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ABSTRACT

NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS

by

GEORGE KONTOPIDIS 

University of New Hampshire, May, 1982

Problems with missing data, sampling irregularities and randomly 
sampled systems are the topics covered by this dissertation.

The spectral analysis of a series of periodically repeated sampling 
patterns is developed. Parameter estimation of autoregressive moving 
average models using partial observations and an algorithm to fill in 
the missing data are proved and demonstrated by simulation programs. 
Interpolation of missing data using bandlimiting assumptions and 
discrete Fourier transform techniques is developed. Representation and 
analysis of randomly sampled linear systems with independent and 
identically distributed sampling intervals are studied. The mean, and 
the mean-square behavior of a multiple-input multiple-output randomly 
sampled system are found. A definition of and results concerning the 
power spectral density gain are also given.

A complete FORTRAN simulation package is developed and implemented 
in a microcomputer environment demonstrating the new algorithms.
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INTRODUCTION

This introductory chapter describes the main objectives of this 
dissertation, overviews the contents of each chapter and relates the 
present work to the existing literature.

The overview of each chapter consists of the motivation for 
studying the specific topic, and how this topic is related to nonuniform 
sampling. It also summarizes the 'uniqueness' of the material in terms 
of originality of the results and outlines the methodology used.

1. Statement of Purpose

The subject of this dissertation, 'Nonuniformly and Randomly 
Sampled Systems', is very closely related to the material written in the 
author's Master's thesis 'Nonuniform Systems' [1], Both works deal 
with the analysis of discrete systems that result from irregularly 
sampled continuous linear systems. As the title indicates the present 
work extends the material presented in [1J.

The areas extended are the frequency domain properties of 
nonuniformly sampled systems and the study of randomly sampled systems 
from the analysis viewpoint. In [1] only time domain properties of 
nonuniformly sampled systems were studied. With the present work, two 
new dimensions in the study have been added, the frequency behavior of a 
class of nonuniformly sampled systems and the analysis of random 
sampling. Randomly sampled, noisy systems is one of the most 
challenging and interesting areas we deal with.

In order to put the study of nonuniformly and randomly sampled 
systems into proper context we define the following terms:
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a. A Dynamic System is a set of differential equations involving
time, t, as an independent variable, an input vector function u(t), and 
an output vector function y(t). For a given input u(t), the output y(t) 
satisfies the (given) differential equations. A dynamic system is a 
proper mathematical model for many physical systems which have the 
property of causality.
b. A Discrete System is a set of difference equations involving the 
integer index k as an independent variable, an input vector sequence 
u(k) and an output vector sequence y(k). For a given input u(k), the 
output y(k) satisfies the (given) difference equations. A discrete 
system can be used to model many physical and socio-economic events.
c. A Sampling Sequence is any time sequence consisting of time
points selected in a prespecified manner. A sampling sequence can be a 
deterministic or a random sequence depending upon the law that defines 
the time points. If there is one-to-one correspondence between an index 
k and a function‘°t=t(k) the sampling sequence is deterministic. If 
there is a stochastic mapping from an (experimental) event to the time 
instants, the sampling sequence is called random.
d. A Nonuniformly Sampled System is the discrete system derived by 
solving a set of differential equations (called the dynamic system) at 
the points of a deterministic sampling sequence.
e. A Randomly Sampled System is the discrete system that results 
from a dynamic system statistically described at the time points of a 
random sampling sequence. Quite often we use the term Irregularly 
Sampled System to denote either a nonuniformly or a randomly sampled 
system.

The purpose of this dissertation is to extend the existing 
knowledge of the properties and the usefulness of nonuniformly and 
randomly sampled systems. Both the theoretical and the practical
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aspects of irregular sampling are considered in this study.
The material is classified into four chapters. The following two 

tables illustate how the contents of each chapter are related to the 
main objective of the dissertation and how 'sampling irregularity1 
increases from one chapter to the next, respectively.

Table 1: Scope of each chapter
Scope-Objective Chapter

1) Frequency domain properties
2) Time domain properties
3) Statistical characteristics
4) System design- Identification

Ch I 

Ch I

Ch II 

Ch II

Ch III

Ch IV

Table 2: Sampling irregularity of each chapter
Sampling irregularity Chapter

1) Periodic-nonuniform
2) Group of missing data
3) Nonuniforra sampling
4) Random sampling

Ch I
Ch II Ch III 

Ch III
Ch IV

At the end of each chapter there is a section entitled 'Notes and
References'. Each entry in that section is referenced from the
corresponding chapter using numbers within square brackets.

The following two cases indicate the necessity of processing 
irregularly spaced data. The first is the case of observing a physical 
system and the received information comes irregularly (e.g. meteor 
trails radar [2], human organism behavior C31). The second is the case 
of controlling a physical system, or transmitting data in a nonuniform 
manner in order to achieve better performance. A more detailed
discussion on this subject can be found in chapter I of [1] and the



introductory section of [71.
5

2. Overview of Chapter I

Chapter I is entitled 'Periodic Nonuniform Sampling1 and deals with 
nonuniformly sampled systems for which the sampling process consists of 
periodically repeated patterns.

The main motivation for investigating this area comes from the lack 
of theoretical tools in the existing literature to analyze even simple 
types of periodic-nonuniformly sampled systems in the frequency domain. 
As an example we mention burst sampling which is a scheme of 
collecting data very fast for a small portion of the sampling period.
It is expected intuitively (or based on heuristic arguments) that both 
high and low frequency information about the signal is contained in the 
collected samples. However, the relationship of the spectrum of the 
samples to the spectrum of the original signal had not been rigidly 
determined previously.

One first approach in studying the time domain properties of 
periodic-nonuniformly sampled systems was published in the paper 
'Computer Controlled Systems Using Multiplexed I/O' [4], In that paper 
we referred to 'Cyclicly Sampled, Cyclicly Held Systems' which is a 
special case of a burst sampled system. However, that analysis was 
limited to time domain and could not be used to predict frequency 
response characteristics.

Chapter I provides most of the results of our study of periodic- 
nonuniformly sampled systems concerning to frequency properties. The 
proof of the first theorems uses the Poisson Sum Formulas in ways very 
similar to the Nyquist Sampling Theorem. It takes several examples to
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illustrate the generality of the main theorems and how they may be 
applied.

The analysis aspect of periodic-nonuniform sampling is the focal 
point of chapter I. Of secondary importance is a design procedure for 
sampling sequences with prespecified frequency characteristics. This 
design is based on Tchebyscheff polynomials which are commonly used in 
filter design and optimization. The idea of using weighted samples to 
achieve certain frequency characteristics comes from linear array 
antenna design methodology.

Finally, in chapter I we note that the period of the repeated 
sampling pattern can be less than the duration of the pattern. This 
scheme can be very useful in implementing very narrow band filters using 
samples collected at a much lower rate than is required for conventional 
digital filter designs procedures.

3. Overview of Chapter II

Chapter II is titled 'Partially Sampled ARMA Models' and deals with 
the identification of autoregressive moving average (ARMA) models 
based on nonuniformly collected data. With this chapter we try to 
expand the existing ARMA techniques to nonuniform sampling problems.

The sampling irregularity in this chapter comes from the effect of 
instrumentation failure; the sampling sequence is originally 
'scheduled' to be uniform but the actually collected data are nonuniform 
due to 'missing' or 'badly' collected samples.

The main difficulty in using an ARMA model to describe a sampled 
linear system with some sampling irregularities is that the result is a 
time varying system (that was illustrated in Chapter II of [1]).



However, if the missing data can be 'grouped* over specified regions, or 
the number of missing samples relative to the total number of samples is 
small, then this chapter can be used to answer the most important 
problems: The first is parametric modelling and the second is
interpolation of the missing samples.

The key technique used in chapter II is as follows: Consider that
a linear system is sampled uniformly but the sampler introduces discrete 
noise. If we allow the noise level to take infinite values at the time 
instants of the missing samples, then any identification algorithm will 
not take into account the missing points. Therefore, if any arbitrary 
value is used, the final result is independent of that value. This 
technique is used for both off-line (least squares) and on-line (Kalman 
filter) identification of the ARMA coefficients. After the coefficients 
are found, interpolation of the missing data is accomplished by 
performing a set of linear operations (column permutations and other 
elementary matrix operations) and then solving another least squares 
problem.

4. Overview of Chapter III

Chapter III is titled 'Interpolation Using Bandlimiting 
Assumptions' and deals with bandlimited irregularly sampled signals.
The sampling irregularity of this chapter is similar to the previous 
chapter but the methodology and the criteria used for interpolating the 
missing points are quite different.

A new assumption is imposed on the description of the original 
signal; we require that the signal be bandlimited and that the



scheduled sampling is fast enough to guarantee that the spectrum of the 
samples is also bandlimitea.

The motivation for studying the interpolation problem with the 
above assumptions is based on a discussion with Dr. Griffiths and his 
paper 'High Resolution Spectral Estimates Obtained Using Data 
Extrapolation' [5]. In chapter III we generalize his results and we 
substantially reduce the computational difficulties concerning large 
matrix inversions.

Additionally, we present the theory behind iterative interpolation 
techniques which are the disrete time counterpart of Papoulis' work on 
'Spectral Analysis and Bandlimited Extrapolation' [6]. Unfortunately, 
in the discrete case, the convergence of the iterative extrapolation can 
not be proved; futher discussion on this problem is given in chapter 
III.

5. Overview of Chapter IV

Chapter IV is entitled 'Randomly Sampled Systems' and deals with 
nonuniformly sampled systems from the statistical viewpoint.

The motivation in introducing the probabilistic formulation to 
model nonuniformly sampled systems comes from the complexity of the 
analysis by deterministic means. In the literature there are several 
papers discussing the 'simultaneous optimum detection and estimation of 
signals in noise' [91. This problem is actually the same as the random 
sampling problem. We first try to detect which samples are 'good' and 
if the detection scheme is positive, the sample is incorporated in the 
estimation algorithm. Of course, the various thresholds and false alarm 
probabilities are calculated based on statistical information about the



distribution of sampling failures.
One of the most significant contributions in the area of random 

sampling was made by Kalman's dissertation [7] almost two decades back. 
At that time state variable models were primitive and the supporting 
literature was rather poor. Kalman's work was mainly the development of 
state models to be used in solving closed loop randomly sampled systems. 
He limited the development to unforced first order systems operating in 
a closed loop configuration. His ideas in the area of random sampling 
were almost forgotten for many years because of the limited interest in
this particular class of problems.

Our work is mainly an extension (and an update) of part of his
work; we do not address the problem of controlling a randomly sampled
system as he does, but we focus on statistical modelling and analysis of 
the randomly sampled system. We started with the paper 'Stochastically 
Sampled Systems' (unpublished) where we gave some preliminary results 
for a rather limited class of probability distributions of the sampling 
intervals. Also at that time, the computation of the various quantities 
was almost impossible because it involved solution of integral 
equations. (Later, these integral equations were reduced to ordinary 
differential equations.)

Continuous improvement of the randomly sampled model and the theory 
behind it, lead us to more general results. A standard multiple-input, 
multiple-output state model is used for all the development and only 
when it is necessary to deal with 'transfer functions' do we limit the 
results to single-input single-output systems. Also, a compact notation 
in studying randomly sampled systems is introduced which plays a 
fundamental role in the subsequent development. New results in the area 
of propagation of the mean values, propagation of the variances and the 
power spectral densities of randomly sampled systems are derived.



6. Overview of Simulation Programs
10

The computer as a tool of research and verification of theory was 
extensively used during the various phases of this work. (Actually, 
computer simulations of linear dynamic and discrete systems is one of 
the author's favorite areas.)

At the end of each chapter there exists either a worked example 
illustrating the application of the theorems, or a simulation program.
A sample run, a brief discussion of the programming results and the 
source code are also included. Futhermore at the end of the 
dissertation there is an appendix titled 'Software Support' where we 
include two very useful software packages. The first consists of 
FORTRAN IV subroutines performing various matrix operations, and the 
second is an interactive package using the of functions of the first.
Two points are unique about these programs:

(a) They are very easy to use, and
(b) they have been implemented, tested and verified on a 

microcomputer.
The programs were originally developed using a DEC-10 [8] and then 

were modified for an 8 bit machine. Benchmarks show that the 
computational accuracy is not inferior to DEC-10, the memory 
requirements are much less than the DEC-10 (of course we usually do not 
care if we 'run out of core' in the DEC-10 until it happens), but the 
computation time is several times longer.

In using the simulation programs, several theoretical mistakes were 
detected and corrected. Also, new theoretical horizons were opened and 
futher research on numerical aspects (i.e. roundoff error, overflow 
conditions) was done.
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7. State of the Art

In this section a very brief outline of the pertinent literature 
about nonuniform and randomly sampled systems and waveforms is given.
The reader is referred to the bibliography at the end of the 
dissertation for the particular articles and texts that we refer to.

Yen (1956) published one of the first papers referring to irregular 
sampling. He showed how to reconstruct a bandlimited signal uniformly 
sampled but with a finite number of points which had ’migrated' from 
their 'correct' positions. Following Yen's work Linden and Abramson 
(1960), Helms (1961) and Papoulis (1977) introduce the generalized 
sampling theorems where the main objective was again signal 
reconstruction of bandlimited signals using irregularly collected data. 
The irregularities they dealt with were of the first type in table 2 
(periodic-nonuniform). In our development (chapter I) we are mainly 
concerned with the frequency properties of periodic-nonuniformly sampled 
signals.

Another group of researchers who have done work in randomly sampled 
systems consists of Buetler (1966, 1970), Leneman (1966, 1968), and 
Masry (1978). They discuss the 'alias free' property of randomly 
sampled systems, the correlation estimates and the power spectral 
estimates based on randomly collected samples. Lui's (197n) 
dissertation refers also to spectral properties of the above class of 
systems. One of the differences of our work with respect to theirs is 
that we deal with randomly sampled systems in time domain using state 
models and we do not focus on spectral estimates only. In terms of our 
techniques we follow Kalman's (1957) approach which is quite different 
than that of the above researchers. On the other hand Kalman mainly 
discusses the random samplers as an element of a closed loop system 
which is different from our objectives. (We are concerned with the open
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loop properties in the time and frequency domains.)
Finally, we mention two excellent review papers on sampling written 

by Jury (1961) and Jerri (1977) discussing the sampling process from 
the viewpoints, of system theory and communication theory respectively.
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Outline of Chapter I

The term periodic sampling is used to describe a class of sampling 
sequences consisting of periodically repeated nonuniform patterns. This 
chapter consists of 9 sections and deals with the most important cases 
of periodic sampling.

In section 1 we summarize the definitions and the conventions used 
in the other sections.

In section 2 the 'sampling using integration' scheme is defined 
(theorem 1). Section 3 is a generalization of the previous scheme; the 
'sampling using system observations' is introduced. An illustrative 
example applying theorem 1 follows.

In section 4 we define the 'weighted burst sampling' which is 
related to the averaging of a burst of samples (theorem 3). Section 5 
is a generalization of the previous section. Another example follows 
illustrating theorem 3.

In section 6 'burst sampling' is defined. The theory is formulated 
with theorem 5, and an example illustrates the usage of that theorem.

Sections 7 and 8 provide the necessary theory to design equal 
ripple samplers based on Tchebyscheff polynomials. Then, the design 
procedure is outlined and demonstrated by an example.

Section 9 is of more theoretical importance; it provides a state 
space view of periodic sampling. It consists of two main theorems (6 
and 7) which prove the equivalence of a periodically sampled system to a 
discrete (time varying) system.

Two appendices at the end of the chapter provide a set of formulas 
used for the proof of the theorems. A reference list follows with texts 
and papers related to periodic nonuniform sampling.
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The new results claimed in this chapter are
a) the study of the frequency characteristics of periodic nonuniformly 
sampled systems,
b) the design procedure of samplers to perform digital filtering, and,
c) the formulation of a state model for periodic nonuniformly sampled 
systems.

Signal x(t)
This is equivalent to saying 'a real function of time'. It is assumed 
that t can take both positive and negative values.

Samples of x(t)
It is assumed that a period P is implicitly defined; the samples of 
x(t) consist of the sequence {x(nP)} for all neZ (Z is the set of all 
integer numbers). Very often we talk about the Z transform of the 
samples x(t); we mean the function

Sampled Version of x(t)
Similar to the previous definition, a period P is implicitly defined. 
The sampled version of x(t) with period P is the (continous time) 
generalized function x’(t) defined by

1 • Terminology and Conventions

+CD 
* , *— 1 -n

n=-oo

■f CD
x(t) S(t-nP)

n=-co
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Note that the Fourier transform of x'(t) is equal to the Z transform of 
the samples of x(t) evaluated at z=exp(jwP).

Spectrum of samples
Let x(t) be a signal and It } be a sampling sequence (not necessarilyn
uniformly spaced). The spectrum of the samples of x(t) with respect
to the sequence {t } is the Fourier transform of the generalizedn
function ^

x'(t)=C £x(t).S(t-t ) (i)
n=-co

where C is a constant (defined by a power normalization procedure).
Note: The spectrum of the samples of x(t) with respect to the sequence
t can be also defined as the rectangular approximation of the Fourier n

integral, that is, ^
X'(w)=C/ x(t )• (t -t )exp(-jwt )

L - i n  n+1 n n
n= -co

In case of uniform sampling (t =nP) both definitions reduce to
* n

X (z) with z=exp(jwP).
The development of this chapter is based strictly on definition (i).

Periodic Expansion of a Function
The operators (in time domain) and S (in frequency domain) are 

defined by the equations:

f(t+nT) (T is an arbitrary time increment)
n=-»
CO

S F(w)= V  F(w+nW) (W is an arbitrary frequency increment) W n̂=-co
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2. Sampling Using Integration

Integrating samplers are often used to convert analog signals to 
digital words. They are simple to design, rather accurate and they have 
excellent noise characteristics. A typical example is the integrating 
analog to digital converter (ADC) and the dual slope ADC. They are used 
primarily for instrumentation purposes where the accuracy is more 
important than speed. The following theorem describes the frequency 
response of integrating samplers in a more general fashion: the
integration period (T) is different than the sampling period (P). 
Interesting results are derived in case T is greater than P. After the 
theory has been presented, an example shows the effect of the ratio T/P 
on the filtering properties of the samplers.

Theorem 1
Let {xCt): t R; be a signal and (y(nP): neZ} be a sampling sequence 

defined by

y(nP) = 1/T J " x(nP+r)dr for n=...-2,-1,0,1,2,..
0

that is, the number y(nP) is the integral of the waveform x(t) starting 
from x(nP) up to x(nP+T) (see figure 1). Also let X(w) be the Fourier 
transform of x(t) and y’(t) be the sampled version of (y(nP)} defined by

00
y ’(t) = p'S_'y(nP) Ib(t-nP).

n=~«o j x ( t )  j
m ! (n+OF

Then the spectrum of y'(t) is given by:
Y'(w) = S X(w)f(w) W (W=2-rr/P)

with:

y(rP)

-I I
, v sin( wT/2 )f(w) = ----- —---  exp( jwT/2 )wT/2 Figure 1: Sampling using

(f(w) is called the sampling gain factor). integration
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Proof

Let's define a new signal z(t) by taking the integral of x(t):
O

z(t) = j "  x(r)dr 
Then, -a>

T nP+T nP
y(nP') = 1/T J x(nP+r)dr = ” J "   ̂x r̂)dr

0 -co -oo

= 1/T[ z(nP+T) - z(nP) ].

Also, QQ CD

y'(t) = P^y(nP)S(t-nP) = P/T (z(nP+T)-z(nPy) S(t-nP) 
n=-oo n=-CD

Consider for simplicity that z(nP) are the samples of z(t) and 
z^(nP) = z(nP+T) are the samples of z^(t) = z(t+T) with spectra

ZCw) and Z^(w)=Z(w)exp(jwT) respectively. Then, by taking the Fourier

transforms of both sides we find:

CD CD

Y'(w) = P/T £ z, (nP.'exp(-jnPw) - }  z(nP)exp(-jnPw)j 
n= -oo n=-co

and by using the Poisson formulas (see Appendix 1) we can find:

OO

^zCnP)exp(-jnPw) = 1/P’S^Z(w)
■n =;-oo 

CD

£ z (nP)exp(-jnPw) = 1/P-3 Z (w) = 1/P’S Z(w)exp(jwT).^  1 W 1 W
n=-oo



Substituting in Y'(w),

Y'(w)=1/T S Z(w)- f-1+exp(jwT) w I
We now define the sampling factor function f(w) by

f(w)= — — (-1+exp(jwT) )= -2— exp(jwT/2) exp(jwT/2)-exp(-jwT/2)] jwT jwT i

and,
sm( wT/2 ) .f(w) = ----------  exp( jwT/2 )wT/2

Replacing Z(w) by X(w)/jw (using the definition of z(t)) we derive

Y 1(w)=S X(w)f(w)W
which proves the theorem. An application of this theorem is given later 
in example 1.

3- Sampling Using System Observations

Theorem 2 is an extension of theorem 1. It describes a more 
realistic sampler with an arbitrary impulse response. Theorem 2 should 
be used when a more precise modelling of the sampler is needed.

Theorem 2

Let {x(t): t£R} be a signal and h(t) be the impulse response of a 
causal linear, time invariant dynamic system. Also let ty(nP)} be a
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sampling sequence defined by the convolution integral
T

y(nP)= J "  h(T-r)x(nP+r)dr n=...-2,-1,0,1,2,..,
0

that is, the number y(nP) is the value of the response at t=nP+T of the 
system h, when it is excited by an input signal

{x(t): nP < t < nP+T}

and starting with zero initial conditions 
(see figure 2). Then, the spectrum of y’(t) 
is given by h(i)

Y'(w)= S^X(w) f (w) RESET T SAM PLE P

where,
f(w)=exp(jwT) F{h(t)( u(t)-u(t-T) )} Figure 2: Sampling using

system observations
Proof

Let’s define a new signal z(t) by the convolution integral
t
r

z(t) =/ h(t-r)x(r)dr
'J-00

Then,
T T O

y(nP) = J"h(T-r)x(nP+r)dr = h(T-r)x(nP+r)dr
0 -o o  -oo

nP+T nP
= (call c=nP+r) (J ~-j " ) h(nP+T-c)x(c)dc

— OO — 00
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nP+T nP
h(nP+T-r)x(r)dr - J " h(mP+T-r)x(r)dr

-oo
Define the 'shifted' impulse response g(t) by

g(t)=h(t+T)u(t)

and the corresponding Fourier transforms

h(t) <-- > H(w)
g(t) <--> G(w).

Let also
z, (t) < > H(w)X(w)h

z (t) < > G(w)X(w).
g

Then, the above expression of y(nP) is equal to

y(nP)=z (nP+T)-z (nP) h g
Here we note that

z (nP+T) is the sampled version of H(w)X(w)exo(jwT), and h
z (nP) is the sampled version of G(w)X(w) 
g

The continuous signal

CO 00

y' (t)=pY^y(nP)S(t-nP) =P^~'C z (nP+T)-z (nP) ]-S(nP)Z_7 h gn=-oo n=-oo
is transformed using the Poisson sum formulas and the above note to:

Y'(w) = S {H (w)X(w)exp(jwT)-G(w)X (w)}
W

and equivalently,
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Y'(w) = S.,X(w) f (w)W
with

f(w) = H(w)exp(jwT)-G(w)

Observe that the gain factor f(w) is the Fourier transform of the signal 
h(t)( u(t)-u(t-T) ) shifted by T seconds. This observation conludes the 
proof of the theorem.

Corollary

Consider the integrating system with inpulse response h(t)=u(t)/T.
Then,

h(t>( u(t)-u(t-T) ) = ( u(t)-u(t-T) )/T 

and the Fourier transform of this is

1 exp(-jwT) 
iwT jwT

Therefore the gain factor is

exp(jwT)-1 = exp(jwT/2) 2sin(wT/2)
wT = exp(jwT/2) sin(wT/2)

wT72

which agrees with the results of theorem 1

Example 1 (Application of theorem 1)

A signal x(t) is sampled using integration for T seconds with 
period P=5s. Let W=2,n'/P and assume that x(t) is bandlimited with



bandwidth B<W/2. We want to find the spectrum of the samples for T=1 
T=5s and T=15s.

Using theorem 1, Y'(w)=S X(w)f(w) and because B<W/2, for w <W/2,W

|Y'(w)I = |X(w)I If(w)I with If(w)I = sin(wT/2)
wT/2

The sampling gain factor |f(w)| takes values 
1 for w=0
0 for w =2kTf/T=kW/a k=+1, +2,... k

where a is the ratio T/P. Also,
sin(air/2) I(f(W/2)I=

! air/2 I

Case 1 (see figure 3a) 
a=1/5
If(w)I=0 every 5W 
If(W/2)I=0.984

Case 2 (see figure 3b) 
a=1
If(w)|=0 every W 
|f(W/2)1=0.637

Case 3 (see figure 
a=3
If(w)!=0 every W/3 
If(W/2)1=0.212

o

. .  0 .6 37

Figure 3a Figure 3b



W73 W /2- W /2

Figure 3c

Figure 3: Sampling using integration 
(example)

(a) a=1/5
(b) a=1
(c) a=3

Figure 4 illustrates an implementation of the samplers in cases 1 and 2. 
Figure 5 illustrates the sampler in case 3

RESET SAMPLE

CONTROLLER

RESET

T

SAMPLE  L

Figure 4: Implementation of integrating samplers

_  3r “ r “

C O N T R O L L E R
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*

J i

P
T

R{
51

R2
52

R3

53

Figure 5: Implementation of overlapping integrating samplers
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4. Weighted Average Burst Sampling

The weighted average sample y(nP) is defined as a linear 
combination of M samples x(nP+T), x(nP+2T),..., x(nP+MT) (see figure 6). 
For analysis purposes the following constructive formulation of the 
weighted average burst samples is'used:

i. Define the signals x (t) byk
x (t)=x(t+kT) for k=1,2,...,M k

ii. Define the signal y(t) as the linear 
combination

y(t)=a.x. (t)+a_x_(t)+.. ,+a..xw(t)1 i c 2 M M
where a- are arbitrary real numbers.

Then, the uniform samples of y(t) with period P (considered as elements 
of a set) are the weighted burst samples of x(t).
Note that MT is not required to be less than P. The case MT>P is 
illustrated later in example 2.

Theorem 3

The spectrum of the sampled version of y(t) (called the weighted burst 
sampling spectrum) is

Y»(w) = S X(w)f(w)W
where X(w) is the spectrum of x(t), W= 2'tf/P and the sampling factor
function f is given by:

f(w) = a exp(jwT) + ...+ a exp(jwMT)1 M

nP (n+5)r
y(-nP) I

T

ai ••• as I ai■ • • ae

Figure 6: Weighted average 
burst sampling
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Proof
The sampled version of y(t) is

OO

y'(t)=P X! y(nP) ̂ (t-nP)
n=-oo

with
y(nP)=a x(nP+T)+..,+a x(nP+MT) 1 M

The spectrum of y’(t) is

oo

Y'(w)=P ) y(nP)*exp(-jwnP) (i)
n=-oo

The samples y(nP) have been taken from y(t) with spectrum

Y(w) = ( a exp(jwT)+...+ a exp(jwMT) ) X(w)1 M
or Y(w)=f(w)X(w) (ii)

Now we apply the Poisson lemma for (i):

OO
Y*(w)= Y  Y(w+nW) =S Y(w)

L— i Wn=-oo
and by using (ii) the proof is complete.

5. Average Burst Sampling

For the weighted burst sampling it was necessary to have equally 
spaced samples at the beginning of every period P. Theorem 4 does not 
use this restriction; it deals with samples taken at
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T.M
relative to the the beginning of the period.

Theorem 4

Let x(t) be a signal and {y(nP)} be the sequence

y(nP)=a x(nP+T )+...+a x(nP+T )1 1  M M
where (a.,...,a„) and (T„,... ,T.,) are given constants. Then the1 M 1 M
spectrum of the samples y(nP) is given by

By considering the pair
y(t)=a x (t) + ...+a x (t) <---> Y(w)=a X (w)+...+a X (w)11 M M  11 M M

we can apply Poisson's sum formula to derive

Y1(w)=S X(w)f(w) w
where

f(w)=a exD(iwT )+...+a exD(iwT )

Proof
Consider the signals

x, (t)=x(t+T ) k k k=1,2 M te R.
Then the set {y(nP)} is equal to the set

Also,
y'(t)=P ^  y(nP)S(t-nP), Y'(w)=P^ y(nP)exp(-jwP)

n=-oo n=-co
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00

P ) y(nP)exp(-jnwP) = S (a X (w) + ...+a X (w)
I i W ' 1 1 M Mn= -oo

But
X^(w) = X(w)exp(jwT^)

by the definition of x 's. Therefore,k

Y ’(w)=S X(w)f(w) with f(w)=a exp(jwT )+...+a expCjwT ) 
W 1 1 M M

which completes the proof.

