only detect the errors, the correct copy of data has to be
provided. Fortunately, as our target is the fast caches (e.g., L1), a correct copy of
the data exists in the lower level caches. The details of the adopted cache policies to
guarantee this feature are explained next.

7.1.3 Cache Write Policy

When the processor executes a write request, the modified contents of the accessed
addresses will be eventually reflected to all different levels of the memory hierarchy in
two general policies, namely Write Through (WT) and Write Back (WB) [137].

If WT policy is adopted between two particular levels (e.g., L1 and L2), the data will
be written on the higher level (i.e., L1) and immediately passed to the next level (i.e.,
L2). This ensures that the contents of the two mentioned levels are consistent with
each other, and hence, all data in the higher level is clean. On the other hand, with WB
policy, the data is written only to a particular level of memory system, and consequently,
all modified data at that level is then labeled as dirty copies, which will be updated in
the lower level at replacement time. This means that at some particular time intervals,
there is only one valid copy of the data in the cache hierarchy and if that data becomes
erroneous, there is no alternative. In such case, SEDC is not enough and robust ECC is
necessary.

There are issues of performance, reliability and costs in order to choose the optimal policy
for write requests. The WB policy has better performance than WT policy because it
reduces the number of write operations to the lower level of memory (reducing memory
traffic). However, with this performance improvement, there is a risk of losing the dirty
data in case of errors. The above observation motivates us to use WT policy in case of
employing SEDC code to support STT-MRAM memory.

7.1.4 STT-MRAM Improvement With SEDC Code And WT Policy

To fulfill our main goals of improving STT-MRAM performance and reliability, the
combination of SEDC code and WT policy can be exploited to reduce the write margin
to a large extent. With this way, detection will be carried out for unfinished switching
bits in the tail of the stochastic write distribution by SEDC code. The error-free copy,
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Figure 7.1: WER versus write latency for 64-bit data with different ECC schemes
[excluding ECC encoding, ∆ = 30, Iw/Ic = 3, see Section 7.2.1 for setup]

which is already available due to chosen WT policy, can be obtained from the lower cache
level, when error is detected. In addition to reducing the write margin to the acceptable
level for fast caches, SEDC code also increases the overall reliability significantly, thanks
to its capability to detect far more errors than ECC. The relationship between write
latency and write error rate for various ECC schemes and SEDC is shown in Figure 7.1.
As seen, compared to ECC, SEDC is able to reduce the write latency for a given WER
value.

7.1.5 Optimal Retention Time And Write Latency Estimations

As previously discussed, reducing the write margin can be achieved by reducing ∆ which
in turns reduces the retention time as well. However, we have to keep the associated
retention time reasonable according to the maximum possible time that data resides
in the particular cache level. According to [48], ∆= 30 provides a retention period of
hours on average which is suitable for L1 caches. However, the estimation of the actual
retention time with corresponding probability of the retention failure is crucial to ensure
the integrity of the system. According to our experimental results (see Section 7.2.1 for
detailed setup), the probability of having write event in each cycle is Writerate=0.08,
and hence, probability of refresh for the entire content of L1 can be extracted as follows:

Refreshrate=Writerate∗Wordrate (7.1)

which is equal to 1 each 250ms, namely Actual Preserved Period. In order to evalu-
ate the corresponding retention failure rate, we use a binomial distribution modeled in
Equation 5.2. The results show that the retention failure rate ranges between 10−5 to
10−3 which is significantly high and thus un-acceptable. Whereas, once an error code
with ability to detect 3 errors is employed , the retention failure rate sharply decreases
to 10−16, as shown in Figure 7.2. Our adopted SEDC is able to detect up to 70 errors per
cache line of size 512 bits, which means 9 errors per 64-bit word, in which 6 of them are
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Figure 7.2: Retention failure versus retention time for 64-bit data [∆ = 30, Iw/Ic = 3,
see Section 7.2.1 for setup]

