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ABSTRACT

The problem of reconstructing strings from substring information has found

many applications due to its importance in genomic data sequencing and

DNA- and polymer-based data storage. Motivated by platforms that use

chains of binary synthetic polymers as the recording media and read the

content via tandem mass spectrometers, we propose new a family of codes

that allows for both unique string reconstruction and correction of multiple

mass errors.

We first consider the paradigm where the masses of substrings of the in-

put string form the evidence set. We consider two approaches: The first

approach pertains to asymmetric errors and the error-correction is achieved

by introducing redundancy that scales linearly with the number of errors

and logarithmically with the length of the string. The proposed construction

allows for the string to be uniquely reconstructed based only on its erroneous

substring composition multiset. The asymptotic code rate of the scheme is

one, and decoding is accomplished via a simplified version of the Backtrack-

ing algorithm used for the Turnpike problem. For symmetric errors, we use

a polynomial characterization of the mass information and adapt polynomial

evaluation code constructions for this setting. In the process, we develop new

efficient decoding algorithms for a constant number of composition errors.

The second part of this dissertation addresses a practical paradigm that

requires reconstructing mixtures of strings based on the union of compositions

of their prefixes and suffixes, generated by mass spectrometry devices. We

describe new coding methods that allow for unique joint reconstruction of

subsets of strings selected from a code and provide upper and lower bounds

on the asymptotic rate of the underlying codebooks. Our code constructions

combine properties of binary Bh and Dyck strings and can be extended to

accommodate missing substrings in the pool.

In the final chapter of this dissertation, we focus on group testing. We

ii



begin with a review of the gold-standard testing protocol for Covid-19, real-

time, reverse transcription PCR, and its properties and associated measure-

ment data such as amplification curves that can guide the development of

appropriate and accurate adaptive group testing protocols. We then proceed

to examine various off-the-shelf group testing methods for Covid-19, and

identify their strengths and weaknesses for the application at hand. Finally,

we present a collection of new analytical results for adaptive semiquantita-

tive group testing with combinatorial priors, including performance bounds,

algorithmic solutions, and noisy testing protocols. The worst-case paradigm

extends and improves upon prior work on semiquantitative group testing

with and without specialized PCR noise models.
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CHAPTER 1

INTRODUCTION

Current digital storage systems are facing numerous obstacles in terms of scal-

ing the storage density and allowing for in-memory based computations [1].

To offer storage densities at nanoscale, several molecular storage paradigms

have recently been put forward in [2–6]. One promising line of work with low

storage cost and readout latency is [2], which proposes using synthetic poly-

mers for storing user-defined information and reading the content via tandem

mass spectrometry (MS/MS) techniques. More precisely, binary data is en-

coded using poly(phosphodiester)s, synthesized through automated phospho-

ramidite chemistry in such a way that the two bits 0 and 1 are represented by

molecules of different masses that are stitched together into strings of fixed

length. To read the encoded data, phosphate bonds are broken, and MS/MS

readers are used to estimate the masses of the fragmented polymer and re-

construct the recorded string, as illustrated in the simplified scheme shown

in Figure 1.1. Ideally, the masses of all prefixes and suffixes are recovered

reliably, allowing one to read the message content by taking the differences of

the increasing fragment masses and mapping them to the masses of the 0 or 1

symbol. Polymer synthesis is cost- and time-efficient and MS/MS sequencers

are significantly faster than those designed for other macromolecules, such as

DNA. Nevertheless, despite the fact that the masses of the polymers can be

tuned to allow for more accurate mass discrimination, polymer-based storage

systems still suffer from large read error-rates. This is due to the fact that

MS/MS sequencing methods tend to produce peaks, representing the masses

of the fragments that are buried in analogue noise due to atom disassociation

during the fragmentation process and other sources of errors.

In an earlier line of work, the authors of [7] introduced the problem of bi-

nary string reconstruction from its substring composition multiset to address

the issue of MS/MS readout analysis. The substring composition multiset of

a binary string is obtained by writing out substrings of the string of all pos-
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Figure 1.1: The scheme is adapted from [2]. The top figure depicts a
binary string synthesized using phosphoramidite chemistry. The bottom
image is an illustration of peak series or MS Spectrum obtained by MS/MS
readout of the digital polymer. The peak series plots the charge at the
detection plates (in eV) against the ratio of the mass number of the ion and
its charge number (m/z). The charge normalization is often removed
through calibration thereby allowing one to deal with masses only. Under
ideal conditions, the peaks are supposed to correspond to the masses of
string fragments, or more precisely, masses of prefixes and suffixes of the
string. Due to measurement errors, spurious peaks arise and one needs to
apply specialized signal processing techniques to identify the correct peaks.

sible lengths and then representing each substring by its composition. As an

example, the string 101 contains three substrings of length one - 1, 0, and 1,

two substrings of length 2 - 10 and 01, and one substring of length three - 101.

The composition multiset of the substrings of length one equals {0, 1, 1}, the
composition multiset of substrings of length two equals {0111, 0111} and the

composition multiset of substrings of length three equals {0112}. Note that

composition multisets ignore information about the actual order of the bits

in the substrings and may hence be seen as only capturing the information

about the “mass” or “weight” of the unordered substrings. Furthermore, the

multiset information cannot distinguish between a string and its reversal, as

well as some other nontrivial interleaved string settings. The problem ad-

dressed in [7] was to determine for which string lengths one can guarantee

unique reconstruction from an error-free composition multiset, up to string

reversal. The main results of [7, Theorem 17, 18, 20] demonstrate that bi-

nary strings of length ⩽ 7, one less than a prime or one less than twice a

prime are uniquely reconstructable up to reversal. The work in [7] relies on
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the two modeling assumptions:

Assumption 1. One can infer the composition of a polymer substring from

its mass.

Assumption 2. When a polymer is broken down for mass spectrometry anal-

ysis, we observe the masses of all its substrings with identical frequency.

The masses of all binary substrings of an encoded polymer may be ab-

stracted by the composition multiset of a string, provided that Assumption

1 holds. Assumption 2 slightly deviates from practical ion series measure-

ments insofar as the latter only provides information about the masses of the

prefixes and suffixes, while the proposed modification allows one to observe

the masses of all substrings, but without a priori knowledge of their order.

Under these modeling assumptions, Chapter 2 describes efficient encoding

techniques such that the resultant string can be reconstructed from its com-

position multiset irrespective of the input string length k. Furthermore, we

also design codes that can handle constant number of composition errors.

In Chapter 3, we refine our modeling assumptions:

Assumption 1. One can infer the composition of a polymer substring from

its mass.

Assumption 2. When a polymer is broken down for mass spectrometry anal-

ysis, we observe the masses of all its prefixes and suffixes with identical

frequency.

For a single string reconstruction from its prefix-suffix composition multi-

set, it suffices to distinguish the prefix compositions from the suffix composi-

tions. However, if multiple strings are read simultaneously and the masses of

prefixes and suffixes of the same length are confusable, the problem becomes

complicated. We aim to find which combinations of coded binary strings can

be distinguished from each other based on the union of their prefix-suffix

masses and for which code rates is it possible to perform unique multistring

reconstruction. For a given constant h, we seek the largest code of binary

strings of a fixed length such that any h′ ⩽ h of the codestrings can be re-

constructed from the union of the prefix-suffix composition multiset of the

h′ individual input string.

Chapter 4 pivots from the storage application of coding and focuses on

group testing. In as little as ten months since the first case reported in the

Hubei province of China, Covid-19 had rapidly spread across all continents

except Antarctica [8]. The disease has caused more deaths than Ebola, SARS,
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and the seasonal flu combined (reaching 5, 000, 000 mortalities in November

2021), disrupted the global economy to an extent not seen since the Great

Depression and altered the lives of hundreds of millions of people across the

globe [9].

Many analyses associated with the Covid-19 pandemic have established

that widespread population testing is key to effectively containing outbreaks

of this and other infectious diseases. In May 2020, the United States was

able to test around 150, 000 people per day, while countries that had man-

aged to keep the outbreak under control, such as Germany and South Korea,

had performed millions of tests during the same stage of the spread of the

disease. To address the need for sustainable high-frequency population test-

ing, a number of countries and states proposed and implemented group test-

ing schemes in which genetic samples from different individuals are pooled

together in a manner that incorporates thresholded real time reverse tran-

scription polymerase chain reaction (RT-PCR) fluorescence signals into the

testing scheme.

A number of recent reports suggest using Dorfman’s or other mostly off-

the-shelf GT schemes for Covid-19 testing [10–19]. Most of the proposed

schemes do not incorporate relevant biological priors or exploit the highly

specific measurement and noise properties of the RT-PCR method in their

testing schemes. Chapter 4 argues that this is a significant detriment, as

in order to properly execute the effort and avoid dangerous failures, testing

schemes should be guided both by mathematical considerations as well as

social, clinical, and genomic side information.

1.1 Dissertation Overview

This dissertation is in two parts: Chapters 2 and 3 focus on coding for

polymer-based data storage. The two chapters highlight efficient coding and

decoding techniques that pertain to string recovery from the corresponding

evidence set as given by the readout mechanism. Chapter 4 deviates from

the storage application and focuses on group testing for Covid-19. Adaptive

testing schemes that take into consideration RT-PCR test outcomes and

system specific noise are designed.

Chapters 2-4 are meant to be comprehensive and can be read in a stand-
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alone manner. To that end, the introductions of Chapter 2 and Chapter 3

have minor overlaps.

1.2 Bibliographical Note

The following is a chapter-wise list of the publications that include the work

presented herein:

Chapter 2

• S. Pattabiraman, R. Gabrys and O. Milenkovic, “Reconstruction and

Error-Correction Codes for Polymer-Based Data Storage,” in the pro-

ceedings of Information Theory Workshop (ITW) August 2019.

• R. Gabrys, S. Pattabiraman and O. Milenkovic,“Mass Error-Correction

Codes for Polymer-Based Data Storage,” in the proceedings of the

IEEE International Symposium on Information Theory (ISIT), 2020.

• S. Pattabiraman, R. Gabrys and O. Milenkovic, “Coding for Polymer-

Based Data Storage,” journal submission under review.

Chapter 3

• R. Gabrys, S. Pattabiraman and O. Milenkovic, “Reconstructing Mix-

tures of Coded Strings from Prefix and Suffix Compositions,” in the

proceedings of the 2020 Information Theory Workshop (ITW) April

2021.

• R. Gabrys, S. Pattabiraman and O. Milenkovic, “Reconstruction of

Sets of Strings from Prefix/Suffix Compositions,” journal submission

under review.

Chapter 4

• R. Gabrys, S. Pattabiraman, V. Rana, J. Ribeiro, M. Cheraghchi, V.

Guruswami, O. Milenkovic, “AC-DC: Amplification Curve Diagnostics

for Covid-19 Group Testing,” journal submission under review.
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CHAPTER 2

SINGLE CODED STRING
RECONSTRUCTION

2.1 Introduction

Current digital storage systems are facing numerous obstacles in terms of scal-

ing the storage density and allowing for in-memory based computations [1].

To offer storage densities at nanoscale, several molecular storage paradigms

have recently been put forward in [2–6]. One promising line of work with

low storage cost and readout latency is the work in [2], which proposes using

synthetic polymers for storing user-defined information and reading the con-

tent via tandem mass spectrometry (MS/MS) techniques. More precisely,

binary data is encoded using poly(phosphodiester)s, synthesized through au-

tomated phosphoramidite chemistry in such a way that the two bits 0 and

1 are represented by molecules of different masses that are stitched together

into strings of fixed length. To read the encoded data, phosphate bonds are

broken, and MS/MS readers are used to estimate the masses of the frag-

mented polymer and reconstruct the recorded string, as illustrated in the

simplified scheme shown in Figure 2.1. Ideally, the masses of all prefixes and

suffixes are recovered reliably, allowing one to read the message content by

taking the differences of the increasing fragment masses and mapping them

to the masses of the 0 or 1 symbol. Polymer synthesis is cost- and time-

efficient and MS/MS sequencers are significantly faster than those designed

for other macromolecules, such as DNA. Nevertheless, despite the fact that

the masses of the polymers can be tuned to allow for more accurate mass

discrimination, polymer-based storage systems still suffer from large read

error-rates. This is due to the fact that MS/MS sequencing methods tend to

produce peaks, representing the masses of the fragments that are buried in

analogue noise due to atom disassociation during the fragmentation process

and other sources of errors.
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Figure 2.1: The scheme is adapted from [2]. The top figure depicts a
binary string synthesized using phosphoramidite chemistry. The bottom
image is an illustration of peak series or MS spectrum obtained by MS/MS
readout of the digital polymer. The peak series plots the charge at the
detection plates (in eV) against the ratio of the mass number of the ion and
its charge number (m/z). The charge normalization is often removed
through calibration thereby allowing one to deal with masses only. Under
ideal conditions, the peaks are supposed to correspond to the masses of
string fragments, or more precisely, masses of prefixes and suffixes of the
string. Due to measurement errors, spurious peaks arise and one needs to
apply specialized signal processing techniques to identify the correct peaks.

In an earlier line of work, the authors of [7] introduced the problem of bi-

nary string reconstruction from its substring composition multiset to address

the issue of MS/MS readout analysis. The substring composition multiset of

a binary string is obtained by writing out substrings of the string of all pos-

sible lengths and then representing each substring by its composition. As an

example, the string 101 contains three substrings of length one - 1, 0, and 1,

two substrings of length 2 - 10 and 01, and one substring of length three - 101.

The composition multiset of the substrings of length one equals {0, 1, 1}, the
composition multiset of substrings of length two equals {0111, 0111} and the

composition multiset of substrings of length three equals {0112}. Note that

composition multisets ignore information about the actual order of the bits

in the substrings and may hence be seen as only capturing the information

about the “mass” or “weight” of the unordered substrings. Furthermore, the

multiset information cannot distinguish between a string and its reversal, as

well as some other nontrivial interleaved string settings. The problem ad-

dressed in [7] was to determine for which string lengths one can guarantee
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unique reconstruction from an error-free composition multiset, up to string

reversal. The main results of [7, Theorem 17, 18, 20] demonstrate that bi-

nary strings of length ⩽ 7, one less than a prime or one less than twice a

prime are uniquely reconstructable up to reversal.

For our line of work, we will rely on the two modeling assumptions first

described in [7]:

Assumption 1. One can infer the composition of a polymer substring from

its mass. Assumption 2. When a polymer is broken down for mass spec-

trometry analysis, we observe the masses of all its substrings with identical

frequency.

The masses of all binary substrings of an encoded polymer may be ab-

stracted by the composition multiset of a string, provided that Assumption

1 holds. Assumption 2 slightly deviates from practical ion series measure-

ments insofar as the latter only provides information about the masses of

the prefixes and suffixes, while the proposed modification allows one to ob-

serve the masses of all substrings, but without a priori knowledge of their

order. Observe that one can make use of platforms that provide mass in-

formation for all substrings but such systems require more than one string

disassociation and are hence harder to implement and more expensive.

Unlike the work in [7] which has solely focused on the problem of deter-

mining under which conditions unique string reconstruction is possible, we

view the problem of multiset composition analysis from a coding-theoretic

perspective and ask the following questions:

Q1. Can one add asymptotically negligible redundancy to information

strings in such a way that unique reconstruction is possible, independent

of the length of the strings? Since only strings of specific lengths are re-

constructable up to reversals, we aim to devise an efficiently encodable and

decodable scheme that encodes all strings of length k ⩾ 1 into strings of a

larger length n ⩾ k that are uniquely reconstructable for all possible string

lengths. Furthermore, we do not allow for both a string and its reversal to

be included in the codebook. One simple means for ensuring that a string is

uniquely reconstructable up to reversal is to pad the string with 0s to obtain

the shortest length of the form min{p− 1, 2q − 1}, where p and q primes.

For example, if k > 89693, it is known that there exists a prime p such that

k− 1 < p− 1 <
(
1 + 1

ln3 k

)
k− 1. The result only holds for very large k that

are beyond the reach of polymer chemistry. Bertrand’s postulate [20] applies
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to shorter lengths k > 3 but only guarantees that k − 1 < p − 1 < 2k − 4.

This implies a possible coding rate loss of up to 1/2. Note that eliminating

reversals of strings reduces the codebook size by less than a half.

Q2. Can one add asymptotically negligible redundancy to information

strings in such a way that unique reconstruction is possible even in the pres-

ence of errors, independent on the length of the strings? We focus on mass

error models under which the composition (mass) of one substring is erro-

neously interpreted as a different composition (mass). In the asymmetric

error model, no two errors can simultaneously affect the masses of two sub-

strings of length i and k − i + 1, while in the symmetric error model such

pairs are allowed. Clearly, the two models are the same when only one mass

error is present. Furthermore, asymmetric errors are easily detectable even

without added redundancy, while symmetric errors may not be automatically

detectable. Symmetric errors tend to be correlated as they arise during the

same fragmentation process, while asymmetric errors may be independent

as they arise during two different fragmentation processes. It is therefore of

interest to analyze both cases.

We answer both questions affirmatively by describing coding schemes that

allow for both unique reconstruction and correction of multiple symmetric

and asymmetric mass errors. For the case of asymmetric errors, encoding is

performed by interleaving symmetric strings with shifted Catalan-Bertrand

paths while decoding is accomplished through a modification of the back-

tracking decoding algorithm described in [7]. For symmetric errors, the pro-

posed encoding and decoding procedures use the polynomial factorization

approach of [7] and add redundancy in a fashion similar to that included in

Reed-Solomon codes.

Both lines of work extend the existing literature in string reconstruc-

tion [21–24] and coded string reconstruction [25–28].

The organization of this chapter is as follows. Section 2.2 introduces the

problem, the relevant terminology and notation. The topic of reconstruction

codes, or code design for unique reconstruction, is addressed in Section 2.3.

Asymmetric error-correction codes with unique reconstruction properties are

addressed in Section 2.4, while symmetric error-correction code constructions

are discussed in Section 2.5. The chapter concludes with a discussion of open

problems in Section 2.6.
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2.2 Problem Statement

Let s = s1s2 . . . sk be a binary string of length k ⩾ 2. A substring of s

starting at i and ending at j, where 1 ⩽ i⩽j ⩽ k, is denoted by sji , and

is said to have composition 0z1w, where 0 ⩽ z, w ⩽ j − i + 1 stand for

the number of 0s and 1s in the substring, respectively. Let c(sji ) denote the

composition of sji , i ⩽ j. A composition only conveys information about the

weight of the substring, but not the particular order of the bits. Furthermore,

let Cl(s) stand for the multiset of compositions of substrings of s of length l,

1 ⩽ l ⩽ k; clearly, this multiset contains k− l+1 compositions. For example,

if s = 100101, then the substrings of length two are 10, 00, 01, 10, 01, so that

C2(s) = {0111, 02, 0111, 0111, 0111}.
The multiset C(s) = ∪kl=1Cl(s) is termed the composition multiset. It

is straightforward to see that the composition multisets of a string s and

its reversal, sr = sksk−1 . . . s1, are identical and hence these two strings are

indistinguishable based on C(·). We define the cumulative weight of a compo-

sition multiset Cl(s), with compositions of the form 0z1w, where z+w = l, as

wl(s) =
∑

0z1w∈Cl(s)
w. Observe that w1(s) = wk(s), as both equal the weight

of the string s. More generally, one has wl(s) = wk−l+1(s), for all 1 ⩽ l ⩽ k.

This assertion can be proved by counting the objects of interest in two differ-

ent ways. One may arrange all substrings of length ℓ row-wise. In this case,

the columns represent strings of length k − ℓ + 1. The weight counts of the

rows have to be the same as those of the columns, so that wℓ = wk+1−ℓ.

In our subsequent derivations, we also make use of the following notation.

For a string s = s1s2 . . . sk, we let σi = wt(sisk−i+1) for i ⩽ ⌊k2⌋, and for odd

k, σ⌈ k
2
⌉ = wt(s⌈ k

2
⌉), where wt stands for the weight of the string. For our

running example s = 100101, σ1 = 2, while σ2 = 0 (see Figure 2.2). We use

Σ⌈ k
2
⌉ to denote the sequence (σi)i∈[⌈ k

2
⌉], where [a] = {1, . . . , a}.

Figure 2.2: An illustration of Σ⌈ k
2
⌉: For the string s = 100101,

Σ3 = [σ1 = 2, σ2 = 2, σ3 = 1].
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Whenever clear from the context, we omit the argument s.

The problems of interest are as follows. The first problem pertains to

reconstruction codes: A collection of binary strings of fixed length is called

a reconstruction code if all the strings in the code can be reconstructed

uniquely based on their multiset compositions. We seek reconstruction codes

of small redundancy and consequently, large rate.

As part of the second problem, we consider error-correcting recon-

struction codes. In this context, one is given a valid composition multi-

set of a string s, C(s). Within the multiset C(s), some compositions may

be arbitrarily corrupted to a composition of the same length. We refer to

such errors as composition errors. For example, when s = 100101, the

multiset C2(s) = {0111, 02, 0111, 0111, 0111} may be corrupted to C̃2(s) =

{02, 02, 0111, 0111, 0111}, in which case we have a single composition error.

For the case where multiple composition errors may occur so that the

symmetric difference between C(s) and C̃(s), denoted C(s) △ C̃(s), may

contain more than one element, we will call the errors as asymmetric if the

following condition holds: For each i ∈ {1, 2, . . . , ⌊n
2
⌋}, if

∣∣∣Ci(s)△ C̃i(s)
∣∣∣ ̸= 0,

then
∣∣∣Cn−i+1(s)△ C̃n−i+1(s)

∣∣∣ = 0. In words, this means that the composition

sets Ci(s) and Cn−i+1(s) cannot both be in error. For the case of symmetric

errors, this condition need not hold (so that there are no restrictions on the

structure of the composition errors), and asymmetric composition errors are

a special case of symmetric composition errors. For the case where a single

composition error occurs between C(s) and C̃(s), the single composition error

is necessarily asymmetric (and therefore also symmetric).

Continuing from our previous example, the multisets C2(s) and C5(s) may

be corrupted to C̃2(s) = {02, 02, 0111, 0111, 0111} and C̃5(s) = {0114, 0312},
in which case we say that we encountered an example of two symmetric

composition errors, given that the substrings lengths 2 and 5 sum up to

k + 1 = 7. Note that this example does not represent two asymmetric

composition errors because an error has occurred in a composition of length

i = 2 and also in composition of length n− i+ 1 = 6− 2 + 1 = 5.

Our main results are summarized below.

Theorem 1 establishes the existence of efficiently decodable reconstruction

codes that have asymptotic rate one (proved in Section 2.3), while Theorem 2

establishes similar results for the case of reconstruction codes capable of
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correcting one composition error (proved in Section 2.4.1).

Theorem 1. There exist efficiently encodable and decodable reconstruction

codes with information string-length k and redundancy at most 1
2
log (k)+ 5.

Theorem 2. There exist efficiently encodable and decodable reconstruction

codes with information string-length k capable of correcting a single compo-

sition error and redundancy at most 1
2
log (k) + 13.

Theorems 3, 4 and 5 extend the results of Theorem 2 for the case of mul-

tiple composition errors, including both the asymmetric and symmetric case

(proved in Sections 2.4.2, 2.5, and 2.5 respectively). The result in The-

orem 3 demonstrates the existence of explicit asymmetric error-correcting

reconstruction codes of asymptotic rate one that can be efficiently recon-

structed for constant t. The result in Theorem 4 applies to symmetric errors.

The best known redundancy is achieved using the construction supporting

Theorem 5.

Theorem 3. There exist efficiently encodable and decodable reconstruction

codes with information string-length k capable of correcting a constant num-

ber of t asymmetric composition errors and redundancy O (t log k). The de-

coding algorithm has complexity O(n3 2t).

Theorem4. There exist efficient symmetric t-error correcting reconstruction

codes with information string-length k, redundancy O(t2 log k) and decoding

complexity O(n3).

Theorem 5. There exist symmetric t-error correcting reconstruction codes

with information string-length k, redundancy O(log k+ t) and decoding com-

plexity O(n3+3t).

2.2.1 Technical Background

For a string of length k, recall that σi = wt(si, sk+1−i), and that given C1

one can compute w1 =
∑⌈ k

2
⌉

j=1 σj. When i = 2, the bits at positions 1 and k

contribute once to w2, whereas the bits 2, . . . , k − 1 all contribute twice to

w2.

Using C2, we can obtain σ1 +2
∑⌈ k

2
⌉

j=2 σj = w2. Generalizing this result for all
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Ci, i ⩽ ⌈k2⌉ is straightforward, and gives the following equalities:

1

i
σ1 +

2

i
σ2 + · · ·+

i− 1

i
σi−1 + σi + σi+1 + · · ·+ σ⌈ k

2
⌉ =

1

i
wi. (2.1)

The above system of ⌈k
2
⌉ linear equations with ⌈k

2
⌉ unknowns can be solved

efficiently. Thus, for all error-free composition sets, one can find Σ⌈ k
2
⌉.

Some of our code designs rely on the Backtracking algorithm [7], first used

in the context of the Turnpike problem. We provide an example illustrating

the operation of the algorithm. The composition multiset C(s) of a string is

given as the input to the algorithm, and its output is the set of all strings

that have the same composition as C(s).

Example 1. Let s = 1010001010. The sequence Σ5 = (σ1 = 1, σ2 = 1, σ3 =

1, σ4 = 1, σ5 = 0) can be uniquely determined from the composition multiset.

This follows from w1 =
∑5

i=1 σi and i w1 − wi =
∑i−1

j=1(i − j)σj, for i =

1, . . . , ⌈k
2
⌉. Solving the system of equations produces Σ5.

The Backtracking algorithm starts by determining the first and the last bit

of the string and then proceeds to place the remaining bits in an inward fash-

ion. Since σ1 = wt(s1s10) is known, and since a string and its reversal have

the same composition multiset, the first and the last bits are placed arbitrar-

ily. In our example, without loss of generality, the Backtracking algorithm

sets s1 = 1 and s10 = 0 (see Figure 2.3).

Let ℓr be the length of the reconstructed prefix/suffix pair. Backtracking

produces a multiset of all compositions that are jointly determined by the

reconstructed prefix and suffix of length ℓr = 1, s11 = 1, s1010 = 0 and Σ5.

Denote this multiset by Tℓr=1.

Note that σ5 = 0 implies that the composition of s65 is 02. Similarly,

σ4 = 1 and σ5 = 0 imply that the composition of s74 is 031. Thus, using

the information in Σ5 alone one can reconstruct the following compositions:

0614, 0513, 0412, 0311, 02. Note that compositions of substrings of the form sji
can be reconstructed provided that i, j satisfy: (1) i⩽j ⩽ ℓr or (2) k+1−ℓr ⩽
i⩽j or (3) i ⩽ ℓr + 1 and j ⩾ k − ℓr. Thus, the composition 0514 of s91 and

the composition 0613 of s102 can both be reconstructed as well. Consequently,

T1 = {0614, 0514, 0613, 0513, 0412, 0311, 02, 0, 1}.
In the next step, the Backtracking algorithm tries to determine the bits

s2 and s9. First, recall that σ2 = 1 is known. The algorithm determines
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Figure 2.3: Illustration of the Backtracking algorithm for the string
s = 1010001010. (a) Backtracking algorithm begins by reconstructing s1
and s10. (b) When the weight of the reconstructed prefix (wt(1) = 1) is not
equal to that of the reconstructed suffix (wt(0) = 0), the backtracking
algorithm reconstructs s2 and s9 correctly. (c) However, when the weight of
the reconstructed prefix (wt(10) = 1) is equal to that of the suffix
(wt(10) = 1), the backtracking algorithm guesses the bits s3 and s8. (d)
When the reconstructed string is at odds with the evidence composition
multiset, the backtracking algorithm backtracks to its first guess and
corrects it.

the compositions of the two longest substrings in the multiset C \ T1 to be

{0513, 0513}. Observe that these compositions must be those of the substrings

s81 and s103 (although inconsequential for this example, it is still important to

note that in general one does not know which one of the two largest compo-

sitions in C \ T1 correspond to the prefix). Hence, the compositions of the

prefix-suffix pair {s21, s109 } equal {01, 01}.
Since the weight of the reconstructed prefix is not equal to the weight

of the reconstructed suffix, i.e., wt(s11) = 1 ̸= 0 = wt(s1010), the Back-

tracking algorithm outputs s2 = 0, s9 = 1. This follows from fact that

given that the reconstructed prefix-suffix pair have a weight mismatch, set-

ting (s2 = 0, s9 = 1), or setting (s2 = 1, s9 = 0) leads to different prefix-suffix

compositions. As a result, {12, 02} ≠ {01, 01}. The algorithm completes

this iteration by updating T to Tℓr=2 = {0614, 0514, 0613, 0513, 0513, 0513, 0413,
0512, 0412, 0311, 02, 01, 01, 0, 1, 0, 1}.
In the next iteration, following the same steps described above, the composi-

tions of the prefix-suffix pair of length 3 are found to be {012, 021}. However,
since wt(s21) = wt(s109 ), the Backtracking algorithm cannot determine the

bits s3, s8. Thus, whenever wt(sℓr1 ) = wt(skk+1−ℓr
) and σℓ+1 = 1, the algo-
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rithm guesses the bits sℓr+1, sn−ℓr . However, if wt(sℓr1 ) = wt(skk+1−ℓr
) and

σℓ+1 ∈ {0, 2}, then the reconstruction of bits sℓr+1 and sn−ℓr is straightfor-

ward. For example, guessing that s3 = 0, and s7 = 1 leads to an error. The

error is detected by encountering a multiset Tℓr that is incompatible with the

composition multiset C of the given string. Upon detection of an error, the

algorithm backtracks to the last position where it guessed the bit assignment,

changes its guess and restarts the algorithm from that iteration. In our exam-

ple, this leads to s3 = 1 and s8 = 0, and one hence obtains the reconstructed

string 1010001010. □

Note that if Σ⌊ k
2
⌋ ∈ {0, 2}⌊ k

2
⌋, then the string reconstruction is straightfor-

ward (see Figure 2.4).

Figure 2.4: Illustration of the Backtracking algorithm for the string
s = 01010.

The complexity of the Backtracking algorithm is summarized in the fol-

lowing theorem.

Theorem. [7, Theorem 32] Let

ℓs
def
= |{i ⩽ ⌊n

2
⌋ : wt(si1) = wt(snn+1−i) and si+1 ̸= sn−i}|,

Es
def
= {v : C(v) = C(s)}, ℓ∗s

def
= max

u∈Es

ℓu.

For a given input C(s) and ℓs, the Backtracking algorithm outputs a set

of strings that contains s in time O(2ℓsn2 log (n)). Furthermore, Es can be

recovered in time O(2ℓ∗sn2 log (n)).

If a string has a length that does not allow for unique reconstruction up to

reversal, the algorithm returns a set of strings and in the process backtracks

multiple times. Backtracking is possible even when the string is uniquely
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reconstructable, but a condition that ensures that the algorithm does not

backtrack is that no prefix has a matching suffix of the same length and same

weight. If the algorithm does not backtrack, the string has to be unique. This

observation is crucial for our subsequent constructions and it motivates the

use of Catalan-Bertrand paths discussed in what follows.

Theorem 6. (Whitworth [1878] , Bertrand [1887]) Among all strings com-

prised of a 0s and b 1s, where a ⩾ b, there are
(
a+b
a

)
−
(
a+b
a+1

)
strings in which

every prefix has at least as many 0s as 1s. Note that when a = b = h,(
a+ b

a

)
−
(
a+ b

a+ 1

)
=

1

h+ 1

(
2h

h

)
= Ch.

The number Ch is known as the hth Catalan number. Note that the central

binomial coefficient
(
2h
h

)
also counts the number of strings of length 2h whose

every prefix has at least as many 0s as 1s. Furthermore, note that the scaled

central binomial coefficient 1
2

(
2h
h

)
counts the number of strings of length 2h

whose every prefix contains strictly more 0s than 1s.

The second part of Theorem 6 is proved in Appendix A.1.

Strings that have the property that their every prefix contains strictly

more 0s than 1s are henceforth referred to as Catalan-Bertrand strings (see

Figure 2.5).

We also find the following bounds on the central binomial coefficient useful

in our subsequent derivations.

Proposition 1. The central binomial coefficient may be bounded [29] as:

22h√
π(h+ 1)

⩽

(
2h

h

)
⩽

22h√
πh

, ∀h ⩾ 1. (2.2)

2.3 Reconstruction Codes

We describe next a family of efficiently encodable and decodable reconstruc-

tion codes that map strings of any length k into strings of length n ⩽

k + 1
2
log (k) + 5.

Recall that for a given string of length n, the system of ⌈n
2
⌉ linear equations

with ⌈n
2
⌉ unknowns given by (2.1) can be solved efficiently. Thus, for all
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Figure 2.5: Catalan-Bertrand strings: (a) Consider a n× n grid whose (b)
diagonal is blocked. A horizontal step in the grid represents bit 0 in its
corresponding binary string, while a vertical step represents bit 1. (c) All
Catalan-Bertrand strings start with a horizontal step and never meet the
diagonal. Subfigure (d) is an example of a forbidden path, while (e) is an
example of a path that corresponds to a valid Catalan-Bertrand string.

error-free composition sets, one can find Σ⌈n
2
⌉. Therefore, the problem of

interest is to determine s given Σ⌈n
2
⌉ and C(s). Note that when wt(si1) ̸=

wt(snn+1−i), [7, Lemma 31] asserts that C(s), si1, and snn−i+1 determine the

ordered pair (si+1, sn−i).

The previous lemma [7, Lemma 31] will be used to guide our construction

of a reconstructible code based on Catalan-Bertrand strings.

Claim 1. An asymptotic rate 1 reconstruction code can be constructed with

Catalan strings.

Claim 1 provides a simple construction for a family of reconstructible codes.

We aim to construct codes with improved block rate over the Catalan strings

and to that end we proceed as follows. Let I ⊆ [n]. The string formed by

concatenating bits at positions in I in-order is denoted by sI . We define a
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reconstruction code SR(n) of even length n as follows:

SR(n) ={s ∈ {0, 1}n, s1 = 0, sn = 1, and (2.3)

∃ I ⊆ {1, 2, . . . , n− 1, n} such that

for all i ∈ I, si ̸= sn+1−i,

for all i ̸∈ I, si = sn+1−i,

s[n
2
]∩I is a Catalan-Bertrand string}.

See Figure 2.6 for an example.

Figure 2.6: Construction of a codestring in SR(14): The first 7 indices of
the string (a) are partitioned into two (b). Consider the string s1s3s7
formed by the in-place concatenation of the indices in the orange set. No
restriction is placed on this string: s1s3s7 ∈ {0, 1}3. However, string
s2s4s5s6 formed by the in-place concatenation of the indices in the yellow
set is restricted to Catalan-Bertrand strings. (d) To complete the string,
the partition is then mirrored. The substring s148 is such that the bits at the
orange indices retain their mirror values, while those at the yellow indices
complement them.

We define a reconstruction code SR(n) of even length n as follows:

For odd n, we define the codebook as

SR(n) = ∪s∈SR(n−1){s
n−1
2

1 0 sn−1
n+1
2

, s
n−1
2

1 1 sn−1
n+1
2

}.