Corollary 1

Let T =kT for k=1,...,M. The theorem 4 yields theorem 3, k

Corollary 2

Let a = 1/M for k=1,...,M. Then the spectrum of the samples is

Y'(w) = S X(w)f(w)W
with

Proof

x sin(wMT/2) , . M+1f(w)= . exp( jw T)Msin(wT/2) 2

1 Mf (w) = (exp( jwT)+.. .+exp( jMwT) )/M =(z + ... + z )/'M
(where z=exp(jwT) )

M/2 -M/21 . M+1 .» 1 (M+1)/2 z - z•(z -z )/(z—1) =  zM M 1/2 -1/2z -z
from which f(w) can be readily derived.

i



Example 2 (Application of theorem 3)

A signal x(t) is sampled using the weighted average burst sampling 
technique. The sampling period is P=5s and the burst period is T=1s.
We assume that x(t) is bandlimited with bandwidth B<W/2
(W=2ff/P) and we want to find the spectrum of the samples in the cases
M=3, 5 and 15, using weights a.=1/M

The sampling gain factor !f(w)i takes values 1 for w=0 and 0 for 
w=2k,tT/MT=kW/a (k=1,2,...) where a is the ratio MT/P. Also, |f(w)l is 
periodic with period 2rf/T.

l
Using theorem 3, Y T (w)=SirY(w)f (w) with

W

f(w)=( exp(jwT)+...+exp(jwMT) )/M
sin(MwT/2)
Msin(wT/2)

Case 1 (see figure 7a) 
a=3/5
|f(w)|=0 every 5W/3

Case 2 (see figure 7b)
a=1
If(w)I=0 every W

If(W/2)|= 3sin(fl710)
sin(3tr/10)
>- :11 t  v =0.873 If(W/2)1= sin(5rr/10)

Case 3 (see figure 7c) 
a=3
If(w)I=0 every W/3

I f ( W / 2 ) | s
sin( 15TT/10) o _  -- ■ =0.21615sin0rr/io)

Figure 8 illustrates an implementation of the samplers in cases 1 and 2. 
In case 3, the sampler can be implemented using three feedback summers 
(similar to the ones in figure 8), or by cascading 15 delays (figure 9).
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Figure 7a

.. 0.216
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Figure 7c
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. . 0 .6 4 7

Figure 7b
Figure 7: Weighted average burst 

sampling example
(a) a=3/5
(b) a=1
(c) a=3

SPST

CONTROLLER

ST
RESET

SP

m m  I n nI I
I I T  I 

P

Figure 8: Implementation of weighted burst samplers

Figure 9: Implementation of overlapping burst samplers
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6. Periodic Burst Sampling

Theorem 5 deals with the spectrum of a 'burst of samples' taken 
every P time units. More particularly, we deal with a uniform burst of 
samples, where within the burst, the samples are taken every T time 
units (see figure 10). The sampling sequence looks like

... x(nP+T), x(nP+2T), ... x(nP+MT), x( (n+1)P+T ),...

Note that MT is not necessarily less than or equal to P. The proof is 
still true for MT>P. This is illustrated later in example 3.

Theorem 5

The spectrum of the samples tx(nP+mT): neZ, m=1,2,...,M} is given 
by the formula

CO

'(w) = Y

n= -oo
X(w+nW) f(n;W,T)

where
, M+1 v sin(nWMT/2)f(niW.T) = exp(jn— WT)

and W=2iT/P
Figure 10: Periodic burst 

sampling
Proof
Let y'(t) be the sampled version of a function of the samples of x(t). 
Then, co M

x(nP+mT)§(t-nP-mT)
n=-com=1

The Fourier transform of y'(t) is
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M oo

Y'(w)= ) (p) x (nP)exp(-jwnP) )exp(-jwmT)
L— ' L— 1 mm=1 n=-<»

where x (t) is defined to be x(t+mT). m
Now, we apply Poisson Sum formulas for the summation with respect to n. 
This yields

M
Y'(w)= / (S X (w) )exp(-jwmT) ‘— 1 W m

m=1 

But
X (w) = X(w)exp(jwmT) m

from the definition of x (t). Then, expanding the S operator,m W
M co

Y f(w) = ^  X(w+nW)exp( j(w-nW)mT ) )exp(-jwmT)
m=1 n=-co

But the product of the two exponentials equals exp(-jnWmT) (which does 
not depend on w). Interchanging the order of the summations,

oo
v -1Y'(w) = ̂  X(w+nW) f(n;W,T) 
n=-oo

where
f(n;W,T)=exp(-jnWT)+exp(-jnW2T)+...+exp(-jnWMT)

Call z=exp(-jnWT). Then,

M+1, . 2  M z -z , M+1 sin(nWMT/2)f(n;W,T)=z+z +...+Z = -------  = exp(jn-- WT) ----;;--- -rr-z-1 2 sin(nWT/2)
which completes the proof of the theorem.
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Corollary 1

Let P=T and M=1. Then WT=21T. Also,

exp( jn(M+1)WT/2 ) = (-1)n(M+1)= 1
and

lim f(n;W,T) 
WMT-»2'rf sin(nWT/2)

.. sin(nWMT/2) lim -- — ----- -

which gives oo

n=-oo
This last statement is the spectrum of the uniform samples (every P). 

Corollary 2

Let MT=P and M be any arbitrary integer number. We will prove that 
theorem 5 results in the sampling theorem:

is equal to M for n=0, M, 2M, ... and is equal to 0 for the remaining 
integer values of n. Because MT=P, WT=2,tt/M. Also, for n=kM, 

exp(jnWT)=exp(-jkM 2'n'/M) = 1.
This proves the first assertion. To prove the second, we use:

oo
X(w+2nir/T)

n=-oo

To prove that, it suffices to prove that

f(n;W,T)=exp(-jnWT)+exp(-jnW2T)-!-.. .+exp(-jnWMT)

M-1 Mf(n;W,T) = z(1+z+...+z )=z( z - 1 )/(z-1)
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Mwhere z=exp(-j2n'n/M) = 1 if n=kM. But z =exp(-j2Tf) = 1. This completes the 
proof.

Example 3 (Application of theorem 5)

A burst of M samples every T=1s is collected from a signal x(t) 
The sampling period is P=5s. The signal x(t) is bandlimited with 
bandwidth B<W/2 (W=2ff/P). We want to describe the spectrum of the 
samples fo”* M=3,4,5 and 15 
Using the results of theorem 5,CO

Y ’(w)=M £  X(w+nW)f(n;W,T)
with

1f(n;W,T)I= sin(nWMT/2)

for
Msin(nWT/2) 

n=0, |f(n;W,T)|= 1
sinCMTf/B)n=1, If(n;W,T)I -

n=k, If(n;W,T)|=

Msin(iT/5)

| sinCkM-if/B) 
IMsin(kn75)

Also, f(n;W,T) is the same as f(n+51;W,T) for all integers 1.
In this example it is important to note that the sampling gain factor 
remains constant over the bands (-kW/2,kW/2) for all k.

Case 1 (see figure 11a) Case 2 (see figure 11b)
M=3 M=4

I f  (0 W,T) I=1 . 000 I f ( 0 ; W, T ) = 1 000

I f  (1 W.T) I=0 . 539 l f ( 1 ; W , T ) =0 .250

I f  (2 W,T) | =0 . 392 I f  ( 2 ;  W, T ) =0 .250

I f  (3 W,T) | =0 . 392 l f (3*,w,T) =0 .250

I f  (4 W,T) I =0 . 539 I f ( 4 ; W, T) =0 .250

I f  (5 W,T) | =1 . 000 l f ( 5 ; W , T ) 1=1 .000
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Case 3 (see figure 11c) 
M=5,15,...,5i,..•
If(0;W,T)1=1
If(i;W,T)I=0 for i=1,2,...

CO
- w- 2 W

Figure 11a

n = ln =-

- 2 W -w w0

Figure 11b

CO
-2w w

Figure 11c
Figure 11: Periodic Burst Sampling (example)

(a) M=3, (b) M=4, (c) M=5i i=1,2,3...
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7. Filtering by Weighted Average Burst Sampling

Theorem 3 indicates that the spectrum of the weighted burst samples 
depends on the frequency characteristics of the sampling factor f(w). 

Because f(w) is a function of the weights a., the shape

of the spectrum of Y'(w) can be modified by choosing the weights 
properly. The magnitude of the sampling factor f(w) is calculated 
below.

.M-1 .if(w)|=|z(a +a2z+...+aMz) I

= clz-z.IIz-z I I ... Iz-z

z=exp(jwT)

M-1

M-1 „where z is the i-th root of the equation a +a z+...+a z =0 i 1 2 M
If the w's corresponding to the z's are placed on the unit circle, i i
(see figure 12) the value of f(w) depends on the distances of w from

V V - V r

Figure 12: Calculation of the magnitude of the sampling factor 
In the following we study the various possibilities for f(w).

Uniform f(w)
In this case, f(w) has equal weights for all the samples. Then,
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lf(w)|= sin(wMT/2)
Msin(wT/2)

Figures 13 and 14 (graph 3) illustrate the uniform gain factor for M=8 
and 20 respectively. For comparison purposes, the function

sin(wMT/2)
wMT/2

(graph 4) is also drawn.

Binomial f(w)
In this case, f(w) has a multiple zero at z=-1+j0. Then,

f(
M-1

= 2
M _

1) v M-1 m M-l" M-1 M
) z = 1 z+...+ M-1 z
m=1 mL J __• - - .M-1

and

I f (w) I = 1+exp(jwT) M-1
=Icos(wT/2)I M-1

Figures 13 and 14 (graph 1) illustrate the binomial gain factor; note 
that this function does not have any side lobes but the width of main 
lobe is more than all the other gain functions.

Triangular f(w)
For M equal to an odd number, the triangular sampling factor function is 

defined by
2.(M-1)/2'l2f(w)=z 1+z+z +...+z M+1



This gain function is also illustrated in figures 13 and 14 (graph 2).

Equal ripple f(w)
The equal ripple sampling function has equal side lobes around the main 
lobe. One possible realization is based on Tchebyscheff polynomials. 
The theory and the selection of the coefficients a. of

the sampling factor function follows. Finally, an example illustrates 
the calculation steps to obtain a.’s
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M =8
0.6

0.4

0 . 2  n 2 . 4  n

Figure 13: Comparison of sampling gain functions for M=8
. M-1(1) lcos(x)

(2)

(3)

(4)

sin(Mx/2)
Mx/2

sin(Mx)
Msin(x)
sin(Mx) 
Mx

Binomial gain factor 

Triangular gain factor 

Uniform gain factor 

Continuous gain (for comparison)



40

M= 20

O i!L —  lUL £ll 7n 3" lOn20 20 20 20 20 20 20 20 20 20

Figure 14: Comparison of sampling gain functions for M=20
.M-1(1) lcos(x)l

(2)

(3)

(4)

sin(Mx/2)
Mx/2

sin(Mx)
Msin(x)
sin(Mx)
Mx

Binomial gain factor 

Triangular gain factor 

Uniform gain factor 

Continuous gain (for comparison)



8. Designing Equal Ripple Samplers

Preliminaries

Let T (x) be the (M-1)th order Tchebyscheff polynomial with M even. M-1
Consider also the mapping

y=arcos(x/x ) x=x cos(y)o °

where x is an arbitrary constant. Then T .(x(y)) has maxima and o M-1
minima at

with values

(see figure 15). Therefore there exist a one-to-one correspondence
between x and R. Given an R, x can be found by solving the equation o o
(see appendix lb)

y =kir k=0,1,2

cosh((M-1)arcosh(x ))=Ro
1/(M-1) i

o L
Futhermore, T (x) has M-1 roots given by (see appendix lb)M-1

X =cos k ♦ • • •

so, T (x(y)) becomes 0 when y=y with M-1 k

y =arcos(x /x ) k=1,2k k o



k2

2n

2n

Figure 15: Using the mapping x=XQccsy with the Tchebyscheff

polynomial T (x)5

The following two lemmas are used for the design of the equal ripple 
sampling factor.

Lemma 1

The sampling factor
2 Mf(w)=a, z+a.z +...+a z with z=exp(jwT) (or exp(-jnWT) ) 1 I n

under the assumptions that
(1) M =even integer
(2) a =aw , . for k=1,2t...k M-k+1



^3
(2) k=1,2,...

can be transformed to
(M-1)/2(3) f(w)=2z (a cos(M-1)y+a cos(M-3)y+...+a cosy)1 2 M/2

where y=wT/2 (or nWT/2)

Proof
1 M-1

f(w)=z(a +a z +...+a z ). 
1 2 M

Consider the sums

Then,

k-! M-k „ , „ „s =a z +a z for k=1,2,...,M/2k k M-k+1

f(w)=z(s1+s2+...+sM/2)

But because of the second assumption,
, k-1 M-k m, k-1-m M-k-ms s, =a, (z +z )=a, z (z +z ) k k k

for all m. Now require k-1-ra=-(M-k-m). This gives

m=(M-1)/2 and k-1-m=-(M-2k+1)/2
Therefore,

(M-1)/2 k-1-m -(k-1-m) „ (M-1)/2s^=a^z (z +z )=2a^z cos(M-2k+1)y

Summing up all s 's we prove (3).it

Lemma 2

Let f(w) be the sampling factor given in lemma 1, equation (3) 
the mapping

y=arcos(x/x ) <=> x=x cosyo o

Then



Proof

Using the definition of the Tchebyscheff polynomials and the result of 
lemma 1, the above expression is readily obtained.

Summary of the design procedure

The objective here is to find the coefficients a ,a ,...a of a1 2 M/2
sampling factor f(w) of even number of terms and with

ak=aM-k+1 for k=1 ,2.... M/2

which has the properties:

(1) All side lobes have the same maximum
(2) The main lobes are R times the side lobes

The coefficients a^ are found by the following procedure

(a) Give R, find x using

x =1/2 (R+o

(b) Require that

and using the expansions of appendix lb
determine the a ' s 

i

Then, f(w) = T (x(y)) with y=wT/2 (or nWT/2)
M-1
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The following example illustrates the usage of the above procedure in 
designing an equal ripple sampling factor based on Tchebuscheff 
polynomials.

Example 4 (Applying the design procedure)

A signal x(t) is sampled using averaged weighted burst sampling 
with M=8, T=4s and P=5s. It is assumed that x(t) is bandlimited with 
bandwidth less than W/2 (W=2fr/P). Select the weighting coefficients 
a .a^... for obtaining equal ripple lobes with R=50.

The spectrum is
Y'(w)=S X(w)f(w)W

0
f(w)sai|z+...+a z z=exp(jwT)

Let a =a , a =a , a =a. and a =a . Then, using lemma 1,1 8 2 7  3 b  4 5

7/2f (w)=2z (a.]cos7y+a2Cos5y+a2Cos3y+aitcosy)

with y=wT/2.
Following the design procedure,

 ̂ 1/T » 1/7
x =1 /2  (50+\j2501 ) + (5 0 - \ /2 4 9 9 )  ) = 1 .2243o
T (x)=a T (x/x )+a T (x/x )+a T (x/x )+a T (x/x )7 1 7  o 2 5 o 3 3 o 4 1  o

and using the formulas from appendix lb,
7 5 3 7 564x -112x +52x -7x = a 64(x/x ) +(-112a +I6a )(x/x ) +1 o 1 2 o

3+(56a -20a^+4a )(x/x ) +(-7a +5a^-3a +a,)(x/x )1 2  3 o 1 2 3 4 o

L



Solving the system
764a = 64x1 o
5-112a +16a =-112x1 2 o
3

5 6 a ^ - 2 0 a ^ + 4 a ^  = 5 6 x ^

we find
-7v 5v3w  -7xo
a^=4.123i a^=9.6, a^=l6, a^=20

The following table uses the formulas
x =cos(2k+1 )1T/14 k
y =arcos(x /x ) k k o
w =2y /T k k
x =1.2243 o

to calculate the zeros of T (x(y))

Table 1: Calculation of the zeros of T^(x(y))

k Xk V  >
w ( ) k

0 0.975 37 18.5
1 0.782 50 25.0
2 0.434 69 34.5
3 0.000 90 45.0
4 -0.434 111 55.5

5 -0.782 130 65.0
6 -0.975 143 71.5



Figure 16 shows a the sampling gain factor for several values of R.
Note that as the ratio R increases, so does the width of the main lobe. 
Because MT>P, a special implementation of the sampler is required. The 
timing is illustrated with figure 17.

0.6

M = 8

0.4

0.2

-0. 4ir0 . 6-nr 0. 2ir 2

Figure 16: Tchebyscheff sampling gain factors
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I I I I II I I I I
a a a a a a a a a a a a a1 2  3 4 4 3 2 1 1 2 3 4 4

XnP+T XnP+2T

y(nP)-

nP (n+1)P
1 I I I II I I  I 1 I I

I I I II I I I I I

31 a2 a3 a4 3 4 a3 a2 31 31 3 2 33 *4

XnP+2T XnP+3T

y(nP+P)

nP (n+1 )P
I I I I

I I I I I II I I I I I I II t

a1 a2 a3 34 a4 a3 32 a1 31 a2 a3

XnP+3T XnP+4T

•y(nP+2P)

Figure 17: Timing of overlapping Tchebyscheff sampling
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9. State Space Models of Cyclicly Sampled Systems

This section provides a 'system theoretic' view of the sampling 
schemes discussed in the previous sections. Here we use state space 
techniques to model a class of periodically sampled systems. The 
section consists of two theorems: Theorem 6 proves that a periodically
sampled system is equivalent to a time invariant state equation with 
time varying output equation. Theorem 7 proves that a periodically 
sampled system is equivalent to an augmented time invariant state model.

The sampling sequences we deal with are of the form (see figure 18):

{y(nP+T ) with n=0,1,... and m=1,2,...,M} m (i)

This is a sequence of patterns
consisting of M irregularly spaced
samples. For simplicity we assume
that T is less than P. m
We also assume that the above sequence 
is sampled from a linear, time 
invariant system with state equations:

dx/dt=Fx with x(0)=b 
y(t) =cx

(n+l) Pv ' r

T ,7 * T3

Figure 18: Periodically sampled 
state model

where c is a row vector, F is a square matrix and b is a column vector. 
Note that the spectrum of y(t) is given by:

Y(w)=c(jwI-F) ”*b
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Definition

For a given pair (n,m) (and a fixed constant M) define the mapping
k <---> (n,m)

by the equations:
k(n,m)=nM+(m-1) (1)
n(k)=int(k/M) (2)
m(k)=(k mod M)+1 (3)

where int(.) means the largest integer which is smaller than the 
argument (floor of the argument) and mod is the modulo function (k mod M 
means the remainder of the division k/M).
After the k=k(n,m) mapping is defined, we can create a time sequence

t =nP+T k m
and a corresponding time series

y, =y(t ) k k

which consists of the same points as the set (i)

Theorem 6

The time series y can be considered as an output of a linear, timek
varying discrete system of the form:

w(k+1)=Sw(k)
y =h(k)w(k) w(0)=A(h)bk

i.e. we can use a discrete model where the states are propagated with a
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constant matrix S, while the output matrix (row vector h(k)) becomes 
time varying.

Proof

Let us assume the (n,m) are given, and k=k(n,m) is defined according to
(1). Define,

Then,

hrP/M
w(k)=w(k(n,m))=x(nP+mh) 
A(r)=exp(Fr)

w(k)=A(mh)x(nP)

(4)
(5)
(6)

(7)

First we prove that w(k+1) is equal to a constant matrix times w(k). 
Consider the integer k+1; depending on m,

k+1 corresponds to <
f(n+1,0) if m=M 

(n,m+1) if mj&M
Therefore, if m=M,

w(k+1)=A(h)x((n+1)P) 
=A(h)A(P)x(nP) 
=A(h)A(Mh)x(nP) 
=A(h)A(mh)x(nP) 
=A(h)w(k)

In the case that m^M,

by applying (7) 
using the state equations and (6) 

by using (4) 
because m=M 
by applying (7)

w(k+1 )=A( (mi-1 )h)x(nP) by applying (7)
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=A(h)A(mh)x(nP) property of the transition matrix
=A(h)w(k) using (7) again

So, in both cases w(k+1)=A(h)w(k). This proves the first part of the 
theorem. The second part is proved similarly:

y(t ) =cx(nP+T ) k m
=cA(T )x(nP) using the state modelm

=cA(T )A 1(mh)w(k) m
=cA(T -mh)w(k) m
=h(m)w(k) for h(m)=h(m(k))=cA(T -mh)m

(The third equality was derived by using (7) and the fact that A(.) is 
always nonsingular so,

- 1x(nP)=A (mh)w(k)

which is substituted in place of x(nP).) 

This completes the proof of the theorem 1. 

Corollary 1

Let T =m(k)h (uniform sampling). Then, the model of y(t ) becomesK K
w(k+1)=A(h)w(k)
y(t )=cw(k) k

l
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Corollary 2

Let T =qm(k)h with 0<q<1. Then, the model of y(t ) is& K
w(k+1)=A(h)w(k)
y(t )=cA((q-1)mh)w(k) k

Theorem 7

Define

Y(n)=(y(nP+T )|y(nP+T )|...|y(nP+T ) )T1 I 2 1 1 M
Then,

x((n+1)P)=A(P)x(nP)
Y(n)=Hx(nP)

where H is an appropriate constant matrix,

Proof

The first equation, x((n+1)P)=A(P)x(nP) is an immediate consequence of 
the continuous state equation. The second equation comes from the fact

y(nP+T^) cA(T

y(nP+T ) cA(T2

y(nP+T ) M cA(T

1' cA(T^)

cA(T ) 
2

oA(y

•x(nP)

Corollary 1

Define the spectrum of the samples {y(t )} as the Fourier transform



of the generalized function

Then,

where

y'(t)=yy(t )S(t-t )
L— i k kk=o

Y 1(w)=Fourier transform of y'(t)

Y'(w)=g(w)K(Iz-A)"1b

A=A(P)=exp(FP)
g(w)=(exp(-jwT ) exp(-jwT ) ... exp(-.jwT )) 

1 2 M

z=exp(jwP)

Proof

^^y(nP+Tm)exp(-jw(nP+T^)) = ̂ g(w)Y(n)exp(-jwP) 
n,m n=0

But,

x( (n+1 )P)=Ax(nP) = >  zX(z)-b=AX(z) =S> X(z) = (Iz-A) -1b

Then, using the results of theorem 2,

Y'(w)=g(w)H(Iz-A)“1b

which completes the proof. 

Corollary 2

The Y ’(w) found above has exactly the same poles as the Fourier 
transform of the discrete sequence y(nP).



Corollary 3

Assume that T =q T for some integer q for i=1,2,...,M and i i o 1
P=q T . Then, Y'(w) is periodic with period T . o o  o

Proof

Use the expression of g(w) to derive that g(w)=g(w+2'n'/TQ) which means

that g(w) is periodic with period 2 tf/T  .o
- 1Let a(w)=H(Iz-A) • b; then a(w)=a(w+2,n7P). Because a(w) is periodic

in w with period 2'Ti/P, and P is a multiple of T , then a(w) is alsoo
periodic in w with period 2n'/T .o
Notes
a) The samples during the intervals [nP, (n+1)P] (for all n) can add 
zeros through the g(w).

b) (Iz-A) 1 has poles associated with the period P i.e. independent of 
added samples.

-1c) (Iz-A) is periodic in w with period 2-rr/P; however, g(w) is
periodic in w only if the T 's are all integer multiples of somei
period T . If this happens, g(w) is periodic with period 2 ^ /7 .
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Appendix la

The Poisson Sum Formulas

Poisson formulas are of .fundamental importance for the sampled 
systems because they relate Fourier transforms of transient signals 
(that is, signals with short time records) with their periodic 
expansions. Poisson's formulas are given by the following assertion:

Assertion
Let f(t) be an L function (of finite energy). We introduce the 2

operator S{.} defined by the summation:

COT-1
STf(t) = f(t+nT) 

n=-co

where T is an arbitrary real number, called the replication period. The 
function S^f is called the periodic expansion of f with period T.

Note that:
S^f(t+aT) = S^f(t) for any integer a.

which means that S^f is a periodic function. The Poisson formulas are:
00

1. S^S(t) = 1/T exP( jnWt)
n=-ao
OO

2. S f(t) = 1/T £  F(nW) exp( jnWt )
n=-co
oo

3. s F(w) = T y  f(nT) exp( -jnTw )W L-1n=-co

where F(w) is the Fourier transform of f(t) and W is equal to 2'rf/T.

Proof of 1
Because is a periodic function, we can expand it to a Fourier



series:
00

s S(t, . £  a^exp( jnWt ) 
n=-oo

where the constants a are the Fourier coefficients given by:n
+T/2

a = 1/T J S(t) exp( -jnwt ) dt. 
n -T/2

But this last integral is equal to 1. Therefore a = 1/T and then
proof is complete.

Proof of 2
Consider a linear system H(w) with impulse response f(t). Then 
F(w)=H(w), and the linearity implies:

If the input S(t) gives output f(t), then, 
the input Ŝ lbCt) will give output S^fCt).

But the output of the system when the input is

oo
S $(t) = 1/T^exp( jnWt )

n=-co
can also be derived as a sum of responses of the exponentials, that is,

input = exp( jnWt ) = >  response = H(nW)exp( jnWt )
CO oo

input = 1/T^exp( jnWt) = >  response = 1/T^H(nW)exp( jnWt) 
n=-oo n=-oo

Therefore,
S f(t) = 1/T^JKnW) exp( jnWt ) 

n=-oo
which is the desired result (considering that F(w)=H(w) ).
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Proof of 3
The symmetry property:

if f(t) <---> F(w) are Fourier pairs,
then F(t) <---> 2‘rff(-w) are also Fourier pairs,

can be applied to the previous result to find

In this equation t is the independent variable and T has to satisfy the 
equation T=2fr’/W. Therefore,

n=-oo
Finally, changing the summation index from n to -n and interchanging the 
summation limits, the desired result (3) is derived.

CO

f(-nW) exp( jnWt )
n=-oo

t can be replaced by w, and, 
T can be replaced by W.

This gives:

oo
S F(w) = 21T/W f(-nT) exp( jnTw )
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Appendix lb

On Tchebyscheff Polynomials

The Tchebyscheff polynomial of order N is defined by

T (x) =cos( Narcos(x) ) for -1<x<1 (1)N
and T (x) =cosh( Narcosh(x) ) for Ixt>1 (2)N
Expanding the cos() and coshO functions, the following recursive 
functional equation is satisfied:

T (x)=2xT (x)-T (x) (3)N+1 N N-1

0
Examples:

T (x)=1, T,(x)=x
i

Tq (x)=1 1 = T (x)

T (x)= x x = T (x)
1 1

2 2T2(x)=2x -1 x =(Tq+T2)/2

3 3T (x)=4x -3x x =(3T +T )/43 1 3
4 2 4

T4(x )=8x -8x +1 x =(3Tq+4T2+T4)/8

5 3 1 5T_(x)=16x -20x +5x x =(10T^+5T_+T_)/165 1 3  5

Tchebyscheff polynomials satisfy the following differential equation
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(1-X2)T*'-xT’+N2T =0 N N N
(where the prime indicates differentiation with respect to x).
The roots of the Tchebyscheff polynomials are

(2k-1 )Tf(k-th root) x =cos --------- k=1,2,...,N (5)k 2N
and the k-th root is the same as the N-K+1 root.
The following equalities and inequalities are also true:

T (1) = 1 N
NT (_1)=(-1>N

T (0)=1 2k
T (0)=0 2k+1
IT (x)|<1 for -1<x<1N - -

IT (x )|<2N _ 1 x N for x<—1 and x>1N -
NIT (x)|>2 for x<—1 and x>1N -

T (x) is an even function of x 2k
T (x) is an odd function of x 2k+1

In addition, the following substitutions are very common:

for IxI<1 T (x) = cos(Nw) with x=cosw (6)- N

T (x) = (zN+z *S/2 with x=(jz+1/jz)/2 (7)N
for IxI>1 T (x) = cosh(Nw) with x=coshw (8)— N

T (x) = (zN+z N)/2 with x=(z+1/z)/2 (9)N
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CHAPTER I I

PARTIALLY SAMPLED ARMA MODELS

Outline of Chapter II
1. Notation and Conventions
2. Least Squares Identification
3. Sequential Identification
4. ARMA Model Identification from Partial Observations
5. Filling Missing Data Using ARMA Coefficients
6. Validation of Theorem 1
7. Applying the Results of Theorem 2 

Appendix II
Notes and References II
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Outline Chapter II

Autoregressive-moving average (ARMA) filters have been widely used 
to model deterministic events and random processes. The most important 
property of the ARMA filters is that they can adequately describe the 
input-output relationship of a uniformly sampled, linear, time invariant 
dynamic system. In the case of nonuniform sampling, a time invariant 
system results in a time varying discrete system which can not be 
analytically studied using ARMA model techniques.

In this chapter we present the results of a study that can be used 
to model partially sampled dynamic systems. The term partially 
sampled system is used with the following meaning: sampling of output 
signals occurs periodically and uniformly but for certain time intervals 
no samples are taken. We also use the term uniform sampling with 
missing data points interchangeably. More specifically, the following 
two problems are addressed:

(1) Given a table of input-output data of a partially sampled system, 
find the ARMA coefficients corresponding to a uniformly sampled system.
(2) Given the ARMA coefficients of a partially sampled system, find the 
missing output data points by interpolation.

The chapter is organized into 7 sections and an appendix. Sections 
1, 2 and 3 provide the introductory background we use for the next three 
sections. A list of the vector-matrix notational conventions and the 
definition of the ARMA(N,M) model is given in section 1. Section 2 
outlines the least squares ARMA model identification procedure and 
section 3 summarizes the sequential identification algorithm based on 
Kalman filter theory. In section 4 we present the new results on ARMA
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model identification based on partial observations and the next section
(5) deals with the interpolation of the missing data points. Sections 6 
and 7 are devoted to the justification of the previous theory.
Simulation programs and results are given to validate the assertions. 
Finally, in appendix II we include the programs used for the simulations 
and a list of references.

