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ABSTRACT

Recent years have witnessed a proliferation of flash memories as an emerging

storage technology with wide applications in many important areas. Like magnetic

recording and optimal recording, flash memories have their own distinct properties

and usage environment, which introduce very interesting new challenges for data

storage. They include accurate programming without overshooting, error correction,

reliable writing data to flash memories under low-voltages and file recovery for flash

memories. Solutions to these problems can significantly improve the longevity and

performance of the storage systems based on flash memories.

In this work, we explore several new data representation techniques for efficient

and reliable data storage in flash memories. First, we present a new data repre-

sentation scheme—rank modulation with multiplicity—to eliminate the overshooting

and charge leakage problems for flash memories. Next, we study the Half-Wits—

stochastic behavior of writing data to embedded flash memories at voltages lower

than recommended by a microcontroller’s specifications—and propose three software-

only algorithms that enable reliable storage at low voltages without modifying hard-

ware, which can reduce energy consumption by 30%. Then, we address the file

erasures recovery problem in flash memories. Instead of only using traditional error-

correcting codes, we design a new content-assisted decoder (CAD) to recover text

files. The new CAD can be combined with the existing error-correcting codes and

the experiment results show CAD outperforms the traditional error-correcting codes.
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1. INTRODUCTION

The representation of data plays a key role in storage systems. The objective of

this thesis focuses on data representation techniques for efficient and reliable storage

in flash memories. In this chapter, we first introduce flash memories and their key

properties, then point out the main challenges of flash memories. We also describe

the contribution of our work to solve those challenges. In addition, we present an

overview of related works on flash memories.

1.1 Flash Memories and Their Properties

Flash memory, invented by Dr. Fujio Masuoka, is a type of non-volatile memory

that can be electrically erased and reprogrammed. Flash memory is considered by

system designers as an almost “ideal” non-volatile memory because it can be elec-

trically erased and programmed in-system, offer at the same time very high-density

and low cost-per-bit, random access, bit alterability, short read/write times and cycle

times, excellent reliability [9]. Flash memory is a milestone in the development of

the data storage technology. Due to its high performance, the applications of flash

memories have expanded widely in recent years, such as cell phones, portable media

players, digital cameras, and in the latest netbooks, tablets, and e-book readers, it is

also being utilized widely by the video gaming device industry, which make it become

the dominating member in the family of non-volatile memories [26]. It is expected

that the world wide flash memory market will reach $51.2 billion by 2015, and then

constitute a 12 percent share of the total semiconductor market.
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1.1.1 Flash Cell Structure

The basic storage unit in a flash memory is a floating-gate transistor [9]. We

also call it a cell. Each memory cell resembles a standard MOSFET, except the

transistor has two gates instead of one. On top is the control gate (CG), as in other

MOS transistors, but below this there is a floating gate (FG) insulated all around

by an oxide layer. The FG is interposed between the CG and the MOSFET channel.

Because the FG is electrically isolated by its insulating layer, any electrons placed

on it are trapped there and, under normal conditions, will not discharge for many

years [42]. Figure 1.1 shows the structure of a cell. The threshold voltage of the

memory cell can be altered by changing the amount of charge present between the

gate and the channel. If no electron is on the floating gate, the threshold voltage is

low, and the transistor is “on” under reading voltage, whereas with injecting many

electrons in the floating gate, the threshold becomes high, and then the transistor is

“off”.

Control Gate

Floating Gate

Source Drain

P-substrate

INTERPOLY OX.

TUNNEL OX.

Figure 1.1: The structure of a flash cell.

The cell level is determined by the amount of charge trapped in the floating gate.

Charge can be injected into the cell using the hot-electron injection mechanism or

the Fowler-Nordheim tunnelling mechanism. The charge can also be removed from

the cell using the Fowler-Nordheim tunnelling mechanism. By checking whether the

2



transistor is “on” or “off” in a single level cell (SLC), it can represent one bit of

information. In a multi-level cell (MLC), which stores more than one bit per cell,

the amount of current flow through the transistor is sensed (rather than simply its

presence or absence), in order to determine more precisely the level of charge on the

floating gate. q-level cell can store log2 q bits.

1.1.2 NOR and NAND Flash

There are two main types of flash memories: NOR flash and NAND flash.

In NOR gate flash, each cell has one end connected directly to ground, and the

other end connected directly to a bit line. Therefore, it allows random access to its

cells. NOR flash is commonly used in embedded applications requiring a discrete

non-volatile memory device, such as mobile phones. NOR flash is faster, but it’s also

more expensive.

A NAND flash partitions every block into multiple sections called pages, and a

page is the unit of a read or write operation. Compared to NOR flash, NAND flash

has the advantage of higher cell density. However, it may be much more restrictive

on how its pages can be programmed, such as allowing a page to be programmed

only a few times before erasure [18]. NAND flash has found a market in devices to

which large files are frequently uploaded and replaced, such as MP3 players, digital

cameras and USB drives.

1.1.3 Basic Operations in Flash Memory

Flash memory has three basic operations.

1.1.3.1 Reading

The read operation is performed by applying to the cell a gate voltage that senses

the current flowing through the device. In NOR type flash memory, each cell’s level

3



can be read individually, where in NAND type flash memory, the cells connected in

series must be read in series. The read operation is easy and fast in both types of

flash memory.

1.1.3.2 Writing/Programming

When programming, charge is injected into the cell using the hot-electronic mech-

anism or Fowler-Nordheim tunneling mechanism by applying an appropriate voltage

to the control gate. The cell of both NOR and NAND can be programmed individ-

ually and the process is easy and fast [9].

1.1.3.3 Erasing

A prominent property of flash memories is block erasure. Cells in a flash memory

are organized into blocks, with each block containing 105 or so cells. The state of a

cell can be raised individually (program operation). But to decrease a cell level, the

flash memory needs to erase the whole block (i.e., lowering the states of all the cells

to 0) and then re-program all the cells. Such an operation is called block erasure.

A very large voltage of the opposite polarity is applied between the control gate,

pulling the electrons off the floating gate through quantum tunneling to erase the

whole block, which is slow and energy-intensive. The block erasure operation not

only significantly reduces speed, but also reduces the lifetime of the flash memory.

This is because a block can only endure about 104 ∼ 106 erasures, after which the

block may break down. Since the breaking down of a single block can make the

whole memroy stop working, it is important to balance the erasures performed to

different blocks.
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1.2 Challenges of Flash Memories

As mentioned in the previous section, block erasure is a fairly violent process.

Every time the system erase a block, it slightly damages the insulating barriers.

Usually, the lifetime of flash memory is 105 erasure cycles. Therefore, block erasures

can substantially reduce the writing speed, reliability and longevity of flash memories.

For storage schemes, it is important to minimize block erasures. Although flash

memory has many advantages such as low cost per bit, high storage density, quick

read and write operations over other non-volatile memories, its interesting feature

of “block erasure” operation makes flash memory face some new challenges, which

require new data representation and coding schemes for efficient and reliable storage

in flash memory.

1.2.1 Accurate Programming without Overshooting

When programming a cell, the charge is injected into the cell, and the injected

charge becomes trapped. The amount of charge in a cell determines its level. Fast and

accurate programming schemes for multi-level flash memory are a topic of significant

research and design efforts. The flash memory does not support charge removal from

individual cells due to block erasure. Overshooting is very costly for programming

because once the injected charge overshoots the target level, the block need to be

erased and then reprogrammed. As a result, in the industry, to program a cell, a

sequence of charge injection operations are used to shift the cell level cautiously and

monotonically toward the target charge level from below, in order to avoid undesired

global erasures in case of overshoots. Thus, the attempt to program a cell requires

quite a few programming cycles.

It is interesting to study a new data representation scheme to avoid the problem of

overshooting while programming cells. In this work, we will present a generalization

5



of rank modulation, called rank modulation with multiplicity, in which different cells

can share the same rank. We focus on the rewriting of data based on this new

scheme, and study its basic properties.

1.2.2 Asymmetric Errors in Flash Memories

Flash memory is a storage medium with asymmetric properties [26]. After cells

are programmed, the data are not error-proof, because the cell levels can be changed

by various errors over time. Some important error sources include write disturb and

read disturb (disturbs caused by writing or reading), as well as leakage of charge

from the cells (called data retention problem). The errors in the cell levels have an

asymmetric distribution in the up and the down directions. Our research of rank

modulation with multiplicity provide a solution to tolerate asymmetric errors better.

1.2.3 Reliable Storage for Low-Power Devices

While the reliability, low cost, and high storage density of flash memory make it

a natural choice for embedded systems [27], its relatively high voltage requirement

introduces challenges for energy-efficient designs aiming to maximize the system’s

effective lifetime(e.g., the run time on a typical battery whose voltage declines over

time). Lowering the common supply voltage would allow the CPU to operate in a

more energy efficient manner, but writes to the flash memory then become unreliable.

How to address the voltage limitations of flash memory and guarantee reliable

flash writes under lower voltage is a prominent topic. In this thesis, we present

software-only coding schemes to enable reliable storage at low voltages without mod-

ifying hardware. It includes three algorithms: in-place writes, multiple-place writes,

and RS-Berger codes.
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1.2.4 File Recovery for Non-Volatile Memories

Non-volatile memories, especially flash memories have emerged as a crucial tech-

nology for storage systems due to their excellent speed and storage capacity. How-

ever, accompanying the improvement in data density, the reliability issue of non-

volatile memories are attracting more and more attention [23]. File recovery will

be one of the biggest challenges for storage systems. The amount of stored data is

increasing at an explosive rate, but the data are not constantly checked to verify

their reliability. The needed bit-error rate after decoding is 10−20 for storage sys-

tems. However, with the existing flash memories technologies, it cannot be achieved

unless extra long error-correcting codes with substantial redundancy are used, which

is impractical. However, it is not difficult for storage systems to achieve much higher

bit-error rates, such as 10−3.

We are interested in designing a content-based file recovery systems such that as

long as the conventional error-correcting codes can reduced the bit-error/erasure rate

to 10−3 after decoding, our file-recover system can practically recover the original files

completely.

1.3 Contributions of This Work

In this thesis, we address the challenges facing flash memories by three tech-

niques: A new data representation scheme for flash memories called rank modulation

with multiplicity to eliminate overshooting and charge leakage problems; Half-Wits,

a set of algorithms to enable reliable writes to flash memories while coping with

low voltage; Content-assisted file decoding algorithms to make data storage in flash

memories reliable. In the following, we introduce the three topics.

7



1.3.1 Rank Modulation with Multiplicity

Rank modulation, a new data representation scheme, is proposed to eliminate

both the problem of overshooting while programming cells and the problem of mem-

ory endurance in aging devices [27]. This work proposes a generalization of rank

modulation, called rank modulation with multiplicity, in which different cells can

share the same rank.

We focus on the rewriting of data based on this new scheme. We study its basic

properties, including the rewriting cost, optimal ways to change rank modulation

states, and the expansion of rank modulation states given the rewriting cost. We

consider two rewriting cost: unweighted and weighted rewriting cost and describe

the analysis respectively. This work has been published in ACTEMT [30].

1.3.2 Half-Wits: Software Techniques for Embedded Flash Storage at Low Voltages

This work analyzes the stochastic behavior of writing to embedded flash memory

at voltages lower than recommended by a microcontroller’s specifications to reduce

energy consumption. Flash memory integrated within a microcontroller typically

requires the entire chip to operate on a common supply voltage almost double what

the CPU portion requires. Our approach tolerates a lower supply voltage so that

the CPU may operate in a more energy efficient manner. Energy efficient coding

algorithms then cope with flash memory that behaves unpredictably.

The software-only coding algirhtms proposed in this work (in-place writes, multiple-

place writes, RS-Berger codes) enable reliable storage at low voltages on unmodified

hardware by exploiting the electrically cumulative nature of half-written data in

write-once bits. For a sensor monitoring application using the MSP430, coding with

in-place writes reduces the overall energy consumption by 34%. In-place writes are

competitive when the time spent on low-voltage operations such as computation are
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at least four times greater than the time spent on writes to flash memory. The evalu-

ation of the proposed schemes shows that tightly maintaining the digital abstraction

for storage in embedded flash memory comes at a significant cost to energy con-

sumption with minimal gain in reliability. This work has been published in USENIX

FAST [47].

1.3.3 Content-Assisted File Decoding for Non-Volatile Memories

To address the file recovery problem for data storage in non-volatile memories

such as flash memories, we propose a content-assisted decoding (CAD) method for

erasures recovery, which can be combined with existing storage solutions for text

files. We preload the dictionaries that include the frequency information of words

and phrases in the text of a given language. Thanks to the random and fast access

features in flash memories, our proposed decoder gets the statistical information from

the dictionaries quickly, then split the whole input noisy codeword into small pieces

of subcodewords. Each subcodeword can be decoded into a word in the text, and

the whole noisy codeword is recovered to form a most likely word sequences.

The CAD is modelled as a solution to an optimization problem, which mainly

includes two parts: (1) segment the whole noisy codeword into a sequence of sub-

codewords and each subcodeword has a set of candidate words to decode; (2) choose

the most likely word in the candidate word set for each subcodeword to form the

most likely word sequence, which is a recovery for the original text file. Each part is

also defined as an optimization problem and the dynamic programming algorithms

are designed to get the solutions. The evaluation of the proposed methods with a

set of benchmark files shows CAD can provide better erasure recovery capacity than

the traditional ECC. This work has been published in [34].
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1.4 Related Works

With the increasing importance of flash memories, numerous research work and

accomplishments in flash memories have been published. The work in this thesis

relates to a number of important research areas. They include rank modulation for

flash memories, storage for low-power embedded devices, as well as error-correcting

codes for flash memories and embedded systems.

1.4.1 Rank Modulation for Flash Memories

Rank modulation is a scheme that uses the relative order of cells, instead their

absolute values, to represent data. It is first proposed and studies in [27, 28]. In

addition to rewriting [27] and error correction [28], a family of Gray codes for rank

modulation are also presented in [27]. A drawback to the rank-modulation scheme is

the need for a large number of comparisons when reading the induced permutation

from a set of n cell-charge levels. Instead, in a recent work [57], the n cells are locally

viewed through a sliding window resulting in a sequence of small permutations which

require less comparisons. Based on [57], gray codes are studied for the local rank

modulation scheme in order to simulate conventional multi-level flash cells while

retaining the benefits of rank modulation in [49, 15, 16].

The encoding approach for rank modulation in [27, 28] is based on the “push to

the top” operation, which raises the charge level of a single cell above the rest of the

cells. It is a good scheme that speeds up cell programming by eliminating the over

shooting problems. However, it is not optimal in terms of minimizing the increase

of cell levels. Gad presents a “minimal-push-up” operation model and proposes a

compressed encoding for rank modulation in [17].

An extension for rank modulation is to use permutations of a given multiset

to represent data. A series of papers [32, 31] discuss the permutation array under

10



the Chebysheve distance. Decoding algorithms for permutation arrays are proposed

in [55, 51, 33] and the capacity of a new WAM code based on permutation arrays is

studied in [14].

1.4.2 Storage for Low-Power Embedded Devices

Recent research focuses on optimizing use of off-chip flash memory. Off-chip mem-

ory allows for special features and larger memories than found on microcontrollers,

but introduces additional costs for components. Microhash [58] is a memory index

structure tailored for sensor devices with a large external flash memory. Mathur [39]

perform an extensive study of available flash memory candidates for sensor devices

and demonstrate that an off-chip parallel NAND flash memory decreases the en-

ergy consumption of storage. Considering the off-chip NAND flash memory as the

best candidates for sensor devicse, Agrawal [3] proposes a method that allows sensor

devices to exploit their flash memory while adapting to different amount of RAM.