The following proposition is an immediate consequence of the above con-

struction.

Lemma 1. Consider a string s ∈ SR(n). For all prefix-suffix pairs of length

1 ⩽ j ⩽ n
2
, one has wt(sj1) ̸= wt(snn+1−j).

The proof of Theorem 1 follows from the fact that SR(n) is a reconstruction
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code, which may be easily established from the guarantees for the Backtrack-

ing algorithm and Lemma 1.

For n even, the size of SR(n) may be bounded as:

|SR(n)| =
n
2
−1∑

i=0

(
n
2
− 1

i

)
2

n
2
−1−i

(
i

⌊ i
2
⌋

)
⩾

2n−3

√
πn

.

The first equality follows from the description of the codebook, while the

second inequality follows from Proposition 1 and the binomial theorem. For

odd n, |SR(n)| = 2|SR(n − 1)| ⩾ 2n−3
√
πn

. Further details are provided in Ap-

pendix A.2. As 2k ⩽ |SR(n)|, simple algebraic manipulation reveals that the

redundancy of the reconstruction code for information lengths k is at most

1/2 log (k) + 5 for all k ⩾ 8.

Given an information string of length k, the encoding algorithm returns

a reconstructable string of length n. The encoding algorithm that accom-

panies our reconstruction codebook (a bijective map between the set of all

information strings of length k and a subset of the reconstructable strings

of length n) can be implemented using simple lexicographical rankings of

Catalan-Bertrand strings and symmetric strings. This encoding technique

requires O(n2) time (see Appendix A.3 for details). However, as described

in [30], there exist other ordering-based constructions for Catalan strings

that may be used to further increase the efficiency of the encoding algo-

rithm. The Backtracking algorithm reconstructs the coded string in O(n3)

time. The coded string is then mapped to the information string via the

inverse encoding map, which takes an additive O(n2) time. Thus, the overall

reconstruction time remains O(n3). This concludes the proof of Theorem 1.

2.4 Error-Correcting Reconstruction Codes: The

Asymmetric Setting

For clarity of exposition, we will start with a discussion of single error-

correcting reconstruction codes, as they illustrate the use of Catalan-Bertrand

paths and are conceptually easy to extend for the case of multiple compo-

sition errors. Our reconstruction codes with composition error-correcting

capabilities are derived using the interleaving procedure described in the
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previous section, and they require adding an additional logarithmic number

of redundant bits to recover the sequence Σ⌈n
2
⌉.

2.4.1 Single Error-Correcting Reconstruction Codes

We begin with an intuitive discussion that leads to Claim 2.

For a given codestring from SR(n), the backtracking algorithm identifies

a confusable string only if the composition of a prefix or a suffix is altered.

Moreover, note that when the composition of a prefix (or a suffix) is dras-

tically altered, the erroneous prefix (or a suffix) can be identified. This in

turn implies that the string can be reconstructed. Thus, only certain kinds

of errors may produce confusable strings. To see that, consider the following.

Assume that we have reconstructed the prefix (and suffix) of length i and

σi+1 = 1. There are two valid compositions each for a prefix and a suffix.

There are only 4 ways to modify the prefix-suffix composition pair such that

the erroneous composition cannot be identified readily. (There are 4 valid

compositions for the prefix and suffix of length i + 1. There are 4 ways to

pick a prefix-suffix pair such that they do not together correspond to any

prefix-suffix substring pair; however, individually, they are all valid.) Since

there are n−1 prefix-suffix pairs, there are at most 4(n−1) strings confusable
with the given string.

To construct the codebook S(1)
C (n) that can correct one error, pick any

string s ∈ SR(n) and add to S(1)
C (n). Remove all strings ŝ ∈ SR(n) that are

at distance 2 as identified by the Backtracking algorithm. We repeat this

procedure until SR(n) is empty. Thus, |S(1)
C (n)| ⩾ 1

4n
|SR(n)|.

Claim2.There exists single error-correcting reconstruction codes with asymp-

totic rate 1.

Let SR(n− 2) be the code of odd length n− 2 , ⌈n
2
⌉ divisible by three, as

described in the previous section. Then, a single (symmetric or asymmetric)

composition error-correcting code of length n, S(1)
C (n), can be constructed

by adding two bits to each string in SR(n − 2) and subsequently fixing the

value of one additional bit. These three redundant bits allow us to uniquely

recover the sequence Σ⌈n
2
⌉ in the presence of a single composition error. As

will be seen from our subsequent derivations, given Σ⌈n
2
⌉ and the erroneous

composition set of s, one can reconstruct s.
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To prove Theorem 2, let C̃(s) denote the set obtained by introducing a

single error in the composition set C(s) of a string s of length n. Recall that

wj stands for the cumulative weight of compositions of length j in C and

that wj = wn−j+1. Let w̃j denote the cumulative weight of compositions in

C̃j. It is straightforward to prove the following proposition.

Proposition 2. Let j ∈
[
⌈n
2
⌉
]
. Then,

wj=jw1 −
j−1∑
i=1

i σj−i,

which implies

jw1 −
j−1∑
i=2

i σj−i ⩽ wj ⩽ jw1 −
j−1∑
i=2

i σj−i + 2.

Proof. Note that wj =
∑j−1

i=1 iσi +
∑⌈n

2
⌉

i=j jσi. Since w1 =
∑⌈n

2
⌉

i=1 σi, we have

wj =σ1 + 2σ2 + · · ·+ (j − 1)σj−1 + j

⌈n
2
⌉∑

i=j

σj

=j

 ⌈n
2
⌉∑

i=1

σi

− σj−1 − 2σj−2 − · · · − (j − 1)σ1.

=jw1 −
j−1∑
i=1

iσj−i.

This result immediately implies the next proposition.

Proposition3. Let j ∈
[
⌈n
2
⌉
]
and suppose that we are given w1, σ1, . . . , σj−2.

Then, the value wj mod 3 uniquely determines wj.

We also need the following three propositions.

Proposition 4. Given wt(s) mod 2, w̃n and w̃1, one can recover w1.

Proof. If w̃n = w̃1, then clearly w1 = w̃n = w̃1. Hence, suppose that w̃n ̸= w̃1

and observe that |w̃1 − w1| ⩽ 1. The last inequality follows since at most
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one composition error is allowed. If w̃1 mod 2 = wt(s) mod 2, then w1 = w̃1;

otherwise, w1 = w̃n.

Proposition 5. Suppose that n is odd and that either ⌈n
2
⌉ + 1 or ⌈n

2
⌉ is

divisible by 3. Assume that s = s1 . . . s⌈n
2
⌉ . . . sn, and let s′ = s1 . . . 1 −

s⌈n
2
⌉ . . . sn. Then,

⌈n
2
⌉∑

i=1

wi(s) ≡
⌈n
2
⌉∑

i=1

wi(s
′) mod 3.

Proof. Suppose that s⌈n
2
⌉ = 1. Then, the bit s⌈n

2
⌉ contributes ⌈n

2
⌉ to w⌈n

2
⌉

and ⌈n
2
⌉ − 1 to w⌈n

2
⌉−1.

In summary, if s⌈n
2
⌉ = 1, then

⌈n
2
⌉∑

i=1

wi(s) =

⌈n
2
⌉∑

i=1

wi(s
′) +
⌈n
2
⌉ (⌈n

2
⌉+ 1)

2
.

The result follows if either ⌈n
2
⌉+ 1 or ⌈n

2
⌉ is divisible by 3.

Proposition 6. For odd n, if s1 . . . s⌈n
2
⌉ . . . sn ∈ SR(n), then s1 . . . 1 −

s⌈n
2
⌉ . . . sn ∈ SR(n).

The proof of the proposition is straightforward, as it follows from the

definition of the reconstruction set SR(n).
For odd n such that ⌈n

2
⌉ ≡ 0 mod 3 our code is defined as follows:

S(1)
C (n) =

{
s = s1s2s3 . . . s⌈n

2
⌉ . . . sn−2sn−1sn ∈ {0, 1}n :

s1s
n−2
3 sn = s1s3s4s5 . . . sn−4sn−3sn−2sn ∈ SR(n− 2),

wt(s) mod 2 = 0,

⌈n
2
⌉∑

i=1

wi(s) ≡ 0 mod 3, where s2 ⩽ sn−1

}
.

The size of the code S(1)
C (n) is |SR(n−2)|

2
, which follows from the second

constraint that s1s3 . . . sn−2sn ∈ SR(n − 2), along with Proposition 6. To

construct a string in S(1)
C (n), we first fix s2 and sn−1 so that

∑⌈n
2
⌉

i=1 wi(s) ≡
0 mod 3. Then, we choose s⌈n

2
⌉ to satisfy wt(s) ≡ 0 mod 2. From Proposi-

tions 5 and 6, the resulting string belongs to S(1)
C (n). The next proposition
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shows that for certain codelengths, there exists values for s2 and sn−1 that

always allow for the constraints to be satisfied.

Proposition 7. When ⌈n
2
⌉ is divisible by 3, then for any x = x1 . . . xn−2 ∈

{0, 1}n−2, there exists s2sn−1 ∈ {0, 1}2 so that

⌈n
2
⌉∑

i=1

wi

(
x1s2x2x3 . . . xn−3sn−1xn−2

)
≡ 0 mod 3,

where s2 ⩽ sn−1.

Proof. Let s = x1s2x2x3 . . . xn−3sn−1xn−2. Clearly, the elements s2 and sn−1

appear in exactly one composition from C1(s) (recall that Ci(s) denotes the

set of compositions of s of length i). Furthermore, s2 and sn−1 each appear

twice in every set Ci(s), where ⌈n2 ⌉ ⩾ i ⩾ 2. Therefore the symbol s2 appears

in

2
(
⌈n
2
⌉ − 1

)
+ 1

compositions from C1(s)∪C2(s)∪ · · · ∪C⌈n
2
⌉(s), and, by symmetry, the sym-

bol sn−1 appears 2
(
⌈n
2
⌉ − 1

)
+ 1 times as well.

Suppose
∑⌈n/2⌉

i=1 wi(s) ≡ a mod 3 when (s2, sn−1) = (0, 0). Then, more gen-

erally if (s2, sn−1) = (c1, c2) ∈ {0, 1}2 where (c1, c2) are not necessarily equal

to (0, 0) we have

⌈n
2
⌉∑

i=1

wi(s) ≡ a+ c1

(
2
(
⌈n
2
⌉ − 1

)
+ 1
)
+ c2

(
2
(
⌈n
2
⌉ − 1

)
+ 1
)
mod 3

≡ a− c1 − c2 mod 3.

Since for the case (c1, c2) = (0, 0),
∑⌈n

2
⌉

i=1 wi(s) ≡ a mod 3, for (c1, c2) = (0, 1),∑⌈n
2
⌉

i=1 wi(s) ≡ a−1 mod 3, and for (c1, c2) = (1, 1),
∑⌈n

2
⌉

i=1 wi(s) ≡ a−2 mod 3.

This completes the proof.

For the next lemma, recall that C̃(s) is the result of a single composition

error in C(s).

Lemma2. Suppose that s ∈ S(1)
C (n) where ⌈n

2
⌉ is divisible by 3. Then, given

C̃(s), one can recover Σ⌈n
2
⌉.
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Proof. In order to prove the claim, we show that given C̃(s), one can recover

w1, w2, . . . , wn, which we know uniquely determine Σn/2 according to (2.1).

Let j be such that w̃j ̸= w̃n+1−j. Since at most one single composition error

is allowed, there exists at most one such j. It is straightforward to see that

due to symmetry, either w̃j ̸= wj = wn+1−j or w̃n+1−j ̸= wj = wn+1−j. Since

wt(s) mod 2 = 0 by construction, it follows that we can determine w1 based

on Proposition 4. In addition, using the first identity from Proposition 2,

it follows that we can recover σ1, σ2, . . . , σj−2. Also, using the constraint∑⌈n
2
⌉

i=1 wi(s) ≡ 0 mod 3, we can recover wj mod 3. Then, according to Propo-

sition 3, we can recover wj along with w1, . . . , wn. One case left to consider

is when w̃i = w̃n+1−i, for all i ∈ [⌊n
2
⌋]. In this case, w̃⌈n

2
⌉ ̸= w⌈n

2
⌉. Apply-

ing Proposition 3 allows us to determine w⌈n
2
⌉ for this case as well. This

completes the proof.

Next, recall that Ti stands for the set of compositions of all substrings slj

for which j < l ⩽ i, or n + 1 − i ⩽ j < l, or j ⩽ i + 1 and n − i ⩽ l, or

l = n+ 1− j.

Let the two strings s and v be such that sj1 = vj
1 and snn+1−j = vn

n+1−j and

either sj+1 ̸= vj+1 or sn−j ̸= vn−j. Then we say that the longest prefix-suffix

pair shared by the two strings has length j.

Before we proceed to prove that S(1)
C (n) is a single error-correcting code,

we provide two illustrative examples - one for the case where the error occurs

in a composition of length (size) j ⩽ ⌊n
2
⌋, and another for the case where the

error occurs in a composition of length (size) j ⩾ ⌈n
2
⌉.

Example 2. Let n = 11 and consider s = 00001111111 ∈ S(1)
C (n). Let

the composition multiset with one composition error be C̃(s) = (C(s) ∪
{14}) \ {04}. Given C̃(s), by Lemma 2, we can infer Σ6 = (1, 1, 1, 1, 2, 1).

The Backtracking algorithm readily reconstructs up to s1s2s3 = 000, and

s9s10s11 = 111. For further details on the Backtracking algorithm, refer to

Example 1 and [7]. Next, observe that w4 ̸= w8, and that the two largest

compositions in C̃(s) \ T3 = {0413, 17} are compatible with the reconstructed

prefix, suffix and the constraints imposed by Σ6. Thus, the Backtracking algo-

rithm proceeds by reconstructing s4s8 = 01, and computing T4. Note that for

this string, due to the constraints imposed by σ5, and σ6, the string is imme-

diately reconstructed as 00001111111. The Backtracking algorithm finds that

04 ∈ T4, but 04 ̸∈ C̃(s). However, this one single incompatibility is expected
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in the given error setting. In general, for the case of a single composition

error, if the error occurs in a composition that corresponds to a substring of

length ⩽ ⌊n
2
⌋, it does not affect the Backtracking algorithm. □

Example3. Let n = 11 and once again consider s = 00001111111 ∈ S(1)
C (n).

Let the composition multiset with one composition error be C̃(s) = (C(s) ∪
{016}) \ {17}. Given C̃(s), by Lemma 2, we can infer Σ6 = (1, 1, 1, 1, 2, 1).

The Backtracking algorithm readily reconstructs up to s1s2s3 = 000, and

s9s10s11 = 111. Note that w4 ̸= w8, and that the two largest compositions

in C̃(s) \ T3 equal {0413, 016}, implying s4s8 = 00. Clearly, one of these two

compositions is erroneous as σ4 = 1. Hence, the two possibilities for the bits

s4s8 are 10 and 01. If the Backtracking algorithm assigns s1s2s3s4 = 0001,

and s8s9s10s11 = 0111, then note that while T4 contains only one 14, C̃(s)

contains four 14. In particular, the number of distinct elements in the sets

C̃(s) and T4 due to incorrect bit assignments is strictly greater than one.

Thus, if the Backtracking algorithm erroneously reconstructs the bits s4s8,

it backtracks and assigns s4s8 = 01 instead. As mentioned in Example 2,

due to the constraints imposed by σ5, and σ6, the string is then correctly

reconstructed as 00001111111. □

Lemma 3. Let s ∈ S(1)
C (n). Given C̃(s), one can uniquely reconstruct the

string s.

Proof. Let j denote the index of the composition multiset Cj that contains

an error. As shown in the example, single composition errors that occur in a

composition of a substring of length j ⩽ ⌊n
2
⌋ do not affect the reconstruction

process, since the Backtracking algorithm only makes use of information pro-

vided by compositions of substrings of length ⩾ ⌈n
2
⌉. As the Backtracking

algorithm progresses, the erroneous composition is identified through a com-

parison of the erroneous observed composition multiset and the iteratively

constructed set Tℓ, as explained in the above examples. Errors that happen

for j ⩽ ⌊n
2
⌋ are easily identified and automatically corrected by the Back-

tracking algorithm. From Lemma 2, Σ⌈n
2
⌉ may be determined in an error-free

manner. Using the obtained Σ⌈n
2
⌉, we run the Backtracking algorithm and

in the process, we possibly run into incompatible compositions for j ⩾ ⌈n
2
⌉.

Note that when j = ⌈n
2
⌉, the Backtracking algorithm has reconstructed the

entire string. Given an already reconstructed prefix-suffix pair of length i,
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si1, s
n
n−i+1, we make use of the two largest cardinality compositions in C̃(s)\Ti

to reconstruct the bits si+1 and sn−i. If σi+1 ∈ {0, 2}, si+1 and sn−i can be

determined immediately. Also, given Σ⌈n
2
⌉, if the Backtracking algorithm can

correctly determine which of the above two compositions corresponds to a

prefix and a suffix, then si+1 and sn−i can be uniquely identified. Otherwise,

the Backtracking algorithm halts and performs a guess. Thus, in summary,

an error occurring in a composition in Cj affects the reconstruction of the

bits indexed by i+ 1 and n− i, where i is such that j + i+ 1 = n.

Consider the case where the incompatibility manifests itself through Ti ̸⊂
C̃, where j = n − i − 1. Here, we identify the element that is in Ti but

not in C̃j, and add its weight to w̃j and compare it with w̃n+1−j; this al-

lows us to identify the erroneous composition. The assumption is that a

composition corresponding to a substring of length j is erroneous. Clearly,

C̃j = (Cj \ {ci1}) ∪ {ci2}, for some compositions indexed by i1 and i2, where

ci1 corresponds to the original, correct composition, while ci2 corresponds to

the erroneous composition. Since Ti contains some composition ci3 of a sub-

string of length j that is not present in C̃j, it must be that ci3 = ci1 . Thus,

we have wt(ci2) = w̃j +wt(ci1)− w̃n+1−j and the erroneous composition can

be identified and corrected. Next, suppose on the contrary that Ti ⊂ C̃. In

this case, consider the two largest compositions in C̃ \ Ti. The two largest

compositions in C̃ \ Ti are the compositions of a prefix-suffix pair of length

j.

Since we have reconstructed the prefix and suffix of length i, and we know

that σi+1 = 1, the prefix-suffix pair is either (si10, 1s
n
n+1−i) or (s

i
11, 0s

n
n+1−i).

To show that only one of the constructed prefix-suffix pairs is valid/compatible,

it suffices to show the following: For any two distinct strings s,v ∈ S(1)
C (n)

that have the same Σ⌈n
2
⌉, and are such that the longest prefix-suffix pairs

shared by them is of length i, one has |C(s) \ C(v)| ⩾ 3. Note that it

now follows from Lemma 2 that for all strings s ∈ S(1)
C (n), Σ⌈n

2
⌉ can be

determined. Thus, if two strings u,v ∈ S(1)
C (n) share the same Σ⌈n

2
⌉ se-

quence, and ui+1
1 = si10,u

n
n−i = 1snn+1−i, and vi+1

1 = si11,v
n
n−i = 0snn+1−i,

then C̃(u) = C̃(v) only if |C(u)\C(v)| ⩽ 2. Thus, |C(u)\C(v)| ⩾ 3 implies

that C̃(u) ̸= C̃(v). Observe that since v ∈ S(1)
C (n), the number of 0s in c(si1)

is at least by two larger than the number of 0s in c(snn+1−i).

Let us assume that on the contrary, there are two strings s,v such that

|C(s) \ C(v)| ⩽ 2, and that they differ only in their respective Cj sets.
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Since the prefixes and suffixes of the strings of length i = n − j − 1 are

identical, we let s1, . . . , si and sn+1−i, . . . , sn denote the first and last i bits of

both strings. Let c(s) denote the composition of the string s. Furthermore,

let c(sji ) denote the composition of sji , i ⩽ j and let c = c(sn−i−2
i+3 ).

When n = 2(i+1)+1, the strings differ in two compositions in Cn−1−i due

to the assumption that the longest prefix-suffix pair shared by the two strings

s and v is of length i. Since s and v share the same Σ⌈n
2
⌉, let s⌈n

2
⌉ = v⌈n

2
⌉ = b.

Therefore, s = si10b1s
n
n+1−i,v = si11b0s

n
n+1−i. Observe that for the cases b = 0

and b = 1, |Cj−1(s) \ Cj−1(v)| ⩾ 1. Thus, |C(s) \ C(v)| ⩾ 3.

When n ⩾ 2(i + 1) + 3 and σi+2 = 1, we let s+ stand for the (i + 2)th

bit in the string s, and v+ stand for the (i + 2)th bit of string v. Figure 2.7

illustrates this setting. When σi+2 ∈ {0, 2}, we let b denote the (i + 2)th

bits of the two strings, which are identical. Next, we determine conditions

under which Cj−1(s) = Cj−1(v). We know that if the compositions of the

two strings differ by three or more, the two strings cannot be confused under

the single composition error model. Due to the constraints imposed by the

very construction of the string, we know that |Cj(s) \ Cj(v)| = 2. Thus, for

the two strings not to be confusable under the given error model, |Cℓ(s) \
Cℓ(v)| > 0 for some ℓ ∈ [n] \ {j}. We show that a specific ℓ satisfying the

previous inequality equals j − 1, i.e., |Cj−1(s) \ Cj−1(v)| > 0. Note that

the compositions of substrings of length n − i − 2 that contain the bits

i+ 1, . . . , n− i are identical for the two strings.

Figure 2.7: Two strings s and v that satisfy the assumptions used in the
proof.

Case 1 : σi+2 = 1. With a slight abuse of notation, we choose to write

compositions as sets containing both bits and other compositions. On the

left-hand side of the equation below, the compositions correspond to the

substrings of s of length n − i − 2 that may differ for the two strings. The

right-hand side of the equation corresponds to the same entities in v. If the
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equation holds, then the multisets Cj−1(s) and Cj−1(v) are equal.

{c(si1), 0, s+, c},

{c(si2), 0, s+, c, 1− s+},

{c(snj+2), 1, 1− s+, c},

{c(sn−1
j+2 ), 1, 1− s+, c, s+}



=



{c(si1), 1, v+, c},

{c(si2), 1, v+, c, 1− v+},

{c(snj+2), 0, 1− v+, c},

{c(sn−1
j+2 ), 0, 1− v+, c, v+}


.

The exhaustive case-by-case arguments show that the above set equality is

never true.

Case 2 : σi+2 ∈ {0, 2} Similar reasoning leads to a set equality condition

in which s+ and v+ are replaced by b. Once again, it can be shown by an

exhaustive case-by-case analysis that the set equality never holds, indepen-

dently on the choice of b. This implies that the composition sets Cj−1(s) and

Cj−1(v) differ, which in turn implies that the composition multisets of the

two strings are at distance ⩾ 3.

Recall that when ⌈n
2
⌉ mod 3 = 0, the size of the code S(1)

C (n) is |SR(n−2)|
2

.

In addition to the redundancy required to construct the reconstruction code,

we require one bit to ensure n− 3 is even, three bits to fix s2, sn−1 and s⌈n
2
⌉,

and four bits to ensure that ⌈n
2
⌉ is divisible by three. Thus, S(1)

C (n) requires
1
2
log k + 13 redundant bits.

The backtracking string reconstruction process based on an erroneous com-

position set is straightforward: It takes O(n2) time to compute the Tk mul-

tiset, and backtracking performs O(n) steps. Thus, the decoding algorithm

can computes the original string in O(n3) time.

2.4.2 Multiple Error-Correcting Reconstruction Codes: The
Asymmetric Case

We consider an error model in which each of the multisets Ci∪Cn+1−i, i ∈ [n]

is allowed to contain at most one composition error and the total number of
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errors is at most t. The codes described in what follows add asymptotically

negligible redundancy to the information strings to correct a fixed number

of t asymmetric errors. To construct the codes, we generalize the approach

used in the previous section for correcting a single error.

We start with the description of a t-shifted reconstruction code of even

length m, denoted by S(t)
R (m) and defined below.

S(t)
R (m) ={s ∈ {0, 1}m, st1 = 0, smm−t+1 = 1, and (2.4)

∃ I ⊆ {t+ 1, . . . ,m− t} such that

∀ i ∈ I, si ̸= sm+1−i,

and ∀ i ̸∈ I, si = sm+1−i,

s[m/2]∩I is a Catalan-Bertrand string}.

We refer to strings of the form st1s[m/2]∩I as t-shifted Catalan-Bertrand

strings. For a s ∈ S(t)
R (m), every prefix of length i where m

2
⩾ i ⩾ t+ 1, has

at least t+ 1 more 0s than its corresponding suffix of the same length.

Lemma 4. Let s,v ∈ S(t)
R (m) share the same Σ

m
2 sequence and satisfy

|Cj(s) \ Cj(v)| ⩽ 2 for all j ∈ [m]. If the longest prefix-suffix pair shared

by s and v is of length i, then their corresponding composition multisets

Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 each differ in at least 2 compositions.

We defer the proof to Appendix A.4.

Corollary 1. Let s ∈ S(t)
R (m), and let C̃(s) be the composition multiset

C(s) corrupted by at most t asymmetric errors. Then, given the correct Σ
m
2

sequence, the string s can be uniquely reconstructed from C̃(s).

Proof. The result immediately follows from Lemma 4.

Henceforth, we use S(t)
CA(n) to denote an asymmetric t-error-correcting re-

construction code. Strings s ∈ S(t)
CA(n) are constructed by adding n − m

redundancy bits to a string s′ ∈ S(t)
R (m) of even length in such a way that

the Σ⌈n
2
⌉ sequence can be recovered even in the presence of t asymmetric

errors.

Claim 3. Let s be an arbitrary string of even length n and let C̃(s) denote

the composition multiset C(s) corrupted by t asymmetric errors. Then, at

least n
2
− 3t elements in (σ1, σ2, . . . , σn

2
) can be determined based on C̃(s).

29



Proof. The claim is a consequence of a simple analysis of the set of linear

equations in (2.1). Clearly, wi is unknown whenever Ci ∪ Cn+1−i contains

an error. Therefore, if we have t errors we only have n
2
− t linear equations

that involve n
2
variables. From this system of n

2
− t linear equations we form

a new system of linear equations by subtracting equation (2.1) with index

i from the equation (2.1) with index i + 1. Note that for all values of i

such that wi−1, wi and wi+1 are known, the value of σi can be found from

the new system of equations. Thus, the derived system of equations allows

one to infer at least n
2
− 3t elements of the Σ

n
2 sequence. Note that all the

expressions above assume that n is even. For odd n, ⌈n
2
⌉ should be used

instead.

We illustrate the above claim with an example. If w3, w4 and w5 are known

then using the linear equations corresponding to i = 3 and i = 4, one can infer∑n
2
k=4 σk and using the linear equations corresponding to i = 4 and i = 5,

one can infer
∑n

2
k=5 σk. Thus, one can determine σ4 =

∑n
2
k=4 σk −

∑n
2
k=5 σk.

Thus, to recover the entire Σ
n
2 sequence, it suffices to take the Σ

n
2 string

from a systematic Reed-Solomon code over the alphabet {0, 1, 2} that can

correct up to 3t erasures.

Thus, the codestrings s ∈ S(t)
CA(n) are constructed via the following proce-

dure:

• Pick a string s
′
= s

′ m
2

1 s
′m
m
2
+1 ∈ S

(t)
R (m).

• Using a systematic Reed-Solomon code over the alphabet {0, 1, 2} that
can correct up to 3t erasures, the Σ

m
2 sequence is mapped to Σ

n
2 . Note

that the sequence (σm
2
+1, . . . , σn

2
) is appended to Σ

m
2 .

• A string b of length n−m is created using the sequence (σm
2
+1, . . . , σn

2
)

as follows. For all k ∈
[
n−m
2

]
:

bkbn−m+1−k =


00, if σm

2
+k = 0;

01, if σm
2
+k = 1;

11, if σm
2
+k = 2.

• A codestring s ∈ S(t)
CA(n) is obtained by concatenating the strings s

′

and b, namely s = s
′ m
2

1 bn−m
1 s

′m
m
2
+1.
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Given C̃(s), the composition multiset C(s) corrupted by t asymmetric

errors, the string s can be uniquely reconstructed via the the following four-

step procedure:

• Construct the linear system of equations governed by (2.1) using the

erroneous composition multiset.

• Solve for the σi values that can be inferred from the linear system.

• Infer the correct Σ
n
2 sequence using an efficient polynomial evaluation

decoder.

• Reconstruct the string s using the Backtracking algorithm.

The procedure described above requires 1
2
log n + 6 redundant bits to en-

sure the Catalan-Bertrand string structure of even length, 2t redundant

bits for the t-shifted structure and 3t log n redundant bits to correct era-

sures in the Σ
n
2 sequence. Thus, the number of redundant bits r required

is
(
1
2
+ 3t

)
log n + 2t + 6. Furthermore, r does not exceed

(
1
2
+ 3t

)
log k +

2t + 7 +
(
1
2
+ 3t

)
1
κ
, where κ is supremum over all κ > 0 such that n ⩾

(1 + κ)
((

1
2
+ 3t

)
log n+ 2t+ 7

)
.

Recall that the Backtracking algorithm takesO(n3) time to reconstruct the

string (it takes O(n2) time to find the longest compositions in the set Tℓ \C,
and reconstruct the bits sℓ+1sn−ℓ; and, there are n

2
such pairs to be recon-

structed). With a slight abuse of notation, we say that index i corresponds

to an asymmetric error if a single composition error occurred in Ci ∪Cn+1−i.

Now assume that the indices i, i+1, . . . , j (j ⩾ i) correspond to composition

lengths that contain asymmetric errors, and that Ci−1, Cn+2−i, Cj+1, Cn−j are

error-free. Note that the proof of Lemma 4 established that the Backtracking

algorithm can reconstruct the correct substrings sjis
n+1−i
n+1−j before proceeding

to reconstruct the bits sj+1, sn−j. Thus, every contiguous burst of errors of

length t′ causes an additional O(n22t
′
) reconstruction time delay. Thus, the

worst case reconstruction time is O(n22t).

Combining this result with that of Corollary 1 establishes Theorem 3.
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2.5 Multiple Error-Correcting Reconstruction Codes:

The Symmetric Case

We now turn our attention to designing reconstruction codes capable of cor-

recting symmetric composition errors. The proposed method leverages a

polynomial formulation of the composition reconstruction problem first de-

scribed in [7]. The main result is a constructive proof for the existence of

codes with O(t2 log k) bits of redundancy capable of correcting t symmetric

composition errors.

To this end, we first review the results of [7] describing how to formulate the

string reconstruction problem in terms of bivariate polynomial factorization.

For a string s ∈ {0, 1}n, let Ps(x, y) be a bivariate polynomial of degree n

with coefficients in {0, 1} such that Ps(x, y) contains exactly one term with

total degree i ∈ {0, 1, . . . , n}. If s = s1 . . . sn and if
(
Ps(x, y)

)
i
denotes the

unique term of total degree i, then
(
Ps(x, y)

)
0
= 1, and

(
Ps(x, y)

)
i
=


y
(
Ps(x, y)

)
i−1

, if si = 0,

x
(
Ps(x, y)

)
i−1

, if si = 1.

In words, we use y to denote the bit 0 and x to denote the bit 1 and then

summarize the composition of all prefixes of the string s in polynomial form.

As a simple example, for s = 0100 we have Ps(x, y) = 1+ y+xy+xy2+xy3.

To see why this is true, we start with the free coefficient 1, then add y to

indicate that the prefix of length one of the string equals 0, add xy to indicate

that the prefix of length two contains one 0 and one 1, add xy2 to indicate

that the prefix of length three contains two 0s and one 1 and so on.

We also introduce another bivariate polynomial Ss(x, y) to describe the

composition multiset C(s) in a manner similar to Ps(x, y). In particular,

we now associate each composition with a monomial in which the symbol y

represents the bit 0 and the symbol x with the bit 1. As an example, for

s = 0100 we have

C(s) =
{
0, 1, 0, 0, 01, 01, 02, 021, 021, 031

}
,
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and

Ss(x, y) = x+ 3y + 2xy + y2 + 2xy2 + xy3,

where the first two terms in Ss(x, y) indicate that the composition multiset

contains one substring 1 and three substrings 0; the next three terms indicate

that the string contains two substrings with one 1 and one 0 and one substring

with two 0s. The remaining terms are interpreted similarly.

The key identity from [7] is of the form

Ps(x, y)Ps

(
1

x
,
1

y

)
= (n+ 1) + Ss(x, y) + Ss

(
1

x
,
1

y

)
. (2.5)

Given a bivariate polynomial f(x, y), we use f ∗(x, y) to denote its reciprocal

polynomial, defined as

f ∗(x, y) = xdegx(f)ydegy(f)f

(
1

x
,
1

y

)
,

where degx(f) denotes the x-degree of f(x, y) and degy(f) denotes its y-

degree. For simplicity, we hence write dx = degx(Ps) and dy = degy(Ps).

Using the notion of the reciprocal polynomial we can rewrite the expression

in (2.5) as:

Ps(x, y)P
∗
s (x, y) = xdxydy (n+ 1 + Ss(x, y)) + S∗

s (x, y). (2.6)

Note that if C̃(s) is the composition multiset resulting from t symmetric

composition errors in C(s) and S̃s(x, y) is the polynomial representation of

C̃(s) while Ss(x, y) is the polynomial representation of C(s), then

S̃s(x, y) = Ss(x, y) + E(x, y),

where E(x, y) has at most 2t nonzero coefficients. Note that the coefficients

of E(x, y) lie in {−t,−t + 1, . . . ,−1, 0, 1, . . . , t − 1, t}. A composition error

corresponds to removing a multinomial et from Ss(x, y) and adding a different

multinomial ef . Thus, −et, and +ef are addends in E(x, y). Since up to t

errors are possible, the coefficients of every multinomial in E(x, y) are integers

in {−t,−t+ 1, . . . ,−1, 0, 1, . . . , t− 1, t}. If every multinomial removed from

or added to Ss(x, y) is unique, then there are 2t terms in E(x, y). Otherwise,

the number of multinomials is less than 2t. Our first result relates S̃s(x, y)

33



and Ps(x, y).

Claim 4. Suppose that wt(s)mod(2t+ 1) = cw for some cw ∈ {0, 1, . . . , 2t}.
Then, given S̃s(x, y) and cw one can generate

Ps(x, y)P
∗
s (x, y) + Ẽ(x, y),

where the polynomial Ẽ(x, y) has at most 4t terms.

Proof. First, recall that S̃s(x, y) = Ss(x, y) + E(x, y) where E(x, y) has at

most 2t nonzero coefficients. Given cw, we can easily determine the exact

degrees dx and dy of the polynomial encoding of s: In the error-free case, the

sum of all compositions of length 1 (i.e., the sum of the bits of the string)

equals wt(s) = dx. When the composition multiset is erroneous, we can only

observe d̃x, which takes a value in the set {dx − t, dx − t + 1, . . . , dx, dx +

1, dx + 2, . . . , dx + t− 1, dx + t}. Equivalently, we know that

dx ∈ {d̃x − t, d̃x − t+ 1, . . . , d̃x, d̃x + 1, d̃x + 2, . . . , d̃x + t− 1, d̃x + t}.