1. Notation and Conventions

x=(x„ X- ... xlt) means that x is a row vector of N elements 1 2 N

x=(x ,x2,. *’V means that x is a column vector of N elements

/

xi
means that x is a column vector of N elements

A=(a .) 
ij

matrix A consisting of elements a
ij

(a : i=1,N; j=1,M) matrix A with dimension N by M
ij

11 12 ... 1M
21 22 ... 2M

N1 N1 ... NM

has identical meaning with (a : i=1,N; j=1,M)
ij
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11 ' x ... 1M' 
y 22' ... 2M’

N1 1 w ... NM'

means that the elements a . a,. and a „ have12 21 N2
been replaced by the scalars x, y, w

1 2
= y i y2

3 4 y
. y3 V

In general, we write the index of the variable 
instead of the indexed variable

Definition of an ARMA(N,M) model

Let {u(k)} be a deterministic sequence of real numbers and {e(k)} 
be a white random process of zero mean and variance R. An ARMA model of 
degrees N and M is defined by the difference equation

y(k)=a y(k-1)+a y(k-2)+...+a y(k-N)+b u(k-1)+..,+b u(k-M)+e(k) 1 2  N 1 M

where M<N and a , b are not equal to 0= N M
Taking the Z transform of the above equation and rearranging terms, we 
find

-1 -Mb z +...+b z 1
Y (z) = — -  ----------- U (z) + ----------------- E (z)-1 -N -1 -N1-a^z -...-aNz 1“a1z -...-a^z

The first ratio is the transfer function from U(z) to Y(z) and the
second ratio is the transfer function from E(z) to Y(z). Now, we
introduce the notation
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f = ( 3 ̂ t 3^ t • • • ’ * ’ * ’ ^

C(k)=( y(k-1) ... y(k-N) u(k-1) ... u(k-M) )

Then, the ARMA(N,M) equation can by written in vector form

y(k)=C(k)f+e(k) (i)

2. Least Squares Identification

The least squares identification problem is formulated in the 
following manner: Estimate the vector f using the observations (y^.y^

...y ) and minimizing the total equation error K

K 2
J(f) e (k)

k=1
where,

e(k)=y(k)-C(k)f for k=1,2 K

Solution

Rewriting equation (i) for k=N,N+1,...,K we form the system of linear 
equations

y(N+1) ~C(N+1 )" "e(N+1)
y(N+2)

_
C(N+2)

f +
e(N+2)

y( K ) C( K ) e( K )
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The coefficient matrix of f (containing the rows C(N+1)...C(K) ) is 
denoted by W and it is partitioned in two blocks A and B as follows

W=(AiB)

r
N

\
N-1 ... 1 N N-1

\
... N-M+1

N+1 N ... 2 N+1 N ... N-M+2

A = B =

K-1
k

K-2 ... K-N y K-1
<

K-2 K-M /

Matrix A has dimensions K-N by N and depends only on y(1),...,y(K-1). 
Matrix B has dimensions K-N by M and depends only on u(N-M+1),...,u(K- 
1). By defining Y to be the column vector of y's in (ii), and E to be 
the column vector of e's, we can rewrite (ii) in compact form

Y=Wf+E

In this equation Y and W are known and f, E are unknowns. Also note 
that minimization of the sum of squares of the errors e(k) is equivalent 
to minimizing

TJ(f)=E E with respect to f.

The solution of the above problem [1] is unique in the case

rank(W|Y) = N+M

and it can be found by the formulas

f*=W+Y
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where,

+ T -1 T W =(W W) W

resulting in a minimum total error

J(f')=YT(I-WW+)Y.
+Note that if W is a square matrix of full rank (N+M), WW =1 and

the total error J(f1) is 0. Also, by replacing W+ by the generalized 
Penroze inverse [2], a less restrictive solution f' can be found 
relaxing from the rank(WlY)=N+M condition.

3. Sequential Identification

Let (y(1),y(2),...,y(K)) be an observation set of K measurements 
and f(K) be an estimate of f (least squares estimate or any other 
estimate) based on the above set. The ARMA model equation (i) can be 
written in the following state form

f(k+1)=If(k) k=K,K+1,...
y(k)=C(k)f(k)+e(k)

The unity matrix that appears in the first equation has dimensions N+M 
by N+M. This means that the above system has N+M poles on the unit 
circle, and because C is a function of the time index k, the system is 
time varying. The problem is to find least squares estimates f(n) of f 
based on the next observations K,K+1,...,K+n,...
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Solution

The following algorithm is the result of a time varying Kalman filter
[3] for the above system:

(1) Get y(n+1) and u(n+1). Formulate
C(n+1)=( y(n) y(n-1) ... y(n-N+1) u(n) ... u(n-M+1) )

(2) Compute the Kalman gain (vector)

v p ( n > T ,L(n+1)=  C (n+1)
P

1 P(n) T— +C(n+1)---C (n+1)
L q P

(3) Estimate f recursively by
f(n+1)=f(n)+L(n+1)£y(n+1)-C(n+1)f(n)J

(4) Update the error variance using 

P(n+1)=-~— [p(n)-L(n+1)C(n+1)P(n)]

The following notes explain the meaning and the significance of the
terms that appear in the above algorithm:

(a) The inverse in step (2) is a scalar quantity. No matrix inversion 
is required.

(b) Matrix P has dimensions N+M by N+M and corresponds to the variance
of the estimation error f(k)-f. Initially, for n=K, P(n) in step
(2) can be set equal to el where e is a large positive number.

(c) The scalars p and q can take the values
p=1 q=1/R for ordinary Kalman filtering (R=var{e))

0<p<1 q=1-p for exponential smoothing Kalman filtering [4]
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p=1 q=small positive number for Kalman filtering with unknown 
measurement noise.

(d) In order for the filter to converge, uniform observability [5] is 
required. This implies that the Fisher information matrix [6]

F
Z c <J+1 )C(j+1) 
j=K

is positive definite for all the final values F>K.

Using the expression for C(j+1), we find

(  '  
y( j)y( j) y(j)y(j-D ... y(j)u(j-M)

y(j-DyCj) y(j-Dy(j-D ... y(j—1 )u(j—M)

• • • •

u(j-M)y(j) u(j-M)y(j-1) ... u(j-M)u(j-M)

where the summation limits extend from j=K to F. Observe that when 
F— >oo(infinite number of observations) the above summations correspond 
to the statistical autocorrelations and crosscorrelations of y and u
[6]. More specifically, if the system is unforced u(j)=0 and the Fisher 
matrix is the same as the partial correlations Toepliz matrix [7].

4. ARMA Model Identification from Partial Observations

Problem Formulation
Let (v ,y ,...,y ) be a set of uniformly collected observations 1 2  K
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from which (y., y.,...yv) are missing (bad data). Assume also that 1 J K
the driving input sequence (u , u , ...,u ) is partially known and1 2 K-1
(u ,u ,...,u ) are missing. The problem is to find the ARMA coeffi-
i j k

cient vector f in a manner that the total equation error
2 2 2 2 e (1)+..,+e (i-1)+e (i+1)+...+e (K)
(terms i,j,...k are not included)

is minimum.

Theorem 1

The following algorithm finds the optimum vector f (in the least squares 
sense) for the missing data problem:

(1) Formulate the matrix W=(A!B) and the Y vector according to
equations (ii) and (iii). Replace the unknown elements
with 0.

(2) Form the sets D(n)={n-N,n-N+1,...,n) for n=i,j,...,k
(3) Form the union U(i,j,...,k)=D(i)uD(j)u...uD(k).
(4) Define a matrix Q with elements e wherenm

e 1̂ for n=m nm '
=1 if n=m and n does not belong to U(i,j,...,k)
=0 if n=m and n belongs to U(i,j,...,k)

(5) Find the Q-weighted least, squares solution of the
equation Y=Wf+E, that is

T -1 T f=(W QW) W QY
Then, f minimizes the total equation error.
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Proof

The proof of theorem 1 is based on the special form of the equation 
Y=Wf+E. For simplicity we assume that only y(i) and u(i) are missing.

Y

1 N+1
2 N+2
• •
• •

i-N I— i s

•
!__ !
•

• •
• •
i •

K-N
•
K y

B

N N-1 ... 1
N+1 N ... 2 

• • •

i-1
• • «

r ~ "l i i-1 ... i-N+1
i i+1 i ... i-N+2

|_i+N-1 ... i 
• • •

• • •
*

a+

N
N+1

i-1
i
i+1

N-1 • • • N-M+1
N • • •

t i t

N-M+2

i-1

• • • 

• • • i-M+1
i • • • i-M+2

-1
• • • 

• • • 

• • •

i-M+N

• • •

b+

u

N+1
N+2

!--11 i ' L_J
i+1

K

We observe that the missing datum y(i) appears in the (i-N)-th row of 
the left side and in rows i-N+1,...,i of the right side of matrix A. 
Also, because N>M, the missing input u(i) appears at most at the (i- 
N+1,...,i)-th rows of the right side of matrix B. Therefore, by 
deleting the rows

{i-N,i-N+1,...,i}

the resulting equations do not contain the unknowns y(i) and u(i). 
Calling Y 1 and W f = CA'iBT) the vector Y and the matrix W=(AiB) after

L
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deleting the above rows, the least squares solution of the equation

Y'sW’f+E'

with respect to f will gives the ARMA coefficients based on the 
observations y(1),...,y(i-1),y(i+1),...,y(K). This solution is:

T -1 T f'=(W' W f) W  Y'

But this is equivalent to

f'=(w tq w )“1wtqy

where Q is a diagonal matrix which has elements equal to 1 except at the 

diagonal positions {i-N.i-N+1,...,i} which are equal to 0. When the 
observations y(i),y(j),...,y(k) are missing, the above matrix Q can be 
easily verified to be given by the algorithmic steps (2), (3) and (4). 
This completes the proof of theorem 1.

Note

If the number of observations are K, and there are no missing 
observations, the number of equations is K-N. If S sequential 
observations are missing (say i,i+1,...,i+S-1) then the number of 
equations reduces to (K-N)-(S+N)=K-S-2N. If S observations which are N 
indices apart (say i,i+N,i+2N,...,i+(S-1)N ) are missing, then the 
number of equations reduces to (K-N)-S(N+1)=K-S-(S+1)N. In all the 
above cases K should be sufficient large such that the resulting 
equations are more than N+M. This does not guarantee the existence of a 
unique solution but it is a necessary condition for it.



7^
5. Filling Missing Data Using ARMA Coefficients

Theorem 2

The following theorem can be used to interpolate missing data when the 
ARMA coefficients are known.
Let (y , y ...,y ) be a set of observations and (u , u ...,u ) be a 1 2 K 1 2 K
set of driving inputs to an ARMA(N,M) model. Assume that:
(1) The observations with indices i,j,...,k are missing (bad data).
(2) The ARMA coefficients have been estimated. (Theorem 1 can be

used for that purpose)
(3) The equation errors e(k) have been estimated at the known data

points.
x j. kThen, the vector Y * of the missing data and the error vector 

i j. kE ’ can be found by solving a least squares problem of the form
i j • k ij.k(known vector)=(known matrix)Y +E —

Note that a least squares solution implies that the total error

(E1J-k) V j-k )
is minimized.
The proof of the theorem requires several steps and some more notational 
conventions. To make the proof easier to follow we give a series of 4 
lemmas and then we prove the theorem. The importance of this result is 
that the missing data can be expressed linearly with respect to 
known quantities in an algorithmic manner.

Lemma 1
The following equality is true for any scalar s and any N dimensional 
vector a.
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r
s 12' 13’ ... IN1

r
0 12' 13' ... 1N'

21 ' s 23' ... 2N'
• a =

21 ' 0 23' ... 2N'

M1 'V. M2' M3' ... s/y M1 'V, M2' M3' ... 0 /

a + sa

Lemma 2

The following equality is true for any N dimensional vector a

N
N+1

1
i+1

N-1
N

i-1
i

Li+N-1 i+N-2
i+N

K-1 K-2

1

2

. i-N+ll

• t • i

J

K-N

a -
replace the i-th 
elements with a 0's

/ •

0

a +

N
0

y.i

We now introduce the notation:

A = Matrix A after replacing the elements y by 0
i

m = Vector containing the a-vector at the corresponding rows of A a

that contain a The remaining elements of m1 are equal to 0. i a
Then, the above equation can be written in a more compact form:

i i Aa=A a+m y a l



76

Lemma 3

Let be indices of elements of matrix A (A has a similar form
as in lemma 2). Assume also that

N+1<i,j,...,k<K-N+1 

Then, application of the result of lemma 2 gives

. ij.k r i J k Aa=A a+[m m ...m ]a a y .
3

ij.kwhere A denotes the matrix A after replacing the elements
y . . y . y, by o.x j k
Now, use the notation

ij.k i j kM =[m m ...m ] a a a a

'ij.k"

y.i

yj

ykV /
to rewrite the above equation. The result is

. „ij.k ,,ij.kv Aa=A a+M Ya ij.k
Lemma 4

Let E be a vector with elements (e^: i=1,...,N). Then,
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r. r . 1  1E=E +n e.

where,

E = Vector E after replacing the i-th element with a 0 

n1 = Column of 0's except with a 1 at the i-th position

Extending the above statement, we can derive
"e

ij.k i j k E=E +[n n ...n J

L k J

and by using the notation
ij.k i j k N =[n n ...n J

we have

Eij.k' e . J

ij.k

Proof of Theorem 2

The following equation relates the observations with the parameters f 
Y=Wf+E or Y=Aa+Bb+E 

where W, A and B have been defined in section 2. Using lemma 4 we can 
separate unknown terras from knowns for the Y and E vectors
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Y_y  ̂J • J • ̂y
ij.k

E=Ei:i*k+N1';i’kEij.k
Then, using lemma 3, we can separate the unknown y’s from A

ij.k ij.k Aa=A J a+M Ya ij.k

Substituting in Y=Aa+Bb+E we find

„ij.k „ij.k„ .ij.k wij.k„ „ij.k „ij.k_Y +N Y =A a+M Y +Bb+E +N Eij.k a ij.k ij.k

and equivalently,

Yij.k_4ij.ka_Bb_Eij.k=(Hij.k_nij.k)Y +Mij.kE (v)
a ij.k ij.k

This equation is of the desired form 
(known vector)=(known matrix) (unknown parameters)+(error vector) 

To complete the proof of the theorem 2, we need to show that

(Nlj,kE )T(Nlj,kE )=e2(i)+e2(j)+...+e2(k) ij.k ij.k
But this is readily obtained from the fact that the square matrix

(NiJ-V(NiJ-k>

contains zero elements except at the i-th, j-th,...,k-th diagonal 
positions. Therefore, minimization of the error term in (v) is 
equivalent in minimizing the sum of the squares of the equation error at 
the missing points i,j,...,k.
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6. Validation of Theorem 1

Extensive simulations were used to validate the results of theorem 
1. In this section we describe the software written for this purpose 
and we summarize the experiments performed.

The software consists of two main programs and several subroutines. 
The first (called ARMASIM), can be used to simulate an ARMA model; the 
second (called ARMAIDE) can be used to identify an ARMA model from a 
table of complete or incomplete input-output data. Several disc files 
are used to hold the intermediate results, so the user can plot input- 
output relations and trace back the flow of the procedures. The 
subroutines called by the above programs are

ARMINI (Initiates the ARMA model)
ARMA (Finds the output of the model for a given input)
RANDUL (Random number generator)
GAUSS (Gaussian random number generator)
LSQ (High accuracy least squares equation solver)
SQRDC (Q-R decomposition routine used by LSQ)
SQRST (Used by LSQ)
VN0RM2 (Finds the Eucledian norm of a vector)

The main programs and the above subroutines are given in appendix II. 
In addition, many routines from EASYPACK are called to perform matrix 
operations and miscellaneous general purpose functions. (EASYPACK and 
the interactive program EASY are discussed in more detail in the 
appendix on software support.)

All the experiments were performed using an input sequence u(i)
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i=0...63 which is given in figure 1. As a first step, an ARMA(4,2) 
model with coefficients

a(1)=-0.11, a(2)=-0.22, a(3)=-0.23, a(4)=-0.10 
b( 1)= 0.90, b(2)= 0.85

was used to find the output function y(i) (given in figure 2). At this 
phase, no noise was added to the output y(i). As a second step, the 
ARMAIDE program was used to identify the coefficients a(.), and b(.) 
from the u~y table generated before. Then, we assumed that 
y(25)...y(37) were missing and ARMAIDE was used again to find the 
coefficients. A part of the printout is given in sample 1 and 2.
Figure 2 and samples 3, 4 and 5 show the effect of adding noise to the 
measurements y. Notice also that in sample 3 and 5 the order of the 
autoregressive part of the model (N) was assumed to be 5 instead of 4. 
The results were

a(5)=-0.127E-02 and a(5)=-0.647E-02

respectively which are one order of magnitude less than the other 
coefficients. In general, the identification was succesful for low 
noise level measurements; the estimation error for the parameters a and 
b was almost independent of the amount of missing data.
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input u(k)

64*t i m e

Figure 1: Input sequence

response y(k)

time

Figure 2: Output sequence (no noise)
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response y(k)

v =0.05

- a  25

-25

Figure 3: Output sequence (noise added)



B>ARMAIDE (command to execute the ARMAIDE progr

Enter estimates of the order of the model N,M: 5,2 
Enter index limits of missing points 11, 12: 25, 37

Solving a system of 59 equations with 7 unknowns 
Please wait...

Results: N, M, estim-a-pars estim-b-pars
1: 4.000
2: 2.000
3: -0.110
4: -0.220
5: -0.230
6: -0.100
7: 0.900
8: 0.800

Sample 1: Using the ARMAIDE program

4=given estimate of N 
2=given estimate of M 

The calculated parameters (a and b)
Dimensions: 6 by 1

1: - . 1 1 0  

2: -.220
3: -.230 Sample 2: No noise, no missing points
4: -.100E+00
5: .900
6: .850

0.101E-05 = norm2 of the estimation error
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5=given estimate of N 
2=given estimate of M 

The calculated parameters (a and b)
Dimensions: 7 by 1

1: - . 1 2 0

2: -.208

4: -.943E-01
3: -.247 Sample 3: Variance of the noise =0.01 

Missing points 25...37
5: -.127E-02
6: .89S
7: .808

0.361E—01 = norm2 of the estimation error

4=given estimate of N 
2=given estimate of M 

The calculated parameters (a and b) 
Dimensions: 6 by 1

1: -.148E-01
2: -.260

4: -.866E-01
3: -.222 Sample 4: Variance of the noise = 0.05 

No missing points

5: .899
6: .751

0.278 norm2 of the estimation error

5=given estimate of N 
2=given estimate of M 

The calculated parameters (a and b)
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Dimensions: 7 by 1
1: -.130
2: -.181
3: -.297 Sample 5: Variance of the noise =
4: -.742E-01 Missing points 23...34
5: -.647E-02
6: .900

7: .850

0.181 = norm2 of the estimation error

7. Applying the Results of Theorem 2

With the following example we illustrate the details of computing 
the values of missing points using the ARMA coefficients.

Assume (for the moment) that the discrete system

y(k) = -0.2y(k-1)-0.1y(k)+5.0u(k)+e(k)

is known and it is driven by the input sequence u(i) for i=0 to 15. The 
following table shows an experimental input sequence u(i) and the 
associated response y(i). (The table is found using the ARMASIM 
program.)

u( 0)=+1 y( 1)= 5.00
u( 1)=+1 y( 2)= 4.00
u( 2)=+1 y( 3)= 3.70
u( 3)=+1 y( 4)= 3.86
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u( 4)=-1 y( 5)=-6.14
u( 5)=-1 y( 6)=—4.16 - missing m( 1)
u( 6)=-1 y( 7)=-3.55 - missing m(2)

u( 7)=-1 y( 8)=-3.87 - missing m(3)
u( 8)= 0 y( 9)= 1.13 - missing m(4)

u( 9)= 0 y(10)= .161 - missing m(5)
u( 10) = 0 y(11)=-.145 - missing m(6)
u(11)= 0 y(12)= .0129
u(12)= 0 y(13)= .0119
u(13)= 0 y(14)=-.004
u(14)= 0 y(15)=-.0005
u(15)= 0 y(16)= .0005

Now, inverting the assertion, assume that the above table is known but 
the points y(6) to y(11) are ’missing' (or the collected data are 
’bad’). Our objective is to find the missing points y(6)...y(11).
As a first step we find the ARMA filter coefficients by using the 
program ARMAIDE and declaring that data 6 to 11 are missing; the result 
is,

r
- 0.20

f= - 0 . 10

5.00

with very small error (the norm-2 of the error is of the order E-6). 
Next, we apply the steps of theorem 2.
In the case that E is approximately 0, the following equations are true:

(1) Y = Wf+E
(2) Wf=W'f+M'm (Application of lemma 3)
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(3) Y sY'+N'ra (Application of lemma 4)
(4) Y'-W’f = (M'-N'Jm (Equation to be solved from

theorem 2)

(The notation has been simplified. Instead of using the superscripts 
6,7,...,11 over Y, W, M and N, we simply use a prime.)
For this example, W, W 1, and M' are

W(14 by 3) W'(14 by 3) (-1)*Mf(14 by 6)

- — —

1: 4.00 5.00 1.0 4.00 5.00 1 .0 0 0 0 0 0 0
2: 3.70 4.00 1.0 3.70 4.00 1 .0 0 0 0 0 0 0

3: 3.86 3.70 -1.0 3.86 3.70 -1 .0 0 0 0 0 0 0
4: -6.14 3.86 -1.0 -6.14 3.86 -1 .0 0 0 0 0 0 0

5: -4.16 -6.14 -1.0 0.00 -6.14 -1 .0 .2 0 0 0 0 0
6: -3.55 -4.16 -1 .0 0.00 0.00 -1.0 .1 .2 0 0 0 0

7: -3.87 -3.55 0.0 0.00 0.00 0.0 0 .1 .2 0 0 0

8: 1.13 -3.87 0.0 0.00 0.00 0.0 0 0 .1 .2 0 0

9: .161 1.13 0.0 0.00 0.00 0.0 0 0 0 .1 .2 0
10: -.145 .161 0.0 0.00 0.00 0.0 0 0 0 0 .1 .2
11: .0129 -.145 0.0 .0129 0.00 0.0 0 0 0 0 0 ,1
12: .0119 .0129 0.0 .0119 .0129 0.0 0 0 0 0 0 0

13: -.004 .0119 0.0 -.004 .0119 0.0 0 0 0 0 0 0
14: -.0005 -.004 0.0 -.0005 -.004 0.0 0 0 0 0 0 0

Of course W can not be obtained from the collected data, because 
y(6)...y(11) are missing; but W ! and M' can be found because they do 
not contain y(6)...y(11). In addition, the vectors Y, Y ’ and the matrix 
N' for this example are:



Y( 14) Y'(14) N' (14 by 6)
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1: 3.70
2: 3.86

3: -6.14
4: -4.16
5: -3.55
6: -3.87
7: 1.13

8: .161

9: -.145
10: .0129
11: .0119
12: -.004

13: -.0005
14: .0005

3.70
3.86
-6.14
0.00
0.00
0.00
0.00
0.00
0.00
.0129
.0119
-.004

-.0005
.0005

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
r 0 0 0 0 ■“1

0  I

0 1 0 0 0 0 !
0 0 1 0 0 0 J
0 0 0 1 0 0 1
0 0 0 0 1 0  j

0 0 0 0 0 1 i --1

•0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Again, Y is not known completely, but Y' and N' can be found from the 
collected data. After Y', W', M' and N' have been found, we can use (4) 
to find the vector of missing points m; that is

m = (M'-N') (Y'-W’f)
where

(M + r T 1-1 T'-N') =I(M'-N') (M'-N')J (M'-N') (pseudo inverse)

All the above calculations were performed using the EASY interactive 
program (see appendix on software support); it was verified that 
m(1)...m(6) was identical to the original y(6)...y(11) data points.
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Appendix II
C
c ----------------------------------------------------------------------------------------------------------------
C Main Program for Simulating an ARMA Model Response
C ----------------------------------------------------------------
c
C The flow chart:
C (1) Get the coefficients of the model from the user
C (2) Let the user specify an input sequence u(i)
C (3) Determine the response of the ARMA model
C (4) Save the results on the disc for later processing
C
C a, b, U, Y are in EASYPACK format
C pars is converted in EASYPACK format
C
C George Kontopidis, Oct 80, April 81 
C

Dimension a(12),b(12),pars(50), U(258),Y(258),Z(258)
Common maxwrk,worksp(50)
maxwrk=50

C
Call MINP( a, 'Enter auroregressive coefficients $' )
Call MINF( b, 'Enter moving average coefficients $' )
ST = RGET( 'Enter variance of measurement noise $ ')

C
C...get an input sequense
C u(0) ,u( 1) u(NS-1)
C

Call MGET( 'ARMAINP.DAT$', U )
NS = NDIM(U)

Check NS = IGET( 'Enter simulation steps (less than 256) $')
C

N = NDIM( a )
M = NDIMC b )

C
C...initiate the ARMA model and the random generator 
C

Call ARMINIC a(3), b(3), N,M, pars )
Call RANDULC30117)

C
C...generate the output sequnce 
C y( 1) ,y(2) y(NS)
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c
Call SETDIMC Y f NS, 1 )
Do 20 i=1,NS

i11=i-1 
i22=i+2
Y(i22)=ARMA( U(i22), pars) + GAUSS( 0., st ) 
Write(5,101) 111,U(i22),i,Y(i22)

101 Format (' u( ’ ,13, ' ) = '.1G12.2, 1 y( • ,13, ' ) = MG12.2)
20 Continue
C
C...save the results on disc 
C

NM2=N+M+2
Call PACKC pars, NM2, NM2, 1 )
Call MSTOREC 'ARMAPAR.DAT$', pars )
Call MSTOREC 'ARMAINP.DAT$', U )
Call MSTOREC fARMAOUT.DAT$', Y )

Check Call MPRNC Y.'The response is...$')
END

C
C ------------------------------------------
C Subroutine A R M I N K  a,b,N,M,pars )
C ------------------------------------------
c
C Purpose: Initiates the ARMA model parameters in pars.
C Sets initial state 0. The notation used is
C y(k) = aC1)yCk-1)+...+a(N)yCk-N)+
C b(1)u(k-1)+...+bCM)u(k-M)
C
C Usage: Call ARMINIC a,b,N,M,pars )
C
C a(1:N) Coefficients of the autoregressive part of the model
C b(1:M) Coefficients of the moving average part of the model
C pars COutput) work space of size 2CN+M+1) containing:
C parsCl)=N, parsC2)=M, parsC3:2+N)=aCi)*s
C pars(3+N:2+N+M)=bCi)1s, parsC3+N+M:2+2N+2M)= old states.
C
C Required Libraries: EASYPACK 
C
C George Kontopidis, Sep 80, March 81 
C
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Subroutine ARMINIC a, b, N, M, pars )
Dimension a(1), b(1), pars(1)
Common maxwrk,w(1)

C
NM=N+M 
pars(1) = N 
pars(2) = M

r

C...L always points to the next free location in pars 
C

L=3
C
C...transfer a(i)*s to pars 
C
C WRITE(5,101) (A(J),J=1,N)

Call VEQU( pars(L), a(1), N )
L=L+N

C
C...transfer b(i)’s to pars 
C

Call VEQU( pars(L), b(1), M )
L=L+M

C
C...initiate the work space to 0 (initial conditions)
C

Call VZEROC pars(L), NM )
C L=L+NM

Return 
END

C
C ---------------------------------
C Function ARMA( u, pars )
C ---------------------------------
c
C Purpose: Following the notation given in ARMINI subroutine,
C this function generates y(k+1) when called with u(k).
C
C Usage: yk = ARMA( uk, pars )
C
C uk Input real number representing the value u(k)
C pars Input-Output real vector of size 2CN+M+1) used as work



C area. Initially, pars must be set by ARMINI.
C
C Required Routines: EASYPACK
C
C George Kontopidis, Sept 80, April 81 
C

Real Function ARMAC u, pars )
Real pars(1)
Common maxwrk,W(1)

C
N=pars(1)
M=pars(2)

C
C ia points the a’s in stack 
C ib points the b's in stack 
C iy points the y(k-1),...,y(k-N)
C iu points the u(k-2),...,u(k-M-1)
C

ia=3
ib=ia+N
iy=ib+M
iu=iy+N

C
C...push down the stack of input values 
C New state: u(k-1) <new-input>, u(k-2),...u(k-M)
C

i=iu+M-1
10 If( i.le.iu ) Go to 11 

iold = i-1
parsC i )=pars( iold )
i=i-1
Go to 10

11 pars( iu ) = u 
C
C...find the output y(k)
C

ARMApr = VDOTC pars(ia), pars(iy), N)
1 + VDOTC pars(ib), pars(iu), M)

C
C...push down the stack of the output values 
C New state: y(k) <new output>,y(k-1),...,y(k-N+1)
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c
i=iy+N-1

30 If ( i.LE.iy ) go to 31
iold = i-1
pars( i )=pars( iold ) 
i=i—1 
Go to 30

31 pars( iy ) = ARMApr 
ARMA=ARMApr 
Return
END

C ------------------------------------------------------
C ARMA COEFFICIENTS IDENTIFICATION ALGORITHM
C ------------ ------------------------------------------
c
C Algorithm: Reads the input sequence ARMAINP.DAT
C Reads the output sequence ARMA0UT.DAT
C Assumes that output data 11:12 are missing
C Finds the ARMA coefficients using the remaining
C Compares these esimates with the true parameters
C
C George Kontcpidis, April 81
C

Dimension W(65,10), U(67),Y(67),pars(15),B(15),E(67)
Common maxwrk, worksp(100)

C
C...Read the data 
C

ic=65
maxwrk=100
Call MGET('ARMAINP.DAT$1, U )
Call MGET('ARMAOUT.DAT $’, Y )
Call MGET('ARMAPAR.DAT$’, pars)

Check Call MPRN( U,'Verify the input vector$’)
Check Call MPRN( Y,’Verify the output vector$')
Check Call MPRN( pars,'Verify the parameter vector$')

Call PRN (’Enter estimates of the order of the model N,M $’) 
Read( 5,100) N,M
Call PRN (’Enter index limits of missing points 11,12 $') 
Read( 5,100) 11,12



100 Format(2I5)
C
C...Define some constants for later 
C

nf = MDIM(Y) 
nfn = nf-N 
nm = N+M 
ill = 11-N 
i22 = 12

C
C...formulate the W matrix. Put the y's first 
C

Do 10 i=1,nfn 
Do 10 j=1,N 

it=N+i-j+2 
W(i,j)=Y(it)

10 Continue
C
C...then put the u's 
C

Do 20 i=1,nfn 
Do 20 j=1,M 
it=N+i-j+3 
jN=j+N
W(i,jN)=U(it)

20 Continue
C
C...Find the second side of the equations 
C

Call VEQlK Y(3),YCN+3),nfn )
Call SETDIM( Y,nfn,1 )

C
C...If there exist bad points, put a 0 there 
C

If(ll.LE.O) Go to 301
If(i11.LT.2 .OR. i22.GT.nfn) Call PRN('Bad Limits. 
Do 310 i=i11,i22

Do 300 j=1,nm 
W(i,j)=0.