Table 7.2: raw WER (before coding) for target WER of 10−18

raw WER Write latency [ns]
No-ECC 10−18 11.6
ECC1 10−9 6.5
ECC2 10−6 4.9
ECC3 10−4 4.1
ECC4 10−3 3.6
SEDC 10−1 2.2

reserved for WER to reduce write latency, and the remaining targets retention failures
that correlate with lowering ∆ for fast caches. However, the proposed idea is based on
reducing ∆ as long as the read disturb is not an issue (i.e., ∆ > 25). Error detect-
ing codes are considered in STT-MRAM in order to reduce write margins for a target
WER (10−18 [66]). In fact, the raw WER, before detection or correction, is much higher
(>> 10−18). Table 7.2 lists the raw WER for various error codes with corresponding
write latency for the target WER of 10−18. However, to estimate the impact of the
optimized write latency on the overall performance, we need to evaluate the impact of
the raw WER and the imposed overhead of the data correction (data movements from
Li+1 to Li) as well. We use Effective Write Latency, which relies primarily on the raw
WER, and is modeled as:

t′w = tw +WER ∗ (tw + te + tL2) (7.2)

where te is encoding penalty and tL2 is read access time of L2. Therefore, with high raw
WER (e.g., 10−1 such as with SEDC), the effective write latency will dramatically in-
crease, which impairs the overall performance and increases the write energy. Figure 7.3
shows the system-level impact of the effective write latency and energy according to the
adopted write latency. Based on this analysis, the optimal write latency is 2.5 ns for our
setup (latency of 5 clock cycles for 2 GHz processor).

7.2 Simulation Results

This section demonstrates the impact of our approach applied on the STT-MRAM for
L1 cache of a high-performance processor in a detailed comparison with the conventional
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Figure 7.3: Adopted write latency versus effective write latency for 64-bit data according
to WER [∆ = 30, Iw/Ic = 3, see Section 7.2.1 for setup]

Table 7.3: Simulation setup in gem5

Processor Single-core, 2 GHz, Out-of-order, 4-issue

L1-cache 16/16 KB, 4-way set associative, 64B line size
STT-MRAM, ∆ = 30, I = 3

(Data and Instruction) different read/write latencies Table 7.4

L2-cache
512 KB, 8-way set associative, 64B line size
STT-MRAM, ∆ = 35, I = 2
read/write latencies as 1.12ns/14.00ns

SPEC Applications gzip, bzip2, mcf, twolf, vpr

Table 7.4: Read and write latencies of 64-bit STT-MRAM memory with 16KB capacity

No-ECC
ECC1 ECC2 ECC3 ECC4

SEDCSECDED BCH BCH BCH

Write [ns]
ECC Encoding — 0.400 0.525 0.530 0.545 0.600
Memory Write 11.610 6.456 4.909 4.100 3.628 2.500

Overall 11.610 6.856 5.434 4.630 4.173 3.100

Read [ns]
ECC Decoding — 0.580 2.459 3.698 4.714 0.700
Memory Read 0.898 0.899 0.899 0.899 0.900 0.898

Overall 0.898 1.479 3.358 4.597 5.614 1.598

approach of STT-MRAM and SRAM in terms of performance, energy consumption, and
reliability.

7.2.1 Simulation Setup

We simulated five applications from the SPEC2000 [123] benchmark suite on this proces-
sor. For each one, the Simpoint tool [138] is used to find the representative fast-forward
distances. Afterwards the simulation was conducted over 100 millions instructions. Ta-
ble 7.3 summarizes the set up for our experiments.
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Table 7.5: SEDC Versus ECCn

Encoder Decoder Storage Dynamic write
Latency Area Latency Area overhead energy ratio
[Cycle] [µm] [Cycle] [µm] ECCn/SEDC

SEDC 2 3,875 2 4,088 1.5% —
ECC1 1 2,862 2 3,456 12.5% 1.08X
ECC2 2 7,728 5 23,560 23.4% 1.22X
ECC3 2 13,356 8 36,382 34.3% 1.32X
ECC4 2 20,496 10 50,885 45.3% 1.43X
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Figure 7.4: Performance of the proposed and conventional approaches for various SPEC
workloads