However, our storage schemes are designed for already deployed low-power devices

that use on-chip flash memory. Moreover, while devices at the scale of sensor nodes

might switch to block-grained, large off-chip flash memory, RFID-scale platforms

might not benefit from this transition because of their challenging resource limita-

tions to drive I/O.

1.4.3 Error-Correcting Codes for Storage

An error-correcting code is a system of adding redundant data, or parity data,

to a message, such that it can be recovered by a receiver even when a number of

errors (up to the capacity of the code being used) are introduced. Error-correcting

codes are frequently used in reliable storage in media such as CDs, DVDs, hard disks

and flash memories [35]. ECCs are usually categorized into convolutional codes and

block codes. Convolutional codes work on bit or symbol streams of arbitrary length,
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while block codes are processed on fixed-size blocks. Examples of block codes are

repetition codes, Hamming codes, Reed-Solomon codes [44], turbo codes [7] and low-

density parity-check codes (LDPC) [19, 36]. Those codes are widely used in binary

symmetric channel (BSC) and not considering the asymmetric property.

With the rapid development of flash memories, there have been many research on

error correction for flash memories. Most previously published flash error correction

codes [11, 13, 22] are designed for NAND flash memory. Chen [12] mentions that

NOR flash normally does not require error correction. The errors in flash cell levels

often have an asymmetric property. These techniques consider neither the asym-

metry in flash memory nor the resource limitations of low-power embedded devices.

In [10], error-correcting codes that correct asymmetric errors of limited magnitude

are designed and in [61], ECCs that correct different numbers of asymmetric errors

depending on the codewords’ Hamming weights are described for flash memories.

Jiang [25] suggests error-correcting codes for multi-level cells (MLC) flash memory

that cope well with the WOM property of flash memory and Zhou [60] discusses

solutions by selecting dynamic reading thresholds to reduce the asymmetric errors

due to voltage or resistance drift in flash memory.

Many previous codes leverage the fact that each cell of MLC flash memory rep-

resents more than one bit of information. But the fact that single-level cells (SLC)

are more suitable for embedded devices, in addition to the occurrence of errors in

low-voltage conditions, requires a reconsideration of these codes for SLCs at low

voltage. Zemor [59] introduces error-correcting WOM codes for flash memory. They

suggest codes that are able to correct up to one error when the flash memory is given

enough voltage. This work does not account for errors that occur at low voltage.

Godard [20] proposes hierarchical code correction and reliability management for

NOR flash memory. This work considers on-chip ECCs such as Hamming codes to
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correct the errors in NOR flash memory.

The rest of the thesis is organized as follows. Chapter 2 describes a new data

representation scheme: rank modulation with multiplicity for flash memories. Chap-

ter 3 focuses on software techniques for reliable embedded flash storage under low

voltage. Chapter 4 presents content-assisted decoding algorithms for file recovery

in non-volatile memories. The thesis closes in Chapter 5, where general concluding

remarks and recommendations for future work are presented.
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2. RANK MODULATION WITH MULTIPLICITY

In this chapter, we present a novel data representation scheme for multilevel

flash memory cells—rank modulation with multiplicity—in which a set of n cells

stores information according to their charge levels’ relative order and multiple cells

can share the same rank. We focus on the rewriting of data based on the new

rank modulation scheme. We study its basic properties, including the rewriting

cost, optimal ways to change rank-modulation states, and the expansion of rank

modulation states given the rewriting cost.

2.1 Introduction

Flash memory is a dominant nonvolatile memory technology and a prominent

candidate to replace the well-established magnetic recording technology in the near

future due to its properties of high reliability and storage density, as well as relative

low cost. A prominent property of flash memories is that although it is easy to

increase a cell level, to decrease any cell level, a whole block of cells have to be erased

and reprogrammed, which is very costly. Therefore, fast and accurate programming

schemes for multilevel flash memories are a topic of significant research and design

efforts. The programming cycle sequence is designed to cautiously approach the

target charge level from below so as to avoid undesired global erases in case of

overshoots. Consequently, these attempts still require many programming cycles,

and they work only up to a moderate number of levels per cell. Besides of the need

for accurate programming, another problem for multilevel flash cells is errors that

originate from low memory endurance [9], by which a drift of threshold levels in

aging devices may cause programming and read errors. To minimize the number of

expensive block erasure operations caused by overshooting and to maintain the data
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integrity, a new data representation scheme is needed for flash memories.

2.1.1 Rank Modulation for Flash Memories

Rank modulation is a scheme that uses the relative order of cell levels to represent

data. Consider n cells c1, c2, . . . , cn whose levels are `1, `2, . . . , `n, respectively, where

`i 6= `j when i 6= j. Let (a1, a2, . . . , an) be a permutation of the set {1, 2, . . . , n},

such that `a1 > `a2 > · · · > `an . Then for 1 ≤ i ≤ n, the cell cai has the i-th highest

level and is said to have rank i. The rank modulation scheme uses the ranks of cells

(instead of the real values of the cell levels) to represent data; namely, the information

bits are mapped to the permutation (a1, a2, . . . , an) [27]. In this way, no discrete cell

levels are needed and only a basic charge-comparing operation is required to read

the permutation. Rank modulation can make it simpler and more robust to program

flash memory cells, where the cell levels are only allowed to monotonically increase

during the programming process. Besides, it eliminates the overshooting problem in

flash memory and reduces corruption due to retention.

2.1.2 Existing Codes for Rank Modulation

Rank modulation is first proposed in [27], in which balanced Gray codes are

constructed. They also investigate rewriting schemes for random data modification

and present both an optimal scheme for the worst case rewrite performance and an

approximation scheme for the average-case rewrite performance [27].

Error-correcting codes are very important for rank modulation, and they have at-

tracted interest among researchers. There have been some results on error-correcting

codes for rank modulation equipped with the Kendall’s τ -distance. In [29], an one-

error-correcting code is constructed based on metric embedding, whose size is prov-

ably within half of the optimal size. In [5], the capacity of rank modulation codes is

derived for the full range of minimum distance between codewords. There has also
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been some work on error-correcting codes for rank modulation equipped with the L∞

distance [54, 50]. The distance metric is more appropriate for cells where the noise in

cell levels has limited magnitudes, called limited-magnitude rank-modulation codes.

Some optimal codes for limited-magnitude errors are presented in [54, 50]. The sys-

tematic error-correcting codes for rank modulation is explored and proved to achieve

the same capacity as general error-correcting codes in [62].

2.1.3 Rank Modulation’s Drawback

Although rank modulation scheme is able to eliminate both the problem of over-

shooting while programming cells, and the problem of memory endurance in aging

devices, it makes sacrifice of reducing the storage capacity. n cells with q levels can

represent at most log2 q
n information bits with the concrete cell levels representation

schemes, however, using rank modulation scheme, it can only store at most log2 n!

bits.

2.1.4 Rank Modulation with Multiplicity

In order to improve the storage capacity of rank modulation, we study an ex-

tension of rank modulation, where multiple cells can have the same rank. The

general idea is that we see cells of similar levels as having the same rank, and

see cells of sufficiently different levels as having different ranks. There are nat-

urally various ways to define the similarity of cell levels, including the following

one. Let ∆ and δ be two parameters, where ∆ ≥ δ ≥ 0. For n cells whose levels

can be ordered as `a1 ≥ `a2 ≥ · · · ≥ `an , we require that for 1 ≤ i < n, either

`ai − `ai+1
≤ δ or `ai − `ai+1

> ∆. Then for 1 ≤ i < n, if `ai − `ai+1
≤ δ, we

say the cells cai and cai+1
have the same rank ; if `ai − `ai+1

> ∆, we say they have

different ranks. For example, assume δ = 0.2, ∆ = 0.5, n = 8 and (`1, . . . , `8) =

(0.8, 2.2, 1.56, 0.21, 0.2, 2.1, 1.35, 1.38). Then (a1, . . . , a8) = (2, 6, 3, 8, 7, 1, 4, 5),
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and (`a1 , . . . , `a8) = (2.2, 2.1, 1.56, 1.38, 1.35, 0.8, 0.21, 0.2); so the cells c2, c6 have

rank 1, c3, c8, c7 have rank 2, c1 has rank 3, and c4, c5 have rank 4. (We may further

bound the maximum difference between the levels of the cells of the same rank.) Here

the parameter ∆ ensures the cell levels for different ranks are sufficiently apart so that

they can tolerate noise better, and δ is chosen appropriately so that the cell levels

for the same rank can be programmed successfully with high probability. Allowing

cells to have the same rank can help achieve higher storage capacity. And since the

gap between the cell levels of different ranks does not have a specific required value

– in particular it is not upper bounded – the cells can still be programmed easily

without the risk of charge overshooting (as long as the cell levels of each individual

rank are programmed well.) We can use the same low-rank-to-high-rank method to

program cells as in [27]. Note that when δ = ∆ = 0, as no two cells can practically

have exactly the same level, the scheme is reduced to the original rank modulation

where every cell has a distinct rank [27].

Let

Sn ={(s1, s2, . . . , sk) | 1 ≤ k ≤ n; si ⊆ {1, 2, . . . , n} and |si| ≥ 1 for 1 ≤ i ≤ k;

∪ki=1 si = {1, . . . , n}; si ∩ sj = ∅ for i 6= j}

Every element (s1, s2, . . . , sk) in Sn is a partition of the set {1, 2, . . . , n}. We use

(s1, s2, . . . , sk) to denote the cells’ ranks, where for 1 ≤ i ≤ k, the cells with in-

dices in si have the rank i. (For the previous example, we have (s1, s2, . . . , sk) =

({2, 6}, {3, 7, 8}, {1}, {4, 5}).) The data are represented by the elements of Sn. Note

that the difficulty of programming cells varies for the different elements of Sn. It is

simple to program two cells into different ranks since we only need the gap between

their levels to be sufficiently large; but it is more challenging to program cells into
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the same rank because their levels need to be similar. The more cells share the same

rank, the more difficult it is to program them. In the following, we consider only the

elements of Sn where every rank accommodates at most λ cells; that is, let

Sn,λ = {(s1, s2, . . . , sk) ∈ Sn | ∀ i, |si| ≤ λ}

and we use only the elements of Sn,λ to represent data. The parameter λ determines

the tradeoff between the complexity of cell programming and the storage capacity.

We call the scheme rank modulation with multiplicity λ.

The rank modulation with multiplicity λ uses the elements in Sn,λ, called rank-

modulation states, to represent data. Let L = {0, 1, . . . , L− 1} denote the alphabet

of the stored data. Then there is a surjective map D : Sn,λ → L, such that the

rank-modulation state s = (s1, s2, . . . , sk) ∈ Sn,λ represents the data D(s) ∈ L. The

number of stored information bits, log2 L, can be maximized by letting L = |Sn,λ|;

and by letting L < |Sn,λ|, the cost of rewriting data can be reduced.

Example1. Let n = 3, λ = 2. Then Sn,λ = {({1}, {2}, {3}), ({1}, {3}, {2}), ({2}, {1}, {3}),

({2}, {3}, {1}), ({3}, {1}, {2}), ({3}, {2}, {1}), ({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2}),

({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1})}. So |S3,2| = 12. Up to log2 12 information

bits can be stored.

2.1.5 Storage Capacity Improvement by Rank Modulation with Multiplicity

The general value of |Sn,λ| can be computed by recursion:

|Sn,λ| =
min{n,λ}∑
i=1

(
n

i

)
|Sn−i,λ| for n > 0; and |S0,λ| = 1

We show |Sn,λ| for 2 ≤ n ≤ 16 and λ = 1, 2, 3, 4 in Figure 2.1.
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Figure 2.1: The value of |Sn,λ| for λ = 1, 2, 3, 4.

The plot for λ = 1 shows the maximum number of symbols it can represent by

using the original rank modulation scheme. When λ = 2, 3, 4, the cardinality of Sn,λ

is increased obviously shown in Figure 2.1.

2.2 Basic Operations

For the rewriting of data, we consider the memory model where the cell levels can

only increase, not decrease. For flash memories, this is the way cells are programmed

via charge injection (without the expensive block erasure operation). Let us define

the basic operation we can use to change the rank-modulation state, in order to

rewrite data. The basic operation is a “push operation”, where we either push a cell

to a higher rank (if there are fewer than λ cells of that rank), or push the cell to
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the top so that it has a higher rank than all the other n− 1 cells. More specifically,

let s = (s1, s2, . . . , sk) ∈ Sn,λ be a rank-modulation state. For any i, j such that

1 ≤ i < j ≤ k and |si| < λ, if |sj| > 1, with a push operation, we can change s to

(s1, . . . , si ∪ {p}, . . . , sj \ {p}, . . . , sk)

for some p ∈ sj; if |sj| = 1, we can change s to

(s1, . . . , si ∪ {p}, . . . , sj−1, sj+1, . . . , sk)

with p being the only element in sj. And for any i ∈ {1, 2, . . . , k} such that |si| > 1,

we can change s to

({p}, s1, . . . , si \ {p}, . . . , sk)

for some p ∈ si. For any i ∈ {2, 3, . . . , k} such that |si| = 1, we can change s to

({p}, s1, . . . , si−1, si+1, . . . , sk)

with p being the only element in si. (Note that if λ = 1, the push operation here is

reduced to the “push-to-top” operation for the original rank modulation scheme [27].)

2.3 Unweighted Rewriting Cost

For rewriting data, it is desirable to increase the cell levels as little as possible

with each rewrite, so that more rewrites can be performed before the cell levels

reach the maximum limit. (After that, the block erasure will be needed to lower the

cell levels back to the minimum value.) So in this section, we consider the cost of

changing the rank-modulation state from s to s′ as the minimum number of push

operations needed to change s to s′, which we denote by d(s, s′). We call d(s, s′) the
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unweighted rewriting cost. (A weighted version of the rewriting cost will be studied

in the latter section.) It is not hard to see that

max
s,s′∈Sn,λ

d(s, s′) = n− 1.

An example of s and s′ that achieve this maximum unweighted rewriting cost,

d(s, s′) = n− 1, is s = ({1}, . . . , {i− 1}, {i}, {i+ 1}, . . . , {n}) and s′ = ({1}, . . . , {i−

1}, {i+1}, . . . , {n}, {i}) for some 1 ≤ i < n. (Every cell except ci needs to be pushed

once to change s to s′.)

Given two rank-modulation states s, s′ ∈ Sn,λ, we consider how to compute the

unweighted rewriting cost d(s, s′), and how to change s to s′ with this minimum

number of push operations. For the special case λ = 1, the answer is known [27]:

given s = (s1, s2, . . . , sn) and s′ = (s′1, s
′
2, . . . , s

′
n), let φ : {1, 2, . . . , n} → {1, 2, . . . , n}

be a bijective map such that for i = 1, 2, . . . , n, we have s′i = sφ(i); let r be the

minimum integer in {1, 2, . . . , n} such that

φ(r + 1) < φ(r + 2) < · · · < φ(n);

then we have d(s, s′) = r, and the way to change the rank-modulation state from s

to s′ with r push operations is to sequentially pushed the cells with their indices in

s′r, s
′
r−1, . . . , s

′
1 to the top.

For the case λ ≥ 2, we use a tool called virtual levels.

