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Abstract

Recently, NAND multi-level cell (MLC) flash memories are now widely used due to

low cost and high capacity. However, when the number of cell levels increases, cell-to-cell

interference (C2CI) which shifts threshold voltage may degrades the error rate in reading

process. There are several approaches to alleviate the errors caused by the threshold voltage

shift and we discuss error correcting codes and message encoding schemes.

First, we propose error correcting codes that are effective for multi-level cell flash mem-

ory and non-binary WOM (write once memory) codes. In particular, we focus on bidirec-

tional error correction codes. The errors in MLC flash memories tend to be directional and

limited-magnitude. Many related works focus on asymmetric errors, but bidirectional errors

also occur because of the bidirectional interference and the adjustment of the hard-decision

reference voltages. The code treats both upward and downward errors when the error magni-

tude in each direction differs. The maximum magnitudes of the upward error and downward

error are lu and ld, respectively. One of proposed codes extends the technique of the distinct

sum sets to the bidirectional error correction codes. The other code is bidirectional limited

magnitude error correction codes based on modulo operation and uses non-binary conven-

tional error correction codes. These proposed codes can reduce the parity size, and have

better error correction performance than the conventional error correction codes when the

code rate is equal. Furthermore, error correcting schemes for non-binary WOM codes are
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discussed. WOM codes is a coding scheme that allows information to be written in a mem-

ory cell multiple times without erasure, and conventional error correction codes cannot be

directly applied to WOM codes. The advantages of the proposed methods are that these are

practical and systematic codes, and the complexity of encoding and decoding processes are

low. We also introduce effective error locating limited-magnitude parity check error correc-

tion codes for the MLC flash memory error with lower complexity.

Second, we introduce coding schemes to lower the generated interferences by cell to

cell interference. It is known that C2CI is caused by the threshold voltage change of neigh-

bor cells in writing operation. The amount of threshold voltage change is proportional to

the magnitude. To minimize the generated interference, the average magnitude needs to be

decreased. We propose two new C2CI reduction coding schemes that adjust the average

magnitude to reduce C2CI. The proposed coding scheme deals with q-ary message codes,

and generates fixed length codes. Message codewords are divided into several blocks, and

are modified by modulo addition with proper values to minimize the average magnitude.

We also propose low energy Huffman codes based on entropy coding when the frequency

of symbols is not distributed uniformly. This scheme produces variable-length codes with-

out redundancy. We modified Huffman codes to minimize average number of high bits (’1’

bits). We show that proposed codes generate optimal codewords which have minimum high

bits with minimum average codeword length.

Keywords: multi-level cell flash memory, error correction code, cell to cell interference,
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Chapter 1

Introduction

1.1 Backgrounds

NAND flash memory has been used widely because of its non-volatility, portability and

high capacity. Recently, multi-level cell (MLC) flash memories have been studied for im-

proving memory capacity [1] [2]. Multi level cell flash memories use 4 or more levels, and

store several bits in a single cell. High density storage of data can be obtained by using

a high number of levels in a MLC flash memory cell. A cell of the NAND flash memory

is a floating gate transistor, and its threshold voltage can be programmed by injecting cer-

tain amount of charges into the floating gate [3]. The threshold voltage (VT ) is used to

distinguish data levels in MLC memory. Several factors may change the distribution of the

floating-gate threshold-voltage. These factors include cell-to-cell interference, cell leakage,

temperature, program voltage (Vpgm) disturbance, the pass voltage (Vpass) applied to uns-
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elected word-lines, etc [4] [5]. One of the dominant factors is the cell-to-cell interference,

which is caused by the VT change of the neighbor cells in the programming (writing) op-

eration. The cell-to-cell interference is approximately proportional to the voltage change of

neighbor cells in the programming operation, but it is also affected by the structure of flash

memories, the program order, and the number of levels (MLC) in a cell. Another problem

related to degradation of the retention characteristics (a retention problem) also occurs with

an increasing number of program/erasure cycles in the MLC flash memory.

There are several approaches to alleviate the errors caused by the threshold voltage shift

such as the error correcting codes, signal processing methods and data encoding schemes.

The conventional error correction codes can be inefficient for multi-level cell (MLC) flash

memories because these codes are constructed for all possible error types where error mag-

nitude and direction are random. Therefore, modified ECCs for MLC flash memories have

been studied to increase efficiency. The VT shift which is caused by the cell-to-cell interfer-

ence is known to be upward (unidirectional). For these asymmetric interference factors, the

error correction codes for the asymmetric channel can be useful. Asymmetric channels have

been studied for several decades [6]. The topic was studied initially for a binary asymmet-

ric channel (Z-channel). In a Z-channel, the input and the output are binary, and 1 can be

changed to 0 with probability p, but 0 cannot be changed to 1. Recently, many error correc-

tion codes for asymmetric error with limited-magnitude error are discussed [7] [8] [9] [17].

Although the cell-to-cell interference which leads to upward errors is the dominant factor
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in MLC flash memories, there are also bidirectional (random-telegraph noise) and down-

ward (retention noise) interference [11]. The hard-decision reference voltages (Vread) for

reading flash memory cells are determined based on the VT distribution after the cell-to-cell

interference, not before the cell-to-cell interference, which means the hard-decision refer-

ence voltages for reading is already near optimal. After adjusting Vread to be near optimal,

the number of errors decreases, but the number of downward errors increases. Therefore,

bidirectional errors should be considered in order to improve the BER performance. Even

if the errors are bidirectional, the magnitude of the errors is still limited. The magnitudes

of downward error and upward error can be different. The upward error magnitude can be

larger than the downward magnitude in general since the dominant interference effect is still

upward even if the optimal Vread is used. [16] proposed the systematic optimal codes for

all symmetric errors of limited-magnitude, but it is not practical in that its code rate is too

low. [10] introduced the symmetric limited error correction codes which can correct only

one single error, so it is not practical for flash memories, either.

Another approach is to use interference cancellation algorithms or low interference

memory structures. To mitigate the cell to cell interference, [11] proposes a page archi-

tecture including LSB and MSB program schemes. There are also other approaches based

on signal processing techniques to compensate communication-channel inter-symbol inter-

ference [3] [20] [18]. The signal processing methods can be efficient because they do not

require redundancy to improve the error rate. [20] proposes the post-compensation algo-
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rithms. It is possible to estimate the amount of the VT shift based on the neighbor cells’

programming (writing) progress, and Vread is adapted accordingly.

The retention problem was also addressed by using the coding schemes. Much related

research has been conducted, such as WOM (write once memory) code [29], floating code

[30], and rank modulation code [31] [32]. WOM codes, which was introduced by Rivest and

Shamir first [29], is a coding scheme that allows information to be written in a memory cell

multiple times without erasure. The optical disc is an example of WOM, and present-day

flash memory can be also considered as WOM. When erasure of each cell is required, the

flash memory erases one whole page by constraint of the erasure process. Therefore, the

modification of a cell message is inefficient, and it can be improved by WOM codes. The

capacity bounds of WOM codes are discussed in [33], while [39] and [34] address two write

WOM codes and non-binary WOM codes, respectively. Generally, WOM codes do not have

error correction ability and conventional error correction codes cannot be directly applied to

WOM codes. Although the original messages are WOM codes, the codes that are encoded

by general error correction codes lose the WOM property, and are no longer WOM codes.

Therefore, new error correction codes for WOM codes are required. Error-correcting WOM-

codes were first studied in [37] for a single error in a binary case, while [36] proposed triple

error correction codes for binary WOM codes. [38] discussed the generalization of error-

correcting WOM-codes model for the non-binary case. However, the error correcting code

is not systematic code and it requires large alphabet size (the number of levels in a cell).
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1.2 Scope and Organization

In this dissertation, we discuss the error correction codes and encoding schemes for reliabil-

ity of NAND multi-level cell flash memories.

At first, we introduce the discussions of error models in multi-level cell flash memory

and provide an overview of the factors that contribute to the MLC interference and the cell to

cell interference model in chapter 2. The signal processing methods are discussed to reduce

the errors caused by the interference and related codes for reliability of flash memory are

also introduced such as WOM codes and asymmetric error correction codes.

In chapter 3, we propose error correcting codes that are effective for non-binary WOM

codes. In particular, we focus on bidirectional error correction codes. The code treats both

upward and downward errors when the error magnitude in each direction differs. One of

proposed codes extends the technique of the distinct sum sets [10] to the bidirectional error

correction codes. The code uses the parity check matrix which is generated from the distinct

sum sets and has low encoding and decoding complexity. The other code is bidirectional

limited magnitude error correction codes based on modulo operation [8] [22] [35], and

extends the technique of the asymmetric error correction codes [8] to the bidirectional error

correction codes. The code uses conventional non-binary error correction codes as base

error correction codes. Furthermore, error correcting schemes for non-binary WOM codes

are discussed, and a parity splitting method is introduced as the WOM error correcting code

schemes. The advantages of the proposed methods are that these are practical and systematic
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codes, and their encoding and decoding processes have low complexity. Also we introduce

effective error locating limited-magnitude parity check error correction codes for the MLC

flash memory error with lower complexity [41].

In chapter 4, we discuss coding schemes to lower cell-to-cell interference (C2CI). In

the flash memory process, the write (programming) operation is performed only after the

erase operation, and the amount of threshold voltage change is proportional to the magni-

tude. Therefore, to minimize the generated interference, the average magnitude needs to

be decreased. Conventional minimum energy (ME) coding is related to this problem [23],

because the goal of the code is to reduce the average energy, and it can be used to generate

less interference. However, ME coding causes significant redundancy for uniform symbol

frequency, and it results in higher costs for flash storage devices. Therefore, we propose a

new coding scheme to lower the magnitude and minimize redundancy. The proposed cod-

ing scheme deals with q-ary message codes, and generates fixed length codes. Message

codewords are divided into several blocks, and are modified by modulo addition with some

constant to minimize the average magnitude. We also propose low energy Huffman codes

based on entropy coding when the frequency of symbols is not distributed uniformly. This

scheme produces variable-length codes without redundancy. We modified Huffman codes

to minimize average number of high bits (’1’ bits). We show that proposed codes gener-

ate optimal codewords which have minimum high bits with minimum average codeword

length.
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Finally, a conclusion is given in chapter 5.
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Chapter 2

MLC Flash Memory Interference and
Mitigation Techniques for Reliability

In this chapter, an overview of the interfernece model in multi-level cell flash memory is pro-

vided. Signal processing methods and coding schemes such as WOM codes and asymmetric

error correction codes for reliability of flash memory are also introduced.

2.1 MLC flash memory and interference

A cell of the NAND flash memory is a floating gate transistor, and its threshold voltage

can be programmed by injecting certain amount of charges into the floating gate [3]. The

threshold voltage (VT ) is used to distinguish data levels in MLC memory. Fig. 2.1 shows

the VT distribution of 4-level multi-level cell flash memory. Several factors may change

the distribution of the floating-gate threshold-voltage. These factors include cell-to-cell in-

terference, cell leakage, temperature, program voltage (Vpgm) disturbance, the pass voltage
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Figure 2.1 Threshold voltage distribution of 4 level multi-level cell

(Vpass) applied to unselected word-lines, etc [5]. One of the dominant factors is the cell-to-

cell interference, which is caused by the VT change of the neighbor cells in the programming

(writing) operation. If the data of neighbor cells change, the cell-to-cell coupling interfer-

ence occurs and it is shown in Fig. 2.2. In this case, the VT shift is known to be upward

(unidirectional). The cell-to-cell interference is approximately proportional to the voltage

change of neighbor cells in the programming operation, but it is also affected by the struc-

ture of flash memories, the program order, and the number of levels (MLC) in a cell. The

quantitative interference can be estimated by measurements and simulations.

Fig. 2.3 shows an interference model based on the parasitic capacitance between neigh-

bor cells [20] [18]. Suppose that Vh, Vv, and Vd are the cell voltages of the horizontal, the

vertical, and the diagonal neighbor cells, respectively.BLeven andBLodd stand for the even

and the odd bit lines, respectively, and WLn stands for the nth word line.
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Figure 2.2 Cell to cell interference by the parasitic capacitances

The interference in terms of threshold voltage shift (∆VI ) is given by

∆VI = αh(βh1∆Vh1 + βh2∆Vh2) + αv(βv1∆Vv1 + βv2∆Vv2)

+ αd(βd1∆Vd1 + βd2∆Vd2 + βd3∆Vd3 + βd4∆Vd4) (2.1)

where αh, αv, and αd are the coupling coefficients for the horizontal, the vertical, and the

diagonal neighbor cells, respectively. One cell can only be interfered by its neighbor cells

which are programmed after this cell has been programmed. βi has the binary value of ’0’ or

’1’, and it indicates whether the cell is interfered by the ith cell or not. If we assume that the
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Figure 2.3 Interference model based on parasitic capacitances in a NAND flash array.

full-sequence programming strategy is being used, only after all the cells on one word line

have been programmed can the next word line cells be programmed. By using an even/odd

bit line structure, the cell-to-cell interference can be reduced. With the even/odd bit line

structure, the even bit line cells are programmed first, and the odd bit line cells later [3].

For example, if we use a full-sequence programming strategy with the even/odd bit line

structure, and the cell V (the red cell) belongs to an even bit line in Fig.1, the program-

ming (writing) is performed in the order of WLn−1(Vv2, Vd3, Vd4), WLn(V, Vh1, Vh2), and

WLn+1(Vv1, Vd1, Vd2). V is affected by the cell to cell interference caused by its 5 neigh-

boring cells, Vh1, Vh2, Vv1, Vd1, and Vd2. More specifically, βd3, βv2, and βd4 are 0’s, and
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the others are 1’s. With this programming strategy, the interference in terms of the threshold

voltage shift of an even bit line cell is given by

∆VI =αh(∆Vh1 +∆Vh2) + αv(∆Vv1)

+ αd(∆Vd1 +∆Vd2). (2.2)

If the cell V belongs to an odd bit line, the programming order is WLn−1(Vd3, Vd4, Vv2),

WLn(Vh1, Vh2, V ), and WLn+1(Vd1, Vd2, Vv1). In this case, ∆V is affected by its 3 neigh-

boring cells, Vd1, Vd2, and Vv1. In other words, βh1, βh2, βd3, βv2, and βd4 are 0’s, and the

others are 1’s. The interference in terms of the threshold voltage shift of an odd bit line cell

is given by

∆VI =αv(∆Vv1) + αd(∆Vd1 +∆Vd2). (2.3)

A more realistic cell-to-cell interference model depends on the program order, page archi-

tecture, and the conventional LSB/MSB techniques [11].

For these asymmetric interference factors, the error correction codes for the asymmetric

channel can be useful. Asymmetric channels have been studied for several decades [6]. The

topic was studied initially for a binary asymmetric channel (Z-channel). In a Z-channel, the

input and the output are binary, and 1 can be changed to 0 with probability p, but 0 cannot

be changed to 1. Recently, many error correction codes for asymmetric error with limited-

magnitude error are discussed [7] [8] [9]. Although the cell-to-cell interference which leads

to upward errors is the dominant factor in MLC flash memories, there are also bidirec-
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Figure 2.4 VT shift and bidirectional errors with adjusted Vread.

tional (random-telegraph noise) and downward (retention noise) interference [11]. The hard-

decision reference voltages for reading flash memory cells are determined based on the VT

distribution after the cell-to-cell interference, not before the cell-to-cell interference, which

means the hard-decision reference voltages for reading is already near optimal. Fig. 2.4

illustrates the threshold voltage shift, and the adjusted Vread. After adjusting Vread to be
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near optimal, the number of errors decreases, but the number of downward errors increases.

Therefore, bidirectional errors should be considered in order to improve the BER perfor-

mance. Even if the errors are bidirectional, the magnitude of the errors is still limited. The

magnitudes of downward error and upward error can be different. The upward error magni-

tude can be larger than the downward magnitude in general since the dominant interference

effect is still upward even if the optimal Vread is used as in Fig. 2.4.

2.2 Signal processing based interference mitigation in MLC flash
memories

The signal processing methods are discussed to reduce the errors caused by the interference

in this subsection [20] [18]. If we know the exact cell to cell interference values caused by

the voltage changes of neighbor cells, and the exact voltage of the current cell, the controller

can cancel the interference, and make a less erroneous decision. To estimate the cell to cell

interference, the data of the neighbor cells need to be read first. In other words, we need

to read twice to estimate the interference. However, to know the exact voltage of a cell is

difficult. Since a controller can only decide whether the cell (threshold) voltage is larger or

less than the read voltage (Vread), only a quantized version of the cell voltage instead of the

precise cell voltage is available. This quantization is considered in proposing the following

2 signal processing based interference mitigation techniques.

At first, we discuss the adaptive read voltage (ARV) method. Most cells in flash memo-
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ries are affected by the cell to cell interference.