Since dx ≡ cw mod (2t + 1), exactly one value in the set {d̃x − t, d̃x − t +

1, . . . , d̃x, d̃x+1, d̃x+2, . . . , d̃x+t−1, d̃x+t} will satisfy this condition. Hence,

dw can be inferred exactly, and since dy = n− dx, the same conclusion holds

for dy.

Next, we form Ps(x, y)P
∗
s (x, y) as follows:

xdxydy
(
n+ 1 + S̃s(x, y) + S̃s

(
1

x
,
1

y

))
= xdxydy(n+ 1) + xdxydy ×(
Ss(x, y) + E(x, y) + Ss

(
1

x
,
1

y

)
+ E

(
1

x
,
1

y

))
= Ps(x, y)P

∗
s (x, y) + xdxydy

(
E(x, y) + E

(
1

x
,
1

y

))
= Ps(x, y)P

∗
s (x, y) + Ẽ(x, y),

where Ẽ(x, y) = xdxydy
(
E(x, y) + E

(
1
x
, 1
y

))
has at most 4t nonzero coeffi-

cients, which proves the desired result.

Let Fq be a finite field of order q, where q is an odd prime. Let α ∈ Fq be a

primitive element of the field. For a polynomial f(x) ∈ Fq[x], letR(f) denote
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the set of its roots. We find the following result useful for our subsequent

derivations.

Theorem 7. ( [31, Ch. 5]) Assume that E(x) ∈ Fq[x] has at most t nonzero

coefficients. Then, E(x) can be uniquely determined in O(n2) time given

E(αt), E(αt−1), . . . , E(α0), E(α−1), . . . , E(α−t).

2.5.1 The Code Construction

Our approach to constructing a symmetric t-error-correcting code of length

n, denoted by S(t)
CS(n), relies on the fact that Ẽ(x, y) may be written as:

Ẽ(x, y) =(ai1,1y
ji1,1 + · · ·+ ai1,mi1

y
ji1,mi1 )xi1+

(ai2,1y
ji2,1 + · · ·+ ai2,mi2

y
ji2,mi2 )xi2+

... (2.7)

(aih,1y
jih,1 + · · ·+ aih,mih

y
jih,mih )xih ,

where each ai,j ∈ {−1, 1}, h ⩽ 4t and the total number of nonzero terms is

⩽ 4t. Since Ẽ(x, y) is restricted to have at most 4t nonzero terms, each of the

polynomials (aiℓ,1y
jiℓ,1 + · · · + aiℓ,miℓ

y
jiℓ,miℓ ) can contain at most 4t nonzero

terms. Consequently, one has miℓ ⩽ 4t for all ℓ ∈ {1, 2, . . . , h}.
Based on the previous observations we are ready to introduce our first code

construction. We assume that Ps(x, y) is a bivariate polynomial over the field

Fq, where q is the smallest prime ⩾ 2n + 1. Clearly, for a Ps(x, y) ∈ I[x, y]
over the set integers I, one can obtain Ps(x, y) ∈ Fq[x, y] by simply reducing

Ps(x, y) modulo q.

Lemma 5. Let

C = {s ∈ {0, 1}n s.t. wt(s) mod 2t+ 1 = 0,

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, 1)),

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, α)),

...

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, α
4t))}.

Then, C is a symmetric t-error-correcting code.
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Proof. We prove the claim by describing a decoding algorithm that for any

given S̃s(x, y), which is the result of at most t composition errors occurring

in Ss(x, y), uniquely recovers Ss(x, y).

Since there are at most t erroneous compositions in S̃s(x, y), one can de-

termine wt(s) by summing up the length-one compositions (i.e., the bits)

in S̃s(x, y) along with the fact that wt(s) mod 2t + 1 = 0. Therefore, from

Claim 4, we can construct the polynomial

F (x, y) = Ps(x, y)P
∗
s (x, y) + Ẽ(x, y), (2.8)

where Ẽ(x, y) has at most 4t nonzero coefficients.

Suppose that β, β′ ∈ Fq. First, observe that if Ps(β, β
′)P ∗

s (β, β
′) = 0,

then Ps(
1
β
, 1
β′ )P

∗
s (

1
β
, 1
β′ ) = 0 which immediately follows from the definition

of P ∗
s (x, y). Thus, if (β, β′) is a root of Ps(·, ·), then so is (β−1, β′−1). Since

{1, α, α2, . . . , α4t} ⊆ R(Ps(α
ℓ1 , y)) for all ℓ1 ∈ {0, 1, . . . , 4t}, and similarly

{1, α, α2, . . . , α4t} ⊆ R(Ps(x, α
ℓ2)) for all ℓ2 ∈ {0, 1, . . . , 4t}, it follows that

F (αℓ1 , αℓ2) = Ẽ(αℓ1 , αℓ2). Hence, we have:

Ẽ(αℓ1 ,αℓ2) =(
ai1,1α

ℓ2×ji1,1 + · · ·+ ai1,mi1
α
ℓ2×ji1,mi1

)
αℓ1×i1

+
(
ai2,1α

ℓ2×ji2,1 + · · ·+ ai2,mi2
α
ℓ2×ji2,mi2

)
αℓ1×i2

...

+
(
aih,1α

ℓ2×jih,1 + · · ·+ aih,mih
α
ℓ2×jih,mih

)
αℓ1×ih ,

for ℓ1, ℓ2 ∈ {0, 1, . . . , 4t,−1,−2, . . . ,−4t}. From Theorem 7, for any fixed ℓ2

we know the evaluations Ẽ(αℓ1 , αℓ2) for ℓ1 ∈ {0, 1, . . . , 4t,−1,−2, . . . ,−4t},
so that we can recover the polynomials

Ẽ(x, αℓ2) =
(
ai1,1α

ℓ2×ji1,1 + · · ·+ ai1,mi1
α
ℓ2×ji1,mi1

)
xi1

+
(
ai2,1α

ℓ2×ji2,1 + · · ·+ ai2,mi2
α
ℓ2×ji2,mi2

)
xi2

...

+
(
aih,1α

ℓ2×jih,1 + · · ·+ ajih,mih
α
ℓ2×jih,mih

)
xih , (2.9)

using a decoder for a cyclic Reed-Solomon code of complexity O(n2).
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Let

Miℓ(y) = aiℓ,1y
jiℓ,1 + · · ·+ aiℓ,miℓ

y
jiℓ,miℓ

be the polynomial multiplier of xiℓ in Ẽ(x, y). From the previous discussion,

we know that the maximum number of nonzero terms in Miℓ(y) is 4t. Using

(2.9), we can determine Miℓ(α
ℓ2) for ℓ2 ∈ {0, 1, 2, . . . , 4t,−1,−2, . . . ,−4t}.

Due to Theorem 7, this implies that we can recoverMiℓ(y) for ℓ ∈ {1, 2, . . . , h}
once again using a decoder for a Reed-Solomon code. Since

Ẽ(x, y) = Mi1(y)x
i1 +Mi2(y)x

i2 + · · ·+Mih(y)x
ih ,

we can determine E(x, y) by noting the following: 1) Given wt(s) mod (2t+

1), we can recover wt(s) from the erroneous composition multiset, from which

dx and dy = n − dx can be determined. 2) Since dx, dy are known, and

Ẽ(x, y) = xdxydy
(
E(x, y) + E

(
1
x
, 1
y

))
, E(x, y) can be determined. Subse-

quently we can reconstruct Ss(x, y) given S̃s(x, y).

The following corollary is an immediate consequence of Lemma 5.

Corollary 2. Let

C = {s ∈ {0, 1}n s.t. Ps(α
ℓ1 , αℓ2) = aℓ1,ℓ2 ,

wt(s) ≡ a mod 2t+ 1},

for all ℓ1, ℓ2 ∈ {0, 1, . . . , 4t}, a ∈ {0, 1, . . . , 2t}, and where (aℓ1,ℓ2)
4t
ℓ1=0,ℓ2=0 is

an arbitrary vector from F(4t+1)2

q . Then, C can correct t symmetric composi-

tion errors.

2.5.2 A Systematic Encoder Et,n
We construct next a systematic encoder Et,n for the previously proposed

codes.

Let r be the number of redundant bits in the proposed code construction.

We will show in Theorem 4 that for all n, one requires a redundancy that
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does not exceed

4
[
(4t+ 1)2(log(2n+ 1) + 1) + log(2t+ 1)

+ t log
(
(4t+ 1)2(log(2n+ 1) + 1) + log(2t+ 1)

) ]
+

1

2
log(n) + 5.

One can show that r does not exceed 156t2 log 8n. Thus, r = O(t2 log n).
Furthermore, r does not exceed 156t2 log 8k+156t2

(
1
κ

)
, where κ is supremum

over all κ > 0 such that n ⩾ 156(1 + κ)(t2 log 8n + 1). To express the

redundancy in terms of the information length k, we upper bound ct2 log n,

where c is a constant, as follows. First, we write

ct2 log n = ct2
(
log k + log

(
n− k + k

k

))
.

Then, we upper bound the term log
(
n−k+k

k

)
using the Taylor series for log(1+

x) and the linear term involved to arrive at log
(
n−k+k

k

)
< n−k

k
. For k0

large enough and for all k ⩾ k0,
n−k
k
ct2 can be upper bound by a constant

independent of n and k under the given parameter assumptions.

The encoder Et,n takes as input the string u ∈ {0, 1}n−r̂, where r̂ > 0 is a

redundancy to be precisely specified later, and it produces a string s. The

evaluations of the polynomial Ps(x, y) is stored in(
w1, w2, . . . , w r̂

2

)
mod 2,

where we recall that wi stands for the cumulative weight of compositions of

length i in C(s).

Let Et : {0, 1}m → {0, 1}m+t logm be a systematic encoder for a code with

minimum Hamming distance 2t + 1 that inputs a string of length m and

outputs a string of length m + t logm. We will use this encoder with m =

(4t+1)2(1+log(2n+1))+log(2t+1). Clearly, such a code exists since binary

BCH codes of odd minimum distance have the desired set of parameters.

Encoder Et,n : {0, 1}n−r̂ → {0, 1}n.

Input String u ∈ {0, 1}n−r̂.

Output Symmetric t-error-correcting codestring s ∈ {0, 1}n.

1. Let α ∈ Fq be a primitive element and let q be an odd prime ⩾ 2n+1.
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For ℓ1, ℓ2 ∈ {0, 1, . . . , 4t}, set aℓ1,ℓ2 = Pu(α
ℓ1 , αℓ2), a = (aℓ1,ℓ2)

4t
ℓ1=0,ℓ2=0.

Let a = wt(u) mod 2t+ 1.

2. Let s̄ = Et(a, a) ∈ {0, 1}
r̂
4 .

3. For j ∈ {1, 2, . . . , r̂
2
}, define z = (z1 . . . z r̂

2
) as

zj =


∑j−1

i=1 zi mod 2, if j is odd and s̄ j+1
2

= 0,∑j−1
i=1 zi + 1 mod 2, if j is odd and s̄ j+1

2
= 1,

0, if j is even.

4. Set s = 0u z ∈ {0, 1}n, where 0 is an all-zero string of length r̂
2
.

The t-error-correcting code S(t)
CS(n) is generated by the following two-step

procedure:

• An information string of length k is first encoded using the reconstruc-

tion code SR, resulting in the string u ∈ SR(n− r̂).

• The string u is passed through the encoder Et,n, resulting in the code-

string s = Et,n(u) ∈ S(t)
CS(n).

Based on the above analysis, we set r̂ to be the smallest integer ⩾ r −(
1
2
log(n) + 5

)
that is divisible by 4.

The redundancy of the code may be calculated as follows:

1. Since q ⩾ 2n + 1, every αℓ1,ℓ2 , ℓ1, ℓ2 ∈ {0, 1, . . . 4t} requires at most

1+ log(2n+1) (due to the fact that given any positive integer x, there

exits a prime number between x and 2x).

2. Note that a requires log 2t+ 1 bits of redundancy. Thus, r̂
4
is at most

(4t+ 1)2(1 + log(2n+ 1)) + log(2t+ 1)

+ t log((4t+ 1)2(1 + log(2n+ 1)) + log(2t+ 1)).

3. As already observed, the reconstructable string u requires at most
1
2
log n+ 5 bits of redundancy.

The redundancy of the encoder Et,n is O(t2 log n) bits.
We find the following claims useful in our subsequent derivations.
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Claim 5. At Step 3 of the encoding procedure, for odd j ∈ [ r̂
2
], one has

s̄ j+1
2

=

j∑
i=1

zi mod 2. (2.10)

This claim obviously follows from the definition of the string z.

Recall next that for a string s ∈ {0, 1}n, its Σ⌈n
2
⌉ sequence (σ1, σ2, . . . , σ⌈n

2
⌉) ∈

{0, 1, 2}⌈n
2
⌉ equals σi = si + sn+1−i. As a result of Step 4 of encoding with

Et,n, we have the next result.

Claim 6. For j ∈ [ r̂
2
],

zj = σ r̂
2
+1−j.

The next claim connects the quantities wi and s̄, defined in Step 2 of the

encoding procedure.

Claim 7. For j ∈ r̂
4
, the following holds

w2j ≡ s̄j mod 2.

Proof. The result is a consequence of the observation that

w2j ≡2jw1 − (2j − 1)σ1 − (2j − 2)σ2 − · · · − σ2j−1 mod 2

≡σ1 + σ3 + · · ·+ σ2j−1 mod 2,

where the first line follows from Equation (2.1). From Claims 5 and 6, and

the previous observation, and the fact that we set zj = 0 for even values of

j in Step 3 of the encoding procedure, we have

w2j ≡
2j−1∑
i=1

σj ≡
2j−1∑
i=1

zj ≡ s̄j mod 2.

The next result will be used to prove the main finding regarding symmetric

error-correction codes, as stated in Theorem 4.
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Lemma 6. The collection of strings

C =
{
s : s = Et,n(u),u ∈ {0, 1}n−r̂

}
constitutes a symmetric t-error-correcting code.

Proof. In order to prove the result, we will describe how to recover Ss(x, y)

given S̃s(x, y), where S̃s(x, y) is the result of at most t composition errors in

Ss(x, y) for a codestring generated according to Et,n(u) = s.

We begin by forming the string

w̃ =
(
w̃2, w̃4, . . . , w̃ r̂

2

)
.

One can obtain w̃ from S̃s(x, y) by summing up the 1s in all compositions of

length two to get w̃2, summing up the 1s in all compositions of length four

to get w̃4, and so on. For simplicity, let w =
(
w2, w4, . . . , w r̂

2

)
for the string

s.

Since there are at most t composition errors in S̃s(x, y), it follows that

dH

(
w mod 2, w̃ mod 2

)
⩽ t.

From Claim 7, since w mod 2 belongs to a code with minimum Hamming dis-

tance 2t+ 1, we can recover w mod 2 from w̃ mod 2. Then, given w mod 2,

we can recover s̄ from Step 2 of the encoding procedure, and from s̄ we can

determine a = wt(u) mod (2t+1). Using s̄, it is also straightforward to de-

termine z from Step 3 of the encoding procedure. Thus, wt(z) is determined

accurately as well. One can then easily determine the exact (yet potentially

erroneous) weight of u, since wt(u) = wt(s)− wt(z). Given w̃t(s), as deter-

mined from the sum of all compositions of substrings of length one, since we

know (1) |
[
w̃t(s)− wt(z)

]
− wt(u)| ⩽ t, and (2) a = wt(u) mod (2t + 1),

we can infer wt(u) exactly. Subsequently, we can recover

wt(s) = wt(u) + wt(z),

and from wt(s), we can determine dx and dy, the x and y degrees of the

polynomial Ps(x, y).

Next, we turn our attention to recovering the evaluations of the polyno-

mial Ps(α
ℓ1 , αℓ2) for ℓ1, ℓ2 ∈ {0, 1, . . . , 4t}. These, along with wt(s), suffice
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according to Lemma 5 to recover s. From s̄, we can determine Pu(α
ℓ1 , αℓ2)

according to Steps 1 and 2 of the encoding procedure.

Let dx,u = degx(Pu(x, y)) and dy,u = degy(Pu(x, y)).

First, note that

Ps(x, y) = P0(x, y) + y
r̂
2 (Pu(x, y)− 1)

+ xdx,uy
r̂
2
+dy,u (Pz(x, y)− 1).

Therefore, since z is already known, we have

Ps(α
ℓ1 , αℓ2) = P0(α

ℓ1 , αℓ2) + αℓ2× r̂
2 (Pu(α

ℓ1 , αℓ2)− 1)

+ αℓ1×dx,uαℓ2×( r̂
2
+dy,u) (Pz(α

ℓ1 , αℓ2)− 1).

The proof of the claim now follows from Corollary 2.

We are left with the task of reconstructing the string s from its correct

composition multiset C(s). Recall that if all pairs of prefixes and suffixes

of the same length are such that their weights differ, the string can be re-

constructed efficiently by the Backtracking algorithm. Also, recall that the

string s is obtained by concatenating three strings, i.e., s = 0u z. The prefix

of length r̂
2
is fixed to be all zeros and can therefore be reconstructed imme-

diately. Lemma 6 allows one to recover the suffix z. Since u ∈ §R(n − r̂),

every prefix of length ⩽ ⌊n
2
⌋ has strictly more 0s than its corresponding

suffix of the same length. Thus, the Backtracking algorithm can efficiently

reconstruct the correct string s. This establishes the result of Theorem 4.

We conclude our exposition by describing another family of uniquely recon-

structable codes that can correct up to t composition errors in C(s). These

codes rely on the use of Catalan paths. Recall that Catalan paths of length

2h may be represented by binary strings that have the property that every

prefix has at least as many 0s as 1s and the weight of the strings is h.

Let P(2h) ⊂ {0, 1}2h denote the set of Catalan strings of even length 2h.

It is well known that the codebook P(2h) has approximately 3
2
log h bits

of redundancy, which follows directly from the expression for the Catalan

number Ch = 1
h+1

(
2h
h

)
.

The main differences between the polynomial construction and the Catalan-

based designs are that the former has a larger order of redundancy (O(t2 log n)

compared to O(log n + t)) but also has an efficient decoding algorithm. At

42



this point, no algorithm scaling efficiently with both n and t is known for the

Catalan-based construction.

The basic idea behind the construction is simple and it imposes two con-

straints on the underlying codestrings:

1. The Catalan string constraint: This constraint requires that the

codestrings be Catalan.

2. Parity symbols: The codestrings need to include 4t + 1 0s in the

prefix and 4t+ 1 1s in the suffix.

Intuitively, the fixed prefixes of 0s and suffixes of 1s, as well as the balancing

property of Catalan strings, ensure that for at least 4t + 1 choices of ℓ, the

compositions multisets Cℓ(s) and Cℓ(v) of two distinct codestrings s and v

differ in at least one composition.

Throughout our subsequent exposition, due to the heavy use of subscripts

and superscripts, we write −i instead of n− i+ 1 for all indices used.

Let

C(n, t) =
{
s ∈ {0, 1}n : s1 . . . s4t+1 = 00 . . . 0, (2.11)

s−4t−1 s−4t . . . s−1 = 11 . . . 1,

s4t+2 s4t+3 . . . s−4t−2 ∈ P(n− 2(4t+ 1))
}
,

where n is even.

We show next that C(n, t) is a t symmetric composition error-correcting

code with O(log n + t) bits of redundancy. This redundancy is significantly

improved compared to that of the previously described polynomial evaluation

construction.

Henceforth, S1△S2 = (S1 \S2)∪ (S2 \S1) is used to denote the symmetric

difference of two sets S1 and S2.

Theorem 8. The code C(n, t) can correct t composition errors.

Proof. We prove the result by showing that any pair of distinct codestrings

s,v ∈ C satisfies

|C(v)△ C(s)| ⩾ 4t+ 1,

which implies the desired result.
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Suppose that i is the smallest integer such that either si ̸= vi or s−i ̸= v−i.

Since the first and last 4t+ 1 bits of each codestring are identical and since

every Catalan string begins with a 0 and ends with a 1, we have i ⩾ 4t+ 3.

Next, assume that s−i ̸= v−i, si = vi. The cases si ̸= vi, s−i = v−i and

si ̸= vi, s−i ̸= v−i can be proven similarly by considering the reversals of the

strings s and v.

Consider the compositions of the following two substrings:

s−i−1
1 = s1 s2 . . . s−i−1,

v−i−1
1 = v1 v2 . . . v−i−1.

We claim that wt(s−i−1
1 ) ̸= wt(v−i−1

1 ), which implies c(s−i−1
1 ) ̸= c(v−i−1

1 ).

This follows from the Catalan constraint, which ensures that wt(s) = wt(v),

the assumptions that s−i ̸= v−i, s
−1
−i+1 = v−1

−i+1, s
i−1
1 = vi−1

1 , and from the

choice of i.

As a result, we have

wt(s−i
i ) = wt(v−i

i ).

Next, we establish that c(s−i−1
1 ) ∈ C(v)△ C(s). For any 1 < j ⩽ i + 1, we

have the following equality that holds for substrings of s of length n− i :

wt(s
−(i−j+2)
j ) = wt(si−1

j ) + wt(s−i
i ) + wt(s

−(i−j+2)
−i+1 ).

To prove this result, we consider the strings of length n − i that are in the

symmetric difference C(v)△ C(s). In particular, we consider the following

three cases:

1. j ⩽ i− 1,

2. j = i,

3. j = i+ 1.

Clearly, for the first case it holds that

wt(s
−(i−j+2)
j ) = wt(v

−(i−j+2)
j ).

For the second case, due to the constraints that s4t+2 s4t+3 . . . s−4t−2 ∈ P(n−
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2(4t+1)), s1 . . . s4t+1 = 00 . . . 0 and s−4t−1 s−4t . . . s−1 = 11 . . . 1, it follows

that s−i−1
1 contains more 0s than 1s, but v−2

i contains more 1s than 0s.

A similar argument may be used for the third case, and it can be shown

in this case that v−1
i+1 also contains more 1s than 0s, which implies that

c(s−i−1
1 ) ∈ C(v)△C(s), as desired. In other words, we consider substrings of

length n−i (because s−i−1
1 has length n−i), of the form s

−(i−j+2)
j . For the case

where 1 < j ⩽ i− 1, the substrings of length n− i in v and s have the same

compositions, since wt(s
−(i−j+2)
j ) = wt(v

−(i−j+2)
j ). Thus, these substrings do

not affect the compositions in C(v)∆C(s). This covers the first case, Case 1.

Hence it remains to show that c(s−i−1
1 ) ̸= c(v−i−j+2

j ) for Cases 2 and 3 (when

i = j and i = j + 1). For the case i = j, we have c(s
−(i−1)
1 ) ̸= c(v−2

i ), since

s
−(i−1)
1 has more 0s than 1s, whereas v−2

i has more 1s than 0s. For the case

j = i + 1, c(v−1
i+1) also has more 1s than 0s. This completes the claim that

for l = 1, c(s−i−1
l ) = c(s−i−1

1 ) ∈ C(v)∆C(s). The case l ⩾ 2 can be analyzed

similarly.

Based on the discussion above, it is straightforward to identify additional

substrings whose compositions lie in the symmetric difference of C(s) and

C(v). In particular, if we can show that for every l ∈ {2, 3, 4, . . . , 4t+1} one
of the following two claims is true:

1. c(s−i−1
l ) ∈ C(v)△ C(s), or

2. c(v−i−1
l ) ∈ C(v)△ C(s),

then |C(s)△ C(v)| ⩾ 4t+ 1.

For l ∈ {2, 3, 4, . . . , 4t+ 1}, it is straightforward to see that

wt(s−i−1
l ) ̸= wt(v−i−1

l ).

Without loss of generality, we may assume that wt(s−i−1
l ) < wt(v−i−1

l ). Then

c(s−i−1
l ) ∈ C(v)△C(s). Similarly as before, for any l < j ⩽ i+l, the following

holds for substrings of s of length n− i− l + 1:

wt(s
−(i−j+l+1)
j ) = wt(si−1

j ) + wt(s−i
i ) + wt(s

−(i−j+l+1)
−i+1 ).
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If j ⩽ i− 1, we have

wt(s
−(i−j+l+1)
j ) =wt(si−1

j ) + wt(s−i
i ) + wt(s

−(i−j+l+1)
−i+1 )

=wt(vi−1
j ) + wt(v−i

i ) + wt(v
−(i−j+l+1)
−i+1 )

=wt(v
−(i−j+l+1)
j ).

For the case j ⩾ i ⩾ 4t + 3, note that s−i−1
l contains more zeros than ones

but for j > i − 1, the substring v
−(i−j+l+1)
j contains at least as many 1s as

0s. Therefore, for any j > i− 1,

c(s−i−1
l ) ̸= c(v

−(i−j+l+1)
j ).

We are left with analyzing the compositions of substrings of length n− i−
l + 1 in v to the left of v−i−1

l . Since every codestring in C(n, t) starts with

4t+ 1 0s, it follows that for any j < l

wt(v
−(i−j+l+1)
j ) ⩽ wt(v

−(i−(j−1)+l+1)
j−1 ).

Furthermore, since wt(s−i−1
l ) < wt(v−i−1

l ), it follows that for any j < l,

wt(s−i−1
l ) < wt(v

−(i−j+l+1)
j ).

Thus, c(s−i−1
l ) ∈ C(v)△ C(s). This completes the proof.

The result of Theorem 4 may be used to prove Theorem 5 since the number

of redundant bits, O(log k+ t), is a direct consequence of the code construc-

tion described in Equation (2.11).

The reconstruction time for the described codes for a constant number

of errors t is polynomial in n. To see this, consider the
((n+1

2 )
t

)
possible

choices for errors in distinct compositions. Each composition can be cor-

rupted in at most n different ways (for the composition corresponding to the

whole string this number equals n). Thus, given an erroneous composition

multiset C̃(s), there are at most
((n+1

2 )
t

)
nt candidate true composition mul-

tisets {C̃1(s), C̃2(s), . . . C̃m(s)}, where m = O(n3t). Thus, by reconstructing

the strings as given by the compositions {C̃1(s), C̃2(s), . . . C̃m(s)} using the

Backtracking algorithm, we can recover the string s in O(n3+3t) time.
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2.6 Open Problems

Many combinatorial and coding-theoretic problems related to mass error-

correcting codes remain open and are listed below.

• In Sections 2.3, 2.4 and 2.5 we showed that the number of redundant

bits sufficient for unique and efficient reconstruction without errors and

in the presence of a constant number of t errors equals O(log k) and

O(t2 log k), respectively. Lower bounds on the number of redundant

bits are still unknown.

• The decoding algorithm used in the proof of Theorem 3 is efficient

only if the number of errors, t is a constant. We are unaware of string

reconstruction algorithms that are efficient both in t and n.

• We addressed the string reconstruction problem when the errors are

either asymmetric or symmetric. However, MS/MS errors are often

bursty and context-dependent. Thus, studying other error models is of

interest.

• Several problems outlined in [7] also remain open. We restate two

of those problems for completeness: (1) Improve the upper and lower

bounds on the number of confusable strings. (2) Determine explicit

polynomial-time algorithm for string reconstruction problems, the ex-

istence of which was established in [32–35].
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CHAPTER 3

MULTIPLE CODED STRING
RECONSTRUCTION

3.1 Introduction

Modern digital data storage systems are facing fundamental storage density

limits and to address the emerging needs for large volume archiving, it is of

importance to identify new nanoscale recording media. Recently proposed

DNA-based data storage paradigms [2–6, 36–38] offer storage densities that

are orders of magnitude higher than those of flash and optical recorders

but the systems often come with a prohibitively high cost and slow and

error-prone read/write platforms. To mitigate the issues associated with

potentially ambiguous data reconstruction and to correct a diverse type of

errors inherent to DNA sequencing technologies, several new coding solutions

that aid in string assembly, dealing with asymmetries in the readout channel,

and reconciliation of multiple string evidence sets were introduced in [25,28,

39–43] (see also the related and follow-up lines of work [44–49]).

As an alternative to DNA-based data storage systems, polymer-based data

storage systems [2, 36] are particularly attractive due to their low cost [2].

In such platforms, two molecules of significantly different masses are syn-

thesized to represent the bits 0 and 1, respectively. The molecules are used

as building blocks in the sequential process of recording user-defined infor-

mation content. The obtained synthetic polymers are read by tandem mass

(MS/MS) spectrometers. A mass spectrometer breaks multiple copies of the

polymer uniformly at random, thereby creating prefixes and suffixes of the

string of various lengths. The readout system outputs masses of these prefixes

and suffixes. If the masses of all prefixes from a single string are accounted

for and error-free, reconstruction is straightforward. But if multiple strings

are read simultaneously and the masses of prefixes and suffixes of the same

length are confusable, the problem becomes significantly more complicated.
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It is currently not known which combinations of coded binary strings can

be distinguished from each other based on prefix-suffix masses and for which

code rates is it possible to perform unique multistring reconstruction.

In a related research direction, the problem of reconstructing a string from

an abstraction of its MS/MS output was considered in [7], under the name

string reconstruction from its substring composition multiset. The compo-

sition of a binary string is the number of 0s and the number of 1s in the

string. For example, the composition of 001 equals 0211, indicating that 001

contains two 0s and one 1, without revealing the order of the bits. The sub-

string composition multiset C(s) of a string s is the multiset of compositions

of all possible substrings of the string s. As an illustration, the set of all

substrings of 001 equals {0, 0, 1, 00, 01, 001}, and the substring composition

multiset of 001 equals {01, 01, 11, 02, 0111, 0211}. Two modeling assumptions

are used for the purpose of rigorous mathematical analysis of this problem [7]

and in subsequent works [50–52]: (a) Using MS/MS measurements, one can

uniquely infer the composition of a polymer substring from its mass. (b)

When a polymer is broken down for mass spectrometry analysis, the masses

of all its substrings are observed with identical frequencies.

Under the above modeling assumptions, the authors of [7] established that

strings are uniquely reconstructable up to reversal provided that the length

of the strings n is one less than a prime or one less than twice a prime,

or whenever n ⩽ 7. The work [50–52] demonstrated that at most loga-

rithmic code redundancy can ensure unique reconstruction of single strings

drawn from codebooks based on Bertrand-Catalan strings or Reed-Solomon-

like constructions.

However, the assumption that MS/MS output measurements include masses

of all substrings is often not true in practice, as breaking the string in one

rather than two locations is easier to perform. In the former case, one is

presented with masses of the prefixes and suffixes. Thus, for the string 001,

one would observe the multiset {01,��01, 11, 02, 0111, 0211}. Furthermore, in

practice the contents of multiple strings are often read simultaneously, which

complicates the matter even further as it is not known a priori which prefixes

and suffixes are associated with a given string.

The problem addressed in this work may be formally stated as follows. We

seek the size of the largest code C(h) of binary strings of a fixed length n

with a property we refer to as h-unique reconstructability. For any subcol-
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lection s1, s2, . . . , sh̄ of h̄ ⩽ h strings from C(h), one is presented with the

union M(s1) ∪ M(s2) ∪ · · · ∪ M(sh̄) of the prefix-suffix composition mul-

tisets, M(si), i = 1, . . . , h̄, of the individual strings si, i = 1, . . . , h. The

prefix-suffix composition multiset M(s) of a string s captures the weights

of prefixes and suffixes of the string s of all lengths. Unique reconstruction

refers to the property of being able to distinguish all possible h′-unions and

unambiguously determine the identity of the strings in the collection. Our

main result provides a construction for C(h) that asymptotically approaches

1/h, under certain mild parameter constraints. The proofs of our results rely

on the use of Dyck and binary Bh strings. For the latter, only constructions

and bounds pertaining to h = 2 and h = n have been known in the liter-

ature [53–55], while we provide new results for arbitrary even values of h.

We also introduce a simple scheme for combating missing prefix-suffix errors

in the pool and motivate the study of a number of new error-control coding

problems associated with mixture reconstructions.

This chapter is organized as follows. Section 3.3 introduces the problem, as

well as the relevant terminology and notation. Section 3.4 describes the code

constructions and the corresponding lower-bound analysis for the code rate.

Upper bounds are presented in Section 3.5. Error-control coding schemes are

described in Section 3.6, along with open problems.

3.2 A Short Note on Single String Reconstruction

Before we get to the essence of this chapter, we shall briefly discuss single

string reconstruction from the prefix-suffix composition multiset.

3.2.1 Reconstruction Codes

Consider the problem of string reconstruction from prefix-suffix composition

multiset. At iteration i, the backtracking algorithm employed therein first

identified the longest prefix-suffix pair not in the set Ti. However, for the

problem of single string reconstruction from the prefix-suffix composition

multiset, one readily has access to the same. Thus, the backtracking algo-

rithm as described in the previous chapter can be employed here as well.

Furthermore, the backtracking algorithm guesses only when the weight of
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the reconstructed prefix is the same as that of the suffix. Thus, the following

codebook SR,p−s(n) is a single string prefix-suffix reconstruction code as well.

For even n,

SR,p−s(n) ={s ∈ {0, 1}n, s1 = 0, sn = 1, and (3.1)

∃ I ⊆ {1, 2, . . . , n− 1, n} such that

for all i ∈ I, si ̸= sn+1−i,

for all i ̸∈ I, si = sn+1−i,

s[n
2
]∩I is a Catalan-Bertrand string}.

For odd n,

SR,p−s(n) = ∪s∈SR,p−s(n−1){s
n−1
2

1 0 sn−1
n+1
2

, s
n−1
2

1 1 sn−1
n+1
2

}.

Claim8. There exists single string prefix-suffix reconstruction codes of length

n with redundancy O(log n).

3.2.2 Error-Correction Codes

Perhaps the simplest of errors are that of erasures, as the location of the

errors can be inferred. Consider a string s ∈ SR,p−s(n). Clearly the set of

prefix (and correspondingly its suffix) compositions can be separated from

the prefix-suffix composition multiset.

Suppose a single prefix composition multiset is erased. Clearly from the

set of the suffix compositions, the string can be reconstructed. Thus, due

to inherent redundancy present in the evidence set one need not encode

redundancy to correct a single erasure. In the same spirit, if at most t

erasures occur in the prefix-suffix composition multiset, it suffices to ensure

that prefix and suffix composition multisets are such that even in the presence

of at most ⌊ t
2
⌋ erasures, one can reconstruct the string.

Consider the following coding technique:

• Given a string s ∈ {0, 1}n, construct I(s) = s1(s1 + s2)(s1 + s2 +

s3) . . . (s1 + s2 + · · · + sn) = I(s)1I(s)2 . . . I(s)n, where the addition is

over F2.

• Encode I(s) using a BCH code such that the resulting string I(s)R′(s),
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where R′(s) denotes the redundancy bits, is of length m − 1 and can

correct ⌊ t
2
⌋ erasures.

• Let R(s)1 = R′(s)1+I(s)1; R(s)2i = ¯R(s)2i = 1−R(s)2i, and R(s)2i+1 =

R′(s)i + R′(s)i+1 + R(s)2i, for all i ∈ [m − n − 1]. R(s)m = R(s)1 +

R(s)2 + · · ·+R(s)m−1.

• Encode s as R(s)sR(s).

Such a code can correct up to t erasures in the prefix-suffix composition

multiset.

