
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1982

NONUNIFORMLY AND RANDOMLY
SAMPLED SYSTEMS
GEORGE DIMITRIOS KONTOPIDIS

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
KONTOPIDIS, GEORGE DIMITRIOS, "NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS" (1982). Doctoral
Dissertations. 1319.
https://scholars.unh.edu/dissertation/1319

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1319?utm_source=scholars.unh.edu%2Fdissertation%2F1319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This reproduction was made from a copy o f a docum ent sent to us for microfilming.
While the m ost advanced technology has been used to photograph and reproduce
this docum ent, the quality o f the reproduction is heavily dependent upon the
quality o f the material subm itted.

The following explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “ target” for pages apparently lacking from the docum ent
photographed is “ Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure com plete continuity .

2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because o f movement during exposure,
duplicate copy, or copyrighted materials tha t should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing o r chart, etc., is part o f the material being photographed,
a definite m ethod o f “ sectioning” the material has been followed. It is
custom ary to begin filming a t the upper left hand com er o f a large sheet and to
continue from left to right in equal sections with small overlaps. I f necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations tha t cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Custom er Services D epartm ent.

5. Some pages in any docum ent may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

8227429

Kontopidis, George Dimitrios

NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS

University of New Hampshire Ph.D. 1982

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1982

by

Kontopidis, George Dimitrios

All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this docum ent have been identified here with a check mark V .

1. Glossy photographs or p a g es______

2. Colored illustrations, paper or print______

3. Photographs with dark background______

4. Illustrations are poor copy______

5. Pages with black marks, not original copy______

6. Print shows through as there is text on both sides of page______

7. Indistinct, broken or small print on several pages ^
8. Print exceeds margin requirem ents______

9. Tightly bound copy with print lost in spine______

10. Computer printout pages with indistinct print______

11. Page(s)____________ lacking when material received, and not available from school or
author.

12. Page(s)____________ seem to be missing in numbering only as text follows.

13. Two pages num bered____________ . Text follows.

14. Curling and wrinkled p ag es______

15. Other___

University
Microfilms

International

NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS

BY

George D. Kontopidis
B.S., National Technical University of Athens, 1977

M.S., University of New Hampshire, 1978

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy
in

Engineering
Signal Processing Area

May, 1982

ALL RIGHTS RESERVED
© 1982

George D. Kontopidis

This dissertation h?.s been examined and approved.

Dissertation director, Filson^fi. Glanz
Associate Professor of
Electrical and Computer Engineering

Dissertation director, David E. Limbert
Associate Professor of Mechanical Engineering

J C {jry^e^ey-^

L. Gordon Kraft, Assistant Professor of
Electrical and Computer Engineering

f _________________________

fohn L. Pokoski, Professor of
Electrical ̂ apd Computer Engineering

L. David Meeker, Professor of Mathematics

April 20, 1982

Date

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to my
advisors Prof. Filson Glanz and Prof. David Limbert for their
encouragement and stimulating motivation for completing this research.
Without their continous guidance and creative discussions this work
would be impossible. Also, a special thanks goes to Prof. Gordon Kraft
for his suggestions and recommendations on my studies and professional
activities.

I would also like to thank Prof. John Pokoski and Prof. David
Meeker for their interest and contributions in completing this research.
I also thank the Electrical Engineering Department, the Mechanical
Engineering Department and the Graduate School for their financial
support.

A special thanks goes to many colleagues and friends who have
encouraged my technical development and sustained me during this
educational program.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv
LIST OF FIGURES viii
LIST OF SYMBOLS ix
ABSTRACT xii

INTRODUCTION ... 1

1. Statement of Purpose 2
2. Overview of Chapter I 5
3. Overview of Chapter II 6
4. Overview of Chapter III 7
5. Overview of Chapter IV 8
6. Overview of Simulation Programs 10
7. State of the Art 11

Notes and References 12

CHAPTER I: Periodic Nonuniform Sampling 13

Outline of Chapter I 14
1. Terminology and Conventions 15
2. Sampling Using Integration 16
3. Sampling Using System Observations 19
4. Weighted Average Burst Sampling 25
5. Average Burst Sampling 26
6. Periodic Burst Sampling 31
7. Filtering by Weighted Average Burst Sampling 36
8. Designing Equal Ripple Samplers 41
9. State Space Models of Cyclicly Sampled Systems 49