V ′
T = VT +∆VI + IG (2.4)

V ′
T is the threshold voltage, VT is the original threshold voltage, ∆VI is cell to cell in-

terference and IG means the voltage shift by other interferences. Each cell has different

interference due to different neighbor cell voltages, but we can apply the average value

of the interference to every cell. Though it is not optimal, we can expect performance im-

provement. For example, if the average value of the cell to cell interference is E(∆VI), and

Vread + E(∆VI) as the read voltage instead of Vread, some (if not all) of the cells will be

corrected especially when they have large inter-cell interference. E(∆VI) can be treated as

a constant if there are a large number of cells and the data values are random. Let D(Vread)

be the data decision function. Each cell has q-level and Vmax is maximum threshold voltage

of the maximum level.

D(V ′
read) = D(Vread + E(∆VI)) (2.5)

The interference in terms of the threshold voltage shift of an even bit line cell is given by

∆VI = αh(∆Vh1 +∆Vh2) + αv(∆Vv1) + αd(∆Vd1 +∆Vd2) and

E(∆VI) = E
(
αh(∆Vh1 +∆Vh2) + αv(∆Vv1) + αd(∆Vd1 +∆Vd2)

)
= E(∆V )(2αh + αv + 2αd)

=
1 + 2 + · · ·+ q − 1

q
· Vmax

q − 1
(2αh + αv + 2αd)

=
Vmax

2
(2αh + αv + 2αd). (2.6)
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Figure 2.5 Adaptive read voltage algorithm.

As for implementation, we can used fixed E(∆VI) for all cells, and the complexity of

this method is minimal if the E(∆VI) value is pre-computed. Fig. 2.5 shows how the ARV

algorithm works.

Next, we introduce careful cell compensation (CCC) method. This is a kind of the post-

compensation algorithm. It is possible to estimate the amount of the VT shift based on the

neighbor cells’ programming (writing) progress, and Vread is adapted accordingly. This al-

gorithm consists of two steps. The first step is to check whether a cell has high possibility

for large VT shift, and the 2nd step is to check whether the inter-cell interference for those

cells detected in the first step is large enough, and we correct those cells which pass the tests

of the two steps. We define a ‘careful cell’ as the cell which is expected to be erroneous. The

cell to cell coupling interference is always upward (unidirectional), and a cell affected by a

large interference tend to have erroneous decisions. In other words, we classify a cell with

the threshold voltage near the Vread as a ‘careful cell’. The distance from the read voltages
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Figure 2.6 The careful cell compensation (CCC) method.

is determined by the ‘careful cell threshold’. To decide whether a cell is a careful cell, we

read the cell twice with the read voltage of Vread and Vread+τcc where τcc is the careful cell

threshold. E(∆VI) can be used as τcc. If two decisions are are not equal, we declare that the

cell is a careful cell. If a cell is declared as a careful cell, we estimate the interference for

the cell. Since we already obtained the data of neighbor cells in the first step (careful cell

decision), the cell to cell interference can be estimated from the neighborhood data. If the

interference is large enough, the cell data is likely to be in error. The threshold to determine

whether the interference is large enough is called interference threshold voltage. Let Ith =

τcc + I ′G be interference threshold voltage and I ′G means estimated voltage shift by other

interferences. If the interference exceeds the interference threshold, ∆VI > Ith, this cell is

assumed to be in error, and is corrected by one downward level. An example is shown in Fig.
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2.6. Assume that the data of the cell is detected as C with Vread. If it is decided as a care-

ful cell and the estimated interference is larger than the interference threshold, the data is

corrected to B. The careful cell threshold and the interference threshold can be determined

analytically from the distribution model, but empirical values obtained from simulations

may work better. In this algorithm, we need to read all the cells twice, and each reading

operation causes delay. There is a trade-off between bit error rate and delay. The careful

cell compensation algorithm (CCC) takes the following steps.

Careful Cell Compensation (CCC) Algorithm

1) Read the cell data twice with Vread and Vread + τcc.

1-1) If two data values are not equal, then it is a careful cell and go to step 2.

2) Estimate the cell to cell interference using the neighbor data distribution of the cell.

2-1) If the cell to cell interference ∆VI exceeds the interference threshold Ith, go to step 3.

3) Adjust the data value of the cell by one downward level.

We compare the performance of two proposed algorithms, the adaptive read voltage

(ARV) algorithm, the careful cell compensation (CCC) algorithm algorithm. Bit error rate

(BER) is used to measure the interference mitigation performance. In the comparison of the
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Figure 2.7 BER with respect to the two thresholds for the CCC algorithm.

ARV algorithm with the CCC algorithm, we use 4 levels with equal distribution model. The

equal distribution model assumes that the every level has equal width. Before simulating the

CCC algorithm, we find the careful cell threshold and the interference threshold numerically.

We use an exhaustive search for the two thresholds to yield the best BER performance. In

the simulation of the CCC algroithm, it is assumed that the ARV algorithm is combined

with the CCC algorithm. It should be noted that we use either the no-interference case (the

perfect case) or the case without interference cancellation as a benchmark. Fig. 2.7 is the 3D

plot of the BER performance with respect to the careful cell threshold and the interference

threshold. When the careful cell threshold voltage is 0.2V and the interference threshold
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voltage is 0.4V, the best BER is achieved. To compare the BER performance of the CCC

algorithm, we simulate with a fixed interference threshold of 0.4V, and the careful cell

threshold is varied. In Fig. 2.8, the “perfect interference cancellation” means the case where

cell to cell interference effects are removed. In this case, a threshold voltage VT is adjusted

by

V ′
T −∆VI = VT + IG. (2.7)

It is observed that the BER performance of the careful cell compensation algorithm is be-

tween that of the ARV algorithm and that of the perfect interference cancellation. The CCC

algorithm shows the best performance at the careful cell threshold of 0.2 V, and it is close

to the no interference case.

In summary, to mitigate the interference, we propose two signal processing based al-

gorithms: the adaptive read voltage (ARV) algorithm, the careful cell compensation (CCC)

algorithm. It was shown by simulations that these algorithms are effective to reduce the

effects of the interference. The ARV algorithm does not require extra data read, but its per-

formance is not as good as the other one. The other algorithm CCC requires extra data read

stages, but its performance is better than the ARV algorithm in general. If the cell data can

be read only twice, the CCC algorithm appears to be promising.
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Figure 2.8 BER performance of the CCC and the ARV algorithms.

2.3 WOM codes

The longevity problem related with program/erasure cycle of flash memory has been ad-

dressed and much related codes are considered, such as WOM (write once memory) code

[29], floating code [30], and rank modulation code [31]. WOM codes among them, which

was introduced by Rivest and Shamir first [29], is a coding scheme that allows information

to be written in a memory cell multiple times without erasure and the goal of designing

WOM codes is to maximize the total amount of information written and to achieve high

sum-rate [29]. In t-write WOM codes, the number of message data sets that can be written

22



without erasure is t. Table 2.1 introduces the example of 2-write binary WOM code [29].

Table 2.1 2-write binary WOM code example

Data 1st write 2st write

00 000 111

01 100 011

10 010 101

11 001 110

In the first write, 2-bit words are encoded using the 1st write codebook. For example,

the first messages are 01, so 100 is written in the three cells, and the second messages are 11,

then 110 is written. Therefore there are no 1→ 0 cases, but only 0→ 1. If the second 2-bit

word is the same as the first, there is no change to the written codeword. Non-binary WOM

codes construction generates codes that have a large alphabet (q-ary). We define non-binary

WOM codes construction based on [34].

Definition 1. The t-write non-binary q-ary WOM codesW is specified by t pairs of encod-

ing and decoding maps Ei, Di, for 1 ≤ i ≤ t.

E1 : {1, · · · ,M1} → {0, · · · , q − 1}n,

Wi = Ei(vi,Wi−1) ≥ Wi−1, (i ≥ 2).

D1 : {0, · · · , q − 1}n → {1, · · · ,Mi},

D1(E1(v1)) = v1 and Di(Ei(vi,Wi−1)) = vi.

Ei,Di are ith encoding and decoding functions respectively, and vi is the message. Mi

is the alphabet size of ith message vi.
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Figure 2.9 A WOM code that stores 3 bits in 2 cells writes [42].

We introduce a non-binary WOM code construction algorithm in [42]. [42] discusses

the problem of 2 cell q-ary WOM codes which is addressed with a construction that uses

lattice tilings. The resulting codes in [42] are shown to be within a small additive constant

from the capacity. We assume that km input bits are written t times to n physical cells

with q levels where the cell levels cannot decrease between writes in the WOM model. In

an n = 2 code (2 cell q-ary WOM codes), the content of the memory is described by a

pair (c1, c2) ∈ {0, · · · , q − 1}2 of cell levels. By stacking 2-dimensional shapes along the

main diagonal of the (c1, c2) plane, the code in Fig. 2.10 guarantees the re-writes. The rest

of the plane outside the stack remains unused and better WOM code can be made by the
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Figure 2.10 The tiling used for an improved WOM code [42].

construction to follow by utilizing the remaining cell states. To get more writes, we can take

the following steps [42].

1) Tile the plane with the same basic shape from Fig. 2.9.

2) Specify update functions that traverse the tiling in a way that a certain number of

writes is guaranteed for any sequence of input-value updates.

Then Fig. 2.10 is generated from Fig. 2.9 by the construction. The generated code guar-

antees four writes in the example.

Conventional correction codes cannot be directly applied to WOM codes, but error cor-
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recting WOM codes have been conducted. [40] discusses the error correcting codes for flash

coding. Flash coding schemes are related with WOM codes strongly and have been devel-

oped to maximize the number of writes before a block-erasure is needed. [40] proposes a

new flash coding scheme based on error correction codes which minimize the frequency

of block-erasures by using some controllable errors. The idea of the scheme is that cells

whose levels are higher than others need not be increased and introduces errors which can

be corrected within the error-correcting capability of the ECC. The code has also capable

of additional errors or erasures. The encoding process of the idea is as follows. The encod-

ing function is characterized by a integer 0 ≤ ϱ ≤ ⌊(d − 1)/2⌋. κ = (κ1,κ2, · · · ,κn)

is the current cell-state vector and ϑ = EC(m) = (ϑ1, ϑ2, · · · , ϑn) is the codeword in C

corresponding to the message m. F0(ϑ,κ) = {i : i = 1, 2, · · · , n, ϑi ̸= (κi)2}. For the

reduced binary vector of the new cell-state vector to be equal to the codeword ϑ = EC(m),

all cells with indices in F0(ϑ,κ) increase the levels by 1. The scheme of [40] is not to

increase the levels of those cells in which the levels are already the highest among all cells

with indices in F0(ϑ,κ). The paper introduce errors, ϱ which is the number of controllable

errors (CE). By the error-correcting capability of the error-correcting code C, the decoder

can recover the message correctly. For this purpose, Let F(ϑ,κ) ⊆ F0(ϑ,κ) be a subset

of size min {|F0(ϑ,κ)|, ϱ} such that for all i ∈ F(ϑ,κ) and i′ ∈ F0(ϑ,κ) \ F(ϑ,κ), we

have κi ≥ κi′ . F(ϑ,κ) includes indices of cells in which the levels are highest among all

cells with indices belonging to F0(ϑ,κ). The levels of cells with indices in F(ϑ,κ) will
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not be increased. [40] define t(q, ϱ) to be the number of guaranteed block-writes. Let d be

the maximum Hamming distance between a pair of codewords in C. Then for d > 2ϱ and

q ≥ 2,

t(q, ϱ) = 2⌊(q − 2)ϱ

d− 2ϱ
+ q − 1⌋ (2.8)

From the (2.8), we notice that for [40] scheme to have more than q − 1 writes in the worst

case.

2.4 Asymmetric limited-magitude error correction codes based
on distinct sum set

The VT shift which is caused by the cell-to-cell interference is known to be upward and

the error correction codes for the asymmetric channel can be useful for these asymmet-

ric interference factors. Recently, many error correction codes for asymmetric error with

limited-magnitude error are discussed [7] [8] [9] [10].

[10] proposes error correction codes which correct single asymmetric limited mag-

nitude errors, that is, l-asymmetric error correcting codes(l-AEC). The proposed codes

achieve better performance than the ones given in [8] for the single error case, and it is based

on distinct sum sets. For integer i, j, where i ≤ j, we let [i, j] = {i, i+1, i+2, . . . , j}. [10]

defines that a Bλ[l](q) sequence of length m is a sequence of m distinct positive integers

b0, b1, . . . , bm−1 such that all sums

∑λ
j=1 ajbij

 mod q are distinct, where 0 ≤ i1 <

i2 < · · · < iλ ≤ m− 1 and aj ∈ [0, l]. This sequence or a set is also called distinct sum se-
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quence or set in this dissertation. [10] discusses only λ = 1 case. Based onB[l](q), the error

correction codes can be constructed. Let H be the r×n parity check matrix whose columns

are all possible r length q-ary vectors whose first nonzero element belongs to B[l](q). Let

C(B[l](q)) be the null space of HT.

Theorem 1. If gcd (q, l!) = 1, C(B[l](q)) can correct a single asymmetric error limited

magnitude l [10].

Proof and related discussions are shown in [10]. Let c ∈ C and ϵ be a vector of errors

with ith component equal to nonzero integer and all other components equal to 0.

(c+ ϵ)HT = cHT + ϵHT = ϵHT (2.9)

The syndromes ϵHT are all distinct and the error can be corrected.
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Chapter 3

Error Correction Codes for Flash
Memories

3.1 Introduction

The error increases with the number of levels in the cell [2] [4] and another problem related

to degradation of the retention characteristics (a retention problem) also occurs with many

cycles of program/erasure in MLC flash memories. Conventional error correcting codes

have been used for solving reliability problems. Error correction codes for asymmetric or

symmetric channels with limited-magnitude error were discussed in [7], [8], [16], and [10]

for flash memories. There are also bidirectional (random-telegraph noise) and downward

interference [11] and the discussion of bidirectional error correcting codes can be meaning-

ful for reliability of flash memory. Another issue is the retention problem and WOM codes,

which was initially introduced by Rivest and Shamir [29], is a coding scheme that allows
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information to be written in a memory cell multiple times without erasure. However, con-

ventional error correction codes cannot be combined with WOM codes directly and new

error correction codes for WOM codes are required.

In this chapter, error correcting codes that are suitable to practical flash memory devices

and non-binary WOM codes are discussed. We deal with bidirectional error correction codes

and these research are not conducted much as asymmetric errors and symmetric errors. One

of proposed codes extends the technique of the distinct sum sets [10] to bidirectional er-

ror correction codes, and the other code is bidirectional limited magnitude error correction

codes based on modulo operation [8] [22] [35]. The parity code constructions for systematic

WOM codes are also discussed. The proposed codes have encoding and decoding process

with low complexity, which is efficient for non-binary WOM codes. Furthermore, we dis-

cuss asymmetric and symmetric error locating limited-magnitude parity check error correc-

tion codes for the MLC flash memory error with lower complexity encoding [41].

3.2 Bidirectional error correction codes for non-binary WOM
codes based on distinct sum sets

3.2.1 Bidirectional error correction codes based on distinct sum sets

As described in the previous chapter, bidirectional error correction codes are efficient for

practical systems. In the notation of (lu, ld), lu and ld represent the maximum upward error

magnitude and the maximum downward error magnitude, respectively. Fig. 3.1 (a), (b),
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and (c) illustrate the difference of various error types. The asymmetric limited magnitude

errors of (a) are discussed in [8] [10], and the symmetric limited magnitude errors of (b)

are considered in [16] [10]. However, little has been studied for the bidirectional limited

magnitude errors of (c) [22] [35].

Figure 3.1 Various limited magnitude error types and (lu, ld) bidirectional error channel.

The bidirectional error correction codes which extend the technique of the limited mag-

nitude error correction codes [10] to bidirectional error correction codes will be introduced.

We define that a bidirectional distinct sum set Φλ(lu, ld) of length m is a sequence of m

distinct positive integers ϕ0, ϕ1, . . . , ϕm−1 such that all sums λ∑
j=1

ljϕij

 mod q (3.1)
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are distinct, where 0 ≤ i1 < i2 < · · · < iλ ≤ m− 1 and −ld ≤ lj ≤ lu. λ = 1 case will be

discussed at first.

Definition 2. When lu, ld are given, we define a set

Φ(lu,ld) = {1} ∪ {ω
i|max(lu, ld) < ωi ≤ ω · max(lu, ld),

ω : prime, i: positive integer}, (3.2)

and a sorting function Ω(X,m) = {xk|x1 < x2 < · · · < xm, x1, · · · , xm are m smallest

elements in X , k = 1, · · · ,m} for xi ∈ X and |Ω(X,m)| = m.