Claim 9. There exist single string prefix-suffix reconstruction and t-erasure

error correction codes of length n with redundancy O(t log n).

We now consider substitution errors. Consider a composition 0z1w corre-

sponding to a substring (prefix or substring) of length i. A substitution error

occurs if 0z1w is modified as 0z
′
1w

′
such that z +w = z′ +w′. Now, consider

the case where at most t composition substitution errors are allowed to occur

in the prefix-suffix composition multiset. Although it is true that either the

prefix or the suffix composition set has at most ⌊ t
2
⌋ errors, it is not always

possible to discern the set with the fewer errors. Thus, the following simple

modification to the scheme described above corrects for t composition errors.

Consider the following coding technique:

• Given a string s ∈ {0, 1}n, construct I(s) = s1(s1 + s2)(s1 + s2 +

s3) . . . (s1 + s2 + · · · + sn) = I(s)1I(s)2 . . . I(s)n, where the addition is

over F2.

• Encode I(s) using a BCH code such that the resulting string I(s)R′(s),

where R′(s) denotes the redundancy bits, is of length m − 1 and can

correct t substitution errors.

• Let R(s)1 = R′(s)1+I(s)1; R(s)2i = ¯R(s)2i = 1−R(s)2i, and R(s)2i+1 =

R′(s)i + R′(s)i+1 + R(s)2i, for all i ∈ [m − n − 1]. R(s)m = R(s)1 +

R(s)2 + · · ·+R(s)m−1.

• Encode s as R(s)sR(s).

Claim10.There exist single string prefix-suffix reconstruction and t-substitution

error correction codes of length n with redundancy O(t log n).
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3.3 Problem Statement and Preliminaries

We start by introducing the relevant notation. Let s = s1 . . . sn ∈ {0, 1}n be

a binary string of length n and letM(s) denote the composition multiset of

all prefixes and suffixes of s. For example, if s = 01101, then

M(s) =
{
0, 01, 012, 0212, 0213, 1, 01, 012, 013, 0213

}
.

We denote the set of prefix and suffix compositions of s as Mp(s) and

Ms(s), respectively. For the above string, Mp(s) = {0, 01, 012, 0212, 0213}
andMs(s) = {1, 01, 012, 013, 0213}.
We seek to design a binary codebook C(n, h) ⊆ {0, 1}n so that for any

collection of distinct strings s1, s2, . . . , sh̄ ∈ C(n, h) with h̄ ⩽ h, the multiset

M(s1) ∪M(s2) ∪ · · · ∪M(sh̄) (3.2)

uniquely determines the individual strings in the collection. We refer to a

code that satisfies (3.2) as an h-multicomposition code, or an h-MC

code. For simplicity, we often useM(S) to describe the multi-composition

set for S = {s1, s2, . . . , sh}. We also say that Cp(n, h) ⊆ {0, 1}n is an h-prefix

code if for any two distinct sets of size ⩽ h, say S1, S2 ⊆ Cp, Mp(S1) ̸=
Mp(S2).

The next claim establishes a useful connection between our problem and

the related problem of determining binary strings based on their real-valued

sum.

Claim 11. Given Mp(s1) ∪Mp(s2) ∪ · · · ∪Mp(sh), one can determine the

real-valued sum s1 + s2 + · · ·+ sh.

Proof. We prove the result for h = 2 as the generalization is straightforward.

Suppose that s1, s2 ∈ {0, 1}n. Then, given Mp(s1) ∪Mp(s2), let ni denote

the total number of ones in the two compositions of prefixes of length i in

the multiset (i.e., sum of their weights). It is straightforward to see that

s1 + s2 = t1t2 . . . tn, where ti = ni − ni−1, with n0 = 0.

Example4. As an illustrative example, consider the strings s1 = 110100 and

s2 = 101010, for which we have s1 + s2 = 211110. Clearly, (s1 + s2)1 = 2,

which we obtained by summing the compositions of prefixes of length one,
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i.e., 1+ 1 = 2. Next, it is easy to see that (s1 + s2)2 = (s1 + s2)
2
1− (s1 + s2)1,

where for simplicity of notation we used (s1 + s2)
2
1 to denote the sum of the

weights of the prefixes of length two. A straightforward calculation reveals

that (s1 + s2)2 = (2 + 1) − 2 = 1. The other positions in the sum of the

strings can be determined similarly. □

The above claim provides a useful connection between our problem and

the problem of designing binary Bh sequences. A binary Bh sequence is a

set Sh(n) of binary strings of fixed length n such that for any two distinct

subsets of strings in Sh(n), say S = {s1, s2, . . . , sh̄1
} ̸= T = {t1, t2, . . . , th̄2

},
where h̄1, h̄2 ⩽ h, one has

h̄1∑
i=1

si ̸=
h̄2∑
j=1

tj. (3.3)

Here, addition is performed over the reals. To avoid possible confusion with

the naming convention involving sequences of sequences, we henceforth refer

to the above entity as collection of binary Bh sequences or binary Bh codes

of length n.

Example 5. Consider the set S2(6) = {110100, 101010, 110010}. It is easy

to verify that the real-valued sums of pairs of strings in S2(6) are distinct.

Thus, S2(6) is a binary B2 code.

However, S ′
2(6) = {110100, 101010, 110010, 101100} is not a binary B2

code since 110100 + 101010 = 110010 + 101100 = 211110. □

Based on Claim 11, it is easy to identify two sufficient conditions for a set

of strings to be an h-MC code:

1. Condition 1: One can recoverMp(s1) ∪ · · · ∪Mp(sh) fromM(s1) ∪
· · · ∪M(sh), for any choice of h distinct codestrings s1, . . . , sh; and

2. Condition 2: The codestrings s1, . . . , sh belong to a binary Bh code

Sh(n).

These observations will be used to construct h-MC codes in Section 3.4.

Note that the condition that the codestrings in an MC code belong to a Bh-

code is not necessary. For example, consider the case s1 = 011, s2 = 000,

s3 = 001, s4 = 010. Then, s1+ s2 = 011 = s3+ s4, but 01
2 ∈M(s1)∪M(s2)
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and 012 ̸∈ M(s3) ∪M(s4), so that {s1, s2} and {s3, s4} are not confusable.

However, a direct consequence of Claim 11 is that the maximum size of a Bh

code is at most the maximum size of a h-prefix code.

The best currently known upper bound on the rate of binary B2 codes is

.5753 [56]. For h > 2 such that h ̸= n, we are unaware of any other bounds

on the rate of binary Bh codes other the ones presented in this work. We

show next that for sufficiently large code lengths, the maximum rate of an

h-MC code is at least 1
h
.

3.4 A Constructive Lower Bound for h-MC Codes

We start with a binary Bh code and introduce redundancy into the underlying

strings to ensure that given the multi-composition set of at most h strings,

one can separate the prefixes from the suffixes. Then, given the set of prefixes,

one can use the same idea in Claim 11 to recover the sum of the h codestrings

and hence the codestrings themselves.

Let Sh(n) ⊆ Fn
2 be a Bh code over Fn

2 . It is well known that Sh(n) can

be constructed using the columns of a parity-check matrix of a code with

minimum Hamming distance ⩾ 2h+ 1. Using this construction, we have

lim
n→∞

1

n
log |Sh(n)| =

1

h
.

For our problem and the underlying approach for solving it, we will also

make use of Dyck strings: A string s ∈ FN
2 of even length N is a Dyck string

if its weight satisfies wt(s) = N
2
, and for i ∈ [N − 1],

wt(s1s2 . . . si) ⩾
⌈ i
2

⌉
. (3.4)

The approach for generating the code C(N, h) ⊆ FN
2 is to ensure that it

satisfies the following two properties:

1. A string s ∈ C(N, h) is a Dyck string;

2. The set C(N, h) is a binary Bh code of length N .

The first property ensures that the mixtures of prefixes and suffixes can

be partitioned into two sets, one containing all the prefixes and another
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containing all the suffixes. The second property ensures that given the prefix

set (or, alternatively, the suffix set) one can recover the codestrings using

the simple observation that the prefixes uniquely determine the real-valued

sum of the strings in the mixture. We illustrate these observations with an

example.

Example6. Consider the binary B2 code S2(6) = {110100, 101010, 110010}.
Clearly, all three strings are Dyck strings as their prefixes of any length con-

tain at least as many ones as zeros.

Next, write s1 = 110100 and s2 = 101010, so thatM(s1)∪M(s2) = {1, 1,
01, 12, 012, 012, 0212, 013, 0213, 0213, 0313, 0313, 0313, 0313, 0312, 0312, 0212,

031, 021, 021, 01, 02, 0, 0}. Since s1 and s2 are Dyck strings, each of the string

prefixes must have at least as many 1s as 0s. Similarly, each suffix must

have at least as many 0s as 1s. It follows from this observation that one can

easily recover the multiset Mp(s1) ∪ Mp(s2) = {1, 1, 01, 12, 012, 012, 0212,
013, 0213, 0213, 0313, 0313}.
Claim 11 ensures that givenMp(s1)∪Mp(s2), one can determine s1+s2 =

211110. Since S2(6) is a binary B2 code, the sum s1+s2 uniquely determines

the strings s1 and s2. □

The next claim establishes the formal result that if the code C(N, h) sat-

isfies these two properties, then it is an h-MC code.

Claim 12. Suppose that C(N, h) is a Bh code where for any s ∈ C(N, h),

Equation (3.4) holds. Then, C(N, h) is an h-MC code.

Proof. Similar to Claim 11, we prove the statement for the case where h = 2,

since the extension for general h is straightforward. In light of Claim 11,

we need to show that the property in (3.4) allows us to uniquely recover

Mp(s1) ∪Mp(s2) fromM(s1) ∪M(s2). To see that this is indeed possible,

observe that from (3.4) both prefixes of length i inM(s1) ∪M(s2) have at

least ⌈ i
2
⌉ 1s whereas both suffixes of length i inM(s1)∪M(s2) have at most

⌊ i
2
⌋ 1s.

To construct codes C(N, h) of large cardinality, we perform a simple “bal-

ancing procedure” on each codestring s ∈ Sh(n) and then append O(
√
n)

bits of redundancy to the beginning and end of s so that the resulting string
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has length N = n + O(
√
n). Note that under this setup, it follows that for

any ϵ, we have

1

N
log |C(N, h)| = 1

n+ κ
√
n
log |Sh(n)| =

1

h
− ϵ,

where κ is a constant, and ϵ > 0 can be made arbitrarily small for n suffi-

ciently large.

To maximize the rate of the coding scheme and combine the two constraints

that h-MC strings need to satisfy, we use two ideas. First, we use Bh strings

parsed into blocks that allow us to tightly control the weights of the code-

strings. Second, rather than working directly with the weights of strings as

described in (3.4), we use the running digital sums (RDSs). For a string

s ∈ Fn
2 , the RDS up to coordinate i is defined as R(s)i = 2wt(s1s2 . . . si)− i.

If the subscript i is omitted, then R(s) = 2wt(s)− |s|, where |s| denotes the
length of s. Using the running digital sum, the constraint in Equation (3.4)

can be rewritten as wt(s) = ⌈N
2
⌉ and R(s)i ⩾ 0, i ∈ [N ].

The balancing procedure operates as follows: Let s ∈ Sh(n), and for sim-

plicity, assume that
√
n is an even integer. We begin by parsing s into blocks

si of length
√
n, i = 1, . . . ,

√
n, so that s = s1s2 . . . s√n ∈ Fn

2 . Using s

we construct an auxiliary string u = u1u2 . . .u√
n that is “approximately”

balanced following an idea similar to Knuth’s balancing, which operates on

blocks rather than individual symbols (please refer to Figures 3.1 and 3.2

for an illustration). We start by initializing u1 = s1. For a binary string u,

we use u to denote the binary complement of u. For j ∈ {2, 3, . . . ,
√
n}, we

define uj according to:

uj =



sj, if R(u1 . . .uj−1) < 0, and R(sj) ⩾ 0,

sj, if R(u1 . . .uj−1) < 0, and R(sj) < 0,

sj, if R(u1 . . .uj−1) ⩾ 0, and R(sj) < 0,

sj, if R(u1 . . .uj−1) ⩾ 0, and R(sj) ⩾ 0.

(3.5)

The next claim immediately follows from (3.5).

Claim 13. For any j ∈ [
√
n], |R(u1 . . .uj)| ⩽

√
n. Hence, the RDS of

complete collections of subblocks is bounded in absolute value by
√
n.

We also have the following result.
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Lemma 7. For any i ∈ [n], |R(u)i| ⩽ 3
2

√
n. Hence, the RDS of any prefix of

u does not exceed 3
2

√
n in absolute value.

Proof. Suppose, on the contrary, that |R(u)i| > 3
√
n

2
. For simplicity, we

will only consider the case R(u)i >
3
√
n

2
, as the other case can be handled

similarly. Next, assume that j ∈ [n] is the smallest index for which R(u)j >
3
√
n

2
and that we may assume that R(u)j =

3
√
n

2
+1. Now, let j = k1

√
n+k2,

where 0 ⩽ k2 <
√
n. According to Claim 13, since R(u)j = 3

√
n

2
+ 1 and

k2 <
√
n, we have

√
n

2
< R(u1 . . .uk1−1) ⩽

√
n. (3.6)

Based on (3.5), and since R(u1 . . .uk1−1) >
√
n
2
, it follows that R(uk1) ⩽ 0 so

that

−
√
n < R(uk1)ℓ ⩽

√
n

2
(3.7)

for any ℓ ∈ [
√
n]. Combining (3.6) and (3.7), we have that R(u)k1

√
n+k2 ⩽

3
√
n

2
, which is a contradiction.

We now describe our encoder. Let u ∈ {0, 1}n be the string which is the

result of the procedure described in (3.5), and suppose that r ∈ {0, 1}
√
n is

such that for any j ∈ [
√
n]:

rj =

1, if uj ̸= sj,

0, if uj = sj.
(3.8)

Using r, we now form a string s ∈ C(N, h), where N = n+ 17
2

√
n, and assume

for simplicity that N is an even integer. The following claim is used in our

subsequent analysis.

Claim 14. Let v = 15/2
√
nru ∈ {0, 1}n+7/2

√
n. Then, for any i ∈ [n+ 7

2

√
n],

|R(v)i| ⩽ 5
√
n.

Furthermore, for any i ∈ [n+ 7/2
√
n],

R(v)i > 0.
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We now append redundant bits to the string v described in Claim 14 in

order to get a string s ∈ {0, 1}N which is a Dyck string.1 This results in the

following claim.

Claim 15. Let N = n + 17
2

√
n be an even integer and let v = 15/2

√
nru ∈

{0, 1}n+7/2
√
n be as defined in Claim 14. Suppose that w = wt(v). Then, the

string s = v1
N
2
−w0

N
2
−(|v|−w) is a Dyck string.

Now, assume that C(N, h) ⊆ FN
2 is constructed according to the procedure

outlined in Claim 15 and once again assume that N = n + 17
2

√
n is an

even integer. The next theorem is the main result of this section and it

establishes the correctness of our construction through the description of a

simple decoding algorithm.

Theorem 9. Suppose that s1, s2, . . . , sh ∈ C(N, h), where C(N, h) is con-

structed according to the balancing procedure operating on Bh strings. Then,

givenM(s1)∪M(s2)∪ · · · ∪M(sh), we can uniquely determine {s1, . . . , sh}.
Furthermore, for any ϵ > 0, there exists nϵ > 0 such that for all N ⩾ nϵ,
1
N
log |C(N, h)| ⩾ 1

h
− ϵ.

Proof. For simplicity, we prove the result for h = 2, as the extension for

general values h is straightforward. According to Claims 12 and 15, we can

recoverMp(s1) ∪Mp(s2) fromM(s1) ∪M(s2) since s1, s2 are Dyck strings.

FromMp(s1)∪Mp(s2), we can recover s1+ s2 according to Claim 11. Given

s1 = 15/2
√
nr1u11

N
2
−w10

N
2
−(|v1|−w1) and s2 = 15/2

√
nr2u21

N
2
−w20

N
2
−(|v2|−w2),

from the first n+ 7
2

√
n coordinates of s1 + s2 we can recover

(r1 + r2,u1 + u2) mod 2.

Next, for shorthand, write u = u1 + u2 mod 2 = u1u2 . . .u√
n and r =

r1 + r2 mod 2 = r1 . . . r√n. Let ũ = ũ1 . . . ũ√
n. Then, for j ∈ [

√
n],

ũj =

uj, if rj = 0,

uj if rj = 1.

1Splitting the string into blocks of length m and then performing the “approximate”
balancing task over these blocks would incur a redundancy of n

m + cm, where c is a
constant. The redundancy is minimized when the summands are of the same order,

√
n.

This justifies the use of our partition choice.
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It is straightforward to verify from (3.5) that ũ = s1 + s2 mod 2. Since

s1, s2 ∈ S2(n) are B2 strings over Fn
2 , we can recover s1 and s2 from ũ, which

concludes the proof.

3.5 Upper Bounds on h-MC Codes

Next, we derive an upper bound on the maximum rate of an h-MC code. To

this end, recall that Cp ⊆ {0, 1}n is an h-prefix code if for any two subsets of

sizes h̄ ⩽ h, say S1,S2 ⊆ Cp, Mp(S1) ̸=Mp(S2). Let C(MC)
h (n) be the size

of the largest h-MC code of codelength n and suppose that C
(p)
h (n) is the

size of the largest h-prefix code of codelength n. Formally, we use R
(MC)
h to

denote the maximum asymptotic rate of an h-MC code,

R
(MC)
h = lim

n→∞
sup

1

n
log |C(MC)

h (n)|.

We show next that when h is even, R
(MC)
h ⩽ 1− 1

2

(
1

1+ 1
h

)
. Once again, for

simplicity of exposition, we focus on the case h = 2 before considering the

general result.

The next lemma states that in order to derive an upper bound on the

quantity R
(MC)
h , we can limit our attention to prefix codes. The result follows

since the set of all suffixes is a function of the set of all prefixes provided the

total number of ones in each codeword is the same and known beforehand.

Lemma 8. For any ϵ > 0, there exists an nϵ > 0 such that for all n ⩾ nϵ,

one has
1

n
log |C(MC)

h (n)| ⩽ 1

n
log |C(p)

h (n)|+ ϵ.

Proof. To simplify the discussion, we focus on the case where h = 2; the

extension to h > 2 is straightforward. For w ∈ [n], let C
(w)
2 (n) ⊆ C

(MC)
h (n)

denote the set of codewords of weight w in C
(MC)
2 (n). By the pigeon-hole

principle, there exists a w∗ ∈ [n] where |C(w∗)
2 (n)| ⩾ 1

n
|C(MC)

2 (n)|. Given two

codewords in C
(w∗)
2 (n), say S = {s1, s2}, we can easily determine Mp(S).

Assuming that only the prefix composition set is known, the setMs(S) can
be derived as follows. To determine the compositions of suffixes of length i,

for i ∈ [n], we subtract from w∗ the number of ones in each prefix of length

n−i. For instance, suppose the compositions of prefixes of length n−1 of s1, s2
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are
{
{1w∗

, 0n−w∗}, {1w∗−1, 0n−w∗+1}
}
. Then, the length-1 suffixes of s1, s2 are{

{1}, {0}
}
. This implies that n|C(p)

2 (n)| ⩾ n|C(w∗)
2 (n)| ⩾ |C(MC)

2 (n)|, which
establishes the desired result.

Let us first turn our attention to h = 2. For any s ∈ C
(p)
2 (n), we write s

as s = ab ∈ C
(p)
2 (n), where a ∈ {0, 1}αn equals the first αn symbols of s and

b equals the last (1− α)n symbols of s. We represent the codewords in the

codebook using a bipartite graph G = (VP , VS, E) with

VP =
{
a ∈ {0, 1}αn : ∃s ∈ C

(p)
2 (n) s.t. s = ab

}
, (3.9)

and

VS =
{
b ∈ {0, 1}(1−α)n : ∃s ∈ C

(p)
2 (n) s.t. s = ab

}
. (3.10)

In this setting, an edge (v1, v2) ∈ E, with v1 ∈ VP and v2 ∈ VS, connects an

admissible prefix (vertex in VP ) to an admissible suffix (vertex in VS) so that

every edge corresponds to a codeword in C
(p)
2 and vice versa.

Let w ∈ {0, 1, . . . , αn} = [[αn + 1]]. We also find it useful to work with

another bipartite graph G(w) = (V
(w)
P , V

(w)
S , E(w)) whose edges are a subset

of the edges in E. The partition of the vertices V (w) = (V
(w)
P , V

(w)
S ) is such

that v1 ∈ V
(w)
P if and only if the prefix a ∈ {0, 1}αn represented by the

vertex v1 in G has weight w, and in addition, v2 ∈ V
(w)
S if and only if there

exists a v1 ∈ V
(w)
P such that (v1, v2) ∈ E. The set E(w) ⊆ E is such that

(v1, v2) ∈ E(w) if v1 ∈ V
(w)
P and v2 ∈ V

(w)
S .

The next result will be used in the proof of Theorem 10.

Lemma 9. The graph G(w) cannot contain a cycle of length four.

Proof. Suppose, on the contrary that G(w) contains a 4-cycle, say

(a1b1, a2b2, a1b2, a2b1).

Then,

Mp(a1b1) ∪Mp(a2b2) =Mp(a2b1) ∪Mp(a1b2).

To verify the above claim, note that all prefixes of length αn have to be

the same sinceMp(a1) ∪Mp(a2) =Mp(a2) ∪Mp(a1). Furthermore, since
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wt(a1) = wt(a2) it is straightforward to verify that all prefixes of length

longer than αn are the same among Mp(a1b1) ∪ Mp(a2b2),Mp(a2b1) ∪
Mp(a1b2). But this contradicts the fact that the prefixes and suffixes in-

volved correspond to a 2-prefix code. This establishes the claimed result.

We are now ready to prove our upper bound on h-prefix codes for h = 2.

Theorem 10. For any ϵ > 0, there exists an nϵ > 0 such that for all n ⩾ nϵ

one has 1
n
log |C(p)

2 (n)| ⩽ 2
3
+ ϵ.

Proof. In order to bound the number of codewords in C
(p)
2 (n), we will upper

bound the number of edges in the graphG = (VP , VS, E). To this end, we con-

sider the maximum number of edges in the graph G(w) = (V
(w)
P , V

(w)
S , E(w)).

It follows from the pigeonhole principle that there exists a w∗ ∈ [[αn + 1]]

such that ∣∣∣E(w(∗))
∣∣∣ ⩾ |E|

αn+ 1
.

Thus, 1
n
log
∣∣∣E(w(∗))

∣∣∣ can be approximated by 1
n
log
∣∣∣C(p)

2 (n)
∣∣∣ for n sufficiently

large.

According to the previous lemma, G(w(∗)) cannot contain a 4-cycle. It is

well known that the number of edges in an m1×m2 bipartite graph without

cycles of length 4 is at most [57]

m1m
1
2
2 +m1 +m2. (3.11)

Letting αn = n
3
in (3.11) so that m1 = 2n/3 and m2 = 22n/3 gives

1

n
log
∣∣∣E(w(∗))

∣∣∣ ⩽ 2

3
+O

(
1

n

)
.

This implies the desired result.

The next corollary follows from the previous theorem and Lemma 8.

Corollary 3. A 2-prefix code must have a rate bounded as R
(MC)
2 ⩽ 2

3
.

Next, we consider the extension to the case where h > 2 based on the

same approach. Let C
(p)
h (n) denote an h-prefix code of length n. As be-

fore, we represent our codewords using a graph G(h) = (V
(h)
P , V

(h)
S , E(h))
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as defined in (3.9) and (3.10), except that (a,b) ∈ E(h) if and only if

(a,b) ∈ C
(p)
h (n). As before, we will also work with the bipartite graph

G(w,h) = (V
(w,h)
P , V

(w,h)
S , E(w,h)) ⊆ G(h), which is restricted to only use pre-

fixes of weight w. Our next lemma is a natural generalization of Lemma 9.

Lemma 10. The graph G(w,h) cannot contain a 2h-cycle.

Proof. Suppose, on the contrary, that the statement in the lemma does not

hold and that (a1,b1), (b1, a2), (a2,b2), . . . , (ah,bh), (bh, a1). Then, we

have:

a1b1, a2b2, a3b3, . . . , ahbh ∈ C
(p)
h (n), (3.12)

but also that

b1a2,b2a3,b4a5, . . . ,bha1 ∈ C
(p)
h (n). (3.13)

Since all the prefixes in G(w,h) have weight w, it is straightforward to verify

that the set of codewords from (3.12) and the set in (3.13) have the same

prefix composition multisets.

The next result follows from the same arguments used in Theorem 10 and

Corollary 3.

Theorem 11. For odd h, R
(MC)
h ⩽ h+1

2h
. For even h, R

(MC)
h ⩽ 1− 1

2

(
1

1+ 1
h

)
.

Proof. The result follows using the same arguments as those described in

Theorem 10 and by noting that the maximum number of edges in a m1 ×
m2 bipartite graph that does not contain a cycle of length 2h is at most

(m1m2)
h+1 h+m1 +m2 when h is odd [57]. For the case when h is even, the

maximum number of edges is m
k+2
2k

1 m
1
2
2 +m1 +m2 [57].

As a final note, we observe that the work in [54, 55] also considered the

case of nonbinary Bh codes for h = 2. The main result is that for a large

enough alphabet, the maximum asymptotic rate of nonbinary B2 codes is at

most 1
2
.
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3.6 Error Models and Error-Correction

The MS/MS readout technique is error prone. Often, not all the masses of

prefixes and suffixes are measured and/or reported. Furthermore, polymer

fragmentation causes the loss of some atoms and creates errors in the actual

mass values; as a result, some fragments can gain or lose in mass value based

on how the fragment was created.

Mass errors can lead to issues in the process of mixture reconstruction and

hence, in what follows, we first describe common error patterns in MS/MS

readouts and describe simple techniques that can be used to correct them.

In all the described error-modes, as throughout the whole text, we tacitly

assume that one can actually determine the length of the prefixes/suffixes

based on their masses. This is possible if the masses of 0s and 1s differ

significantly (for example, if the masses of the 1 or 0 molecules differ by at

least n) or if other design criteria are met.

Converting practical mass errors into abstract error models is rather chal-

lenging. This is why we first describe how to model such errors, and in

particular, errors that cannot be automatically detected and corrected. The

focus of the first part is missing prefixes or suffixes. We start with the de-

scription of the effect of such errors on the process of reconstructing a single

string, and then proceed to describe how missing string errors affect the re-

construction of a mixture of multiple strings. In both settings, we break

up the discussion into two cases: One, in which we explain how to use the

natural redundancy ensured by the presence of both prefixes and suffixes

of the string to identify and correct errors; and another one, where we ex-

plain how to add controlled redundancy to mitigate the effect of MS/MS

errors. In the latter case, we describe several simple error-control schemes

that either add redundancy to the Bh strings themselves, and/or use un-

equal error-protection for various substrings in the Dyck-Bh codestrings as

well. Furthermore, based on the approach that converts prefix/suffix masses

into sums of codestrings, we introduce a straightforward idea for encoding

that uses integrals and derivatives of strings.

Consider a prefix-suffix composition multiset M(s) of a Dyck string s

of length n. A single missing composition can be identified and corrected

without coding redundancy: Since either Mp(s) or Ms(s) is available for

reconstruction, one of these two multisets will contain no errors and can
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consequently be used for error-free reconstruction. The following example

illustrates that it is not always possible to reconstruct M(s) of a string s

from an erroneous prefix-suffix composition multiset M̃(s) that contains two

or more erasures if no redundancy is used.

Example 7. Let M̃p(s) and M̃s(s) denote the prefix and suffix composition

multisets of s with missing fragment errors, respectively. Furthermore, let

M̃(s) = M̃p(s) ∪ M̃s(s).

• Consider the string s = 111000. Given

M̃ = {1, 13, 013, 0213, 0313, 0313, 0312, 031, 03, 02, 0},

one can immediately see that a prefix composition of length two is miss-

ing. Since the weight of the string is three and the suffix composition

of length 6− 2 = 4 is 031, it is clear that the missing composition is 12.

• Consider the same string, and the erroneous prefix-suffix composition

multiset

M̃ = {1, 13, 013, 0213, 0313, 0313, 0312, 03, 02, 0}.

Clearly, the composition of a prefix of length two and a suffix of length

four are missing. However, the constraints imposed by the prefix com-

positions 1 and 13 imply that the composition of the prefix of length two

is 12. Similarly, the constraints imposed by suffix compositions 0312

and 03 imply that the composition of the suffix of length four is 031.

• In the third example, let the string be s = 110100, and the erroneous

prefix-suffix composition multiset

M̃ = {1, 12, 012, 0213, 0313, 0313, 0312, 031, 02, 0}.

From M̃p one can reconstruct the partial prefix 110εε0 (where ‘ε’ de-

notes that the corresponding bit cannot be determined from the proce-

dure described in Claim 11); similarly, from M̃s one can reconstruct the

partial suffix string 11εε00. By combining the partially reconstructed

strings with erasures, we can easily recover the bits in all positions
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except for position four, and then using a process similar to the one

described in the previous examples reconstruct s = 110100 andM(s).

• Next, let

M̃ = {1, 12, 013, 0213, 0313, 0313, 0312, 031, 02, 0}.

Note that bothM(111000) andM(110100) are consistent with the er-

roneous composition multiset and hence reconstruction is impossible.

□

Based on Example 7, a number of observations are in place (any com-

ment pertaining to prefixes also applies to suffixes and vice versa, due to

symmetry).

• If M̃p is such that prefix compositions of lengths i, i+1, i+2, . . . , i+j−2
are erased, while compositions of prefixes of length i− 1, i+ j − 1 and

i + j remain intact, then the bits i, i + 1, i + 2, . . . , i + j, i + j − 1 of

the prefix string cannot be inferred using the technique described in

Claim 11. Such a prefix composition list is said to have a contiguous

erasure burst of length j, starting at index i.

• If the weight of the prefix composition of length i − 1 is wi−1 and

that of length i + j − 1 is wi+j−1, then among the bits at positions

i, i+1, i+2, . . . , i+j−2, exactly wi+j−1−wi are 1s, while the remaining

bit values are 0s.

• If M is missing t compositions, then either Mp or Ms is missing at

most ⌊ t
2
⌋ compositions.

Thus, in the presence of t prefix-suffix erasures, one is always able to recon-

struct the string with at most t missing bits. The erasures that occur in the

prefix (suffix) strings are correlated and every erasure occurs as part of a

contiguous burst of length ⩾ 2. By comparing the string reconstructed using

prefixes with that using suffixes, certain types of erasures can be corrected

as further illustrated in Example 8. In summary, if at most tp prefix compo-

sitions are missing, and at most ts suffix compositions are missing, then one

needs to correct not more than 2 min {tp, ts} erasures in the prefix (suffix)

66



string, each occurring in a contiguous burst of length at least two. As will

be shown Section 3.6.3, the length-two bursts can be completely eliminated

from analysis and subsequent coding approaches by resorting to the use of

integrals of strings, which amounts to running sums (over the reals) of the

elements of the string [39].

Example8. Let us revisit Example 7. Given the following erroneous multiset

of the string s = 110100,

M̃ = {1, 12, 012, 0213, 0313, 0313, 0312, 031, 02, 0},

from M̃p we reconstructed 110εε0, and from M̃s we reconstructed 11εε00.

Using these two strings with erasures we were able to reconstruction the orig-

inal string.

Next, assume that we are instead given the multiset M̃ = {1, 12, 0213,
0313, 0313, 0312, 02, 0}. From M̃′

p we can reconstruct 11εεε0, and from M̃s

we can reconstruct 1εεε00. By combining the two reconstructions we can

only recover 11εε00. The multiset M̃ is consistent with bothM(111000) and

M(110100). □

A simple observation for the t missing prefix/suffix model is as follows. A

missing prefix composition of length i can be recovered from a suffix composi-

tion of length n− i. Thus, the number of error patterns that can be corrected

without additional coding redundancy, independently of whether the string

is a Dyck string, is at least

t∑
i=0

(
n

i

)(
n− i

t− i

)
⩾

(
n

⌊ t
2
⌋

)(
n− ⌊ t

2
⌋

⌈ t
2
⌉

)
.

This follows from the fact that we can choose 0 ⩽ i ⩽ t missing masses in the

prefix set, fix those i masses in the suffix set as “observed” and then select

additional t− i missing masses from the remaining n− i suffixes.

Based on Example 8, and by noting that prefixes are red from the left,

while suffixes are read from the right, define

Ip = {(ip, jp) s.t. the prefix string has a contiguous erasure burst of length

jp starting at index ip},
and

Is = {(is, js) s.t. the suffix string has a contiguous erasure burst of length
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js starting at index is}.
The prefix string is said to have a contiguous erasure overlap of length ℓ

with the suffix string if there exists (ip, jp) ∈ Ip and (is, js) ∈ Is such that

js, jp ⩾ ℓ and either ip ⩽ is, (ip + jp − is) = ℓ or is < ip, (is + js − ip) = ℓ.

We say that the prefix string and the suffix string erasures do not overlap

if for all lengths ℓ ⩾ 1 the prefix string does not have a contiguous erasure

overlap with that of the suffix string.

Claim16. A Dyck string s can be reconstructed from the prefix-suffix compo-

sition multiset M̃(s) without using error-correction redundancy if the missing

prefixes and suffixes are such that

• The prefix string and the suffix string do not overlap; or,

• The prefix string has exactly one contiguous erasure overlap with the

suffix string, and the overlap is of length one.

We next turn our attention to describing the effect of missing prefixes and

suffixes on multistring reconstruction from the union of the underlying prefix-

suffix composition multiset, and detection/correction strategies that may be

used without resorting to controlled error-control redundancy.

As for the case of a single string, one missing prefix-suffix composition in

M(s1) ∪M(s2) · · · ∪ M(sh) corresponding to the Dyck strings s1, s2, . . . sh

can be easily corrected as either the union of prefix composition multiset

or the union of suffix composition multiset is error-free. But when more

than one error is present, it is not always possible to reconstruct M(s1) ∪
M(s2) · · · ∪M(sh) from the union of the erroneous prefix-suffix composition

multiset M̃(s1) ∪ M̃(s2) · · · ∪ M̃(sh) as illustrated below. Here, we find the

following definitions useful. The partially reconstructed prefix of the sum of

strings constructed from the union of erroneous prefix composition multisets

using Claim 11 is referred to as the partial prefix-sum string and its analogue

pertaining to suffixes is referred to as the partial suffix-sum string.

Example 9.

• Let us revisit Example 4 under the assumption that we are given the
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erroneous multiset

M̃(t1) ∪ M̃(t2) = {1, 1, 01, 12, 012, 0212, 013, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0212, 031, 021, 021, 01, 02, 0, 0}.

Clearly, the composition of a prefix of length three is missing. Thus,

using the union of the suffix composition multiset,

M̃s(t1) ∪ M̃s(t2) =Ms(t1) ∪Ms(t2) = {0313, 0313, 0312, 0312, 0212, 031,

021, 021, 01, 02, 0, 0},

one can easily determine t1 + t2 = 211110 using the procedure outlined

in Example 4. If one were to use M̃p(t1) ∪ M̃p(t2) instead, while

setting aside the fact that a composition of length three is missing, the

same procedure applied to the third symbol of t1 + t2 would results in

wt(012)−wt(01)−wt(12) = −1, which is clearly indicative of an error.