300 Continue
Y(i+2)=0.



310 Continue
301
n

Continue
L

Call PACK( W,ic,nfn,nm)
Check Call MPRN( W, 'Verify the W matrix$')

Call MSTOREC'ARMAW.DAT$',W)
Check Call MPRNCY, 'Verify the Y vector$')

Call MSTOREC'ARMAY.DAT$',Y)
c
C...Solve the linear equations 
C

11 = NDIM(W)
12 = MDIM(W)
Write(5,101) i1,i2

101 FormatC' Solving a system of f,13,1 equations by ',
1 12,' unknowns')

Call LSQ( B,E, W,Y )
C
C...Print the solution 
C

Call MPRN( pars, 'N, M, true a-pars, true b-parsi1)
Call IPRN( N,'=given estimate of N$')
Call IPRN( M,'=given estimate of M$')
Call MPRN( E.'The calculated parameters (a and b)$')
xn2= VN0RM2( E(3).E(1) )
Call RPRN( xn2,'= norm2 of the estimation error$') 
End

C
c ----------------------------------
C Generate a GAUSSIAN deviate
C ----------------------------------
c
C amean = mean value, stdev = standard deviation
C

Real Function GAUSS( amean, stdev )
Logical i

C
GAUSS = 0.
Do 10 i=1,12 

10 GAUSS = GAUSS + RANDULC 0 )



c
GAUSS = (GAUSS-6.)*stdev +amean
RETURN
END

C
C -----------------------------
C Random Number Generator
C -----------------------------
c
C Generates uniform random numbers using the Linear Congruential 
C Method (Knuth, vol 2). The general formula is 
C
C x(N+1) := ( a*x(N)+b ) mod M
C
C where a, b and M are ’appropriate constants'.
C
C Usage: Call RANDULC large-int ) to seed (initiate)
C x = RANDULC 0 ) to generate a point.
C
C George Kontopidis, Aug 1980 
C

Real Function RANDULC i )
Integer xn
Real norm
If( i.EQ.O ) Go to 10

C
C...seed the generator for my computer
C

norm = 2.**15-1 
xn = i

C
C...generate a point 
C
10 xn = X'4205'*xn + 30947

RANDUL= abs( float(xn)/norm )
Return
END
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c ---------------------------------------------------------------------------------------------------------
C Main Program to Test the Random Generator RANDUL
C -------------------------------------- ------------------
c
C George Kontopidis, April 81
C

Dimension pdf(202) 
irun=1

1 Call IPRNCirun,' Random Generator pdf Test $')
npoint = IGETC'Number of points $')
nint = IGETC’Number of intervals (<200) $')

C
C...Initiation of working areas 
C

Call RANDULC 30201 )
Call VZEROC pdf, nint ) 
xu=1./float(nint) 
fu=1./( floatCnpoint)*xu )
Call PRNC'Next line: each # indicates 500 RANDUL calls$') 
Call CRLF

C
C...PDF computation 
C

Do 300 i=1,npoint
C
C...print a dot every 500 points 
C

x=RANDUL( 0 )
IfC modCi,500).EQ.O ) Call PRN$C’#$r)
Do 299 m=1,nint

t0sfloatCM-1) 
tlafloatCM)
If (Cxu*t0 .LE. x) .AND. Cx .LE. t1*xu))

1 pdf(m)=pdfCm)+fu
299 Continue
300 Continue 
C
C...perform the chi-square test 
C

xsq=0.
Do 600 i=1,nint



600 xsq = xsq+(pdf(i)-1.)*(pdfC i)—1)
xsq = xsq * float(npoint)/float(nint)

C
C...Print the pdf distribution 
C

Call PACK( pdf, nint, nint, 1 )
Call RPRN( xsq, ' = chi square $')
Call MPRN( pdf, 'The result distribution is...$')
Call CRLF
irun=irun+1
Go to 1
END

C -------------------- -----------------------
C FINDS THE LEAST SQUARES SOLUTION
C ------------------------------------------
c
C Purpose: To fine the least squares solution of the system
C
C X * B = Y + E
C where B minimizes (X*B-Y)'(X*B-Y)
C
C This subroutine has been tested in finding the minimum
C norm solution and the least squares solution of 'big'
C matrices of dimensions up to 128 by 32 using single
C precision operations only. Oveflows and underflows
C are treated properly and partial pivoting is performed.
C The main reference used was:
C
C LINPACK user's guide by Dongarra e.l. SIAM 1979
C
C It has been modified to the EASYPACK format to simplify
C the usage. The routine calls the SQRDC and SQRSL
C routines to perform the Q-R decomposition and the least
C squares formulation. The result has been found more
C accurate than the GINV routine in EASYPACK and LLSQAR
C routine of the IMSL library.
C
C Parameters:
C B (Output) Least squares solution of the system X*B=Y+E
C E (Output) Error of the least squares E=X*B-Y
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C X (Input ) Coefficient matrix X
C On return X is DESTROYED (for details see LINPACK p. 9-11
C Y (Input ) Right side of equations
C
C George Kontopidis, April 81
C

Subroutine LSQ( B,E,X,Y )
Real X(1),Y(1),B(1),E(1)
Integer P
Common maxwrk,iwork(1)

C
C iwork(1:P) is used as jpvt(1:P) (pivoting indices)
C work(iw1:iw1+P) = QRAUX
C work(iw2:iw2+P) = work
C maximum work space used: 2.5*P real memory storage units
C

N = NDIM(X)
LDX = N
P = MDIM(X)
If (maxwrk.LT.2*P+(P+1)/2) Call PRN('Small wrksp for LSQ$')
iw1 = P+1
iw2 = iw1 + 2*P
Call SETDIM( E, N, 1)
Call SETDIM( B, P, 1)

C
C...Initialize jpvt so that all columns are free 
C

Do 10 j=1, P 
10 iwork(j)=0
C
C...QR decomposition of X 
C

Call SQRDC( X(3),LDX,N,P, iwork(iwl), iwork(1), iwork(iw2),1)
C
C...Solve the least squares problem 
C

Call SQRSL( X(3),LDX,N,P, iwork(iwl), Y(3), E(3),E(3),B(3),
1 E(3),E(3),110,info)

If (info.NE.O) Call PRN('Singular Array...!')

...initialize jpvt



write(5,102) (B(j+2),j=1,P)
102 FormatC* T, 10G13.6)

write(5,101) (iwork(j),j=1,P)
101 FormatC* *,2014)

Do 40 j=1,P 
40 iwork(j) = -iwork(j)
C
C.. .unscramble the solution 
C

Do 70 j=1,P
If(iwork(j).GT.0) go to 70 
k = -iwork(j) 
iwork(j)=k 

50 Continue
If(k.EQ.j) Go to 60 
temp = B(j+2)
B(j+2) = B(k+2)
B(k+2)= temp
•i work (k) =-i work (k)
k=iwork(k)

Go to 50
60 Continue
70 Continue
C
C...inverse the sign of E 
C

Call VSCALEe E(3),-1.,E(1))
Return
END

C
C
C
c
c
c
c
c
c
c

Q-R Factorization of an N by F matrix X

X Real (LDX:N by P) input. On output X contains the
Q-R decomposition required by SQRSL. 

jpvt(1:P) If job=0 jpvt is not used. Else defines the order
of searching for pivoting 

workei:P) If job=0 work is not used.
QRAUX(1:P) (output) Used by SQRSL to recover the Q-R decompo-



C sition.
C job Pivoting flag; if job=1, pivoting is performed
C
C Reference: UNPACK Chapter 9 and appendix C
C
C George Kontopidis, April 81 
C

Subroutine SQRDC( X,LDX,N,P,QRAUX,jpvt,work,job )
LogicaL swapj, negj 
Integer LDX,N,P,job 
Integer jpvt(1)
Integer j, jp, L, Lp1, Lup, maxj, pL, pu 
ReaL X(LDX,1), QRAUX(1), work(1)
ReaL maxnrm, tt 
ReaL sdot.nrmxL, t

C
pL = 1 
pu=0
If (job.EQ.O) Go to 60

C
C...Pivoting has been requested. Rearrange the coLumns according 
C...to jpvt 
C

Do 20 j=1,P
swapj = jpvt(j).GT.O 
negj = jpvt(j).LT.O 
jpvt(j)= j
If (negj) jpvt(j) = -j 
If (.NOT.swapj) Go to 10 

C replaced... If(j.NE.pL) Call SSWAP(N,X(1,pL),1,X(1,J),1)
If(j.NE.pL) Call VSWAP( X(1,pL),X(1,j),N) 

jpvt(j) = jpvt(pL) 
jpvt(pL) = j 
pL = pL+1

10 Continue
20 Continue
C

pu = p
Do 50 jj=1,P

j = P-jj+1
If (jpvt(j).GE.O) Go to 40



jpvt(j) = -jpvt(j)
If (j.EQ.pu) Go to 30 

C replaced... Call SSWAPCN,X(1,pu),1,X(1,j),1)
Call VSWAP(X(1,pu), X(1,j), N) 
jp = jpvt(pu)
jpvt(pu) = jpvt(j) 
jpvt(j) = jp 

30 Continue
pu = pu -1 

40 Continue
50 Continue
60 Continue
C
C...Compute the norms of the free coLumns
C

If(pu.LT.pL) Go to 80 
Do 70 j=pL,pu 

C replaced..QRAUX(j) = SNRM2(M,X(1,j),1)
QRAUX(j) = VN0RM2(X(1,j),N) 
work(j) = QRAUX(j)

70 Continue
30 Continue
C
C...Perform the HousehoLder reduction of X
C

Lup = MIN0 (N,P)
Do 200 L=1,Lup

If(L.LT.pL.OR.L.GE.pu) Go to 120
C
C...Locate the coLumn of Largest norm and bring it into the pivot 
C position.
C

raaxnrm = 0.0 
maxj = L 
Do 100 j=L,pu

If (QRAUX(j).LE.maxnrm) Go to 90 
maxnrm = QRAUX(j) 
maxj = j 

90 Continue
100 Continue

If (maxj.EQ.L) Go to 110



C replaced...

110
120

Call SSWAP(N,X(1,L),1,X(1,maxj),1) 
Call VSWAP( X(1,L),X(1,maxj),N )
QRAUXCmaxj) 
work (maxj) 
JP
jpvt(maxj) 
jpvt(L) 

Continue
Continue
QRAUX(L) = 0.0
If(L.EQ.N) Go to 190

QRAUX(L) 
work(L) 
jpvtCmaxj) 
jpvt(L) 
jP

C...Compute the HousehoLder transformation for coLumn L 
C

Loci = N-L+1 
C replaced... nrmxL = SNRM2C Loci, X(L,L), 1) 

nrmxL = VN0RM2C X(L,L),Loc1 )
If (nrmxL.EQ.0.0) Go to 180
If (X(L.L).NE.O.O) nrmxL = SIGM( nrmxL,X(L,L)) 
Loci = N-L+1 
rLoc = 1.0/nrmxL

C replaced.. Call SSCAL( Lod, rLocI, X(L,L), 1)
Call VSCALE( X(L,L), rLoc, Loci 
X(L,L) = 1.0 +X(L,L)

)

C
c.
c
c

•AppLy the transformation to the remaining coLumns, updating 
the norms

Lp1 = L+1 
If Cp.LT.Lp1) Go to 170 
Do 160 j=Lp1,p

Lod = N-L+1
T = -SDOTCLod,X(L,L),1,X(L,j),1)/X(L,L) 
T = -VDOTC X(L,L),X(L,j),Loc1) /X(L,L) 
Call SAXPYC Lod, T.XCL.L), 1 ,X(L, j), 1)
Call VSADDC X(L,j), T, X(L,L), Lod )
If Cj.LT.pL.OR.j.GT.pu) Go to 150 
If (QRAUXCj).EQ.0.0) Go to 150 
tt = 1.0-CABSCXCL,j))/QRAUXCj))**2 
tt = AMAX1C tt, 0.0 ) 
t = tt

C replaced...

C replaced...
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tt = 1.0+0.05*tt*(QRAUX(j)/work(j))**2 
If (tt.EQ.1.0) Go to 130

QRAUX(j)=QRAUX(j)*SQRT(t)
Go to 140 

130 Continue
Loci = N-L

C replaced... QRAUXCj)=SNRM2(Loc1,X(L+1,j),1)
QRAUX(j)=VN0RM2( X(L+1,j),Loc1 ) 
work(j) = QRAUX(j)

140 Continue
C
150 Continue
160 Continue
170 Continue
C
C...Save the transformation 
C

QRAUX(L) = X(L,L)
X(L,L) = -nrmxL

180 Continue
190 Continue
200 Continue 

Return 
END

C Coordinate Transformations, Projections and Least Squares
C ------------------------------------------------------------------
c 
c 
c 
c

X(LDX:N by P) 
QRAUXC1:P)
Y( 1:N)

C
C

output of SQRDC 
auxiliary output from SQRDC 
input real vector

C job Specifies what to be done. Job has the decimal
C expansion ABCDE with the following meaning
C A .NE. 0 compute QY=Q*Y
C C .NE. 0 compute B (least squares solution)
C D .NE. 0 compute RSD (lsq residual)
C E .NE. 0 compute XB ( X*B )
C B,C,D,E.NE. 0 compute QTY (Q-transp*Y)

Refer to LINPACK Appendic C.107
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c
C George Kontopidis, April 81 
C

Subroutine SQRSL(X,LDX,N,K ,QRAUX,Y,QY,QTY,B,RSD,XB,job,info)
Logical cb,cqy,cqty,cr,cxb
Integer LDX,N,K,job,info
Integer i,j,jj,ju,kp1
Real SDOT,t,temp
Real X(LDX,1),QRAUX(1),Y(1),QY(1),QTY(1),B(1),RSD(1),XB(1)

C
C...set info flag 
C

info = 0
C
C.. .Determine what is to be computed 
C

cqy =job/10000 .NE.O
cqty =mod(job,10000) .NE.O
cb =mod(job,1000 )/100 .NE.O
cr =mod(job,100 )/10 .NE.O
cxb =mod(job,10 ) .NE.O
ju =MIN0(k,N-1)

C
C...special action when N=1 
C

If (ju.NE.0) Go to 40 
If(cqy) QY(1) =Y(1)
If(cqty) QTY(1)=Y(1)
If(cxb) xb(1) =Y(1)
If(.NOT.cb) Go to 30

If(X(1,1).NE.0.0) Go to 10 
info=1 

Go to 20 
10 Continue

B (1) =Y(1)/X(1,1)
20 Continue
30 Continue

If (cr) rsd(1)=0.0 
Go to 250 

40 Continue
C



c,
c

Set up to compute QY or QTY 

(cqy)If
replaced...

If (cqty) 
replaced...

Call VEQU( QY, Y, N ) 
Call SCOPY(N,Y,1,QY,1) 
Call VEQU( QTY, Y, N ) 
Call SCOPY(N,Y,1,QTY,1)

If(.NOT.cqy) Go to 70

C...Compute QY
C

Do 60 j j = 1,ju 
j=ju-jj+1
If (QRAUX(j).EQ.0.0) Go to 50

temp X(j,j)

C replaced..

C replaced..

50
60
70

X(j,j) = QRAUX(j)
loci = N-J+1
T =-SDOT(loc1,X(j,j),1,QY(j),1)/X(j,j)
T =-VDOT( X(j,j),QY(j),Loc1) /X(j,j)
Call SAXPY(lod,T,X(j,j),1,QY(j),1)
Call VSADD( QY(j),T,X(j,j),Loc1 )
X(j,j) = temp 

Continue 
Continue 

Continue
If(.NOT.cqty) Go to 100

C...Compute tanspose(Q)*Y 
C

Do 90 j=1,ju
If(QRAUX(j).EQ.0.0) Go to 80 

temp = X(j,j)
X(j,j) = QRAUX(j) 
lod 
T 
T

replaced.. 

replaced..

80
90
100

= N-j+1
=-SD0T(loc1,X(j,j),1,QTY(j),1)/X(j,j) 
r-VD0T( X(j,j),QTY(j),Loc1) /X(j,j) 

Call SAXPY(lod,t,X(j,j),1,QTY(j),1)
Call VSADD( QTY(j),t,X(j,j),Loc1)
X(j,j) = temp 

Continue 
Continue 

Continue



c
C...Set up to compute B, RSD, or XB. 
C

If(cb) Call VEQU( B,QTY,k )
C replaced... Call SCOPY(k,QTY,1,B,1)

kp1=k+1
If(cxb) Call VEQU( XB,QTY,k )

C replaced... Call SCOPY(k,QTY,1,XB,1) 
loci=N-k
If(cr.AND.k.LT.N) Call VEQU( RSD(kp1),QTY(kp1),Loc1)

C replaced... Call SC0PY(loc1,QTY(kp1),1,RSD(kp1),1)
If(.NOT.cxb.OR.kp1.GT.N) Go to 120 
Do 110 i=kp1,N 

XB(i)=0.0 
110 Continue
120 Continue

If(.NOT.cr) Go to 140 
Do 130 i=1,k 

RSD(i)=0.0 
130 Continue
140 Continue

If(.NOT.cb) Go to 190
C
C...Compute B 
C

Do 170 jj=1,k

C

If(X(j,j).ME.0.0) Go to 150 
info=j 
exit
Go to 180

150 Continue
B(j)=B(j)/X(j,j)
If(j.EQ.1) Go to 160 

T = -B(j) 
lod = j-1

C replaced... Call SAXPYClod ,T,X( 1, j), 1 ,B, 1)
Call VSADD( B,T,X(1,j),Loc1)

160
170
180

Continue
Continue
Continue



190 Continue 
C
C...Compute RSD or XB as required 
C

Do 230 jj = 1,ju 
j=ju-jj+1
If(QRAUXCj).EQ.0.0) Go to 220 

temp = X C j,j)
X(j,j) = QRAUXC j)
If(.NOT.or) Go to 200 

loci=N-J+1
t=-SD0T(loc1,X(j,j),1,RSD(j),1)/X(j,j) 
t=-VD0T( X(j,j),RSD(j),Loc1) /X(j,j)
Call SAXPYClocI,t,X(j,j),1,RSD(j),1)
Call VSADDC RSD(j), t, X(j,j)t Loci )

Continue
If(.NOT.cxb) Go to 210 

loci=N-j+1
t=-SD0T(loc1,X(j,j),1,XB(j),1)/X(j,j) 
t=-VD0T( XB(j),X(j,j),Loc1) /X(j,j)
Call SAXPYClocI,t,X(j.j),1,XB(j),1)
Call VSADDC XB(j), t, X(j,j),Loc1 )

Continue 
X(j,j) = temp 

220 Continue
230 Continue
240 Continue
250 Continue

Return 
End

C -----------------------------------------------
C FINDS THE EUCLIDEAN NORM OF A VECTOR
C -----------------------------------------------
c
C A common problem in finding the sqrt of the sum of the
C squares of a vector is the overflows and underflows. These
C can be avoided by several techniques discussed in LINPACK
C Appendix D. This code is an adaptation for
C
C Z-80 with Microsoft Fortran,

C replaced... 

C replaced... 

200

C replaced... 

C replaced... 

210
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c
c
c
c
c
c
c
c
c
c

Smallest real 0.1000...0 * 2 **(-127)
Largest real 0.1111...0 * 2 **(+128)
Epsilon const 0.0000...1 * 2 **(+000)

small = 0.1469368 E-38
large = 1.7014117 E+38
epsil = 0.14693681 E-38

George Kontopidis, April 81

Real Function VN0RM2( SX, N )
Real SX(1)
Data cutlo, cuthi / 4.44E-16, 1.304E+19 /

C
C the DEC-10 uses, 2**(-102) and 2**(127)
C
10 Assign 30 to NEXT

sum = 0.0
c
C...The main loop starts here 
C

Assign 50 to NEXT 
xmax = 0.0

C
C...Phase 1. The Sum is zero 
C
50 If (SX(i).EQ.O.O) Go to 200

x
20 Go to NEXT, (30,50,70,110)
30 If (ABS(sx(i)).GT.cutlo) Go to 85

If (ABS(SX(i)).GT.cutlo) Go to 35
C

Assign 70 to NEXT 
Go to 105

C
100 i = j

Assign 110 to NEXT 
sum = (sum/sx(i))/sx(i)

105 xmax = ABS( SX(i) ) 
Go to 115

C



C...Phase 2. Sum is small. Scale to avoid underflowC
70 If( ABS(SX(i)).GT.cutlo) Go to 75
C
C...Common Code for phases 2 and 4. Scale to avoid overflow 
C
110 IfC ABS(SX(i)).LE.xmax) Go to 115

sum = 1.0 + sum*(xmax/sx(i))**2 
xmax = ABS(SX(i))
Go to 200

C
115 sum = sum + (SX(i)/xmax)**2

Go to 200
C
75 sum = (sum*xmax) *xmax
85 hitest=cuthi/float(N)
C
C...Phase 3. The Sum is mid-range. No scaling 
C

Do 95 j=i,N
If(ABS(SX(j)).GE.hitest) Go to 100 

95 sum = sum+SX(j)**2
VN0RM2 = SQRT( sum )
Go to 300

C
200 Continue

i = i+1
If (i.LE.N) Go to 20

C
C...End of Main Loop 
C

VN0RM2 = xmax*SQRT( sum )
300 Continue

Return 
End
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Outline of Chapter III

This chapter deals with a special class of nonuniformly sampled 
systems. Consider the case of collecting data uniformly but because of 
external reasons (i.e. instrumentation failure, unpredicted power 
failure) some of the data are missing or they have been collected but it 
is known that they are bad. This situation is treated as a special case 
of a nonuniformly sampled system. We propose an algorithm that can be 
used (under certain conditions), to interpolate the missing points based 
on bandlimiting assumptions about the original signal.

One of the most restrictive assumptions we make is that the indices 
of the missing or bad points are known; this corresponds to the 
assumption that the time of failure is known. The composite problem 
dealing with unknown times and incorrect data, is much more complicated 
and the solution requires a probabilistic formulation. However, in many 
practical cases one can easily tell or easily detect which measurements 
are faulty; in this case, the theory given in this chapter can be 
applied and a very simple algorithm can be used to solve the problem.

A second assumption is also made about the bandwidth of the 
original signal and the sampling rate. In order to apply our results it 
is necessary to know that the discrete Fourier transform (DFT) of the 
time series has nulls at several known frequency constituents. This 
assumption is true in case of bandlimited signals sampled at a rate 
which is a multiple of the Nyquist rate. Actually, the case of bandpass 
signals or any other case at which we know apriori nulls in the 
frequency domain can be treated with the same theory.

The chapter is organized in 5 sections. In the first we define the 
DFT transform and we summarize the properties of the DFT matrix (W). In 
the second we formulate and prove the interpolation theorem; some
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computational aspects are also discussed. Section 3 is an error 
analysis for the interpolation theorem. Section 4 is an extension of a 
continuous time iterative extrapolation algorithm to discrete time. 
Finally, in section 5 we include simulation results and a FORTRAN 
program based on the previous theory. At last, a list of the references 
appropriate to the subject of this chapter is included.

1. Definition of the Discrete Fourier Transform

Let x=(x , x ,...x ) be a vector of N elements. We define a new0 1 N-1
vector a=(aQ, a ,...,a^ ^) by the formula

N-1
a = y  x w n m m=0

nm w=exp(-j2'if/N) n=0,1,... ,N-1

The vector a is called the Discrete Fourier Transform (DFT) of x. The 
above equation can be written in the matrix form a=Wx where W is a 
square matrix (called the DFT matrix) with elements {exp(-j2Tfnm/N) 
n,m=0,1,...,N-1}. A shorthand notation is used for the matrix W by 
writing the product nm in place of the (n,m)-th element. Using this 
convention, the matrix equation a=Wx is written explicitly:

0 0 o .. 0 0

1 0 1 .. .. (N-1) 1

2 = 0 2 . ... 2(N—1) 2

• • •

N-1 a f
•

o
• • • •

(N-1)..
• iii

. (N-1)(N-1) w
• « •

N-1

(i)



U5
Properties of the Matrix W

(1) The (n,m)-th element of W is equal to cos(2'ffnm/N)-jsin(2'n'nm/N)

(2) The inverse of W is given by

where the asterisk denotes the conjugate-transpose of a matrix. 
(The proof of (2) is trivial: use the DFT inversion theorem

(3) W is a symmetric matrix (because exp(-jnm,n'/N)=exp(-jmn,n'/N) )

(4) The sum of the elements of each row or column of W except the first 
one is 0. This follows from

(5) The n-th row is the conjugate of the N-n row, and the n-th column 
is the conjugate of the N-n column (for n=1,2,...,N-1). Proof:

N-1

N-1 N(k-n)

N for k=n

nkthe n-th row has elements w k=0 • • • • IN-1

the N-n row has elements w(N-n)k

But exp[-j2-Tf(N-n)k/N]=exp[j2-TT'nk/N]

(6) Define the periodic expansion of x by:
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group 1 group 2 group S
x =( xo ,x i,...xn_i,xo ,x i xN_1,...Ixo,xl,...xN_l)

Then, the following property is true:

/  r-> nm (S )\ a =(/_JW x jexp( j2'n'r/N)
n ' m /

where the summation index m takes values r,r+1,...,r+N-1 for an 
arbitrary r (within the indices of the augmented x)

(7) Assume that N is an even number (which is the most common case);

then there exists a row r (and a column c ) called the mid rowt t
(column) with the property

* *
r = r ( c = c )t t t t

This means that the t=N/2 row (column) consists of real numbers. Very
often it is convenient to use that row (column) as the ’base’ of the
indices; for example we write

rt-2,rt-1,rt,rt+1,rt+2

in order to refer to the middle 5 rows of W.

(8) If r (c ) is the mid row (column) then, t t
* »

r =r (c =c )t-n t+n t-n t+n

for every n within in the limits 0 and (N/2)-1.
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(9) Define the X matrix in the following manner

X=
0 1
x x N-1 0

x. x~1 2

... xN-1

... xN-2

Then, the eigenvalues of X are the elements of the DFT of x and the
modal matrix of X is W. Proof: Let v be the m-th column of W. Thenm

Xv =a v m m m
for m=0,1,...,N-1. This means that a and v are an eigenvalue-m m
eigenvector pair. Then, X W=W diag(a .a ,...,a ) which completes0 1 N-1
the proof.

Summary
The following diagram illustrates
the symmetry and conjugate symmetry (*) 
lines within W.



2. The Interpolation Theorem

The interpolation theorem provides a new method of estimating ’missing' 
or 'bad' points of a time series that is known to be bandlimited. The 
assumptions, the assertion and the proof of the theorem follow.

Assumptions

(1) Let x=(x ,x ) be a vector of N real numbers (time0 1 N-1
series) and

be a subvector of x called the 'missing' (or 'bad') points of x. 
Let also

be the subvector of x which remains after the x points have been

2
t • • • x ) n„

M
removed. It is implied that

0<i <i <...<i <N-1= 1 2  M =

0<n <n <...<n <N-1= 1 2  S =
and

M+S=N

(2) The total number of points N is assumed to be an even number. A
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similar development can be done when N is odd but the first case is more 
usual in practical problems.

(3) The DFT of the time series x is assumed to have zero elements in 
the zone t-b,...,t+b (t=N/2). This assumption is satisfied when the 
continuous time signal from which the time series x was taken is 
bandlimitted and the sampling rate is several times the Nyauist 
frequency. (If the continuous time signal is generated from a bandstop 
-instead of a lowpass- system and the sampling frequency is high enough, 
then the DFT of x will have zeros within a band
t'-b'...t'+b' with t'^N/2; the interpolation theorem can be easily 
modified to use this hypothesis instead).

Assertion: The Interpolation Theorem

Under the above assumptions, the vector of missing data xw can beM
found by solving a set of linear equations

Ax +Bx =0 M S

where A and B are real matrices and they are defined in the proof of the 
theorem. The uniqueness or the multiplicity of the solutions depends on 
the rank of the matrices A and B; for a unique solution a necessary 
condition (but not sufficient) is

2b+1>m

Proof

By doing column permutations the DFT equation a=Wx can be written:
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a=CCM ICS] M

where

and

C =(i ,i ) -columns of WM 1 2  M

C =(n ,n ,...,n ) -columns of W
o  I c  o

Because of the third assumption the a vector has 0 elements with indices 
t-b,t-b+1,...,t,...t+b-1,t+b. Then,

A x +B x =0C M  C S (i)

where
A = [0 11 j 0]Cu C i 2b+1i M

B =[0!I „ !o]CC i 2b+1i S

Both A and B are complex matrices of 2b+1 rows. Now let

t-b

t+b

be the row partition of A . Using the eighth property of W, we findC
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real(r, .)=real(r, .) t-i t+i

-imag(r .)=imag(r .) t-i t+i

Therefore, equation (i) can be written as a set of linear equations with 
real coefficients; that is, Ac is replaced by

real(r ) t-b

A =

real(r , )t-b+1

-imag(r ) t+b-1

-lmag(rt+b)

(r is real according to property (7)) t
In a similar manner, we can define B to be a collection of real and 
imaginary parts of rows of B . This concludes the proof of the

theorem.
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Computation of A and B

Matrix A is written explicitly below

cos q(t-b)i^ cos q(t-b)i 2 cos q(t-b)i M

COS

• •

q(t-1)i 1

• • • •

cos q(t-1)i^ cos

• • •

q(t"1

-sin

e1

q(t-b)i^

e2

-sin q(t-b)i2 ... -sin

eM

q(t-b)iM

•

-sin

t •
q(t-1 )i

• • • •

-sin q(t-1)i2 ... -sin

• • •

qU-Di. M J

where i
e =(-1) for n=1,2,...,Mn

and q=2'n'/N

Matrix B has a similar form; replace i's by n’s in the above matrix. 
Note that the dimensions of A and B are,

A: (number of zero elements in DFT) by (number of missing points)
B: (number of zero elements in DFT) by (number of given points)

Very often, S>>M (which means that the number of given points is greater 
than the number of missing points), so it is more appropriate to 
calculate the product y=Bx directly.