We then obtain a set of m elements, which is given by

Φm
(lu,ld)

= Ω(Φ(lu,ld),m) = {ϕ1, ϕ2, · · · , ϕm} (3.3)

for ϕ1 < ϕ2 < · · · < ϕm.

The set Φm
(lu,ld)

is modified by the following conditions.

i) Let τ1 and τ2 be the two prime factors, which are not included in Φm
(lu,ld)

and less than

max(lu, ld). If there exist τα1 τ
β
2 < ϕm, τα1 τ

β
2 replaces ϕm (α, β : positive integers).

ii) When τα ∈ Φm
(lu,ld)

with prime τ and ταmax(lu, ld) < τβ < ϕm, τβ replaces ϕm.

iii) When τα1 ∈ Φm
(lu,ld)

with prime τ1, let τ2 be the prime factor which is not included in

Φm
(lu,ld)

and less than max(lu, ld). If max(lu, ld) < τβ1 τ
ζ
2 < ϕm and τβ1 max(lu, ld) < τχ1 <

ϕm, τβ1 τ
ζ
2 and τχ1 replace the τα1 and ϕm (α, β, ζ, χ : positive integers).
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For example, when lu = 7, ld = 3,m = 6, Φm
(lu,ld)

= {1, 8, 9, 11, 13, 17} at first, and

we get ϕm=17. With case iii) of Definition 2, the prime factor 5 is not included in Φm
(lu,ld)

,

and 5 < max(lu, ld), so τ2 = 5. 23 ∈ Φm
(lu,ld)

and τ1 = 2. max(lu, ld) < 2 · 5 < ϕm

and 2max(lu, ld) < 24 < 17. Then, 2 · 5 = 10 and 24 = 16 replace 8 and 17. Finally,

Φm
(lu,ld)

= {1, 9, 10, 11, 13, 16}.

Definition 3. If ϕm in distinct sum set Φm
(lu,ld)

which satisfies (3.1) is the minimum value,

the set is defined as a minimum magnitude distinct sum set.

Theorem 2. Φm
(lu,ld)

= {ϕ1, ϕ2, · · · , ϕm} in Definition 2 are (lu, ld) distinct sum sets which

satisfy (3.1) for all q ≥ ϕm(lu + ld) + 1.

Proof. Let 1 ≤ v, w ≤ lu or −ld ≤ v, w ≤ −1 (v, w : integer, v ̸= w), ϕi, ϕj ∈ Φm,

ϕi ̸= ϕj , 1 ≤ i, j ≤ m, and each of ϕi and ϕj has only one prime factor. Let us prove by

contradiction. We assume that there exist v, w, ϕi, ϕj which satisfy vϕi = wϕj . vϕi = wϕj

leads to vϕi

wϕj
= 1. ϕi and ϕj are relatively prime, so |v| = ϕj and |w| = ϕi. According to

the assumption in Definition 2, ϕi or ϕj > max(lu, ld) > |v|, |w|, so |v| ̸= ϕj or |w| ̸= ϕi,

which is a contradiction. Therefore vϕi ̸= wϕj . Both vϕi, wϕj < ϕmmax(lu, ld) <

ϕm(lu + ld) + 1, vϕi ̸= wϕj leads to vϕi ̸= wϕj mod q if q ≥ ϕm(lu + ld) + 1.

When ϕi have two prime factor for the case i) of Definition 2, τα1 τ
β
2 will be the element.
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vτα1 τ
β
2 ̸= wϕj for any j except i, because both prime factor τ1, τ2 are not included in any

ϕi. For the case ii), if ϕi and ϕj have a common prime factor, ϕi and ϕj become τα and τβ .

Because ταmax(lu, ld) < τβ < ϕm, |v|τα < |w|τβ and vϕi ̸= wϕj . For the case iii), if

τβ1 τ
ζ
2 and τχ1 have a common prime factor τ1, τβ1 max(lu, ld) < τχ1 leads to vτβ1 τ

ζ
2 ̸= wτχ1 .

Let −ld ≤ v ≤ −1, 1 ≤ w ≤ lu. q − ldϕm ≤ (vϕi mod q) < q and 0 < wϕj ≤ luϕm.

According to the assumption of q ≥ ϕm(lu + ld) + 1, we have q − ldϕm > luϕm. Because

{0 < wϕj ≤ luϕm < q − ldϕm ≤ vϕi < q} mod q, vϕi ̸= wϕj mod q is always valid.

Remark 1. It was shown by exhaustive computer search that Φ(lu,ld) given by Definition 2

is a minimum magnitude distinct sum set when m ≤ 7 and max(lu, ld) ≤ 8.

Table 3.1 Modification cases in generating minimum magnitude distinct sum sets

max(lu, ld) m=3 m=4 m=5 m=6 m=7

2 ii ii

3 iii

4 i i

5 i iii

6 iii

7 iii iii

8 i i i

As the parameters of max(lu, ld),m vary, the modification case of Definition 2 to gener-

ate the minimum magnitude distinct sum set is shown in Table 3.1. i,ii,iii represent the case
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i), case ii), and case iii) of Definition 2, respectively. The empty entries in Table II represent

a case where minimum magnitude distinct sum sets are obtained by (3.2) and (3.3) only

without any additional modification with the max(lu, ld) and m.

Bidirectional error correction codes can be constructed by the Φm
(lu,ld)

. Let H be the

r × n parity check matrix, the columns of which are all possible r length q-ary vectors

where the first nonzero element belongs to Φm
(lu,ld)

. If C(Φm
(lu,ld)

) be the null space of HT,

C(Φm
(lu,ld)

) can correct a bidirectional error. If m and (lu, ld) are given and q ≥ q̃ in the

Table 3.2 The parameters of Φm
(lu,ld)

q̃

(lu, ld) m=2 m=3 m=4 m=5 m=6

(1,0) 3 4 6 8 12

(1,1) 5 7 11 15 23

(2,0) 7 9 11 15 23

(2,1) 10 13 16 22 34

(2,2) 13 17 21 29 45

(3,0) 13 16 22 28 34

(3,1) 17 21 29 37 45

(3,2) 21 26 36 46 56

(3,3) 25 31 43 55 67

(4,0) 21 25 29 37 45

(4,1) 26 31 36 46 56

(4,2) 31 37 43 55 67

(4,3) 36 43 50 64 78

(4,4) 41 49 57 73 89

Table 3.2, Φm
(lu,ld)

generated by Theorem 2 can correct a bidirectional error.

The set Φm
(lu,ld)

generated by Theorem 2 is optimal for special q and (lu, ld). An optimal
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set in this chapter means that m, the number of element in Φm
(lu,ld)

is maximized with given

parameters q and (lu, ld), and it can be obtained by an exhaustive search. If q equals to

Table 3.3 The parameters which proposed method generates the optimal set

(lu, ld) q̃

(2,0) 12

(2,1) 13, 14, 15, 17, 18, 19, 21

(2,2) 20, 21, 24, 28

(3,0) 16, 23

(3,1) 21, 22

(3,2) 26, 28, 29, 31, 36

(4,0) 29

(4,1) 31, 33, 37, 39

(4,2) 38

(4,3) 43, 51, 53, 54

q̃ in the Table 3.3, the proposed method generates the optimal set. Φm
(lu,ld)

generated by

Theorem 2 can be used for the construction of symmetric error correction codes by setting

lu = ld. [10] also proposed following method generating a B-set which can be used for the

symmetric error. Note that

B = {i(2l + 1) + 1|i ∈ [0,m− 1]} (3.4)

is a B([−l, l])(q) set for q = 2p(l + 1) [10]. B[−l, l](q) is a sequence such that all sums

are distinct in (3.1), where lj ∈ [−l, l]. Our method for a symmetric error is compared to

a method in [10] in Table 3.4. The proposed method can construct the symmetric error

correction code for all q ≥ q̃, while the method in [10] generate the symmetric code when

only q = q̃. In addition to that, a lower q̃ is more efficient clearly, and the proposed method
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Table 3.4 A comparison of two methods for symmetric error correction code

Proposed q̃

m (1,1) (2,2) (3,3) (4,4)

2 5 13 25 41

3 7 17 31 49

4 11 21 43 57

5 15 29 55 73

[10] m (1,1) (2,2) (3,3) (4,4)

2 9 25 49 99

3 9 25 49 99

4 15 25 49 99

5 15 25 49 99

produces lower q̃ in most cases than the method in [10]. This shows the advantage of the

proposed method.

There is discussion only of single error correction codes in [10], and bidirectional

double error correction codes based on distinct sum sets can be considered. A new set

Ψ = {ψ1, ψ2, · · · , ψm} is defined for double error correction.

Remark 2. For double error correction, there is a constraint that both (αxψi+αyψj mod q)

and (αzψk mod q) should be all distinct for any ψi, ψj , ψk ∈ Ψ, i ̸= j ̸= k, and −ld ≤

αx, αy, αz ≤ lu with integers i, j, k, αx, αy, αz , and lu, ld.

Theorem 3. If X = {ωi|ω : prime, i = 0, · · · ,m − 1, ω > max(lu, ld)}, X is a Ψ set if

q > (lu + ld)ω
m−2(ω + 1).
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Proof. At first, we prove αxψi+αyψj ̸= αzψk +αwψo when all α are positive integers

(0 < α ≤ lu < ω) and k > o, i > j, i ̸= j ̸= k ̸= o. The prime factor of ψ is ω, and

let ψi = ωi ∈ Ψ. If we assume αxψi + αyψj = αzψk + αwψo, then αxω
i + αyω

j =

αzω
k+αwω

o, and ωj(αxω
i−j +αy) = ωo(αzω

k−o+αw). αxω
i−j +αy < αxω

i−j +ω ≤

αxω
i−j + ωi−j = (αx + 1)ωi−j ≤ ωi−j+1. Then ωi < ωj(αxω

i−j + αy) < ωi+1 and

ωk < ωo(αzω
k−o + αw) < ωk+1. Because ωj(αxω

i−j + αy) = ωo(αzω
k−o + αw), i

should be equal to k, which is a contradiction to the assumption of i ̸= j ̸= k ̸= o, so we

have

αxψi + αyψj ̸= αzψk + αwψo. (3.5)

Let us consider the case that all α are negative integers. From (3.5), −αxψi − αyψj ̸=

−αzψk − αwψo. Let α̃ be −α, then α̃xψi + α̃yψj ̸= α̃zψk + α̃wψo, and the constraint is

also valid in this case. In the case that two of four α are negative and the others are positive,

αxψi − αwψo ̸= αzψk − αyψj from (3.5) and we have αxψi + α̃wψo ̸= αzψk + α̃yψj .

For the case that three α are positve and the other is negative, we prove αxω
i + αyω

j ̸=

αzω
k+ α̃wω

o. If we assume αxω
i+αyω

j = αzω
k+ α̃wω

o, αxω
i+αyω

j+αwω
o = αzω

k.

k should be larger than i, j, o and assume i > j > o (the order can be changed). We get

αzω
k−αxω

i−αyω
j = αwω

o. Dividing by ωo, we have αzω
k−o−αxω

i−o−αyω
j−o = αw,

which is factorized to

ωj−o(αzω
k−j − αxω

i−j − αy) = αw, (3.6)
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and ωj−o(ωi−j(αzω
k−i − αx)− αy) = αw. αzω

k−i ≥ ω > αx, so αzω
k−i − αx ≥ 1 and

ωi−j(αzω
k−i − αx)− αy ≥ 1. Consequently, ωj−o(αzω

k−j − αxω
i−j − αy) > αw which

is contradictory to (3.6). Therefore, αxψi + αyψj ̸= αzψk + α̃wψo.

Next, we prove αxψi+αyψj ̸= αzψk (0 < α ≤ lu < ω). Let us assume that αxψi+αyψj =

αzψk, k > i > j > 0, i ̸= j ̸= k, and αxω
i + αyω

j = αzω
k. Dividing by ωj , we have

αzω
k−j − αxω

i−j+ = αy, which is factorized to

ωi−j(αzω
k−i − αx) = αy. (3.7)

Because ωi−j ≥ ω and αzω
k−i ≥ ω > αx, we have αzω

k−i − αx ≥ 1. It leads to

ωi−j(αzω
k−i − αx) ≥ ω > αy, we then have ωi−j(αzω

k−i − αx) ̸= αy, which is contra-

dictory to (3.7). Thus, we conclude that

αxψi + αyψj ̸= αzψk. (3.8)

In the case that two of three α are negative and the other is positive, αxψi + αyψj ̸= αzψk

from 3.8 and αxψi ̸= αzψk − αyψj . Then we have αxψi ̸= αzψk + α̃yψj .

Because max(αxψi + αyψj) < luω
m−1 + lωm−2 = luω

m−2(ω + 1) and min(αxψi +

αyψj) > −ldωm−1 − ldωm−2 = −ldωm−2(ω + 1), we have (αxψi + αyψj ̸= αzψk +

αwψo) mod q when q > (lu + ld)ω
m−2(ω + 1).

The construction of H for single error correction is shown in [10], but it is not possible

for double error correction, and it needs to consider new parity check matrix construction

39



H =

[
ω · · · ω ω2 · · · ω2 ω3 · · · ωm

1 · · · k k + 1 · · · k(k + 1) k2 + k + 1 · · · k(km−1 + · · ·+ 1)

]
.(3.11)

for double error correction codes. Let us consider the case where the length of parity is

r = 2. For l1 and l2 which are the magnitudes of double errors, we have

H · (c+ e)T = H · eT

=

 · · · ψj ψj · · · ψk ψk · · ·

· · · ιj1 ιj2 · · · ιk1 ιk2 · · ·





...

l1

...

l2

...


,

where 0 ≤ l1, l2 ≤ l, ψ ∈ Ψ, and ι is an integer. For all distinct syndromes,

l1ιj1 + l2ιk2 ̸= l1ιj2 + l2ιk1 (3.9)

l1(ιj1 − ιj2) ̸= l2(ιk1 − ιk2), (3.10)

where ιji is an integer element of a distinct distance set. If l1 = ±1 and l2 = ±1, we have

ιj1−ιj2 ̸= ±(ιk1−ιk2). For instance, let |Ψ| = m, l1 = ±1, l2 = ±1, q >max(2ωm−1(ω+

1), km + km−1 + · · ·+ k2 + k), it is possible to construct a parity check matrix of 2× km

for double error correction based on distinct sum set, which is given in (3.11).
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3.2.2 Error correction coding schemes for WOM codes based on distinct
sum sets

WOM codes do not have error correction ability generally and conventional error correction

codes cannot be applied directly to the WOM codes. Although the original messages are

WOM codes, the codes that are encoded by general error correction codes lose the WOM

property, and are no longer WOM codes. Even if systematic error correction codes are used

to keep the property of WOM codes, the parity code part does not guarantee t-write WOM.

Therefore, we proposed new methods for error correction codes for WOM codes based on

distinct sets. To construct the codes, a parity splitting method is introduced.

Figure 3.2 Systematic error correction codes structure for WOM code.

Let C(Φ) be the null space of HT and c ∈ C(Φ). c is systematic code, and can be divided

by a WOM message partW and a parity part P = [p1 p2 · · · pr]. Because P is not WOM

code, it should be converted P̂ which satisfies the constraint of WOM code. If Ep
i ,D

p
i are

WOM encoding and decoding function for parity parts, P̂i = Ep
i (Pi, P̂i−1) ≥ P̂i−1 should

41



be valid. Furthermore, if there is u errors within (lu, ld) in P̂i, Pi obtained by Dp
i (P̂i) should

have u or less errors within (lu, ld). A simple example of Ep
i can be introduced for a single

error. The parity codes P can be converted to a sum of s symbols with lower alphabet size,

pi = p1i +p
2
i +· · ·+psi . Λ(pki ) represents the alphabet size of pki . The parameters s and Λ(pi)

of each cell should be determined with Λ(pi) ≤ Λ(p1i ) + · · · + Λ(psi ). If an (lu, ld) error

occurs at the jth parity symbol, pi−ld ≤ p1i +p2i +· · ·+(pji+l)+· · ·+psi = pi+l ≤ pi+lu,

and an error can be corrected by (lu, ld) bidirectional error correction codes. Let us assume

Λ(p1) = · · · = Λ(ps) = µ.

Remark 3. s ≥ ⌈ q
⌊q/t⌋⌉, if Λ(p1) = · · · = Λ(ps) = µ.

µt ≤ q leads to µ ≤ ⌊ qt ⌋. Because sµ represents the total alphabet size of µ-ary s sym-

bol, and sµ should be larger than q, so s ≥ ⌈ q
⌊q/t⌋⌉. Fig.3.2 shows the example of systematic

error correction codes for non-binary WOM codes. The original message does not lose its

WOM property due to the systematic codes, and the parity code part can guarantee t-write

WOM. This method can only be used for single error correction.