Definition 2. Given a rank-modulation state s = (s1, s2, . . . , sk) ∈ Sn,λ, a “real-

ization” of s is a vector (v1, v2, . . . , vn) ∈ Nn that satisfies two conditions: (1) ∀

1 ≤ i ≤ k and j1, j2 ∈ si, we have vj1 = vj2; (2) ∀ 1 ≤ i1 < i2 ≤ k, j1 ∈ si1

and j2 ∈ si2, we have vj1 > vj2. We call vi the “virtual level” of the cell ci, for
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i = 1, 2, . . . , n.

Definition 3. Let v = (v1, v2, . . . , vn) be a realization of s ∈ Sn,λ, and let v′ =

(v′1, v
′
2, . . . , v

′
n) be a realization of s′ ∈ Sn,λ. The Hamming distance between v and

v′, denoted by H(v,v′), is H(v,v′) = |{i | 1 ≤ i ≤ n, vi 6= v′i}|. And we say “v′

dominates v” if two conditions are satisfied: (1) for i = 1, 2, . . . , n, we have v′i ≥ vi;

(2) we have {v′i | 1 ≤ i ≤ n, v′i ≤ max1≤j≤n vj} ⊆ {v1, v2, . . . , vn}. We denote “v′

dominates v” by v′ ≥ v.

Lemma 4. Let λ ≥ 2. Let s, s′ ∈ Sn,λ be two rank-modulation states, let v =

(v1, v2, . . . , vn) be a realization of s, and let x be a non-negative integer. Then, s can

be changed into s′ by at most x push operations if and only if there exists a realization

v′ = (v′1, v
′
2, . . . , v

′
n) of s′ such that v′ ≥ v and H(v,v′) ≤ x.

Proof. First, assume that s can be changed into s′ by y ≤ x push operations. We will

construct a corresponding realization v′ of s′ as follows. Initially, for i = 1, 2, . . . , n,

let v′i = vi. Then for i = 1, 2, . . . , y, if the i-th push operation pushes a cell cj1 to

the same rank as another cell cj2 , then assign to v′j1 the value of v′j2 . Otherwise, the

i-th push operation pushes a cell cj to a rank that is higher than all the other n− 1

cells; in this case, let z = max1≤b≤n v
′
b, and we assign to v′j the value z + 1. Then,

let v′ = (v′1, v
′
2, . . . , v

′
n). It is simple to see that v′ is a realization of s′ and v′ ≥ v.

Since at most y cells are pushed, at least n− y cells have the same virtual levels in

v and v′; so we have H(v,v′) ≤ y ≤ x.

Now consider the other direction. Assume that there exists a realization v′ =

(v′1, v
′
2, . . . , v

′
n) of s′ such that v′ ≥ v and H(v,v′) ≤ x. We will show how to change

s to s′ with H(v,v′) push operations. We first partition {v′1, v′2, . . . , v′n} into two
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subsets A and B as follows:

A = {v′i | 1 ≤ i ≤ n, v′i > max
1≤j≤n

vj};

B = {v′i | 1 ≤ i ≤ n, v′i ≤ max
1≤j≤n

vj}.

Since v′ ≥ v, we know that B ⊆ {v1, v2, . . . , vn}. Here B is the set of virtual levels

that are retained when we change s into s′, and A is the set of virtual levels in

v′ that are higher than any virtual level in v. For convenience, we shall denote A

as A = {a1, a2, . . . , a|A|} such that a1 < a2 < · · · < a|A|, and denote B as B =

(b1, b2, . . . , b|B|) such that b1 > b2 > · · · > b|B|.

We change the rank-modulation state from s to s′ as follows. Initially, for i =

1, 2, . . . , n, let the cell ci have the virtual level vi. We will push the cells to higher

virtual levels, and the rank-modulation state – which is determined by the virtual

levels of the n cells – will change accordingly. We push the cells using the following

two steps:

1. For i = 1, 2, . . . , |A|, push the cells in {cj | 1 ≤ j ≤ n, v′j = ai} to the virtual

level ai.

2. For i = 1, 2, . . . , |B|, push the cells in {cj | 1 ≤ j ≤ n, vj < v′j = bi} to the

virtual level bi.

During the above two steps, we will use the following method to make sure that for

i = 1, 2, . . . , |B|, there is always at least one cell of the virtual level bi:

• When we are to push a cell ci from the virtual level j1 ∈ B to j2 > j1, if ci

is the only cell of virtual level j1 at that moment, then before pushing ci, we

first push a cell in {cz | 1 ≤ z ≤ n, v′z = j1} to the virtual level j1. (Note that
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if that cell is also the only cell of its own virtual level at that moment, then

the same rule applies. So there can be a chain reaction of cell pushing of this

type. But this chain reaction will stop somewhere because the virtual level of

the concerned cell keeps decreasing.)

In the above process, we push every cell at most once.

When the above process ends, the cells have virtual levels (v′1, v
′
2, . . . , v

′
n), which

is a realization of s′. A cell ci (1 ≤ i ≤ n) is pushed if and only if vi 6= v′i; and

if it is pushed, it is pushed directly to the virtual level v′i. So the number of push

operations equals H(v,v′). We now show that these H(v,v′) push operations are

all valid operations for the rank-modulation states. Step 1) consists of the “push-

to-top” operations, and we sequentially push the cells to higher and higher ranks;

clearly, the number of cells at the virtual level ai (for 1 ≤ i ≤ |A|) is never more

than λ at any moment. Step 2) consists of the operations that push a cell to a higher

and existing rank; and since we process the virtual levels b1, b2, . . . , b|B| sequentially

(from high to low), when we process the virtual level bi (for 1 ≤ i ≤ |B|), all the

cells that are originally at level bi have already been pushed up; so as we push cells

from below into the level bi, there will be no more than λ cells in that level. So we

have changed s into s′ with H(v,v′) ≤ x valid push operations.

Theorem5. Let λ ≥ 2. Let s = (s1, s2, . . . , sk) ∈ Sn,λ and s′ = (s′1, s
′
2, . . . , s

′
k′) ∈ Sn,λ

be two rank-modulation states, let v = (v1, v2, . . . , vn) be a realization of s, and define

V as V = {u | u is a realization of s′, u ≥ v}. Then we have

d(s, s′) = min
u∈V

H(v,u).

Furthermore, define v′ = (v′1, v
′
2, . . . , v

′
n) as follows:

1. Let hk′ = maxj∈s′
k′
vj.
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∀ i ∈ s′k′, let v′i = hk′.

2. For i1 = k′ − 1, k′ − 2, . . . , 1, do:

• If maxj∈s′i1
vj > hi1+1, then let

hi1 = maxj∈s′i1
vj;

if maxj∈s′i1
vj ≤ hi1+1 < max1≤j≤n vj, then let

hi1 = min{vj | 1 ≤ j ≤ n, vj > hi1+1};

if maxj∈s′i1
vj ≤ hi1+1 and hi1+1 ≥ max1≤j≤n vj, then let

hi1 = hi1+1 + 1.

• ∀ i2 ∈ s′i1, let v′i2 = hi1.

Then we have

v′ ∈ V and H(v,v′) = min
u∈V

H(v,u)

Proof. Lemma 4 leads to d(s, s′) = minu∈V H(v,u). When we assign values to

(v′1, v
′
2, . . . , v

′
n) (which are virtual levels for the n cells corresponding to the rank-

modulation state s′), we are sequentially assigning virtual levels to the cells with

indices in s′k′ , s
′
k′−1, . . . , s

′
1; and for i = k′, k′ − 1, . . . , 1, we give the cells with indices

in s′i a virtual level that is as small as possible, as long as the condition v′ ∈ V is

satisfied. A proof by induction can show that compared to all the realizations of s′

in V , here each hi (1 ≤ i ≤ k′) – and therefore each virtual level v′i (1 ≤ i ≤ n)

– is individually minimized, and a cell is pushed only when necessary. (Since the

cells are pushed only upward, minimizing hi is a greedy and optimal approach for

minimizing hi−1, hi−2, . . . , h1 and for minimizing the number of cells that need to be

pushed.) So H(v,v′) = minu∈V H(v,u).

Theorem 5 shows how to find the realization v′ for s′ such that v′ dominates v

(the realization of s) and H(v,v′) = d(s, s′). The proof of Lemma 4 shows given such
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a realization v, how to change the rank-modulation state from s to s′ with d(s, s′)

push operations. By combining them, we can not only compute d(s, s′), but also

transform s to s′ with the minimum unweighted rewriting cost. We show an example

below.

Example 6. Suppose λ = 2, n = 8, s = ({2, 3}, {7}, {4, 5}, {1, 8}, {6}), s′ =

({2, 3}, {4}, {1}, {7, 8}, {5, 6}). We let v = (2, 5, 5, 3, 3, 1, 4, 2) be a realization of s.

(See Figure 2.2.) Then by Theorem 5, we get the realization v′ = (5, 7, 7, 6, 3, 3, 4, 4)

of s′. (It can be seen that v′ ≥ v.) So we get d(s, s′) = H(v,v′) = 6. Then by the

steps specified in the proof of Lemma 4, we get the 6 push operations that change

s into s′. (See Figure 2.2, where the push operations are shown as arrows, and the

numbers beside arrows represent their order.)

2.4 Sizes of Spheres

For a rank-modulation state s ∈ Sn,λ and an unweighted rewriting cost r ≥ 0, we

define the sphere of unweighted radius r centered at s as

θ(s, r) , {u ∈ Sn,λ | d(s,u) = r}

and define the ball of unweighted radius r centered at s as

β(s, r) , {u ∈ Sn,λ | d(s,u) ≤ r}

Clearly, |β(s, r)| =
∑r

i=0 |θ(s, i)|. Knowing the sizes of spheres and balls is useful for

analyzing the performance of rewriting. For example, when the states in Sn,λ are

used to represent data of the alphabet L, if the rank-modulation state is currently

s ∈ Sn,λ, for the next rewrite, the unweighted rewriting cost in the worst case is at
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Figure 2.2: Change rank-modulation state from s to s′ with d(s, s′) pushes.

least min{r | r ≥ 0, |β(s, r)| ≥ |L|}.

We show how to compute |θ(s, r)| for s ∈ Sn,λ and 0 ≤ r ≤ n − 1. If λ = 1, we

have

|θ(s, r)| = n!

(n− r)!
− n!

(n− r + 1)!

for 1 ≤ r ≤ n − 1 and |θ(s, 0)| = 1 [27]. So in the following, we consider λ ≥ 2.

Fix a realization v = (v1, v2, . . . , vn) for s = (s1, s2, . . . , sk) – say the realization

where the n cells have virtual levels from 1 to k – and we see that for any s′ ∈ Sn,λ,

Theorem 5 finds a unique realization v′ = (v′1, v
′
2, . . . , v

′
n) for s′ such that v′ ≥ v,

H(v,v′) = d(s, s′) and every virtual level v′i (1 ≤ i ≤ n) is minimized. So to compute

|θ(s, r)|, the number of states in the sphere θ(s, r), we can equivalently compute the

number of such unique realizations (of the states in θ(s, r)), because they have a one

to one correspondence.
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Let σ1, σ2, . . . , σκ and X be κ+1 mutually disjoint sets of cells, where 1 ≤ |σi| ≤ λ

for 1 ≤ i ≤ κ and |X| = x ∈ {0, 1, . . . , n− 1}. For i = 1, . . . , κ, we assign the virtual

level κ + 1 − i to the cells in the set σi. Let δ ∈ {0, 1, . . . , n − 1}, t ∈ {1, 2, . . . , λ},

γ ∈ {x, x+ 1, . . . , n− 1} and tag ∈ {0, 1} be given parameters. Let R denote the set

of realizations (that is, assignments of virtual levels to the x +
∑κ

i=1 |σi| cells) that

we can change this current realization into, given the following constraints:

1. We obtain a realization in R by pushing γ − x cells in ∪κi=1σi to higher virtual

levels, and by assigning the x cells in X to the virtual levels between 1 and

κ+ δ. Every cell is pushed or assigned at most once. For the realization in R,

every virtual level has at most λ cells.

2. For a realization in R, the maximum virtual level that has a cell is level κ+ δ,

and exactly t cells are in that virtual level κ+ δ.

3. For a realization inR, if a cell in ∪κi=1σi is pushed to a level j ∈ {2, 3, . . . , κ+δ},

or if a cell inX is assigned to a level j ∈ {2, 3, . . . , κ+δ}, then for this realization

in R, either some cell is in the virtual level j − 1, or 2 ≤ j ≤ κ and some cell

in σκ+1−j is in the level j.

4. If tag = 1, then no cell in X can be assigned to the virtual level 1 unless for

this realization in R, some cell in σκ is in the virtual level 1.

We use f(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag) to denote the cardinality of R. We

can see that the sphere size

|θ(s, r)| =
r∑
δ=0

λ∑
t=1

f(|s1| , |s2| , . . . , |sk| ; 0; δ; t; r; 0).

We show how to use recursion to compute the value of f(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag).

For simplicity, we only introduce the main recursion, and skip introducing the values
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of f(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag) for the boundary cases. (The boundary values

can be obtained easily.)

To change the given realization to a realization in R, say that we push y1 cells

in σκ to the maximum virtual level k + δ, push y2 cells in σκ to the virtual levels

2, 3, . . . , k + δ − 1, and assign y3 cells in X to the virtual level 1. Note that once

y1, y2, y3 are fixed, the number of cells in level 1 becomes fixed, and we do not need

to consider it furthermore. So we get the recursion:

• If tag = 0, then let

P1 ,{(y1, y2, y3) ∈ Z3 | 0 ≤ y1 < t; 0 ≤ y2 ≤ |σκ| ; 0 ≤ y3 ≤ min{x, λ− |σκ|+ y1 + y2};

either “y1 + y2 < |σκ| ” or “y1 + y2 = |σκ| and y3 > 0”},

P2 ,{(y1, y2, y3) ∈ Z3 | 0 ≤ y1 ≤ min{t− 1, |σκ|}; y2 = |σκ| − y1; y3 = 0},

P3 ,{(y1, y2, y3) ∈ Z3 | y1 = t; 0 ≤ y2 ≤ |σκ| ; 0 ≤ y3 ≤ min{x, λ− |σκ|+ y1 + y2};

either “y1 + y2 < |σκ| ” or “y1 + y2 = |σκ| and y3 > 0”},

P4 ,{(y1, y2, y3) ∈ Z3 | y1 = t; y2 = |σκ| − t ≥ 0; y3 = 0}

If tag = 1, then let

P1 ,{(y1, y2, y3) ∈ Z3 | 0 ≤ y1 < t; 0 ≤ y2 < |σκ| − y1; 0 ≤ y3 ≤ min{x, λ− |σκ|+ y1 + y2}},

P2 ,{(y1, y2, y3) ∈ Z3 | 0 ≤ y1 ≤ min{t− 1, |σκ|}; y2 = |σκ| − y1; y3 = 0},

P3 ,{(y1, y2, y3) ∈ Z3 | y1 = t; 0 ≤ y2 < |σκ| − t; 0 ≤ y3 ≤ min{x, λ− |σκ|+ y1 + y2}},

P4 ,{(y1, y2, y3) ∈ Z3 | y1 = t; y2 = |σκ| − t ≥ 0; y3 = 0}
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• We have

f(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag) =
∑

(y1,y2,y3)∈P1

(|σκ|
y1

)(|σκ|−y1
y2

)(
x
y3

)
f(|σ1| , |σ2| ,

· · · , |σκ−1| ; x+y2−y3; δ; t−y1; γ−y1−y3; 0) +
∑

(y1,y2,y3)∈P2

(|σκ|
y1

)(|σκ|−y1
y2

) (
x
y3

)
f(|σ1| , |σ2| , · · · , |σκ−1| ;x+ y2; δ; t− y1; γ − y1; 1) +

∑
(y1,y2,y3)∈P3

(|σκ|
y1

)(|σκ|−y1
y2

)
(
x
y3

)∑
1≤z≤λ f(|σ1| , |σ2| , · · · , |σκ−1| ;x+y2−y3; δ−1; z; γ−y1−y3; 0)+

∑
(y1,y2,y3)∈P4(|σκ|

y1

)(|σκ|−y1
y2

)(
x
y3

)∑
1≤z≤λ f(|σ1| , |σ2| , · · · , |σκ−1| ;x+ y2; δ − 1; z; γ − y1; 1).