7.2.2 SEDC Versus ECCn

To evaluate the efficacy of SEDC code, a detailed comparison with ECCn codes for
word size of 64-bits synthesized with TSMC 65 nm standard cell library and for a 2
GHz processor is done in terms of area, encoding/decoding latencies, storage overhead
and dynamic write energy. The results are shown in Table 7.5. It is obvious that the
decoding latencies are quite high for ECCn codes (except n=1). This means that the
utilization of ECC will adversely impact the read latency. Furthermore, ECC code not
only increases the read latency, but also imposes a considerable storage overhead.

7.2.3 Performance Analysis

Figure 7.4 illustrates the Instruction Per Cycle (IPC) extracted for different implemen-
tations of L1 cache. As shown, the IPC obtained by ”SRAM&WB” is significantly high
(on average 14% ) compared to ”STT&WB” with no ECC capabilities. This is mainly
due to the high write latency in STT-MRAM.

As shown, exploiting ECC to reduce the write margin to reach the required performance
of fast caches is efficient only for ECC1. Afterwards, IPC dramatically decreases because
of the impact of the added decoding penalty on read access latency (See Table 7.4), which
is significantly increased by increasing the ECC robustness. This erodes the gain from
write latency improvement. For instance, for ”STT&ECC4&WB”, the IPC can be as
low as 55% compared to the standard ”SRAM&WB” implementation. However, with
our proposed approach ”SEDC&WB” the performance gap between SRAM and STT-
MRAM is reduced considerably, which becomes less than 2%. Table 7.6 summarizes the
average IPC, read latency and write latency improvements of our approach over existing
solutions.
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Table 7.6: Improvements using our proposed approach ”SEDC&WB” over existing
solutions

No-ECC ECC1 ECC2 ECC3 ECC4
IPC improvement 12.1% 5.2% 47.8% 92.5% 120.8%

Read latency improvement — 1X 2.62X 3.99X 5.12X
Write latency improvement 3.87 X 2.15 X 1.63 X 1.36 X 1.21 X
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Figure 7.5: Total energy consumption (Dynamic+Leakage) for L1 and L2 of the pro-
posed and conventional approaches for various SPEC workloads

7.2.4 Energy Analysis

In general, in L2 cache, the WT policy increases the number of write accesses, which
consumes higher dynamic-energy in L2 than WB policy. However, using our approach
”SEDC&WT”, the write access latency goes down from 11.6 ns to 2.5 ns that in turn
reduces the energy overhead of WT in L2 cache. This energy reduction in L2 is because
of two reasons: i) the reduction of the dynamic-energy in L1 and ii) the total reduction
of the leakage for both L1 and L2 because of the performance optimization. The total
energy consumption for L1 and L2 caches for our proposed ”STT&SEDC&WB” along
with various other conventional approaches are shown in Figure 7.5. This figure shows
that, for all workloads, our proposed approach is the most energy efficient scheme. We
have observed that using our proposed approach ”STT&SEDC&WT”, the total system-
level energy is reduced by 9% on average compared to the standard ”SRAM&WB”
scheme. On the top of that, it is also beneficial to the system-level leakage as STT-
MRAM technology consumes significantly less leakage compared to SRAM. Please note,
in STT-MRAM technology, only peripheral circuitry contributes to leakage.