A negative value in the partial prefix-sum string or suffix-sum string is

a clear indication of one or more missing compositions or composition

errors in general.

• In the next example, we assume that we are given the following erro-

neous multiset instead:

M̃(t1) ∪ M̃(t2) = {1, 1, 01, 12, 012, 0212, 013, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0212, 031, 021, 021, 01, 02, 0, 0}.

It is once again easy to see that a prefix of length three and a suffix of

length five are missing. Using the erroneous union of the prefix composi-

tion multisets, M̃p(t1)∪M̃p(t2), one can recover the partial prefix-sum

21εε10, and similarly, using the union of the suffix composition multi-

sets, M̃s(t1) ∪ M̃s(t2), one can recover the partial suffix-sum εε1110.

By combining the two partial sums, one can recover t1 + t2 = 211110.

Note that the third bits in the two strings equal 0 and 1 or 1 and 0,

implying that the correct prefix compositions of length three are either

{012, 012} or {13, 021}. Since {13, 021} ∩ M̃p(t1) ∪ M̃p(t2) = ϕ, one

can conclude that the missing prefix composition is 012. A similar line

of reasoning may be used to recover the missing suffix composition 0312.
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• In the third scenario, we are given the following erroneous multiset

M̃(t1) ∪ M̃(t2) = {1, 1, 01, 12, 012, 0212, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0212, 031, 021, 021, 01, 02, 0, 0}.

Here, one prefix of length three and one of length four are missing, as

well as a suffix of length four and another of length five. Using the

erroneous union of the prefix composition multisets, M̃p(t1)∪M̃p(t2),

one can recover the partial prefix-sum 21εεε0, and similarly using the

union of the suffix composition multisets, M̃s(t1) ∪ M̃s(t2), one can

recover the partial suffix-sum εεε110. By combining the two partial

strings, we obtain t1+t2 = 21ε110. Since wt(t1+t2) = wt(t1)+wt(t2) =

3+ 3 = 6, it must be that t1 + t2 = 211110. Hence, as for the case of a

single string, one can recover the sum of the mixture strings even when

both the partial prefix and suffix contain errors.

• In the last example to consider, assume that we are given the erroneous

multiset

M̃(t1) ∪ M̃(t2) = {1, 1, 01, 12, 012, 0212, 013, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0212, 031, 021, 01, 02, 0, 0}.

In this case, the prefix and suffix of length three are missing. Using the

erroneous union of the prefix composition multisets, M̃p(t1)∪M̃p(t2),

one can recover the partial prefix-sum 21εε10, and, similarly, using

the union of the suffix composition multisets, M̃s(t1) ∪ M′
s(t2), one

can recover the partial suffix-sum 21εε10. However, for this case one

cannot recover the missing compositions or the sum of the two input

strings: BothM(111000) ∪M(101010) andM(110100) ∪M(101010)

are consistent with the given input erroneous composition multiset.

□

We hence have the following claim.

Claim17. The sum over the reals of h Dyck strings s1, s2, . . . , sh of length n

can be reconstructed from the union of their prefix-suffix composition multiset

with erasures M̃(s1) ∪ M̃(s2) ∪ · · · ∪ M̃(sh) if
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1) The prefix sum string and the suffix sum string do not overlap; or,

2) The prefix sum string has exactly one contiguous erasure overlap with the

suffix sum string, and the overlap is of length one.

As before, we remark that the multiset of all h prefix compositions of

length 1 ⩽ i ⩽ n can be recovered provided the complete multiset of h suffix

compositions of length n− i is available. Hence, the number of error patterns

that can be corrected without additional redundancy is at least the number

of error patterns such that the missing prefix compositions of length i can

be recovered from the complete set of suffix compositions of length n− i and

vice-versa. To that end,

1) Assume that erasures occur in compositions of exactly 1 ⩽ j ⩽ t differ-

ent lengths. There are
(
n
j

)
different ways to choose these lengths.

2) For every i ∈ [n], either the erasures are contained in the multiset of

prefix compositions of length i or the multiset of suffix compositions of length

n− i. Thus, there are 2j different prefix-suffix composition error patterns for

the j different lengths.

3) An erroneous prefix-suffix composition multiset comprising strings of

length i contains between 1 and h errors. Thus, the number of error patterns

restricted to j composition lengths equals the number of positive solutions

of the equation t = t1 + t2 + · · · + tj, such that t1, t2, . . . , tj ⩽ h, and is well

known to be
(
t−1
j−1

)
provided that t ⩽ h.

Thus, assuming that the number of missing oligos is t ⩽ h and by adding up

all possible contributions for different choices of j, one can find a simple lower

bound on the number of error patterns that be corrected without additional

redundancy
t∑

j=0

(
n

j

)(
t− 1

j − 1

)
2j =

t∑
j=0

(
n

j

)(
t− 1

t− j

)
2j.

3.6.1 One-Step Error-Correction

In what follows, we present a simple scheme that can correct up to t miss-

ing prefix-suffix composition errors. Recall that the Bh codebook Sh(n),
described in the previous sections can be constructed using the columns of a

parity-check matrix of a code with minimum Hamming distance d ⩾ 2h+ 1.

The idea behind our error-correction technique is to ensure that the real-
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valued sum of every h-string subset of the code is an error-tolerant codestring.

An approach to this problem was first proposed in [58] for the purpose of

designing signature codes for the noisy MAC problem (i.e., codes capable

of correcting errors in the syndrome of a received word) and it consists of

encoding the columns of a parity-check matrix H̃k×n, capable of correcting

h substitution errors, using a linear binary code that can correct ⌊ t
2
⌋ substi-

tution errors. Note that the parameter t can be chosen independently of the

parameter h as long as ⌊ t
2
⌋ ⩽ k ⩽ n. For encoding purposes, the authors

suggest using two binary BCH codes, so that H̃ is the parity check matrix

of a BCH code of designed distance ⩾ 2h+ 1, while the parity-check matrix

used to introduce error-control redundancy to the columns of H̃ is also cho-

sen according to a BCH code with dimension k, length n and redundancy

not exceeding ⌊ t
2
⌋ log(n + 1), and capable of correcting at least ⌊ t

2
⌋ substi-

tution errors. Here and elsewhere in this section all logarithms are taken to

the base two unless stated otherwise. Clearly, the only difference is that in

our setting, we only encounter erasures in the coded strings (the augmented

columns), and hence can handle t erasures.

Note that this construction, as pointed out by the authors, does not fully

exploit the fact that addition is performed over the reals and not over the field

F2. As in the previous construction, H̃ is the parity-check matrix of a binary h

substitution error-correction code. But instead of using another binary code

to protect the syndromes, [58] suggests finding the smallest prime p > h, and

using a linear code over Fp (e.g., a Reed-Solomon code of length p−1) for the
syndrome error-control redundancy. The dimension of the latter code equals

n, and it is required that the code be able to correct t substitution errors over

the field Fp. Since the redundancy is nonbinary, each symbol of the parity-

check string is converted into a string of length log(p + 1), representing the

binary expansion of the symbol over Fp. The binary expansions are stacked on

top of each other according to the given parity-check string. The interesting

observation is that, from the sum of the binary strings over the reals, one

can clearly obtain the binary expansion of the symbols in the sum, and then

generate the residues modulo p of the elements of the string to obtain the

redundancy information needed for decoding. The obtained code is linear.

Henceforth, we use the value N to denote the length of the uniquely recon-

structable strings h-MC with added error-control redundancy. It is not to be

confused with the parameter N from Section 3.4 as the notation is reused to
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avoid clutter. Also, as before, we let Sh(n) be a binary Bh code constructed

using the parity-check matrix of a binary code with minimum Hamming dis-

tance ⩾ 2h+1, and to add the syndrome redundancy, we use a BCH code of

appropriate parameters. The main observation leading to the discussion of

our scheme is that due to our encoding method which uses the complementa-

tion/bit flipping procedure, we require an unequal error-protection scheme.

Recall that the substring r used in the construction described earlier is the

indicator vector for substring (of length
√
n bits) flips. Errors in the r sub-

string may clearly cause a burst of “complementation errors” due to the fact

that r indicates if a string or its complement should be used. There are two

approaches one can follow, by either encoding the string to handle a larger

number of erasures independent on their location (the one-step procedure) or

by adding specialized redundancy to the r string (the two-step procedure).

The one-step encoding method is illustrated in Figure 3.3 and proceeds as

follows:

• Each string s ∈ Sh(n) is encoded using a BCH code into an interme-

diary string s′ of length m, capable of correcting t(
√
m + 1) erasures.

The redundancy required is at most ⌈ t
2
⌉(
√
m+ 1) log(m+ 1).

• The intermediary string s′ of length m is subsequently encoded via the

balancing procedure described in Section 3.4. The encoded balanced

string has length N and belongs to a h-MC code capable of correcting

up to t composition erasures; here, N = m+ 17
2

√
m which is at most

n+ ⌈ t
2
⌉(
√
m+ 1) log(m+ 1) +

17

2

√
m.

The parameter N can be further bounded by above by

n+ ⌈ t
2
⌉(
√
n+ 1) log n+

17

2

√
n+ ϵn

√
n

(
⌈ t
2
⌉ log n+

17

2

)
+ ⌈ t

2
⌉δn,

where ϵn =
⌈ t
2
⌉(
√
m+1) log(m+1)

2n
and δn =

⌈ t
2
⌉(
√
m+1) log(m+1)

n
.

As either the partial prefix-sum or the partial suffix-sum string has ⩽ t(
√
m+

1), the binary sum of the input strings can be recovered correctly. The

decoding procedure for strings involved in the sum is identical to the one

described in Section 3.4, and hence omitted.
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3.6.2 Two-Step Error-Correction

As observed in the one-step scheme, errors in the substring r cause blocks

of errors in the global string: Each erasure in r results in
√
m additional

erasures, where m is the length of the approximately balanced strings. In

order to overcome this issue in a more tailor-made manner, one can use

unequal error-correction schemes that ensure that the binary sum of the r

substring components across the input strings can be recovered independently

from the rest of the string. The correctly reconstructed binary r sum can

then be used for subsequent decoding of the complete collection of input

strings. This two-step approach is illustrated in Figure 3.3.

As before, let Sh(n) be a binary Bh code constructed using the parity-

check matrix of a code with minimum Hamming distance ⩾ 2h + 1 (say,

a BCH code). Furthermore, let N denote the overall length of the h-MC

codestrings with added redundancy for mass error-correction. The encoding

method is illustrated in Figure 3.3) and proceeds as follows:

• Each string s ∈ Sh(n) is encoded into an intermediary string s′ of

length m1 capable of correcting t erasures, using a BCH code. The

redundancy required is at most t log(m1 + 1), and

m1 ⩽ n+ ⌈ t
2
⌉ log(m1 + 1).

• Each intermediary string s′ of length m1 is encoded into a Dyck string

using the procedure described in Section 3.4, to arrive at a second

intermediary string s” of length m2, where

m2 = m1 +
17

2

√
m1.

• The substring r of the intermediary string s” is encoded into a code-

string rr′ of total length m3, capable of correcting t erasures. Let

m4 = m3 −
√
m1 denote the length of r′. It is easy to see that

m4 ⩽ ⌈ t2⌉ log(m3 + 1).

• Since the string has to be balanced, r′ = r′1r
′
2 . . . r

′
m4

is converted into

z = r′1r̄
′
1r

′
2r̄

′
2 . . . r

′
m4−1r̄

′
m4 , where r̄′i = 1− r′i.

• The balanced redundancy z is appended to the r substring of the in-
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termediary string s”. Also, a bit 1 is added to the prefix of 1s and a

bit 0 is appended to the suffix of 0s to preserve the Dyck property of

the string.

The length of the coded string equals

N = m1 +
17

2

√
m1 + 2(m3 −

√
m1) + 2,

and upper-bounded in terms of the length n as

n+ ⌈ t
2
⌉(log n+ µn) +

17

2

√
n(1 + νn) + ⌈

t

2
⌉(log n+ µn) + 2θn + 2,

where µn =
⌈ t
2
⌉ log(m1+1)+1

n
, νn =

⌈ t
2
⌉ log(m1+1)

2n
, and θn = t log(m3+1)+1√

n+⌈ t
2
⌉ log(m1+1)

.

3.6.3 Composition Error-Correction Using String Integrals

One observation that is apparent from the previous examples is that era-

sures/errors caused in one mass propagate to one more error when used to

reconstruct the real-valued sum of the strings. One simple means to mitigate

this problem is to use running sums of symbols, in which case the errors

cancel. A more precise explanation for how to perform encoding with this

approach in mind is as follows.

Without loss of generality, suppose that tp < ts. In this case, it is always

possible for the errors in the suffix string to be such that we receive no

additional information by considering both the prefix and suffix string, and

so the problem at hand becomes to recover s from a set of at most n − tp

prefix compositions.

Claim 18. Suppose that C(n, d) ⊆ Fn
2 is a code with minimum Hamming

distance d = min{tp, ts} + 1. Let s ∈ Fn
2 and fix wt(s) = w0. Let M̃p(s) be

the result of removing tp compositions fromMp(s), and ts compositions from

Ms(s). Then, we can recover s = s1s2 . . . sn ∈ {0, 1}n from M̃p(s) provided

that

s1 (s1 + s2) (s1 + s2 + s3) . . .
n∑

j=1

sj ∈ C(n, d).

Proof. Without loss of generality, assume that tp = min{tp, ts}. The re-

sult follows since for i ∈ [n] the value of the i-th component in the string
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s1 (s1 + s2) (s1 + s2 + s3) . . .
∑n

j=1 sj ∈ C(n, d) can be recovered by sum-

ming the number of 1s (modulo 2) in the i-th prefix composition. The claim

then follows since we know the lengths of the compositions that are miss-

ing from the set M̃p(s) and can hence recover the string s1 (s1 + s2) (s1 +

s2 + s3) . . .
∑n

j=1 sj, where s ∈ Fn
2 , from which s can be then determined

uniquely. Note that for the case that ts = min{tp, ts}, since the weight of

s is known, a missing composition of a prefix of length i can be recovered

from the known composition of a suffix of length n− i. Thus, tp + ts missing

compositions in M̃p(s) can be recovered from M̃s(s) and w0. This concludes

the proof.

Using the result of Claim 18, we can encode our mixture-strings using the

following encoding technique:

• Given a string s ∈ {0, 1}n, construct I(s) = s1(s1 + s2)(s1 + s2 +

s3) . . . (s1 + s2 + · · ·+ sn) = I(s)1I(s)2 . . . I(s)n.

• Encode I(s) using a BCH code such that the resulting string I(s)R′(s),

where R′(s) denotes the redundancy bits, is of lengthm and can correct

⌊ t
2
⌋ erasures. To ensure that the redundancy is itself properly balanced,

we write R(r)1 = R′(r)1 + I(r)1; R(r)2i = ¯R(r)2i = 1 − R(r)2i, and

R(r)2i+1 = R′(r)i+R′(r)i+1+R(r)2i, for all i ∈ [m−n−1], where m,n

are as described in the encoding scheme of Section 3.6.3.

• Encode s as sR(s).

To apply the above procedure, we need to be able to partition the prefix

and suffix compositions of the sR(s). This is easily achieved when sR(s) is a

substring of a Dyck string such that the composition of the prefix preceding

the sR(s)-substring in the Dyck string is known. In particular, since the sub-

string sR(s) occurs after the runlength of 1s in the construction of Section 3.4,

the prefix compositions of the constructed string sR(s) can be recovered by

subtracting the weight of the leading runlength of 1s from the corresponding

compositions. Consequently, sR(s) satisfies the conditions of Claim 18 and

the code is linear. Thus, the binary sum of multiple strings constructed using

this technique also satisfies the conditions supporting Claim 18.

In conclusion, the t-erasure-correcting two-step procedure can be replaced

by the ⌊ t
2
⌋ error-correcting technique outlined above. This results in an
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overall reduction of the redundancy by a factor of two, but adds to the

encoding complexity.

3.6.4 Correcting Prefix-Suffix Mass Substitution Errors

We now briefly turn our attention to describing how substitution errors in

prefix-suffix compositions influence the reconstruction process. As already

pointed out, in practice we often observe a larger mass being reported as a

smaller mass due to losses of atoms during the fragmentation process. Such

errors can be modeled as asymmetric errors in which a bit equal to 1 in a

prefix or suffix compositions is replaced by a 0. For convenience, we refer

to such errors as mass reducing substitution errors. In the previous exposi-

tion, we illustrated the fact that the union of the prefix-suffix composition

multisets and the sum of the input Dyck strings can be recovered even in

the presence of a single erasure without additional redundancy. However,

the same is not always true for mass reducing substitution errors, and hence

the problem of correcting such errors is significantly more challenging. We

illustrate this issue in Example 10.

Example 10.

1. Consider the following codebook of Dyck strings {110100 , 101010 ,

110010, 111000}, and select t1 = 111000, t2 = 110100. The error-free

union of the prefix-suffix multisets of the strings equals

M(t1) ∪M(t2) = {1, 1, 12, 12, 13, 012, 013, 013, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0311, 0311, 03, 021, 02, 02, 0, 0}.

Using the defining property of Dyck strings, from M(t1) ∪M(t2) one

can reconstruct the multisets

Mp(t1) ∪Mp(t2) = {1, 1, 12, 12, 13, 012, 013, 013, 0213, 0213, 0313, 0313}

and

Ms(t1)∪Ms(t2) = {0313, 0313, 0312, 0312, 0311, 0311, 03, 021, 02, 02, 0, 0}.

Now, assume that one composition in the union, 12, is erroneously read
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as 02. Thus, in the presence of such an error, we obtain a different

partition of compositions into prefix and suffix sets,

Mp(t1) ∪Mp(t2) = {1, 1, 12, 13, 012, 013, 013, 0213, 0213, 0313, 0313},

Ms(t1) ∪Ms(t2) = {0313, 0313, 0312, 0312, 0311, 0311, 03, 021, 02, 02,

02, 0, 0}.

If it were known a priori that at most one mass reducing substitution

error occurred, then an immediate conclusion would be that the compo-

sition of a prefix of length two was erroneously read as a suffix. Noting

that the suffix compositions of the Dyck strings of length n− 2 = 4 are

0311, 0311, it must be that the correct prefix compositions of length 2 are

12 and 12. Thus, from the corrected multiset

Mp(t1) ∪Mp(t2) = {1, 1, 12, 12, 13, 012, 013, 013, 0213, 0213, 0313, 0313},

one can easily compute t1 + t2 = 221100.

2. Next, consider the strings t2 = 110100 and t3 = 110010. Their error-

free union of prefix-suffix multisets is given by

M(t2) ∪M(t3) = {1, 1, 12, 12, 012, 012, 013, 0212, 0213, 0213,

0313, 0313, 0313, 0313, 0312, 0312, 0311,

0311, 021, 021, 02, 01, 0, 0}.

Using once again the defining properties of Dyck strings, fromM(t1)∪
M(t2) we can reconstruct the multisets

Mp(t2)∪Mp(t3) = {1, 1, 12, 12, 012, 012, 013, 0212, 0213, 0213, 0313, 0313}

and

Ms(t2) ∪Ms(t3) = {0313, 0313, 0312, 0312, 0311, 0311, 021,

021, 02, 01, 0, 0}.

In addition, let us also examine the strings t1 = 111000 and t3 =
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110010. Their error-free union of prefix-suffix multiset is given by

M(t1) ∪M(t3) = {1, 1, 12, 12, 13, 012, 013, 0212, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0311, 0311, 03, 021, 02, 01, 0, 0}.

In this case,

Mp(t2)∪Mp(t3) = {1, 1, 12, 12, 13, 012, 013, 0212, 0213, 0213, 0313, 0313},

Ms(t1)∪Ms(t3) = {0313, 0313, 0312, 0312, 0311, 0311, 03, 021, 02, 01, 0, 0}.

Given the erroneous union of prefix-suffix composition multiset of two

strings

{1, 1, 12, 12, 03, 012, 013, 0212, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0311, 0311, 021, 021, 02, 01, 0, 0},

the following scenarios are possible:

a) InM(t2)∪M(t3), the prefix composition 012 was changed to 03, or

b) In M(t1) ∪ M(t3), the prefix composition 13 was changed to 021.

Thus, in the presence of even a single mass reducing composition error,

without additional coding redundancy, neither the union of the prefix-

suffix composition multiset nor the sum of the strings can be uniquely

reconstructed.

3. In the final example, let us revisit the strings t2 = 110100 and t3 =

110010. Given the erroneous composition multiset

M̃(t2) ∪ M̃(t3) ={1, 1, 12, 01, 012, 012, 013, 0212, 0213, 0213, 0313, 0313,

0313, 0313, 0312, 0312, 0311, 0311, 021, 021, 02, 01, 0, 0},

one can recover

M̃p(t2)∪M̃p(t3) = {1, 1, 12, 01, 012, 012, 013, 0212, 0213, 0213, 0313, 0313}

79



and

M̃s(t2) ∪ M̃s(t3) = {0313, 0313, 0312, 0312, 0311, 0311,

021, 021, 02, 01, 0, 0}.

Noting that the prefix compositions 12, 01 are not compatible with the

suffix compositions 0311, 0311, we conclude that one of these four com-

positions must be in error. Hence, either the prefix sum string 211110

or the suffix sum string 220110 is correct and we can examine both

settings to determine the possible solutions.

□

In summary, the examples above illustrate that a single mass reducing

error can always be detected but not necessarily corrected. For the special

case where a composition of a prefix or suffix of length i is replaced by the

composition of a prefix or suffix of the same length, a simple modification to

the coding technique described for correcting t mass erasures can be used to

correct t mass substitution errors. To this end, we make the following two

observations.

Although based on the pigeon-hole principle it is true that either the union

of the prefix composition multisets or the union of the suffix composition

multisets is such that it contains at most ⌊ t
2
⌋ mass reducing errors, it is

not possible to identify which of the two multisets contains fewer errors.

As a result, the two-step encoding procedure has to involve a h-MC code

capable of correcting t substitution errors. This results in a four times higher

redundancy compared to that used for correcting missing mass errors.

3.7 Open Problems

Many combinatorial and coding-theoretic problems related to string recon-

struction from prefix-suffix compositions remain open. A sampling is listed

below.

• Our techniques for converting a binary string of length n into strings

that are both Dyck and belong to a Bh codebook have suboptimal
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redundancy. We seek methods that can reduce our overhead and at

the same time, offer low encoding and decoding complexity.

• In practice, one often encounters nonbinary alphabets, as polymers can

be synthesized to have highly different masses and chemical properties.

The question remains to generalize our approach for nonbinary alpha-

bets. Furthermore, it is of interest to investigate such coding techniques

for strings that have some form of balanced symbol contents or masses

confined to a certain interval.

• It remains an open question to characterize all the missing mass errors

that can be corrected by simply utilizing the Dyck, Bh properties of

strings and the presence of both prefix and suffix masses.

• At this point, we have no efficient means for correcting mass reducing

(or, mass increasing) substitution errors in our mixtures. A solution

to this problem can have interesting and important implications in the

field of polymer-based data storage.
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(a) In the first step, we set u1 = s1. Without loss of generality,
let us assume that u1 contains more 0s than 1s. Then, the next
block u2 is set to s2 if s2 has more 1s than 0s. Otherwise, u2 is
set to the complement of s2, s̄2. To reconstruct a block u2, we
either use the complement of s2 or the string itself, as
determined by the added flag bit r2.

(b) In the next step, the approximate balancing procedure
continues as follows: Let us assume that u1u2 has more 1s than
0s. The next block u3 equals s3 if s3 has more 0s than 1s.
Otherwise, u3 equals the complement of s3, s̄2. The procedure is
repeated for all subsequent steps.

Figure 3.1: Illustration of the approximate balancing procedure. The
string s = s1s2 . . . s√n is decomposed into a concatenation of

√
n blocks,

each of length
√
n. The string u = u1u2 . . .u√

n is constructed sequentially
from the blocks s1, s2, . . . , s√n by ensuring that the discrepancy between the
number of 1s and 0s in the reconstructed string u1u2 . . .ui is reduced or
kept the same at every step i. Subfigure (a) depicts how the block u2 is
chosen, while subfigure (b) depicts how the block u3 is chosen.
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Figure 3.2: Further examples regarding the code construction. Subfigure
(a) illustrates the finding of Claim 13: The discrepancy between the
number of 1s and 0s in the string u1 . . .ui, i ∈ [

√
n] is at most

√
n.

Subfigure (b) illustrates the finding of Lemma 7: The discrepancy between
the number of 1s and 0s in the string u1u2 . . . uj, j ∈ [n] is at most 3

2

√
n.

Subfigure (c) illustrates an immediate extension of Lemma 7: The
discrepancy between the number of 1s and 0s in the string ru1u2 . . . uj,
j ∈ [n] is at most 5

2

√
n. Recall that v = 15/2

√
nru is as defined in Claim 14,

and that w = wt(v). Subfigure (d) depicts how adding a properly chosen
prefix and suffix to the string ensures the Dyck property.
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Figure 3.3: Illustration of the error-correction procedure. Subfigure (a)
describes the one-step error-correction procedure. The string is encoded to
handle the worst-case erasure scenario. Subsequently, the approximate
balancing construction from Section 3.4 is performed to generate a Dyck
codestring. Note that v = 15/2

√
mru is as defined in Claim 14, and it

pertains to the intermediary string s′. Here, w = wt(v). Subfigure (b)
describes the two-step error-correction procedure. The string is encoded to
be able to correct t erasures. The approximate balancing procedure from
Section 3.4 is performed to generate a Dyck string. In the next step,
redundancy is added to the substring r that can be used to correct t
erasures. To preserve the Dyck property, “balancing redundancy” z is
appended to r, and additional bits are added to the prefix and suffix to
obtain the desired codestring. Note that here v = 15/2

√
m1ru is as defined

as in Claim 14, as applied to the intermediary string s′′ depicted in
Subfigure (b). Once again, we have w = wt(v).
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CHAPTER 4

COVID-19 TESTING

4.1 Introduction

In less than ten months since the first case reported in the Hubei province

of China, Covid-19 had rapidly spread across all continents except Antarc-

tica [8]. The disease has caused more deaths than Ebola, SARS, and the

seasonal flu combined (reaching 5, 000, 000 mortalities in November 2021),

disrupted the global economy to an extent not seen since the Great De-

pression and altered the lives of hundreds of millions of people across the

globe [9].

Many analyses associated with the Covid-19 pandemic have established

that widespread population testing is key to effectively containing outbreaks

of this and other infectious diseases. In May 2020, the United States was able

to test around 150, 000 people per day, while countries that had managed to

keep the outbreak under control then, such as Germany and South Korea, had

performed millions of tests during the same stage of the spread of the disease.

Although there is no general consensus on the exact number of individuals

that need to be tested, most experts agree that the reported numbers were

highly inadequate [59]. Some universities, such as Yale University and the

University of Illinois, had a biweekly test schedule in place for all individuals

accessing school property [60]. This is believed to be a sufficiently large-scale

testing protocol that allowed the institution to safely operate.

To address the need for sustainable high-frequency population testing,

a number of countries and states proposed and implemented group testing

schemes in which genetic samples from different individuals are pooled to-

gether in a manner that incorporates thresholded real time reverse tran-

scription polymerase chain reaction (RT-PCR) fluorescence signals into the
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testing scheme.1

Group testing (GT) is a combinatorial screening method introduced by

Dorfman [62] for identifying small groups of soldiers infected by syphilis. His

scheme, known as single-pooling, consists of mixing blood samples from five

soldiers at a time, and running one test for each pool. For positive test out-

comes, the soldiers involved in the test are examined individually in a second

round to determine who has the disease. For negative outcomes, all subjects

involved are declared healthy and removed from future testing schedules.

Given a relatively small number of infected individuals in a population, this

scheme provides a significant reduction in the number of tests required when

compared to individual testing [63]. The scheme proved ineffective for its

original task as blood sample pooling dilutes the resulting sample to a point

below the sensitivity of the tests used.

A number of recent reports suggest using Dorfman’s or other mostly off-

the-shelf GT schemes for Covid-19 testing [10–19]. Most of the proposed

schemes do not incorporate relevant biological priors or exploit the highly

specific measurement and noise properties of the RT-PCR method in their

testing schemes. We argue this is a significant detriment, as in order to

properly execute the effort and avoid dangerous failures, testing schemes

should to be guided both by mathematical considerations as well as social,

clinical, and genomic side information.2 This suggests designing Covid-19

group testing schemes that carefully address the following issues:

1. Selection of adequate primers. As stated in the CDC SARS-CoV-2

testing guidelines [66], only two primers are recommended for use in the

USA for RT-PCR reactions, selected from the N open reading frame

(ORF) of the SARS-CoV-2 genome. It is often hard to predict which

regions will have small mutations and it is currently not known how fast

the N regions and other primer regions chosen by various countries mu-

tate and how these mutations affect the PCR protocol. To determine

1A recent ordinance issued by the governor of Nebraska [61] recommends using group
testing for widespread screening for Covid-19, while group testing methods are employed
in part in Israel.

2As the disease affects people from different age groups, ethnicities and regions in
a highly disparate manner [64]; it has also been reported that mortality rates across
different populations can deviate by as much as two orders of magnitude [65]. The World
Health Organization (WHO) has also repeatedly issued testing guidelines that suggest
“suspect influenza should be tested with consideration for geographical, gender and age
representativeness” in order to contain the spread of the disease in real-time.
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the influence of mutations one first needs to determine which regions

will remain mostly unaffected by mutations, determine the melting tem-

peratures of the primers [67] and their binding affinity to the mutated

reference regions. For this purpose, the recent work [68] may be used

to guide the primer selection process, while actually recorded mutated

N primer regions may be used to estimate the failure rates of the indi-

vidual PCR tests or model the errors in group PCR protocols due to

mutations. These issues are examined in [69].

2. Selection of (near-)optimal sample mixing strategies with pri-

ors. If not properly designed, GT schemes may lead to errors. Since

some individuals, such as health workers, may harbor multiple strains

of the virus, and since clinical priors are often readily available (e.g.,

symptom charts, chest X-ray images) the sampling and mixing ap-

proaches should be carefully designed to include the right number and

combinations of subjects in order to minimize test errors. This is a

complicated issue that will be examined elsewhere.

3. Use of quantitative test outcomes. RT-PCR experiments provide

significantly more information about the viral load or number of in-

fected individuals within the group rather than just a simple binary

answer, “no infected samples” or “at least one infected sample”. Ex-

cept for a handful of works proposing to use quantitative RT-PCR

through compressed sensing (CS) [70–72], most reported Covid-19 GT

schemes assume binary test outcomes (among them the scheme used in

Israel and described in [73]). Furthermore, practically tested schemes

operate in a nonadaptive setting, which is suboptimal and not justified

for large-scale testing strategies which use a limited number of PCR

machines. Another important issue is that heavy hitters (individuals

with very high viral loads) can “mask” individuals with smaller loads

which makes the use of quantitative information difficult [74,75]. This

masking phenomenon, as well as saturation effects present in RT-PCR

outputs, can make CS approaches highly susceptible to errors. The fo-

cus of this work is to develop schemes that can address these issues in

a simple and efficient manner. Consequently, our main results pertain

to scalable, adaptive and semiquantitative testing methods that can

efficiently correct errors that are specific to RT-PCR systems. We also
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describe techniques that can handle heavy hitters.

4. Incorporation of social/contact network information. Due to

the highly heterogeneous response of individuals to the infection, di-

verse infection rates across different geographic and communal regions,

the best testing practices have to be guided by infection risk assess-

ments and scores. Such “network-guided” schemes are currently not

well studied in the GT and CS literature, except for some recent work

that uses community information to model correlations and reduce the

number of tests required [76]. Instead, [69] proposes to identify highly

infected communities and their neighboring communities rather than

all individuals in each infected community. In this case, GT is used

jointly with other commonly employed mitigation strategies such as

quarantine.

We argue that the availability of (semi)quantitative test outcomes and the

use of adaptive strategies can greatly increase the efficiency and scalability

of Covid-19 testing schemes. In that direction, we generalize the Semiquan-

titative Group Testing (SQGT) strategy [77–79] to an adaptive setting and

devise simple probabilistic adaptive GT methods3 and worst-case adaptive

GT schemes that take the specific measurement data noise and quantization

properties into account. The SQGT scheme assumes that one cannot tell

the exact viral load or number of infected individuals in a pool but only

an interval in which the load or number of defectives lies. The setting is a

generalization of GT that includes more than two outcomes, or a quantized

version of the adder channel/CS approach [53, 82]. It also represents a gen-

eralization of the setting [83] in which only saturation effects are taken into

account within the adder model. It is worth pointing out that this is also the

first approach that uses actual RT-PCR features and also postulates rigorous

models that allow for relating viral loads to actual fluorescence values and

analyze the testing schemes rigorously. Other methods that will be reviewed

3The quantifier “probabilistic” may refer to either the individuals being ill according
to some probability distribution (usually iid Bernoulli(p), or generalized binomial [80]
or Poisson [81], where the number of infected individuals has a right-truncated Poisson
distribution with parameter λ(n) = o(n); Dorfman’s scheme falls into the first category)
or, the test matrices having entries dictated by a probability distribution (again, usually iid
Bernoulli(q)). Some papers refer to the former setting as “group testing with probabilistic
priors” and the latter setting as “group testing with probabilistic tests.” Which paradigm
we refer to will be clear from the context.
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in later sections either completely ignore the RT-PCR measurements or do

not properly justify or analyze their proposed models.

For an illustration of the differences between various testing schemes (group

testing, additive tests, additive tests with saturation, and general SGQT),

the reader is referred to Figure 4.1.

Figure 4.1: Subfigure (a) illustrates the classical GT framework. Here, 0
corresponds to a test outcome that is indicative of no infected individual
being present, while 1 corresponds to an outcome indicative of at least one
infected individual. Subfigure (b) represents an additive test output model,
in which the underlying assumption is that one can tell the exact number of
infected individuals in a test. An instance of the general SQGT is
illustrated in Subfigure (c). In this case, the test outcome ⌈ℓ/τ⌉ = i for
i > 2 indicates that (i− 2)τ ⩽ ℓ ⩽ (i− 1)τ defectives are present. When
the number of defectives detected is > (m− 1)τ , the test reports m. When
τ = 1, (c) represents an adder model with saturation.

For the worst case setting, in which we assume a known number of d

defectives, but make no assumptions about how they are distributed, and

where one can tell if zero defectives were present, or the number of defectives

is nonzero and lies in one out of m consecutive intervals of length τ , the

number of tests per defective roughly equals

log (n/d) + log log(m+ 1)

log(m+ 1)
.

The savings in the number of tests as compared to the classical GT setting

provided by the increased resolution of the levels is log(m + 1)-fold, which

even for 7 levels amounts to three-fold savings. Clearly, one has to be able to

properly calibrate the RT-PCR readouts and determine adequate thresholds

in order to take full advantage of the scheme. This issue will be addressed
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in Section 4.2.