The encoding and the decoding algorithms of the proposed codes based on distinct sum

sets are described as follows.

Bidirectional distinct sum set-based non-binary WOM error correction codes (BD-

WECC)
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Encoding

Input : the ith message codeword ci, i = 1, · · · , t.

Output : [Wi P̂i], i = 1, · · · , t.

Wi : the ith encoded WOM codeword of ci message

P̂ ′
i : the ith parity code for WOM codeword

(Initialization) i = 1.

1) Generate the parity check matrix H based on distinct-set Φm
(lu,ld)

2) Obtain non-binary WOM codes using encoding maps.

If i = 1,W1 = E1(c1).

or i ≥ 2,Wi = Ei(ci,Wi−1)

3) Generate codes which is null space of HT based on proposed bidirectional codes using

Φm
(lu,ld)

and obtain r length parity codes Pi.

4) Encode r length parity codes into rs length WOM parity codes by P̂i = Ep
i (Pi, P̂i−1).

5) Systematic encoded codewords [Wi P̂] are written to the q-ary memory cell.

6) If i = t, go to step 7, else i← i+ 1 and go to step 1.

7) Erase the cells, i← 1 and go to step 1.

Decoding
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(Initialization) Received codeword [W ′
i P̂ ′

i] = [Wi P̂] + ϵ, where ϵ = (ϵ1, . . . , ϵn) is the

error vector with each integer component within (lu, ld),

1) Obtain the decoded parity codes by P ′
i = Dp

i (P̂ ′
i).

2) Generate the syndrome by H · [W ′
i P ′

i].

3) Estimate ϵ′, the location and the magnitude of an error by syndrome.

4) The corrected WOM encoded messageWi is obtained byWi =W ′
i − ϵ′.

5) The original message is decoded by ci = Di(Wi)

3.3 Bidirectional error correction codes for WOM codes based
on modulo operation

3.3.1 Bidirectional error correction codes based on modulo operation

We introduce t bidirectional (lu, ld) limited-magnitude error correction codes, which can

reduce errors more effectively. The proposed code is systematic, and can correct t bidi-

rectional errors with upward and downward magnitude of lu and ld, respectively. We call

the codes the ’bidirectional limited magnitude error correction code based on modulo

operation(BLM-ECC)’. Bidirectional limited-magnitude error correction codes [22] [35]

extend the technique of the asymmetric error correction codes [8] to the bidirectional er-

ror correction codes. For example in (2u, 1d) channel, if cell data is ’2’ in a 6-ary cell, an
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error within −1 ≤ ϵ ≤ 2 can be added to the data value of ’2’, so the cell data can be

1 ≤ 2 + ϵ ≤ 4. The threshold voltage (VT ) of the cell is not integer, but it is assumed

that the cell data and the error values are integer. Since we do not know the exact threshold

voltage or the interference voltage by memory reading operation, only the integer decision

after hard-decision is possible. Therefore, the cell data of 2 in the (2u, 1d) channel can be

changed to 1, 2, 3, or 4 with an error. t− (lu, ld) BLM-ECC can correct the codeword with

t errors of (lu, ld) magnitude. The code construction is as follows [35] [8]. Let Ω be a q′-ary

code and q′ = lu + ld + 1. The q-ary code C (q > q′) is defined as

C = {c = (c1, ..., cn) | c mod (lu + ld + 1) ∈ Ω} (3.12)

C correct t bidirectional (lu, ld) limited-magnitude errors if Ω corrects t symmetric errors.

The process of encoding and decoding of the proposed codes is described as follows.

Let x = {x1, . . . , xk} be a q-ary message codeword, and q-ary multi-level cell memory

is assumed to be used. We get the q′-ary remainder of the q-ary message x by modular q′

operation (q′ = lu + ld + 1, q′ < q). The q′-ary remainder codes are called base codes. In

order to encode by the base codes, conventional p-ary t symmetric error correction codes

are used, which is called base error correction codes. With x mod q′ codeword, the p-ary

parity codes can be obtained using base error correction codes. A p-ary parity codeword

needs to be converted to a q-ary codeword p = {p1, . . . , pr} in order to be stored in a q-

ary memory cell. The systematic encoded codeword is then c = [x p] = {c1, c2, . . . , cn}
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and n = k + r. ’Systematic’ means that the original message part and the parity part are

separated in the encoded codeword. The code rate is defined by k/n. For every k symbols

of useful information, the code generates total n symbols of data, of which n− k are parity

codes. Since q > q′, the base code size is smaller than than the original message, and

the parity code size can be also reduced. Therefore, the code rate of the BLM-ECC is larger

than that of conventional error correction code, and this is the key advantage of the proposed

code.

However, the above encoding method can cause the error count mismatch problem. The

problem means one erratic cell usually causes two or more errors. There are two kinds of

the problem, one is a message correction problem when p < q′, l ≥ 2, and the other is

a parity code writing problem when p < q, l ≥ 2. Let us discuss the message correction

problem first. One error in a q-ary cell can cause two or more errors in a p-ary message

codeword if p < q′. For example, in a (2u, 1d) memory channel, let us assume that q =

8, q′ = 4, and p = 2 (binary) are the parameters for the base error correction codes. Note

that ab means b-ary a value for convenience. A message code 18 is 14 and 012. If l = 2

error occurs in the q-ary cell, 18 is changed to 38 which is 34 and 102 when the gray code

(000, 001, 011, 010, 110, . . . ) is used. Two bits are different between 012 and 102, and one

cell error in the message cannot be corrected by t = 1 binary base error correction codes in

this example. If p ≥ q′, we can avoid the problem although p < q.

Next, let us describe the parity code writing problem when p < q, l ≥ 2. The proposed

46



codes are systematic codes, and a q-ary message is written in a q-ary cell. However, p-ary

base error correction codes are used, and a p-ary parity codeword needs to be written in

a q-ary cell. For example, q = 16 and p = 4, a parity code 134 is written in the cell

as 1 × 41 + 3 × 40 = 716. If l = 2 error is added to the cell, the cell value becomes

’916’ which is ’214’, but the original parity code is ’134’. Therefore, one q-ary cell parity

code error with l = 2 causes two p-ary parity code errors. This problem can be avoided

when p ≥ q. Consequently, p should be larger than q and q′ (p ≥ q ≥ q′) to avoid the

error count mismatch problem. Thus, non-binary p-ary error correction codes such as Reed-

Solomon(RS) codes can be used. In order to achieve the maximum code rate, p, q, and q′

are two to the power of k (k is integer), and log2p is a multiple of LCM(log2q,log2q′).

Decoding of the proposed code is also based on the modular q′ operation, and p-ary base

error correcting codes. c′ = (c′1, . . . , c
′
n) is the received codeword, and ϵ = (ϵ1, . . . , ϵn) is

the error vector where each component is an integer. It is assumed that its magnitude is

limited to −ld ≤ ϵ ≤ lu where ld and lu are positive integers. The received codeword is

c′ = c+ ϵ = [x p] + ϵ = [y p′]. y = (y1, . . . , yk) is the received message part in the

received codeword. At first, modular q′ is performed on the received message y, which is

similar to the encoding process. We then have φ = y mod q′. The received q-ary parity

part p′ and φ need to be converted a p-ary codeword to be decoded by the base error

correction codes. We can correct t symmetric errors for the codeword with φ and the parity

code, and the corrected q′-ary message can be obtained if the t errors are within the (lu, ld)
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bound. We can then estimate the error codeword ϵ′ by the difference between the corrected

message code and the received message code. However, the estimated error may exceed

the error bound due to the modular operation, although the error codeword is within the

(lu, ld) bound, Fortunately, the estimated error can be recovered by a simple shift, adding or

subtracting q′. The procedure is described as follows.

We define x,y, and ϵ by a transmitted codeword, a received codeword, and a (lu, ld)

error codeword, respectively. We have

φ = y mod q′

= (x+ ϵ) mod q′

= (η + ξ) mod q′ (3.13)

where η = x mod q′ and ξ = ϵ mod q′. Since the modular operation with a negative integer

may be confusing, we deal with the downward error and the upward error separately. We

have

Case I. downward error (if ϵi = ϵ↓ (−ld ≤ ϵ↓ ≤ −1)

φi =


ηi + ϵ↓ + q′ (0 < ηi + ϵ↓ + q′ < q′)

ηi + ϵ↓ (q′ ≤ ηi + ϵ↓ + q′ < 2q′)

(3.14)
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Case II. upward error.(if ϵi = ϵ↑ (0 ≤ ϵ↑ ≤ lu))

φi =


ηi + ϵ↑ (0 < ηi + ϵ↑ < q′)

ηi + ϵ↑ − q′ (q′ ≤ ηi + ϵ↑ < 2q′).

(3.15)

Figure 3.3 Adjustment of estimated error to be in the bound (lu = ld is assumed).

It was assumed that η ∈ Ω and Ω corrects t symmetric errors. Therefore, t symmetric

errors of φ can be corrected. φ′ is the corrected codeword of φ, so φ′ = η. The estimated

error ϵ′i is φi − φ′
i. As for case I with downward errors, we have ϵ′i = ϵ↓ + q′ or ϵ↓. As for

case II with upward errors, we have ϵ′i = ϵ↑ or ϵ↑ − q. Therefore, four types of error show

up in the estimated error codeword, and−q′ ≤ ϵ′i < q′−1. The original error is in the range

of −ld ≤ ϵ ≤ lu, but the estimated error may exceed the bound (range). However, the four

types of error have their own distinct ranges as −q′ ≤ ϵ↑ − q′ ≤ −ld − 1, −ld ≤ ϵ↓ ≤ −1,

0 ≤ ϵ↑ ≤ q′ − ld − 1, and q′ − ld ≤ ϵ↓ + q′ ≤ q′ − 1 where we used only q′ and ld

(lu = q′ − ld − 1). Thus, we can distinguish them with the range, and recover the estimated

error by adding or subtracting q′. The adjustment of estimated error is illustrated in Fig. 3.3.

The encoding and the decoding algorithms of bidirectional limited magnitude error cor-

rection codes based on modulo operation (BLM-ECC) are described as follows.
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Figure 3.4 An example of BLM-ECC encoding and decoding.
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Bidirectional Limited Magnitude Error Correction Codes Based on Modulo Opera-

tion Algorithm

Encoding

(Initialization) q-ary message codeword x

q′ = lu+ ld+1, where lu and ld are upward and downward error magnitude bounds,

respectively.

1) Get the remainder of message x by mod q′.

η = x mod q′.

2) Generate the p-ary parity codes for η using p-ary base error correction codes and con-

vert the codes to q-ary codes, p (p ≥ q ≥ q′).

3) A systematic encoded codeword is c = [x p]. Write the codeword to the q-ary memory

cell.

Decoding

(Initialization) Received codeword c′ = [x p] + ϵ = [y p′], where ϵ = (ϵ1, . . . , ϵn) is the

error vector with each integer component within (lu, ld), y is the received message

code, and p′ is the received parity code.
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1) Get the remainder of received message mod q′.

φ = y mod q′.

2) Convert φ and p′ to p-ary codes for base ECC decoding. Corrected q′-ary message is

φ′.

3) Estimate the error by ϵ′ = φ − φ′, ϵ′ = (ϵ′1, . . . , ϵ
′
k) is estimated error of the message.

4) If the estimated error exceeds the bound (ϵ′i > lu or ϵ′i < −ld), let ϵ′i = ϵ′i + q′ or

ϵ′i = ϵ′i − q′ to be in the range of −ld ≤ ϵ′i ≤ lu.

5) The corrected message x′ is obtained by x′ = y − ϵ′.

The example of BLM-ECC encoding and decoding process is illustrated in Fig. 3.4.

(2u, 1d) bidirectional limited magnitude codes are assumed and t = 1, q = 8, q′ = lu+ ld+

1 = 4, and p = 64.

The number of codewords of C in (3.12) is bounded by the following inequalities [35]

[8].  q

lu + ld + 1

n

· |Ω| ≤ |C| ≤

 q

lu + ld + 1


n

· |Ω| (3.16)

η = (η1, . . . , ηn) is considered to be a codeword of Ω in (3.12). The codewords of C can

be obtained by replacing each η by the element of the set Λ = {λ|λ mod q′ = ηi, λ ∈

{0, 1, . . . , q − 1}}. The size of Λ is ⌈q/q′⌉n if ηi < (q mod q′), and ⌊q/q′⌋n otherwise. In

(3.16), the upper bound is |C| ≤

 q
lu+ld+1


n

· |Ω|. Ω is q′-ary, and can correct t symmetric
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errors, and we have

|Ω| ·
t∑

k=0

(
n

k

)
(q′ − 1)k ≤ q′n. (3.17)

Substituting the latter into the former, the following is obtained. If C is a (ld, lu) limited-

magnitude t-error correcting codes of length n over an alphabet of size q, we have

|C| ≤ qn∑t
k=0

(
n
k

)
(ld + lu)k

. (3.18)

The code rate of the BLM-ECC depends on the p-ary base error correction codes. If

(n, k) error correction codes are used as the base ECC, BLM-ECC generates ((n−k)logqq′+

k, k) codes. If (2m − 1, 2m − 1− 2t) Reed-Solomon (RS) codes are used as the p-ary base

ECC, the code rate is given by

RBLM ≤
(2m − 1− 2t)log2q

(2m − 1− 2t)log2q + 2tlog2q′
(3.19)

=
(2m − 1− 2t)

(2m − 1) + 2t(logqq′ − 1)

The RS codes encodes the p-ary message with p = 2m. The equality can be achieved when

log2p, log2q, and log2q′ are positive integers with p ≥ q ≥ q′, and log2p is a multiple of

LCM(log2q,log2q′). The code rate of (2m − 1, 2m − 1− 2t) Reed-Solomon (RS) codes is

RRS =
(2m − 1− 2t)

(2m − 1)
(3.20)

If q > q′ and we have equality in (3.20), the parity size of BLM-ECC is less than that

of the RS codes, and 2t(logqq
′ − 1) in the RBLM expression can be negative, giving
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RBLM > RRS . Let us discuss asymmetric error correction codes. 1A1M denotes sys-

tematic asymmetric error correction codes with t = 1 and l = 1 as defined in [8]. The

code has the same error correction capability as the (1u, 0d) BLM-ECC if the base error

correction codes are identical. When we use the Reed-Solomon codes as the p-ary base

error correction codes in the asymmetric error correction codes, the code rate is given by

RASY ≤ 2m−1−2t
(2m−1−2t)+2tlogq2

. The parity sizes of RS code, BLM-ECC, and asymmetric-ECC

arePRS = 2t,PBLM = 2tlogq(lu+ld+1), and PASY = 2tlogq2, respectively. For example,

if (lu, ld) = (2, 1) for BLM-ECC, and q = 8, the parity size ratios are PBLM/PRS = 2/3

and PASY /PRS = 1/3, which results in RRS < RBLM < RASY . If most errors are in the

(lu, ld) bound, the BLM-ECC (based on RS) can have better error rate performance than the

conventional RS codes with equal code rate when q > q′, which is verified in simulations.

3.3.2 Performance simulation of bidirectional error correction codes based
on modulo operation

We simulated the bit error rate performance of the proposed bidirectional limited magnitude

error correction codes (BLM-ECC). In simulations, the multi-level cell model of flash mem-

ories with interference is used. One of the dominant factors of the interference is the cell to

cell interference as described in Section 2. The cell-to-cell interference model depends on

the program order, the page architecture, and the conventional LSB/MSB techniques, and

these factors are considered in simulations. To simulate flash memories with interference,

we need not only an interference model, but also a threshold voltage distribution model. To
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write data onto flash memories inherently involves errors due to the noise in the physical

process. We can approximate the cell threshold voltage distribution as Gaussian [19]. It

should be noted that the empirical distribution obtained from measurements is not exactly a

Gaussian distribution, but rather a kind of truncated Gaussian distribution. An 8-level flash

memory model (3 bits in a cell) is used with an equal noise distribution model. The equal

noise distribution model assumes that each level has equal threshold voltage distribution

which is clipping Gaussian. Clipiing Gaussian means that tail parts of Gaussian distribution

are removed, and it is more realistic.

In our simulations, the center threshold voltages of the 8-levels range from −0.57V to

3.42V , and there is 0.57V gap between adjacent levels. The hard-decision reference volt-

ages (Vread) for reading NAND flash memories are determined based on the VT distribution

after the interference. It means the hard-decision reference voltages for reading are already

near-optimal in practical systems. We use both original hard-decision reference voltages

and the adjusted near-optimal reference voltages in the Fig. 3.5 and 3.6 simulations in order

to verify the performance of asymmetric error correction codes. (2u, 1d) BLM-ECC and

1A1M asymmetric error correction code simulations are performed. 1A1M means asym-

metric ECC with t = 1 and l = 1 as defined in [8]. We use the Reed-Solomon codes as

the p-ary base error correction codes in the asymmetric codes and the (2u, 1d) BLM-ECC.