7.2.5 Reliability Analysis

A comparison of various failure rates, as shown in Table 7.7, demonstrates the robustness
of our approach ”SEDC&WT”. Because of the high error-detection capability of SEDC,
the write error rate is orders of magnitude smaller than ECC schemes. Furthermore,
”SEDC&WT” approach allows us to optimize the write latency and energy by adopting
low thermal stability factor value (∆ = 30), while the same ∆ is not acceptable to be
used with ECC schemes, as the retention failure rate is very far from target 10−16. The
reliability of our proposed approach makes it the only viable solution to use STT-MRAM
for fast caches.
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Table 7.7: Reliability Analysis of our approach over existing solutions

SEDC No-ECC ECC1 ECC2 ECC3 ECC4
Write error rate (WER) 10−21 10−18

Retention failure rate 10−16 From 10−5 to 10−3

Read error rate From 10−23 to 10−21 [55]

7.3 Summary

In this chapter, we have presented a novel approach to use STT-MRAM in fast caches
by exploiting the asymmetric nature of error occurrence. Using an asymmetric error
detecting code together with the write-through cache policy, the high costs of using
ECC in terms of decoding latency and storage overhead are minimized to a large extent.
Furthermore, this allows us to excessively reduce the write latency while improving the
reliability. As a result, the proposed approach improves the overall system performance
and energy, on average, by up to 12% and 3%, respectively, and reduces write errors and
retention failure to virtually zero. This make it a viable solution to replace SRAM even
for fast caches.





Chapter 8

Process Variation and
Temperature Aware Adaptive
Scrubbing scheme

Retention failure has emerged as a major reliability concern for STT-MRAM technology
due to the large variations in retention time because of process variations and tempera-
ture effects. The conventional solution to mitigate retention failures is to use scrubbing
at regular intervals to prevent accumulation of errors, based on the worst case retention
time of the memory array. However, this leads to very frequent scrubbing, resulting
in large performance and energy overheads. On the other hand, fixing the scrubbing
period based on the average case could lead to accumulation of errors beyond the error
correction capability and hence result in failures of the memory system.

In this chapter, we develop a cross-layer framework for retention failure analysis in
STT-MRAM and propose a process variation and temperature aware adaptive scrubbing
scheme to mitigate these failures. In the proposed method, we group different cache lines
based on their thermal stability (or retention times). We then use different scrubbing
intervals for different groups based on the worst case retention time of each group. The
scrubbing interval is dynamically adjusted to take into account the temperature effects
as well. This means that the cache lines in some of the groups will be scrubbed more
frequently, whereas those in some other groups will be scrubbed less frequently. The
performance overhead improvement depends on the number of groups the cache lines are
divided into. Our results show that for a group size of 4, the performance and energy
overheads of scrubbing can be reduced by 97%, compared to the uniform scrubbing
interval across the entire memory array.

8.1 Proposed Approach

In this chapter, we propose an adaptive multi-level scrubbing approach to prevent the
data loss in STT-MRAM due to retention failures, which is highly affected by the process
variation and the operating temperature. This technique exploits the non-uniformity in
the retention time of STT-MRAM to reduce the scrubbing costs.
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Figure 8.1: (a) Retention time variations; and, (b) Thermal stability factor variations
per line with size of 64-Byte for 512 KB memory

8.1.1 Methodology

As explained in Section 2.3.4, a single scrubbing interval based on the cell with the
worst case retention time is highly inefficient due to the large performance and energy
overheads. Hence, a multi-level scrubbing scheme is proposed. This method involves
classifying the cache lines into different groups based on their thermal stability factors
(or retention times) and using different scrubbing intervals for each of these groups. The
scrubbing interval for each group is set based on the cell with the worst case retention
time for that group. Figure 8.1 illustrates the variations of the thermal stability factor
along with the variations of retention time per line. To obtain the retention times
of various memory lines of STT-MRAM cache, any of the existing retention testing
methods can be adopted [78, 131]. Moreover, the operating temperature may lead to
large variations in the retention time. This means that the multi-level scrubbing interval
should be adjusted based on the operating temperature so as to meet the target retention
failure rates. Therefore, the system can be equipped with thermal sensors to obtain the
operating temperature. Scrubbing intervals of groups can be tracked by assigning a
counter to each group. The readouts from thermal sensor will initiate the event of
updating counter values, based on the operating temperature. When the counters reach
their lowest value (i.e., “0”), the scrubbing process is performed and the counters will
be reset to the highest value (i.e., based on the minimum retention time of the cells in
the group). The minimum retention time of groups based on the temperature can be
simply saved in a lookup table. However, since the retention times of groups scale for
different temperatures with the same scale, a shifting factor can be easily implemented
to adjust the counters values.