This calculation is easily performed by the formulas
S

y,_ .= L  x cos[q(t-i)n, ] for i = 1,2,... ,t-1t-i n kk=1 k



After the y vector has been calculated, any solution of the system of
linear equations Ax +y=0 is an answer to the interpolation problem.M
The solution depends on the rank of A (2b+1 by m) and the rank of the 
augmented matrix (A !y). A necessary and sufficient condition for having 
at least one solution is rank(A|y)=rank(A) [53. When rank(Aiy)
/rank(A), a least squares approximate solution is possible to be found

3. Sensitivity of the Estimates

After x has been found by solving the linear equation Ax+y=0 we
would like to know how close the estimate is to the actual data. (For
this section we simply write x instead of x .)M
Let us use x' to denote the numerical solution of Ax+y=0 and x to denote 
the actual values of the missing data. The reasons that x' is not equal 
to x are

(a) The assumption (3) is not exactly true; this means that the DFT 
elements with indices t-b,...,t,...t+b are not exactly 0 and the 
equation

should be replaced by
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where e is a complex vector with small numbers corresponding to

the frequencies that x was assumed to be 0.
(b) The matrix A can be numerically ill conditioned and the solution of 
the equation Ax+y=0 is subject to large errors.

The following theorem gives a lower and an upper bound of the estimate 
error x'-x. For a given matrix A we can compute a condition number [1] 
K(A) which indicates the ill-ccnditioness of A; also, the sensitivity 
of the solution with respect to the DFT non-zero elements is found.

Let I.I be an L(p) norm, x ' be the solution of Ax+y=0 and x be the 
solution of Ax+y=e. Then,

Theorem

where - 1K(A)s|A||A I is the condition number of A

Proof

Use Ax+y=e to find -A(x'-x)=e, and

IeI<|AI Ix?-xI or Ix*-xI>IeI/1AI (i)

- 1Also, use x'=-A y to find

I x ' K I A " 1 I IyI (ii)
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Taking the inverse of both sides of (ii) and then multiplying by (i), we 
derive

tel < Ix’-xl
K(A) lyI

Use -A(x'-x)=e, to find (x’-x)=-A e and

- 1
! x* —xI< tA t lei (iii)

Also, use y =-Ax' to find

IyI<IA11x1 I or |x'l>lyl/IA| (iv)

Taking the inverse of both sides of (iv) and then multiplying by (iii), 
we derive

which proves the right side inequality of the theorem.

(1) For matrices, the L(1) and L(») norms [1] are used because they 
require the least amount of computations.
(2) In order to apply the interpolation theorem, the number b (number 
of nulls around the mid point t) must be known. When b is not known and 
M (number of missing points) is much smaller than N (total number of 
points) an empirical way of estimating the missing points (x) can be 
used:

(a) Assume that b is greater than or equal to (M-1)/2; then apply 
the interpolation theorem to find an estimate of the missing points.

(b) Augment the vector x (of missing points) by including K known 
points; then, estimate x based on the assumption that b>(K+M-1)/2.

Notes
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(c) If answers of steps (a) and (b) are similar and the error of the 
estimates of the K known points is 'small' then the bandlimiting 
assumption is reasonable (and b is greater than (M-1)/2 ); otherwise, 
the signal is not bandlimited and the theorem cannot be applied.

4. Iterative Interpolation Algorithms

This section describes another technique that can be used to solve 
the interpolation problem using bandlimiting assumptions. This method 
is the discrete counterpart of the algorithms given in [3, 6],
In these references it is proved that whenever a segment {x(t), a<t<b} 
is known and x(t) is a bandlimited signal, then an iterative algorithm 
involving Fourier transforms can be used to determine the values of x(t) 
at any point t. The conjecture 'if {x(i), n<i<k} is known and x(i) is a 
bandlimited sequence, then x(i) can be found at any point i' is not 
true. In the following we discuss this subject in more detail.

Consider the time series x=(x(0),x(1),...,x(N-1)) and assume that

x =(x ,x ,...,x ) is the subvector of 'missing' data pointsM h S S*
x =(x ,x ,...,x ) is the remaining vector of known data points
s no n<,1 2 S

(the notation conventions are the same as in the Interpolation Theorem). 
Assume also that the DFT transform of x(n) is 0 at the points

t-k , t-k   ,t-k t+k , ...,t+k , t+k1 2 F F 2 1
where t is the mid row index.

Define the diagonal matrices E and U as follows:
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where e.=0 if

or (D II if

where u =0 i if
1’ 2’ S'

: {t+k^, . . . ,t+k^,}

u =1 otherwise, i
This definition implies that E contains a 1 at the diagonal element 
corresponding to a given data point and U contains a 1 at the diagonal 
element corresponding to a non-zero DFT point.
Using these definitions,

Xg=Ex and a=Ua (a=DFT{x))

Theorem

Consider the iterative algorithm

0(1) Initial step: y =Ex, set n=0
(2) Loop:

t>n=Wyn (find the DFT of y°)

(3) an=Ut>n (filter out the zero magnitude frequencies)

(4) x°=W 1a° (find the inverse DFT)
n+1 n n(5) y =x +E(x-x )

=yn+(I-E)x? (update the estimates y° at the missing 
points)

Then, the following are true:

, , n(a) All vectors y are equal to x at least at the points
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x ; that is, y =x for i=1,2,...,S S n ni i

(b) All transforms a° (DFT’s of x°) are 0 at the t-k points
1

n n(c) The sequences of x and a do not diverge.

Proof

Use (5) to find that y° is equal to x at least at the given points.

Use (3) to find that a° are zero at the t-k.'s frequenciesi

The above prove (a) and (b). The proof of (c) is not so trivial;
n nfirst we find the discrete equations for x , and a .

xn+^=W 1an+^=W ^Ubn+^=W ^UW( xn+E(x-xn))=W ^UWE xn+W ^UWEx (i)

similarly,

n+1 n+1 n+1 - n - -1 n .a =Ub =UWy =UWEx +UWEx=UWEW a +UWEx (ii)

where E denotes (I-E). This shows that the stability of the discrete 
equations depends upon the matrices

-1  -  -  -1As W UWE and B= UWEW.

To prove that system (i) is bounded (not unstable) we prove that

T Tx A A x / . . smax --    < 1 ( m )T =1x1=1 x x



T TThe proof of this is based on the fact z Uz<z z

xTATAx =xTEW*U(W-1)*W_1UWEx (use the fact (w“1)*w“1=1/N )
T- *=(1/N) (x EW )U(WEx) (use the z-inequality)

T_ # _ #
<(1/N)x EW WEx (use the fact W W=N)

T-=x Ex (use the z-inequality)
T<x x

Therefore (iii) is true. This also proves that the eigenvalues of A are 
either inside the unit circle or on the unit circle. Similar proof can 
be used for the boundness of the discrete system (ii) using matrix B.
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5. Simulation Results

The interpolation algorithm has been verified by a simulation 
program. Also, simulation experiments have been performed using various 
input time series with missing data. In this section we describe the 
programs implemented and the observed numerical results.

An outline of the simulation steps follows:
1. A time series with known bandwidth was generated; several points
were marked as 'missing’ points.
2. The matrix A (see the interpolation theorem assertion) was 
formulated according to the indices of the missing points.
3. The product y=Bx was calculated according to the formulas givens
in the section ’Computation of A and B’.
4. The linear equations Axs+y=0 were solved and the results were 

compared with the original marked missing points.

Step 1 was implemented by using the program EASY (see Appendix on 
Software Support). We started with a sequence of 64 points

x = 0.25( 1,1,1,1,0,....0)

then we took the fast Fourier transform (FFT) of x, substitute a 0 in 
place of the 28th up to 36th point, and then we took the inverse FFT 
transform. Figure 1 shows the resultant time series and figure 2 shows 
the corresponding magnitude of the FFT. Note that for all the programs 
we start the indices of the series from 0 (and not from 1) in order to 
be consistent with the interpolation theorem and the majority of the 
literature.
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Steps 2, 3 and 4 were implemented by a program (called MISS); the 
source code is attached. The user can mark as many points as he wishes 
and consider them as ’missing' points. Then the algorithms are applied 
and the program prints the estimates of the marked points and the 
percent error. If the A matrix is not square, a least square solution 
is found. Also, if A is singular the program prints the dimensions and 
the rank of A and finds the minimum norm solution of the missing data 
points.

On the next page there is a sample run of the MISS program. The 
error of estimates of the marked (missing) points is calculated less 
than 0.1 for three values of the parameter b (2b+1 are the number of 
zeros of the DFT).
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B>MISS (run the program)

Missing data interpolation algorithm

Enter data filename: DAT2937.064
Enter indices of 'bad' points (terminate with -1)
0, 10, 25, -1
Enter beta (the width of the 0 magnitude DFT): 3 
Inverting 7 by 3...
actual-data estimates error (%)
0.2438 0.2438 0.2443E-04
0.5635E-02 0.5635E-02 0.7428E-02
-. 1853E-02 -.1853E-02 0.1119E-01

SAMPLE 1

Enter data filename: DAT2937.064 
Enter indices of 'bad* points (terminate with -1) 
0, 10, 25, -1
Enter beta (the width of the 0 magnitude DFT): 1 
Inverting 3 by 3...

SAMPLE 2

actual-data
0.2438
0.5635E-02
-.1853E-02
Condition-1
7.1601
Condition-inf
7.6537

estimates 
0.2438 
0.5635E-02 
-.1853E-02 
low-1 bound 
27.7744 
low-inf bound 
51.9731

error (%)

0.5315E-03 
0.3151E-01 
0.2468E-01 
upper-1 bound (%) 
1423.986
upper-inf bound (%) 
3044.611

Enter data filename: DAT2937.064
Enter indices of 'bad' points (terminate with -1)
0, 10, 25, 12, 5, 30,-1
Enter beta (the width of the 0 magnitude DFT): 3 
Inverting 7 by 5...

SAMPLE 3

actual-data
0.2438
0.5635E-02
-.1853E-02
0.2521
- . 1 1 7 0

estimates 
0.2438 
0.5635E-02 
-.1853E-02 
0 .2521  
—.1170E—01

error (%)
0.2443E-04
0.7428E-02
0.1119E-01
0.3771E-02
0.3932E-01
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C Appendix III
Cc *******************************************

c * MISSING DATA INTERPOLATION ALGORITHM *
C * GEORGE KONTOPIDIS, NOV 3 1980 UNH *
r  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C
C DATA 
C X
C IBAD 
C IGOOD 
C W22 
C W22inv 
C Y 
C X1 
C

Data filename containing the bandlimited time series.
Array with good and bad data of length N
Indices of the bad data of length LBAD
Indices of the good data of length LGOOD
Matrix of dimensions (2*BETA+1 BY LBAD) Left side.
Inverse of W22
Vector of length 2*BETA+1. Right side.
Result vector with the interpolated points

C Several Statements start with the word 'Check'. By removing
C it, additional (testing) information can be printed out.
C Use the editor command: CCheck$Check<cr>$$ to 'remove it'
C and use CCheck<cr>$Check$$ to 'put it' back on line.

DIMENSION XC260), W22(10,10), Y(260)
DIMENSION IBAD(30),IGOOD(260), X1(260), W22inv(10,10)
LOGICAL DATA(12)
COMMON WORK(260)

C
Call PRN('Missing data interpolation algorithm$')

1 Call CRLF
IW=10

C
C...User interaction.
C

CALL SGET('Enter data filename: $’.DATA,12)
CALL MGET(DATA.X)

Check CALL MPRN(X,'Time series X$')
N=NDIM(X)

C
78 CALL PRN('Enter indices of 'bad' points (terminate with -1)$')

Call CRLF
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Read(5,200) IBAD 
200 Format(30I5)
C
C...I is used as counter. Indices of bad point in IBAD 
C

1  = 1
5 IF( IBAD(I) ) 10,20,20
20 1 =1+1

GO TO 5 
10 LBAD=I-1
C
C...Get beta; check if number of points is even. Correct on error 
C

IBETA=IGET('Enter beta (the width of the 0 magnitude DFT): $')
C

IF((LBAD/2)*2.NE.LBAD) GO TO 30
CALL PRN('Number of bad points must be odd for this program$') 
LBAD=LBAD-1

C
C...Find the indices of the good data 
C
30 1 = 1

N1=N-1
DO 40 J=0,N1

DO 41 JJ=1,LBAD 
IF(J.EQ.IBAD(JJ)) GO TO 40 

41 CONTINUE
IG00D(I)=J 
1 = 1 + 1  

40 CONTINUE
LG00D=I-1

C
C...Print the indices arrays for checking 
C
Check CALL PRN('Verify indices of the bad data$')
Check WRITE(5,47) (IBAD(I),1=1,LBAD)
Check CALL PRN('Verify indices of the good data$’)
Check WRITE(5,47) (IGOOD(I),I=1,LGOOD)
Check47 FORMAT(' ',26014)
C
C.. .Pre-computations for indices and limits...
C



MID=N/2
PHI=PI(2.)/FLOAT(N)
NEQ=2*IBETA+1
ICNT=IBETA+1

C
C.. .Formulation of the left side of the equation 
C

IF(IBETA) 53,53,54 
54 1 = 1

DO 50 I=1,IBETA 
DO 50 J=1,LBAD

DEX=(MID-IBETA-1+1)*IBAD(J)
W22(I,J)=COS( PHI*DEX )
I2=I+ICNT
W22(I2,J)=-SIN( PHI*DEX )

50 CONTINUE
C
C and the middle row...
C
53 1 = 1

DO 60 J=1,LBAD
IS=IBAD(J)
IF(2*(IS/2)-IS) 61,62,61

61 W22(ICNT,J)=-1.
GO TO 60

62 W22CICNT,J)=1.
60 CONTINUE
C
C...Pack the result matrix and print it for checking purposes 
C

CALL PACK(W22,IW,NEQ,LBAD)
Check
n

CALL MPRNCW22,'This is the left side matrix$')
o
C...Now
n

find the right side. Do not form w23 excplicitly
U

IF(IBETA) 93,93,94
94 1 = 1

DO 90 1=1,IBETA
SUM1=0.0 
SUM2=0.0 
DO 80 J=1,LGOOD

IG=IG00D(J)



DEX=(MID-IBETA-1+1)*IG 
IG3=IG+3
SUM1=SUM1+C0S( PHI*DEX )#X(IG3) 
SUM2=SUM2-SIN( PHI*DEX )*X(IG3)

80 CONTINUE
Y(I)=(—1.)*SUM1 
I2=I+ICNT 
Y(I2)=(-1.)*SUM2

90 CONTINUE
C
C...and the middle row sum...
C
93 SUM1=0.0

DO 98 J=1,LGOOD
IG=IGOOD(J)
IF(2*(IG/2)-IG ) 97,96,97

97 SUM1=SUM1-X(IG+3)
GO TO 98

96 SUM1=SUM1+X(IG+3)
98 CONTINUE 

Y(ICNT)=(-1.)*SUM1
C
C...Pack it and print it for checking 
C

CALL PACK(Y,IW,NEQ,1)
Check CALL MPRN(Y,’This is the right side of the equations$f) 
C
C...Solve the linear equations W22 * X1 = Y 
C...If W22 is not square, do least squares 
C

j1=NDIM(W22)
j2=MDIM(W22)
Write(5,2010) J1,J2 

2010 Format(' Inverting ',13,’ by ' ,13,'...')
CALL GINV(W22inv,W22)
CALL MULCX1,W22inv,Y)

C
C...Print the (original data) (estimate) (% error)
C

CALL PRN(’actual-data estimates error (%)$’)
DO 57 1=1,LBAD

11=3+IBAD(I)
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12=2+1
EL0W=100.*ABS( ( X(I1)-X1(12) )/X1(12) )
WRITE(5,900) X(I1),X1(12),ELOW

57 CONTINUE
C
C.. .Calculate the condition number and the norms 
C...Quit if the W22 matrix is not square 
C

If (j1.NE.j2) Go to 1 
AX1 = XN0RM1 ( W22inv )
AX = XNORM ( W22inv )
BX1 = XN0RM1 ( W22 )
BX = XNORM ( W22 )
VX1 = VNORM1 (Y(3),Y(1))
VX = VNORM (Y(3),Y(1))
AX =AX*BX
AX1=AX1*BX1
EL0W1=100./(AX1*VX1)
EUP1 =100.*AX1/VX1 
EL0W =100./(AX*VX)
EUP =100.*AX/VX
CALL PRN('Condition-'! low-1 bound upper-1 bound($)$') 
WRITE(5,900) AX1,EL0W1,EUP1
CALL PRN('Condition-inf low-inf bound upper-inf bound(J)$') 
WRITE(5,900) AX,EL0W,EUP 

900 FORMAT(' \3G14.7)
GO TO 1 
END
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Outline of Chapter IV

This chapter discusses randomly sampled systems.
Sections 1 and 2 summarize the notation and basic definitions used 

in the other sections. Because characteristic functions are extensively 
used to simplify integral equations, we associate the probability 
density functions p(x) (lower case p) with the characteristic functions 
P(jw) (upper case P). The same convention is used for the bilateral 
Fourier transform pairs.

In section 3 we give several examples of random sampling processes, 
the corresponding probability densities and the characteristic 
functions.

Section 4 consists of four theorems (1 to 4) and their proofs. All 
of them deal with the propagation of the mean values of the states of a 
randomly sampled system. The theorems give methods of calculating the 
mean values at the sampling instants (whenever a sample is taken) and at 
any time instant between (absolute time independent of the sampling 
process).

Section 5 deals with the propagation of the mean square values of 
the states in a manner similar to section 4. The problem here is more 
difficult because of the nonlinearities involved, but usage of the 
direct products simplify the development.

Section 6 discusses the frequency characteristics of randomly 
sampled systems. We define the power spectral density gain, and we 
derive an expression for it involving the system parameters and the 
sampling characteristics.

Finally, two appendices are given with the required details for 
several points in the proofs of the theorems. In particular, appendix 
IVb consists of a collection (and proofs) of the Kronecker (direct) 
operations which are used extensively in sections'5 and 6. At last,
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references used in the study of the subject of this chapter are listed.
The new results claimed in this chapter are:

(a) The propagation of the mean state values of a multi-input multi­
output stochastic, randomly sampled system.
(b) The propagation of the mean square values of the above system.
(c) The definitions and the associated theory of the power spectral
density gain of a randomly sampled system.

1. Notation and Conventions

T (As a superscript) denotes the transpose of a matrix
T, T , {T } Time intervals. T may denote a random variable and T n n n

can be interpreted as a realization of T. {T } inn
general means the sequence of T ’s.n

t, t , (t } Time instants. The meaning of t, t and (t } is n n n n
similar to T, T and {T }. In general T refers to time n n
differences and t refers to absolute time. 

r,t,u,h Dummy variables for time used in definitions and
integrals.

a,b,c Dummy integration variables for random variables.

X(s), Lx(t), Bilateral Laplace transform of the function x(t).
(Lx)(s)
*

X (z), Zx(n), Z transform of the sequence x(n) defined by the 
(Zx)(z) summation

00

(Zx) (z) = Y  x(n)z n=0
F (x) Cumulantive probability function of X evaluated at x.A



pxCx) Probability density function (pdf) of X evaluated at

P (s) Characteristic function of X evaluated at s. NoticeX
that the characteristic function of X is defined as 
the Bilateral Laplace transform of the probability 
distribution of X.

Pr(A) Probability of the event (or set of values) A.
Ex(t), Ex Expected value of x evaluated at t.

Tvartx}, Variance of x, E(x-Ex)(x-Ex)
V (t)fV(x;t)

Tcov{x,y} Covariance of x and y, E(x-Ex)(y-Ey)
Tmsq{x}, Mean square value of x. That is, msq{x} = Exx .

M (t),M(x;t) x Tcor{x,y} Correlation of x with y. That is Exy .
TR(x;t,s), Autocorrelation Ex(t+s)x (t)

R (t;s) x
TR(x;s), Rx(s) Autocorrelation of a stationary process Ex(t+s)x (t).

2. Definition of Commonly Used pdf’s

a. Consider the random variable T of the sampling intervals. The 
of T’s at the sampling intervals T=r is denoted by

P,Jr>T
and has the following meaning:
Pr( the sampling period is inside the interval (r,r+dr) )=p^(r)dr
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Note that pT(r)=0 for r<0 by definition.

b. The characteristic function of p^C.) is denoted by

P (s) or P (jw)T T
and it is related to pt(.) by the equations:

+■ 00 +CD

PT(jw)= f PT(t) e jWtdt pT(t) = 1/2'n'J*PT(jw)e';iWtdw
-oo -co

c. Consider the random variable t . The pdf of t 's which isk k
is denoted by

p (r;k),

has the meaning:
Pr( the k-th sampling point has value inside the interval (r,r+dr) )=

p (r;k)dr

d. The characteristic function of p (r;k) is denoted as

P (s;k) t
Because the random variable t equals the sum of the k independentk
random variables T , T , ...T and by assuming that all T's0 1 k-1
have the same distribution, we have the following result:

P (s,k) = P^s). t T
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3. Examples of Random Sampling Processes

a. Gaussian Sampling

Gaussian sampling is defined by requiring the sampling intervals T to be
independent and identically distributed Gaussian random variables with
mean T and standard deviation a. o
It is also assumed that a<<T in order that the distribution nearlyo
vanish for negative values of the argument.

2 - 1 / 2  2 2 p (T) = ( 2'rfa ) exp( -(T-T ) / 2a ) T o
2 2P (s) = exp( -sT + s a /2 )T o

Because of the independence,

p ( h ,h ...., h )=p (h ) p(h )...p (h )T ,T ,...T 1 2  n T 1 T 2 n1 2  n

b. Raleigh Sampling

The sampling intervals T are assumed to be independent and identically 
distributed Raleigh random variables. The probability density function 
and the characteristic function in this case are:

p?(T) = (T/a2) exp( -T2/ 2a2) for T>0

p (T) = 0 for T<0T
2 1 / 2 2 2 P (s) = -s (2tfa ) exp( a s /2 )T
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1 /2The mean value of the periods T is equal to a(iT/2) [1,2]

c. Quantized Sampling Intervals

The sampling intervals cannot be arbitrary numbers but can take on only 
discrete values. That is:

T takes on one value from the set {T , T ,...T }1 2 q
and

Pr( T=T )=P for i=1,2,...ql l
Also,

p (T)=P 5(T-T )+..,+P 5(T-T )T i l  q q
P,p(s)=P.]exp( ) +...+ P^exp( )

d. Uniformly Distributed Sampling Intervals

The sampling intervals T are idependent and identically distributed RVs 
with uniform probability density. That is,

p (t)= — —  [u(t-(T -a))-u(t-(T +a))] T >a T 2a o o o

P_(s) = exp(-T s) sinh(as)/as T o

e. Independent Skip Sampling

Let us consider a sequence {h } of fixed time points called then
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'scheduled* times. Assume also that the following probabilities are 
given.

Pr( of taking a sample at the scheduled time h )=pn
Pr( of not taking a sample at time hn)=q=1-p

Based on the above sequence, we can define a random sequence {t }n
according to the following algorithm: 

step 0: start with n=1, k=1
step 1: If a sample is taken, set t =h and increment n and kk n

Else, increment n
step 2: Go to step 1 and repeat the loop.

We now simplify the case by considering h =nA i.e. uniform scheduledn
times. Then,

Pr( the m-th interval (period) T is equal to k A )=m
Pr( the n-th scheduled sample was taken AND

the n+1, n+2,...,n+k-1 scheduled samples were not taken) 
k-1 ,= pq (because of the independence)

The following figure illustrates the relation between the scheduled and 
sampling times

-kA-

s s s n+1 n+2 n+3 n+k-1

m
| = scheduled times
IS
I = sampling times

m+1

Figure 1: Independent skip sampling
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The pdf and the characteristic function of T are:

oo

p (T)=£p qk~1S(T-kA) 
k=1

-sA -sAPT(s)= pe / (1-qe )

f. Poisson Sampling

Let us assume that m is the expected number of sampling points per unit 
time interval. Assume also that

Pr( of taking n samples during dt ) = mdt

Then, integration of the above differential equation [1] gives,

(mT)ne"mTPr( of taking n samples in interval of length T ) = -------

Also,
p (T ) = mexp(-mT ) i.e. Pr( T <T<T +dh )= mexp(-mT )dh T k  k k k  k
P (s)= m/(s+m).T



4. Propagation of the Mean State Values

This section is devoted to the statistical description of the state 
values of a system. More specifically, we deal with the mean value of 
the states first at the sampling instances and second at any time 
instant. The study is logically separated into four parts (theorems 
1 to 4). Theorem 1 uses a simple state model to find a way to compute 
the mean values of the states at any sample instant. Because of the 
randomness of the sample points, knowledge of the mean at the sample 
points does not provide much 'useful' information. We propose theorem 2 
which finds the same result but at any time instant. Finally, theorems 3 
and 4 use a different state model, less restrictive than the one used in 
theorems 1 and 2, to answer the same questions:
(a) What is the expected value of the states whenever a sample is 
taken?
(b) What is the expected value of the states at any time t?

Theorem 1

Consider the state equations:

x(t „ )=A(T )x +B (T )u +B (T )w, k+1 k k u k k w k k
with,
A(.), B (.), B (.) given functions u w
T random with given pdf p (T;k)XV 1
x(t ) a given vector o

{w } is a white random process of zero mean and independent of T

lu ) is a deterministic sequence of numbers with known Z transform, k
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Then
(1) Ex = EA-Ex + EB -uk+1 k u k

# 1 #
(2) EX (z) = (Iz - EA )” EB •U (z)u

Proof

Taking the expectation of the state equations we find:

Ex =EA(T )x + EB (T )u + EB (T )w k+1 k k  u k k  w k k

Because A(T ) depends only on T and x depends only on k k k
T , T , ...,T the independence of the T's gives:0 1 k-1

Ex „ =EA-Ex, + EB • u, + EB • Ew, k+1 k u k w k

But the {w} process has zero mean; therefore, (1) is true. The second 
part of the theorem can be readily derived by taking the Z transform of 
the first part.

Remark 1

The phrase 'taking the expectation of the state equations' requires a
more precise definition. The state equation can be seen as a
transformation of three random variables (namely x(t ), T , w, )k k k

to a new random variable (namelly x(t ) ).k+1
A more rigorous derivation and a more precise notation are given in 
notes 1 and 2 of the appendix IVa.
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Remark 2

The following property is true:
Z( Ex ) = E( Zx ) k k

The proof is based on the linearity of the operators E and Z. It is 
assumed that the Z transform of the sequence and the expectation of the 
values x exist and they are finite. This property has to be used to 
prove part 2 of theorem 1.

Theorem 2

Consider the discrete state model of theorem 1 with the additional 
equation:

x(t + r)= A(r)x(t ) + B (r)u +B (r)w r>0k k u k w k =

Then

The Laplace transform of the expected value of x (as a function of t), 
is given by

- 1  *EX(s) = (A (s) C zl - EA ] EB + B (s))-U (z)F u uF

evaluated at z = 1/ P (s) and using the notationT

A (s) = L{ A(t) [ 1 —F (t) ] }F T
B (s)= L{ B (t)[ 1 —F (t) ] } uF u T
F is the cumulative distribution of T T
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Proof

The proof given here is based on the conditional expectation of x. In 
the appendix IVa (note 3) there is a detailed description of all the 
'obvious' steps used below. We start from:

Ex(t) = E E{ x(t +r) GIVEN r }t=t +r kk
But,

Ex(t +r) = EA(r)x(t, ) + EB (r)u, + EB (r)w(t ) k k u k w k
= A(r) Ex + B (r)u, k u k

Substituting into the first equation we find,

Ex(t) = E A(r) Ex + B (r)ut=t +r k u kk

j V  ( A(r) Ex +B (r)u, ) p (t-r;k)* (1-F (r) )• dr / L-‘n k u k t TJ k=0
all r

Then,

CD
EX(s) = y  A (s)P (s;k)*Ex + B (s)*P (s;k)u , _ F t k uF t kk=0

By considering that,

Pfc(s;k) = p£(s)

and
CD
V  k * -1P (s)*Ex = EX (z) evaluated at z = P (s),
k=0
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we derive,
# # 1

EX(s) = A (s)-EX (z) + B (s)-U (z) at z=P~ (s) F uF T

Finally, application of theorem 1 gives the desired result
_1 * *

EX(s) = A (s)-(Iz- EA ) EB U (z)+ B U (z)F u uF
and the proof is complete.