In the (2u, 1d) BLM-ECC, we use q′ = 2 + 1 + 1 = 22 and q = 8 = 23. The maximum

code rate of the proposed algorithm can be achieved when log2p = m = LCM(2, 3) = 6,
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and (26 − 1, 26 − 1 − 2t) = (63, 63 − 2t). To compare the performance, the conventional

(63, 63− 2t) RS codes are also simulated.
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Figure 3.5 BER performance with original Vread for an asymmetric channel.

Fig. 3.5 shows the BER performance of the BLM-ECC and the asymmetric error cor-

rection codes with the original hard-decision reference voltage(Vread). The code rate of the

horizontal axis is determined as t changes. The ’No ECC’ plot shows the bit error rate with-

out any error correction codes, and the curve is flat. As the code rate decreases for other

ECC’s, the parity size of the ECC and t increase, and the bit error rate decreases. At the

high code rate range, asymmetric error correction codes show the best performance. Be-
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cause most errors (over 99%) are upward when original Vread is used as the hard-decision

reference voltage. However at the low code rate range, asymmetric ECC cannot correct

the out of bound errors, especially downward errors. Therefore, there is an error floor for

code rate lower than 0.88, and the BLM-ECC has better performance than asymmetric error

correction codes for this range. The (2u, 1d) BLM-ECC has better performance than the

original RS codes for all code rate because the BLM-ECC parity size is reduced. In Fig.
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Figure 3.6 BER performance with adjusted Vread for a bidirectional channel.

3.6, the hard-decision reference voltage (Vread) is already adjusted based on the the aver-

age interference quantity with writing random data. The average cell-to-cell interference
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assuming random data is estimated to be about 0.07V by simulations, and it is added to

the original hard-decision reference voltage(Vread). The adjusted hard-decision reference

voltage compensates the upward VT shift by the cell-to-cell interference, which makes the

errors more symmetric rather than asymmetric. Therefore, the performance of asymmetric

error correction codes gets worse. The (2u, 1d) BLM-ECC algorithm shows the best BER

performance at all code rate, and it is shown that the proposed algorithm is efficient for the

MLC flash memory model.

3.3.3 Error correction coding schemes for WOM codes based on modulo
operation

The code construction of bidirectional error correction code based on modulo operation for

non-binary WOM codes is discussed.

To construct error correction codes for non-binary WOM codes, we get the q′-ary re-

mainder of the ith q-ary WOM codewordWi by modular q′ operation (q′ = lu+ld+1, q′ ≤

q) first. The q′-ary remainder codes are called base codes. In order to encode by the base

codes, conventional g-ary u symmetric error correction codes are used, which is called base

error correction codes. WithWi mod q′ codeword, the g-ary parity codes can be obtained

using base error correction codes. g should be larger than q and q′ (g ≥ q ≥ q′) to avoid

the error count mismatch problem [35], which means an erroneous cell may cause two or

more errors. Non-binary g-ary error correction codes such as Reed-Solomon(RS) codes can

be used [22] [35]. A g-ary parity codeword needs to be converted to a ρ-ary codeword γi in

58



order to be stored in a q-ary memory cell with the t-write WOM code property. Therefore

ρt ≤ q and ρ ≤ ⌊ qt ⌋.

Decoding of the proposed code is also based on the modular q′ operation, and g-ary base

error correcting codes. At first, modular q′ is performed on the received message, which is

similar to the encoding process. The received q-ary parity part need to be converted a g-

ary codeword to be decoded by the base error correction codes. u symmetric errors can be

corrected with the parity code, and the corrected q′-ary message can be obtained if the

u errors are within the (lu, ld) bound. We can then estimate the error codeword by the

difference between the corrected message codeword and the received message codeword.

The estimated error may exceed the error bound due to the modular operation, although the

error codeword is within the (lu, ld) bound, In this case, the estimated error can be recovered

by a simple shift, adding or subtracting q′.

The encoding and the decoding algorithms of the modular operation-based error correc-

tion codes for WOM codes are described as follows.

Bidirectional limited magnitude non-binary WOM error correction codes based on

modulo operation(BLM-WECC)

Encoding

Input : the ith message ci, i = 1, · · · , t.
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Output : [Wi φi], i = 1, · · · , t.

Wi : the ith encoded WOM codeword of ci message

φi : the ith parity codeword for WOM

(Initialization)⌊ qt ⌋ = ρ, i = 1.

q′ = lu + ld + 1

1) Generate non-binary WOM codes using encoding maps.

If i = 1,W1 = E1(c1).

or i ≥ 2,Wi = Ei(ci,Wi−1)

2) Get the remainder of WOM codesWi by mod q′.

η =Wi mod q′.

3) Generate a g-ary parity codeword for η using g-ary base error correction codes, and

convert the codeword to a ρ-ary codeword, γi (g ≥ q ≥ q′).

4) Get the parity codeword for WOM φi = γi + (i− 1)ρ · 1

5) Systematic encoded codewords [Wi φi] are written to the q-ary memory cell.

6) If i = t, go to step 7, else i← i+ 1 and go to step 1.

7) Erase the cells, i← 1 and go to step 1.

Decoding
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(Initialization) Received codeword [W ′
i φ

′
i] = [Wi φi] + ϵ, where ϵ = (ϵ1, . . . , ϵn) is the

error vector with each integer component within (lu, ld),

1) Get the remainder of received message mod q′.

η′ =W ′
i mod q′.

2) Get the ith parity codeword for WOM γ′i = φ′
i − (i− 1)ρ · 1

3) Convert W ′ and γ′i to a g-ary codeword for base ECC decoding. The corrected q′-ary

remainder is η̃.

4) Estimate the error by ϵ′ = (ϵ′1, . . . , ϵ
′
k) = η′ − η̃.

5) If the estimated error exceeds the bound (ϵ′i > lu or ϵ′i < −ld), let ϵ′i = ϵ′i + q′ or

ϵ′i = ϵ′i − q′ to be in the range of −ld ≤ ϵ′i ≤ lu.

6) The corrected WOM encoded messageWi is obtained byWi =W ′
i − ϵ′.

7) The original message is decoded by ci = Di(Wi)

3.4 Performance of error correction coding schemes for WOM
code

The code rate of the two proposed codes for WOM codes will be discussed in this section.

The code rate is defined by k/n. For every k symbols of useful information, the code gen-

erates total n symbols of data, of which n− k are parity codes. We call bidirectional single

error correction codes based on distinct sum sets for non-binary WOM codes in section
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3.2 BD-WECC code for short. The column size of parity check matrix H is m qr−1
q−1 and it

means the code length n [10]. Let us consider the case that the each alphabet size of WOM

parity code symbols are equal for each write, which is shown in Section 3.2. Then the parity

code length r changes r⌈ q
⌊q/t⌋⌉. Therefore, the code rate RBD−WECC is given as follows.

RBD−WECC =
m qr−1

q−1 − r
m qr−1

q−1 + r(⌈ q
⌊q/t⌋⌉ − 1)

(3.21)

=
m(qr − 1)− r(q − 1)

m(qr − 1) + r(q − 1)(⌈ q
⌊q/t⌋⌉ − 1)

Note that m qr−1
q−1 corresponds to the message size in q-ary symbols. The bidirectional lim-

ited magitude error correction codes based on modulo operation for non-binary WOM codes

in section 3.3 is called BLM-WECC. The code rate of the BLM-WECC depends on the g-

ary base error correction codes. Let (2i−1, 2i−1−2u) Reed-Solomon (RS) codes be used

as the g-ary base error correction codes. The RS codes encodes the g-ary message with

g = 2i and each parity block has q-ary (2i−1−2u)log2g
log2q′

cells message symbols. The code rate

RBLM−WECC is give by

RBLM−WECC ≤
(2i − 1− 2u)

log2g
log2q′

(2i − 1− 2u)
log2g
log2q′

+ 2u
log2q′

log2⌊
q
t
⌋

log2g
log2q′

=
(2i − 1− 2u)

2i − 1 + 2u(log⌊ q
t
⌋q

′ − 1)
(3.22)

The equality can be achieved when log2g, log2q, and log2q′ are positive integers with g ≥

q ≥ q′, and log2g is a multiple of LCM(log2q,log2q′) [35].

Fig. 3.7 show comparison of the code rate performance of proposed schemes without

WOM code schemes. BD-ECC and BLM-ECC stands for BD-WECC and BLM-WECC
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Figure 3.7 The code rate of proposed codes without WOM code schemes

with t = 1, which means that the schemes write message only once and do not have WOM

codes property. The parameters are q = [10, 13, 16, 22, 34, 40], (lu, ld) = (2, 1). m =

[2, 3, 4, 5, 6, 7], r = 2 for BD-ECC schemes, i = [3, 4, 5, 6, 7, 8] for BLM-ECC schemes

and Reed-Solomon codes. Two proposed codes deal with limited magnitude errors and show

better performance than conventional Reed-Solomon codes. In this case, the code rate of

BD-ECC is larger than BLM-ECC.

Fig. 3.8 shows the code rate performance of the two proposed schemes with respect to
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Figure 3.8 The code rate of two proposed codes for WOM codes with varying a block size

the block size. The parameters are q = [10, 13, 16, 22, 34, 40] and (lu, ld) = (2, 1). We use

m = [2, 3, 4, 5, 6, 7], r = 2 for the BD-WECC scheme, and i = [3, 4, 5, 6, 7, 8] for the

BLM-WECC scheme. Although the code rate of BD-WECC is the larger than that of BLM-

WECC with t = 1, BLM-WECC shows better code rate performance than BD-WECC

when t = 3. This is because of the ⌊ qt ⌋ term in the code rate equations of (3.21) and (3.22).

The code rate of the proposed schemes with respect to t (with fixed block size) is shown in

Fig. 3.9. The parameters are q = 12, and (lu, ld) = (2, 1) for both schemes. We use m =

3, r = 2 and kBD = 37 (block size) for the BD-WECC scheme, and i = 4 and kBLM = 26
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Figure 3.9 The code rate of two proposed codes with varying t

for the BLM-WECC scheme. As the number of write of WOM codes t increases, BLM-

WECC gets more efficient than BD-WECC. Furthermore, the error correction capability of

BLM-WECC can be adjusted according to the base error correction codes, but BD-WECC

can correct only one single error. However, the encoding and decoding complexity of BD-

WECC is much smaller than that of BLM-WECC, because BLM-WECC uses the base error

correction codes which have high decoding complexity such as RS codes.

The proposed codes have advantages compared to other error correction codes for
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WOM codes. The error correction codes in [37] and [36] are appropriate for binary WOM

codes, but the proposed methods can be applied to general non-binary WOM codes. The

codes proposed in [38] are for limited-magnitude-error non-binary WOM codes. However,

the codes are non-systematic error correction codes, and conventional non-binary WOM

code construction cannot be used. A large alphabet size is also required for the codes to

increase error correction capability. The number of cell levels is limited in multi-l evel

memory cells, so this can lead to inefficiency.

Let us compare the performance of proposed error correcting schemes combined with

WOM codes in [42] with the performance of algorithms of [40]. Assume that a flash coding

scheme guarantees t successive writes and encodes an arbitrary message from a set of Mi

messages in the i-th write. The memory rate is defined as

R =
t∑

i=1

log2
Mi

n
. (3.23)

The memory rateR is upper bounded by the capacity [33] [40]

CW = log2

(
t+ q − 1

q − 1

)
. (3.24)

CW is the maximum total number of information bits stored in one cell during the t succes-

sive block-writes. The codes should be allowed to store different number of messages in

each write to achieve the capacity [33] [40]. We assume that q = 8, single error correcting

schemes, and (7,5,3) Reed-Solomon code is used.

Each R means the rate of each write, and total R means the rate of sum of total
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Table 3.5 The performance comparison of error correcting schemes for WOM codes

t writes ϱ (lu, ld) eachR totalR CW R/CW
Huang11 [40] 7 0 - 0.43 3 11.74 25.5%

Huang11 [40] 11 1 - 0.43 4.71 14.96 31.4%

BLM-WECC +
Cassuto12 [42]

4 - all 0.68 2.72 8.37 32.5%

BLM-WECC +
Cassuto12 [42]

4 - (2,1) 0.94 3.75 8.37 44.8%

BLM-WECC +
Cassuto12 [42]

4 - (1,0) 1.07 4.2 8.37 50.1%

writes. Table 3.5 show the performance comparison of error correcting schemes for non-

binary WOM codes. ’each R’ is log2
Mi
n which means the rate of each write. ’total R’is∑t

i=1 log2
Mi
n which means the total sum rate. Proposed algorithm shows smaller gap be-

tweenR and CW than that of [40].

The proposed codes are systematic and practical because they can be applied to the

conventional non-binary WOM codes. The code construction, the encoding process, and

the decoding process are also efficient. It is difficult to compare the proposed methods with

other error correction schemes for non-binary WOM codes because of different character-

istics and structure. Nevertheless, the proposed codes appear to have significant potential

advantages.
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Figure 3.10 Asymmetric and symmetric limited-magnitude channel.

3.5 Error locating parity check codes for errors with limited
magnitude

In this subsection, we propose new error correcting codes which are effective for the inter-

ference [41]. We assume that there is at most one error in each code block, and the codes are

designed to correct one single error in a code block. Because the errors have limited magni-

tude, the remainder values which are generated with modulo N operation still contains the

error information. By taking advantages of the characteristics, we introduce effective asym-

metric and symmetric limited-magnitude parity error correction codes for the MLC flash

memory error with lower redundancy. At first, asymmetric limited-magnitude errors are

considered. Fig. 3.10 (a) shows an example of 4-level (X2) asymmetric limited-magnitude

channel, where the error magnitude is limited 1. Let us consider a case where the error is

asymmetric. This is a reasonable assumption because the cell-to-cell interference can only
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increase the threshold voltage.

Suppose that Ω and Ξ is the q-ary input and output codeword, respectively. The code-

words can be represented by Ω = (ω1, ω2, · · · , ωn) and Ξ = (ξ1, ξ2, · · · , ξn). The code-

words can be modified by a modulus operation, i.e., ω̄i = ωi mod N and ξ̄i = ξi mod N .

Note that N is determined by the number of error types. If the maximum error magnitude

is ℓ and N > ℓ, we have ξ − ω = (ξ − ω) mod N . We also have

ϵi = ξi − ωi = (ξi − ωi) mod N (3.25)

= (ξi mod N − ωi mod N) mod N (3.26)

= (ξ̄i − ω̄i) mod N. (3.27)

In other words, the error ϵ can be obtained from ω̄i and ξ̄i, so the error information does

not change by the modulo technique. The q-ary data can be converted into N -ary data by

the modulo N technique, and the redundancy for error correction can be reduced [14]. The

limited magnitude error parity check (LMEPC) algorithm for asymmetric error using mod-

ulo 2 is described as follows.

LMEPC Mod 2 Algorithm for Asymmetric Errors

Encoding
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(Initialization) The q-ary m× n data:

D = {d1,1, d1,2, . . . , d1,n, d2,1, . . . , dm,n}.

1) Get the remainder of message by modulo 2.

D̄ = {d̄1,1, d̄1,2, . . . , d̄m,n} where d̄i,j = di,j mod 2.

2) Generate the parity codes for each row and column. Pr = {prk} and Pc = {pck} where

prk = (
∑n

i=1 d̄k,i) mod 2 and pck = (
∑m

i=1 d̄i,k) mod 2.

3) Store the message data and parity check codes.

Parity codes are converted to q-ary data,

Pr → P̂r, Pc → P̂c where P̂r and P̂c are q-ary version of Pr and Pc.

D, P̂r, and P̂c are stored separately.

Decoding

(Initialization) The q-ary received data and parity information with interference and hard

decision:

D′ = {d′1,1, d′1,2, . . . , d′m,n−1, d
′
m,n}, P̂ ′

r, P̂ ′
c.

The q-ary parity cell data is converted back to binary data: P̂ ′
r → P ′

r = {p′rk},

P̂ ′
c → P ′

c = {p′ck}.

1) Get the remainder of received message by mod 2.

D̄′ = {d̄′1,1, d̄′1,2, . . . , d̄′m,n} where d̄′i,j = d′i,j mod 2.
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2) Generate the parity codes of the received data for each row and column.

P̃r = {p̃rk} and P̃c = {p̃ck}where p̃rk = (
∑n

i=1 d̄
′
k,i) mod 2 and p̃ck = (

∑m
i=1 d̄

′
i,k) mod

2.

3) Check the parity and obtain the location of error.

If p̃ri ̸= p′ri & p̃cj ̸= p′cj , the error location is d′i,j .