For the probabilistic setting, where each item is assumed to be inde-

pendently defective with some probability, [69] provides results that include

simple-to-implement algorithms for adaptive testing that involve two thresh-

olds and two test stages, and are also capable of handling heavy hitters (i.e.,

individuals with high viral loads that may mask other individual’s presence,

provided these individuals are not too common).

The remainder of this chapter is organized as follows. Section 4.2 pro-

vides an overview of the PCR, RT-PCR and the Real Time (Quantitative)

PCR techniques. The section also addresses key issues that impede the am-

plification efficiency of the methods currently used for Covid-19 testing and

introduces several practical noise models. Section 4.3 describes various GT

approaches and assesses their utility for Covid-19 testing. Section 4.5 de-

scribe the results. Section 4.4 describes a probabilistic version of a SQGT

model, simplified to account for two rounds of testing and two test thresh-

olds only. This section also introduces test schemes that aim to identify

highly virulent individuals, termed heavy hitters. Section 4.5 introduces a

new worst-case adaptive SQGT technique that is near-optimal and describes

a noise model termed the birth-death chain model. Section 4.6 concludes the

chapter and discusses future work.

4.2 Background

We start our exposition by describing the real-time reverse transcription

(RT-PCR) testing mechanism. DNA has a double helix structure and both

strands in the helix are composed of periodic sugar and phosphate groups to

which one of four different bases is attached, namely A, T, C, and G. A sugar,

phosphate, and base are jointly referred to as a nucleotide. As the sugar is

asymmetric in terms of the placement of its carbon atoms with respect to

the position of binding to the phosphates, the two strands of the DNA have

two different directions: One runs from the 3’ to 5’ carbon end, while the

other runs from the 5’ to 3’ carbon end. The two strands are held together

through the stacking of bases and the hydrogen bonds that exist between

them. The pairing rule is dictated by Watson-Crick (WC) complementarity

asserting that only (or with overwhelming probability) the bases A and T
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and G and C bind to each other, respectively.

4.2.1 Reverse Transcription PCR

The Reverse- Transcription PCR (RT-PCR) technique is used to identify/amplify

RNA strands. Since RNA is single-stranded and hence an unstable molecule,

RT-PCR first converts the target RNA into its complementary double-stranded

DNA (cDNA, as illustrated in Figure 4.2) and then performs amplification

using the standard PCR technique. Note that RNA has three of the same

building blocks as DNA, namely A, C, and G, but instead of T (encountered

in DNA), RNA contains U (Uracil).

Conversion of RNA into cDNA is accomplished through the use of the

reverse transcription (RT) enzyme that stitches together “free” nucleotides

A, T, C, and G together, in the presence of primers that are complementary

to a specific part of the target RNA sample (see Figure4 4.2 ). Since RNA

is inherently single-stranded, the primers have an affinity to attach to the

complementary RNA regions, recruit the RT enzyme and thereby initiate

synthesis. The process proceeds through two steps: In the first step, the

first-strand cDNA is created using the single-stranded RNA as a template.

In the second step, the second-strand cDNA is formed by using the first-

strand cDNA as template. Consequently, the product cDNA represents an

accurate replica of the original RNA content, converted to the DNA alphabet.

The test results are usually compared to a control as a means to assess

the quality of the experiment. RT-PCR is used to detect RNA viruses, i.e.,

viruses whose genomic content is stored in RNA rather than DNA. SARS-

Cov-2, the virus causing Covid-19, is an RNA virus, as is for example the

HIV virus that causes AIDS. For viral detection, the first step of testing

involves isolating genomic RNA by breaking the viral membrane, but this

and other processes that lead to actual sample isolation will not be discussed

in this short review.

The Covid-19 detection and amplification process relies on standard RT-

PCR methods and RT-PCR and its quantitative version described next.

4Reverse Transcriptase image is from Wikipedia.
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Figure 4.2: Reverse transcription for converting viral RNA into cDNA.

4.2.2 The Polymerase Chain Reaction (PCR)

The polymerase chain reaction (PCR) is used to amplify specific segments of

the DNA strands in order to enable a downstream analysis of the segments

or to detect the presence of specific DNA content. The operating principles

of the PCR process are illustrated in Figures 4.3 and 4.4. A thermal cycler

uses the target DNA, specific primers (short DNA segments that initiate the

replication process by allowing the polymerase to bind to the DNA), the

taq polymerase (which actually performs DNA replication after the primers

get attached), and free A (adenine),T (thymine), C (cytosine) and G (gua-

nine) nucleotides needed to amplify the segment of interest through repeated

cycles that involve the following steps: DNA denaturation, annealing, and

extension.

1. DNA Denaturation: The DNA sample to be amplified or detected is

first heated to 96 ◦C. At this temperature, hydrogen bonds between

the bases across the two strands break, producing two complementary

single-stranded DNA fragments.

2. Annealing (Hybridization): The sample is subsequently cooled to 55 ◦C.

This allows the primers to bind to their WC complementary segments

on the two single-stranded DNA targets. The primer that binds to the

forward strand is referred to as the forward primer while the one that

binds to the reverse strand is referred to as reverse primer.

3. Extension: The sample is heated to 72 ◦C to enable the taq poly-

merase to extend the primers to form two complete copies of the orig-

inal double-stranded DNA molecule.

Under ideal conditions, at the end of the Extension step of a cycle, the amount

of target DNA doubles. This setting is illustrated in Figure 4.3. However,
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due to several factors [67] including the efficiency of denaturation, primer an-

nealing affinity, polymerase binding strength, and others, the DNA content

may not double during each cycle. For example, denaturation requires heat-

Figure 4.3: Polymerase chain reaction: In any given cycle, the DNA
strands in the sample are first denatured into single strands. The two single
strands are then extended to form complete DNA double-helixes. The
primers (short DNA fragments) are attached to the single-stranded DNA
such that extension is facilitated in the 3’-5’ direction. At the end of each
ideally executed cycle, the number of DNA strands in the sample doubles.

ing the sample to a higher temperature which by itself may cause oxidative

and other damage to the DNA being amplified. The efficiency of denatura-

tion is measured in terms of the concentration of viable single-stranded DNA

present after heating.

During the primer annealing stage, single-stranded DNA strings previ-

ously denatured can anneal back, therefore prohibiting access to the primer

segments. The primer annealing efficiency is captured by the proportion of

single-stranded DNA with bound primers.

When the polymerase binds to the DNA-primer complex it forms a po-

tentially unstable tertiary complex in which the polymerase can disassociate

in a stochastic manner. The polymerase binding efficiency is captured by

the fraction of tertiary products in the assay. The tertiary complexes formed

during the early stage of a cycle are more likely to result in complete double-

stranded DNA compared to those formed in a later stage of the cycle, due

to cycle timing issues. This effect is captured through what is known as the

extension efficiency of PCR.

These effects jointly contribute towards the reduction of the average effi-
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ciency of DNA amplification, which goes down from the expected doubling

factor to some value < 2, usually written as (1 + η), where η is referred to

as the cycle efficiency. The doubling of the target material at every cycle

corresponds to η = 1. At the end of i cycles, a sample with concentration

x DNA strands is amplified to a sample with concentration x(1 + η)i. More

precisely, the cycle efficiency depends on the cycle number. Consequently,

a more accurate amplification model should use the factor ηj for cycle j, so

that the amplified concentration after the ith cycle reads as x ·Πi
j=1(1 + ηj).

It is also known that ηj decreases with j, which may be attributed to the

fact that the primers used for amplification are more and more integrated

into the DNA products and that the efficiency of the polymerase decreases.

At the same time, for a small number of cycles (usually i ⩽ 10) the DNA

products are hard to detect. As a result, it is a common practice to run

30− 40 cycles of PCR, depending on the expected original concentration of

the double-stranded DNA to be amplified.

Note that the polymerase can also be active at temperatures below 72 ◦C,

thereby initiating the extension process. However, the polymerase is non-

specific at lower temperatures and leads to amplification of nonspecific DNA

strands. The high concentration of the stronger and more stable GC bonds in

the DNA strands hinders effective denaturation at 96 ◦C. Regions with high

GC bond concentration also form secondary products that prevent primer

bonding [84]. These phenomena all jointly contribute to “noise” in the am-

plification PCR process which is not associated with the cycle efficiency. Ad-

ditional sources of noise such as CCD thermal noise and shot noise can lead

to a further decrease in the reliability of data points at low signal levels [85].

Also, primers may fail to attach to the DNA if the corresponding DNA

primer regions contain mutations (indels or point mutations). Since the error

is caused by the actual DNA sample strand, and not the PCR process, this

phenomenon should not be considered as part of the PCR noise model. The

results of a simulation that studies the effect of mutations along the primer

region on PCR amplification are described in [69], using a collection of real

genomic datasets retrieved from the GISAID database [86].
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Figure 4.4: Under ideal conditions, every cycle of the PCR process should
double the DNA content. Due to various factors, described in the main
text, not every cycle may result in twice as many strands and an averaged
efficiency factor η < 1 is used to describe the growth rate of the PCR
product.

4.2.3 Quantitative (Real-Time) RT-PCR

Quantitative Real Time PCR (qPCR) is a technique used for precise anal-

ysis of viral and bacterial samples. As implied by its name, qPCR allows

for the amplification process to be monitored in real-time. This is achieved

by introducing fluorescent labels into the DNA products and recording the

change in fluorescence with an increasing number of cycles (which also al-

lows for estimating the number of cycles needed to detect an appropriate

product). The result of a qPCR experiment is usually given in terms of an

amplification curve (an example of such a graph is shown in Figure 4.7, where

real measurements are approximated by piecewise polynomial fragments of

degree ⩽ 10). The amplification curve plots the normalized (relative) fluo-

rescence ∆Rn against the cycle number. The fluorescence increases with the

increase in the target genetic material with every cycle until the fluorescence

saturates. The cycle number for which the fluorescence crosses the detection

threshold (which can be defined in several ways) is referred to as the cycle

threshold, and denoted by Ct. Note that Ct is inversely proportional to the

concentration of the target material in the sample: A low Ct value indicates

a higher concentration of the sample we wish to detect, while a high Ct value

indicates a low concentration of the same or spurious amplification results.

The slopes of the curves most often show very small variations with the con-
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centration of the subject but may potentially be used as further indicators

of the sample load.

Real-time or qPCR is usually performed using one of the following two

approaches:

• Dye-based qPCR. The dye-based method uses dyes that only fluoresce

when bound to double-stranded DNA. Thus, at the end of each exten-

sion stage, the fluorescence increases (see Figure 4.5). The chemistry of

the dyes used helps in distinguishing desired and undesired products.

However, the dye-based method is often nonspecific, thereby inaccu-

rately quantifying genetic material that is not of interest. As a result,

this approach requires highly selective primers and other additional

controls to provide accurate amplification curve results.

• Probe-based qPCR. In this technique, primers specific to the target

DNA include two molecules, a fluorescent reporter dye and a quencher

on its two ends. When the quencher is in close proximity to the fluo-

rescent dye, the former molecule inhibits (quenches) the fluorescence of

the latter. This is usually the case when the primer is not bound to the

target (see Figure 4.6). However, when the primer is hybridized to the

target and the polymerase extends the primer segment, the quencher

and reporter separate out and the dye is cleaved and displaced. In its

free form, it fluoresces which leads to detectable signals.

4.2.4 Amplification Curves and the Viral Load

From Figures 7 and 4.8, and as already discussed in the previous section,

it is clear that one can estimate upper/lower bounds on the viral load of an

individual by observing the Ct value and the slope and saturation point of

the amplification curve. It is important to point out that the viral load of

individuals may vary up to five orders of magnitude, as shown in the re-

cent study [87]. Viral loads in infected individuals tend to follow a “typical”

inverted-V dynamics shown in Figure 4.9. There, it can be seen that an

individual tested 3− 5 days after the infection may have a viral load that is

large enough to mask any other individual tested by the same test under the

GT framework. This is a sensitive issue for SQGT schemes as the Ct curves
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Figure 4.5: Dye-based qPCR: The dye attaches to the double-stranded
DNA formed at the end of the extension stage and fluoresces. Thus, the
fluorescence measured increases with the number of cycles.

may have multiple interpretations: As an example, the same Ct value may

correspond to 10 − 100 individuals tested 5 − 6 days after infection or one

individual tested 3 days after infection. There are multiple possible ways to

mitigate this problem: First, given that high viral loads very often positively

correlate with observable disease symptoms [88],5 asking individuals about

symptoms before scheduling the tests (as is, for example, done at UIUC [89])

allows one to determine if the individual should be group-tested or not. An-

other approach is to perform adaptive testing where samples with large viral

loads are subjected to additional screenings, as is done in one of our proposed

methods. Specialized testing strategies for pooled measurements with high

viral loads can also be devised using heavy-hitter detection methods [90].

As an abstraction, and only for our worst-case analysis we, assume that

each individual is represented by a viral load equal to the expected value

over the tested population. In this case, the test outcome can be translated

into an interval in which the number of infected individuals lies. Hence, the

assumption in this case is that one can convert Ct values into a rough estimate

of the number of infected people in the test. For probabilistic testing, we do

not have to rely on such assumptions as the testing scheme itself can be easily

adapted to handle heavy hitters.

5According to this study, among the set of infected patients, those who exhibited
“severe” symptoms had significantly lower Ct = Ct(sample) − Ct(reference) values than
those who exhibited “mild” symptoms.
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Figure 4.6: Probe-based qPCR: When DNA is denatured, a primer specific
to the target DNA is attached to a single strand. The primers are then
attached and extended by the polymerase. During the extension, the
probes are cleaved and the reporter dye is no longer in the proximity of the
quencher molecule, which enables it to fluoresce.

4.3 Basics of GT

In what follows, we provide concise overviews of all relevant GT schemes

used or proposed for potential use for Covid-19 testing: (1) Classical non-

adaptive and adaptive GT; (2) Nonadaptive SQGT; (3) Threshold GT; (4)

Compressive sensing (CS); (5) Graph-Constrained GT. For all these meth-

ods, we describe their potential advantages and drawbacks and then proceed

to introduce a new method, which we refer to as adaptive SQGT. Adaptive

SQGT with a “curve fitting”-based noise model appears to provide the the-

oretical state of the art GT results for qPCR test models and is the focus of

our subsequent discussions.

4.3.1 Nonadaptive and Adaptive GT

The assumptions are as follows: In a group of n individuals, there are d

infected people. When a subset of people are tested, the result is positive

(e.g., equal to 1) if at least one person in the tested group is infected, else the

test result is negative (e.g., equal to 0). Such a testing scheme is referred to as

binary, as the outcomes take one of two values (see Figure 4.1 (a)). GT aims
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to find the set of all infected people with the fewest number of binary tests

possible and may use nonadaptive and adaptive tests. In the former case, all

tests are performed simultaneously and the outcome of one test cannot be

used to inform the selection of the individuals for other tests. In the adaptive

setting, one can use multiple stages of testing and different combinations of

individuals to best inform the sequentially made test choices.

When d ≪ n, it is well known that Ω(d log(n/d)) number of tests are

required to find all infected individuals. Furthermore, it was shown in [91]

that for NAGT, at least Ω(d2 log(n)/ log(d)) tests are required in the worst-

case model. For the same parameter regime, there exist explicit nonadaptive

schemes that require O(d2 log n)) tests to find the infected group [92]. A

four-stage adaptive scheme that uses an optimal number of tests that meets

the lower bound was recently described in [93]. Of special interest is the

classical binary search result of [94] which established an elegant adaptive

scheme that differs from the information-theoretic limit only by an additive

O(d) term.

Despite the many proposed applications of this model to Covid-19 testing,

it is obvious from the previous discussion that the GT measurement outcomes

do not fully use the actually available qPCR results. One could argue that

the fluorescence exceeding the detection threshold may correspond to the

test outcome 1, but clearly, significantly more information is available as

the detection threshold depends on the concentration of the viral cDNA

and hence the number of infected individuals. This motivates using a more

quantitative GT approach, already introduced under the name of SQGT.

4.3.2 Nonadaptive SQGT

In SQGT, one is given a collection of thresholds 0 = τ1 < τ2 < · · · < τr,

and the outcome of each test is an interval (τi, τi+1], where 0 ⩽ i ⩽ r − 1.

The outcome of an experiment cannot specify the actual number of infected

individuals but rather provides a lower and upper bound on that number,

τi−1 and τi, respectively. If τi = τi−1 + 1 for all values of i and r = d,

the scheme is referred to as additive GT, or the adder model [53, 82]. The

two models are depicted in Figure 4.1 (b) and (c). The additive test model

described in [53] requires 2 · (n/ log n) tests to determine all possible infected
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individuals, for 0 ⩽ d ⩽ n.

Another special SGT case of interest assumes that the test results are addi-

tive up to some threshold τ and after that, they saturate [83] (see Figure 4.1).

This model is of special interest for Covid-19 testing as it takes the warm-

up/saturation information into account and, in addition, under a proper noise

model, captures the fact that amplification graphs have different Ct values

determined by the concentration of the viral load (an hence the approximate

number of infected individuals). Furthermore, one can argue that the RT-

PCR fluorescence intensity information is inherently semiquantitative [77] as

the fluorescence levels and Ct values can be placed into bounded bins deter-

mined by the number of cycles. This observation is explained in more detail

in the next section, along with new theoretical results pertaining to adaptive

SQGT schemes with appropriate noise models (refer to Figure 4.10).

4.3.3 Threshold GT

An extension of the GT problem was introduced by Damaschke in [95]: In this

setting, if the number of defectives in any pool is at most the lower threshold

ℓ > 0, then the test outcome is negative. If the number of defectives in the

pool is at least the upper threshold u > ℓ, then the test outcome is positive.

However, if the number of defectives in the pool is between u and ℓ, the test

outcome is arbitrary (i.e., either 0 or 1). Thus, the algorithms for Threshold

GT are designed to handle worst-case adversarial model errors. Note that

when ℓ = 0, and u = 1, Threshold GT reduces to GT. It is known that for

nonadaptive threshold GT, O(dg+2(log d) log(n/d)) tests (where g = u−ℓ−1)
suffice to identify the d infected individuals [96].

The Threshold GT model is partly suitable for modeling the qPCR process,

as the lower threshold can obviously assume the role of the fluorescence-based

detection threshold, ℓ = Ct; unfortunately, due to the saturation phenom-

ena, a specialized choice for the upper threshold u does not allow one to

accurately assess the number of infected individuals in the pool. The “in-

between” threshold results also make the simplistic assumption that despite

the observed fluorescence value being closer to the upper threshold, one can

still call the outcome negative (and similarly for the small fluorescence levels

and the lower threshold).
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4.3.4 Compressive Sensing

In compressive sensing, the defectives are represented by nonnegative real-

valued entries. Thus, quantitative GT represents a special instance of com-

pressive sensing. Compressive sensing assumes that one is given an unknown

vector x ∈ Rn, in which only d ≪ n entries are nonzero. The vector x is

observed through linear measurements formed using a measurement matrix

M ∈ Rm×n, leading to an observed vector y = Mx + n, where n is the

measurement noise (usually taken to be Gaussian N (0, σ2)). For noiseless

support recovery, m = O(d · log n) measurements are sufficient. For sup-

port recovery in the noisy setting, it was shown in [97] that the minimum

signal-to-noise-ratio required is Ω(log n), and that the number of tests must

scale as Ω(d log n
d
) for exact recovery. Compressive sensing reconstruction

is possible through linear programming methods or low-complexity greedy

approaches [98–100].

The recently proposed Tapestry method [101] combines group testing with

compressive sensing and uses combinatorial designs (i.e., Kirkman systems)

to construct the measurement matrix. However, the approach does not ac-

count for several practical features inherent to quantitative PCR. Although

Tapestry proposes a model that involves multiplicative noise and converts

it into additive noise through the use of a logarithmic function, it is still

inherently linear: Tapestry is based on a CS framework, which is additive

and applies to viral loads. But as seen from the previous discussion, PCR

measurements report intersections of fluorescence level curves and a given

threshold, and these values are nontrivial nonlinear functions of the viral

load. Additionally, although the compressive sensing measurements used in

the work are assumed to correspond to Ct values, no thresholding is used to

model the actual practical process of generating the same.6 Also, this and all

other methods do not account for the stochasticity of the PCR measurements

and the fact that different lab protocols may lead to different Ct values when

presented with the same sample mixture. The CS methods in [101] rely on

Gaussian assumptions for the cycle inefficiency exponent and do not take

into account that the efficiency decays with the number of cycles and with

the number of potential mutations in the primer regions (see also our anal-

6For many related questions arising in the context of group testing microarrays and
quantized compressive sensing, the interested reader is referred to [102–104].
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ysis in Section 4.2). As many other quantitative methods, it also appears

vulnerable to heavy hitters.

CS-based and many other proposed Covid-19 testing methods also do not

take into account the fact that the number of RT-PCR machines/staff mem-

bers is limited in virtually all test settings.7 The unavailability of arbi-

trary number of PCR machines inherently suggests using adaptive testing

strategies. Adaptive quantitative testing schemes for Covid-19 were reported

in [105]. There, the same problem setup as in [101] is used to postulate an

additive viral load model in the absence of noise. The new contribution of

the work is a proposal for a two-stage testing scheme that bears a small

resemblance to our methods insofar as we also propose two-stage adaptive

pooling schemes. However, these techniques and the model used are dif-

ferent from ours since [105] employs a combination of maximum likelihood

and maximum-a-posteriori estimators to determine the infected individuals

in the second stage, while we employ zero-error GT and SQGT techniques

to find all infected individuals. Additionally, while [105] reports the number

of tests and conditional false positive and conditional false negative rates for

the simulation experiments, we supplement our new tailor-made modeling

and testing schemes with an in-depth theoretical analysis and performance

guarantees.

Nevertheless, there seem to be multiple advantages of CS methods for

Covid-19 testing: One should be able, in principle, to recover not only the

infected individuals but their viral loads as well (it still remains to be seen

as such approaches are feasible as reported experiments use controlled con-

centrations of viral loads [101]). In particular, integer and nonnegative CS

testing, along with quantized CS approaches can impose model restrictions

on such testing schemes [103,106] to render them more suitable for the prob-

lem at hand.

4.3.5 Graph-constrained GT

Let G = {V,E} be a graph with vertex set V , |V | = n, and edge set E,

representing a connected network of n people out of whom d are infected. In

graph-constrained GT, vertices participating in the same test are restricted

7PCR tests are performed on samples typically organized within 96 wells, each of which
can be used for one (group) test.
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to form a path in the graph [107]. This model is relevant as it can be adapted

to require that only individuals that did not have contacts with each other

are tested together (one only has to apply the problem to the dual of the

contact graph used in Covid-19 testing). This allows us to identify individu-

als that fell ill in an “independent” fashion rather than through contact with

each other. If T (n) denotes the mixing time of the random walk on the graph

is used to denote the ratio between the maximum degree and the minimum

degree of the graph, then no more than O(d2 · T 2(n) log(n/d)) tests are re-

quired to find the set of infected vertices. For example, a complete graph

(T (n) = 1) requires no more than O(d2 · log(n/d)) tests since it corresponds

to the classical GT regime. Unfortunately, graph-constrained GT requires a

significantly higher number of tests than classical GT methods as the tests

are inherently restricted. As a result, despite the fact that this scheme is a

natural choice for problems such as network tomography where these con-

straints need to be satisfied, it is not a proper choice for Covid-19 testing.

Another “community-constrained” GT scheme (although without an under-

lying interaction graph) was recently proposed in [76] and is discussed in the

next subsection.

4.3.6 Community-aware GT

Several lines of work have focused on what is now known under the name of

community-aware GT. In [76, 108], the authors leverage correlations arising

due to the presence of community structures to reduce the number of tests

and increase the reliability of testing. More precisely, they assume that a

community of n members has d≪ n infected individuals and that the popu-

lation is partitioned into F families. In the combinatorial infection model, it

is assumed that df families have at least one infected individual and that all

the members of the remaining families are infection-free. An infected family

indexed by j is assumed to have d(j) infected members so that d =
∑F

i=1 d(j).

The testing scheme can be succinctly described as follows: A representative

individual from each family is selected uniformly at random. The represen-

tative community members are tested using either an adaptive or a nonadap-

tive GT algorithm. Family members whose representatives tested positive are

tested individually. Members from the remaining families are tested together
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using either an adaptive or a nonadaptive GT scheme. The first approach

proposed in [76] did not account for inter-community interactions, but that

issue was subsequently addressed in [109].

In a related line of work, the authors of [110] establish how correlations in

samples that arise due to the ordering of the tested individuals in a queue

save in terms of pooled testing costs. In particular, the authors assume that

in the first stage of Dorfman’s testing scheme, the samples that are pooled

and tested together are correlated. They model the correlation through the

use of a random arrival process [110]. The expected number of tests required

to identify all infected individuals for their modified Dorfman scheme is com-

pared against the expected number of tests required by the classical Dorfman

testing scheme in which samples that are tested together are picked at ran-

dom. The authors show that under certain conditions, the expected number

of tests required by the modified Dorfman testing scheme does not exceed

the expected number of tests required by the original scheme. Under addi-

tional conditions, the authors derive a closed form expression that captures

the savings available for correlated samples. Furthermore, [110] considers an

underlying social contact graph, and proposes an hierarchical agglomerative

algorithm to identify individuals to be pooled together in the first stage of

the modified Dorfman testing scheme. This line of work is closely related to

the problem of identifying bursts of defectives, first introduced in [111] and

analyzed for the case of a single burst.

Before proceeding with the original contributions, we remark that all the

above GT techniques and scheduling models have probabilistic counterparts

in which each individual is assumed to be infected with the same probabil-

ity p [62] or members of different communities are infected with different

probabilities, pi, i = 1, . . . , F [80]. The latter setting is especially important

when prior information about the individuals is known (for example, their

risk groups, potential symptoms etc.). For an excellent in-depth review of

these and some other GT schemes, the interested reader is referred to [63].

4.4 AC-DC: The Probabilistic Setting

Two adaptive SQGT schemes are introduced, one which is suitable for prob-

abilistic testing and another one that is worst-case and nearly-optimal from
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the information-theoretic perspective. In the former case, considered in this

section, a simple two-stage testing scheme is designed and analyzed with the

goal of enabling practical implementations of adaptive SQGT. The results

are described for two thresholds only, but a generalization is straightfor-

ward. This scheme also allows for incorporating heavy hitters into the test-

ing scheme, which is of great practical relevance. In the worst-case, which

is considered in the section to follow, the schemes extend the ideas behind

Hwang’s generalized splitting [94] in two directions that lead to algorithms

using what we call parallel and deep search, respectively. In both settings, the

outcomes of the first round of testing inform the choice of the composition of

the test in the rounds to follow. The methods are collectively referred to as

the AC-DC schemes, in reference to the use of the information provided by

the amplification curve (AC) during the process of diagnostics of Covid-19

(DC). A relevant observation is that the worst-case adaptive schemes allow

for using nonuniform amounts of genetic material from different individuals,

which may be interpreted as using nonbinary test matrices.

4.4.1 Practical Adaptive AC-DC Schemes

In [69] a simple probabilistic two-stage AC-DC scheme that significantly im-

proves upon the original single-pooling scheme of Dorfman and builds upon

the SQGT framework is described. The underlying idea is to follow the

same overall strategy as in the single-pooling scheme, but exploit the SQ

information obtained in the first stage to perform better-informed testing in

the second stage (i.e., dispense with individual testing of all individuals that

feature in infected pools as part of the second stage).

Consider a scenario where we have access to semiquantitative tests that

return one of three values: If no individual featured in the test is positive, the

test returns 0. If between 1 and τ individuals are positive, for some threshold

τ ⩾ 1, the test returns 1. Finally, if more than τ individuals test positive,

the test returns 2. This scheme can be interpreted as follows: Suppose that

Ct is the observed cycle thresholds (defined in Section 4.2.3 for a particular

test). If Ct > c1 for some large threshold c1, we say that the outcome is 0 as

the potential viral or viral-like contamination load is too small to claim the

presence of an infected individual. If c2 ⩽ Ct ⩽ c1, we say that the output
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is 1 and based on the average viral load, convert this into the maximum

possible number of infected individuals τ . If Ct < c2, we say that the output

is 2 and that more than τ individuals in the pool are affected.

For the new single-pooling AC-DC scheme, we assume that the population

contains n individuals, each of which is independently positive with some

probability p (which can be estimated based on regional infection rate re-

ports; for example, at UIUC in September/October 2020 [89], p ≃ 0.05), and

proceed as follows:

1. Stage 1: Divide the n individuals into n/s disjoint pools S1, . . . ,Sn/s,
each of size s.

2. Stage 2:

If a pool Si tests 0, then immediately set the status of all individuals

∈ Si as “negative”.

If a pool Si tests 1, then apply a nearly-optimal zero-error non-

adaptive group testing scheme to detect the t infected individuals in

Si.

If a pool Si tests 2, then test all individuals ∈ Si separately.

The zero-error nonadaptive GT schemes we use in the second stage can be

designed with m(s, τ) = c · τ 2 log(s/τ) tests. Thus, the expected number of

tests per individual of the testing scheme, T/n, as a function of the proba-

bility of infection p, the first-stage pool size s, and the threshold τ can be

computed as:

E[T/n] =
1

s
+ p1 ·

c · τ 2 log(s/τ)
s

+ p2, (4.1)

where p1 = Pr[1 ⩽ B(s, p) ⩽ τ ] and p2 = Pr[B(s, p) > τ + 1] denote

the probability that a given pool tests 1 and 2, respectively. Here, B(s, p)

stands for a binomial random variable with s trials and success probability p.

Additional details and analysis are presented in [69]. Furthermore, [69] notes

a simple scheme to improve upon the results presented herein: By employing

double pooling (or multiple pooling) strategy, the expected number of tests

can be reduced.
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4.4.2 Probabilistic SQGT with Variable Viral Load

It is also simple to analyze how the SQGT scheme from the previous sec-

tion performs when infected individuals may have either low or high viral

loads, i.e., it is straightforward to account for heavy hitters. To this end, we

consider a simplified model where each individual is independently infected

and presents a low viral load at the time of testing with probability pi1, or is

infected and presents a high viral load at the time of testing with probability

pi2. In particular, each individual is infected (regardless of her/his viral load)

with total infection probability p = pi1 + pi2 < 1.

As already explained, individuals with high viral load are problematic be-

cause, based on the SQ output of RT-PCR, pools featuring one such in-

dividual may be mistaken for pools with several infected individuals with

low-to-average viral load.8 This phenomenon naturally leads us to consider

the following modified version of the testing method studied in Section 4.4.1:

A test applied to a pool of individuals has outcome 0 if there are no infected

individuals in the pool, outcome 1 if there exists exactly one infected indi-

vidual with low viral load, and 2 if either there exists more than one infected

individual with low viral load, or at least one infected individual with high

viral load. Therefore, as expected, individuals with high viral load obfuscate

the test outcomes. The expected number of tests per individual as a function

of pi1 and pi2 is given by

1

s
+ s · pi1 · (1− p)s−1 · ⌈log s⌉+ 1− s · pi1 · (1− p)s−1 − (1− p)s, (4.2)

where p = pi1 + pi2. As in the previous case, double pooling and multiple

pooling strategies can be incorporated to obtain improved results.

4.5 AC-DC Schemes: Worst-Case Model Analysis

We introduce an adaptive SQGT scheme that is worst-case and nearly-

optimal from the information-theoretic perspective. In the worst case, the

schemes extend the ideas behind Hwang’s generalized splitting [94] in two di-

rections that lead to algorithms using what we call parallel and deep search,

8This is not problematic for binary group testing, where the test outcomes do not
distinguish between one or several infected individuals in the pool.
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respectively. In both settings, the outcomes of the first round of testing in-

form the choice of the composition of the test in the rounds to follow. The

methods are collectively referred to as the AC-DC schemes, in reference to

the use of the information provided by the amplification curve (AC) during

the process of diagnostics of Covid-19 (DC). A relevant observation is that

the worst case adaptive schemes allow for using nonuniform amounts of ge-

netic material from different individuals, which may be interpreted as using

nonbinary test matrices. We assume that we are given a set of n samples

with at most d infected individuals. Our goal is to minimize the number of

tests needed to identify all infected individuals and we do not impose any

restrictions on the “simplicity” of our scheme. As a result, we consider a

generalization of the model described in the previous section which allows

for more than three test outcomes.

For simplicity, as well as for practical reasons,9 we focus on equidistant

thresholds but allow for warm-up/saturation effects. We refer to this model

as the saturation GT scheme.

Let τ,m ∈ Z+ represent the distance between the thresholds and the num-

ber of thresholds, respectively.

Denote the outcomes of the test by a nonnegative integer t ⩽ m. Then,

t =



0, if every sample in the test is negative,

1, if the number of infected individuals is between 1 and τ ,

2, if the number of infected individuals is between

τ + 1 and 2τ ,
...

...

m− 1, if the number of infected individuals is between

(m− 2)τ + 1 and (m− 1)τ , or

m, if the number of infected individuals is at least

(m− 1)τ + 1.

(4.3)

We seek to identify d infected individuals from a population of size n given

that each test returns a value in (4.3). We refer to this problem as the (n, d)

9As we quantize the Ct values or the phase transition thresholds according to equally
spaced cycle numbers
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adaptive SQGT problem or the (n, d)-ASQGT problem for short.

Another way of looking at (4.3) is that if the collection of samples tested

contains d′ infected individuals, then the output of the test is ⌈d′
τ
⌉ when

d′ ⩽ mτ and m otherwise. Note that for every test there are m+ 1 possible

outcomes and the output of a test tells us roughly (within at most τ) how

many total infected samples are part of the tested pool of samples.

Remark 12. As discussed in Example 13, the ideas discussed here are appli-

cable to the case where the widths of the thresholds are nonuniform.

Let 2β = m+1. Motivated by practical applications, we will be interested

in the case where β = O(1). Our main results are two algorithms, which we

refer to as parallel search and deep search. Parallel search is applicable

for the setting d > β. In Lemmas 12 and 13, we show that using parallel

search it is possible to efficiently identify from a set of pools (each of size

s = 2α and large enough to contain at least β infected individuals) a set of β

defectives using at most α tests. Note that as a first-step simplification, one

may think of n being approximately equal to d · 2α; the notation involving

α is chosen to enable a comparison between our SQGT search scheme and

the well-known splitting approach by Hwang [112]. Deep search, discussed

in Lemma 14 and applicable for the setting d < β, shows that it is possible

to identify all d infected individuals using roughly d·α
β−log(β)

tests. Our main

result is Algorithm 1, which for d = Ω(n) shows that one can identify d

infected individuals using at most d
β
· (α + 3 + log β) tests. These results

show that adaptive SQGT roughly provides β-fold savings in the number of

tests when compared to classical adaptive GT. Furthermore, they differ from

the information-theoretic lower bound (as it applies to ASQGT) of Lemma 11

by O( d
β
) tests. It remains an open problem to identify whether it is possible

to solve the (n, d)-ASQGT problem using fewer tests.

We start with the following obvious claim, which allows us to restrict our

attention to the case where τ = 1 and simplifies the problem at hand.