The implementation of the proposed approach is divided into different steps. At design-
time, the required number of groups along with their counters are specified. The lines
belonging to a single group can be identified by adding the required number of flag bits
to the tag array. Thus, accessing the line for the scrubbing process will be based on
its flag. After manufacturing, retention testing determines bit-cell, line and memory
retention times. Based on the retention testing information, classifying memory lines
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into groups is done using the standard k-means clustering algorithm [132]. At run time,
adjusting the scrubbing intervals of different groups based on the operating temperature
is performed by the counter update circuitry, as the counter values of each group are
adjusted based on operating temperature intervals, using a simple look-up table. The
scrubbing events of the groups are then activated based on the counter values using
the scrubbing arbiter, which scans the group lines and writes back only erroneous bits.
Figure 8.2 illustrates our scrubbing scheme.
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Figure 8.2: Demonstration of the proposed scrubbing approach at cache level
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8.1.2 Grouping of Cache Lines based on Retention Time

The grouping of cache lines are done based on their thermal stability factors. Each group
is defined as a collection of cache lines which exhibit very close retention capabilities that
are easily distinguishable from those of the rest of the lines. In order to identify the
group to which a particular line belongs, simple division of cache lines into groups of the
same size will not help, as the thermal stability factor values are randomly distributed
over the cells due to the process variation. Hence, it is better to partition the lines with
similar retention times into the same group. Therefore, classifying the lines into groups
should be done based on a classification technique from the field of machine learning
such as K-mean clustering algorithm [132]. This algorithm can use the row-retention
capability as the classifier metric to determine the optimal size of groups with their
associated lines.

The multi-scrubbing scheme relies on determining the retention time of each bit-cell for
identifying the retention time per line by testing the memory after manufacturing. The
traditional approach to test the retention time of STT-MRAM technology is proposed
in [78]. The retention time is determined by writing a small number of static patterns
(such as “all 1s” or “all 0s”), turning off refreshes, and observing when the first bit
changes [139]. There are several advanced methods to test the retention time of STT-
MRAM (such as weak write test, at-burn-in and after-burn-in [131]). They are proposed
to improve the test time by several orders of magnitude compared to the traditional
STT-MRAM retention testing methods [78].

8.1.3 Data Residency in Cache

The on-chip memory hierarchy may consist of multiple levels of caches from the slow
but high-capacity last level cache to a relatively fast but small second level cache, to an
even smaller and faster first level cache. The data is stored in these levels for different
retention times. In [91], it is observed that it is sufficient to store the data in the L2-
cache for a few tens of ms, whereas a retention time of µs is acceptable for the L1-cache.
Therefore, based on the retention testing results, if the retention time of a group is
larger than the residency time of data in that cache level, no scrubbing for that group
is required.

8.1.4 Hardware Implementation and Overheads

Scrubbing overheads such as the performance penalty and the energy consumption can
be effectively reduced at the cost of stronger ECC or smaller fragmentation for more
groups. However, overheads of ECC and scrubbing increase rapidly for stronger ECC and
more groups, respectively. Table 8.1 reports the storage overhead due to the redundant
bits of ECC with 1-error correcting capability (i.e., ECC1) up to ECC with 8-error
correcting capability (i.e., ECC8) for a 64-Byte cache line. On the other hand, the cost
associated with more groups appears in the increase in the required number of counters
and the number of bits for the flag of each cache line, as shown in Table 8.1. Moreover, a
set of bins is added to the memory controller, each is associated with one counter, each
bin contains all of rows in the group which has to be scrubbed based on that counter,
when it reaches the lowest value (“0”). At the system level, it is common to find