Given any s ∈ Sn,λ and r ≤ n− 1, the time complexity of computing the sphere

size |θ(s, r)| using the above recursion is O(n4λ5).

Theorem 7. The above recursion correctly computes |θ(s, r)|.

Proof. In order to compute |θ(s, r)|, we enumerate all the possible ways to push r

cells by the recursion. The recursion is processed in the order of cells’ virtual levels:

the cells in σκ+1−i, 1 ≤ i ≤ κ with virtual level i are processed in the i-th round. If

a cell is pushed, it is only pushed once. We can get four disjoint cases after pushing

y1 + y2 cells in σκ and assigning y3 cells in X to some virtual levels:

1. P1: σκ is not empty, and at least one cell with the maximum virtual level k+ δ

is not coming from σκ.

2. P2: σκ is empty (no cell is assigned to the same virtual level as cells in σκ

originally have), and at least one cell with the maximum virtual level k + δ is

not coming from σκ.

3. P3: σκ is not empty, and all the cells with the maximum virtual level k+ δ are

coming from σκ.

4. P4: σκ is empty (no cell is assigned to the same virtual level as cells in σκ

originally have), and all the cells with the maximum virtual level k + δ are

coming from σκ.
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For each case, we set the appropriate parameters in the above recursive function.

Since it covers all the possible ways to push r cells, the result from the recursion is

no less than |θ(s, r)|.

On the other side, we need to prove all the ways to push cells getting from the

recursion are unique and valid. It is easily to see that all the push operation sequences

are unique because the above four cases are disjoint and each cell is processed only

once. In order to prove they are valid, we need to show 1) at each step, no more

than λ cells are with the same virtual level; 2) If a cell is pushed, it is pushed to the

smallest virtual level. The parameters’ upper bounds in P1, P2, P3, P4 as well as the

recursive function guarantee that the number of cells at each virtual level is never

more than λ at any moment. The parameter tag is used to assign each cell to the

smallest virtual level in its realization. For the case P2 and P4, no cell is assigned to

the same virtual level as cells in σκ originally have in the realization, we label tag to

1. Then during the next round recursion, (when we deal with the cells in σκ−1), no

cell in X can be assigned to the virtual level as cells in σκ−1 originally have, unless in

this realization, some cells in σκ−1 are not pushed up. Otherwise, the cells in X can

be assigned to virtual level as cells in σκ originally have, which is lower than virtual

levels in σκ−1, when we deal with the cells in σκ to get the state s′. Therefore, the

tag parameter guarantees that each cell is assigned to the smallest virtual level to

reach state s′, such that d(s, s′) = r.

2.5 Weighted Rewriting Cost

We have studied the unweighted rewriting cost, where every push operation is

considered to have cost one. In practice, however, the operations can have different

cost values: a push operation that increases the cell level less is more preferable than

a push operation that increases the cell level more. So in this section, we present
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the definition of weighted rewriting cost, which measures the cost of push operations

based on how much they increase the cell levels.

As a combinatorial definition, we use the help of virtual levels. Let s = (s1, s2, . . . , sk) ∈

Sn,λ and s′ ∈ Sn,λ be two rank-modulation states. Let v = (v1, v2, . . . , vn) be

the unique realization of s such that {v1, v2, . . . , vn} = {1, 2, . . . , k}. Let V ,

{u | u is a realization of s′, u ≥ v}. By the previous analysis, we know that a

sequence of push operations that changes the rank-modulation state from s to s′ also

changes the realization from v to some u ∈ V (and vice versa). Virtual levels are a

reasonable simplification of real cell levels. So we define the weighted rewriting cost

of changing s into s′ as

w(s, s′) = min
(u1,u2,...,un)∈V

n∑
i=1

(ui − vi).

Let v′ = (v′1, v
′
2, . . . , v

′
n) be the unique realization of s′ that is generated by Theorem 5.

It has been shown that v′ minimizes the virtual level of every cell; so we have

w(s, s′) =
n∑
i=1

(v′i − vi) =
n∑
i=1

min
(u1,...,un)∈V

(ui − vi).

And it is not hard to see that

max
s,s′∈Sn,λ

w(s, s′) = n(n− 1).

Given a state s ∈ Sn,λ and an integer r ≥ 0, we can define the sphere of weighted

radius r centered at s as

Θ(s, r) , {u ∈ Sn,λ | w(s,u) = r}
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The sphere size, |Θ(s, r)|, can be computed with a similar recursion as the one in the

previous section.

Like the previous section, we also define σ1, σ2, . . . , σκ and X to be κ+1 mutually

disjoint sets of cells, where 1 ≤ |σi| ≤ λ for 1 ≤ i ≤ κ and |X| = x ∈ {0, 1, . . . , n−1}.

And δ ∈ {0, 1, . . . , n − 1}, t ∈ {1, 2, . . . , λ}, γ ∈ {x, x + 1, . . . , n − 1} and tag ∈

{0, 1} are also the given parameters. Let R denote the set of realizations (that is,

assignments of virtual levels to the x+
∑κ

i=1 |σi| cells) that we can change this current

realization into, given the following constraints:

1. We obtain a realization in R by pushing some cells in ∪κi=1σi to higher virtual

levels, and by assigning the x cells in X to the virtual levels between 1 and

k + δ, with the summation of cells’ virtual level increased by γ. Every cell is

pushed or assigned at most once. For the realization in R, every virtual level

has at most λ cells.

2. For a realization in R, the maximum virtual level that has a cell is level k+ δ,

and exactly t cells are in that virtual level k + δ.

3. For a realization inR, if a cell in ∪κi=1σi is pushed to a level j ∈ {2, 3, . . . , k+δ},

or if a cell inX is assigned to a level j ∈ {2, 3, . . . , k+δ}, then for this realization

in R, either some cell is in the virtual level j − 1, or 2 ≤ j ≤ κ and some cell

in σκ+1−j is in the level j.

4. If tag = 1, then no cell in X can be assigned to the virtual level 1 unless for

this realization in R, some cell in σκ is in the virtual level 1.

We use g(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag) to denote the cardinality of R. We can

33



see that the sphere size

|Θ(s, r)| =
min{n−1,r}∑

δ=0

λ∑
t=1

g(|s1| , |s2| , . . . , |sk| ; 0; δ; t; r; 0).

We use the same way to change the given realization to a realization in R and

define the set P1, P2, P3, P4 as the previous section. We have

g(|σ1| , |σ2| , . . . , |σκ| ;x; δ; t; γ; tag) =
∑

(y1,y2,y3)∈P1

(|σκ|
y1

)(|σκ|−y1
y2

)(
x
y3

)
g(|σ1| , |σ2| , · · · ,

|σκ−1| ; x+y2−y3; δ; t−y1; γ−y1(δ−1+κ)−y2−x+y3; 0) +
∑

(y1,y2,y3)∈P2

(|σκ|
y1

)(|σκ|−y1
y2

)(
x
y3

)
g(|σ1| , |σ2| , · · · , |σκ−1| ; x+y2; δ; t−y1; γ−y1(δ−1+κ)−y2−x; 1)+

∑
(y1,y2,y3)∈P3

(|σκ|
y1

)
(|σκ|−y1

y2

)(
x
y3

)∑
1≤z≤λ g(|σ1| , |σ2| , · · · , |σκ−1| ; x+ y2 − y3; δ − 1; z; γ − y1(δ − 1 + κ)−

y2−x+y3; 0)+
∑

(y1,y2,y3)∈P4

(|σκ|
y1

)(|σκ|−y1
y2

)(
x
y3

)∑
1≤z≤λ g(|σ1| , |σ2| , · · · , |σκ−1| ;x+y2;

δ − 1; z; γ − y1(δ − 1 + κ)− y2 − x; 1).

Theorem 8. The above recursion correctly computes |Θ(s, r)|.

Proof. The recursion is similar to the unweighted case, except for the parameter γ.

By pushing y1 cells in σκ to virtual level k + δ, y2 cells in σκ to some virtual level

less than k+ δ and assigning y3 cells in X to virtual level k+ 1−κ, the cells’ virtual

level is totally increased by y1(δ − 1 + κ) + y2 + x − y3 or y1(δ − 1 + κ) + y2 + x

(when y3 = 0). Therefore, the parameter γ is set as γ − y1(δ − 1 + κ)− y2 − x+ y3

or γ − y1(δ − 1 + κ) − y2 − x in the recursive function g(·), which is equal to the

remaining weighted distance from the current state to the final state. The other part

is the same as the proof of Theorem 7.
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3. EXPLOITING HALF-WITS: SMARTER STORAGE FOR LOW-POWER

DEVICES

The high voltage requirements of on-chip flash memory is a barrier to reducing the

total energy consumption of low-power devices. This work examines the main factors

affecting the behavior of flash memory at low voltage. Based on our observations

of flash memory behavior at low voltage, we proposed three storage schemes to

enable reliable storage on flash memory. The first scheme, in-place writes, makes

attempts at write time to store a value correctly in the given memory address. The

second scheme, multiple-place writes, tries to decrease the probability of error by

making attempts at both write time and read time. This method stores data in more

than one location hoping that the data will be stored correctly in at least one of

these locations. The third scheme is a hybrid error-correcting code combining Reed-

Solomon (RS) [44] and Berger [6] codes. The Berger code detects asymmetric errors

caused by the low write voltage. Given the approximate locations of errors, which are

determined by the Berger code, the RS code efficiently recovers the originally stored

data. Our evaluation shows that in-place writes can save 34% of energy consumption

for a sensing workload on the MSP430 microcontroller.

3.1 Storage on Low-Power Devices: Limitations and Challenges

Billions of microcontrollers appear in embedded systems ranging from thermostats

and utility meters to tollway payment transponders and pacemakers. Recently years

have witnessed a proliferation of low-power embedded devices [4, 8, 37], many of

which use on-chip flash memory for storage.

The relatively high voltage requirement of flash memory (Table 3.1) introduces

challenges for energy-efficient designs aiming to maximize the system’s effective life-
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time. Instrumenting the system to operate at a fixed low voltage vl is one way to

reduce power consumption; however, achieving consistently correct results for flash

writes are guaranteed only if vl is higher than a manufacturer-specified threshold.

Moreover, in energy-limited devices that cannot provide a constant supply voltage,

scenarios may arise in which the flash memory is the only part of the circuit whose

operating requirements are not met. In such cases, applications can expect normal

operation when they are not performing flash writes and unpredictable behavior

when they are.

Table 3.1: CPU vs flash memory voltage requirements

Microcontroller CPU Min. voltage Flash write Min. voltage

TI MSP430 [24] 1.8V 2.2V or 2.7V

PIC32M [40] 2.3V 3.0V

ATmega128L [53] 2.7V 4.5V

Because embedded flash memory typically shares a common voltage supply with

the CPU (separate power rails are cost prohibitive), a single voltage must be chosen

that satisfies different components with different minimum voltage requirements.

Current embedded systems address the voltage limitations of flash memory in one of

the following ways:

1. A system can choose a high supply voltage sufficient for both reliable writes to

flash memory and reliable CPU operation. This is a common choice for embed-

ded systems with on-chip flash memory, but causes the CPU to consume more

energy than necessary. For example, the TI MSP430F2131 microcontroller [24]
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in active mode consumes almost double the power when operating at 2.2V in-

stead of 1.8V. Its on board flash memory requires 2.2V for reliable writes to

flash memory.

2. A system can choose a low supply voltage sufficient for CPU operation, but

insufficient for reliable writes to flash memory. This choice allows the energy

source to last longer and for the CPU to compute more efficiently. An example

of such a system is the Intel WISP [48], a batteryless RFID tag that sets

its operating voltage to 1.8V—below its onboard flash memory’s 2.2V specified

minimum—to save power. Flash memory cannot be written on this device. The

microcontroller could use a low-power wireless interface (e.g., RF backscatter)

to store data remotely. Such an approach, however, raises privacy as well as

performance concerns [46].

3. A system can modify hardware to enable dynamic voltage scaling. This ap-

proach requires additional analog circuitry such as voltage regulators and GPIO-

controlled switches. Because many embedded systems are extremely cost sen-

sitive, this choice is unattractive for high-volume manufacturing with low per-

unit profit margins. An additional 50 cent part on a thermostat control can be

cost prohibitive. Moreover, small changes may necessitate a new PCB layout—

upsetting the delicate supply chain and invalidating stocked inventories of al-

ready fabricated PCBs.

Approach Our approach reduces the operating voltage of the microcontroller

to a point at which the resulting power savings of the CPU portion of the workload

exceeds the power cost of the algorithms for ensuring reliable writes (Figure 3.1). Our

low-power storage scheme benefits from the accumulative property of flash memory

by repeating writes to the same cell. Each write operation will increase the chance
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of success by forcing some number of state transitions. That is, a failed write is

still progress. The technique requires minimal or no hardware modification and also

allows for RFID-scale and small-scale energy harvesting devices to better exploit

capacitors as power supplies. The capacitor provides finite energy and therefore the

voltage decays exponentially. The long tail of the curve provides insufficient voltage

for conventional writes to flash memory, but it is sufficient for reliable storage with

our techniques.

Figure 3.1: Operating at a lower voltage and tolerating errors instead of the conven-
tional case of choosing the highest minimum voltage requirement may help decrease
energy consumption. Considering that Energy = voltage2×time/resistance, decreas-
ing voltage decreases the energy consumption quadratically.

Of wits and half-wits In 1982, Rivest and Shamir introduced the notion of

write-once bits (Wits) in the context of coding theory to make write-once storage

behave like read-write storage [45]. Bits in flash memory behave like wits because a

programmed bit cannot be reprogrammed without calling an energy-intensive erase

operation to a block of memory much larger than a single write. We coin the term

Half-Wits to refer to wits used in a manner inconsistent with a manufacturer’s spec-

ifications, resulting in stochastic behavior. Half-Wits in this work are wits of flash

memory used below the recommended supply voltage.

In examining error rates at low voltage and constructing a system that provides
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reliable storage despite errors, our work suggests that it is appropriate to relax pre-

viously assumed constraints and reexamine the costly digital abstractions layered

above on-chip flash memory.

3.2 Behavior of Storage on Half-Wits

Before we can design effective coding algorithms, we must first understand the

behavior of errors on Half-Wits. By tolerating a lower voltage, an energy-limited

embedded device can decrease its power consumption and therefore extend its lifetime

on a finite energy supply. The minimum operating voltage of embedded devices that

use non-volatile on-chip storage is usually determined by the requirements of flash

memory. For example, the TI MSP430 microcontroller can operate at 1.8V, but its

nominal minimum voltage for flash writing and erasure is 2.2V (Table 3.1). Increasing

operating voltage from 1.8V to 2.2V causes the CPU to draw about 50% more power

without commensurate gain in clock speed because of the voltage squaring effect.

The drawback of lowering voltage below flash memory requirements in order

to save power is the extra work necessary to ensure reliable writes to flash memory.