Appendix la: The Poisson Sum Formulas 56
Appendix lb: On Tchebyscheff Polynomials 59
Notes and References I 61

CHAPTER II: Partially Sampled ARMA Models 62

Outline of Chapter II 63
1. Notation and Conventions 64

v

2. Least Squares Identification 66
3. Sequential Identification 68
4. ARMA Model Identification from Partial Observations 70
5. Filling Missing Data Using ARMA Coefficients 74
6. Validation of Theorem 1 79
7. Applying the Results of Theorem 2 85

Appendix II 89
Notes and References II 111

CHAPTER III: Interpolation Using Bandlimiting Assumptions 112

Outline of Chapter III 113
1. Definition of the Discrete Fourier Transform 114
2. The Interpolation Theorem 118
3. Sensitivity of the Estimates 123
4. Iterative Interpolation Algorithms 126
5. Simulation Results 130

Appendix III 134
Notes and References III 139

CHAPTER IV: Randomly Sampled Systems 140

Outline of Chapter IV 141
1. Notation and Conventions 142
2. Definition of Commonly Used pdf's 143
3. Examples of Random Sampling Processes 145
4. Propagation of the Mean State Value 149
5. Propagation of the Mean Square State Values 157
6. Defining the Power Spectral Density Gain 162

Appendix IVa: Details in Calculations of Extectations 169
Appendix IVb: On Kronecker Operations 176
Notes and References IV 189

CONCLUSION.. 190

Summary 190
Trends and Future Extensions 192

vi

APPENDIX: Sofware Support 194

Outline of the Appendix 195
1. EASYPACK Documentation 196
2. EASYPACK Source Code 206
3. EASY: Matrix Reverse Polish Calculator 225
4. EASYPACK Command Summary 234
5. Matrix Reverse Polish Calculator: Command Summary 238

BIBLIOGRAPHY ... 239

1. Articles and Dissertations 240
2. Books and Texts 248

vii

LIST OF FIGURES

apter Figure Title Page

I 1 Sampling using integration 17
I 2 Sampling using system observations 20
I 3 Sampling using integration (example) 24
I 4 Implementation of integrating

samplers 24
I 5 Implementation '.>f overlapping

integrating samplers 24
I 6 Weighted average burst sampling 26
I 7 Weighted average burst sampling example 30
I 8 Implementation of weighted burst

samplers 30
I 9 Implementation of overlapping burst

samplers 30
I 10 Periodic burst sampling 31
I 11 Periodic burst sampling (example) 35
I 12 Calculation of the magnitude of the

sampling factor 36
I 13 Comparison of sampling gain functions

for M=8 39
I 14 Comparison of sampling gain functions

for M=20 40
I 15 Using the mapping x=x cosy with the

Tchebyscheff polynomial T(x) 42
I 16 Tchebyscheff sampling gain factors 47
I 17 Timing of overlapping Tchebyscheff

sampling 48
I 18 Periodically sampled state model
II 1 Input sequence 81
II 2 Ouput sequence 81
II 3 Output sequense (noise added) 82
III 1 Bandlimited time series 133
III 2 The DFT of the time series 133
IV 1 Independent skip sampling 147
IV 2 Derivation of Ex(t) 173

viii

LIST OF SYMBOLS

Set Notations and Conventions

C
R
N
Z

x€ A
unc

The set of complex numbers
The set of real number
The set {1,2,3,...}
The set {...,-2,-1,0,1,2,...}
The element x belongs to the set A
Union, intersection, subset respectively.
Equivalence relationship

Matrix Notations and Conventions

T (As a superscript) denotes the transpose of a matrix

x=(x, x„ ... x„) means that x is a row vector of N elements 1 2 N

x=(x1,x2,. *’XN) means that x is a column vector of N elements

/ \
x.

means that x is a column vector of N elements

matrix A consisting of elements a^j*

(a. i=1,N; j=1,M) matrix A with dimension N by MJ

"11 12 ... 1M
21 22 ... 2M

N1 N1 ... NM

has identical meaning with (a. i=1,N; j=1,M)
J

Probability Theory Notations

F^(x) Cumulantive probability function of X evaluated at x.

ix

Probability density function (pdf) of X evaluated at x.

Px(s) Characteristic function of X evaluated at s. Not jure
that the characteristic function is of X is defined as
the Bilateral Laplace transform of the probability
distribution of X.