Claim 19. Let G be the set of test subjects and suppose that there are at

most d infected individuals within this group. Let P(1) be a pool formed by

taking one sample from each individual in G and let P(w) be a pool formed by

taking w samples from each individual in G. Let t(1) be the output of testing

P(1) under the setup (m, τ) = (m, 1) and let t(w) be the output of testing P(w)

under the setup (m, τ) = (m,w), according to (4.3). Then, t(1) = t(w).
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Next, we present a lower bound (i.e., information-theoretic or counting

lower bound) on the number of tests necessary to solve the (n, d)-ASQGT

problem. The result follows from a simple counting argument and is consis-

tent with the result from Claim 19, as it does not depend on the width τ of

the threshold.

Lemma 11. Let n = (2α + 1) · d + 2α · δ + ∆, where α, δ,∆ are integers,

δ < d, and ∆ < 2α. Then, the number of tests L(n, d,m) needed to identify

the infected individuals is bounded as:

L(n, d,m) ⩾
d

β
· (α + 1).

Proof. The number of ways to select at most d infectives in a group of n

individuals is
∑d

i=0

(
n
i

)
. Thus, we have

L(n, d,m) ⩾ logm+1

(
d∑

i=0

(
n

i

))
⩾ logm+1

(
n− d+ d

d

)
⩾ logm+1

(
n− d+ d

d

)d

⩾d · logm+1

(
2α
(
1 +

δ

d
+

∆

2αd
+

1

2α
))

⩾
d · α
β

+
d

β
· log2

(
1 +

2α · δ +∆+ d

2αd

)
⩾
d

β
· (α + 1) .

The next example illustrates a simple approach for addressing the ASQGT

problem, and motivates the analysis that follows.

From here on, we write [[x]] = {0, 1, . . . , x− 1} and [x] = {1, . . . , x}.

Example 11. Suppose that we are given a collection of n individuals with

exactly d infected subjects. We start by randomly partitioning the set of

n individuals into d groups each of size s = n
d
= 2α, where we assumed for

simplicity that d|n. The expected number of infected individuals in each group

is 1.

Denote the d groups or pools by G0,G1, . . . ,Gd−1; all groups have the same

size and from this point on, for simplicity, assume that each group contains
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exactly one infected subject. For i ∈ [[d]] we proceed as follows. We partition

Gi into 2β groups of equal size and denote the subgroups as G(0)i ,G(1)i , . . . ,G(2
β−1)

i .

Under this setup, there exists exactly one index j⋆ such that the number

of infected individuals in G(j
⋆)

i equals to one, and every other group G(j)i ,

j ∈ [[2β]] \ j⋆ is free of infected individuals.

Next, we form a new set of pools, which we denote by Pi, i ∈ [[d]], compris-

ing k replicas of the samples in G(k)i , for all k = 0, . . . , 2β − 1. Let ti denote

the output of the semi-quantitative test described in (4.3) after the pool Pi is

tested. Then, it is straightforward to observe that the outcome ti is j⋆, and

hence we can identify the group which contains the one single infected indi-

vidual using only one nonbinary outcome test. We repeat this procedure for

each group Gi, i ∈ [[d]], partitioned into subgroups. It can be hence seen that

it is possible to identify d infected individuals using only dα
β
tests assuming

each of the d groups of size 2α each contain exactly one infected subject. □

To make this argument rigorous, we need to account for the fact that not

every group will have exactly one infected individual. In this case, upon

creating the subpools we have to recursively test them until we identify a

prescribed number of infected individuals. In fact, the approach from the

previous example is a special case of what we refer to as deep search, de-

scribed in Lemma 14. The resulting algorithm is summarized in Algorithm 1,

and it requires roughly an additional factor of O( d
β
) tests compared to the

information-theoretic lower bound.

4.5.1 Parallel Search

We start by introducing some useful notation. Suppose that G ′ is a subgroup

of individuals to be tested and that the outcome of a test governed by (4.3)

is t. In this case, we say that G ′ is a t-infected group. When referring to an

ordered collection of groups (G0,G1, . . . ,Gg−1), we say that the collection is a

(t0, t1, . . . , tg−1)-infected group if t0 ⩾ t1 ⩾ · · · ⩾ tg−1 and Gi is a ti-infected

group, for i ∈ [[g]]. We also say that (G0, . . . ,Gg−1) is a β-minimal group

if
∑g−2

j=0 tj < β, but
∑g−1

j=0 tj ⩾ β.

The following lemma constitutes the key component of one of our ap-

proaches to solving the (n, d)-ASQGT problem. We refer to the procedure

described in the proofs of the next two results as parallel search.
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In the first lemma below, we make the simplifying assumption that a group

is β-minimal and g = β. Afterward, in Lemma 13 we consider the case when

g < β.

Lemma12. Let α and β be positive integers. Suppose that (G0,G1, . . . ,Gβ−1)

is a β-minimal group, where g = β, and that each group has size at most

2α. Then, we can identify β infected individuals in the group using at most

α tests.

Proof. We prove the result by induction on α, where 2α as before is the size

of each subgroup. Recall that under this setup t0 = t1 = · · · = tg−1 = 1 and

g = β. Refer to Figure 4.11.

First, consider the case α = 1, for which we have β 1-infected groups of

individuals and each group has size 2. For shorthand, denote the β infected

groups as G0,G1, . . . ,Gβ−1. From these β groups, we form a “super-pool” of

samples which contains a total of 20 +21 +22 + · · ·+2β−1 = 2β − 1 samples.

More precisely, for i ∈ [[β]], the super-pool contains 2i samples from one

individual ∈ Gi. Since t0 = t1 = · · · = tβ−1 = 1 and τ = 1, according to (4.3)

the output returned after testing this super-pool of samples is a number t

between 0 and 2β − 1. Let b0, b1, . . . , bβ−1 be the binary representation of

the number t. It is straightforward to verify that bi = 1 then the individual

selected from Gi is infected. Otherwise, if bi = 0, then the above described

individual is not infected, which implies the other individual (the one not

tested) in group Gi is infected. Thus, we conclude the statement in the

lemma holds when α = 1.

For the inductive step, assume that the statement holds when the group

size is at most 2α
′
and consider the setup where the group size is 2α = 2α

′+1.

We follow the same approach as described for α = 1 for creating super-pools.

Under this setup, we have β 1-infected groups G0,G1, . . . ,Gβ−1, each of size

2α
′+1. For i ∈ [[β]], let Qi ⊆ Gi be a subset of Gi of size 2α

′
. Next we

construct a super-pool that contains 2i samples from each individual in Qi,

i ∈ [[β − 1]]. Let t denote the output of testing this super-pool according

to (4.3), where b0, b1, . . . , bβ−1 is the binary representation of t. As before, if

bi = 1, then Qi has a single infected individual. Otherwise, if bi = 0, then

there is an infected individual in the set Gi \ Qi which also has size 2α
′
. For

i ∈ [[β]], let G ′i = Qi if bi = 1 and otherwise, if bi = 0, set G ′i = Gi \ Qi.

Then, (G ′0,G ′1, . . . ,G ′β−1) is a (1, 1, . . . , 1)-infected group and we can apply
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the inductive hypothesis to (G ′0,G ′1, . . . ,G ′β−1).

For the case g < β, we use a similar partitioning idea to identify at most β

subgroups which satisfy the conditions in the lemma. The difference between

the approaches is that for g < β the number of samples added into the pool

is dictated by a mixed-radix representation (in which the numerical base

varies from position to position) rather than a binary representation. For

simplicity, we assume from now on that β is an even integer although the

results hold for odd integers as well.

Lemma 13. Let α, β, g be positive integers such that g < β. Suppose that

(G0,G1, . . . ,Gg−1) is a β-minimal group and that each group has size at most

2α. Then, we can identify β infected individuals using at most α tests.

Proof. We begin with the following claim which we find useful in our subse-

quent discussion.

Claim 20. Suppose we are given a sequence (t0, . . . , tg−1) ∈ [[β + 1]]g, where

g < β, and the values t0 ⩾ t1 ⩾ · · · ⩾ tg−1 are such that
∑g−1

j=0 tj ⩾ β, but∑g−2
j=0 tj < β. Furthermore, let (n0, . . . , ng−1) ∈ [[t0 + 1]] × [[t1 + 1]] × · · · ×

[[tg−1 + 1]]. Then, the number of different choices for (n0, . . . , ng−1) is at

most 2β.

Recall the main idea behind the proof of Lemma 12, where we tacitly as-

sumed that g = β. There, we used the binary representation of the integer

t, where t denotes the test outcome of the super-pool, to determine which

of the tested subgroups involved infected individuals. In order to make this

argument work, we formed the super-pool by adding 2i samples from group

Qi ⊆ Gi for i ∈ [[β]], where |Qi| = |Gi|
2
. Next, the idea is to add Ni samples

from each group, where Ni is chosen by considering a mixed-radix represen-

tation of the number t.

We say that (b0, b1, . . . , bg−1) is the (t0, t1, . . . , tg−1)-mixed radix represen-

tation for t if the following is true. Let N0 = 1. For i ∈ [g − 1], let

Ni = (ti−1 + 1) · Ni−1. Note that when t0 = t1 = t2 = · · · = tg−1 = 1,

Ni = 2i. The mixed radix representation of t is of the form t =
∑g−1

i=0 bi ·Ni,

where bi ⩽ ti. Note that under this setup since bi ⩽ ti, the sequence

(b0, b1, . . . , bg−1) ∈ [[t0+1]]× [[t1+1]]×· · ·× [[tg−1+1]] provides a unique rep-

resentation and is invertible provided that (t0, t1, . . . , tg−1) is given. In other

words, given the number t we can uniquely determine the i-th digit in the
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(t0, t1, . . . , tg−1) mixed radix representation for t, which is bi. Furthermore,

as a result of Claim 20, we know that t ⩽ 2β − 1 = m.

We are now ready to proceed with the proof. Suppose that (G0,G1, . . . ,Gg−1)

is a β-minimal group. We will prove the result by induction and we will show

the inductive step (since the base case follows from similar ideas).

For the inductive step, assume the statement holds when the group size

is at most 2α
′
and consider the setup where the group size is 2α = 2α

′+1.

Note that we have (t0, t1, . . . , tg−1)-infected groups G0,G1, . . . ,Gg−1 each of

size 2α
′+1. We form our super-pool as follows. As before, for each i ∈ [[g]],

we select a subset Qi ⊂ Gi of size |Qi| = 2α
′
. For each individual in Qi we

add Ni samples into the superpool, where Ni is as defined in the previous

paragraphs.

Let t be the output of testing the resulting super-pool according to (4.3)

and let bi denote the i-th symbol of the (t0, t1, . . . , tg−1)-mixed radix repre-

sentation of t.

Note that based on t, we can determine the number of infected individuals

in each of the subgroups Q0, G0 \ Q0, . . . , Qg−1, Gg−1 \ Qg−1. In particular,

since we know ti, and given the output bi which can be recovered after testing

the super-pool, we know that for all i ∈ [[g]], the number of infected subjects

in Qi is bi and the number of infected subjects in Gi \Qi is ti− bi. Given this

information, we can generate G ′0,G ′1, . . . ,G ′g′−1, where for i ∈ [[g]], G ′i ⊆ Qi or

G ′i ⊆ Gi \ Qi, such that the collection is a β-minimal group. Thus, we can

apply the inductive hypothesis to G. This establishes that we can identify β

infected individuals using at most α tests and completes the proof.

4.5.2 Deep Search

Next, we consider the case d < β, and show that there exists an ASQGT

scheme which requires roughly d
β−log(β)

·(α+log(β))+d tests. Recall that the

main idea behind the parallel search procedure was to simultaneously run a

binary search on g subpools each of size 2α. In this manner, using α tests we

can identify β infected. For d < β, there are not sufficiently many infected

individuals to use this method, and so for this setup, rather than perform

a binary search in parallel, we test roughly 2β−log(β) (significantly smaller)

subpools at the same time. We refer to this procedure as deep search.
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Before proving a relevant lemma, we begin by describing a variant of well-

known Newton identities. For completeness, we include a proof.

Claim 21. Let S = {j1, . . . , jd} ∈ Z be a multiset of nonnegative integers

each of which has value at most p − 1, where p is an odd prime. Define

pℓ(S) =
∑d

k=1 j
ℓ
k mod p, the ℓth power sum of S over the finite field Fp.

Then, one can recover S given
(
p0(S), p1(S), . . . , pd(S)

)
.

Proof. We represent S using S(+), containing the positive elements in S and

z ∈ Z, which denotes the number of zeros in S. Given S(+) and z, the set S
is uniquely determined.

First, note that Newton’s identities can be used to recover the set S(+) ={
i1, i2, . . . , id′

}
. To see this, let σ(i1, i2, . . . , id′) =

∏d′

k=1(1−ikx) =
∑d′

k=0 σkx
k ∈

Fp[x] and assume that the operations are over the polynomial ring Fp[x],

where the elements in S are assumed to lie in Fp. Then, we have

d∑
ℓ=1

pℓ(S) · xℓ (modxd+1) =
d∑

ℓ=1

pℓ(S(+)) · xℓ (modxd+1)

=
d∑

ℓ=1

d′∑
k=1

iℓk · xℓ (modxd+1)

=
d′∑

k=1

d∑
ℓ=1

iℓk · xℓ (modxd+1)

=
d′∑

k=1

(
1− id+1

k · xd+1

1− ik · x
− 1

)
(modxd+1)

=
d′∑

k=1

ik · x
1− ik · x

(modxd+1),

which implies

d∑
ℓ=1

pℓ · (S(+)) · xℓ · σ(i1, . . . , id′) (modxd+1) = −x · σ′(i1, . . . , id′).

The above equality in turn implies
∑ℓ−1

k=0 σk · pℓ−k(S) = −ℓ · σℓ. Thus, given

pℓ(S), ℓ ∈ [d], one can recover σ(S(+)) as well as the multiset S(+). The

multiset S can be subsequently recovered by noting that the number of zeros

in S equals p0(S)− |S(+)|.
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Lemma14. Let p be an odd prime such that p ⩾ 2L− 1 and (p− 1) · d < 2β.

Suppose that G is a d-infected set of size 2α, and d ⩽ p − 1. Then we can

identify the d infected individuals using at most d · α
L
tests.

Proof. For simplicity we assume that L|α, and, similar to Lemmas 12 and

13, use induction in α. For the case α = L, we run d tests, and for each test

we design a different test group. For ℓ ∈ [d], test group ℓ contains jℓ ∈ Fp

samples from each individual indexed by j ∈ [[2L]]. Suppose that D is a

multi-set of elements from [[2L]] and that D is such that if group j has k

infected individuals, then the elements from group j appear k times in D.
Then according to the above setup the output of performing the SQGT on

pool ℓ results in the following ℓ-th power sum:

pℓ(j1, j2, . . . , jd) =
d∑

k=1

jℓk.

Note that jℓk < p (since by design jℓ ∈ Fp) and so pi(j1, j2, . . . , jd) ⩽

(p − 1)d < 2β. Thus, for ℓ ∈ [[d + 1]], we can recover pℓ(j1, j2, . . . , jd) =

pℓ(j1, j2, . . . , jd) mod p, since p0(j1, j2, . . . , jd) mod p = d follows from the

fact that G is a d-infected set. From the set of d + 1 power sums over the

field Fp, we can recover the multi-set {j1, . . . , jd} from Claim 21, which com-

pletes the proof of the base case.

For the inductive step, assume the statement holds for group sizes at most

2α
′
and consider a group size 2α = 2α

′+L. As in the proofs of Lemmas 12 and

13, we work with subgroups. The subgroups are formed by partitioning the

set of 2α
′+L individuals into 2L subgroups P1,P2, . . . ,P2L each of size 2α

′
.

Applying the same ideas as before, we form d test groups where test group

ℓ ∈ [d] contains jℓ ∈ Fp samples from each individual in subgroup j ∈ [[2L]].

Let D = {j′1, j′2, . . . , j′d} be a multiset of integers such that j′u appears t

times in the multiset if and only if group j′u has t infected individuals. Using

the same approach as for the base case, we first recover the power sums

pi(j
′
1, j

′
2, . . . , j

′
d). Then from Claim 21, we recover the set D in the same

manner as before and we apply the inductive hypothesis to the subgroups in

D. This completes the inductive step and the proof.

Remark13. For the case d = 1, the deep search procedure coincides with the

approach described in Example 11. Deep search may be of limited practical
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value due to the large amounts of sample material required for testing, but

is of theoretical relevance due to the fact that it generalizes Hwang’s gener-

alized splitting method to the SQGT setting for a small number of infected

individuals.

4.5.3 (n, d)-ASQGT Schemes

As discussed in the text following Example 11, our general approach to adap-

tive SQGT is to first partition the set of n individuals into d
β
subpools and

test each subpool separately using either parallel search or deep search, de-

pending on the number of infected in each subpool. Parallel search produces

the best results in the worst case, provided that the number of infected in-

dividuals across all the subpools is ⩽ β, while parallel search gives the best

results for the case of a large number of infected individuals.

Let TP (n, d) denote the number of tests required by our ASQGT scheme,

summarized in Algorithm 1, and let n− d = 2α · d+2α · δ+∆, where α, δ,∆

are integers such that δ < d and ∆ < 2α. In order to simplify the notation

by avoiding floor and ceiling functions, we assume that β|d and β|δ.

Theorem 14. TP (n, d) ⩽ d
β
· (α + 3 + log β) + δ

β
.

Proof. Since the first step involves testing d
β
+ δ

β
groups, the first step requires

d
β
+ δ

β
tests. For the next steps, note that each group has size ⩽ 2α+1β.

Hence, we can uncover β infected individuals using at most α+1+log(β)
β

tests

according to Lemmas 12 and 13. In step 3, we use one additional test for

every β infected individuals. Since there are d infected, the total number of

tests required by Algorithm 1 equals

TP (n, d) ⩽

(
d

β
+

δ

β

)
+

d

β
· (α + 1 + log(β)) +

d

β
=

d

β
· (α + 3 + log(β)) +

δ

β
.

As discussed earlier, the parallel search ASQGT scheme requires O( d
β
)

more tests than the information-theoretic lower bound. When β = 1, our

scheme requires O(d) additional tests which agrees with the traditional adap-

tive binary setting studied in [94].

Next, we consider the second approach to the ASQGT problem based on

deep search, for the case where d < β. Let TD(n, d) denote the number
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Algorithm 1 Parallel search ASQGT scheme

1. Initialize : Partition the set of n individuals into d+δ
β

groups, denoted

by G0,G1, . . . ,G d+δ
β

−1, each of size ⩽ β · 2α+1.

Test each subgroup individually. For i ∈ [[d+δ
β
]], suppose that Gi is a

ti-infected group and let D denote the total number of infected subjects
across all groups.

2. Parallel Search : Identify a β-minimal group (Gi0 , . . . ,Gig−1), and
apply parallel search on the group to uncover β infected individuals.
Remove the β infected individuals from their respective groups.

3. Update : Use one additional test to determine the number of infected
subjects in (Gi0 , . . . ,Gig−1) after Step 2. Update ti0 , . . . , tig−1 and D. If
D > 0, go to Step 2.

of tests required by our algorithm and, with a slight abuse of parameter

definitions, assume that n− d = 2α · d. Furthermore, assume as before that

d|2β and d|n. The corresponding approach is described in Algorithm 2.

Algorithm 2 Deep search ASQGT scheme

1. Initialize : Partition the set of n individuals into d groups, denoted by
G0,G1, . . . ,Gd−1, each of size 2α. Test each subgroup individually and
let D denote the total number of infected subjects across all groups.

2. Deep Search : Identify a ti-infected group Gi, and apply deep search
to uncover ti infected subjects, for some i ∈ [[d]].

3. Update : Let D = D − ti. If D > 0, go to Step 2.

Theorem 15. The number of tests for deep search ASQGT satisfies

TD(n, d) ⩽ d · α

β − log β − 1
+ β.

Proof. The first step in Algorithm 2 requires d < β tests. According to

Lemma 14, Step 2 requires at most ti · α
β−log(β)−1

tests. Hence, the total
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number of tests is upper bounded as

TD(n, d) ⩽ β +
d−1∑
i=0

ti ·
α

β − log β − 1

= β + d · α

β − log β − 1
.

4.5.4 Error-resilient (n, d)-ASQGT Schemes

We consider next the question of designing ASQGT models that can tolerate

a bounded number of birth-death (BD) chain errors. Recall from (4.3) that in

the event that there are no errors, the output of testing a pool of individuals,

of which d are infected, is an integer t, such that t = d for d ⩽ m and t = m,

whenever d > m. Suppose instead that the erroneous output of testing a

pool is t′, where t′ ∈ {t− 1, t+1} with the appropriate boundary conditions.

We refer to such an error as a single BD error.

Our main result is described in Theorem 16. We prove that there exists

a scheme that requires d
β−2
· (α + 3 + log β) + δ

β
tests that can correct an

arbitrary number of test errors. For the case where the number of test errors

is a small integer e,
(

d
β
+ e
)
·(α + 3 + log β)+2 · d

β
+ δ

β
+e tests suffice, which

implies that only e (α + 3 + log β) + 2 d
β
+ e additional tests are required to

correct e errors in Algorithm 1.

The next claim highlights one of the main ideas behind our approach: Take

multiple copies of samples from each of the individuals being tested in such

a way to get error-free readouts even when errors occur. Here, as before, we

assume that 2β = m+ 1.

Claim 22. Let P be a pool of individuals and suppose that P(×3) is a pool

which contains three samples from each individual in P. Let t be the output of
the test performed on the pool P(×3) given that no errors occur, and suppose t′

is a possibly erroneous output of the test performed on the pool P(×3). Given

t′, one can determine t.

Proof. Since we have taken 3 samples from each of the individuals in the

pool P , it follows that t (mod3) = 0. Thus, if an error occurs, the output

of the test under the BD model equals t′ ∈ {t+ 1, t− 1} which implies that
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t′ (mod3) = ±1. If t′ mod 3 = 1, then t′ = t + 1 and so we can recover t by

simply decrementing t′ by one. Similarly, if t′ mod 3 = −1, then t′ = t − 1

and we can recover t by incrementing t′ by one.

Using the idea from the previous claim, we can determine exactly how

many infected individuals are present in each of the tested pools despite

the fact that testing errors can occur. We describe the underlying method

through an example, for which we need the following terminology.

We say that Pi is a ti-infected group if the output of testing P(×3)
i

is in the set {3ti − 1, 3ti, 3ti + 1}. We also say that (Pi0 , . . . ,Pig−1) is a

β-minimal group if t0 ⩾ ti1 ⩾ · · · ⩾ tig−1 ,
∑g−2

j=0 tj < β, but
∑g−1

j=0 tj ⩾ β.

Example12. For simplicity, assume that we have m = 3 (2γ − 1) thresholds,

and suppose that (P0,P1, . . . ,Pg−1) is a γ-minimal group, where we again

make a simplifying assumption, namely γ = g. We proceed in the same

manner as described in Lemma 6 and we first form a super-pool, denoted P
which consists of 2i copies of each sample in Pi. Afterward, we generate a

larger pool of samples, P(×3) which contains 3 copies of each sample in P.
Notice that given the output of the test P(3), we can uniquely determine the

number of infected that are in each of the groups P0,P1, . . . ,Pg−1. Suppose

that t′ is the output of testing P(3) and suppose t is the output of testing P(3)

assuming no errors occur during testing. From Claim 22, we can recover t

and from Lemma 6 it is possible to determine how many infected are in P0,

how many infected are in P1, etc.

Another simple way to see how the above scheme overcomes BD noise is

to see that it suffices that test outcomes differ from one another by at least

three. This can be easily accomplished by fixing the coefficients of 21 and 20

in the binary representation of the test outcomes to zero.

More precisely, we can artificially introduce two subgroups, so that when

m = 2γ − 1, we collect samples from subgroups labeled by 1 < i < γ, 2i

with the amounts dictated by their labels. If the observed test outcome is
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t′ =
∑γ−1

i=0 ēi · 2i, then the true test outcome is decoded as:

eγ−1eγ−2 . . . e2e1e0 =



ēγ−1ēγ−2 . . . ē200,

if ē1ē0 = 00 or ē1ē0 = 01,

ēγ−1ēγ−2 . . . ē2ē1ē0 + 1 (binary addition),

if ē1ē0 = 11.

(4.4)

□

The following claim is straightforward.

Claim 23. Let α, β ⩾ 2, g be positive integers where 2β = m+ 1, g ⩽ β − 2.

Suppose that (G0,G1, . . . ,Gg−1) is a (β−2)-minimal group and that each group

has size at most 2α. Then we can identify β− 2 infected individuals using at

most α tests.

Proof. The proof follows immediately by applying the procedure described

in Example 12 and noting that 3 · 2β−2 < 2β − 1 when β ⩾ 2.

Next, we turn our attention to a scheme designed for a small number

of testing errors e. To this end, let TN(n, d, e) denote the number of tests

required for a noisy ASQGT scheme that tolerates up to e BD testing errors

(see Algorithm 3). As before, let n − d = 2αd + 2αδ +∆, where α, δ and ∆

are integers such that δ < d and ∆ < 2α. Once again we assume that β|d
and β|δ.
We prove the correctness of our algorithm in the following theorem.

Theorem 16. Let β ⩾ 2. We have TN(n, d, e) is at most

min

((
d

β
+ e

)
(α + 3 + log β) + 2

d

β
+

δ

β
+ e,

d

β − 2
(α + 3 + log β) +

δ

β

)
.

Proof. The second term under the minimum follows immediately from the

parallel search ASQGT scheme given the use of a robust parallel search.

Therefore, in the remainder of the proof, we focus our attention on the first

term.

The first step of our algorithm requires d+δ
β

tests and each time we execute

Step 2, we perform α+1+log β tests. Since Step 2 is executed at most d
β
+e
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Algorithm 3 Noisy search ASQGT scheme

1. Initialize : Partition the set of samples from the n individuals into d+δ
β

groups, denoted by P0,P1, . . . ,P d+δ
β

−1, and each of size at most β2α+1.

Test each subgroup P
(×3)
i individually. For i ∈ [[d+δ

β
]], suppose that

Pi is a ti-infected group and let D denote the total number of infected
subjects in all subgroups.

2. Parallel Search : Identify a β-minimal group (Pi0 , . . . ,Pig−1), and
apply parallel search to uncover β potential infected subjects. Divide
the set of β potentially infected individuals into two groups of sizes ⌊β

2
⌋

and ⌈β
2
⌉, denoted by D(×3)

1 ,D(×3)
2 .

3. Verify : Test D(×3)
1 ,D(×3)

2 to determine the total number of infected
recovered. Update ti0 , . . . , tig−1 and D.

4. Update Large Group Counts: If only one group is present, |Pi0| ⩾
β, and t0 ⩾ 1, then test P(×3)

i0
to determine the number of infected in

Pi0 . Go back to Step 2.

times this implies that the total number of tests required by the first two

steps of our procedure is at most

d+ δ

β
+

(
d

β
+ e

)
· (α + 1 + log β) .

For Step 3, note that since max
{
|D(×3)

1 |, |D(×3)
2 |

}
⩽ ⌈β

2
⌉ we have t′ ⩽

3(2⌈
β
2
⌉− 1) < 2β − 1 = m when β ⩾ 2, and so we can determine exactly how

many infected subjects are in each of the sets D(×3)
1 ,D(×3)

2 in Step 3. Each

time Step 3 is executed, we require 2 tests. Since Step 2 is executed at most
d
β
+ e times, this step requires at most

2 · d
β

+ 2 · e

tests. Finally, since Step 4 is executed at most d
β
+e times, it follows that the

total number of tests is at most d+δ
β
+
(

d
β
+ e
)
·(α + 1 + log β)+ 2·d

β
+2·e+ d

β
+e,

which proves the claimed result.

We conclude the above exposition by observing that in a very recent com-
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panion paper [113], we described adaptive schemes for SQGT that only use

two rounds of testing and may hence have practical advantages over deep

search methods. Nevertheless, the results in [113] rely on nonconstructive

expander graph existence guarantees and trade other desirable testing prop-

erties for a reduced number of testing rounds.

4.5.5 Extensions to Nonuniform Threshold Widths

The next two examples illustrate how the ideas from the previous sections can

be extended to the case where the threshold widths increase exponentially.

For this case, we only consider small values of m (i.e., m = 3, 4).

Example 13. In the following, we consider a model that mirrors the results

from the previous section that discusses probabilistic priors in [69]. Suppose

that the test outcomes equal

t =



0, if there are no infected subjects in the test,

1, if the number of infected samples is 1,

2, if the number of infected samples is in [2, 3],

3 if the number of infected samples is in [4, 7].

(4.5)

We consider the following extension of the approach discussed in Exam-

ple 11. Suppose we have a pool of size 2α that contains at least one infected

subject. We start by testing this pool to determine the total number of in-

fected individuals. There are two cases to consider: (a) The output of the

test is 2 or 3, which indicates that there is more than a single infected in the

pool or (b) The output of the test is 1.

Suppose that the outcome is (b). In this case, we run a variant of deep

search. In particular, we divide the pool into 4 subpools and form a superpool

from these 4 subpools which contains 0 samples from the first pool, 1 sample

from the second pool, 2 samples from the third pool, and 4 samples from the

fourth pool. It is straightforward to verify that in this case we can determine

which of the 4 subpools contain the single infected sample by testing the su-

perpool, and we then repeat this procedure using the subpool which contains

the single infected.

If the outcome is (a), then we proceed to divide the pool of size 2α into
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two disjoint subpools, each of size 2α−1. We further select one of the two

subpools for testing. If the subpool tested contains a single infected, then we

continue by applying the procedure discussed in the previous paragraph on the

subpool of size 2α−1 that contains one infected sample. Otherwise, we repeat

the procedure from this paragraph on one of the subpools of size 2α−1 that

contains more than a single infected subject.

Using the procedure described above, it is straightforward to verify that

recovering 2 infected individuals requires at most α tests provided we know

the number of infected samples in the pool of size 2α. Now suppose n = d 2α.

Then we can recover d infected subjects using at most 2 · d + d·α
2

tests as

follows. First, we partition the set of n individuals into d groups each of size

2α and we initially test each of these d groups. Afterward, we search for the

infected individuals using the process outlined in this example. □

We note that despite the fact that we have focused on the case wherem is a

power of two, the next example shows that in some cases our ideas extend to

settings where m is not necessarily a power of two. In the next example, we

show an adaptive scheme that requires at most roughly d+ d ·
(
log3(

n
d
) + 1

)
.

The ideas are similar to the previous example except that here we only allow

3 thresholds.

Example 14. For this example, we assume that n = d · 3α. The output of

the test is t, where:

t =


0, if no infected samples are present in the pool,

1, if the number of infected samples equals 1,

2, if the number of infected samples is > 1.

(4.6)

The core idea behind the testing strategy is a simple extension of the previous

example. Suppose we have a pool of size 3α that contains at least one infected

individual. First, we test this pool of size 3α to determine the total number

of infected individuals. There are two cases to consider: (a) The output of

the test equals 2, which indicates that there is more than one infected sample

in the pool or (b) The output of the test equals 1.

Suppose (b) occurred. We perform the same procedure as before except that

instead of dividing the pool into 4 subpools, we divide the pool into 3 subpools

of equal size. Next, we form a superpool from these 3 sub pools which contains
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0 samples from the first pool, 1 sample from the second pool, and 2 samples

from the third pool. Similarly as before, we can determine which of the three

subpools contains the single infected sample, and we then repeat this procedure

using the subpool which contains the single infected sample.

If (a) occurs, then we perform the same procedure as in the previous ex-

ample. In particular, we divide the pool of size 3α into two disjoint subpools

each of size at most ⌈3α
2
⌉ and perform a single test. If two infected individ-

uals are contained in a single pool, then we repeat the procedure from this

paragraph on the pool of size at most ⌈3α
2
⌉ that contains at least two infected

samples. Otherwise, we perform the procedure from the previous paragraph

on the subpool of size at most ⌈3α
2
⌉ that contains a single infected sample.

Using this approach, it is straightforward to verify that recovering an in-

fected requires at most α+1 tests. Thus we can recover d infected individuals

using at most d+ d · (α + 1) tests as follows. First, we partition the set of n

infected into d groups each of size 3α. Afterward, we search for the infected

individuals using the process outlined in this example. □

4.6 Open Problems

We provided an in-depth description of the quantitative RT-PCR proto-

col suitable for nonexperts, an overview of existing GT testing protocols

for Covid-19 and their practical implications. These comparative studies

motivated further explorations of quantized GT (or semiquantitative GT

(SQGT)) protocols, especially under a new measurement-error model termed

the birth-death chain noise model. We furthermore developed state-of-the-

art adaptive SQGT schemes with combinatorial priors and provided extensive

analytical results, including performance bounds, algorithmic solutions, and

noisy testing protocols. Many open problems remain, including:

• Probabilistic testing schemes for more than 3 thresholds : We consider

the setup where each test generated the output 0, 1, or 2 depending

upon the number of defectives in each group. How much can one reduce

the number of tests of our schemes if we incorporate additional semi-

quantitative information, in the presence of errors?

• Worst-case general SQGT testing schemes with a constant number
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of rounds : The schemes described in Section 4.5 have the potential

drawback that almost every test depends upon the results of prior

tests. It has been shown that in the binary group testing setting,

the information-theoretic lower bound can be achieved using only two

rounds of nonadaptive testing when the number of infected individ-

uals is at most nc for any constant c < 1 [114]. In a recent line of

work, the authors of [113] showed how to implement two-round SQGT

schemes for the saturation model studied in Section 4.5. It remains

an open problem to generalize the approach for general quantized GT

paradigms.

• Practical SQGT schemes resilient to errors: Practical two-stage SQGT

schemes presented herein can be enhanced with noise-resilience prop-

erties in a straightforward manner by repeating each test a prescribed

number of times, while keeping the number of testing stages the same.

Nevertheless, it would be interesting to find more efficient, and still

practical, ways of adding good noise-resilience properties to these

schemes.
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Figure 4.7: A typical amplification graph, plotting the relative fluorescence
versus the number of PCR cycles for various input concentrations of the
DNA sample. The dots represent actual fluorescent levels, while the curves
represent a degree-10 polynomial approximation of the measurements.
Since the solid curves are approximations, the fluorescence level for a small
number of cycles can be negative, which is clearly not physically possible.
Simple yet less precise piecewise linear and quadratic curves will be
described when discussing error models for real-time PCR. Also, note that
the fluorescence saturates after roughly 35− 40 cycles which shows that
models that use the final cycle fluorescence cannot distinguish viral loads.
Another observation is that due to the stochastic nature or RT-PCR it
usually takes around 5− 10 cycles to obtain visible fluorescence,
independent of the viral load. Both of these features demonstrate the
highly nonlinear relationship between the viral load and the fluorescence.
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Figure 4.8: Amplification curves and quantization regions for the Ct

values. Given a number of amplification curves used for calibration in a
specific lab, the quantization regions in this example are chosen based on
the intersection of the fluorescence detection level 500 and the calibration
amplification curves. A Ct value for a particular experiment is placed in the
quantization region bounded by the two “closest” amplification curves used
for calibration and their underlying Ct values, or into the corresponding
quantization bin. In this particular example, except for the quantization
regions corresponding to the early and late cycles, the quantization regions
are of nearly uniform length. Note that the larger the Ct value, the lower
the viral load. Also, if one were to only use the fluorescence levels observed
at the final RT-PCR cycle (i.e., cycle number ∼40), the results would be
noninformative with respect to the viral load as a strong saturation effect
comes into existence.
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Figure 4.9: A typical viral load dynamics in an infected individual versus
the time since infection. The viral load sharply spikes within the first three
days of infection and then more gradually decreases. The nonlinear part of
the viral load curve can be approximated by a linear component symmetric
with respect to the linear component. This linear approximation will be
used to determine the probability of heavy hitters, i.e., individuals who
have an absolute viral load above 106.