Figure 3.2 shows the result of running a MSP430F2131 at three different voltages—all

lower than the nominal minimum for flash writes—to store electrocardiogram (ECG)

data samples from the PhysioNet database [21] in flash memory. Many medical sensor

networks [38, 52] that provide ECG measurements are energy-limited and use on-chip

flash memory as primary storage.
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(a) Writes at 2.0V

(b) Writes at 1.9V

(c) Writes at 1.8V

Figure 3.2: As operating voltage decreases, flash-write errors increase. (a) shows
an original ECG signal correctly stored at 2.0V (despite operating below the rec-
ommended threshold). As the voltage decreases in (b) and further in (c), erroneous
writes (light-colored spikes, height varying according to the magnitude of the error)
become more common. The back line shows the reconstructed signal that includes
the errors.
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These graphs support the intuition that flash writes may not be error-free at low

voltages and that there exist voltage levels below the minimum recommended voltage

at which flash writes function correctly. To investigate the behavior of flash memory

at low voltage and determine the factors influencing the error rate, we performed

experiments on an automated testbed designed by Salajegheh [47].

3.2.1 Experimental Methodology

We use a consistent experimental setup for all of the experiments in this work.

Our choice of test platform is a TI MSP430 microcontroller with on-chip flash mem-

ory. More specifically, we tested two types of TI microcontrollers: MSP430F2131 and

MSP430F1232. The MSP430 is common in low-power embedded applications; we

note especially its use in sensor motes [43] and RFID-scale batteryless devices [48].

In our setup, an MSP430 microcontroller runs a test program that involves both

computation and flash operation. We power the microcontroller with an external

power supply held steady at a voltage below the nominal minimum for flash writes.

An external chip captures the contents of flash memory after each experiment.

To automate the testing of flash write behavior, we use a flash memory testbed

designed by Salajegheh [47]. The two major components of the testbed are a test

platform and a connected monitoring platform. The monitoring platform is based

on an additional MSP430 microcontroller. The test platform runs a test program at

low voltage. When the test program completes, the test platform sends the result

of the experiment to the monitoring chip via GPIO pins. The test and monitoring

platforms share 8+1 GPIO pins to carry one byte of data and a clock signal. Once the

test platform puts data on its eight data pins, it raises the clock pin. The monitoring

chip reads data from its GPIO pins whenever it detects a rising clock signal and logs

the results in its own flash memory. The monitoring chip runs at a voltage above
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the nominal minimum for its own flash writes, thereby storing reliably.

3.2.2 Unreliable, Low-Voltage Flash Memory Writes

The TI MSP430 datasheet [24] states that flash writes at any voltage lower than

the nominal minimum voltage (which is 2.2V in the case of MSP430F2131) are not

guaranteed to succeed. However, as the graphs in Figure 3.2 show, not all flash

writes fail at low voltages. On the contrary, in this specific experiment, most of the

writes(95.24% at 1.9V and 89.88% at 1.8V) succeed.

In a NOR flash memory, all cells are initialized to 1, and writing data to a byte of

flash memory means setting an appropriate number of bits to 0 by applying electrical

charge to the corresponding flash cells. At low voltage, there may be insufficient

charge to effect a transition to 0, and a flash write may store fewer 0 bits than

requested [42]. To be specific, we define errors as follows: when a byte of data d1 is

written in a flash memory address and then data d2 is read from that address, there

is an error if d1 6= d2. An experiment, explained next, investigates the behavior of

low-voltage flash memory and gives bit-level results.

Using the automated flash testbed explained in Section 3.2.1, the test platform

runs a program that writes numbers {0, · · · , 255} to flash memory, then sends the

contents of its flash memory to the monitoring platform via GPIO pins. Table 3.2

compares the written data and the intended data for cases in which errors occurred.

It demonstrates that, when both are represented as integers, the absolute value of

the stored data is always greater than or equal to the absolute value of the intended

data.
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Table 3.2: Erroneous flash writes at low voltage. Insufficient electrical charge may
result in some bits failing to transition from 1 (the initial state) to 0.

Intended 00001100 00001101 00001110 00010100 00100111 10100100
(Binary)

Written 11101101 01011111 11111111 11111111 00101111 10101111

Hamming distance 4 3 5 6 1 3

3.2.3 Determining Factors That Affect Error Rates

We consider the following potential factors that may affect the error rate of setting

a bit to 0 in a flash memory at low voltage: voltage level, Hamming weight of the

data, wear-out history, permutation of 0s, and neighbor cells. The effects of each of

these variables are evaluated by designing an experiment to test a hypothesis. All

the experiments are performed on flash memories with minimal previous usage unless

stated otherwise.

Voltage level: Our hypothesis is that the lower a chip’s operating voltage (and

that of its on-chip flash memory), the higher the error rate of flash writes. Figure 3.3

confirms this hypothesis; moreover, the graph shows that for different chips of exactly

the same type, the error rate can be different even under equivalent voltages.

Experiment: Two MSP430F2131 and two MSP430F1232 microcontrollers run a

program that writes zeros to the data segment of their flash memory. We increased

the microcontroller’s operating voltage in 10-mV steps, and used the monitoring

platform to compute the byte error rates over 50 runs.
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Figure 3.3: Flash write error rates decrease as voltage increases. This trend holds
for all the chips (MSP430F2131 and MSP430F1232) we tested, though error rates
differ even between chips of the same model.

Hamming weight: In an erased (i.e., having value 1) flash cell, writing a 1 is

always error-free because no change to the cell is necessary. However, setting a cell

to 0 might fail if there is not enough charge accumulated in that cell. Our hypothesis

is that the lower the Hamming weight (number of 1s in the binary representation)

of a number, the higher the probability of error when writing that number to flash

at low voltage.

Based on per-byte Hamming weight, there are nine equivalence classes of integers

that can be represented in one byte. The weight-8 equivalence class has only one

member, 255, which can always be written to an erased flash cell without error.

The other extreme case is the weight-0 equivalence class, containing only 0s, that

requires all eight bits to transition to 0. Figure 3.4 shows the byte error rate for all

nine equivalence classes, measured in the following experiment.

Experiment: At 1.84V, a MSP430F2131 runs a program that writes numbers

from the same equivalence class to one block (64 bytes) of flash memory. We used

the monitoring platform to compute the average byte error rate of flash writes for
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each of the nine equivalence classes over 50 runs.

Corollary: To exploit the fact that the Hamming weight of a number affects error

rate when written to flash, one can transform numbers into numbers with greater

Hamming weights before writing them to flash memory.

Figure 3.4: As the Hamming weight (number of 1s in the binary representation)
of a number increases, the error rate of low-voltage flash write declines. The data
corresponds to a MSP430F2131 running at 1.84V.

Wear-out history: Flash memory has a limited lifetime (about 105 cycles of

erasures) after which the erase operations fail to reset the bits to 1 reliably. We

suspect that the more flash memory is erased (worn-out), the lower its error rate

of setting bits to 0 would become. This counterintuitive hypothesis is consistent

with the notion that flash erasures (settings bits to 1) become harder with wear-out.

Figure 3.5 shows a heat map of bit error rate for three blocks of flash memory (192

bytes) on an MSP430F2131 microprocessor. Lighter colors in the heat map represent

higher error rates. The disproportionately dark color of the middle block is due to

more frequent erasure of that block compared to the other two blocks.

Experiment: A MSP430F2131 runs a program that writes zeros to all three blocks

of its flash memory. The MSP430 is first worn out such that one block has 6000
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write/erase cycles and two blocks have minimal previous usage. We used the moni-

toring platform to compute the average error rate for all bits in the three blocks of

memory over 50 trials.

Corollary: Wear-out history affects error rate, so storing data in more than one

location might decrease the error rate, especially if those locations are in different

blocks of memory.

Figure 3.5: Worn-out flash memory blocks are biased toward ease of writing zeros.
Lighter color represents higher average number of error over 50 trials. The middle
block has been write/ease cycles 6000 times. The other two blocks are minimally
used.

Permutation of 0s: Two numbers belonging to the same Hamming weight

equivalence class can have different permutations of 0 bits. We tested to see how

the error rate depends on the permutation of 0s in one byte of data. For example,

the numbers 240, 15, 170, and 71 all have four 0s in their binary representation but

in different places (240 has 0s in the right nibble, and 15 has all of its 0s in its left

nibble, etc.). The result of the experiment shows a similar byte error rate with mean
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of 39.85 ± 4.29% for numbers in the same equivalence class. The small standard

deviation (4.29%) shows that the permutation of 0s does not significantly affect the

error rate and therefore we do not consider this to be a factor in our design directions.

Experiment: A MSP430F2131 runs a program that cycles through eight numbers

from the same Hamming-weight equivalence class, writing them to 192 consecutive

bytes of flash memory. We used the monitoring platform to compute the average

error rates for each of the 192 bytes over 50 trials.

Neighbor cells: Another factor that might affect the error rate of storage in

a flash cell at low voltage is the values of neighboring cells. However, our results

suggest that a cell’s error rate does not appear to depend on the values stored in

neighboring cells (Figure 3.6).

Experiment: In order to determine if the error rate of a cell is affected by its

neighbor, we consider all numbers from the same Hamming-weight equivalence class

whose two Least Significant Bits (LSBs) are set to either 00 (case 1) or 10 (case 2).

An example of case 1 is number 60 (0b00111100) and an example of case 2 is number

30 (0b00011110). This experiment fixes the Hamming weight variable and changes

the neighbor value of the LSB to be 0 or 1. We deem a write erroneous if the LSB

is not set to 0. The experiment was done for a Hamming weight of four and it was

repeated for five voltage levels in the interval of 1.82V to 1.84V with steps of 5mV.

The error rate for any voltage above 1.84V was close to 0% and for any voltage below

1.82 was close to 100%. We used the monitoring platform to compute the average

error rates of case 1 and case 2 for each of the voltage levels over 50 trials.
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Figure 3.6: Error rate of a cell is not noticeably influenced by the value of its neighbor.
The graph shows that the value of the second LSB does not greatly affect the error
rate of the LSB. The bars show the error rate of the LSB for writing numbers from
the same Hamming-weight equivalence class whose two LSBs are set to either 00
(dark bars) or to 10 (light bars).

3.2.4 Accumulative Memory Behavior

It is helpful to understand a few details of the electrical nature of flash memory in

order to appreciate the expected behavior of conventional digital abstractions when

layered above embedded flash memory. Each flash memory cell is a floating-gate

(FG) transistor made up of a source, drain, control gate, and floating gate. The

floating gate is separated from the source and drain by an insulating oxide layer that

makes it difficult for electrons to travel into or out of the gate. Flash cells rely on

this oxide to maintain logical state in the absence of power, making the memory

non-volatile [42].

To write a memory cell (which has an erased value of 1), the control circuitry

applies a high field to the source. The application of this field greatly increases the

probability that electrons in the floating gate will tunnel to the source. If a sufficient

number of electrons tunnel to the source, the cell is subsequently read as a 0. To
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erase a cell (that is to restore a 1), the control circuitry applies a high field to both

the source and drain. This field energizes the electrons currently stored near the

source, allowing them to jump the oxide barrier to the floating gate where they are

once again trapped [42].

Not all electrons must transit in order for a write or erase operation to be success-

ful. The operation only needs to change the state of some majority of the electrons

so that subsequent read operations detect sufficient charge to discern the intended

value. Lowering the applied voltage (and thus the field strength) lowers the proba-

bility of state change for each electron but, as noted earlier, electrons that do transit

will remain in place.

A low-power storage scheme can benefit from this accumulative property by re-

peating writes to the same cell. Each write operation will increase the chance of

success by forcing some number of state transitions. In other words, a failed write is

still progress.

3.3 Design of a Low-Voltage Storage System

This section presents our design for a software system that enables reliable flash

memory writes at low voltage. We first present a model that captures the basic

characteristics and behavior of flash memory. We then set design goals for the model

under consideration. We introduce three methods for reliable flash storage, which we

refer to as in-place writes, multiple-place writes, and RS-Berger codes. Each method

aims to meet our design goals for reliable non-volatile storage.

3.3.1 Modeling Low-Voltage Flash Memory

A NOR flash memory has a set of n cells that are initially set to 1. We represent

the state of the cells by c1, · · · , cn; the value of ci can be 0 or 1. A cell can be set

to 0 using a write operation. The 1 → 0 transition might fail at low voltage while
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the 1→ 1 will obviously succeed. Flash memory at low voltage, where errors occur

only in one direction, can be modeled as a Z-channel. Flash memory is a write-

once memory [45] and once a cell is set to 0 (i.e., once it is programmed), it cannot

be changed back to 1 without using an erase operation. In flash memory, cells are

organized by blocks, and an erase operation resets an entire block of cells. Block

erasures are costly in terms of time and energy and they cause wear to flash cells.

Operations: There are two operations in this model: (1) An update operation

that changes a subset of cells to 0 to represent a value, and (2) A decoding operation

that maps cell states (i.e., memory state) to a value. Updating a variable means

changing the values of c1, · · · , cn to c′1, · · · , c′n. Assuming that no erase operation

occurs, and therefore no bits are reset to 1 after being set to 0, we have ∀i ∈

{1, · · · , n}, ci ≥ c′i after an update. If the update operation is performed when

operating voltage is below the nominal minimum required for flash memory, the

update operation may not be error-free.

3.3.2 Design Goals

Our storage techniques, which aim to provide reliable storage for low-power de-

vices, are designed with the following metrics in mind:

• Error rate: The first and foremost design goal is to minimize the error rate to

provide applications with reliable non-volatile storage.

• Energy consumption: The energy consumed to achieve an acceptably low error

rate should not exceed the expected energy savings gained by running at a

lower voltage.

• Delay: We define delay as the difference between the execution time to store

data reliably at a low voltage and to store the same data at a high voltage.
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The delay caused by the storage technique should be reasonably small.

3.3.3 Proposed Methods

Toward the design goals discussed previously, we propose methods to deal with

errors caused by using flash memory at low voltage.

3.3.3.1 In-Place Writes

Since the transition of a 1 to a 0 in a NOR flash memory at low voltage is

stochastic rather than guaranteed, the in-place writes method repeats the write of

each byte (to the same memory location) more than once if error occurs, up to a

threshold number of attempts. Algorithm 1 gives the details for Encode and Decode

procedures for in-place writes. The in-place writes makes an attempt to write a byte

into memory, reads that memory address, and if the read result does not match the

attempted write value, the algorithm makes another attempt to write that value to

the same memory address. The write attempts can be controlled using the threshold.

The reason in-place writes decrease the error rate is that, as explained in Sec-

tion 3.2.4, each write attempt in the same memory location increases the accumu-

lated charge and therefore raises the probability of storing the intended bit sequence

successfully.

3.3.3.2 Multiple-Place Writes

Another approach to increase the reliability of flash writes at low voltage is to

write a value to more than one location in flash memory if error occurs up to a thresh-

old number of locations. Later, to retrieve the stored data, the multiple-place writes

method reads the data from the specified address and several other addresses asso-

ciated with it, then returns the bitwise AND of all of the stored values. Algorithm 2

details Encode and Decode procedures of the multiple-place writes method. The
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Algorithm 1 The encoding and decoding algorithms for in-place writes method to
store data to address by repeating the writes up to a threshold number of attempts
if necessary.

Encode(data, address, threshold)

Write To Flash(data,address)

result ← Read From Flash(address)

repeat← 1

while (result 6= data) AND (repeat < threshold) do

Write To Flash(data,address)

result← Read From Flash(address)

repeat← repeat+ 1

Decode(address)

result← Read From Flash(address)

return result

multiple-place writes makes an attempt to write a byte into one memory address,

reads that memory address, and if the read result does not match the attempted

write value, the algorithm makes another attempt to write that value to a different

memory address. The write attempts can be controlled using the threshold.