Pr(A) Probability of the event (or set of values) A.

Ex(t), Ex Expected value of x evaluated at t.

var{x}
V(t),V(x;t)X

Variance of x, E(x-Ex)(x-Ex)J

cov{x,y} Covariance of x and y, E(x-Ex)(y-Ey)

msqtx}
Mx(t),M(x;t)

Mean square value of x. That is, msq{x} = Exx .

cor{x,y} Correlation of x with y. That is Exy .

R(x;t,s)
Rx(t;s)

Autocorrelation Ex(t+s)x (t)

R(x;s)
Rx(s)

Autocorrelation of a stationary process Ex(t+s)x (t)

Miscellaneous Conventions

T, Tn> {Tn} Time intervals. T may denote a random variable and Tr
can be interpreted as a realization of T. {Tnl in
general means the sequence of Tn's.

t, t , {t } Time instants. The meaning of t, t and (t } is n n n n
similar to T, Tn and (Tn). In general T refers to time
differences and t refers to absolute time.

x

r,t,u,h

a,b,c

X(s), Lx(t)
(Lx)(s)

X*(z), Zx(n)
(Zx)(z)

Dummy variables for time used in definitions and
integrals.

Dummy integration variables for random variables

Bilateral Laplace transform of the function x(t)

Z transform of the sequence x(n) defined by the
summation

(Zx)(z) =
n=0

00y\(n)z_n

xi

ABSTRACT

NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS

by

GEORGE KONTOPIDIS

University of New Hampshire, May, 1982

Problems with missing data, sampling irregularities and randomly
sampled systems are the topics covered by this dissertation.

The spectral analysis of a series of periodically repeated sampling
patterns is developed. Parameter estimation of autoregressive moving
average models using partial observations and an algorithm to fill in
the missing data are proved and demonstrated by simulation programs.
Interpolation of missing data using bandlimiting assumptions and
discrete Fourier transform techniques is developed. Representation and
analysis of randomly sampled linear systems with independent and
identically distributed sampling intervals are studied. The mean, and
the mean-square behavior of a multiple-input multiple-output randomly
sampled system are found. A definition of and results concerning the
power spectral density gain are also given.

A complete FORTRAN simulation package is developed and implemented
in a microcomputer environment demonstrating the new algorithms.

INTRODUCTION

Statement of Purpose
Overview of Chapter I
Overview of Chapter II
Overview of Chapter III
Overview of Chapter IV
Overview of Simulation Programs
State of the Art
Notes and References

2

INTRODUCTION

This introductory chapter describes the main objectives of this
dissertation, overviews the contents of each chapter and relates the
present work to the existing literature.

The overview of each chapter consists of the motivation for
studying the specific topic, and how this topic is related to nonuniform
sampling. It also summarizes the 'uniqueness' of the material in terms
of originality of the results and outlines the methodology used.

1. Statement of Purpose

The subject of this dissertation, 'Nonuniformly and Randomly
Sampled Systems', is very closely related to the material written in the
author's Master's thesis 'Nonuniform Systems' [1], Both works deal
with the analysis of discrete systems that result from irregularly
sampled continuous linear systems. As the title indicates the present
work extends the material presented in [1J.

The areas extended are the frequency domain properties of
nonuniformly sampled systems and the study of randomly sampled systems
from the analysis viewpoint. In [1] only time domain properties of
nonuniformly sampled systems were studied. With the present work, two
new dimensions in the study have been added, the frequency behavior of a
class of nonuniformly sampled systems and the analysis of random
sampling. Randomly sampled, noisy systems is one of the most
challenging and interesting areas we deal with.

In order to put the study of nonuniformly and randomly sampled
systems into proper context we define the following terms:

3
a. A Dynamic System is a set of differential equations involving
time, t, as an independent variable, an input vector function u(t), and
an output vector function y(t). For a given input u(t), the output y(t)
satisfies the (given) differential equations. A dynamic system is a
proper mathematical model for many physical systems which have the
property of causality.
b. A Discrete System is a set of difference equations involving the
integer index k as an independent variable, an input vector sequence
u(k) and an output vector sequence y(k). For a given input u(k), the
output y(k) satisfies the (given) difference equations. A discrete
system can be used to model many physical and socio-economic events.
c. A Sampling Sequence is any time sequence consisting of time
points selected in a prespecified manner. A sampling sequence can be a
deterministic or a random sequence depending upon the law that defines
the time points. If there is one-to-one correspondence between an index
k and a function‘°t=t(k) the sampling sequence is deterministic. If
there is a stochastic mapping from an (experimental) event to the time
instants, the sampling sequence is called random.
d. A Nonuniformly Sampled System is the discrete system derived by
solving a set of differential equations (called the dynamic system) at
the points of a deterministic sampling sequence.
e. A Randomly Sampled System is the discrete system that results
from a dynamic system statistically described at the time points of a
random sampling sequence. Quite often we use the term Irregularly
Sampled System to denote either a nonuniformly or a randomly sampled
system.

The purpose of this dissertation is to extend the existing
knowledge of the properties and the usefulness of nonuniformly and
randomly sampled systems. Both the theoretical and the practical

4

aspects of irregular sampling are considered in this study.
The material is classified into four chapters. The following two

tables illustate how the contents of each chapter are related to the
main objective of the dissertation and how 'sampling irregularity1
increases from one chapter to the next, respectively.

Table 1: Scope of each chapter
Scope-Objective Chapter

1) Frequency domain properties
2) Time domain properties
3) Statistical characteristics
4) System design- Identification

Ch I

Ch I

Ch II

Ch II

Ch III

Ch IV

Table 2: Sampling irregularity of each chapter
Sampling irregularity Chapter

1) Periodic-nonuniform
2) Group of missing data
3) Nonuniforra sampling
4) Random sampling

Ch I
Ch II Ch III

Ch III
Ch IV

At the end of each chapter there is a section entitled 'Notes and
References'. Each entry in that section is referenced from the
corresponding chapter using numbers within square brackets.

The following two cases indicate the necessity of processing
irregularly spaced data. The first is the case of observing a physical
system and the received information comes irregularly (e.g. meteor
trails radar [2], human organism behavior C31). The second is the case
of controlling a physical system, or transmitting data in a nonuniform
manner in order to achieve better performance. A more detailed
discussion on this subject can be found in chapter I of [1] and the

introductory section of [71.
5

2. Overview of Chapter I

Chapter I is entitled 'Periodic Nonuniform Sampling1 and deals with
nonuniformly sampled systems for which the sampling process consists of
periodically repeated patterns.

The main motivation for investigating this area comes from the lack
of theoretical tools in the existing literature to analyze even simple
types of periodic-nonuniformly sampled systems in the frequency domain.
As an example we mention burst sampling which is a scheme of
collecting data very fast for a small portion of the sampling period.
It is expected intuitively (or based on heuristic arguments) that both
high and low frequency information about the signal is contained in the
collected samples. However, the relationship of the spectrum of the
samples to the spectrum of the original signal had not been rigidly
determined previously.

One first approach in studying the time domain properties of
periodic-nonuniformly sampled systems was published in the paper
'Computer Controlled Systems Using Multiplexed I/O' [4], In that paper
we referred to 'Cyclicly Sampled, Cyclicly Held Systems' which is a
special case of a burst sampled system. However, that analysis was
limited to time domain and could not be used to predict frequency
response characteristics.

Chapter I provides most of the results of our study of periodic-
nonuniformly sampled systems concerning to frequency properties. The
proof of the first theorems uses the Poisson Sum Formulas in ways very
similar to the Nyquist Sampling Theorem. It takes several examples to

6
illustrate the generality of the main theorems and how they may be
applied.

The analysis aspect of periodic-nonuniform sampling is the focal
point of chapter I. Of secondary importance is a design procedure for
sampling sequences with prespecified frequency characteristics. This
design is based on Tchebyscheff polynomials which are commonly used in
filter design and optimization. The idea of using weighted samples to
achieve certain frequency characteristics comes from linear array
antenna design methodology.

Finally, in chapter I we note that the period of the repeated
sampling pattern can be less than the duration of the pattern. This
scheme can be very useful in implementing very narrow band filters using
samples collected at a much lower rate than is required for conventional
digital filter designs procedures.

3. Overview of Chapter II

Chapter II is titled 'Partially Sampled ARMA Models' and deals with
the identification of autoregressive moving average (ARMA) models
based on nonuniformly collected data. With this chapter we try to
expand the existing ARMA techniques to nonuniform sampling problems.