4) Correct the asymmetric upward error, d′i,j = d′i,j − 1.

The original message set is denoted by D, which consists of q-ary m×n cell messages

(di,j). The remainder set of di,j is denoted by D̄. The row parity prk and the column parity

pck are generated from D. The received message data, the row parity check codes, and the

column parity check codes are denoted by D′, P̂ ′
r, and P̂ ′

c, respectively. It is assumed that

at most one asymmetric error of magnitude one occurs. When an error occurs in the data set

D, the error location can be identified by the given parity check algorithm. Suppose an error

occurs in one of the cells storing the check bits. Since the decoding algorithm will make a

correction if it detects an error in both of the row and the column parity, the data bits will

not be affected by the decoding algorithm. In this case, we need to store the row check bits

and the columns check bits in different cells.

Errors usually occur in the programming (writing) operation, and the stored parity check

codes can be used after the reading operation to locate the errors. The following is an exam-

ple of 8-level (X3) limited-magnitude parity check codes. This parity check codes correct
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asymmetric errors using the mod 2 technique. The row parity bits and the column parity

bits are efficiently stored after being converted to q-ary data. However, to prevent an error

on parity cells from causing a message error, the row parity bits and the column parity bits

need to be stored in different cells. The code rate can be adjusted continuously by adjust-

ing the data block size. If there are m rows and n columns in a data block, there are mn

message cells for 2k-level MLC. The code rate Rc is given by

Rc =
mn

mn+ ⌈mk ⌉+ ⌈
n
k ⌉
. (3.28)

If m equals n, then the code rate is maximal. One parity block can correct one error, so

the code rate can be determined considering error correction capability. We assume that

there is only single error in a code block, so the proposed algorithm is developed with the

assumption. However, the algorithm can be easily extended to handle more than one error

by using more parity bits.

Although the cell-to-cell interference which produces upward errors is a dominant fac-

tor for the errors in MLC flash memories, there are other types of noise such as symmet-

ric (random-telegraph noise) and downward (retention noise and stress induced leakage

current) interference, which may be less significant [11]. In practice, the read voltage for

NAND flash memories is made based on the VT distribution after (not before) the cell-to-

cell interference takes effect, which means the read voltage is near-optimal. Therefore to

improve the BER performance, symmetric errors need to be considered. Even if the errors

are symmetric, the magnitude of the errors is still limited. Fig. 3.10 (b) shows the 4-level
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(X2) MLC channel with symmetric errors. We use a modulo-3 technique which can correct

two types of errors (upward and downward). In theory, it is possible to correct N − 1 error

types by using a modulo-N technique. The modulo-3 based encoding and decoding meth-

ods by the limited magnitude error parity check (LMEPC) algorithm are given as follows.

LMEPC Mod 3 Algorithm for Symmetric Errors

Encoding

(Initialization) The q-ary m× n data:

D = {d1,1, d1,2, . . . , d1,n, d2,1, . . . , dm,n}

1) Get the remainder of message by modulo 3.

D̄ = {d̄1,1, d̄1,2, . . . , d̄m,n} where d̄i,j = di,j mod 3.

2) Generate the parity codes for each row and column.

Pr = {prk} andPc = {pck}where prk = (
∑n

i=1 d̄k,i) mod 3 and pck = (
∑m

i=1 d̄i,k) mod

3.

3) Store the message data and the parity check codes.

Parity codes are converted to q-ary data,

Pr → P̂r, Pc → P̂c.
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Decoding

(Initialization) The q-ary received data and parity codes with interference and hard deci-

sion:

D′ = {d′1,1, d′1,2, . . . , d′m,n−1, d
′
m,n}, P̂ ′

r, P̂ ′
c.

The q-ary parity cell data is converted back to binary data:

P̂ ′
r → P ′

r = {p′rk}, P̂ ′
c → P ′

c = {p′ck}.

1) Get the remainder of received message by mod 3.

D̄′ = {d̄′1,1, d̄′1,2, . . . , d̄′m,n} where d̄′i,j = d′i,j mod 3.

2) Generate the parity codes of the received message data for each row and each column.

P̃r = {p̃rk} and P̃c = {p̃ck}where p̃rk = (
∑n

i=1 d̄
′
k,i) mod 3 and p̃ck = (

∑m
i=1 d̄

′
i,k) mod

3.

3) Check the parity and obtain the location of error.

If p̃ri ̸= p′ri & p̃cj ̸= p′cj , the error location is d′i,j .

4) Decide the type of error and make a correction.

If (p′ri − p̃ri) mod 3 = 2, an upward error occurs and d′i,j ← d′i,j − 1.

If (p′ri − p̃ri) mod 3 = 1, a downward error occurs and d′i,j ← d′i,j + 1.

In the symmetric error casem, we can determine whether the error is upward or down-

ward by using mod 3 parity check methods. If we use entropy coding, a ternary parity
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symbol {0, 1, 2} can be represented by log2 3 bits which is optimal. If there are m rows and

n columns in a data block, there are mn message cells for 2k-level MLC flash memories,

and the corresponding code rate Rc is upperbounded by

Rc ≤
mn

mn+ ⌈log2 3m
k ⌉+ ⌈log2 3

n
k ⌉
. (3.29)

If m is equal to n, the code rate is maximal as expected.

We simulated the two proposed error correction codes. One is the asymmetric limited

magnitude parity check codes (mod 2) for asymmetric errors, and the other is the sym-

metric limited magnitude parity check codes for symmetric errors (mod 3). Bit error rate

(BER) is used as the performance measure. We simulate the algorithm for a 8-level flash

memory model (3 bits in a cell) with an equal noise distribution model. The equal noise

distribution model assumes that each level has equal threshold voltage distribution which is

Gaussian. In our simulations, the center threshold voltages of the 8-levels range from−0.57

V to 3.42 V, and there is 0.57 V gap between adjacent levels. Each level has a Gaussian dis-

tribution with 3 σ of 0.46 V. The cell-to-cell interference model in [11] is also applied. The

average cell-to-cell interference assuming random data is estimated to be about 0.07 V. One

block consists of 67,384 cells, and 2000 blocks (about 135 million cells) are used for sim-

ulations. The hard-decision read voltages are assumed to be adjusted already based on the

the average interference level. The modified program (writing) order with the LSB/MSB

method in [11] is applied to reduce the cell to cell interference, which is commonly used in

industry.
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Figure 3.11 BER plot of the asymmetric and symmetric limited-magnitude error parity
check codes.

Fig. 3.11 shows the BER performance of limited-magnitude parity check codes for

asymmetric and symmetric errors. As the code rate decreases, the data block size gets

smaller and the error correction improves. However the bit error rate of the asymmetric

codes stays almost the same when the code rate is below 0.95. At a low code rate, the BER

of the symmetric parity check codes is better than that of the asymmetric parity check codes

because the BER performance at a low code rate is affected by symmetric errors rather than

asymmetric errors. These symmetric codes reduce the bit error rate by a factor of about 103

compared to the no ECC case, which depends on the interference and the noise model used
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in the simulations.

Although the code rate of LMEPC is lower than that of BCH, the proposed LMEPC

methods have advantages in terms of computational complexity of encoding and decoding

processes. The decoder complexity (XBCH) of the BCH codes has the order ofO(mn(log2(mn))
2)

[28], and it can be easily shown that the decoder complexity (XLMEPC) of the proposed

LMEPC codes has the order ofO(mn). For a large block size (mn≫ 1), we haveXLMEPC ≪

XBCH. The LMEPC-symmetric code have a lower code rate than the asymmetric code be-

cause a larger number of error types can be corrected. With 2k-level algorithms, the code

rate gets larger as k increases. In other words, the LMEPC codes get more efficient in terms

of code rate with higher number of levels for each cell.

3.6 Summary

Error correction codes that are effective for multi-level cell flash memory and non-binary

WOM codes are discussed. We discussed the potential problems of existing error correc-

tion codes, and show that proposed bidirectional limited-magnitude codes are more suitable

to practical flash memory devices in simulations and analyses. A single bidirectional error

correction code with the distinct sum set shows the optimal performance based on a mini-

mum magnitude distinct sum set with practical parameters. A double error correction code

based on distict sum set is also introduced. Bidirectional limited mgatnitude error correction

codes have the practical error correcting capability based on conventional non-binary error
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correction codes. Key advantages of these bidirectional error correction codes are that it can

reduce the parity size, and that it has better error correction performance than the conven-

tional error correction codes when the code rate is equal. Practical issues of encoding and

decoding for the proposed method are discussed, and efficient methods are proposed.

Furthermore, two error correction codes for non-binary WOM codes are discussed in

this chapter. The proposed codes deal with parity splitting methods for the WOM code

property. The advantages of the proposed methods are that these are practical and systematic

codes, and their encoding and decoding processes have low complexity.

We also discuss effective asymmetric and symmetric error locating limited-magnitude

parity check error correction codes with lower redundancy. One of the key advantages of the

proposed method is that it has low encoding/decoding complexity compared to conventional

correcting codes such as the BCH codes. Another notable advantage is the flexibility in

choosing the code rate and the block size.
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Chapter 4

On Interference Mitigating Codes for
Multi-level Flash Memories

4.1 Introduction

As the number of levels is increased in the multi-level cell flash memory, the number of

errors tends to increase because of the voltage shift by inter-cell coupling, charge leakage,

temperature, program/read disturbance, etc [1] [2] [4]. VT distribution is disturbed by three

well-known major parasitic effects, which are cell to cell interference, background pattern

dependency, and noise [11]. Among them, the cell to cell interference is known to be a

dominant factor. It is known that the cell to cell interference is mainly caused by floating

gate coupling with parasitic capacitance [5].

We discuss coding schemes to lower cell-to-cell interference (C2CI) in this chapter.

C2CI is known to be proportional to the threshold voltage change of neighbor cells. The
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write operation is performed only after the erase operation, and the amount of threshold volt-

age change is proportional to the symbol magnitude. Therefore, to minimize the generated

interference, the average magnitude of message symbols needs to be decreased. This goal

is related to conventional minimum energy coding (ME coding) [23], because the objective

of the code is to reduce the average energy, and it can be used to generate less interference.

It is originally used in wireless communications and networks for energy efficiency. How-

ever, minimum energy coding causes significant redundancy for uniform symbol frequency,

and it leads in higher costs for flash storage devices. Therefore, we propose a new coding

scheme to lower the magnitude and minimize redundancy. The proposed coding scheme

deals with q-ary message codes, and generates fixed length codes. Message codewords are

divided into several blocks, and are modified by modulo addition with some constant to

minimize the average magnitude. We also propose low energy Huffman codes based on

entropy coding when the frequency of symbols is not distributed uniformly. This scheme

produces variable-length codes without redundancy. We modified Huffman codes to mini-

mize average number of high bits (’1’ bits). We show that proposed codes generate optimal

codewords which have minimum high bits with minimum average codeword length.

4.2 The modeling of generated interference in flash memory

Let us describe the C2CI and the sum of interference generated. Fig. 4.1 shows an interfer-

ence model based on the parasitic capacitance between neighbor cells [20]. Suppose that
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Figure 4.1 Interference model based on parasitic capacitances in a NAND flash array.

ρh, ρv, and ρd are the coupling coefficients for the horizontal, the vertical, and the diagonal

neighbor cells, respectively. V is the threshold voltage of the cell. If we assume that the

full-sequence programming strategy is being used, only after all the cells on a word line

have been programmed can the next word line cells be programmed.

There are two kinds of interference estimation :

(a) total interference received by ‘defense’ cell

(b) total interference generated by ‘offense’ cell

All cells can be both defensive and offensive at the same time. First, we discuss the

received interference model (case (a)). The interference in terms of threshold voltage shift
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(∆V ) is given by

∑
IReven = ρh(∆V(n,o1) +∆Vn,o2)

+ρd(∆V(n+1,o1) +∆V(n+1,o2)) (4.1)

+ρv(∆V(n+1,e1))∑
IRodd = ρd(∆V(n+1,e1) +∆V(n+1,e2)) (4.2)

+ρv(∆V(n+1,o2)).

where the superscript R stands for reception. For example, the 5th written cell Veven is

interfered with the 7th, the 8th, the 9th, the 11th, and the 12th written cells. The 8th written

cell Vodd is interfered with the 9th, the 10th, and the 12th written cells.

In case (b), The interference sum ΣIG generated by an one cell can be modeled as

∑
IGeven = ∆Veven(ρv + 2ρd) (4.3)

∑
IGodd = ∆Vodd(2ρh + ρv + 2ρd). (4.4)

For instance, the 5th written cell Veven interferes to the 1st, the 3rd, and, the 4th written

cells. The 8th written cell Vodd interferes with the 1st, the 2nd, the 4th, the 5th, and the

6th written cells. These expressions show that a cell level (magnitude) change is related to

the interference quantity. In the flash memory process, the write (programming) operation is

performed only after the erase operation. Therefore, the amount of threshold voltage change

is proportional to the magnitude. For example, if the message alphabet is {0, 1, . . . , 7} in

a 8-ary cell, writing the symbol ’5’ on a cell causes the threshold voltage change amount
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∆V = 5k with constant k. Therefore, the minimization of the generated interference sum

ΣIG is related to the reduction of the average magnitude.

4.3 Coding schemes for interference mitigation

4.3.1 Minimum energy coding

We now focus on the generated interference sum ΣIG , and propose new coding schemes

to mitigate the interference in this section. As mentioned above, average magnitude is con-

nected to lowering C2CI, and this goal is related to minimum energy coding (ME cod-

ing) [23]. This is a simple coding scheme which will be used as a benchmark. The objective

of ME coding is to reduce the average number of high bits (‘1’) in a codeword, and it is

used in wireless communications and networks for energy efficiency [24] [25].

ME coding consists of two steps, coding optimality and codebook optimality. LetQ′ be

a source alphabet with message probabilities p = {p1 ≥ p2 ≥ · · · ≥ pq′}. Let the codeword

wi of the codebook Wq = {w1, w2, · · · , wq′ , · · · , wq}, which is in the ascending order of

magnitude. A minimum codebook of q′-codewords,Wmin, consists of the first q′ codewords

of the whole codeword set Wq having the least magnitude, Wmin = {w1, w2, · · · , w′
q} ∈

Wq. The codes that minimize the average magnitude are given by the minimum codebook

with each codeword assigned to a symbol. We assumed that q-level flash memories are used.

Therefore, high level (magnitude) symbols will be used instead of high bits. For example,

let us assume that there are five messages (q′ = 5) to encode with ME codes. We have
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the following codebook, Wq = {0, 1, 2, 3, 4, 5, 6, 7}. Next, we choose the five codewords

which have the lowest magnitude to form the ME codebook:Wmin = {0, 1, 2, 3, 4}. Finally,

we assign these code words to our five messages. We assign the most frequent message to 0

the next four most frequent messages to 1, 2, 3, and 4.

There is also extended ME coding to minimize the number of high bits. The authors

of [24] consider an extreme approach where they use at most one high bit in a codeword.

This results in the maximum reduction of total number of ones in the transmitted codeword

bit sequence. For mapping of M source symbols, we need a codeword of length M − 1.

This is because an all-zero source symbol is mapped to an all-zero codeword sequence, and

the remaining M − 1 source symbols can be mapped to codewords with M − 1 bits in

it, where each codeword has only one high bit. For example, we assume that the 8 sym-

bols {a, b, c, d, e, f, g, h} are considered. When we use the 8-ary code, it can be mapped to

{0, 1, 2, 3, 4, 5, 6, 7} codewords. Otherwise, the codes in [24] show that it can be mapped to

{0000000, 0000001, 0000010, 0000100, 0001000, 0010000, 0100000, 1000000}. However,

this extreme form of [24] make the code length too long, and it can be inefficient for storage

devices.

In summary, ME coding schemes in [23] [24] are simple and can be efficient when the

symbol frequency is already known, and when the distribution of the frequency is not uni-

form. However, the symbols are generated randomly in general, and the symbol frequency

is assumed to have a uniform distribution. In this case, ME coding significantly increases
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the redundancy, thereby resulting in higher cost for flash storage devices.

4.3.2 Module shift coding

We propose a new coding scheme to lower the magnitude of the message, and minimize

redundancy. The proposed coding scheme deals with q-ary message codes, and generates

a fixed length code. Message codewords are divided into several blocks and are modified

by modulo addition with some constants to minimize the average magnitude. We call this

method ’module shift (MS) coding’. If C′ is an encoded codeword matrix, and C is a mes-

sage codeword matrix, C′ = |C +M|q.M consist of arbitrary integer constants. Note that

|C +M|q means modulo q addition. For example, we have

C′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



2 8 9 0

1 11 8 3

5 2 3 4

4 9 4 7


+



0 4 4 0

0 4 4 0

8 4 0 8

8 4 0 8



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
12

=



2 0 1 0

1 3 0 3

1 6 3 0

0 1 4 3


.