The reason the multiple-place writes approach can decrease the error rate is as

follows: All cells of flash memory are initially set to 1. An error means that writing

a 0 has failed and a bit cell ci has remained untouched (logical 1) although it was

intended to be set to 0. If the cell write in one of the locations has not failed, and cell

ci is 0 in at least one location, getting the AND of the read values from all locations

will make cell ci = 0 in the AND result. The case of writing a 1 to a cell does not

cause an error since it means changing a cell from 1 to 1.

3.3.3.3 RS-Berger Codes

Our third method to provide reliable flash memory at low voltage involves data

coding. We use the concatenation of Reed-Solomon [44]and Berger [6] codes—which

we call RS-Berger codes—to detect and correct errors at read time (Algorithm 3).
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Algorithm 2 The encoding and decoding algorithms for muliple-place writes method
to store data to address by repeating the writes up to threshold locations if necessary.
The distance between each of these associated locations is offset.

Encode(data, address, threshold, offset)

Write To Flash(data,address)

result← Read From Flash(address)

repeat← 1

while (result 6= data) AND (repeat < threshold) do

phy addr ← address+ (repeat× offset)
Write To Flash(data,phy addr)

n result← Read From Flash(phy addr)

result← result & n result

repeat← repeat+ 1

Decode(address, threshold, offset)

for i← 0 to (threshold− 1) do

phy addr ← address+ (i× offset)
n result← Read From Flash(phy addr)

result← result & n result

return result

Reed-Solomon is a widely used error-correcting code that can correct twice as

many erasures as errors. There are three parameters (n, k, d) accompanying the

Reed- Solomon (RS) code. The parameter n is the total number of symbols in the

codeword, and k is the number of information symbols in the codeword, and the

parameter d is the minimum hamming distance of two codewords in the codebook.

These three parameters should satisfy the following conditions: d = n− k + 1.

A (n, k, d)-RS code can correct up to n−k
2

errors and up to n−k erasures. There-

fore, if the locations of errors are known, an RS code’s error-correcting capacity is

improved twofold.

To detect the location of errors and therefore to improve the efficiency of the RS

code, we use a Berger code, an error-detecting code that can detect all asymmetric

errors [6]. As previously mentioned (Section 3.3.1), flash memory at low voltage can
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Algorithm 3 The encoding and decoding algorithms for RS-Berger codes writes
method. t is the maximum number of erasures RS code can correct.
Encode(data1,...,N , n)

for i← 1 to N do

CWi ← RS Encode(datai,n)

Write To Flash(CWi,addressi)

for i← 1 to n do

for j ← 1 to N do

symi,j ← CWj(i)

chki ← Berger Encode(symi,(1,..,N))

Write To Flash(chki,addressN+1 + i− 1)

Decode(addr1,...,(N+1), n, t)

for i← 1 to N do

chki ← Read From Flash(addrN+1 + i− 1)

for i← 1 to N do

CWi ← Read From Flash(addri)

for j ← 1 to n do

symi,j ← CWi(j)

errors← {}
for i← 1 to n do

err ← Berger Decode(symi,(1,..,N), chki)

if err = 0 then

errors← errors ∪ {i}
if |errors| ≤ t then

for i← 1 to N do

resulti ← RS Decode(CWi,errors)

return result

else

return “fail to correct errors”

be modeled as a Z-channel for which a Berger code is suitable. A Berger codeword

consists of two parts: k information bits and dlog2(k + 1)e check bits. The check

bits of the Berger codeword represents the number of zeros in the k information bits.

Berger code can detect any number of zero-to-one errors, as long as no one-to-zero

errors occur in the same codeword. As a particular example, consider the case for
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k = 6, the information bits are 010010. There are totally 4 zeros in it, therefore, the

check bits are 100. One such valid codeword would be 010010 100. When we do the

error detection, we check the number of zeros in the information bits part and the

binary number in the check bits part. If they are equal, no error occurs, otherwise,

errors are detected in the codeword.

We use an (N + 1) × n matrix to represent RS-Berger codes (Figure 3.7). This

matrix has N RS codewords, each of which has n symbols. Each symbol (m bits) is

filled in one entry of the matrix. Each column of the matrix, consisting of m × N

bits, supplies the information bits for one Berger code block. After Berger encoding,

the (N + 1)th row records the check bits for the Berger codes.

Figure 3.7: Structure of input/output sequence of Berger code.

Figure 3.8 shows how the data are encoded and decoded using our RS-Berger

code. When encoding the data, we first use RS code to generate n codewords (rows

of the matrix) and then we apply a Berger code to compute the check bits for each

symbol for all codewords (each column of the matrix). When decoding data, we first

use the Berger decoder to check whether or not each column is erroneous. If one

entry in the column is erroneous, we consider all the symbols in the column erasures;

otherwise, all the symbols in the column are considered correct. Then, once the error
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locations are known, we apply RS decoding to correct the erroneous sequences row

by row.

Figure 3.8: A diagram representing the RS-Berger code. An RS-Berger code is the
concatenation of the Reed Solomon code and a Berger code.

3.4 Evaluation

Our storage techniques are designed for the resource limitations of low-power

devices. In this section, we first evaluate the suitability of the three methods proposed

in Section 3.3.3 for low-power devices; we then evaluate the hypothesis that for

CPU-bound workloads, operating at low voltage and managing errors is more energy

efficient than fixing the operating voltage to the maximum of all the components’

nominal minimum voltages.

Summary of results: For a sensor monitoring application that reads 256 data

samples from flash memory, aggregates data, and stores the results in flash memory,

use of in-place writes at 1.8V reduces the energy consumption up to 34% versus

running the same application at 2.2V (minimum voltage requirement for the flash

memory). This sensing application models a common workload for both wireless

sensor nodes and RFID-scale devices.
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3.4.1 Comparison of the Proposed Storage Methods

The maximum number of write attempts for both in-place writes and multiple-

place writes methods were set to two. The RS-Berger codes used three codewords

of size 38 bytes (32 bytes data and 6 bytes parity). These settings enable all three

methods to fit their data in 192 bytes of flash memory. Table 3.3 shows the energy

consumption and time taken for the same workload under each method. Both in-

place writes and multiple-place writes consume less energy and finish more quickly

at 1.9V than at 1.8V. Both of these methods are feedback-based and repeat writes

if they detect errors. Because there is a lower chance of error at 1.9V, fewer rewrites

are required than at 1.8V, so less energy and time are required.

The in-place writes method slightly outperforms the multiple-place writes method

at both voltage levels because its decoding procedure is less CPU-intensive. The RS-

Berger codes method has the best Error Correction Rate (ECR in Table 3.3) of all.

The multiple-place writes method seems to be the most suitable when there are

some memory cells that are hard to program and therefore rewriting in those cells

is not helpful (Figure 3.5 gives an example of such a case). Compared to RS-Berger

codes which always guarantee that a certain number of errors can be corrected,

the in-place writes and multiple-place writes methods are less reliable—they offer

no such guarantees. Therefore, for applications with a hard reliability requirement,

RS-Berger codes may be more suitable if the application knows the error rate in

advance and is willing to incur extra computational costs for RS-Berger encoding

and decoding.
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Table 3.3: Performance comparison of the proposed methods at 1.8V and 1.9V. Error
Correction Rate (ECR) shows the effectiveness of methods.

Method Voltage Time(ms) E(µJ) ECR

In-place 1.8 24.16 59 96%

M-place 1.8 25.00 63 84%

RS-Berger 1.8 334.45 160 100%

In-place 1.9 15.43 38 100%

M-place 1.9 16.85 40 100%

RS-Berger 1.9 334.73 180 100%

Error Correction Rate: As Table 3.3 illustrates, the two methods that do

not use coding—in-place writes and multiple-place writes—incur similar energy con-

sumption costs. We now compare the effectiveness of these two approaches with

respect to the error correction rate.

Figure 3.9 and Figure 3.10 demonstrate that flash storage reliability improves as

we increase the number of repeated writes/places at five different voltage levels (all

below the nominal minimum voltage for flash writes).

Experiment: Using our automated testbed, the test platform runs a program

that writes zeros to 192 consecutive bytes of flash memory (using in-place writes

and multiple-place writes methods in two different experiments). We increase the

maximum number of repeated writes from one to ten, one unit at a time. The

monitoring platform counts the number of incorrectly stored bytes (those that are

not set to zero after the experiment). The experiment was repeated for five different

voltages (1.86V-1.90V).
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Figure 3.9: Reliability improvement using in-place writes over five voltages.

Figure 3.10: Reliability improvement using multiple-place writes over five voltages.

3.4.2 Half-Wits Versus Wits in Practice

To evaluate the end-to-end performance of our storage methods, we have tested

a sensor-monitoring application that is CPU-intensive and can benefit from a low-

voltage storage. This application reads from flash memory 256 accelerometer samples

(each ten bits); computes the maximum, minimum, mean, and standard deviation of

the samples; and stores the aggregate information in flash memory. This monitoring

application is a blend of CPU and I/O, but it is still a CPU-intensive workload.
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Table 3.4 shows that providing the system with a low-voltage storage mechanism via

our methods helps to decrease the task’s total energy consumption by 34%.

Table 3.4: Energy consumption and execution time for the accelerometer sensor
application. At voltage below the recommended (1.8V and 1.9V), in-place writes
method with a threshold of two is used.

Method In-place 1.8V In-place 1.9V Standard 2.2V Standard 3.0V

Clock rate(MHz) 6 6 8 14

Energy(µJ) 270 300 410 760

Time(ms) 151.15 151.32 113.24 64.72

3.4.3 Finding a Crossover Point

We can empirically find the point at which the energy saved on computation

compensates for the added cost of repeated flash writes. We compare a workload

executed at 2.2V to the same one running at 1.8V using the in-place writes scheme

with the threshold k set to 2. We make the worst-case assumption that all data must

be written to flash twice (i.e., no bits change on the first attempt). The time spent

on flash writes while running at 1.8V is then twice the time spent when operating at

2.2V. We also assume that the clock rate of the system is set to the highest specified

for the CPU at each voltage. Specifically, the clock rate would be set to 6 MHz at

1.8V and to 8 MHz at 2.2V.

We empirically determined the power consumption of CPU and flash writes with

1.8V and 2.2V voltage supplies. PC 1.8 = 1.8mW , PC 2.2 = 3.4mW , PF 1.8 = 3.7mW ,

and PF 2.2 = 5.8mW . The variables TC and TF are the time spent in computation and

on flash memory respectively. With these assumptions, we can write the following
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inequality to determine whether a given workload is likely to result in reduced energy

consumption:

Energy1.8 ≤ Energy2.2 ⇒

PC 1.8 × TC 1.8 + PF 1.8 × k × TF 1.8 ≤ PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2 ⇒

PC 1.8 ×
8MHz

6MHz
× TC 2.2 + PF 1.8 × k ×

8MHz

6MHz
× TF 2.2 ≤

PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2

The solution with k = 2 is TC 2.2 ≥ 4 × TF 2.2. Therefore, in-place writes are

competitive over normal flash writes when the time spent on low-voltage operations

like computation is at least four times greater than the time spent on flash writes.

3.5 Improvements and Alternatives

This section describes several complementary ways to further improve the per-

formance of our schemes.

3.5.1 Sign Bits and Storing Complements

As discussed in Section 3.2.3, one of the major factors influencing the error rate

is the Hamming weight of a number. One way to improve the performance of the

low-voltage storage methods is to store numbers with greater Hamming weights

(weight ≥ 4) in flash memory. If a number is lightweight (weight < 4), the comple-

ment of the number would be stored and a sign bit would be set for future data access.

An array of sign bits can be stored separately from the data to avoid disturbing word

alignment. A previous work [41] uses a similar technique for multi-level cell (MLC)

flash memories with four levels; their techniques result in a significant decrease of

energy consumption. The sign-bit approach involves very lightweight computation

(counting the number of ones) and increases the number of writes by a factor of
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one-eighth. Therefore, the effect of this improvement on energy consumption and

delay should be comparatively small.

3.5.2 Memory Mapping Table

To exploit the fact that numbers with greater Hamming weights have a lower

probability of error, we can also map the most frequently used numbers in the user’s

data to the heavier numbers. The solution we suggest is to preprocess the data

to sort numbers based on their frequency of use. A simple memory mapping table

would map the most frequent numbers to the heaviest numbers. Such a table could

be preloaded in flash memory so that storing the table would not consume energy at

run time. Use of a memory mapping table would only increase the number of reads

and would not increase the number of writes. Therefore, the energy consumption

overhead and the delay should be smaller than the sign bit method.
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4. CONTENT-ASSISTED FILE DECODING FOR NON-VOLATILE

MEMORIES

Non-volatile memories (NVMs) such as flash memories play a significant role

in meeting the data storage requirements of today’s computation activities. The

rapid increase of storage density for NVMs however brings reliability issues due to

closer alignment of adjacent cells on chip, and more levels that are programmed

into a cell. We propose a new method for error/erasure correction, which uses the

random access capability of NVMs and the redundancy that inherently exists in

information content. Although it is theoretically possible to remove the redundancy

via data compression, existing coding algorithms do not remove all of it for efficient

computation. The method named content-assisted decoding can be combined with

existing storage solutions for text files. Using the statistical properties of words and

phrases in the text of a given language, our decoder identifies the location of each

subcodeword representing some word in a given input noisy codeword, and decode

receiving bits sequence to compute a most likely word sequence. In this work, we

focus on the erasures recovery. The decoder can be adapted to work together with

traditional error-correcting codes decoders to keep the number of errors after erasure

recovery within the correction capability of traditional ECC decoders. The combined

decoding framework is evaluated with a set of benchmark files.

4.1 Introduction

Non-volatile memories, especially flash memories featuring excellent I/O speed

and decent storage capacity have attracted great attention from the data storage

community. Flash memories are considered one of the most promising candidates for

replacing mechanical hard disks in the near future [42]. Towards this goal, significant
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progress has been made for increasing the storage density and the endurance of flash

memories.

However, higher storage density brings important reliability challenges [23]. The

existing solution for reliable storage are usually solely making use of error-correcting

codes. In order to satisfy the high data reliability requirement (the error rate should

be no more than 10−20 after decoding), the error-correcting codes need many more

parity check bits to reach the error correction capacity, which is inconsistent with

the high density storage idea. In this chapter, we propose a new method for erasure

correction named content-assisted decoding. Our method uses the fast random ac-

cess capability of non-volatile memories and the redundancy that inherently exists in

information content. By looking up the dictionaries storing the statistical properties

of words and phrases of the same language, our decoder first finds the “space” sym-

bol’s locations, then breaks the input noisy codeword into subcodewords, with each

subcodeword corresponding to a set of possible words. The decoder then recovers

the erasures in each noisy subcodeword to select a most likely word sequence as the

correction. The new scheme can be combined with existing storage solutions for text

files and improve the system’s erasure correction capacity. Consider the example in

Figure 4.1.