The sampling irregularity in this chapter comes from the effect of
instrumentation failure; the sampling sequence is originally
'scheduled' to be uniform but the actually collected data are nonuniform
due to 'missing' or 'badly' collected samples.

The main difficulty in using an ARMA model to describe a sampled
linear system with some sampling irregularities is that the result is a
time varying system (that was illustrated in Chapter II of [1]).

However, if the missing data can be 'grouped* over specified regions, or
the number of missing samples relative to the total number of samples is
small, then this chapter can be used to answer the most important
problems: The first is parametric modelling and the second is
interpolation of the missing samples.

The key technique used in chapter II is as follows: Consider that
a linear system is sampled uniformly but the sampler introduces discrete
noise. If we allow the noise level to take infinite values at the time
instants of the missing samples, then any identification algorithm will
not take into account the missing points. Therefore, if any arbitrary
value is used, the final result is independent of that value. This
technique is used for both off-line (least squares) and on-line (Kalman
filter) identification of the ARMA coefficients. After the coefficients
are found, interpolation of the missing data is accomplished by
performing a set of linear operations (column permutations and other
elementary matrix operations) and then solving another least squares
problem.

4. Overview of Chapter III

Chapter III is titled 'Interpolation Using Bandlimiting
Assumptions' and deals with bandlimited irregularly sampled signals.
The sampling irregularity of this chapter is similar to the previous
chapter but the methodology and the criteria used for interpolating the
missing points are quite different.

A new assumption is imposed on the description of the original
signal; we require that the signal be bandlimited and that the

scheduled sampling is fast enough to guarantee that the spectrum of the
samples is also bandlimitea.

The motivation for studying the interpolation problem with the
above assumptions is based on a discussion with Dr. Griffiths and his
paper 'High Resolution Spectral Estimates Obtained Using Data
Extrapolation' [5]. In chapter III we generalize his results and we
substantially reduce the computational difficulties concerning large
matrix inversions.

Additionally, we present the theory behind iterative interpolation
techniques which are the disrete time counterpart of Papoulis' work on
'Spectral Analysis and Bandlimited Extrapolation' [6]. Unfortunately,
in the discrete case, the convergence of the iterative extrapolation can
not be proved; futher discussion on this problem is given in chapter
III.

5. Overview of Chapter IV

Chapter IV is entitled 'Randomly Sampled Systems' and deals with
nonuniformly sampled systems from the statistical viewpoint.

The motivation in introducing the probabilistic formulation to
model nonuniformly sampled systems comes from the complexity of the
analysis by deterministic means. In the literature there are several
papers discussing the 'simultaneous optimum detection and estimation of
signals in noise' [91. This problem is actually the same as the random
sampling problem. We first try to detect which samples are 'good' and
if the detection scheme is positive, the sample is incorporated in the
estimation algorithm. Of course, the various thresholds and false alarm
probabilities are calculated based on statistical information about the

distribution of sampling failures.
One of the most significant contributions in the area of random

sampling was made by Kalman's dissertation [7] almost two decades back.
At that time state variable models were primitive and the supporting
literature was rather poor. Kalman's work was mainly the development of
state models to be used in solving closed loop randomly sampled systems.
He limited the development to unforced first order systems operating in
a closed loop configuration. His ideas in the area of random sampling
were almost forgotten for many years because of the limited interest in
this particular class of problems.

Our work is mainly an extension (and an update) of part of his
work; we do not address the problem of controlling a randomly sampled
system as he does, but we focus on statistical modelling and analysis of
the randomly sampled system. We started with the paper 'Stochastically
Sampled Systems' (unpublished) where we gave some preliminary results
for a rather limited class of probability distributions of the sampling
intervals. Also at that time, the computation of the various quantities
was almost impossible because it involved solution of integral
equations. (Later, these integral equations were reduced to ordinary
differential equations.)

Continuous improvement of the randomly sampled model and the theory
behind it, lead us to more general results. A standard multiple-input,
multiple-output state model is used for all the development and only
when it is necessary to deal with 'transfer functions' do we limit the
results to single-input single-output systems. Also, a compact notation
in studying randomly sampled systems is introduced which plays a
fundamental role in the subsequent development. New results in the area
of propagation of the mean values, propagation of the variances and the
power spectral densities of randomly sampled systems are derived.