Figure 4.10: The birth-death noise model. Here, the assumption is that
the Ct values can be corrupted by noise only insofar as they can be
mislabeled as belonging to intervals adjacent to the correct interval (except
for the values falling into the first and last quantization region or bin).
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Figure 4.11: Intuitive illustration of the parallel search ASQGT procedure
with some details removed for the ease of exposure. In this example, m = 7
and exactly one individual is infectious in each of the three groups. The
weights of samples in each test round are set to 4, 2, 1 as seen in Frame 1. A
binary search procedure is implemented to find the infected individual in
each group. In Frame 1, the test outcome for the first round is 2, implying
that there is one infected individual in the second group. Thus, the
subgroups from groups 1 and 3 that were probed in Frame 1 are discarded
as illustrated in Frame 2. Similarly, the second subgroup of group 2 that
was not tested is discarded as well. The subgroups that contain an infected
individual are further probed as seen in Frames 2, 3 and 4.
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APPENDIX A

SUPPLEMENTARY MATERIAL TO
CHAPTER 2

A.1 Proof of the Second Part of Theorem 6

Theorem. The central binomial coefficient
(
2m
m

)
counts the following types

of binary strings of length 2m.

(A) Those whose every prefix has at least as many 0s as 1s.

(B) Those whose every prefix has strictly more 0s than 1s, or vice-versa.

Proof. The number of binary strings of Type (A) of length ℓ = a+ b, with ℓ

possibly odd, such that the number of 0s is greater or equal to the number of

1s, i.e., a ⩾ b is given by
(
ℓ
a

)
−
(

ℓ
a+1

)
. The number of strings for which every

prefix has at least as many 0s as 1s is given by
∑

a⩾⌈ ℓ
2
⌉
(
ℓ
a

)
−
(

ℓ
a+1

)
, which is

a telescoping sum that equals
(

ℓ
⌈ ℓ
2
⌉

)
.

To prove (B), let us consider strings of length 2m whose every prefix has

strictly more 0s than 1s. In this case, the first bit of any string s is always

0. Thus, the remaining length-(2m − 1) binary string s2m2 is such that for

every prefix, the number of 0s is at least as large as the number of 1s in

that same prefix. Thus, the number of strings of length 2m whose every

prefix has strictly more 0s than 1s is
(
2m−1
m

)
. As a result, the total number

of binary strings of length 2m whose every prefix has strictly more 0s than

1s or vice-versa is equal to 2
(
2m−1
m

)
=
(
2m
m

)
.
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A.2 Derivation of the Lower Bound of |SR(n)|

Let n be even. Note that all strings s ∈ SR(n) satisfy s1 = 0 and sn = 1. Let

|
[
n
2

]
∩ I| = i + 1. Thus, the indices corresponding to the Catalan-Bertrand

string can be chosen in
(n

2
−1
i

)
ways. Since s1 = 0, it must be that every prefix

of s[n2 ]∩I\{1}
contains at least as many 0s as 1s. There are

(
i

⌊ i
2
⌋

)
such binary

strings of length i. Therefore,

|SR(n)| =
n
2
−1∑

i=0

(
n
2
− 1

i

)
2

n
2
−1−i

(
i

⌊ i
2
⌋

)
.

As a result,

n
2
−1∑

i=0

(
n
2
− 1

i

)
2

n
2
−1−i

(
i

⌊ i
2
⌋

)
(A.1)

⩾

n
2
−1∑

i=2

(
n
2
− 1

i

)
2

n
2
−1−i 2i−1√

π(i+ 1)
+

(
n
2
− 1

1

)
2

n
2
−1−1 +

(
n
2
− 1

0

)
2

n
2
−1 (A.2)

⩾
2

n
2
−2

√
πn

n
2
−1∑

i=0

(
n
2
− 1

i

)
(A.3)

=
2

n
2
−2

√
πn

2
n
2
−1 =

1√
πn

2n−3. (A.4)

Expression (A.1) follows from the description of the codebook. Also,
(
2ℓ+1
ℓ

)
⩾(

2ℓ
ℓ

)
clearly holds. As a result, inequality (A.2) follows from Proposition 1,

for all i ⩾ 2. Inequality (A.3) holds since for all 0 ⩽ i ⩽ n
2
, (i + 1) ⩽ n.

The next two equalities in (A.4) follow from the fact that
∑ℓ

i=0

(
ℓ
i

)
= 2ℓ, and

some rearrangements of terms.

For odd n, |SR(n)| = 2|SR(n− 1)| ⩾ 2 2n−1−3√
π(n−1)

⩾ 2n−3
√
πn

.
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A.3 A Bijective Map between Information Strings and

Reconstructable Strings

An optimal approach for performing encoding of information strings into

Catalan string was first described in [30] and it relies on using a rank-

ing/unranking scheme of complexity O(n). However, we provide a much

simpler method to order and retrieve the reconstructable strings in additive

O(n2) time, which is still absorbed in the leading complexity term of O(n3)

incurred by the Backtracking algorithm.

Recall that the reconstruction code is obtained by interleaving arbitrary,

unconstrained strings with Catalan-Bertrand strings and then mirroring the

interleaved string around what will be the midpoint of the resulting code-

string.

1) The construction starts by partitioning the first ⌊n
2
⌋ indices into two sets,

say I0 and I1, the cardinalities of which are in {0, . . . , ⌊n
2
⌋}. Let I0 denote the

set of indices that describe the locations of the string to be interleaved, and

let I1 denote the indices that describe the locations of the Catalan-Bertrand
string.

Next, order all possible partitions according to the cardinality of their

corresponding I0 sets, in increasing order. For example, if 000111010 and

001111010 are the labels of two partitions of a string of length 9, than

001111010 appears in the rank-ordered list before 000111010 (the first parti-

tion has |I0| = 4, while the second partition has |I0| = 5 > 4).

In the next step, order the partitions with the same value of |I0|. Given

a partition described using the binary alphabet as above, one can convert

the binary strings into integers and arrange them in increasing order which

naturally induces a ranking of the partitions themselves. Finding the index of

a partition in this ranking takes O(n) time. To see this, consider a partition

Π of m = ⌊n
2
⌋ indices, and let |I0| = i.

Thus, the rank of this partition is an integer in the interval[
i−1∑
j=0

(
m

j

)
+ 1,

i∑
j=0

(
m

j

)]
.
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Assume that the set I0 contains the indices (ℓ1, ℓ2, . . . , ℓi) arranged in in-

creasing order. The rank of the partition Π is given by

i−1∑
j=0

(
m

j

)
+

[(
ℓi − 1

i

)
+

(
ℓi−1 − 1

i− 1

)
+

(
ℓi−2 − 1

i− 2

)
+ · · ·+

(
ℓ1 − 1

1

)
+ 1

]
.

Therefore, given the index of a partition, one can determine the actual

partition in time O(n2).

2) Next, given the indices in I0, place unrestricted binary strings in the

corresponding locations according to the lexicographical order.

3) At indices in I1, place bits of a Catalan-Bertrand string. Let us now

assume that there exists a bijective map Fm(·) that for all natural numbers m

orders all Catalan-Bertrand strings of length m efficiently. In particular, we

assume that given an index ind, Fm(ind) returns the corresponding Catalan-

Bertrand string in time O(n2). Further, given a Catalan-Bertrand string s,

F−1
m (s) returns its index ind in O(n) time. We defer the description of the

map to the end of this exposition.

Let fm(i) denote the number of Catalan-Bertrand strings with m − i 0s

and i 1s. Then, fm =
∑⌊m

2
⌋

i=0 fm(i) is the number of all Catalan-Bertrand

strings of length m. Note that fm(i) has a closed form expression as given in

Theorem 6, and fm equals 1
2

(
m

⌊m
2
⌋

)
.

The ordering for the codestrings of the reconstruction code is obtained as

follows:

a) Given two reconstructable codestrings s1, and s2, and their corresponding

partitions Π1 and Π2 from 1, if Π1 is ranked lower than Π2, then s1 is ranked

lower than s2.

b) Given two reconstructable codestrings s1, and s2 such that Π1 = Π2, if the

string of s1 indexed by I0 is ranked lower than that of s2 (as per 2)), then s1

is ranked lower than s2.

c) Given two reconstructable codestrings s1 and s2 such that Π1 = Π2, and

the strings of s1 and s2 indexed by I0 are the same, if the string indexed by

I2 in s1 is ranked lower than the string in s2, then the string s1 is ranked

lower than s2.

In summary, the reconstructable codestrings are encoded and decoded as

described below.
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Encoding:

A k−bit binary string is converted into an index ind. The time taken to find

the corresponding partition and Catalan-Bertrand string is O(n). Combining

this result with the result pertaining to the ranking map proves that the

information string can be encoded in O(n2) time.

Decoding:

Given a reconstructable codestring, its index can be computed in O(n) time.

The k−bit binary expansion of the index uniquely determines the informa-

tion string. Since the Backtracking algorithm takes O(n3) time, the overall

decoding time equals O(n3).

It remains to show that encoding and decoding of the Catalan-Bertrand

strings can be performed in time O(n2). Since the decoding process is easier

to describe and leads to a straightforward approach for encoding, we start

with the description of the decoding algorithm.

Decoding Catalan-Bertrand strings: Let s = s1s2 . . . sm−1sm denote a

Catalan-Bertrand string of length m that contains m − i 0s and i 1s and

recall that fm(i) denotes the number of such Catalan-Bertrand strings. We

start by ranking the string s against the set of all Catalan-Bertrand strings

of length m that contain m− i 0s and i 1s. The following simple algorithm

determines the temporary index for s in O(n) time.

indtemp ← fm(i)

l← i

for j from 0 to m− 1 :

indtemp = indtemp − 1{sm−j==0} fm−1−j(l)

if sm−j == 1 :

l← l − 1,
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where 1 denotes the indicator function. Note that Fm(·) then assigns the

final index value
∑

ℓ<i fm(i) + indtemp to the given Catalan-Bertrand string

s of length m in time O(n).
Encoding Catalan-Bertrand strings: From the decoding procedure it

is easy to deduce how to perform the encoding: Given m and ind, we first

find an i such that s has m − i 0s and i 1s. Then, iteratively, the bits sm

through s1 are computed using the correspondence between the bit value and

the index range as described in the decoding process. Hence, encoding takes

O(n2) time.

A.4 Proof of Lemma 4

Recall that we consider asymmetric errors, in which case a single error may

occur either in Cj or Cn+1−j but not both multisets. Furthermore, up to

t such errors are allowed. The presented code corrects such errors with at

most c1t log k+c2 bits of redundancy, where k is the length of the information

string, and c1, and c2 are two positive constants.

The code construction involves two parts:

(1) String s ∈ SR(n1) is padded with a prefix of t 0s and a suffix of t 1s to

form an intermediate string s′ of length n′ + 2t.

(2) The Σ
n1
2 is then encoded using a systematic t− error correcting code and

the redundant bits are placed in the middle of the string in manner such that

the resultant string s′′ ∈ SR(n).
We show through a case-by-case analysis that the code is indeed a t−asymmetric

error correcting code.

147



Our analysis proceeds through multiple steps addressing different possible

choices for the values of σi, i = 1, . . . , n
2
, and the currently reconstructed bits

(i.e., prefixes and suffixes of the codestring). The initial setting is depicted in

Figure A.1. Each subsequent figure (Figures A.2, A.3, A.4, A.5, A.6, A.7, A.8

and A.9) explains how to extend two partially reconstructed strings from

their prefix and suffix pairs so as to minimize the number of compositions

they disagree in. For simplicity, such pairs are termed “confusable” and

finding confusable pairs allows us to determine the minimum composition set

differences between codestrings based on the Catalan-Bertrand construction.

The final result establishes that the previous construction ensures a minimum

composition set difference ⩾ 2(t+ 1).

First, we observe from Construction (2.4) that any pair of distinct strings

s,v ∈ S(t)
R (m) shares a prefix-suffix pair of length at least t as all strings are

padded by 0s and 1s on the left and right, respectively.

Next, we characterize the conditions that allow one to identify strings that

are “closest” to a codestring s. More precisely, we construct a set Vs of strings
such that for all v ∈ Vs: (1) v and s share the same Σ

m
2 sequence. (2) If the

length of the longest shared prefix-suffix pair of v and s equals i, then for all

j ∈ {m− i−1,m− i−2, . . . ,m− i− t−1} the inequality |Cj(s)\Cj(v)| ⩽ 2

holds. These conditions summarize when a string may be confused with s

during the backtracking reconstruction procedure.

Recall that c(·) refers to the composition of its argument string. The

substrings {si+j−1
i }, i = 1, . . . ,m − j + 1 of s of length j share a common

substring sjm+1−j, provided that j > m
2
. For simplicity of notation, denote the

composition of the common substring sjm+1−j by cj, i.e., let cj = c(sjm+1−j).

We start with the following observation. If σi+1 ̸= 1, the two strings s

and v necessarily share a prefix-suffix pair of length i+ 1, which contradicts

the assumption that the longest prefix-suffix pair shared by the two strings

is of length i. Thus, we have σi+1 = 1 and |Cm−i−1(s) \ Cm−i−1(v)| = 2,

where the latter claim follows from the discussion pertaining to the single

error-correction case: The compositions of length m − i − 1 that are not

shared by the two strings include {c(si1), 0, cm−i−1}, {c(smm+1−i), 1, cm−i−1} ,

{c(vi
1), 1, cm−i−1}, {c(vm

m+1−i), 0, cm−i−1}, and these differ by construction.
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Next, we describe how to simultaneously reconstruct a pair of prefix-suffix

bits and update the set Vs when taking a step in the Backtracking algo-

rithm. We show that under the conditions of the lemma, |Cm−i−1−j(s) \
Cm−i−1−j(v)| = 2 for all v ∈ Vs, 1 ⩽ j ⩽ t. For notational simplicity, at

every step of the reconstruction algorithm we use the index “ + ” to denote

the next bit in the prefix and “− ” to denote the next bit in the suffix to be

reconstructed. As an example, for a reconstructed prefix-suffix pair of length

i+ 1, + corresponds to i+ 2 and − corresponds to m− i− 1, i.e., s+ = si+2

and s− = sm−i−1.

Let σ+ = wt(s+s−) = wt(v+v−). We analyze the two cases σ+ = 1 and

σ+ ∈ {0, 2} separately, as depicted in Figure A.1.

Consider the case that σ+ = 1. Note that for any substring sℓ2ℓ1 such that

ℓ1 ⩽ i + 1,m − i ⩽ ℓ2, the corresponding substring vℓ2
ℓ1

of v has the same

composition. The compositions in Cm−i−2(s) and Cm−i−2(v) that may be

confused are listed below on the left and right hand side of the equality,

respectively:

FigureA.1: Illustration of two strings s and v that share the same Σ
m
2

sequence. Furthermore, the two strings also satisfy si1 = vi
1,

smm+1−i = vm
m+1−i and si+1 ̸= vi+1, i.e., the longest prefix-suffix pair that the

strings share is of length i. The top pair of strings corresponds to the case
σi+2 = 1, while the bottom pair of strings corresponds to the case
σi+2 ∈ {0, 2}.



{c(si1), 0, s+, cm−i−2},

{c(si2), 0, s+, cm−i−2, 1− s+},

{c(smm−i+1), 1, 1− s+, cm−i−2},

{c(sm−1
m−i+1), 1, 1− s+, cm−i−2, s+}


=



{c(vi
1), 1, v+, cm−i−2},

{c(vi
2), 1, v+, cm−i−2, 1− v+},

{c(vm
m−i+1), 0, 1− v+, cm−i−2},

{c(vm−1
m−i+1), 0, 1− v+, cm−i−2, v+}


.
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We want to determine under which conditions the terms on the two sides

of the equality can be perfectly matched; in the process, we will show that

|cm−i−2(s) \ cm−i−2(v)| ⩽ 2.

The above sets may be more succinctly written as:

{c(si1), 0, s+, cm−i−2},

{c(si2), 021, cm−i−2},

{c(smm−i+1), 1, 1− s+, cm−i−2},

{c(sm−1
m−i+1), 01

2, cm−i−2}


=



{c(vi
1), 1, v+, cm−i−2},

{c(vi
2), 01

2, cm−i−2},

{c(vm
m−i+1), 0, 1− v+, cm−i−2},

{c(vm−1
m−i+1), 0

21, cm−i−2}


.

Regrouping the a priori known extension bits with the prefixes and suffixes

simplifies the sets to be matched as

{c(si1), 0, s+, cm−i−2},

{c(si1), 01, cm−i−2},

{c(smm−i+1), 1, 1− s+, cm−i−2},

{c(smm−i+1), 01, cm−i−2}


=



{c(vi
1), 1, v+, cm−i−2},

{c(vi
1), 1

2, cm−i−2},

{c(vm
m−i+1), 0, 1− v+, cm−i−2},

{c(vm
m−i+1), 0

2, cm−i−2}


.

For example, {c(si2), 021, cm−i−2} is rewritten as {c(si1), 011, cm−i−2} by

moving one 0 to the prefix composition.

Next, we remove the compositions cm−i−2 shared by the two sets. Then we

identify which compositions cannot be matched as follows. First, it follows

from the construction that the composition of a prefix of length i > t includes

at least t+1 0s. As a result, c(si1) is composed of at least t+1 more 0s than

c(smm−i+1). Similarly, c(smm−i+1) is composed of at least t + 1 more 1s than

c(si1). Hence, a composition involving less than i + t + 1 bits that contains

a composition of a prefix of length i > t is composed of more 0s than a

composition of the same length that contains a composition of a suffix of

length i. Thus, compositions {c(si1), 0, s+)}, {c(si1), 01)} are not the same as

either of the compositions {c(vm
m−i+1), 0, 1− v+}, {c(vm

m−i+1), 0
2}, since c(si1)

contains at least t + 1 more 0s than c(vm
m−i+1). Therefore, we only need to

consider the two reduced set equalities:{
{c(si1), 0, s+},

{c(si1), 01}

}
=

{
{c(vi

1), 1, v+},

{c(vi
1), 1

2}

}
,
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and {
{c(smm−i+1), 1, 1− s+},

{c(smm−i+1), 01}

}
=

{
{c(vm

m−i+1), 0, 1− v+},

{c(vm
m−i+1), 0

2}

}
.

Clearly, {c(vi
1), 1

2} and {c(vm
m−i+1), 0

2} cannot be equal to any other com-

position in the two sets. The possible values for the set difference |Cm−i−2(s)\
Cm−i−2(v)| for four different assignments of values for (s+, v+) are summa-

rized in Table A.1. Based on the table, if σi+2(s) = 1, then all strings v ∈ Vs
satisfy (s+, v+) = (si+2, vi+2) ∈ {(0, 0), (1, 0)}.
Next, we consider the case σ+ ∈ {0, 2}. As before, we focus on Cm−i−2(s)

and Cm−i−2(v) in order to establish conditions under which |Cm−i−2(s) \
Cm−i−2(v)| is minimized.

To this end, let b = s+ = v+ = s− = v−. Following the previously outlined

line of reasoning, it suffices to find when the following set equalities hold:{
{c(si1), 0, b},

{c(si1), 01}

}
=

{
{c(vi

1), 1, b},

{c(vi
1), 1

2}

}

and {
{c(smm−i+1), 1, b},

{c(smm−i+1), 01}

}
=

{
{c(vm

m−i+1), 0, b},

{c(vm
m−i+1), 0

2}

}
.

It can be easily seen that the compositions cannot be matched. The possible

cardinalities of the set difference |Cm−i−2(s) \Cm−i−2(v)| are summarized in

Table A.2.

As a result of the above discussion, for any v ∈ Vs we necessarily have

(si+2, vi+2) ∈ {(0, 0), (1, 0)} and σi+2 = 1. This consequently determines the

pair of bits sm−i−1 and vm−i−1.

To determine si+3,sm−i−2, vi+3 and vm−i−2 we need to once again analyze

two cases, one for which we assume that σi+3 = 1 and another for which we

assume that σi+3 ∈ {0, 2}. This analysis has to be performed in the context

depicted in Figure A.1, and under the constraints imposed by Tables A.1

and A.2.

We focus on the bits si+2+i′ and vi+2+i′ for some i′ such that t−1 ⩾ i′ ⩾ 0,

in the following inductive setting:
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• Assume that starting from the index i+ 2, the values of σ correspond-

ing i′ consecutive positions all equal to 1. More precisely, σi+1+i′

i+2 =

(1, 1, . . . 1).

• The bits si+1 and vi+1 are followed by a run of i′ 0s, i.e., si+1+i′

i+2 =

vi+1+i′

i+2 = 0.

This setting is depicted in Figure A.2. We proceed to characterize the condi-

tions under which |Cm−i−i′−2(s)\Cm−i−i′−2(v)| is minimized. As done before,

we consider the cases σi+2+i′ = 1 and σi+3+i′ ∈ {0, 2} separately.
When σ+ ∈ {0, 2}, we assume that s+ = s− = v+ = v− = b. The set

equality of interest reads as:

{c(si1), 0, 0i
′
, s+},

{c(si2), 0, 0i
′
, 01},

{c(si3), 0, 0i
′
, 012}

{c(si4), 0, 0i
′
, 013}

...

{c(sii′+2), 0, 0
i′ , 01i

′+1}

{c(smm−i+1), 1, 1
i′ , 1− s+},

{c(sm−1
m−i+1), 1, 1

i′ , 01},

{c(sm−2
m−i+1), 1, 1

i′ , 021},

{c(sm−3
m−i+1), 1, 1

i′ , 031},
...

{c(sm−i′−1
m−i+1 ), 1, 1

i′ , 0i
′+11}



=



{c(vi
1), 1, 0

i′ , v+},

{c(vi
2), 1, 0

i′ , 01},

{c(vi
3), 1, 0

i′ , 012}

{c(vi
4), 1, 0

i′ , 013}
...

{c(vi
i′+2), 1, 0

i′ , 01i
′+1}

{c(vm
m−i+1), 0, 1

i′ , 1− v+},

{c(vm−1
m−i+1), 0, 1

i′ , 01},

{c(vm−2
m−i+1), 0, 1

i′ , 021},

{c(vm−3
m−i+1), 0, 1

i′ , 031},
...

{c(vm−i′−1
m−i+1 ), 0, 1

i′ , 0i
′+11}



.

Using the same line of reasoning as presented earlier, one can show that it

suffices to focus on two reduced set equalities, namely{
{c(si1), 0i

′+1, s+},

{c(si1), 0i
′+11}

}
=

{
{c(vi

1), 0
i′1, v+},

{c(vi
1), 1

i′+2}

}
,

and {
{c(smm−i+1), 01

i′+1},

{c(smm−i+1), 1
i′+1, 1− s+}

}
=

{
{c(vm

m−i+1), 0
i′+2},

{c(vm
m−i+1), 01

i′ , 1− v+}

}
.
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FigureA.2: Illustration of the setup for determining the bits
s+, s−, v+ and v− under the conditions that the bits si+1 and vi+1 are
followed by a run of i′ 0s, and σi+1+i′

i+2 = (1, 1, . . . , 1). The second pair of
strings illustrates the setting for which σi+2+i′ ∈ {0, 2}, and
s+ = s− = v+ = v− = b.

The possible values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| are summarized in

Table A.3.

We now turn our attention to the case σi+i′+2 ∈ {0, 2}. Again, let b =

s+ = s− = v+ = v−. It suffices to consider the following sets:{
{c(si1), 0i

′+1, b},

{c(si1), 0i
′
, b2}

}
=

{
{c(vi

1), 0
i′1, b},

{c(vi
2), b

2, 1i
′+1}

}

and {
{c(smm−i+1), 1

i′+1, b},

{c(smm−i+1), 1
i′ , b2}

}
=

{
{c(vm

m−i+1), 01
i′ , b},

{c(vm−1
m−i+1), 0

i′+1, b2}

}
.

The possible values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| are summarized in Ta-

ble A.4.

From the above analysis we can conclude that exactly one of the following

two conditions holds:

1. The strings s and v satisfy si+t+1
i+2 = vi+t+1

i+2 = 0 and σi+t+1
i+1 = (1, 1, . . . , 1).

Their corresponding composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−t,

Cm−i−t−1 each differ in exactly 2 compositions.

2. The strings s and v satisfy si+1+i′

i+2 = vi+1+i′

i+2 = 0, σi+2+i′

i+2 = (1, 1, . . . , 1),

and (si+i′+2, vi+i′+2) = (1, 0), where t > i′ ⩾ 0. Their corresponding

composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−i′−1, Cm−i−i′−2 each dif-

fer in exactly 2 compositions.
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Figure A.3 illustrates the observations. The longest substring such that

(si+1, vi+1) = (0, 1), (si+2, vi+2) = (0, 0) , . . . , (si+i′+1, vi+i′+1) = (0, 0) and

σi+i′+2
i+2 = (1, . . . , 1) is depicted by a horizontal block in Figure A.3. The

bits si+i′+2, sm−i−i′−1, vi+i′+2, vm−i−i′−1 that terminate the 00 . . . 0 (in s) and

10 . . . 0 (in v) substrings in the prefix and the 1 . . . 11 (in s) and 1 . . . 10 (in

v) substrings in the suffix are represented by vertical shades in Figure A.3.

FigureA.3: Illustration of the procedure for determining the set Vs based
on several special cases. For the first case, we have si+t+1

i+2 = vi+t+1
i+2 = 0 and

sm−i−1
m−i−t = vm−i−1

m−i−t = 1. For the second case, there exist two identical

substrings si+1+i′

i+2 = vi+1+i′

i+2 = 0 of length t > i′ ⩾ 0 each and it holds that
(si+i′+2, vi+i′+2) = (1, 0).

Assume that the running reconstructions of the distinct strings s and v

are as depicted in the second pair of blocks in Figure A.3. In the next step,

illustrated in Figure A.4, we extend the prefixes and suffixes and identify

the conditions under which |Cm−i−i′−3(s) \ Cm−i−i′−3(v)| is minimized. The

results are summarized in Tables A.5 and A.6. In this step, we examine the

bits si+i′+r+3, vi+i′+r+3, sm−i−i′−r−2 and vm−i−i′−r−2.

Assume that

si+i′+r+2
i+i′+3 = vi+i′+r+2

i+i′+3 = b1 . . . br,

where r > 0 and r = 0 corresponds to a string of length 0. We have

sm−i−i′−2
m−i−i′−r−1 = vm−i−i′−2

m−i−i′−r−1 = b̄r . . . b̄1,
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FigureA.4: Illustration of the reconstruction step following the one
depicted in Figure A.3. The first pair of strings corresponds to the case
σ+ = 1, while the second pair of strings corresponds to the case σ+ ∈ {0, 2}
and s+ = s− = v+ = v− = b.

where

b̄i =

bi, if σi ̸= 1,

1− bi, if σi = 1,
for all 1 ⩽ i ⩽ r.

Such a structure is illustrated in Figure A.5.

For the case (s+, v+) ̸= (0, 1), it is straightforward to see using arguments

similar to the ones previously described that the possible set differences are

as listed in Tables A.7 and A.8.

For the case (s+, v+) = (0, 1) depicted in Figure A.6, the conditions that

ensure that the composition multisets of s and v differ by at most 2 introduce

the restrictions b1, . . . , br = 1 . . . 1 and b̄1, . . . , b̄r = 0 . . . 0.

We now extend the description of the set Vs illustrated in Figure A.3 as

shown in Figure A.7.

Given a pair of distinct strings depicted in the second row of Figure A.3,

one of the conditions must hold:
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FigureA.5: Two pairs of strings explaining how to extend the partially
reconstructed strings illustrated in Figure A.4. The r bits that follow the
substring 00 . . . 0 1 in s are equal to the corresponding r bits in v. For all
r ⩾ i ⩾ 1, b̄i = bi or b̄i = 1− bi. The first pair corresponds to σ+ = 1, while
the second pair corresponds to σ+ ∈ {0, 2}.

FigureA.6: Conditions on the values of bi and b̄i for all i such that
r ⩾ i ⩾ 1 that ensure that the partially reconstructed strings from the
previous step can be compatibly extended when σ+ = 1 and
(s+ = 0, v+ = 1).

• The reconstructed prefix of s is followed by a substring b1b2 . . . br that

is shared by the two strings and is such that the length of the sub-

strings 00 . . . 0 1 b1b2 . . . br (in s) and 10 . . . 0 0 b1b2 . . . br (in v) in the

prefixes equals t+1. In this case, each pair of composition multisets in

Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1 differs in exactly 2 compositions.
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• The reconstructed prefix in s is followed by the substring 1 . . . 1 0 and

the reconstructed prefix in v is followed by the substring 1 . . . 1 1. The

length of the substrings 00 . . . 0 11 . . . 1 0 and 10 . . . 0 01 . . . 1 1 is equal

to some 0 < j′ < t. In this case, each pair of composition multi-

sets in Cm−i−1, Cm−i−2, . . . , Cm−i−j′+1, Cm−i−j′ also differs in exactly 2

compositions.

FigureA.7: The procedure for constructing the set Vs for several special
cases of σ values. The first pair depicts the setting in which s and v share a
substring b1b2 . . . br that follows the substring 00 . . . 0 1 in s and 10 . . . 0 0 in
v. The length of the substrings 00 . . . 0 1 b1b2 . . . br and 10 . . . 0 0 b1b2 . . . br in
the prefix of s and v, respectively, equals t+ 1. The second pair depicts a
setting in which the substring 11 . . . 1 0 follows the 00 . . . 0 substring in s
and the substring 01 . . . 1 1 follows the 10 . . . 0 substring in s. Here, the
lengths of the substrings 00 . . . 0 11 . . . 1 0 in s and 10 . . . 0 01 . . . 1 0 in v may
be less than t+ 1.

The bits that were most recently reconstructed in Figure A.7 reestablish

the initial problem we started with and the analysis henceforth parallels

our previous discussion. The pertinent explanations are summarized in Fig-

ures A.8 and A.9.

Combining the results of all the intermediary steps allows us to describe

the set Vs as satisfying one of the two conditions:
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FigureA.8: Two pairs of strings explaining how to extend the partially
reconstructed strings illustrated in Figure A.7. The first pair corresponds to
the case σ+ = 1, while the second pair corresponds to the case σ+ ∈ {0, 2}
and s+ = s− = v+ = v− = b.

FigureA.9: The partial structure of strings in Vs as inferred by the
previous analysis and the setup shown in Figure A.8.
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• The string s and a string v ∈ Vs share a prefix-suffix pair that is fol-

lowed by a certain number of alternating substrings 00 . . . 0 and 11 . . . 1

(in s) and alternating substrings 10 . . . 0 and 01 . . . 1 (in v) in the pre-

fixes. The length of the alternating substrings may vary as described

in the analysis, and the substrings are induced by σ values equal to 1.

The last of the alternating substrings in the prefixes (equal to either

11 . . . 1 of 01 . . . 1) is followed by a shared substring. The number of

bits in the previously described substrings equals t + 1. The corre-

sponding composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1

of the string s and v ∈ Vs differ in exactly 2 compositions.

• The string s and a string v ∈ Vs share a prefix-suffix pair that is fol-

lowed by a certain number of alternating substrings 00 . . . 0 and 11 . . . 1

(in s) and alternating substrings 10 . . . 0 and 01 . . . 1 (in v) in the pre-

fixes. The length of the alternating substrings may vary as described

in the analysis. The last of the alternating substrings in the prefixes

(equal to either 11 . . . 1 or 01 . . . 1) is followed by either the substring

00 . . . 0 (in s) or 10 . . . 0 (in v). The number of bits covered by these

cases totals t+1 and all underlying values of σ are equal to 1. The corre-

sponding composition multisets Cm−i−1, Cm−i−2, . . . , Cm−i−t, Cm−i−t−1

of the string s and v ∈ Vs differ in exactly 2 compositions.

Figure A.10 summarizes the structure of the set Vs and concludes our

proof.

Table A.1: Four different assignments of values for (s+, v+) and the
resulting set cardinalities |Cm−i−2(s) \ Cm−i−2(v)|.

s+ 0 0 1 1

v+ 0 1 0 1

Set Difference 2 4 2 4

Table A.2: Cardinalities of the set difference |Cm−i−2(s) \ Cm−i−2(v)| for
different choices of b.

b 0 1

Set Difference 3 3
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FigureA.10: The structure of the strings v ∈ Vs that are closest to a
given string s. The first pair of strings illustrates the case where the
substrings 00 . . . 0 and 11 . . . 1 in the prefix of s, and 10 . . . 0 and 01 . . . 1 in
the prefix of v occur in pairs, ending with a shared substring b1b2 . . . br.
The second pair illustrates the case where the substrings 00 . . . 0 and
11 . . . 1 in the prefix of s, and 10 . . . 0 and 01 . . . 1 in the prefix of v occur in
pairs ending with the substring 00 . . . 0 in the prefix of s and 10 . . . 0 in the
prefix of v. Note that the substrings may not be of equal lengths. With the
exception of the final shared substring (i.e., shared substring b1b2 . . . br for
the first pair, and the substrings 00 . . . 0 in s and 10 . . . 0 in v for the second
pair) all strings are of length at least one. The number of bits in the prefix
of each string obtained by alternating the above substrings equals t+ 1.

Table A.3: Values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| for the setting where the
bits si+1 and vi+1 are followed by a run of i′ 0s, and where
σi+1+i′

i+2 = (1, 1, . . . 1) and σ+ = 1.

s+ 0 0 1 1

v+ 0 1 0 1

Set Difference 2 4 2 4
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Table A.4: The possible values of |Cm−i−i′−2(s) \ Cm−i−i′−2(v)| for the case
that the bits si+1 and vi+1 are followed by a run of i′ 0s, and such that
σi+1+i′

i+2 = (1, 1, . . . 1) and σ+ ∈ {0, 2}.

b 0 1

Set Difference 3 3

Table A.5: The possible values of |Cm−i−i′−3(s) \ Cm−i−i′−3(v)| for σ+ = 1
corresponding to the four binary assignments for (s+, v+) under the setting
illustrated in Figure A.4.

s+ 0 0 1 1

v+ 0 1 0 1

Set Difference 2 2 4 2

Table A.6: The possible values of |Cm−i−i′−3(s) \ Cm−i−i′−3(v)| for different
choices of b under the setting illustrated in Figure A.4.

b 0 1

Set Difference 2 2

Table A.7: The possible values of |Cm−i−i′−r−2(s) \ Cm−i−i′−r−2(v)| for
σ+ = 1 corresponding to three binary assignments (s+, v+) under the
setting illustrated in Figure A.5.

s+ 0 1 1

v+ 0 0 1

Set Difference 2 4 2

Table A.8: Cardinalities of the set difference
|Cm−i−i′−r−2(s) \ Cm−i−i′−r−2(v)| for different choices of b under the setting
illustrated in Figure A.5.

b 0 1

Set Difference 2 2
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