An average magnitude of the message codeword matrix C is 5. but the average magnitude

of the encoded codeword matrix C′ is only 1.75. Therefore, an encoded codeword has a
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reduced magnitude, and results in lowering the generated interference sum.

The code construction is described as follows. A part of message C is Λ = {λ1, ..., λn}

where λi is the ith q-ary message symbol, and λi ∈ Q = {0, 1, · · · , q − 1}. The encoded

symbols are given by λ′i = |λi+σ|q. If the sum of λ′i is smaller than that of λi, ∆Veven and

∆Vodd in (4.3) and (4.4) can be reduced. We find the integer σ which satisfies

σ̂ = arg min
σ∈Q

n∑
i=1

|λi + σ|q. (4.5)

Finding an optimal σ leads to significant extra complexity and redundancy. To get around

this problem, σ is chosen from only a few choices. The q-ary symbols inQ are divided into

several block called ’module’. The number of modules is η, and the ith module is defined as

Ωi = {ω|θi−1 ≤ ω < θi, ω ∈ N} where i = 1, · · · , η, and N is the set of natural numbers.

θi is the ith threshold to distinguish modules with θ0 = 0 and θp = q. Let us assume that

the symbol frequency is distributed uniformly, q is a multiple of η, and each module has the

same number of elements, Ωi = {ωi
0, ω

i
1, · · · , ωi

q
η
−1
}. We then have ωi

k = q
η (i − 1) + k,

the uniform symbol probability of p(ωi
k) =

η
q , and an average magnitude of the ith module,

E(Ωi), is given by

E(Ωi) =

q
η
−1∑

k=0

ωi
k · p(ωi

k)

= (i− 1

2
)
q

η
− 1

2
. (4.6)

For example, let us assume that q = 12,Q = {0, 1, 2, · · · , 10, 11}, η = 3, Ω1 = {0, 1, 2, 3},

Ω2 = {4, 5, 6, 7}, and Ω3 = {8, 9, 10, 11}. We then have E(Ω1) = (1 − 1
2)(12/3) −

1
2 =
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Figure 4.2 Module shift of MS coding

1.5, E(Ω2) = 5.5, and E(Ω3) = 9.5.

The symbols in the message block λ can be classified into several modules. If most

symbols are included in the first (lowest) module, there is no need to shift levels. However,

if most symbols are included in higher module, they should be shifted by modulo addition to

the lower module. We define the module selection parameter ζ which means the number of

shift levels of the message block to minimize the average magnitude. When ni = |{λk|λk ∈

Ωi, ∀k}|, n = n1+n2+· · ·+nη, and Ξ = {0, 1, · · · , η−1}, the module selection parameter

ζ is

ζ = arg min
k∈Ξ

η∑
i=1

E(Ωi) · n|i+k−1|η+1

= arg min
k∈Ξ

η∑
i=1

(
q

η
· i− q

2η
− 1

2
) · n|i+k−1|η+1

= arg min
k∈Ξ

η∑
i=1

i · n|i+k−1|η+1
. (4.7)

With this criterion, we find the module shift level and the module shift constant σ = q
η ζ,
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where q
η is the size of a module.

The module shift encoding process is described as follows.

Module Shift Encoding

(Initialization) A part of message codeword C is

Λ = {λ1, ..., λn} , Ωi = {ω|θi−1 ≤ ω < θi, ω ∈ N}, θi is module threshold,

Ξ = {0, 1, · · · , η − 1}.

1) Find the ni = |{λk|λk ∈ Ωi, ∀k}|, ∀i

2) Estimate the module selection parameter

ζ = arg min
k∈Ξ

∑η
i=1 i · n|i+k−1|η+1

3) σ = q
η ζ̂ and Λ′ = |Λ + σ|q, where σ = σ · 1n.

4) Encoded codeword Λ′ replaces Λ, and ζ is stored in q-ary cells separately.

where 1n means a vector (1, 1, · · · , 1) of length n.

Example 4.1. let us assume that a part of codeword Λ = {8, 11, 2, 9}, q = 12, η = 3,

Ω1 = {0, 1, 2, 3}, Ω2 = {4, 5, 6, 7}, Ω3 = {8, 9, 10, 11}. By (4.7), we find that ζ = 1 and

σ = 12
3 · 1 = 4. We then have Λ′ = |{8 + 4, 11 + 4, 2 + 4, 9 + 4}|12 = {0, 3, 6, 1}.
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4.3.3 Low energy Huffman code

We considered the fixed-length code with a little redundancy in previous subsections, and

will now discuss the variable-length code without redundancy. In source coding theory, the

Huffman codes are the optimal codes for lossless data compression [21]. In the conventional

Huffman encoding process, assigning 0 and 1 to the edge of the tree is not fixed, because it

does not affect the average length of codewords or compression performance. However, it

can affect the average magnitude, which is discussed here. We propose modified Huffman

coding, the Low Energy Huffman (LE-H) code to minimize average high bit numbers. Let

us assume thatQ = {0, 1, . . . , q−1}. f(α) is the probability of symbol ‘α’. g(α) is defined

by the value of the branch from α, which is either ‘0’ or ‘1’.

Low Energy Huffman Encoding

1) Choose two letters αk, βk from Q with the smallest frequencies, and create a subtree

that has these two characters. Label the root of this sub tree as γ.

2) Set the probability to f(γ) = f(αk) + f(βk). Remove αk, βk and add γ creating new

Q = Q∪ {γ} − {αk, βk}.

3) If f(αk) ≥ f(βk), assign ‘0’, ‘1’ to g(αk) and g(βk), respectively. Otherwise, assign ‘1’

and ‘0’ to these symbols.

4) If |Q| > 1, k=k+1 and go to step 1.
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Figure 4.3 Low energy Huffman coding example

Using the algorithm above, an LE-H coding tree T is generated. There are (q− 1) pairs

of symbols which have the same root, and ‘0’ or ‘1’ is assigned to the kth pair of symbols

by Step 3 of the algorithm. P0 and P1 are the average number of ‘0’ and ‘1’ per encoded

codeword, and P0 + P1 is the average length of encoded codeword. We have

P1 =
q−1∑
k=1

{g(αk)f(αk) + g(βk)f(βk)} (4.8)

P0 =
q−1∑
k=1

{g̃(αk)f(αk) + g̃(βk)f(βk)} (4.9)

where g̃(αk) means reversal of g(αk), 0→ 1 or 1→ 0.

Theorem 4. Low energy Huffman code generates optimal codeword which has minimum
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high bits with minimum average codeword length.

Proof. Let us assume that the ith couple of symbols in tree T which have the same

root are αi and βi. The average number of ‘1’, P1 =
∑q−1

i=1 {g(αi)f(αi) + g(βi)f(βi)}. If

we exchanges g(αj) for g(βj), P ′
1 =

∑q−1
i=1\j{g(αi)f(αi) + g(βi)f(βi)} + g(βj)f(αj) +

g(αj)f(βj). Then P ′
1 − P1 =

(
g(αj) − g(βj)

)(
f(βj) − f(αj)

)
≥ 0 due to Step 3 of

the algorithm. The inequality P ′
1 ≥ P1 is always true, and P1 is the minimum. Therefore,

the codes generated by LE-H coding have minimum high bit numbers with optimal average

codeword length.

For example, in Fig 4.3, alphabets a, b, c, and d are encoded.P0 = 0.55+0.3+0.15 = 1 and

P1 = 0.45+0.25+0.1 = 0.8. The encoded codewords for alphabets ‘a’,‘b’,‘c’, and ‘d’ are

‘1’, ‘00’, ‘011’, and ‘010’, respectively. The average length of codeword is P0 + P1 = 1.8

and the entropyH = 1.7822 [21].

4.4 Performance analysis of proposed coding schemes

4.4.1 Performance analysis of ME codes

To begin with, we consider three kinds of parameters, R, A, and L to estimate the perfor-

mance.R refers to the code rate, and it is the proportion of information bits. When the code

rate is k/n, for every k bits of useful information, the codes generate n bits of data, of which
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n− k bits are redundant. As redundancy increases, R decreases. A denotes the magnitude

reduction ratio of a codeword (redundancy included). L is the average magnitude of a cell.

That is, L is related to the generated interference in (4.3) and (4.4). As the redundancy of

the codes increases, L decreases but A may or may not be reduced. Although the average

magnitude of each cell decreases, the sum of the magnitude of all the cells may increase due

to the large amount of redundancy. The goals of the proposed algorithm are to minimize the

redundancy (maximizingR), to maximize A, and to minimize L.

Redundancy is required in ME coding to reduce the average magnitude of the cell. If

q-ary m length messages are written to the q′-level m′ length memory cell, the parameters

should satisfy the inequality.

m′log2q
′ ≥ mlog2q (4.10)

The q-ary m message symbols (mlog2q bits) should be represented by q′-level m′ symbols

(m′log2q
′ bits). In the example of Sec. III-A,m = 4, q = 8, q′ = 5,Wq = {0, 1, 2, 3, 4, 5, 6, 7},

and Wmin = {0, 1, 2, 3, 4}. Therefore, 4log28 = 12 bits are needed to store the message,

m′log25 should be larger than 12. We have 12/log25 = 5.1681 < 6, so that m′ needs to be

6. The code rate of ME codingRME is given by

RME =
m

m′ ≤ logqq
′. (4.11)

The total sum of average magnitude of q-arym length code is m(q−1)
2 , and the sum of av-

erage magnitude of encoded codeword by ME coding is m′(q′−1)
2 The magnitude reduction
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ratio of generated codeword AME is given by

AME =
m(q−1)

2 − m′(q′−1)
2

m(q−1)
2

≤
m(q−1)

2 − m(q′−1)
2 logq′q

m(q−1)
2

= 1− q′ − 1

q − 1
logq′q. (4.12)

The average magnitude of each cell of ME code L is

LME =
q′ − 1

2
. (4.13)

4.4.2 Performance analysis of MS codes

To analyze the performance of MS codes, we assume that n =
∑η

k=1 n
ζ
k,i. n is the length

of message symbols. nζk,i denotes the number of symbols which are included in the kth

module among nmessage symbols, and corresponds to the criterion in (4.7) when a module

selection parameter is ζ. Note that i is the index for the combination. We define N ζ
i =

(nζ1,i, n
ζ
2,i, . . . , n

ζ
η,i). There are

(
n+η−1
η−1

)
1
η combinations of N ζ

i for each ζ if q|η, and N ζ =

{N ζ
1 , N

ζ
2 , . . . , N

ζ

(n+η−1
η−1 ) 1

η

}, which is the collection of all such combinations.

For example, let us assume that length of codeword |Λ| = n = 5, q = 4, Q =

{0, 1, 2, 3}, η = 2, Ω1 = {0, 1}, Ω2 = {2, 3}. When ζ = 0 (no shift case), N0
1 =

(n01,1, n
0
2,1) = (3, 2), N0

2 = (4, 1), N0
3 = (5, 0). When ζ = 1 (shift by one module case),

N1
1 = (0, 5), N1

2 = (1, 4), N1
3 = (2, 3). N0 = {N0

1 , N
0
2 , N

0
3 } = {(3, 2), (4, 1), (5, 0)},

and N1 = {N1
1 , N

1
2 , N

1
3 } = {(0, 5), (1, 4), (2, 3)}
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When ζ is given, the frequency of the jth module element Fζ
j in a codeword is of length

n given by

Fζ
j =

(n+η−1
η−1 ) 1

η∑
i=1

(
n

nζ1,i

)(
n− nζ1,i
nζ2,i

)
(4.14)

· · ·
(
n−

∑η−1
s=1 n

ζ
s,i

nζη,i

)
·
(
1

η

)n

· nζ|j−ζ−1|η+1,i.

If n is not a multiple of η, the probability of the jth module element is estimated by

p(Ωj) =
1

n

η−1∑
ζ′=0

Fζ′

j . (4.15)

An average magnitude of encoded cell E(λ′) is

E(λ′) =

η∑
j=1

p(Ωj)E(Ωj)

=

η∑
j=1

(
1

n

η−1∑
ζ′=0

Fζ′

j

)(
(j − 1

2
)
q

η
− 1

2

)

=

η∑
j=1

 1

n

η−1∑
ζ′=0

 (n+η−1
η−1 ) 1

η∑
i=0

(
n

nζ
′

1,i

)(
n− nζ

′

1,i

nζ
′

2,i

)

· · ·
(
n−

∑η−1
s=1 n

ζ′

s,i

nζ
′

η,i

)
·
(
1

η

)n

· nζ
′

|j−ζ′−1|η+1,i


·
(
(j − 1

2
)
q

η
− 1

2

) (4.16)

where E(Ωj) = (j − 1
2)

q
η −

1
2 . For example, η = 2 and n = odd, the average encoded

magnitude E(λ′) is

E(λ′) =
q − 2

4
+

(
1

2

)n q

n

n−1
2∑

i=0

(
n

i

)
i. (4.17)
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The details are given in Appendix A.

The average magnitude without encoding is given by E(λ) = q−1
2 . To achieve the mag-

nitude reduction ratio of the generated codeword AMS , the average redundancy magnitude

should be estimated first. If we know the module selection parameter ζ of each block, decod-

ing is possible, and ζ is an integer in [0, η − 1]. Accordingly, log2η redundancy bits ( log2η
log2q

redundancy cells) are needed for each block. That is, each message cell generates log2η
log2q

· 1n

redundancy cells. E(G), the average redundancy magnitude is given by

E(G) = q − 1

2
· log2η

log2q
· 1
n
. (4.18)

AMS is given by

AMS =
E(λ)− (E(λ′) + E(G))

E(λ)

=

q−1
2 − (E(λ′) + q−1

2n ·
log2η
log2q

)

q−1
2

= 1−
{2E(λ′) + (q − 1)logqη}

n(q − 1)
(4.19)

The average magnitude of one cell LMS is given by

LMS = E(λ′) (4.20)

The redundancy is log2η bits for each block Λ. Each block of length n has nlog2q bits. The

code rateRMS is given by

RMS ≤
nlog2q

nlog2q + log2η
. (4.21)
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Figure 4.4 Reduced magnitude ratio of the module shift (MS) algorithms

Fig. 4.4 shows the reduced average magnitude ratio with varying code lengths of each block

n. It can be seen that the plots of the simulation with 10,000 message blocks correspond to

the theoretical plots. It is observed that the ratio increases as the size of q increases.

To compare the performance of ME codes and MS codes, we simulated the perfor-

mance with equal redundancy, and AME and AMS were plotted withRME andRMS . Fig.

4.5 shows the average magnitude reduction ratio with respect to code rate. The MS codes

showed a better performance than the ME codes in the high code rate range. When the num-

ber of module η increases in the MS codes plot, the average reduced magnitude is improved,

but the redundancy also increases rapidly, which is indicated by the crossing of the ME and
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Figure 4.5 Magnitude reduction ratio of encoded codeword

the MS curves.

4.4.3 Performance of low-energy Huffman codes

MS codes generate fixed length code for a uniform symbol frequency with some redun-

dancy, and the LE-H codes generates variable length codewords without redundancy, which

is effective only for a non-uniform symbol frequency. LE-H codes are not channel codes,

but a kind of source codes. Therefore, the encoder of LE-H generates codewords with re-

duced codeword length, and the code rate R is not a meaningful figure of merit. Average

magnitude of a cell for a block of length n is q−1
2 . We define κ is the compression ratio of
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Huffman code, and κ = average length
log2q

. Each encoded symbol has high bit with probability

P1
P0+P1

, and an average level of encoded symbol become P1
P0+P1

· (q − 1). ALE−H is given

by

ALE−H =

q−1
2 − κ

P1
P0+P1

· (q − 1)
q−1
2

= 1− κ 2P1
P0 + P1

. (4.22)

The average magnitude of one cell LLE−H is given by

LLE−H =
(q − 1)P1
P0 + P1

. (4.23)

MS coding is efficient only with an uniform symbol frequency, but LE-H code is effi-

cient only with non-uniform symbol frequency. Therefore, LE-H cannot be compared with

MS and ME coding directly, but we show several examples of the performance of the LE-H

codes. Table 4.1 shows the performance with different parameters. The ratio κ decreases

as the variance of symbol frequency increases, and ALE−H also increases. ALE−H is inde-

pendent of alphabet size q.

q symbol frequency ALE−H κ

4 (0.15, 0.01, 0.80, 0.04) 74 % 0.625
4 (0.05, 0.6, 0.1, 0.25) 40 % 0.775
4 (0.25, 0.4, 0.15, 0.2) 20 % 0.975

Table 4.1 Magnitude reduction ratio of LE-H codes
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4.4.4 C2CI reduction performance

Let us discuss the performance of the proposed algorithm in terms of the reduction in C2CI.