Codeword Text
Huffman encoding (1, 0, 0, 0, 0, 1, 1, 1) I am

LDPC encoding (1, 0, 0, 0, 0, 1, 1, 1,0,1,1,0) I am
Noise received (1, e, 0, e, 0, e, 1, e,0, e,1, e) ×

LDPC decoding failure (1, e, 0, e, 0, e, 1, e,0, e,1,0) ×
Content-assisted decoding (1, 0, 0, 0, 0, 1, 1, 1,0, e,1,0) I am

LDPC decoding success (1, 0, 0, 0, 0, 1, 1, 1,0,1,1,0) I am

Figure 4.1: An example on correcting erasures in the codeword of a text.
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The English text “I am” is stored using the Huffman coding: {I → (1, 0),t →

(0, 0), a → (0, 1),m → (1, 1)}, where t denotes a space. The information bits are

encoded with a Low Density Parity Check (LDPC) code with parity check matrix H

(the bold bits denote the parity check bits).

H =



1 0 1 1 0 0 1 1 0 1 0 0

0 1 0 1 0 1 0 1 0 1 1 0

1 0 1 0 1 0 0 0 1 0 1 1

0 1 0 0 1 1 1 0 1 0 0 1


Assume that six erasures (marked by the symbol “e”) are received by the codeword.

The number of erasures exceeds the code’s correction capability, and LDPC decod-

ing fails. Our decoder takes in the noisy codeword, and corrects the erasures in the

information symbols by looking up a dictionary which contains two words {I, am}.

This brings the number of erasures down to one. Therefore, the second trial of LDPC

decoding succeeds, and all the erasures are corrected. Our approach is suitable for

natural languages, and can potentially be extended to other types of data where

the redundancy in information content is not fully removed by data compression.

The dictionaries are preloaded in the flash memory. The scheme takes advantage of

the fast random access speed provided by flash memories for fast dictionary look-up

and content verification so that the dictionary look-up process in our decoding algo-

rithm could be linear time. For performance evaluation, we have tested a decoding

framework that combines a modified soft decision decoder of LDPC codes and our

scheme with a set of text file benchmarks. Experimental results show that our de-

coder indeed increases the correction capability of the LDPC decoder and recovers

the erasures efficiently.

The rest of the chapter is organized as follows. Section 4.2 presents the prelimi-
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naries, and defines the text file decoding problem. Section 4.3 specifies the algorithms

of the content-assisted file decoder. Section 4.4 discusses implementation details and

experimental results.

4.2 The Models of File Decoding

In this section, we first introduce the terminologies used in this chapter, then we

describe the model of the data storage channel and define the file decoding problem.

4.2.1 Notations

Let x denote a binary codeword (x1, x2, · · · , xn) ∈ {0, 1}n, and we use x[i : j]

to represent the subcodeword (xi, xi+1, · · · , xj) and x[i] to represent the subcodeword

(x1, x2, · · · , xi) for short. Let x′ denote a trinary noisy codeword (x′1, x
′
2, · · · , x′n) ∈

{0, 1, e}n. Let the function length(x) compute the length of a codeword x and

n erasure(x′) compute the number of erasures in a noisy codeword x′. We say x

to be a solution of x′, if for 1 ≤ i ≤ length(x),


xi = x′i when x′i 6= e

xi = 0 or 1 when x′i = e

Let A be an alphabet set, and let s ∈ A be a symbol. We denote a space by t ∈ A.

A word

w , (s1, s2, · · · , sn)

of length n is a finite sequence of symbols without any space. A phrase

p , (w1,t,w2)

66



is defined as a combination of two words separated by a space. Define a text

t , (w1,t,w2,t, · · · ,t,wn)

as a sequence of words separated by t. A word dictionary

Dw , {[w1 : p1], [w2 : p2], · · · }

is a finite set of records where a record [w : p] has a key w and a value p > 0. The

value p is an average probability that the word w occurs in a text. Similarly, a phrase

dictionary

Dp , {[p1 : p1], [p2 : p2], · · · }

stores the probabilities that a set of phrases appear in any given text. In our scheme,

it refers to the set of valid phrases (“word combinations”) used in files.

The dictionary look-up operations denoted by Dw[w] and Dp[p] return the prob-

abilities of words and phrases, respectively. We use the notation w . Dw (or p . Dp)

to indicate that there is a record in Dw (or Dp) with key w (or p). Let πs be a

bijective mapping from a symbol to a binary codeword, and let xs = πs(t). In this

work, the mapping πs is used during data compression before ECC encoding, and

it encodes each symbol separately. In the example of Section 4.1, πs refers to the

Huffman codes.

{I → (1, 0),t → (0, 0), a → (0, 1),m → (1, 1)}

The bijective mapping from a word w = (s1, · · · , sn) to its binary codeword is defined
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as

πw(w) , (πs(s1), · · · , πs(sn))

and the bijective mapping from a text to its binary representation is defined as

πt(t) , (πw(w1),xs, · · · ,xs, πw(wn))

where xs = πs(t). We use π−1s , π−1w and π−1t to denote the corresponding inverse

mappings.

4.2.2 File Decoding Model

The model of the data storage channel is shown in Figure 4.2.

Source 
Encoder

Channel 
Encoder

Channel 
Decoder

Source 
DecoderSource

Noise

Figure 4.2: The channel model for data storage.

A text t is generated by the source. The text is compressed by the source encoder

(e.g. Huffman encoder), producing a binary codeword y = πt(t) ∈ {0, 1}k. The

compressed bits are fed to a channel encoder (e.g. LDPC encoder), obtaining an

ECC codeword x = ψ(y) ∈ {0, 1}n where n > k. Here we assume a systematic ECC

is used. The codeword is then stored by memory cells, and receives some erasures.

In this work, a binary erasure channel (BEC) with bit-erasure rate f is assumed.

When the cells are read, the channel outputs a noisy codeword x′ = (x′1, x
′
2, · · · , x′n)

where x′i = xi or e, and 1 ≤ i ≤ n. The noisy codeword is first corrected by a
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channel decoder (e.g. our proposed decoder), producing an estimated ECC codeword

ŷ = ψ−1(x′). The source decoder decompresses the corrected codeword, and returns

an estimated text t̂ = π−1t (ŷ) upon success.

This work focuses on designing better channel decoders ψ−1 for correcting bit

erasures in text files. We propose a new decoding framework which connects a tradi-

tional ECC decoder with a content-assisted decoder (CAD) as shown in Figure 4.3.

Figure 4.3: The work-flow of a channel decoder with content-assisted decoding.

A noisy codeword is first passed into an ECC decoder. If decoding fails, the

decoding output is passed to CAD. With the statistical information stored in Dw

and Dp, the CAD selects a word for each subcodeword to form a likely text as the

correction for the noisy codeword and reduces the nubmer of erasures left in the

codeword. The corrected text is fed back to the ECC decoder to further recover the

text. The text file decoding problem for our CAD is defined as follows.

Definition 9. Let t be some text generated from the source, and let x′ ∈ {0, 1, e}n be

a noisy channel output codeword of t. Given two dictionaries Dw and Dp, the text

file decoding problem for the CAD is to find an estimated text t̂ which is the most
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likely correction for x′, i.e.

argmax
t̂

Pr{t̂ | x′, Dp, Dw}.

4.3 The Content-Assisted Decoding Algorithms

The content-assisted decoder approximates the solution to the optimization prob-

lem in Definition 9 in the three steps: (1) estimate “space” positions in the noisy

codeword to divide the codeword into subcodewords, with each subcodeword repre-

senting a set of candidate words. (2) Resolve ambiguity by selecting a word for each

subcodeword to form a most likely sequence. (3) Connecting the results of step (2)

as the input to a modified LDPC soft decision decoder to further reduce error rate.

We describe the algorithms of each step in this section.

4.3.1 Creating Dictionaries

The dictionaries Dw and Dp are used in our decoding algorithms. To create the

dictionaries, we simply count the frequencies of words and phrases of two words

which appear in a relatively large set of different texts in the same language as

the texts generated by the source. Fast dictionary look-up is achieved by storing

the dictionaries in a content-addressable way thanks to the random access in flash

memories, i.e., the probability in a dictionary record is addressed by the value of the

corresponding word or phrase. As we show later in section 4.4, the completeness of

the dictionaries effects the decoding performance.

4.3.2 Codeword Segmentation

We are aiming to assign 0 or 1 to those erasure bits so that we can recover the

noisy codeword to a sequence of words separated by “spaces”. Considering the fact

that the dictionary is complete or near complete, the probability that the input
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text t contains a word w that is not in the dictionary (w 7 Dw) is very low. The

erasures are evenly distributed in the information bits. Therefore, after decoding,

the erasures located in the words that are not in the dictionary should be as few as

possible. If the dictionary is complete, the number of erasures located in the non-

dictionary words is 0 because all words are in the dictionary. By this intuition, we

define the codeword segmentation function σ in the following way: σ takes in a noisy

codeword x and a word dictionary Dw, then assign 0 or 1 to erasure bits to make

the corrected codeword represent a text, i.e., a sequence of valid words separated by

spaces, and the number of erasures located in non-dictionary words is minimized. If

σ(x, Dw) = ((x1,x2, · · · ,xk), (i1, i2, · · · , ik−1)), where the number of records |Dw| is

bounded by some constant K, and ij ∈ N is the index of the first bit of the j-th

space in x, the subcodeword x1 = x[i1 − 1], xk = x[ik−1 + length(xs) : length(x)],

and xj = x[ij−1 + length(xs) : ij − 1] for j ∈ {2, 3, · · · , k − 1}. The mapping σ is

required to satisfy the following properties:

1. for each subcodeword xj, 1 ≤ j ≤ k, ∃w such that πw(w) is a solution to xj.

2.
∑k

j=1 n erasure(xj)× flag(j) is minimized, where

flag(j) =


0 if ∃w . Dw such that πw(w) is a solution to xj

1 otherwise

Let the cost function c(i) return the minimum number of erasures located in the

non-dictionary words after converting the subcodeword x[i] to represent a text. We

have the following recurrence for i ≥ lmin:

c(i) , min{
min{i,lmax}

min
k=lmin

{c(i− ls − k) + g(i− k− ls + 1, i− k) + h(i− k + 1, i)}, h(1, i)}

71



where lmin/lmax are the shortest/longest codeword length for a single dictionary

word respectively, ls = length(xs), and when i < lmin, c(i) = ∞. Clearly, if the

dictionary are complete, c(n) = 0, where n = length(x).

The function g(i, j) denotes whether x[i : j] can be decoded to t. The function

h(i, j) computes the cost taken to obtain a single word of subcodeword length j − i.

g(i, j) ,


0 if xs is a solution to x[i : j]

∞ otherwise

h(i, j) ,


0 if ∃w . Dw, πw(w) is a solution to x[i : j]

n erasure(x[i : j]) else if ∃w 7 Dw, πw(w) is a solution to x[i : j]

∞ otherwise

Example 10. Consider the example in section 4.1. The input noisy codeword x′ =

(1, e, 0, e, 0, e, 1, e), and the word dictionary Dw = {[I : 0.5], [am : 0.5]}. We have

lmin = length(xs) = 2, lmax = 4 and σ(x′, Dw) = (((1, e), (0, e, 1, e)), (3)). Starting

from c(1), we recursively compute c(i) for all 1 ≤ i ≤ n and n is the codeword length.

The results are shown in Figure 4.4a. For instance, to compute c(2), we first compute

c(1) = ∞ because the codeword length is at least 2. We then compute h(1, 2) = 0.

This is because we can assign 0 to the first erasure and make x1 = (10), which can

be decoded as “I”. Finally, we have c(2) = min(0,∞) = 0.

Our objective is to compute c(n) given an input codeword of length n, and find

out the space positions which helps achieve the minimum cost. When c(i) is com-

puted recursively starting from c(1), some entries will be called several times. For

instance, in Example 10, the entry c(2) needs to be computed when we compute c(i)
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for i > 2. A good way for speeding up such computation is to use dynamic program-

ming techniques shown in Algorithm 4, which computes the final result iteratively

starting from c(1), an entry computed in the previous iteration is saved for later

iterations.

(a) Array c

(b) Array m

Figure 4.4: The examples of codeword segmentation. In Figure (b): sets of words
means the subcodeword x[i] can be decoded to a word or word sequence chosen
from any word in the word set. The → defines the word sequence order. The cross
× represents a subcodeword x[i] can neither be decoded to a word nor to a word
sequence.

The algorithm treats c(i) as the entries of one dimensional array. Starting from

c(1), the algorithm fills each entry from c(1) to c(n), as shown in Figure 4.4a. The

corresponding space locations for breaking the subcodeword x[i], and the set of word

sequences that x[i] can be decoded to represent are recorded using a one dimensional

array m. In practice, as f is close to 0, the average number of erasures in the

subcodeword x[k : j] is small. The cardinality of the set of possible words Sw for

a given noisy subcodeword x[k : j] can be bounded by 2n erasure(x[k:j]). In practice,

we first brute force search the set {w | w . Dw, πw(w) is a solution to x[k : j]} and

record the results in m. If x[k : j] cannot be decoded to any word in the dictionary,

the set for non-dictionary {w | w 7 Dw, πw(w) is a solution to x[k : j]} is computed
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and recorded in m. As we are interested in the space locations for the whole input

noisy codeword, after the entries of c and m have been filled (Figure 4.4), we get the

optimal solution from m(n). The results are the ordered space locations and the sets

of words for the subcodewords between the spaces. Assume that the subcodeword of

each word has limited length bounded by some constant and the number of erasures

in each word is small, the time complexity of our dynamic programming algorithm

is O(n2), and O(n) space is used for storing the arrays c and m.

Algorithm 4 CodewordSegmentation(x, Dw, lmin, lmax)

n← length(x), l← length(xs)
Let c be an array of length n
Let wordSets and spaces be two arrays of empty lists
for i from 1 to n do
c(i) =∞

for i from lmin to n do
flag = 0,k = lmin
while flag 6= 0 AND k ≤ min (lmax, i) do

if k = i then
Brute force assign 0 or 1 to erasures in x[k]
Sw ← {w | w . Dw, πw[w] is a solution to x[k]}
if Sw 6= ∅ then
c(k) = 0, wordSets(k) = Sw

else
Sw ← {w | w 7 Dw, πw[w] is a solution to x[k]}
if Sw 6= ∅ AND c(i) > n erasure(x[k]) then
c(i) = n erasure(x[k]), wordSets(k) = Sw

else
if c(i− k − l) 6=∞ AND xs is a solution to x[i− k − l + 1 : i− k] then

Brute force assign 0 or 1 to erasures in x[i− k + 1 : i]
Sw ← {w | w . Dw, πw[w] is a solution to x[i− k + 1 : i]}
if Sw 6= ∅ AND c(i) > c(i− k − l) then
c(i) = c(i− k − 1), wordSets(i) = wordSets(i− k − l)→ Sw
spaces(i) = spaces(i− k − l)→ i− k − l + 1

else
Sw ← {w | w 7 Dw, πw[w] is a solution to x[i− k + 1 : i]}
if Sw 6= ∅ AND c(i) > c(i− k − l) + n erasure(x[i− k + 1 : i]) then
c(i) = c(i−k− l)+n erasure(x[i−k+1 : i]), wordSets(i) = wordSets(i−
k − l)→ Sw
spaces(i) = spaces(i− k − l)→ i− k − l + 1

if c(i) = 0 then
flag = 1

k ++
return wordSets(n) and spaces(n)
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Example 11. For the example in section 4.1, the tables c and m computed by Al-

gorithm 4 are shown in Figure 4.4. The minimum decoding cost is c(8) = 0, which

means the noisy codeword can be decoded as a sequence of dictionary words. And

the index of the estimated space is 3. With the estimated space, the subcodeword

x[1 : 2] = (1, e) can be decoded to a word in the set {I}, and the subcodeword

x[5 : 8] = (0, e, 0, e) can be decoded a word in the set {am}.