Chapter 8 Process Variation and Temperature Aware Adaptive Scrubbing scheme 113

Table 8.1: ECC vs scrubbing overheads for 512 KB cache with 64-Byte row-size

ECC Scrubbing area overhead
storage overhead Counter ≪ 0.0016% Flag

No-ECC ECC1 ECC2 ECC3 ECC4 ECC8 1 group 2 groups 4 groups 8 groups 1 group 2 groups 4 groups 8 groups
0% 2% 4% 6% 8% 11% 16 bit 32 bit 48 bit 64 bit 0% 0.2% 0.4% 0.6%

Table 8.2: Simulation setup in gem5

Processor Single-core, 2 GHZ, Out-of-order, 4-issue

L1-cache 32 KB, 4-way set associative, 64B line size
SRAM

L2-cache
512 KB, 8-way set associative, 64B line size
STT-MRAM, ∆ = 40
1.6 ns/22 ns read/write latencies

SPEC2006 soplex, omnetpp, namd, libquantum, lbm
Applications hmmer, h264ref, GemsFDTD, gcc, bzip2

several thermal sensors inside modern chips, possibly one thermal sensor to monitor the
operating temperature as in the Exynos 5 Octa (5422) processor [140]. The temperature
values and their related retention time (i.e., the reset values of the counters) are saved
in a lookup table.

8.2 Simulation Results

8.2.1 Simulation Setup and Implementation flow

In order to analyze the efficacy of the proposed idea, we assume that the radius of the
MTJ has a normal distribution with a standard variation of 5% [141], and we consider
the operating temperature variation stepped by 10◦C in the range of [−20◦C, +120◦C],
in order to capture the impact of process variation and operating temperature based
on Equation (2.8) and Equation (2.12). We evaluate the retention failure probability
per bit based on the target FIT rate and the adopted ECC scheme. A typical FIT
rate for on-chip memories can be around 10 (i.e., 10 failures in 1 billion hours) [78].
We used different ECC correction capabilities (up to 8-errors per single cache line).
We implement K-mean clustering algorithm to classify the lines into groups. We then
evaluate the required scrubbing intervals for all groups along with the temperature
variation in Matlab. Table 8.2 summarizes the set up for our experiments.

8.2.2 Scrubbing Interval Analysis

In order to quantify the benefit of the proposed approach, we perform the scrubbing
interval evaluations for different cache fragmentations of 2, 4 and 8 groups under nominal
operating temperature of +30◦C. Figure 8.3 compares size and retention capabilities
of each group for dividing caches into 2, 4 and 8 groups. We note that the size of the
group which has to be scrubbed most frequently is optimized by 38%, 75% and 84%
for dividing cache into 2, 4 and 8 groups, respectively, compared to the conventional
approach, where the entire cache is considered as one block.

Figure 8.4 illustrates the difference in the scrubbing intervals within a temperature range
from −20◦C upto +120◦C between the proposed method and the baseline. Note that
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Figure 8.3: Retention capabilities, scrubbing intervals and size of groups for a 512 KB
cache with line size of 64-Byte clustered into 2, 4 and 8 groups

the temperature-dependent retention times of the groups scale with the same ratio and
without overlap. Increasing the temperature from +30◦C to +120◦C leads to an increase
in the scrubbing frequency by 120× on average, for both baseline and the grouping
schemes. On the other hand, for scaling down the operating temperature from +30◦C
to −20◦C, the scrubbing frequency can be reduced upto 43× on average.

Regardless of the number of groups and the operating temperature, scrubbing intervals
can be significantly optimized with stronger ECCs by up to 2.9×, 8.5× and 24.7× for
correction of 2, 4, and 8 errors, respectively, per line size of 512 bits in comparison to
using ECC with one bit error correction.