Algorithm for computing EX(s)

1. Find A (s) and B (s) (as in theorem 2) F uF
2. Find EA and EB by using

all r
3. Find the matrix-functions

W(s) = ( I/P (s) - EA ) T
- 1

H(s) = A (s)W(s) EB + B (s) F u uF
4. Evaluate (Zu)(z) at z = 1/P(s)

5. Calculate

EX(s) = H(s)-U (1/P (s) )T

Theorem 3
Consider the state model
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with
A(. ) f B (.), B (.) given functionsu w
T random with given pdf p (r;k) k T
x a given vector 0

{w } is a white random process of zero mean and independent of {T } k k
{u(t )} is a sequence of numbers, samples of u(t) at the random n
points {t }. It is assumed that u(t) is obtained from the inverse n
Laplace transform of a given U(s). Note that the sequence {u(t )}K.
is not known because t is a random variable.k
Then

(1) Ex „ = EA"Ex + EB-Euk+1 k u k
where,

+co
UCjw) P (-jw) dw 

-go T

(2) (ZEx)(z) = (zl - EA)’1EB (ZEu)(z)u
where, +c0

(ZEu)(z) = ——  f  — ----- dw
2rt j -1J 1 - z P (—jw)-CD T

Proof

Because the variables ACT ), B (T ) and B (T ) are independent ofk u k w k
x(t ), u(t ) and w respectively, proceeding in the same manner as in k k k
theorem 1, we derive:

Ex „ = EA-Ex +EB ■ Eu(t ) (i)k+1 k u k
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Using +co
u(t)= 1/2*/u(jw) exp(jwt) dw 

-oo
and the definition

Eu(t, ) = I u(r) p (r;k) dr k / t
all r

we derive
Eu(t^) = 1/2^ • // U(jw) p^(r;k) exp(jwr) drdw

all r,w
But

/ p (r;k)•exp(jwr) dr = P(-jw;k) = P^(-jw)
J  t  t T

all r 
Therefore,

Eu(t ) = 1/2,n'/u(jw) Pk(-jw) dw k J T
all w

This proves assertion (1). The second assertion of the theorem is 
proved by taking the Z transform of both sides of (i) and using:

Z{E{ u(tfe) }} = 1/2irJU(jw) Z{pk(-jw) }• dw

all w
But,

k -1Za = 1/( 1 - z a )
So, +co

... ... 1 f  U(jw)(ZEuKz) = -—  / --------------   dw
2 tt / -1

* 1 - z P_(-jw)
-CD T
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Theorem

Consider the discrete state model of theorem 3 and the additional 
equation

x(t +r) = A(r)x(t,)+B (r)u(t )+B (r)w r>0k k u k w k =
Then, the Laplace transform of the expected value of x at any time point

t is given by
-1EX(s) = ( A_(s) ( zl - EA ) EB + B )*(ZEu)(z)F u uF

where,

CZEuXz) = J  U(_:U) -dw
1 - z PT(-j«)

and z= 1/P (jw)T

Proof
Ex(t)=E E{x(t +r) GIVEN r}t=t +r kk
Ex(t, +r)=A(r)* Ex +B (r)*Eu, k k u k

where Eu is defined in theorem 3. Then, from note 3 of appendix IVa k

ao

Ex(t)= / Y  (A(r)Ex +B (r)Eu. )• (1-F_(r)) p, (t-r;k)-dr 
\ L-‘ k u k T t

J k=0
all r

and by taking the Laplace transform,
co

EX(s) = Y  (A (s)pk(s)•Ex + B (s)Pk(s)Eu )F T k uF T kk=0
Then,

EX(s) = A (s)•EX*(z) + B (s)-(ZEu)(z) F uF
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with
z=1/P (s) and (ZEuKz) as given in theorem 3.T

5. Propagation of the mean square state values

This section is a continuation of the study of the statistical 
properties of the system state values. More specifically, we deal with 
the mean square matrix of the state values. Theorem 5 tells us how the 
mean square matrix propagates from one sample point to the next.
Theorem 6 finds the mean square matrix at any time point t. For both 
theorems, results of section 4 (Propagation of the mean state values) 
are used. Also, the lexicographic multiplication (described in the 
appendix IVb) is extensively used. The reader must be familiar with the 
notation used and the complexity involved. As an example, we explain 
the computation of two expessions:

Z[M ] can be calculated by: k
(a) Considering the sequence of matrices M i=1,2,...l»
(b) Converting the sequence to the vector [M^] sequence

where the [.] means the lexicographic column.
(c) Finding the Z-transform of that sequence.

Remark
The following are true:

(a) <EX> is NOT equal to E<X>
(b) (Z<X>)(z) is NOT equal to <(ZX)(z)>
(c) [EX] is equal to E[X]
(d) Z[EX] is equal to E[ZX]
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Theorem 5

Consider the state model:
x(t )=A(T )x(t )+B(T )w k+1 k k k k
y(t ) = Cx(t )+v k k k
with,
A(.), B (.) given matrix functions

random with given pdf equal to p^(r,k)

x(t ) a given vector o
{w } a white random process of zero mean and independent of T k k
with variance Q, .k
{v } a white random process of zero mean and independent of T k k
with variance R .k

Then

1. The mean square values of x at the sampling points satisfy the 
equation

[M ] = E<A> CM ] + E<B> [Q ] k+1 k k
where:

TM = msq{ x(t ) }=matrix of Ex(t )x (t ) k k k k
[X] = lexicographic column of the matrix X
<X> = Kronecker product X * X

2. The mean square value of the output y at the sample points satisfies 
the equation
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msq{y(t )} = C*M • C^+ R k k k
3. The Z transform of the mean square of the output is given by

& T *
(Zmsq{y})(z) = C-M (z)-C + R (z)
*

where, M (z) satisfies the equation
# _1 *

[M (z)] = ( zl- E<A> ) E<B> [Q (z)l

Proof

Using the definition of the mean square of x we can easily derive

M = Ex( t )xT(t ) k+1 k+1 k+1

= EA(T )x(t )xT(t )AT(T ) +EB(T )w wV(T ) + k k  k k k k k k

+EA(T )x(t )wTBT(T )+EB(T )w  xT(t )AT(T ) k k k k  k k k  k

Because x(t ) does not depend on w (it depends only on the previous k k
values of w), and because Ew = 0, the last two terms are zero. Ink
order to separate the expectations with respect to T and x, we use the 
lexicographic multiplication for the remaining two terms of the equation 
above:

[M „] = E{ <A> [x(t )xT(t )] }+ E{ <B> [w w^] } k+1 k k k k

In this equation, the <A> and <B> depend on the random variable Tk
which is independent of x and w. Therefore,

CM ] = E<A> [M ] + E<B> [Q ] k+1 k k
which proves part (1). At this point it is worth noting that the
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lexicographic column of the mean square values of x satisfies a first 
order recursive equation very similar to the state equations.
Part (2) is trivially proved by taking the expectation

T T T TEy(t )y (t ) = C*Ex(t )x (t )*C + Ev v k k k k k k

The third part is proved easily by taking the Z transform of (1),

Z[M J  = E<A>*Z[M ] + E<B>* Z[Q, ] k+1 k k
ft £ ft

z-CM (z)] = E<A>•[M (z)] + E<B>•[Q (z)]

#
from which [M(z)] can be found.

Theorem 6

Consider the discrete state model of theorem 5 with the additional
equation:

x(t +r) =A(r)x(t )+B(r)w k k k
and use the notation:

<X> = Kronecker product of X'(t) by X ’(t) with F

X ’(t)=X(t) (1-F (t) )1/2Then

The Laplace transform of the (lexicographic ordered) mean square value 
of x (as a function of t), is given by:

ELM](s) =
-1L{<A> }(zl - E<A>) E<B> + L{<B> }F F )

[Q (z)]
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evaluated at z=1/P̂ ,(s)

Proof

We evaluate the expression:
Tmsq{x(t)} = E E{x(t +r)x (t +r) GIVEN r}t=t, +r k kk

Here, the second expectation equals:
T T TEx(t +r)x (t +r) = A(r)M A (r) + B(r)Q B (r) k k k k

where M =msq(x ) as it was determined by theorem (5).K K
Now we take the expectation with respect to t=t +r

K

T TE A(r)M A (r)+B(r)Q B (r) =t=t +r k kk

t CD

= f d r  y  (1-F (r)) p (t-r;k) [A(r)M A (r)+B(r)Q B (r)|X „ T t I k k )0 k=0
Let's call the above expectation M(t). Then, the Laplace transform of
M(t) can be used to replace the convolution integral with a product of
terms. That is:
L{M(t)} = (LM)(s) =

CD

= £  L{p (t;k)} L{(1-FT(t))(A(t)MkAT(t) +B(t)QkB Ct)) } 
k=0

Using the lexicographic multiplication we have,co
CLM(s)] = £  U p  (t;k)} L{ <A>F[Mkl + <B>FCQk] } 

k=0
The infinite summation that appears above can be computed by using

Lp (t;k) = pN s) t T
and the property of the Z transform:
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y! (function of k) Pk(s) = (Z-transform of the functionTk=0 evaluated at z=1/P (s) )T
Then,

CLM(s)] = L{ <A> [ZM ] + <3> [ZQ, ] }F k F k

evaluated at z = 1/P (s)T
and,

# ft
[LM](s) = L{<A> }’[M (z)3 + L{<B> }•[Q (z)]F F

Using the result (3) of theorem 5 we can compute the M (z) in 
terms of Q (z) and complete the proof of the theorem.

6. Defining the Power Spectral Density Gain

The power spectral density gain of a randomly sampled system is 
defined by taking the Fourier transform of the autocorrelation function 
of the output of the system when the input is a white noise process of 
unit intensity. The development has two parts; first we present a 
lemma which shows the steps in defining the power spectral density of a 
nonrandom linear system, and second, we extend the definitions to random 
systems. At the end, an example is given to indicate the procedure for 
calculating the bandwidth of a first order randomly sampled system.

Lemma

Consider the following multiple-input multiple-output linear system,
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x = Fx+Gw, Ew(t)wT(r) = Q 5(t-r)
y = Cx Ew(t)=0
with F stable.

Let M(t) be the variance of x(t); because the system is assumed to be 
stable and time invariant, M(t) reaches a steady state matrix, denoted 

by M.
Also, let A(t) be the transition matrix exp( Ft ).

Then

1. The correlation function R(t) of the output is given by

R(t) = CA(t)MCT for t>0
TR(t) = CMC for t=0 (R(t) is continous at 0)
T TR(t) = CMA (-t)C for t<0

2. The power spectral gain matrix of the system,
*

H(jw)H (jw) (* means conjugate and transpose)

can be found by replacing Q by I and taking the Fourier transform of 
R (t)

Proof

Because Ex(t)=0, the variance and the autocorrelation of x(t) have the 
same value. The correlation of the output y(t) is calculated below for 
lag r>0.

R(r) = Ey(t+r)yT(t) = C Ex(t+r)xT(t) CT=
T T T= CA(r) Ex(t)x (t) C = CA(r)M(t)C
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For r<0, we can write
TR(r) = E y(t)y (t-r) 

and following similar steps, we can find,

R(r) = CM(t)AT(-r)CT

which proves the first part of the lemma. The second part can be proved 
by taking the Fourier transform of R(t). To simplify the notation we 
use

F {g(t)} for the Fourier transform of the positive values of t 

F {g(t)} for the Fourier transform of the negative values of t
Then,

F{R(t)} = F+{R(t)} + F~{R(t)} = F+{CA(t)MCT}+F~{CMAT(-t)CT}
-1 T T -1 T= C(jwl-F) MC + CMC-jwI-F ) C

= C(jwI-F)"1{ M(-jwI-FT)+(jwI-F)M} C-jwI-FT)“1C

= C(jwl-F)_1{ -MFT-FM } (-jwI-F7)"1CT

To continue, we make use of the fact that M(t) satisfies the first order
linear matrix differential equation:

T T M(t) = FM(t)+M(t)F +GQG

which, in the case of a stable system at the steady state, gives
T T 0 = FM+MF +GQG.

Solving for the last term and replacing Q by I (as part 2 requires), 
we can substitute in the previous expression of F{R(t)} to find,

F{R(t)} = C(jwI-F)"1GGT(-jwI-FT)"1CT
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= H(jw)H*(jw)

which completes the proof of the lemma. 

Power Gain of Randomly Sampled Systems 

Consider the randomly sampled system:

x(t )=A(T )x(t )+B(T )w k+1 k k k k
y(t )=Cx(t )+v k k k

where T is random with given pdf, var(w )=Q and var(v )=R . k k k k k
Then, according to theorem 1,

msq{y(t )}=CM C+R k k k
where the matrix satisfies the first order difference equation:

[Mk+1] = E<A>,CMk] + E<B>'[Qkl 

Now, let's make the following assumptions:

(a) E<A> has eigenvalues inside the unit circle
(b) Q and R are not functions of k.k k

Under these assumptions, the linear system which propagates [M ]K
is stable and for some k (large enough) it reaches a steady state.
Then,

[M ]=E<A>[M ]+E<B>[Q]ss ss

[M ] = (I -E<A> )"1E<B> [Q]. ss
In this manner, the steady state variance of the states at the sampling
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points can be calculated. Let's now define:
TR(r;t )=Ey(t +r)y (t ) k k k

namely, R(r;.) is the correlation of the output function at lag r.
Then, for all k, and a fixed r>0,

R(r;t )=CA(r) E{x(t )xT(t )} C^+ R k k k
and when k is large R(r;t ) does not depend on t , and equals:

rC tC

TR(r) = C A(r) M C + R ss
or * T “1[R(r)]= ( CA(r)*C ) (I-E<A» E<B> [Q] + [R]

which is the lexicographic form of the previous one.
In order to define the power spectral gain function we make the 
additional assumptions:

(c) R=0 (no observation noise)
(d) w and y are scalar functions.
(e) Q=1, i.e. the input noise is of unity intensity.
(f) The matrix A(r) is the transition matrix of a continous time 

system, that is, there exist a matrix F such that A(r)=exp(Fr).

Then, the correlation function (scalar) of the output is:

R(t) = ( c A ( t ) * C T) ( I - E < A > ) “ 1E<B> for t > 0 ,

and (following similar steps we can find that):
/ T T\ -1R(t) ~\C *k (-t)C J(I-E<A>) E<B> for t<0.

Notice that the only place that t (lag) appears is in the transition 
matrix A(t). The power spectral gain function will be found by taking
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the Fourier transform of R(t):

S(w) = (FR)(jw) = (c(jw-F)~1*CT + C*(-jw-FT)"1CT)(I-E<A>)"1E<B>

This function describes the frequency characteristics of a randomly 
sampled system; notice that S(w) depends only on the expected values of 
<A> and <B> and not on higher order statistics.

An Example

Lets try to compute the power spectrum gain of a randomly sampled system 
of first order, which is the sampled version of the continuous system:

dx/dt = f-x + g-w. 
y = c • x

The randomly sampled version is:

x(t +r ) = a(r) x(t )+b(r)w k k k
where a(r)=exp(fr), b(r)=(1-a(r))g/f. Assume also that the sampling
process is such that:

2 2 E<a(t)> (which is the same as Ea (t) ) = a

E<b(t)> =b2

We apply first the above formula that gives S(w). The various 'pieces'
are calculated below:

- 1 2  2 (I-E<A>) E<B> = b / (1 - a )
-1 T 2 C(jw-F) *C = c / (jw-f)
T -1 T 2 C*(-jw-F ) C = c / (-jw-f)
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T -1 T 2 C*(-jw-F ) C = c / (-jw-f)

and combining them we derive:
2 2 2 

— . * 2f a b cS(w) = — 2 2 w + f
The 3-db point of this function occurs at the frequency w=-f (minus 

because dx/dt=fx+gw has to be a stable system, so f is a negative 
number). Notice that the bandwidth of the first order randomly sampled 
system HAPPENS to be the same as the continuous system. In general the 
power spectral gain function S(w) has MORE poles than the order of the 
original system, and the bandwidth of S(w) is different than the 
original continuous system.
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Appendix IVa 
Details in Calculations of Expectations

Note 1 (Interpretation of Ex =AEx ); scalar case -----  n+1 n

Let !x } be a (discrete time) stochastic process, and denote by n
x(i;n) the value of the i-th realization of the process {x } at timen
t . For a given time index n, the setn

(x(i;n) i=1,2,..}

is considered as the image of a random variable with probability density 
function p(x;n). That is

Pr({i: at time t the value x(i;n) belongs to (a,a+da)}) = n
= p(a;n)da.

Now, let us assume that the process {x } has additionally then
property

x(i;n+1)=Ax(i;n) for all i and n, for A>0. (1)

In words, for a given realization i of the process the values at any 
time instant are A times the value of the process one time instant 
before. Because of this additional property, p(x;n) must satisfy the 
equation

1
p(x;n+1)=  p(x/A;n) (2)A

This is derived by considering the transformation (1) of the random 
variables x(i;n+1) and x(i;n) C33. It is claimed that:

Ex(i;n+1)= A Ex(i;n) (3)
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where
Ex(i;n) = J ap(a;n)da. 

all a
The proof of (3) is based on (2); starting from the left side, we find 
the right side:

Jxp(x;n+1)dx = J x/A•p(x/A;n)da = J ~ A-(x/A)-p(x/A;n)-d(x/A) =

= A j  ap(a;n)da

Note 2 (Detailed derivation of Ex = EA-Ex ) -----  n+1 n

With this note we explain in detail the meaning of the equation

x = A(T )•x (1)n+1 n n
where the T are random. Then we prove that the expectation of x n n

satisfies a similar recursive equation.
First we define the process {x } and then we find the expectation Exn
at a fixed point n.

Let T be a random variable with probability density function

p (h) for h >0 T
By performing an experiment that produces independent values of T we can 
generate a sequence of numbers such as

V V T2 V"*
Because of the independence, the composite event:

V={ T e(h ,h +dh ) AND T e(h -h +dh ).. .AND Te(h ,h +dh )} 0 0  0 0  1 1 1  1 n n n n
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has elementary probability

Pr(V)= pT(hQ)pT(h1)...pT(hn) dhQdh^... dhn

The sequence {T } is associated with the sequence {x }, generated n n
the recursive relation

x. =A(T.)x. i+1 1 l

XQ is given

A(.) is a given function.

Assume now that the numbers T^,...,T have been generated and the

resulting sequence of x's is x ,..,,x . Then1 n+1

x =A(T )A(T )...ACT )x_n+1 n n-1 0 0
and by the fundamental theorem of expectation [1]

Ex :( I A(h ) A(h )p (h )...p (h )dh ...dh \xn+1 \/ n 0 T n T 0 n 0 / 0
all h's

But the integral

A(h.)p_(h.)dh. i T i i
all hl

has been defined as EA(T). Therefore,

Ex = EA-Ex n+1 n
This concludes the proof. The expectation of x may be interpretedn
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in two manners:
(a) Ex is the mean value of x when T , T ...T „ varyn n 0 1 n-1
(b) Ex is the mean value of x's (in ensemble sense) for given nn

The first interpretation is obvious from the above note and the usage of 
the fundamental theorem of expectation. The second interpretation is 
based on the definition of the E operator. A related formalism is

If x=f(T) and the pdf of T is p^(h), then

(a) Ex = j f(h)p^(h)dh (over all possible values of h)

(b) Ex = hp (h)dh (over all possible values of h)

Note 3 (Detailed derivation of Ex(t) )

In this note we find the expectation of x at any time instant t.
First we define rigorously the meaning of x(t). In Note 2, the sequence
{T } was defined; here, we associate the partial sums n

n-1
t = 7] T. n=1,2,...n i i=0

with {T } n
The above definition creates a new sequence, namely 

t̂ » t^, •••»

For completeness, we define t^ =0 as the 'time origin'.

Now the following assumptions are made:
(a) t is a (fixed) positive number
(b) t is the largest t which is not less than t with 0<n<kk n = =
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(c) h is the difference t-tk (greater than or equal to 0)

(d) x, (t) is given byk
x (t)= A(h)x k k

where A(.) is a given deterministic function.

The above assumptions are illustrated by the following figure

x, (t) k+1

k-1
h

(time)
t t t tk-1 k k+1

Figure 2: Derivation of Ex(t)

Notice that assumption (a) declares t to be a fixed number, assumption
(b) declares t as a random variable and assumption (c) k
means h is a random variable. In the following, we will calculate the 
expectation of x (t). By definition,

E{x (t)} = /b dPr( the number x (t) lies in the interval (b,b+db) 
k b k

= fb dPr( A(h)x belongs to (b,b+db) )
J  k

over all possible values of x^(t).

Because k is not fixed, the following relation is true:

Pr( A(h)x is in I) = Pr(A(h)x is in I) + Pr(A(h)x is in I) + ... k 0 1
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for any interval I since the various events are mutually exclusive. 
Then the previous equation yields

E{x (t)} = ( V'bdPrC A(h)x is in (b,b+db) with t=t +h ANDk J n nb n=0
t is the maximum t. which is less than t) n 1

Next, we apply Bayes rule for the conditional expectations, namely,
Pr(A) = sum over all h of Pr(A|h)Pr(h)

and find
E{x (t)} = / • bJ*dPr( A(h)x is in (b,b+db) GIVEN h=a )•

J  n=0 n
over b over a

. dPr( h is a number in the interval (a,a+da) and t=t+h)n
Because b appears only in the first probability, the following 
integration is necessary

/ bdPr( A(h)x is in (b,b+db) GIVEN that h=a) =J n
over all b

/ - 1  - 1  - 1bdPr( x is in (A (a)b,A (a)b + d( A (a)b) )n
over all b

A(a) / r dPr( x is in (r,r+dr) ) = A(a)Ex n n
over all r
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Now we may substitute this result into the original expectation to find 

00 /«

E{x Ct)} / A(a)*Ex • dPr(h is in (a,a+da) and t=t +h )k L-‘ / n nn=o J
over all a

The probability that appears above is easily calculated by

dPr( h belongs to (a,a+da) and t=t +h ) =n
Pr( having no other t in the interval (t ,t ) ) timesi n
dPr( t belongs to the interval (t-a-da, t-a) ) n.

But,
Pr( having no other t in the interval (t , t) )=i n
Pr( no T has value less than a=t-t )=n
1 - Pr( all T have values less than a ) =

1 - FT(a)

And,

Pr( t belongs to (t-a-da, t-a) ) = p (t-a;n)da n t
Substituting the last two expessions into the expectation of x, we find

r  CD

Ex (t) =/ V  A(a) Ex • (1 —F_(a)) • p(t-a;n) da k / > n T t
J n=0
over all a

The calculation of the integral can be simplified by using the 
convolution theorem for the functions

A (t) = A(t)( 1 —F (t) ) F T

p (t;n)



over all a
where P (s;n) is the Laplace transform of p (t;n). Define, t t

EX(s) = L{ E{ x (t) } } n
then, a,

EX(s) = > (LA )(s) P (s;n) Ex 
£-> F t  nn=0

Calculation of the infinite summation is accomplished by using the fact 

P (s;n) = pj(s)

and the definition of the Z transform of Ex ,n
CO

EX'(z ) = Z{ E{ x } }
n n=0

= Y ex z7n Z_j n

Then,
*

EX(s) = LAp(s) • EX (z) evaluated at z=1/P (s)

Appendix IYb 
On Kronecker Operations [4]

The Kronecker product (or direct product or lexicographic 
multiplication) is defined in proposition 1. The defining equation

TS = AQB « = *  [S3 = (A*B) [Q]

is of fundamental importance because it converts matrix equations to
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simple linear vector equations. The symbols [Q], A*B, and <A> are also 
defined in proposition 1. The reduced lexicographic multiplication is 
discussed in proposition 2 and then several properties of the Kronecker
products are given. Following that the Kronecker sum A//B (or direct
sum) is defined and the property

exp( A#B ) = exp(A) * exp(B) 
is pointed out. The eigenvalues of the direct products and sums, which 
play an significant role in determining the stability of variance 
equations, are calculated. Finally, two applications illustrate the 
usefulness of the direct operations.

Proposition 1 (Lexicographic Multiplication)

Let A, Q, B be three matrices of dimensions N by M, M by L and P by
L respectively, and S (N by P) be the product

TS = A Q B.

We also introduce the notation:

a) [Q] to mean a column of ML elements q in the order
i j

qir q12,’**q21’ q22 qML‘
That is, q is before q if the number (i-1)L+j is less thanij kl

(k-1)L+l. Notice that this happens if i is less than or equal to k and 
j is less than 1.

Tb) [Q]’ to mean [Q ] (vector of ML elements taken column by column).
c) A*B to mean a matrix of dimensions NP by ML consisting of blocks

a B i=1,2,...,N j=1,2,...,M.
U

(A*B is called the Kronecker product or the direct product of A



d) <A> to mean A#A (Notice that A need not be a square matrix).

Then:
1. [S] = (A*B) [Q]
2. [S]' = (B*A) [Q]»

T3. If S=AQA then [S]=<A>[Q].

Proof:
To prove (1) we use the Einstein summation notation for the product

TS = A Q B,
s. ,=a. ( q ,b )ij lm ml jl

where 1 and m are dummy summation indices. Then,



Therefore,
[S] = matrix of blocks a B times [Q].

ij
This also means that the ij block of the matrix A*B is the block

a. .B ij
which proves part (1). Part (2) is proved using part (1) as follows:

iji iji iji iji iji

S=AQB then, S =B-Q-A and [S ]=(B*A)[Q ].
TUsing the definition [S]’=[S ], the second assertion is proved. Part

(3) is a trivial case of part (1) using the notation (d)
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Let Q be a symmetric M by M matrix, A be an N by M matrix, and
TS = A-Q-A.

Let us also use the notation:

a) [Q] to mean a column of M(M+1)/2 elements q in the order
r ij

Q  0  • • • Q  0  « « • Q  • • • • 011 12 1M 22 2M MM
That is, [Q] can be generated from [Q] by deleting the elements with r

i>j.
b) <A> to mean the matrix <A> with the following modificatios:r
- Associate the rows of <A> with the elements of the [S] vector. The 
indices of the tS] vector are 11, 12,..., 21, 22,...,ij,..; then delete 
the rows of <A> corresponding to indices ij with i>j.)
- Associate the columns of <A> with the elements of the [Q] vector.
Then, replace the mn columns of <A> with m<n by the sum of the mn and nm 
columns; then delete the nra columns.

Then:
[S] = <A> [Q]r r r

Proof:
The proof is based on the previous result [S] = <A>[Q]. Because Q is 
symmetric, S is also symmetric. Therefore,

s =s.
ij Ji

This means that the ij-th and the ji-th equation of the system 
[S]=<A>[Q], are the same. So we can ignore one of them, say the one 
that i>j. This explains why we can delete the ij (with i>j) elements of 
[S] and the ij (with i>j) rows of <A>. Also, because Q is symmetric



Following the rule that q should be deleted if m>n, the equationmn
below shows how the matrix <A> should be transformed so that the linear 
system equations [S] = <A>CQ] will be true.

(nm column of <A>)q +(mn column of <A>)q +(additional clmns)nm mn
=(nm column of <A> PLUS ran column of <A>)q +(addit. columns)mn
This proves the proposition. The importance of the reduced 
lexicographic multiplication is based on the reduction of the number of 
the multiplications and additions. Many equations (in theorems 5,6, etc) 
are written in terms of the lexicographic multiplication; some of them
satisfy the assumptions of the preceeding proposition, therefore the
reduced lexicographic multiplication can be used instead. The reader 
should substitute the reduced form, when it is possible (despite the 
fact we do not mention it there).

Properties of the Kronecker Product [4]

The following are true
1. (A+B)*C = A*C+B*C (distributive law)
2. A*(B*C) = (A*B)*C (associative law)
3. (A*B)(C*D) = (AC)*(BD)
4. (A *B )(A *B )...(A *B ) = (A B )*(A B )*...*(A B )1 1 2 2  n n  11 2 2  n n
5. I *1 = In ra n+m

6. (A*B)“1= (A_1)*(B~1)
7. tr(A*B) = tr(A) tr(B)

3. |A*B| = IA In IBIm
The proofs of most of the above are based on the definition of the
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direct product. Justification of (3), (4) and (6) follows.
Consider P and Q satisfying the equation

TP=(AC)Q(BD)

then,
[P]= (AC)*(BD)•[Q] (i)

But P can also be written as
T T 

P=A(CQD )B
T TP=ARB with R=CQD

Writing P and R in lexicographic order, the above yields

[P]=(A*B)[R] with [R]=(C*D)[Q]
or

[P]=(A*B)(C*D)[Q] (ii)

Because P and Q were arbitrary, (i) and (ii) imply that 
(AC)*(BD)=(A*B)(C*D).
Property (4) is proved by using finite induction of (3).
To prove (6) we verify that the product

(A*B) (A“V )

is equal to I by applying properties (3) and (5).

(A»B)( A~V) = (A*A_1)*(B B“1)=I *1 =1n m n+m
Kronecker Sums

Let A and B be two square matrices of dimensions n and m respectively. 
The sum

A*I +1 *B n m
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is called the Kronecker sum and it is denoted by the symbol A#B.
The following are true:

1. If X(t) and Y(t) are matrix functions of t satisfying the 
differential equations

dX/dt = AX 
dY/dt = BY 

then: d(X*Y)/dt = (A#B) (X*Y)
2. exp(A#B)=exp(A)*exp(B)

The proof of 1. follows
D(X*Y)=DX*Y+X*DY=AX*Y+X*BY=AX*IY+IX*BY=(A*I)(X*Y)+(I*B)(X*Y)=(A#B)(X*Y ) 
where D=d/dt. Assertion 2. is proved by expanding both sides in Taylor 
series and by writing M B explicitly [4].

Eigenvalues of Kronecker Products and Sums

Let A and B be two square matrices of dimension n and m respectively,
and assume (for simplicity) that both A and B have simple eigenvalues
a_,...,a and b ,...,b respectively. Then 1 n 1 m
1. A*B has as eigenvalues all possible products a b .

i J
2. M B has as eigenvalues all possible sums a.+b.

Proof of 1:
Let u and v be the eigenvectors corresponding to a and b . i j i j
Then,

Au = a u i i i
Bv = b v

j J j
so,
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X T  xA u v B = a b u v  

i j i J i j
or

T T(A*B)[u v ] = a b [ u v ]  i J i j i j
which verifies that A*B has eigenvalues all possible products a b

i J
Proof of 2:

Then,

T TAu v = a u v for all v
i j i i j j
X T  T

u v B = b u v for all ui j i i j i

X H  T
Au.v.I + Iu.v.B = (a.+b.) u.v. i J i J l j i j

x T
(A#B) [u v 3 = (a +b )[u v.] 

i J i J i J
which proves that A#B has eigenvalues all the possible sums a +b .

i J
Applications

1. Solution of the Liapunov equation

Readily,

therefore,

TQ = AQA + P

[Q] = <A> CQ] + [P] r r r r

[Q] = (I-<A> T V ]  r r r
In order that the inverse exist, the eigenvalues of A must satisfy the 
property

a.a. not equal to 1 for all i,j 1 J
Corrolary: If A is a strictly stable matrix (with eigenvalues inside the 
unit circle), the recursive equation
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Q =AQ AT+P n+1 n
converges for n-*- cd.