4.3.3 Ambiguity Resolution

Given the subcodewords (x1,x2, · · · ,xk) between the estimated spaces, and a

list of word sets (W1,W2, · · · ,Wk) computed from the codeword segmentation al-

gorithm, for i ∈ {1, · · · , k} we select a word wi from Wi to form a most probable

text t̂ = (w1,t,w2,t, · · · ,t,wk). The codeword πt(t̂) is a correction for the input

noisy codeword. Specifically, this step is to compute

argmax(w1,w2,··· ,wk)∈W1×W2···×Wk
Pr{(w1,w2, · · · ,wk) | (x1,x2, · · · ,xk)}

= argmax(w1,w2,··· ,wk)∈W1×W2···×Wk
Pr{(w1,w2, · · · ,wk), (x1,x2, · · · ,xk)}

Let the function P(wi) compute the maximal joint probability when some word

wi is selected from Wi and appended to the previously selected word sequence

(w1,w2, · · · ,wi−1). For i ∈ [2, k], we have

P(wi) , max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{(w1, · · · ,wi), (x1, · · · ,xi)}

= max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{w1}Pr{x1 | w1}Pr{w2 | w1}Pr{x2 | w2}

Pr{w3 | (w1,w2)}Pr{x3 | w3} · · ·

Pr{wi | (w1,w2, · · · ,wi−1)}Pr{xi | wi}
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Assume the words in a text form a one-step Markov chain, i.e., for i ≥ 2,

Pr{wi | (w1,w2, · · · ,wi−1)} = Pr{wi | wi−1}

Therefore, we rewrite the equation above as:

P(wi) = max(w1,··· ,wi−1)∈W1×···×Wi−1

Pr{w1}Pr{x1 | w1}Pr{w2 | w1}Pr{x2 | w2}

Pr{w3 | w2}Pr{x3 | w3} · · ·Pr{wi | wi−1}Pr{xi | wi}

= max(w1,··· ,wi−1)∈W1×···×Wi−1

Pr{w1}Pr{w2 | w1} · · ·Pr{wi | wi−1}
i∏

k=1

Pr{xk | wk}

= max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{w1}Pr{w2 | w1} · · ·Pr{wi−1 | wi−2}
∏i−1

k=1
Pr{xk | wk}

= max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{(w1, · · · ,wi−1), (x1, · · · ,xi−1)}

= maxwi−1∈Wi−1
Pr{xi | wi}Pr{wi|wi−1}

max(w1,··· ,wi−2)∈W1×···×Wi−2
Pr{(w1, · · · ,wi−1), (x1, · · · ,xi−1)}

= maxwi−1∈Wi−1
Pr{xi | wi}Pr{wi|wi−1}P(wi−1)

and

P(w1) = Pr{w1}Pr{x1 | w1}

The conditional probability Pr{xi | wi} is computed from the channel statistics by

Pr{xi | wi} = fn erasure(xi)(1− f)length(xi)−n erasure(xi)
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Since the number of erasures in xi is fixed, Pr{xi | wi} is the same for all wi ∈Wi.

We are aiming to find a word sequence (w1,w2, · · · ,wk) ∈ W1 ×W2 · · · ×Wk

to maximize Pr{(w1,w2, · · · ,wk) | (x1,x2, · · · ,xk)}, therefore, we can remove the

factor Pr{xi | wi} from P(wi) such that

P(wi) = maxwi−1∈Wi−1
Pr{wi|wi−1}P(wi−1)

and

P(w1) = Pr{w1}

The probabilities Pr{wi} and Pr{wi | wi−1} are looked up from the dictionaries:

Pr{wi} = Dw[wi]

Pr{wi | wi−1} = Dp[(wi−1,t,wi)]

The derived recurrence suggests that the optimization problem can be mapped to

the problem of trellis decoding, which is again solved by dynamic programming. The

trellis for our problem has k time stages. The observed codeword at the i-th stage

is xi for i ∈ {1, · · · , k}. There are |Wi| vertices at stage i with each representing

an element w of Wi and being associated with the probability Pr{w}. The weight

of the directed edge from a vertex at stage i with word wx to a vertex of stage

i + 1 with word wy is the conditional probability Pr{wy | wx}. An example of

the mapping is shown in Figure 4.5. Our target is to compute the sequence which

achieves maxwk∈Wk
P(wk), which leads to the Viterbi path in the corresponding

trellis starting from a vertex in stage 1 and ending at a vertex in stage k.
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Figure 4.5: An illustrative example of the mapping to trellis decoding. The sets
W1 = {w1,1,w1,2}, W2 = {w2,1,w2,2,w2,3}, W3 = {w3,1,w3,2,w3,3} and W4 =
{w4,1,w4,2} respectively corresponds to the subcodewords x1, x2, x3 and x4.

Algorithm 5 Viterbi((W1, · · · ,Wk), (x1, · · · ,xk), Dw, Dp)

n← maxl∈[1,k] |Wl|
Let p and s be two n× k tables

pmax ← 0, index← 0

for t from 1 to k do

for i from 1 to |Wt| do

p(i, t)← Dw[Wt[i]]

pmax ← 0, index← 0

for j from 1 to |Wt−1| do

p′ ← Dp[(Wt−1[j],t,Wt[i])] · p[j, t− 1]

if p′ > pmax then

pmax ← p′

index← j

p(i, t)← pmax

s(i, t)← index

words← [Wk[index]]

for t from k to 2 do

i← s(index, t)

words. appendToFront(Wt−1[i])

index← i

return words
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The dynamic programming algorithm for solving our trellis decoding problem is

specified in Algorithm 5, which is adapted from the Viterbi decoding [56]. The final

solution is computed iteratively, starting from P(w1) according to the recurrence.

When the last iteration is finished, we trace back along the Viterbi path recorded

in the table s, and collect the selected words to form an estimated text t̂. The

complexity of the Viterbi decoding algorithm is O(n2k), where k is the length of the

input codeword list, and n = maxi∈[1,k] |Wi| is the cardinality of the biggest input

word set. The algorithm requires O(nk) space for storing the tables p and s.

4.3.4 Post Processing

Additional errors may be introduced during codeword segmentation and ambi-

guity resolution if unknown/rare words or phrases occur in the input codeword.

Unknown words (phrases) refer to the words (phrases) that are not in Dw (Dp) and

rare words (phrases) mean the words (phrases) that are in Dw (Dp) but with small

frequency. Upon meeting an unknown word, the codeword segmentation algorithm

tends to split its codeword into subcodewords representing known short words with

the space symbol or decode it to be some known words with the same codeword

length as the unknown codeword. Such segmentation and ambiguity resolution in-

troduce additional bit errors. We use a simple post-processing step which further

reduces the errors by applying the ECC error decoder on the output of our content-

assisted decoder (CAD). Since the CAD recovers most of the erasures, the error

rate for the correction codeword getting from CAD becomes much smaller than the

original channel erasure rate, which is usually under the error capacity of ECC.

Moreover, because the noisy codeword only has erasures, the bits with value 0 and

1 are definitely correct. By getting those information, we can modify the ECC er-

ror decoder to improve its error correction capacity. In our work, we use an LDPC
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code as the error-correcting code and apply iterative belief propagation algorithm to

decode. However, we modify the message passing functions for messages from the

variable nodes to the check nodes in the following way: if the variable node is 0 (1)

in the original noisy codeword, its likelihood to be 0 is always 1 (0) no matter what

messages that node receives from check nodes.

4.4 Experiments

In this section, we evaluate the preformance of our proposed content-assisted

decoding scheme and discuss the experiment results.

4.4.1 Implementation Detail

Our implementation supports the use of basic punctuations in the input text files,

including ‘,’, ‘.’, ‘?’ and ‘!’. This is done by adding another function in the definition

of c(i). The function measures the number of erasures in the subcodeword that can

be decoded as a word followed by a punctuation.

When we estimate the last “space” position for the codeword x[i], we begin

with the last subcodeword of length k = lmean, then search subcodeword of length

lmean−1, lmean+1, lmean−2, lmean+2, · · · , until we find a good last word such

that c(i) = 0, where lmean is the mean of length(πw(w)), for all w ∈ Dw. Because

the subcodeword length is near lmean with high probability, this heuristic method

can speed up the code segmentation algorithm.

During ambiguity resolution, overflow may occur when the input codeword length

is very long due to the multiplications of floating point numbers. We thus use a

logarithmic version of the recurrence, which uses additions instead of multiplications

of floating point numbers. This significantly delays the overflow.

A smoothing technique is used for computing Pr{wi | wi−1}. The probability

Pr{wi} is used if the phrase (wi−1,t,wi) is unknown to Dp. And if for a word set
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Wi, ∀w ∈Wi is not in the dictionary, we set ∀w ∈Wi, Pr{w} = a, where 0 < a < 1

is a random number. The reason is that returning 0 for unknown words or phrases

suddenly makes the whole joint probability be 0 and cancels the path.

4.4.2 Performance Evaluation

We evaluate decoding performance of our proposed CAD by comparing the bit

erasure rates of using LDPC erasure hard decoder alone, the bit error rate of using

CAD, and the bit error rate of applying modified LDPC error soft decision decoder

on top of CAD. The test inputs include 3 self-collected paragraphs and 24 para-

graphs randomly extracted from the Canterbury Corpus, the Calgary Corpus, the

Large Corpus [2], and the large text compression benchmark [1] (see Table 4.1).

All the testing inputs use basic punctuations. In the future, we would like to sup-

port numbers, more punctuations and math symbols. The functions πs and π−1s are

implemented with Huffman coding. We use a (3584, 3141)-random LDPC code.

Table 4.1: The benchmark used in our performance evaluation

Name Category From
email Email discussion Calgary
lcet10 Lecture notes Canterbury
alice Novel Canterbury

conf-intro Call for paper Self-collected
bible The King James version of the bible Large

asyoulike Shakespeare play Canterbury
plrabn Poetry Canterbury
news Web news Self-collected
enwiki8 Wikipedia texts Large
world192 The world fact book Large

The decoding results for each scheme for f = 0.1 is shown in Figure 4.6. The
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bit-erasure rate makes the LDPC erasure hard decoder fail to converge with high

probability. The results are averaged from 100 experiments. The use of CAD suc-

cessfully recovers the erasures and brings the number of errors down to make the ECC

decoding effective again. The completeness of the dictionaries determines the decod-

ing performances. For instance, in the benchmarks conf-intro, enwiki8, plrabn

and world, where most of the words or phrases are unknown to the dictionaries, our

decoder introduces additional errors by aggressively breaking the codewords of the

unknown words with spaces.

Figure 4.6: The comparison on the correction performance of three decoders: LDPC
erasure hard decoder, CAD only and CAD+LDPC error soft decoder.
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5. SUMMARIES AND FUTURE DIRECTIONS

This thesis was motivated by the need for effective data representation and coding

schemes, which are helpful to efficient and reliable data storage in flash memories

based on their unique properties such as: increasing a flash cell level is easy, but

decreasing a flash cell level is very costly because of incurring block erasure; flash

memories are usually used in low-power embedded devices where energy consumption

is the most important factor in the system’s performance; flash memories support

random and fast access for the data. The topics we have discussed in this work

include rank modulation with multiplicity for flash memories, software techniques

for reliable embedded flash storage at low voltages and content-assisted file decoding

for flash memories. For systems using flash memories, our proposed techniques can

extend their longevity and improve their reliability and performance. In this chapter,

we summarize our contributions and present suggestions for future work.

5.1 Summaries and Contributions

We have presented a new data representation scheme for flash memoires, which is

called rank modulation with multiplicity. It is an extension of rank modulation with

the advantages of higher capacity and efficient programming. We have focused on

the rewriting of data based on this new scheme and have studied its basic properties,

including the rewriting cost, optimal ways to change rank modulation states and the

expansion of rank modulation states given the rewriting cost. We have considered

both the unweighted and weighted rewriting cost and described the analysis respec-

tively. This scheme can solve both the problem of overshooting while programming

cells and the problem of memory endurance in aging devices.

The high voltage requirement of on-chip flash memories is a barrier to reducing the
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total energy consumption of low-power devices. We have examined the main factors

affecting the behavior of flash memories at low voltage. Based on our observations of

flash memory behavior at low voltage, we have proposed three algorithms—in-place

writes, multiple-place writes, and RS-Berger codes—that aim to make flash memories

available and reliable at low voltage while tolerating the resource limitations of low

power devices. Our evaluation shows that in-place writes can save 34% of energy

consumption for a sensing workload on the MSP430 microcontroller. Our storage

techniques enable battery-powered devices to require fewer or smaller batteries or to

become batteryless.

For the sake of reliable file storage in flash memories, we have presented the

content-assisted decoder, which makes use of the random and fast access properties

of flash memories and the redundancy in the content existing in the text files, to

recover the erasures in the codeword. To the best of our knowledge, this is the first

decoding scheme for flash memories that is based on looking up the dictionaries for

information verification and error/erasure correction. The dictionaries are gained

from the statistical properties of words and phrases in the text of a given language.

We have designed the dynamic programming algorithms for word segmentation and

choosing the most likely word for each segment to form the most likely word sequence

as a recovery for the original input text file. We have evaluated the new decoding

scheme on a set of benchmark files.

5.2 Future Directions

In order to think further about our research, here, we are interested in discussing

potential research work in future.

One of our general objective is to construct rewriting codes for flash memories

based on rank modulation with multiplicity proposed in this thesis and explore the
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error correcting code for it. It will be interesting to study the following topics about

rank modulation with multiplicity in future:

• Analyze the rewriting performance for rank modulation with multiplicity and

find some bounds according to the rewriting ball size such as Gilbert type lower

bound and sphere packing upper bound.

• Construct good rewriting codes that achieve or near the bounds.

• Define an error model for rank modulation with multiplicity where the number

of errors corresponds to the minimal number of adjacent transpositions required

to change a given stored permutation to another erroneous one and study its

corresponding error-correcting codes.

We have designed the RS-Berger code for reliable flash writes under voltages

below the requirement on the specification. Although the RS-Berger code can cor-

rect errors dramatically, it consumes much energy due to the very intense computa-

tion operations for the Reed Solomon decoding. Future work includes finding more

energy-efficient coding schemes to combat flash writes errors caused by low voltage.

Currently, the systems cannot take full advantage of dynamic voltage scaling. The

new coding schemes should support dynamic voltage adjustment for flash writes and

consume less energy.

Another plan is to introduce benchmarks for the storage systems of low power

devices. The standard benchmarks that are currently used to evaluate the storage

systems are designed for desktop computers and not immediately applicable to the

low-power domain.

We have provided content-assisted decoding algorithms for file erasure recovery.

The algorithms can be slightly modified and upgraded to support error corrections.
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Also, it is very desirable to extend our content-assisted file decoding method to

support more general files. In the current stage, decoder only supports plain text

files with letters and basic punctuations including ‘,’, ‘.’, ‘?’ and ‘!’. In future, we

are planning to support numbers, more punctuations, math symbols and documents

with format information. Our final goal for the decoder is to decode more general

types of files such as pictures, music and videos. It should find the solutions to the

following problems:

• Define the dictionaries and collect data for the dictionaries. Currently, the

dictionaries are the statistical properties of words and phrases in the texts. For

image, audio or video files, what should their dictionaries include? How to get

the dictionaries for those different types of files.

• Construct the source encoder to compress the original files such that we can still

make use of the redundancy left in the information bits for content verification.

How to compress the format information existing in the documents?

• Design the algorithms to split the image, audio or video files. The text files are

segmented by words or phrases. What are the segmentation unit for image,

audio or video files?

They all remains as open questions.
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