8.2.3 Performance Analysis

For the ECC process, checking the data for errors takes less than 0.5 ns which has to
be performed for each line for each scrubbing access. However, correction and write
back operations, which takes around 22.5 ns for L2-cache, happen rarely, since retention
failure probability is very low. Therefore, the scrubbing performance penalty is mainly
due to read access, where all the lines in the group are read sequentially, and the data
is checked for errors. By using a buffer cache, the penalty for checking the data can
be efficiently hidden by pipelining the read and checking processes. This makes read
penalty of the scrubbing process, which is 1.6 ns per line for L2, the main portion of the
performance overhead.

We have performed the scrubbing experiments on SPEC2006 benchmark for different
ECC correction capabilities (up to 8-errors per 64-Byte, i.e. one bit correcting per Byte)
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Figure 8.4: Scrubbing interval scaling trend with operating temperature scaling

and different number of groups. Figure 8.5 illustrates the scrubbing performance penalty
of the proposed approach under different ECCs and grouping options compared to the
baseline, which considers the entire cache as one group. The scrubbing performance
overheads of the baseline and our approach are obtained by estimating the related L2-
cache block time, which refers to the amount of time it takes to read the requested
cache lines. We then evaluate the related processor pipeline-stall caused by blocking
the L2-cache. This stall is translated into an increase in the read and write latencies
of L2-caches, as shown in Table 8.3. The impact of this latency increase on the overall
performance is then calculated by performing simulations in gem5.

It is seen that the scrubbing performance overhead is reduced by 60%, 97% and 99%,
on average for 2, 4 and 8 groups, respectively, compared to the baseline, with zero
storage overhead. On the other hand, for different ECC schemes, the reduction in the
performance overhead compared to the baseline for 2 groups reach up to 60%, 97%, 98%
and 99% for ECC1, ECC2, ECC4, and ECC8, respectively. However, the related storage
overhead increases by 11% for ECC8, see Table 8.1.
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Figure 8.6: Dynamic read energy of the entire cache including scrubbing energy of
the proposed and baseline approaches for various SPEC2006 workloads normalized to

dynamic read energy without scrubbing

Table 8.3: Read/write latency increase based on the scrubbing block time

Proposed approach
Baseline Two groups Four groups Eight groups
ECC1 ECC1 ECC2 ECC4 ECC4 ECC1 ECC1
60% 23% 8% 3% 0.8% 5.8% 0.8%
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8.2.4 Energy Analysis

One of our major objectives is to reduce the energy overheads associated with scrub-
bing. This is achieved by replacing the uniform-scrubbing interval based on the worst
case retention time with a multi-scrubbing interval, which is associated with the actual
retention time of each line. Figure 8.6 shows a comparison of the total read energy (i.e.,
the energy of normal read processes and scrubbing read processes) consumed for the
entire L2-cache for our proposed and the baseline approaches normalized to the read
energy without any scrubbing. Note that to achieve the target error rate, the conven-
tional scrubbing approach incurs more than 60% energy overhead. However, for 4 and
8 groups, the average increase in the total read energy is negligible and reaches up to
6% and 1%, respectively. For stronger ECC the related overhead of dynamic energy will
increase because: i) scrubbing energy overhead does not change with different ECCs ii)
dynamic energy overhead of the redundant bits increases up to 11% for ECC8 compared
to no ECC.

It is worth noting that implementing the proposed idea for L1-cache will further reduce
the scrubbing overheads by orders of magnitude compared to L2-cache results, as the
target retention time decreases from a few tens of ms to a few µs, as discussed in
Section 2.3.4.

8.3 Summary

In this chapter, we investigated an adaptive multi-level scrubbing scheme to reduce the
overheads of the conventional scrubbing approach, to account for STT-MRAM retention
failures due to process variation and operating temperatures. The simulation results
reveal that this approach significantly reduces both performance and energy overheads
associated with scrubbing up to 97%, while maintaining the same target error rate.