2. Solution of the reduced Riccati equation
TdQ/dt=FQ+QF +U(t)

Then,

dQ/dt=FQI+IQFT+U(t)
Therefore,

d[Q]/dt=(F//F) CQ]+[U]

The transition matrix of the above first order equation is

exp(F#F)t = exp(Ft)*exp(Ft)
Conditions for stability can be found by examining the sums of all the 
possible combinations of the eigenvalues of F.



Example 1

This example is an application of proposition 1 (assertions 1 and 3).
It illustrates how to form the Kronecker product of two 3x3 matrices and 
how to perform the lexicographic multiplication.

0 7 6 1 6 0 r \3 4 1
Let: A= 5 1 0 B= 1 0 4 Q= 2 1 0

COCOo 5 2 3' i 0 4 5k 4

The matrix S is defined by the product AQA. This product is

200 134 222

Q = 143 37 142
136 76 165

Following the rules of making the [S], A*B and [Q], we find

[S] =

/ t /*200 0 0 0 i 7 42 0 Ii 6 36 0 3
134 0 0 0 ; 7 0 28 | 6 0 24 4
222 0 0 0 1' 35 14 I21 , 30 12 18 1

-

143 5 30 0 I 1
|

6 0 i I 0 0 0 2
37 A*B= 5 0 20 | 1 0 4 | 0 0 0 [Q] = 1

142 25 10 15 | 5 2 3 ! 0 0 0 0
136 0 0 0 ! 8 48 0 1 t 3 18 0 0
76 0 0 0 I 8 0 32 | 3 0 12 4

165 0 0 0 I 40 16 24 | 15 6 9 5

Using the EASY interactive matrix operations program, we can verify that 
the equality [S]=(A*B)[Q] is true.
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Example 2

This example shows to things: (a) how to form the lexicographic product
of rectangular matrices and (b) how to form the reduced lexicographic 
product. It follows the theory presented in proposition 2 and all the 
notation used here is consistent with the theoretical proof.

1 2 5' 3 0 i

Let: A = 3 4 5 (N=2, M=3) and Q = 0 5 1 (3x3 symmetric)
7 1 8N /

The product S=AQA can be found in a straight forward manner:
313 468^

S = 468 695
- TThe lexicographic columns [S] AND [Q] and the product A*A can also be 

found

[S3 =

313 1 2 5 2 4 10 | 5 10 25 s(1,1)
468 3 4 6 i 6 8 12 i ______I15 20 30 s(1,2)
468 A*A = 3 6 15 4 8 2C | 6 12 30 s(2,1)
695 9 12 18 ,12 16 24 j18 24 36 s(2,2)

>
[Q]T=|'3 0 7 ; 0 5 1 i

.
7 1 8]

c!1iqi2qi3 q21q22q23 q31q32q33
(the s(i,j) and q(i,j) are the elements of S and Q respectively). By 
using EASY again, we can verify that [S]=(A*A)[Q]. By inspecting the 
A*A matrix we can see some redundancy in the multiplications because of
symmetry. This point is exactly what the reduced lexicographic
multiplication is about. To form the reduced [S] and [Q] we delete the
s(i,j) and q(i,j) elements with i>j. The result is:
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and

CQ]^=(3 0 7 5 1

[S]r=
313
468
695

qH qi2qi3 q22q23

8)

33

Since we deleted the s(2,1) element of [S]f (3rd row) we also delete the 
3rd row of A*A. Since we deleted the q(2,1), q(3,1) and q(3,2) (3rd, 
6-th and 7-th column) elements of [Q], we must also delete the 3-rd,

6-th and 7-th columns of A*A, after we add them to the (1,2), (1,3) and 
(2,3) columns (that is, the 2-nd, 3-rd and 6-th). The result is:

A*A=r

1 4 10
3 10 21 

9 24 36

4 20 
8 32 
16 48

25
30
36

s(1,1) 
s(1,2) 
s(2,2)

The result [S] = (A*A) [Q] can also be verified. Note that the 4x9 A*A r r r
matrix has now been reduced to 3x6.
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CONCLUSION

This dissertation has studied irregularly sampled systems. Both 
nonuniformly sampled and randomly sampled systems have been analyzed in 
time and frequency domain. Particular emphasis has been given to the 
applicability of the theories in signal processing areas and modern 
control. We have presented the results following a definition-theorem- 
proof approach which is a precise and ellegant way of expressing the 
theory. On the other hand, the various examples and simulations have 
been written in a simplistic manner in order to show how the theory can 

be applied to practical problems. Processing nonuniformly sampled data 
is indeed possible and is not as hopeless as at first it might seem.

In the following, we review the material presented in this work and 
we point out the main contributions to the area of irregular sampling. 
Then we include an indication of where future work needs to be done to 
extend the range of applicability of the results obtained.

Summary

In chapter I we have discussed a class of irregular sampling 
sequences, namely periodic nonuniform sequences. Periodic nonuniform 
sampling is interesting because we can modify the frequency domain 
characteristics of the sampled signal by changing a few sampling 
parameters. The importance of this work is two fold; first it unifies

190
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a class of irregular sampling under a unique theoretical framework, and 
second, it provides the analytic and synthetic tools for finding the 
sampling laws that achieve certain design criteria.

Chapter II has extended the current available ARMA techniques to 
nonuniformly sampled systems. Both coefficient estimation and missing 
data interpolation are new results in this area.

Chapter III has presented three new points: An interpolation 
theorem, sensitivity of the estimates and an iterative interpolation 
algorithm. The above results are used to fill in (interpolate) missing 
data of a bandlimited sampled signal. Because it is not necessary to 
use a particular model for the time series, the techniques discribed can 
be applied to a wide class of (bandlimited) sequences.

Chapter IV contains several new topics and a variety of extensions 
to Kalman’s work. The propagation of the mean-values and the mean- 
square values of the outputs of a randomly sampled system are the most 
important. The usage of direct multiplication to simplify matrix 
equations is not a new technique but the extensive usage in this 
particular area has been of great importance. The idea of using the Z- 
transforra in the expressions of the mean and variance simplifies the 
results significally. Finally, the topic on power gain of randomly 
sampled systems is a significant result in the area of random sampling 
because it has been derived from a completely different route than the 
existing results (by Leneman and Masry) in the literature.

We also consider the sofware support of the dissertation a 
contribution to the system simulation and signal processing areas. The
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fact that all the subroutines have been optimized from the memory 
requirement viewpoint and they are running under a microcomputer 
environment is the uniqueness of this work. Using the suggested 
EASYPACK data type to represent array structures allows the user to 
concentrate on the problem itself without worrying about the format 
requirements of a specific language.

Trends and Future Extensions

Irregular sampling is a new area of research and there is much work 
to be done. The topics with the most iteresting applications are 
periodic nonuniform sampling and random sampling. Missing data problems 
are also of great interest and have not been explored deeply enough.

Periodic nonuniform sampling can be used in many practical 
situations to replace digital filters and achieve better frequency 
domain characteristics. For that purpose, extensive simulations are 
needed to verify that the required properties can be obtained.
Futherraore, stochastic properties of periodically sampled systems are 
required to be found; the case of a random process sampled periodically 
(using nonuniform patterns) has not been studied in this dissertation 
but is of interest.

Problems associated with missing (or bad data) appear very often in 
data acquisition systems, and it would be worthwhile to provide more 
theoretical emphasis to their solution. In this dissertation we give 
two approches to this class of problems (chapter II and III), but we 
realize that futher refinements of the algorithms are necessary.
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Finally, randomly sampled systems can be practically used only when 
the synthesis problems (estimation and parameter determination from 
external characteristics) are solved. Our work was limited to the 
analysis problem which is only the first step toward the synthesis 
problems.
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This appendix is devoted in describing the tools used for the 
various simulations in this dissertation. Several main programs 
(described in chapter II and III) use the programs described here to 
perform most of the simulation objectives. Each main program plus the 
routines of this appendix can run in almost any hardware environment 
(including machines of 8 to 36 bits); the language used is FORTRAN-IV 
with some minor I/O extentions.

A common requirement for all the simulations needed is the ability 
to perform vector oriented operations; this is the main reason of 
creating the EASYPACK subroutines. EASYPACK is a collection of 
subroutines in a form of a library file, so that the user can call a 
specific routine to perform a desired function.

A second program called EASY has been created to supplement the 
user's tools; EASY is an interactive main program organized in Reverse 
Polish Notation. It was primarily written to exercise and test the 
EASYPACK features but it has been extended to include signal processing 
algorithms commonly needed for simulations. Using EASY, one can solve a 
(rather large) class of signal processing problems interactively with 
not much programminng experience. We should also mention the fact that 
both programs (EASYPACK and EASY) have been developed and operated in a 
micro computer environment which shows the compactness of the code and 
the minimal requirements.

The outline of the appendix follows. First we provide the 
documentation of the EASYPACK routines; there, some examples of using 
EASYPACK are given. Then we include the source code of the subroutines. 
In sequence we provide the source code of the EASY main program. To use 
EASY it is sufficient to know how to run a Hewlett Packard calculator 
and to remember the EASYPACK features. Finally, a summary of all the 
EASYPACK and EASY 'commands' is provided for futher reference.
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1. EASYPACK Documentation

Introduction

EASYPACK is a set of FORTRAN-IV subroutines and functions to perform
matrix and vector operations. The package has been designed with
the following specifications:

(1) Each operation is performed by a routine with the minimum number 
of arguments. This helps the readability of the main program 
and reduces the number of possible errors.

(2) The subroutines check the dimensions of the arguments; if an
error is detected it is reported properly.

(3) The subroutines are optimized in terms of memory requirements.
They have been designed for micro- and mini- computer usage. 
Machines of 8, 16 and 32 bits can easily run the code.
The execution speed is sacrificed only for checking purposes.

(4) EASYPACK arrays can be easily passed to existing FORTRAN programs 
and FORTRAN arrays can be easily converted to EASYPACK format in 
place (without wasting extra memory).

A new data structure for matrices (EASYPACK format) is used. In FORTRAN 
an array of dimensions N by M declared with maximum row dimension IA, 
occupies IA*M real number memory locations. In EASYPACK, an array A 
of dimensions N by M is stored as a list of (N, M, A(1,1), A(2,1),..., 
A(N,M)).

Usage

A typical main program using EASYPACK is given below

(1)
(2)
(2.1)
(3)
(4)
(5)
(6 )
(7)
(8) 
(9)

Dimension A(100), B(100), C(100) 
Common maxwrk, WORK(100) 
maxwrk=100
Call MINP( B, 'Enter matrix B$') 
Call MINP( C, 'Enter matrix C$')

Call MUL( A, B, C )
Call GINV( B, B )

Call MPRN( A, 'This is the product B*C$' ) 
Call MPRN( B, 'This is the inverse of B$') 
END



197
Line (2) is necessary to declare some work space needed for EASYPACK 
Line (2.1) is used to specify the available work space for the 
subroutines. If an EASYPACK subroutine needs more work-space than 
maxwrk, an error message is printed.
Notice the readability of the code, the simplicity of writing it and 
the 'dimensionless1 calling of the subroutines.
The following example shows how to call the FORTRAN routine

SUBROUTINE EXAMPLE( ARRAY, IA, N, M, ... )

from a main program that uses matrices in EASYPACK format; that is,

Real A(100)
• • • • • •

CALL EXAMPLEC A(3), A(1), A(1), A(2), ... )

Note that despite the fact IA, N and M are of type integer, and
A is of type real, when EXAMPLE is called the dimensions are passed 
as the addresses of AC 1) and A(2). (Note: assume that FORTRAN stores
the integers in two bytes and the reals in 4 bytes. Assume also that 
ADDR is the address of A(1). Then, N is stored in ADDR and ADDR+1, and
M is stored at ADDR+3 and ADDR+4. In this manner, A(1) and A(2)
correspond to N and M respectively. All FORTRAN particularities are 
handled by SETDIM, NDIM, MDIM and NM2DIM. In this manner the
portability of the package is established.)
The following example shows how to convert the FORTRAN array A 
with dimension N, M, and maximum row dimension IA to EASYPACK format

CALL PACK( A, IA, N, M )

if A is in EASYPACK format,

N = NDIM( A ) gives the row dimension of A
M = MDIM( A ) gives the column dimension of A
s = ELE( A, i, j ) gives s=A(i,j) and checks if the indices

i and j are inside the dimensions of A.
s = A( ii ) where ii = 2+i+(NDIM(A)-1)*j, gives

the (i,j) element of A with no dimension 
checking.
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Conventions

The following conventions are used for the arguments of the 
subroutines:
(1) A are result matrices in EASYPACK format
(2) B, C are parameter matrices in EASYPACK format
(3) X is a result vector
(4) Y, Z are parameter vectors
(5) s, p, q, are scalar quantities.
(6) When there are more than two arguments, in place operation

is allowed; for example, Call MUL( A, A, C ) will perform 
A:=A*C.

(7) When a routine is called, the arguments have the form 
resultl, result2, ..., parameter1!, parameter2,...
or, destinationl, destination2, ..., sourcel, source2, ...

EASYPACK Utilities and I/O

Call PACK( A, IA,N,M )
A := packed form of A
On entry, A is a N by M matrix with max row dimension IA.
On exit, A is in EASYPACK format

N = NDIM( B ), M = MDIM( B ), NM2 = NM2DIMC B )
Return the number of rows (N), the number of columns (M), 
and the total number of elements (N*M+2) of the matrix B.
It is assumed that B is in EASYPACK format.

Call SETDIMC A, N, M )
Redefines A to new dimensions N by M.
On entry and on exit, A is in EASYPACK format.

s = ELE( B, i, j )
Returns s:=B(i,j) when B is in EASYPACK format.

Call MINP( A, lcomment$l )
Inputs the matrix A in EASYPACK format.
Prints the comment first, then asks for dimensions and 
finally reads the matrix from the terminal.
Checks for valid dimensions greater then 1.



Call MPRNC A, ,comment$l )
Prints the matrix A. (A in EASYPACK format)
It prints the comment first, then the dimensions and 
finally the matrix row by row.
The maximum number of elements per row is 20.

Call ALTER( A, lcomment$' )
Used to correct a matrix A. (A in EASYPACK format) 
Prints the comment, then asks for (i,j) indices; 
prints that element and allows alterations.
If j is not given, 1 is assumed. Use i=0 to exit.
No checking if i and j are inside the dimensions of A

Call MGET( 'filename.ext$*, A )
Reads A from the (binary) filename given.
A in EASYPACK format
Calls RDMBIN( ,filename$,t A, N, M )

Call MSTOREC 1 filename.ext$', A )
Stores A in the filename given. Binary form is used.
A in EASYPACK format
Calls WRMBIN( ,filename$', A, N, M )

Call RDCBINC 'filename.ext$', X, N )
Reads the vector X(1 to N) from the given binary file

Call WRCBINC 'filename.ext$•, X, N )
Writes the vector X(1 to N) to the given binary file.

EASYPACK matrix operations and functions

Call UNITC A, N )
Defines A to be the unity matrix N by N.
A in EASYPACK format

Call ZER0( A, N, M )
Defines A to be the zero matrix N by M.
A in EASYPACK format

Call RAMPC A, N )
Defines A to be N by 1 with elements 0, 1, 2, ..., N-



A in EASYPACK format

Call EQU( A, B )
Equates A to B.
A and B in EASYPACK format

Call ADD( A, B, C )
Matrix addition A:=B+C
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SUB( A, B, C )
Matrix subtraction A:=B-C
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SADD( A, B, s, C )
Performs the operation A:=B+sC
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SCALE( A, s, B )
Scales B by s; that is A:=sB
A, B in EASYPACK format

Call TRN( A, B )
Finds the transpose of B, that is A:=(B transpose). 
A, B in EASYPACK format

Call MUL( A, B, C )
Finds the matrix product A:=B*C 
Checks if B and C are comformable.
A, B, C in EASYPACK format 
A common block of size A is needed.

Call MULT( A, B, C )
Performs the multiplication A:=B * (transpose of C) 
Checks if B and C-transpose are comformable.
A, B, C in EASYPACK format 
A common block of size A is needed

Call QUA( A, B, C )
Finds the matrix A:= (transpose of B)*C*B.



Checks if B-transpose, C and B are comformable.
A, B, C in EASYPACK format 
A common block of size A is needed.

Call GINV( A, B )
A := generalized inverse of B 
Common: the size of B.
In place inversion is allowed, i.e. Call GINV( A, A )
A, B in EASYPACK format.
No dimension checking.
B can be N by M with N>M but N<30. Least squares solution. 
If B is singular, the routine prints the rank of B and the 
pseudo inverse is calculated.

Call PARK A, B, N1,N2,M1,M2 )
Creates matrix A by extracting the N1...N2 rows and 
M1...M2 columns of B.
In place operations are NOT allowed.
A, B in EASYPACK format 
No dimensional checking takes place.

Call AUGM( A, N, M, B )
Augments matrix A by inserting matrix B. The upper left 
element of A where B is substituted has indices N, M.
In place augmentation is NOT allowed.
A, B in EASYPACK format
Checks if the dimensions of B 'fit1 in A.

s = XN0RM1( B )
Finds the 1-norm of a square matrix B; that is, 
s is the maximum sura of the absolute values of the elements 
of the columns of B.
B in EASYPACK format

s = XNORM( B )
Finds the infinity norm of a square matrix B; that is, 
s is the maximum sum of the absolute values of the elements 
of the rows of B.
Note that XNORM( B )=XN0RM1( B-transpose ).
B in EASYPACK format



EASYPACK Vector Operations and Functions

Call VEQU( X, Y, N )
Equates X and Y; X:=Y (1 to N).

Call VSWAP( X, Y, N )
Swaps the X and Y vectors, that is X:=Y and Y:=X.

Call VZERO( X, N )
Defines a zero vector of N elements.

Call VSCALE( X, s, N )
Scales X in place, that is, X:=sX

Call VSADDC X, s, Y, N )
Performs the vector addition X:=X+sY.

s = VDOT( Y, Z, N )
Finds the dot product of Y and Z. That is, 
s:=(Y-transpose)*Z.

s = VMIN( Y, N )
Finds the minimum element of Y from 1 to N.

s = VMAX( Y, N )
Finds the maximum element of -Y from 1 to N.

s = VN0RM1( Y, N )
Finds the 1-norm of the vector Y; that is the sum of the 
absolute values of the elements of Y.

s = VNORM( Y, N )
Finds the infinity norm of the vector Y; that is, s equals 
to the element of Y with the largest absolute value.

Call CFFT( X, Y, N )
Performs in place complex FFT transform on the X+jY time 
3eries. N must be a power of 2.

Call IFFT( X, Y, N )
Performs in place the inverse FFT transform. N must be a 
power of 2.



Call MAGN( X, Y, N )
Converts the X+jY complex vector of N elements to polar 
coordinates. The magnitude is passed back in X and the 
phase is passed in Y (in radian).

Call RECK X, Y, N )
Converts the polar coordinates X*exp(jY) to rectangular 
coordinates X+jY.

EASYPACK scalar operations

i = IGET(1comment$')
Print the comment and wait till an integer is typed

r s RGET(,comment$')
Print the comment and wait till a real is typed.

Call SGET(1comment$', a, N )
Read the array aC1 to N) using A1 format

Call PRN( ,comment$, )
Print the comment.

Call IPRN( i, lcomment$,)
Print the integer i, then the comment (decimal form).

Call RPRN( r, ,comment$l)
Print the real r, then the comment

Call HPRN( i, ,comment$,)
Print the real i in hexadecimal form.

Call GOPEN( i, ’filename$')
Open a file, i is the channel number

a = DEG(x), a = RAD(x), a = PI(b)
DEG converts x (in rad) to degrees 
RAD converts x (in degrees) to rad. 
PI returns a := b times pi.
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2. EASYPACK Source Code
C--------------------------------------------------------- C
C EASYPACK Rev 2.0, 2.1, 2.2 C
C C
C Common block /SCRACT/ of 10 integer places C
C is used to save some memory for local variables. C
C Rev 2.2 uses maxwrk to test available work space C
C corrects the problem with MGET and adds C
C routine RECT and VSWAP. C
C C
C Common block WORK is used as a work space. C
C C
C External Calls: PRN, IPRN, GOPEN C
C C
C George Kontopidis, March 81 C
C---------------------------------------    C
C
C GINV
C

SUBROUTINE GINV(A,B)
DIMENSION A(1),B(1)
COMMON maxwrk,W(1)
N = NDIM( B )
M = MDIM( B )
If( maxwrk.LT.N*M ) Call PRN('Small wrksp for GINV$')
CALL EQU(W.B)
CALL GMINV(W(3),N,N,M, A,MR)
Call PACKC A, N,M,N )
RETURN
END

C
C GMINV
C

SUBROUTINE GMINV(A,IDIM,NR,NC,U,MR)
C
C Rust, B., Burrus, W.R. and Schneeberger, C., 'A Simple Algorithm 
C for Computing the Generalized Inverse of a Matrix', Comm. ACM 
C Vol. 9, No. 5, May 1966.
C

DIMENSION A(1),U(1),S(30)
C
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IDIM1=IDIM+1 
TOL=1.E-14 
ADV=1.E-24 
MR=NC 
NRM1=NR-1 
TOL1=0.
JJ=1

C
DO 10 J=1,NC

S(J)=VDOT(A(JJ),A(JJ),NR)
IF(S(J).GT.T0L1) T0L1=S(J)
JJ=JJ+IDIM

10 CONTINUE
C

T0L1=ADV*T0L1 
ADV=T0L1

C
JJ=1
DO 100 J=1,NC

FAC=S(J)
JM1=J-1 
JRM=JJ+NRM1 
JCM=JJ+JM1 
DO 20 I=JJ,JCM 

U(I)=0.
20 CONTINUE

U(JCM)=1.0 
IF(J.EQ.1) GO TO 54 
KK=1
DO 30 K=1,JM1

IF(S(K).EQ.1.0) GO TO 30 
TEMP=-VDOT( A(JJ),A(KK),NR )
CALL VSADD(U(JJ),TEMP,U(KK),K) 
KK=KK+IDIM

30 CONTINUE
DO 51 L=1,2 

KK=1
DO 50 K=1,JM1

IF(S(K).EQ.O.) GO TO 50 
TEMP=-VDOT(A(JJ),A(KK),NR )
CALL VSADD(A(JJ),TEMP,A(KK),NR) 
CALL VSADD(U(JJ),TEMP,U(KK),K)
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50
51 
C

54

55 

C

65

70

72
75
C

80
C

85

100
C

110

KK=KK+IDIM
CONTINUE

CONTINUE

TOL1=TOL*FAC+ADV 
FACsVDOT(A(JJ),A(JJ),NR)
IF(FAC.GT.TOLI) GO TO 70 
DO 55 I=JJ,JRM 
A(I)=0.
S(J)=0.

KK=1
DO 65 K=1,JM1

IF(S(K).EQ.O.) GO TO 65 
TEMP=-VDOT(U(KK),U(JJ),K)
CALL VSADD(A(JJ),TEMP,A(KK),NR) 
KK=KK+IDIM

CONTINUE
FAC=VDOT( U(JJ),U(JJ),J )
MR=MR-1
GO TO 75
S(J)=1.0
KK=1
DO 72 K=1, JM1

IF(S(K).EQ.1.) GO TO 72 
TEMP=-VDOT( A(JJ),A(KK),NR ) 
CALL VSADD(U(JJ),TEMP,U(KK),K) 
KK=KK+IDIM

CONTINUE
FAC=1./SQRT(FAC)

DO 80 I=JJ,JRM
A(I)=A(I)*FAC

DO 85 I=JJ,JCM
U(I)=U(I)*FAC

JJ=JJ+IDIM
CONTINUE

IFCMR.EQ.NR.OR.MR.EQ.NC) GO TO 120
WRITEC5,110) NR,NC,MR
FORMAT(' ’,13,1HX,I2,8H M:RANK,12)
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120 NEND=NC*IDIM 
C

JJ=1
DO 135 J=1,NC

DO 126 1=1,NR 
II=I-J 
S(I)=0.
DO 125 KK=JJ,NEND,IDIM 

IK=II+KK
S(I)=S(I)+A(IK)*U(KK)

125 CONTINUE
126 CONTINUE 

II=J
DO 130 1=1,NR

U(II)=S(I)
II=II+IDIM

130 CONTINUE
JJ=JJ+IDIM1 

135 CONTINUE 
RETURN 
END

C
C PACK
C

SUBROUTINE PACK(A,IA,N,M)
DIMENSION A(1)
COMMON/SCRACT/NM,I,J,I1,12,NOTH(5)
NM=N»M

C
C COMPRESS THEM IN PLACE
C

DO 10 J=1,M 
DO 10 1=1,N

11=I+(J-1)*N 
I2=I+(J-1)*IA 
A( 11 )=A( 12 )

10 CONTINUE
C
C SHIFT BY TWO
C

DO 20 J=1,NM
I=NM+1-J
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12=1+2
A(I2)=A(I)

20 CONTINUE
CALL SETDIM(A,N,M)
RETURN
END

C
C ALTER
C

SUBROUTINE ALTER(A,COMMEN)
DIMENSION A(1)
COMMON/SCRACT/ I,J,II,NOTH(7)
CALL PRN( COMMEN )

1 WRITE(5,100)
READ(5,200) IfJ 
IF(I.LE.O) RETURN 
IF(J.EQ.O) J=1 
II=2+I+(J-1)*NDIM(A)
WRITE(5,300) I,J,A(II)
READ(5,400) A(II)
GO TO 1 

10 RETURN
C
100 FORMAT(1 Enter indices (0 to exit): ')
200 Format(216)
300 FORMAT(' Element (',14,1,',14,') =',014.7,’ Enter value: ')
400 FORMAT(1G14.7)

END
C
C MGET
C

SUBROUTINE MGET(FILE, A)
DIMENSION A(1), FILE(1)
CALL RDMBIN( FILE, A(3), A(1), A(2) )
RETURN
END

C
C MSTORE
C

SUBROUTINE MSTORE(FILE,A)
DIMENSION A(1), FILE(1)
CALL WRMBIN( FILE, A(3), A(1), A(2))
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RETURN
END

C
C UNIT
C

SUBROUTINE UNIT(A,N) 
DIMENSION A(1)
COMMON/SCRACT/I,NN,NOTH(8) 
NN=N»N
CALL SETDIM(A,N,N)
CALL VZERO(A(3),NN)
DO 20 1=1,N

NN=2+I+(I-1)*N
A(NN)=1.

