110 research outputs found

    Towards the integration of symbolic and numerical static analysis

    Get PDF

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Discrete-Time receivers for software-defined radio: challenges and solutions

    Get PDF
    Abstract—CMOS radio receiver architectures, based on radio frequency (RF) sampling followed by discrete-time (DT) signal processing via switched-capacitor circuits, have recently been proposed for dedicated radio standards. This paper explores the suitability of such DT receivers for highly flexible softwaredefined radio (SDR) receivers. Via symbolic analysis and simulations we analyze the properties of DT receivers, and show that at least three challenges exist to make a DT receiver work for SDR: 1) the sampling clock frequency is related to the radio frequency, complicating baseband filter design; 2) a frequencydependent phase shift is introduced by pseudo-quadrature and pseudo-differential sampling; 3) the conversion gain of a charge sampling front-end is strongly frequency-dependent. Some potential solutions are also suggested for each challenge. Compared to a mixer based radio receiver, extra costs are needed to solve these problems

    NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS

    Get PDF
    Problems with missing data, sampling irregularities and randomly sampled systems are the topics covered by this dissertation. The spectral analysis of a series of periodically repeated sampling patterns is developed. Parameter estimation of autoregressive moving average models using partial observations and an algorithm to fill in the missing data are proved and demonstrated by simulation programs. Interpolation of missing data using bandlimiting assumptions and discrete Fourier transform techniques is developed. Representation and analysis of randomly sampled linear systems with independent and identically distributed sampling intervals are studied. The mean, and the mean-square behavior of a multiple-input multiple-output randomly sampled system are found. A definition of and results concerning the power spectral density gain are also given. A complete FORTRAN simulation package is developed and implemented in a microcomputer environment demonstrating the new algorithms

    An algorithm design environment for signal processing

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references (p. 253-256).Supported in part by the Defense Advanced Research Projects Agency and monitored by the Office of Naval Research. N00014-89-J-1489 Supported in part by the National Science Foundation. MIP 87-14969 Supported in part by Sanders Associates, Incorporated.Michele Mae Covell

    A Robust Compositional Architecture for Autonomous Systems

    Get PDF
    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems

    Content-adaptive lenticular prints

    Get PDF
    Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study

    Integrating compile-time and runtime parallelism management through revocable thread serialization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 125-128).by Gino K. Maa.Ph.D
    • …
    corecore