Chapter 9

Conclusions and Outlook

Energy consumption has emerged to be a major design constraint for modern integrated
circuits, in particular in low-power application domains such as the “Internet of Things”.
The static power, which is the dominating component in the total energy consumption,
is the leading roadblock in these fields [142]. Therefore, the stringent energy targets
cannot be achieved using conventional SRAMs, because of the high leakage. Various
techniques such as voltage scaling and power gating have been proposed as solutions for
reducing the static power. However, with continuous scaling of CMOS technology, these
techniques have become less efficient, primarily due to increased leakage power [17].
Semiconductor industry is actively searching for alternative memory technologies [143],
including non-volatile memories which have zero leakage power for the bit-cell.

Among the emerging non-volatile memory technologies, Spin Transfer Torque Magnetic
Random Access Memory (STT-MRAM) is one of the most promising technologies for
future embedded memories. STT-MRAM is a novel and unique storage technology based
on a magnetic device (called Magnetic Tunnel Junction or simply MTJ) that exploits not
only the charge of electrons but also their spin to store digital content. As a result, STT-
MRAM promises almost zero static power, fast access latencies (almost as fast as SRAM)
and high integration density (as good as DRAM) [84, 144]. Thus, STT-MRAM has the
potential to replace SRAM in the memory hierarchy of the computing system. However,
in order to employ STT-MRAM as a promising low-power solution, several fundamental
challenges still have to be resolved. In particular, it is of decisive importance to reduce
the write energy as well as the write latency of STT-MRAM [142, 143].

9.1 Conclusions

In this dissertation, we provide design-time, compile-time and run-time solutions to ad-
dress the challenges associated with STT-MRAM-based cache designs using a cross-layer
approach. The contributions of this thesis improve the state-of-the-art by taking higher
abstraction layer (i.e., application-level) requirements into consideration, which have
often been neglected before. At application-level, the interdependencies among perfor-
mance, energy, variability, reliability and temperature can be predicted and estimated
with higher accuracy and lower complexity.
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In the first part of this dissertation, STT-MRAM energy dissipation has been minimized
under performance and reliability constraints. Multi-retention regions and multi-level
write currents approaches have been adopted. Switching between these regions or levels
relies mainly on the performance and reliability requirements, which in turn are driven
directly from the application behavior. Therefore, static and dynamic approaches are
proposed in order to predict and monitor the run-time application behavior (Chapter
3).

Moreover, for the energy reduction and performance optimization, relaxing the retention,
write and read parameters has been discussed, resulting in run-time tradeoffs between
reliability and energy/performance properties. However, the reduction in the target reli-
ability has been successfully addressed at application-level by leveraging the approximate
computing techniques (Chapter 4).

With respect to the power budget and reliability constraints, the performance has been
dramatically optimized at system-level by either fast write termination or adaptive write
current scaling technique at circuit-level. In fast write termination, the write margin has
been reduced, where the unfinished bits are processed by adaptive error correcting code
(Chapter 5). On the other hand, boosting the performance according to the application-
level requirements is done by adjusting the write current levels on-the-fly (Chapter 6).

Finally, target reliability for our proposed energy-efficient or high-performance STT-
MRAM design has been respected and met in two ways: i) the SEDC which is proposed
to exploit the asymmetric switching nature of MTJ (Chapter 7), and ii) clustering the
memory array cells based on the process variation to eliminate the overheads of conven-
tional scrubbing technique (Chapter 8).

9.2 Outlook

The main focus in this dissertation is on optimizing the STT-MRAM performance in
order to meet the on-chip requirements along with minimizing the energy dissipation
due to write operation. This optimizations have been done under reliability constraints.
However, our contributions can be extended in order to replace COMS technology with
STT-MRAM not only in the memory system but also in the processor by designing
normally-off/instant-on processor with non-volatile latches, flip-flops and registers. Fur-
thermore, our contributions increase the potential of leveraging the STT-MRAM tech-
nology features for the future applications (e.g., IOT and artificial neural network ap-
plications) and future architecture (e.g.,in-memory computing).
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M
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V Free Layer Volume of MTJ cell.

W

WB Write Back Policy.

Write Error Undesired switching of a cell content at write access.

WT Write Through Policy.
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