20 CONTINUE
RETURN 
END

C
C ZERO
C

SUBROUTINE ZEROC A,N,M ) 
DIMENSION A(1) 
COMMON/SCRACT/NM,I,NOTH(8) 
CALL SETDIM(A,N,M)
NM=N»M
CALL VZER0(A(3),NM)
RETURN
END

C
C RAMP
C

SUBROUTINE RAMP(A,N) 
DIMENSION A(1)
COMMON /SCRACT/I,12,N0TH(8) 
CALL SETDIM(A,N,1)
DO 10 1=1,N

12=1+2
A(I2)=I-1

10 CONTINUE
RETURN 
END

C
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C—
C

100

500

600

C
C—  
C

1

200

2

50
400

C

■MPRINT

SUBROUTINE MPRN(A,COMMEN)
DIMENSION A (1) ,COMMEN(1)
COMMON/SCRACT/N, M , 1, 11,12, K ,NOTH(4)
CALL PRN( COMMEN )
N=NDIM(A)
M=MDIM(A)
WRITE(5,100) N,M
FORMATC Dimensions: ' ,16,' by ',16)
DO 500 1=1,N

11=2+1
I2=2+I+(M-1)*N
WRITE(5,600) I,(A(K),K=I1,I2,N)

CONTINUE 
CALL CRLF 
RETURN
FORMATC 1,14,': 1,20G10.3)
END

■MINPUT

SUBROUTINE MINP(A,COMMEN)
DIMENSION A(1),COMMEN(1)
COMMON/SCRACT/ N,M,I1,I2,K,N0TH(5)
CALL PRN(COMMEN)
CALL PRN( 'Type dimensions: $')
READ(5,200) N,M 
FORMAT(216)
IF(N*M) 1,1,2
CALL PRN('Type now the matrix row by row $') 
Call CRLF

DO 50 1=1,N 
11=2+1
12=2+1+(M-1)*N
READ(5,400) (A(K),K=I1,I2,N)
CONTINUE 

FORMAT(20G14.7)
CALL SETDIM(A,N,M)
RETURN
END
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C
C DEG
C

REAL FUNCTION DEG(X)
DEG=180.*X/PI(1.)
RETURN
END

C
C RAD
C

REAL FUNCTION RAD(X) 
RAD=X«PI(1.)/180.
RETURN
END

C
C PI

s C
REAL FUNCTION PI(S)
DATA PII/3.141592654/
PI=S*PII
RETURN
END

C
C EQU
C

SUBROUTINE EQU(A.B) 
DIMENSION A(1),B(1)
COMMON /SCRACT/NM2,NOTH(9) 
NM2=NM2DIM(B)
CALL VEQU(A(1),B(1),NM2)
RETURN
END

C
C ADD
C

SUBROUTINE ADD(A,B,C)
CALL SADD(A,B,1. ,C)
RETURN
END

C
C SUB
C



SUBROUTINE SUB(A,B,C)
CALL SADD(A,B,-1.,C)
RETURN
END

C
C SADD
C

SUBROUTINE SADD(A,B,S,C)
DIMENSION A(1),B(1),C(1)
COMMON/SCRACT/I,J,K,NB,MB,NM2,NOTH(4)
NB=NDIM(B)
MB=MDIM(B)
IF( ( NB-NDIM(C) )*( MB-MDIM(C) ) ) 100,200,100 

200 NM2=NB*MB+2
DO 10 1=3,NM2 

10 A(I)=B(I)+S»C(I)
CALL SETDIM(A ,NB,MB)
RETURN

100 Call PRNC’Dim Err SADD$')
RETURN .
END

C
C SCALE
C

SUBROUTINE SCALE(A,S,C)
DIMENSION A(1),C(1)
COMMON /SCRACT/M,NM,I,N ,NOTH(6)
N=NDIM(C)
M=MDIM(C)
NM=NM2DIM(C)
DO 10 1=3,NM 

10 A(I)=S*C(I)
CALL SETDIM(A,N,M)
RETURN
END

C
C MULT
C

SUBROUTINE MULT(A,B,C)
CALL TRN(A,C)
CALL MUL(A,B,A)
RETURN
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END
C
C QUA
C

SUBROUTINE QUA(P,A,Q)
CALL TRN(P,A)
CALL MUL(P,Q,P)
CALL MUL(P,A,Q)
RETURN
END

C
C MUL
C

SUBROUTINE MUL(A,B,C)
DIMENSION A(1),B(1)tC(1)
COMMON maxwrk, W (1)
COMMON /SCRACT/ 11,M1,M2,N2,ItJ,K,NOTH(3)
N1=NDIM(B)
M1=MDIM(B)
M2=MDIM(C)
If (maxwrk.LT.N1*M2) Call PRN('Small wrksp for MUL$') 
IF( M1-NDIMCC) ) 200,100,200 

100 DO 20 1=1,N1
DO 20 K=1,M2

SUMsO.O 
DO 10 J=1,M1 

10 SUM=SUM+ELE(B,I,J)*ELE(C,J, K )
I1=I+(K-1)*N1 

20 W(I1)=SUM
I1=N1*M2
CALL SETDIM(A,N1,M2)
CALL VEQU(A(3),W(1),11)
RETURN

200 Call PRN('Dim Err MUL$')
RETURN
END

C
C TRN
C

SUBROUTINE TRN(A.B)
DIMENSION A(1),B(1)
COMMON maxwrk,W (1)
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COMMON /SCRACT/ N,M,I,J,I1,NOTH(5)
N=NDIM(B)
M=MDIM(B)
If (maxwrk.LT.N*M) Call PRNCSmall wrksp for TRN$') 
DO 10 1=1,N 
DO 10 J=1,M

11=J+(I-1)*M 
W(I1)=ELE(B,I,J)

10 CONTINUE
CALL VEQU( A(3),W(1),I1 )
CALL SETDIM(A,M,N)
RETURN
END

C
C PART
C

SUBROUTINE PART(S,X,N1,N2,M1,M2)
DIMENSION X(1),S(1)
COMMON/SCRACT/I,J,K,NOTH(7)

K=3
DO 10 J=M1,M2 
DO 10 I=N1,N2

S(K)=ELE(X,I,J)
K=K+1

10 CONTINUE
I=N2-N1+1 
J=M2-M1+1
CALL SETDIM(S,I,J)
RETURN
END

C
C AUGM
C

SUBROUTINE AUGM(S,N,M,X)
DIMENSION SCI)tX(1)
COMMON /SCRACT/ 111tMX,NX,NS,I1,1,J,J1,NOTH(2) 
NX=NDIM(X)
MX=MDIM(X)
NS=NDIM(S)
IF(N+NX-1-NS) 1,1,2 

1 IF(M+MX-1-MDIM(S)) 3,3,2
3 11 =N
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DO 20 1=1,NX 

J1=M
DO 10 J=1,MX

II1=2+I1+(J1-1)*NS 
S(II1)=ELE(X,ItJ)
J1=J1+1

10 CONTINUE
11=11+1

20 CONTINUE
RETURN

2 Call PRN('Dim Err AUGM$')
RETURN
END

C
C XNORM1---
C
C 1-NORM OF A SQUARE MATRIX 
C

REAL FUNCTION XNORM1(A)
DIMENSION AC 1)
COMMON/SCRATC/ N,I,J,VSUM,TEMP,J1.NOTH(2) 
N=NDIM(A)
TEMP=0.0

DO 5 J=1,N 
J1=3+(J-1)*N 
VSUM=SUMABS(A(J1),1,N)
IF(VSUM.GE.TEMP) TEMP=VSUM 

5 CONTINUE
XNORM1=TEMP 
RETURN 
END

C
C XNORM---
C
C INFINITY NORM OF A REAL SQUARE MATRIX 
C

REAL FUNCTION XNORM(A)
DIMENSION A(1)
COMMON/SCRATC/I,N ,12.TEMP,VSUM,11,NOTH(2)
TEMP=0.0
N=NDIM(A)

DO 5 1=1,N
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12=1+2
VSUM=SUMABS(A(I2),N,N)
IF(VSUM.GE.TEMP) TEMP=VSUM 

5 CONTINUE
XNORM=TEMP 
RETURN 
END

C
C VEQU
C

SUBROUTINE VEQU(A,B,N)
DIMENSION A(1),B(1)
DO 10 1=1,N 

10 A(I)=B(I)
RETURN
END

C
C VZERO
C

SUBROUTINE VZERO(X.N)
DIMENSION X(1)
DO 10 1=1,N 

10 X(I)=0.
RETURN
END

C
C VS ADD--
C

SUBROUTINE VSADD(A,C1,B,N) 
DIMENSION A(1),B(1)
DO 1 1=1,N 

1 A(I)=A(I)+C1*B(I)
RETURN
END

C
C VDOT
C

REAL FUNCTION VDOT(X,Y,N)
DIMENSION X(1),Y(1)
VD0T=0.
DO 10 1=1,N 

10 VDOT=VDOT+X(I)*Y(I)
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RETURN
END

C
C VMIN, VMAX
C

REAL FUNCTION VMIN(X,N) 
DIMENSION X(1)
VMIN=1.E+30
DO 100 1=1,N
VMIN=AMIN1( VMIN, X(I) )

100 CONTINUE
RETURN 
END

C
REAL FUNCTION VMAX(X,N) 
DIMENSION X(1)
VMAX=-1.E+30 
DO 100 1=1,N 
VMAX=AMAX1( VMAX, X(I) )

100 CONTINUE
RETURN 
END ..

C
C VN0RM1--
C .
C VECTOR NORM-1 
C

REAL FUNCTION VN0RM1(A,N)
VNORM1=SUMABS(A,1,N)
RETURN
END

C
C VNORM
C
C VECTOR NORM INFINITY 
C

REAL FUNCTION VNORM(A,N) 
DIMENSION A(1)
VN0RM=0.
DO 5 1=1,N
VNORM=AMAX1( VNORM, ABS(A(I)) ) 

5 CONTINUE

1
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RETURN
END

C
C VSWAP
C

Subroutine VSWAPC XtY,N )
Dimension X(1),Y(1)
Do 10 i=1,N 

temp = X(i)
X(i) = Y(i)
Y(i) = temp 

10 Continue
Return 
End

C
C  IFFT( X,Y,N )
C

Subroutine IFFT( X,Y,N )
Dimension X(1)tY(1) 
s1=1./float(N) 
s2=-s1
Call VSCALE( Y,s2,N )
Call VSCALE( X,s1,N )
Call CFFT( X.Y.N ) 
s1=-1.
Call VSCALEC Y,s1,N )
Return
END

C
C  VSCALE( X.s.N )
C

Subroutine VSCALE( X,s,N )
Dimension X(1)
Do 10 i=1,N 

10 X(i)=s*X(i)
Return
END

C
C  COMPUTES THE COMPLEX FFT A TIME SERIES
C

SUBROUTINE CFFT(DATA1, DATA2, N)
C
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DIMENSION DATQK1), DATA2(1)
PI=4.*ATAN2(1., 1. )
FN=N

C
C... THIS SECTIONOPUTS TATA IN BIT-REVERSED ORDER 
C

J=1
DO 80 1=1,N

C
C... AT THIS POINT, I AND J ARE A BIT REVERSED PAIR 
C

IF(I-J) 30,40,40
C
C... EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J 
C
30 TEMP1=DATA1(J)

TEMP2=DATA2(J)
DATA1(J)=DATA1(I)
DATA2(J)=DATA2(I)
DATA1(I)=TEMP1 
DATA2(I)=TEMP2

C
C... IMPLEMENT J=J+1 BIT REVERSED COUNTER 
C
40 M=N/2
50 IF (J-M) 70, 70, 60
60 J=J-M

M=(M+1)/2 
GOTO 50 

70 J=J+M
80 CONTINUE
C
C... NOW COMPUTE THE BUTTERFLIES 
C

MMAX=1
90 IF (MMAX-N) 100,130,130
100 ISTEP=2*MMAX

DO 120 M=1,MMAX
THETA=PI»FLOAT( (-1)*(M-1))/FLOAT(MMAX) 
W1=C0S( THETA )
W2=SIN( THETA )

C



DO 110 I=M,N,ISTEP 
J=I+MMAX
TEMPI=W1*DATA1(J)-W2*DATA2(J) 
TEMP2=W2*DATA1(J)+W1*DATA2(J)
DATA1(J)=DATA1(1)-TEMP1 
DATA2(J)=DATA2(I)-TEMP2 
DATA1(1)=DATA1(1)+TEMP1 
DATA2(I)=DATA2(I)+TEMP2

110 CONTINUE
120 CONTINUE

MMAX=ISTEP 
GOTO 90 

130 RETURN
END

C
C  FINDS THE MAGNITUDE AND THE PHASE OF COMPLEX DATA
C
C... ENTER WITH THE DATA IN X, Y ARRAYS OF LENGTH N. RETURNS 
C WITH THE MAGNITUDE IN X AND PHASE IN Y
C

SUBROUTINE MAGN( X, Y, N )
DIMENSION X(1), Y(1)

C
DO 10 1=1, N 
TEMP=X(I)

C
X(I)=SQRT( X(I)»X(I) + Y(I)*Y(I) )
IF(TEMP.NE.O.) Y(I)=ATAN2( Y(I) , TEMP )

C
10 CONTINUE

RETURN 
END

r
C RECT--
C
C converts to rectangular coordinates 
C

Subroutine RECT( X,Y,N )
Dimension X(1),Y(1)
Do 10 i=1,N 
amag = X(i)



X(i) = araag * cos (Y(i))
Y(i) = amag * sin (Y(i))

10 Continue
Return 
End

C
C SUMABS— -
C
C FINDS THE SUM OF THE ABSOLUTE VALUES OF A VECTOR 
C

REAL FUNCTION SUMABS(V,INC,L)
DIMENSION V(1)
TEMP=0.
J=1+(L-1)*INC

DO 5 1=1,J,INC 
TEMP =TEMP+ABS(V(I))

5 CONTINUE
SUMABS=TEMP 
RETURN 
END

C
C ELE
C

REAL FUNCTION ELE(A,I,J)
DIMENSION A(1)
IPOS=NDIM(A)
IF( I.GT.IPOS ) CALL PRNCELE err: i out of range$f)
IF( J.GT.MDIM(A) ) CALL PRNCELE err: j out of range$') 
IP0S=2+I+(J-1)*IPOS 
ELE=A(IPOS)
RETURN
END

C
C NDIM, MDIM, NM2DIM
C

INTEGER FUNCTION NDIM( IA )
NDIM=IA
RETURN
END

INTEGER FUNCTION MDIM( IA )
DIMENSION IA(3)
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MDIM=IA(3)
RETURN
END

INTEGER FUNCTION NM2DIM( IA ) 
DIMENSION IA(3)
NM2DIM=IA(1)*IA(3)+2
RETURN
END

C
C SETDIM
C

SUBROUTINE SETDIM(IA,N,M)
DIMENSION IA(3)
IA(1)=N 
IA(3)=M 
RETURN 
END

C
C  READ A COLUMN FROM A BINARY FILE
C
C THE FILE IS OPENED AND AFTER READING IT IS 
C CLOSED.
C

SUBROUTINE RDCBIN( FILE,DATA,N )
CALL RDMBIN(FILE,DATA,N,M)
RETURN
END

C
SUBROUTINE RDMBIN( FILE,DATA,N,M ) 
DIMENSION DATA(1),BUFFER(32)
LOGICAL FILEO)

C
C OPEN THE FILE AND READ THE DATA 
C

CALL GOPEN(1,FILE)
IREC=0
READ(1,REC=1,ERR=2,END=1) BUFFER 
N=BUFFER(1)
M=BUFFER(2)
NM=N#M

C
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C READ THE ACTUAL DATA 
C

IREC=2
51 READ(1,REC=IREC,ERR=2,END=1) BUFFER

DO 56 1=1,32
11=(IREC-2)*32+1 
If (i1.GT.NM) Go to 3 
DATA(11)=BUFFER(I)

56 CONTINUE
C

IREC=IREC+1
IF( I1.LT.NM ) GO TO 51
ENDFILE 1
RETURN

1 CALL IPRN(IREC,’=(record numb) passes the end of file mark$')
ENDFILE 1
RETURN

2 CALL IPRN(IREC,'=(record numb) error in reading binary file$')
3 ENDFILE 1 

Return 
END

C
C  WRITE BINARY FILE
C

SUBROUTINE WRCBIN( FILE,DATA,N)
CALL WRMBIN(FILE,DATA,N,1)
RETURN
END

SUBROUTINE WRMBIN( FILE,DATA,N,M )
DIMENSION DATA(1),BUFFER(32)
LOGICAL FILE(1)

C
CALL GOPEN(2,FILE)
BUFFER(1)=N 
BUFFER(2)=M 
DO 10 J=3,32 

10 BUFFER(J)=0.
WRITE(2,REC=1,ERR=2) BUFFER

C
IREC=2 

51 DO 56 1=1,32
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11=(IREC-2)*32+1 
BUFFER(I)=DATA(11)

56 CONTINUE
C

WRITE(2,REC=IREC,ERR=2) BUFFER 
IREC=IREC+1
IF( I1.LT.N«M) GO TO 51
ENDFILE 2
RETURN

2 Call IPRN(IREC,'=error in writting this record number$')
ENDFILE 2 
Return 
END

C
C  READ A NUMBER FROM BINARY FILE
C
C Usage: A=DSKRD( index, device-number )
C

FUNCTION DSKRD(I,IDEV)
DIMENSION BUFFER(32)
IREC=d-1)/32 + 1
IPOS=I-(IREC-1)«32
IREC=IREC+1
READ(IDEV,REC=IREC,ERR=2,END=1) BUFFER 
DSKRD=BUFFER(IPOS)
RETURN

1 CALL IPRN(I,'=passes the end of file mark$')
RETURN

2 CALL IPRN(I,'=error in reading binary file$')
Return
END
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3. EASY; Matrix Reverse Polish Calculator

I - - - - - - - - _c
Rev 1.0, 1.1 C
G.K March 81 c

- - - - - - - - - c

Dimension X(100),Y(100),Z(100),T(100) 
Dimension R1(100),R2(100)
Logical file(20)
Real table(52)
Common maxwrk,W(100)
Common /regX/ X 
Common /regY/ Y 
Common /regZ/ Z 
Common /regT/ T

C
Data table/

1 'minp' ,'mprn' ,'alte','mget', 'msto' , 'map ','rot ', 'unit
c
r

10 20 30 40 50 60 70 80
L*

2 1 zero1,1 add 1,1 sub 1,'seal', 'xchg' , 'trn ','mul ','tmul
c
n

90 100 110 120 130 140 150 160
U

3 'mult' ,'ginv' ,'cfft','ifft', 'magn' , 'max ','min ','help
c
n

170 180 190 200 210 220 230 240

4 'in *,'x ' *V 1t y »'z ',•t ', 'get ','save' , '1
c
n

10 20 21 22 23 40 50 80
0

5 • + • »_ i• ,'xy 'xz ','xt ',4H' i * t9 ,4H' *
C
r

100 110 130 131 132 140 150 160
\J

6 4H*' t i «♦ '# '* " 9 ' 0  ', 'stol', 're d ','push' ,'plot
c 170 180 120 90 250 260 270 280
C

7 'sto2','rec2',' ','rect'/
C 290 300 001 310
C
C  initiation
C

maxwrk=100
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CALL PRN(' Matr
Call PRN(' George
Call CRLF
NC=52
i=5
Call ZER0( X.i.i )
Call ZER0( Y.i.i )
Call ZER0( Z.i.i )
Call ZER0( T.i.i )
Call ZER0( W.i.i )

Apr 81, Rev 1.1$')

C
C  main prompting loop
C
1 Call PRN('ready... $')

Read(5,3000) cmd
3000 Format(A4)
C
C... search for command pointer 
C

Do 2 i=1,NC
2 If(crad.EQ.table(i)) Go to 3

Call PRN('Illegal Command$') 
Go to 1

C
C... dispatch'
C
3 Goto ( 10, 20, 30, 40,, 50,, 60,, 70,, 80,

1 90, 100, 110, 120,,130,,140,,150,,160,
2 170, 180, 190,200,,210,,220,,230,,240,
3 10, 20, 21, 22,, 23,, 40,, 50,, 80,
4 100, 110, 130, 131,,132,,140,,150,,160,
5 170, 180, 120, 90,,250,,260,,270,,280,
6 290,300, 1,310 ),i

PAUSE EASY??
C
C  minp, in
10 Call PUSH

Call MINP( X.’X matrix$')
Go to 1

C
C   mprn, x
20 CALL MPRNC X,'X matrix$')



Call MPRNC Y,'Y matrix$') 
Go to 1

—  y

Call MPRN( Z,'Z matrix$')
Go to 1

Call MPRNC T.'T matrix$')
Go to 1

  alter
Call ALTER( X.'X matrix$’)
Go to 1

  mget,
Call PUSH
Call SGETC 'Enter filename: $\file,20)
Call MGETC file, X )
Go to 1

  mstore
Call SGETC’Enter filename: $’,file,20)
Call MSTOREC file, X )
Go to 1

 map
nx=NDIM(X)
mx=MDIM(X)
ny=NDIMCY)
my=MDIMCY)
nz=NDIMCZ)
mz=MDIM(Z)
nt=NDIMCT)
mt=MDIMCT)
nR1=NDIMCR1)
mR1=MDIMCR1)
nR2=NDIMCR2)
mR2=MDIMCR2)
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2000

C
C
70

C
C
80

Write(5 2000) nx.mx, ny.my nz,mz
Format( x e ,15, * by ' ,15, )'/

1 YC ,15, ' by ’ ,15, )'/
2 Z C .15, ' by 1,15, )'/
3 T(' ,15, ’ by ' ,15, )'/
1 R 1 (' ,15, ' by ',15, )'/
2 R2C ,15, ’ by ',15, )'/)

C
c
90

1000

c
c
100

c
c
110

c
c
120

Go to 1

CALL EQU(WjT) 
CALL PUSH 
Call EQU(X,W) 
Go to 1

Call PUSH
N=IGET('Enter dimension: $') 
Call UNIT( X,N )
Go to 1

Call PUSH
Call PRN('Enter dimensions: $') 
Read(5,1000) N,M 
Format(216)
Call ZER0( X,N,M )
Go to 1

Call ADD( X,X,Y ) 
Call POP 
Go to 1

Call SUB( X,X,Y ) 
Call POP 
Go to 1

s=RGET('Enter scale factor: $') 
Call SCALE( X,s,X )

 rot

  unit, 1

  zero, 0

  add, +

  sub, -

 scale, if



Go to 1
C
C---------------------------------------- xchg, xy
130 Call EQU( W,Y )

Call EQU( Y,X )
Call EQU( X,W )
Go to 1

C
C — — xz
131 Call EQU( W,Z )

Call EQU( Z,X ) .
Call EQU( X,W )
Go to 1

C
C -- xt
132 Call EQU( W,T )

Call EQU( T,X )
Call EQU( X,W )
Go to 1

C
C  trn, 1
140 Call TRN( X,X )

Go to 1
C
C -- mul, *
150 Call MUL( X,X,Y )

Call POP 
Go to 1

C
C -- traul, '*
160 Call TRN( X,X )

Call MUL( X.X.Y )
Call POP 
Go to 1

C
C -- mult, *'
170 Call MULT( X,XtY )

Call POP 
Go to 1

C
C --  ginv, '
180 If( NDIM(X).LT.MDIM(X) ) Go to 181
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181

C
C
190

C
C
200

C
C
210

C
C
220

C
C
230

C
C
240

245
247

242

241

C
C

Call GINV( X,X )
Go to 1
Call PRN('# of rows of X must be .GE. than # of columns$') 
Go to 1

 cfft
Call CFFT( X(3), Y(3), X(1) )
Go to 1

 if ft
Call IFFT( X(3), Y(3), X(1) )
Go to 1

 magn
Call MAGN( X(3),Y(3),X(1) )
Go to 1

 vmax
nx=NDIM(X)*MDIM(X) 
s=VMAX( X(3), nx )
Call RPRNCs,'smaximum of X$')
Go to 1

 vmin
nx=NDIM(X)*MDIM(X) 
s=VMIN( X(3), nx )
Call RPRN(s,'=minimum of X$')
Go to 1

 help
Call Gopen(1,'EASY.HLP$') 
i=1
Read(1,247,END=241) (W(j),j-1,63)
Format(64A1)
Write(5,242) (W(j),j=1,63)
FormatC ',64A1) 
i=i+1 
Go to 245 
Endfile 1 
Go to 1

 stol
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250 Call EQU(R1,X) 

Go to 1
C
c  r e d
260 Call EQU(X,R1) 

Go to 1
C
C  push
270 Call PUSH 

Go to 1
C
C  plot
280 Call prnC'Paper limits (left, width ): $')

Read(5,281) left.ibase
Call prnCData limits (xmin,xmax,dx): $')
Read(5,282) xmin,xmax,dx
Call prn('Index limits (str,end,incr): $')
Read(5,281) i1,i2,i3
Call D0TARY( X(3), i1,i2,i3, xmin,xmax,dx, left, ibase ) 
Go to 1

281 Format(3l6)
282 Format(3G14.7)
C
C  sto2
290 Call EQU(R1,X)

Call EQU(R2,Y)
Go to 1

C
C rec2
300 Call EQU(X,R1) 

Call EQU(Y,R2) 
Go to 1

C
C  rect
310 Call RECT(X(3),Y(3),X(1))

Go to 1 
END

C
Subroutine PUSH 
Common /regX/ X(1) 
Common /regY/ Y(1) 
Common /regZ/ Z(1)
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Common /regT/ T(1)
Call EQU( T,Z )
Call EQU( Z,Y )
Call EQU( Y,X )
Return
END

C
Subroutine POP 
Common /regX/ X(1)
Common /regY/ Y(1)
Common /regZ/ Z(1)
Common /regT/ T(1)
Call EQU( Y,Z )
Call EQU( Z,T )
Return
END

C
C  Plots an ARRAY of real numbers
C
C....x(.) i1,i2,i3 (limits) real array
C....xmin,xmax,dx virtual minimum, maximum, increment
C....left.ibase paper left margin, paper width in dots (<1180)
C

Subroutine D0TARY( array,i1,i2,i3,xmin,xmax.dx,left,ibase)
Dimension arrayO),iarray(27),narray(27)
image(x)=left+INT(float(ibase)*(x-xmin)/(xmax-xmin))

C
C...Initiate printer 
C

NSP =INT( (xmax-xmin)/dx )
Call INIDOT

C
C...Draw the scale line 
C

x=xrain
Do 10 i=1,NSP 
iarray(i)=iraage(x) 
narray(i)-image(x)

10 x=x+dx
NSP1=NSP+1
iarray(NSP1)=image( array(il) )
Call D0TS( iarray, NSP1 )
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c
C...Draw the array
C

i21=i2-1
Do 20 i=i1,i21,i3 
iarray(1)=left
iarray(2)= image( array(i+1) )
Call D0TS( iarrayC1),2 )

20 Continue
C
C...print the scale again 
C

Call DOTSC narray(1), NSP )
Return
End

C
C  Image: convert virtual to paper coordinates
C
C Integer function image(x)
C Common xmin,xmaxtleft,ibase
C
C...Print a series of N dots according to the values 
C...of the iarray. Limits 0:1180 
C

Subroutine D0TS( iarray.N )
Dimension iarrayC1)

C
C...sort 
C

Call SORT(iarray.N)
If (N-1) 30,30,40

C
C...find the relative distances 
C
40 i=N
41 i1=i—1 

iarray(i)=iarray(i)-iarray(i1)
If(iarray(i).LT.0) pause Dots 
i=i—1
If( i-1 ) 30,30,41

C
30 continue
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Do 50 i=1,N 

50 Call D0T( iarray(i))
Call HALFLN
Return
End

C
C...Bubble sorting routine for an integer array 
C...IN PLACE sorting in ascending order 
C

Subroutine S0RT( iarray.N )
Dimension iarray(1)

C
If (N-1) 20,20,10 

10 N1=N-1
Do 130 i=1,N1 
j1=i+1

C...FIND max
Do 30 jaJ1,N 
iar=iarray(i)
If( iarrayCj).GE.iar ) Go to 30 
iarrayCi)=iarray(j) 
iarrayCj)=iar 

30 Continue
130 Continue
C
20 Return

END

4. EASYPACK Command Summary

Utilities and I/O

Call PACKC A, IA,N,M )
N = NDIMC B )
M = MDIMC B )
NM= NM2DIMC B )
Call SETDIMC A, N, M ) 
s = ELEC B, i, j )
Call MINPC A, ,comment$’ )
Call MPRNC A, 'comment$' )



Call ALTER( A, 'comment$' )
Call MGETC 'filename.ext$’, A )
Call MSTOREC 'filename.ext$1, A )
Call RDCBIN( 1 filename.ext$1, X, N )
Call WRCBIN( »filename.ext$', X, N )

Matrix operations and functions

Call UNIT( A, N )
Call ZERO( A, N, M )
Call RAMPC A, N )
Call EQU( A, B )
Call ADD( A, B, C )
Call SUB( A, B, C )
Call SADD( A, B, s, C )
Call SCALE( A, s, B )
Call TRN( A, B )
Call MUL( A, B, C )
Call MULT( A, B, C )
Call QUA( A, B, C )
Call GINV( A, B )
Call PARK A, B, N1,N2,M1,M2 ) 
Call AUGM( A, N, M, B ) 
s = XN0RM1( B ) 
s = XNORMC B )

Vector operations and functions

Call VEQU( X, Y, N )
Call VZERCK X, N )
Call VSCALE( X, s, N )
Call VSADD( X, s, Y, N ) 
s = VDOT( Y, Z. N ) 
s = VMIN( Y, N ) 
s = VMAX( Y, N ) 
s = VN0RM1C Y, N ) 
s = VNORM( Yf N )
Call CFFT( X, Y, N )
Call IFFT( X, Y, N )
Call MAGN( X, Y, N )



Scalar operations

i = IGET(1comment$') 
r = RGET(,comment$')
Call SGET(,corament$’, a, N ) 
Call PRN( lcomment$' )
Call IPRN( i, ,comment$’) 
Call RPRN( r, ,coraraent$,) 
Call HPRN( i, ,comlnent$,) 
Call GOPENC i, 1filename$’)
a = DEG(x)
a = RAD(x)
a = PI(b)

Alphabetical order

Call ADD( A, B, C )
Call ALTER( A, lcomment$f )
Call AUGM( A, N, M, B )
Call CFFT( X, Y, N )
a = DEG(x)
s = ELE( B, i, j )

Call EQU( A, B )
Call GINV( A, B )
Call 'GOPEN( i, 'filename$')
Call HPRN( i, !comraent$')
Call IFFT( X, Y, N )
i =" IGET('comment$')
Call IPRN( i, ,comment$’)
Call MAGN( X, Y, N )
M = MDIM( B )
Call MGET( 'filename.ext$', A )
Call MINP( A, lcorament$, )
Call MPRN( A, ,coIfflnent$, )
Call MSTORE( 'filename.ext$», A
Call MUL( A, B, C )
Call MULT( A, B, C )
N = NDIM( B )
NM = NM2DIM( B )
Call PACK( A, IA,N,M )
Call PARK A, B, N1,N2,M1,M2 )



a = PI(b)
Call PRN( ,comment$' )
Call QUA( A, B, C )
a = RAD(x)

Call RAMP( A, N )
Call RDCBINC ,filename.ext$', X, N )
r = RGET(* corament$')

Call RPRN( r, 'comment$')
Call SADD( A, B, s, C )
Call SCALE( A, s, B )
Call SETDIM( A, N, M )
Call SGET(,comraent$l, a, N )
Call SUB( A, B, C )
Call TRN( A, B )
Call UNIT( A, N )
Call VEQUC X, Y, M )
3 = VDOT( Y, Z, N )
3 = VMAX( Y, N )
3 = VMIN( Y, N )
S = VN0RM1( Y, N )
S = VNORMC Y, N )

Call VSCALE( X, s, N )
Call VSADD( X, s, Y, N )
Call VZEROC X, N )
Call WRCBIN( ’filename.ext$1, X, N )
s = XN0RM1C B )
s = XNORM( B )

Call ZERO( A, N, M )



5. MATRIX REVERSE POLISH CALCULATOR: Command Summary

Matrix registers: x (top of stack), y, z, t (bottom) 
Matrix buffers: R1, R2

f (x) — ->x f(x,y)— »(x,y) ?? — -»x 
push

f(x,y)— >x 
pop

alter cfft zero 0 add +
scale # if ft unit 1 sub -

trn V magn minp in mul *
ginv fl rect mget get tmul i*

mult

exchanges display utilities

xy xchg x mprn mstore save
xz y map
xt z help
rot t
stol max
rec2 min
sto2 plot
rec2
push
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