Lx is the average magnitude of one cell without encoding, and E(ϵ) is the average gen-

erated interference of each cell without encoding. The coupling coefficients for generated

interference are ρv + 2ρd for even cells in (4.3) and 2ρh + ρv + 2ρd for odd cells in (4.4).

The coupling coefficients will be averaged out if we assume that the numbers of the even

cells and the odd cells are equal. E(ϵ) is given by

E(ϵ) = Lx
(2ρh + ρv + 2ρd) + (ρv + 2ρd)

2

= Lx(ρh + ρv + 2ρd) (4.24)

where Lx = q−1
2 . Le is the average magnitude of encoded cell, such as LME or LMS . The

performance is better when every cell is encoded, but there is a trade-off between the redun-

dancy and the performance. On the other hand, when only the cells that generate the most

interference are encoded by the proposed codes, there is a trade-off between interference

reduction and code rate.

When ∆Vodd and ∆Veven are equal, IGodd is larger than IGeven, because (2ρh + ρv +

2ρd) > (ρv+2ρd) in (4.3), (4.4). That is, the threshold voltage change of the odd cells plays

a more important role than that of the even cells. Therefore, we compare the case where all

the cells are encoded with the case where only the odd cells are encoded. E(ϵa) and E(ϵo)

are the average generated interference of encoded cells when all the cells are encoded and
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only the odd cells are encoded, respectively. We have

E(ϵa) = E(ϵ) = Le(ρh + ρv + 2ρd) (4.25)

E(ϵo) =
Le(2ρh + ρv + 2ρd) + Lx(ρv + 2ρd)

2
. (4.26)

Due to Lx > Le, E(ϵo)−E(ϵa) = (ρv+2ρd)(Lx−Le) > 0. It means that E(ϵo) is always

larger thanE(ϵa). However, in the case when only the odd cells are encoded, the redundancy

is smaller, and the performance can be different with equal redundancy. When only the odd

cells are encoded, m/2 odd cells are encoded by the ME code among m cells, and the

others (even cells) are not encoded. Due to m′ ≥ m(log2q/log2q
′) in (4.10), the length of

the encoded codeword is m/2 +m′/2 ≥ m/2 +m/2(log2q/log2q
′) = m/2 +m(logq′q),

and the message length is m. Therefore, the code rate of ME coding is

RMEo ≤
m

m
2 +

mlogq′q
2

=
2

1 + logq′q
. (4.27)

In the MS coding case, if one block has 2n cells, n odd cells are encoded by the MS

code, and the others (n even cells) are not encoded. The redundancy for each block is log2η

bit. The encoded codeword bit size is 2nlog2q + log2η bits. The code rate of MS coding

when only odd cells are encoded is given by

RMSo =
2nlog2q

2nlog2q + log2η
. (4.28)

The C2CI reduction ratio of one cell are shown in Fig. 4.6 and 4.7. In the simulation,

ρh = 0.11, ρv = 0.07, and ρd = 0.02. The MS codes have better performance than ME
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MS − odd cell only ( η=4, q=26)

ME − all cells (q=2 6)

ME − odd cell only (q=2 6)

Figure 4.6 C2CI reduction ratio of the proposed algorithms

codes for all code rate. When only odd cells are encoded, it has better performance than the

case when all cells are encoded. This is due to the fact that the odd cells play more important

roles than the even cells to reduce interference.

We now consider the effects of the coupling coefficient ρ. Fig. 4.8 shows the aver-

age interference generated by each cell with two ρ parameters. In the simulation, ρ1 =

(ρh, ρv, ρd) = (0.11, 0.07, 0.02), ρ2 = (0.14, 0.05, 0.01), η = 4, and q = 26. The gener-

ated interference for all cells encoding case and the no encoding case are equal when two

ρ1,ρ2 parameters are used. When only the odd cells are encoded, there is a large difference

in ρh, ρv and ρd giving rise to differences in performance. This means that the horizontal
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Figure 4.7 C2CI reduction performance of the two algorithms

coupling coefficient ρh plays a more critical role for odd cell encoding schemes.

4.5 Summary

New code construction methods are proposed for interference reduction in flash memory

devices to mitigate cell-to-cell interference. The proposed schemes use fixed length code

with small extra redundancy, and the other uses variable length entropy coding with no

extra redundancy. In summary, the minimum energy codes are the simplest, but it increases

redundancy. The module shift codes show better performance than the minimum energy
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Figure 4.8 C2CI reduction performance of the algorithms with the coupling coefficient

cods at the same code rate. The low energy Huffman coding is optimal with minimum

average codeword length for non-uniform symbol frequency. The proposed coding schemes

can improve reliability of memory devices by lowering cell-to-cell interference. They can

also reduce the power consumption by lowering average magnitude of writing voltage. A

key contribution of this chpater is the introduction of new kinds of codes dedicated to reduce

cell-to-cell interference in flash memories.
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Chapter 5

Conclusions

In this dissertation, we introduce the error correction codes and encoding schemes for relia-

bility of NAND multi-level cell flash memories.

We discussed error correcting codes that are effective for bidirectional and limited-

magnitude erorrs and non-binary WOM codes. Key advantages of the bidirectional error

correction codes are that it can reduce the parity size, and that it has better error correction

performance than the conventional error correction codes. Bidirectional error correction

code based on distinct sum set shows the optimal performance based on a minimum magni-

tude distinct sum set with practical parameters and better performance than that of conven-

tional symmetric limited magnitude error correction codes. A bidirectional double distinct

sum set and a code construction are also introduced for double error correction code based

on distict sum set. Bidirectional limited magnitude error correction codes based on modulo

operation have the practical error correcting capability based on conventional non-binary
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error correction codes. Practical issues of encoding and decoding for the proposed method

are also discussed, and efficient methods are proposed. We discussed the potential problems

of existing error correction codes, and show that proposed bidirectional limited-magnitude

code is more suitable to practical flash memory devices in simulations. Two error correct-

ing coding schemes for non-binary WOM codes are also discussed. The proposed codes

deal with bidirectional error correction based on distinct sum sets or modulo operation,

and parity splitting methods for the WOM code property. The advantages of the proposed

methods are that these are practical and systematic codes, and their encoding and decoding

processes have low complexity. We also discuss effective asymmetric and symmetric error

locating limited-magnitude parity check error correction codes for the MLC flash memory

error with lower redundancy.

Furthermore, we propose new code construction methods for interference reduction in

flash memory devices. The minimum energy codes are the simplest, but it increases redun-

dancy. The module shift codes show better performance than the minimum energy code at

the same code rate. The low energy Huffman coding is optimal with minimum average code-

word length for non-uniform symbol frequency. The proposed coding schemes can improve

reliability of memory devices by lowering cell-to-cell interference. They can also reduce

the power consumption by lowering average magnitude of writing voltage.

A key contribution of these error correction codes and encoding schemes are the in-

troductions of new kinds of efficient coding schemes dedicated to reduce the effects of
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interference and improve reliability of memories.
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Appendix A

A.1 Performance analysis of MS coding with η=2 case in chap.
4.4.2.

The average encoded magnitude E(λ′) in (4.17) will be estimated when η = 2 and n =

odd. The module selection parameter is given by ζ = arg mink∈Ξ
∑η

i=1 i · n|i+k−1|η+1

in (4.7). We define Ψζ =
∑η

i=1 i · n|i+ζ−1|η+1. When η = 2 and Ξ = {0, 1}, Ψ0 =∑2
i=1 i · n|i+0−1|2+1 = n1 + 2n2 and Ψ1 =

∑2
i=1 i · n|i+1−1|2+1 = n2 + 2n1. If Ψ0 ≤ Ψ1,

ζ becomes 0. Due to n1 + 2n2 ≤ n2 + 2n1, ζ = 0 when n1 ≥ n2. On the other hand, if

Ψ0 > Ψ1, that is, n1 < n2, ζ becomes 1. Due to n = n1 + n2, when n is an odd number,

0 ≤ n1 ≤ n−1
2 leads to ζ = 0, n+1

2 ≤ n1 ≤ n results in ζ = 1.

Next, we find the N ζ
i = (nζ1,i, n

ζ
2,i, · · · , n

ζ
η,i) according to the criterion in (4.7). N ζ =

{N ζ
1 , N

ζ
2 , · · · , N

ζ

(n+η−1
η−1 ) 1

η

} and we get

N0 = {N0
1 , N

0
2 , · · · , N0

n+1
2

} = {(n, 0), (n− 1, 1), · · · , (n+1
2 , n−1

2 )},
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N1 = {N1
1 , N

1
2 , · · · , N1

n+1
2

} = {(0, n), (1, n− 1), · · · , (n−1
2 , n+1

2 )}.

We have n01,i ∈ {n, n − 1, · · · , n+1
2 }, n

0
2,i ∈ {0, 1, · · · , n−1

2 }, n
1
1,i ∈ {0, 1, · · · , n−1

2 }

and n12,i ∈ {n, n− 1, · · · , n+1
2 }.

Our goal is to compute E(λ′) =
∑η

j=1 p(Ωj)E(Ωj), and the probability of the jth mod-

ule element is estimated as p(Ωj) =
1
n

∑η−1
ζ=0 F

ζ
j . At first, Fζ

j need to be estimated. When

ζ is given, an appearance frequency of the jth module element Fζ
j in n-length codeword is

given by (4.17). Then F0
1 and F1

1 are given by

F0
1 =

n−1
2∑

i=0

(
n

n01,i

)(
n− n01,i
n02,i

)(
1

2

)n

n01,i

F1
1 =

n−1
2∑

i=0

(
n

n11,i

)(
n− n11,i
n12,i

)(
1

2

)n

n12,i.

where n− n01,i = n02,i, n− n11,i = n12,i, due to n =
∑η

k=1 n
ζ
k,i.

p(Ω1) =
1

n

1∑
ζ=0

Fζ
j =

1

n

F0
1 + F1

1


=

1

n

(
1

2

)n
 n−i

2∑
i=0

(
n

n01,i

)
n01,i +

n−1
2∑

i=0

(
n

n11,i

)
n12,i


=

1

n

(
1

2

)n
 n−1

2∑
i=0

(
n

n− i

)
(n− i) +

n−1
2∑

i=0

(
n

i

)
(n− i)


=

1

n

(
1

2

)n
n−1
2∑

i=0

(
n

n− i

)
(n− i) +

(
n

i

)
(n− i)


=

2

n

(
1

2

)n
n−1
2∑

i=0

(
n

i

)
(n− i)
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Similarly, we have F0
2 =

∑n−1
2

i=0

(
n

n0
1,i

)
(12)

nn02,i, F1
2 =

∑n−1
2

i=0

(
n

n1
1,i

)
(12)

nn11,i.

p(Ω2) =
1

n

(
1

2

)n
 n−1

2∑
i=0

(
n

n01,i

)
n02,i +

n−1
2∑

i=0

(
n

n11,i

)
n11,i


=

1

n

(
1

2

)n
n−1
2∑

i=0

(
n

n− i

)
i+

(
n

i

)
i


=

2

n

(
1

2

)n
n−1
2∑

i=0

(
n

i

)
i

Finally, an average magnitude of encoded cellE(λ′) is estimated.E(Ωj) = (j− 1
2)

q
η−

1
2

in (4.6), E(Ω1) =
q
4 −

1
2 = q−2

4 and E(Ω2) =
3q
4 −

1
2 = 3q−2

4 .

E(λ′) =

η∑
j=1

p(Ωj)E(Ωj)

= p(Ω1)E(Ω1) + p(Ω2)E(Ω2)

=
2

n

(
1

2

)n
n−1
2∑

i=0

(
n

i

)
(n− i)E(Ω1)

+
2

n

(
1

2

)n
n−1
2∑

i=0

(
n

i

)
iE(Ω2)

=
2

n

(
1

2

)n
n−1
2∑

i=0

((
n

i

)
((n− i)E(Ω1) + iE(Ω2))

)

=
2

n

(
1

2

)n
n−1
2∑

i=0

(
n

i

)(
(q − 2)(n− i) + (3q − 2)i

4

)

=
2

n

(
1

2

)n
nq − 2n

4
2n−1 +

q

2

n−1
2∑

i=0

(
n

i

)
i


=

q − 2

4
+

(
1

2

)n q

n

n−1
2∑

i=0

(
n

i

)
i
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한글초록

최근 비휘발성 메모리는 무게, 휴대성과 속도 등 여러 장점으로 플래시 메모리

저장장치, SSD (solid state disk)등에 점차 널리 사용되고 있으며, 최근에는 용량 확

장을위해한셀에여러 bit의정보를저장하는 multi-level cell (MLC)플래시메모리

가 사용되고 있다. 하지만 셀 당 저장되는 정보가 늘어날수록 셀 간 간섭(cell to cell

interference) 및 오버 프로그래밍, 잦은 쓰기/삭제 반복으로 인한 retention 문제등 여

러요소로인한간섭에의해오류가급격히늘어나는신뢰성문제가발생한다.이를

해결하기위하여,신호처리적방법, 오류정정부호, 데이터의부호화저장방식알

고리즘등의시도가제안되어왔다.본논문에서는이러한비휘발성메모리의신뢰성

문제향상을위한오류정정부호와데이터부호화기록방식을제안한다.

먼저플래시메모리의오류특성을이용한효율적인오류정정부호를제안한다.

플래시메모리의오류는간섭으로인한이웃레벨로의문턱전압변화에기인하므로

크기가 제한 되어있는 특성이 있다. 주요 간섭인 셀 간 간섭의 크기는 이웃 셀들의

문턱 전압 변화량에 비례하는 일방향적 특성이 있지만, 동시에 retention 문제와 최

적 읽기 전압 재설정 등으로 인하여 하강방면의 오류도 발생하므로 양방향 비대칭

오류(bidirectional error) 에 대한 고려가 필요하다. 양방향 비대칭 오류 정정 부호는

상승,하강방향으로각각 lu, ld 의크기를가지는오류를정정하며,두방향의크기는

다를수있다.이러한양방향비대칭크기제한오류를정정하기위하여먼저 distinct
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sum set에기반한오류정정부호를제안한다.제안된방식에의해생성된정수집합

에기반하여동일부호율시전통적인오류정정부호보다더좋은오류정정성능을

보이면서도부호화,복호화복잡도가낮은코드를생성한다.그리고데이터에modulo

operation을이용하여또다른효율적인양방향비대칭크기제한오류정정부호를제

안한다.이방식은기존의전통적인오류정정부호를기본코드로사용하면서도성능

측면에서효율적인코드를생성할수있고오류정정능력의설정등의측면에서실

용적이다.또한제안된양방향비대칭오류정정부호들을WOM (write once memory)

부호를 위한 오류 정정 부호를 만드는데 적용한다. WOM 부호는 플래시 메모리의

삭제횟수감소를통해 retention문제해결에도움이되는코드로널리연구되어왔다.

하지만오류정정부호를사용하고자할때전통적인오류정정부호를직접적으로사

용하기 어렵고, 기존에 제안된 WOM 부호를 위한 오류 정정 부호의 경우 실용적인

systematic한 부호를 얻기 어려웠으므로, systematic하고 효율적인 부호화 방식을 제

안한다.또한오류위치기반크기제한일방향,양방향패리티검사부호도소개하며,

낮은복잡도를가진다.

다음으로,셀간간섭의영향을줄이기위한데이터부호화기록방식을제안한다.

셀간간섭은이웃셀의문턱전압변화량에비례하고,셀별로기록되는심볼의크기와

셀이 가지는 문턱전압이 비례한다고 가정하면, 높은 심볼 크기 값을 가지면 주변에

많은간섭을일으킨다고할수있다.따라서각셀에저장되는심볼의크기값을최소

화하면셀간간섭의양이줄어든다.이를위해정보를기록할때최소한의데이터심

볼크기를갖는코드로변환하여기록하는 module shift (MS) coding방식을제안한다.
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제안하는방식은 q-ary의심볼메시지를다루며고정길이부호(fixed length code)를사

용한다.저장할메시지를여러개의블록으로나누고,최적의값과 modulo addition을

통해평균적인메시지심볼크기가최소화되도록한다.또한데이터압축을위해서

소스코딩의일종인허프만(Huffman)코드를사용할때최소한의데이터심볼크기를

갖는코드로변환하여기록하는 low energy Huffman (LE-H) coding방식을제안한다.

제안하는방식은길이가고정되지않은코드(variable-length code)를다루며,부호화

과정중 트리 구조에서 심볼 할당 방식을 통해 최소한의 평균길이(minimum average

codeword length)를 가질 때 최소한의 메시지 심볼 크기를 가지는 코드를 생성할 수

있다.

주요어:다중레벨셀플래시메모리,오류정정부호,셀간간섭, WOM부호,양방향

비대칭오류

학번: 2009-30210
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