6. Overview of Simulation Programs
10

The computer as a tool of research and verification of theory was
extensively used during the various phases of this work. (Actually,
computer simulations of linear dynamic and discrete systems is one of
the author's favorite areas.)

At the end of each chapter there exists either a worked example
illustrating the application of the theorems, or a simulation program.
A sample run, a brief discussion of the programming results and the
source code are also included. Futhermore at the end of the
dissertation there is an appendix titled 'Software Support' where we
include two very useful software packages. The first consists of
FORTRAN IV subroutines performing various matrix operations, and the
second is an interactive package using the of functions of the first.
Two points are unique about these programs:

(a) They are very easy to use, and
(b) they have been implemented, tested and verified on a

microcomputer.
The programs were originally developed using a DEC-10 [8] and then

were modified for an 8 bit machine. Benchmarks show that the
computational accuracy is not inferior to DEC-10, the memory
requirements are much less than the DEC-10 (of course we usually do not
care if we 'run out of core' in the DEC-10 until it happens), but the
computation time is several times longer.

In using the simulation programs, several theoretical mistakes were
detected and corrected. Also, new theoretical horizons were opened and
futher research on numerical aspects (i.e. roundoff error, overflow
conditions) was done.

11

7. State of the Art

In this section a very brief outline of the pertinent literature
about nonuniform and randomly sampled systems and waveforms is given.
The reader is referred to the bibliography at the end of the
dissertation for the particular articles and texts that we refer to.

Yen (1956) published one of the first papers referring to irregular
sampling. He showed how to reconstruct a bandlimited signal uniformly
sampled but with a finite number of points which had ’migrated' from
their 'correct' positions. Following Yen's work Linden and Abramson
(1960), Helms (1961) and Papoulis (1977) introduce the generalized
sampling theorems where the main objective was again signal
reconstruction of bandlimited signals using irregularly collected data.
The irregularities they dealt with were of the first type in table 2
(periodic-nonuniform). In our development (chapter I) we are mainly
concerned with the frequency properties of periodic-nonuniformly sampled
signals.

Another group of researchers who have done work in randomly sampled
systems consists of Buetler (1966, 1970), Leneman (1966, 1968), and
Masry (1978). They discuss the 'alias free' property of randomly
sampled systems, the correlation estimates and the power spectral
estimates based on randomly collected samples. Lui's (197n)
dissertation refers also to spectral properties of the above class of
systems. One of the differences of our work with respect to theirs is
that we deal with randomly sampled systems in time domain using state
models and we do not focus on spectral estimates only. In terms of our
techniques we follow Kalman's (1957) approach which is quite different
than that of the above researchers. On the other hand Kalman mainly
discusses the random samplers as an element of a closed loop system
which is different from our objectives. (We are concerned with the open

12

loop properties in the time and frequency domains.)
Finally, we mention two excellent review papers on sampling written

by Jury (1961) and Jerri (1977) discussing the sampling process from
the viewpoints, of system theory and communication theory respectively.

Notes and References

[1] Kontopidis G. D., 'Nonuniformly sampled systems,' Master's Thesis,
University of New Hampshire, 1978.
[2] Clark Ronald R., 'Meteor Wind Measurements at Durham N.H.,' Journal
of Atmospheric Sciences, vol. 32, pp. 1689-1693, Sept 1975.
[33 King Robert, 'Parameter Identification in Strobed Tracer Kinetic
Processes,' Int. J. Control, vol. 16, pp. 841-847, 1972.
[4] Kontopidis G., D. Limbert and F. Glanz, 'Computer controlled
systems using multiplexed I/O,' IECI'80 Intern. Confer, on Mini and
Micro Computer Applications, Philadelphia, March 1980.
[5] Griffiths L. J., 'High Resolution Spectral Estimates Obtained Using
Data Extrapolation,' ICASSP 80 Proceed., Denver Colorado, 1980.
[6] Papoulis A., 'A New Algorithm in Spectral Analysis and Bandlimited
Extrapolation,' IEEE Trans. Circuit Systems, vol. CAS-22, no. 9, pp.
735-742, Sept 1975.
[7] Kalman R. E., 'Analysis and synthesis of linear systems operating
on randomly sampled data,' Ph.D. dissertation, Dept, of Elect. Engin.,
Columbia University, New York, 1957.
[8] Kontopidis G. D., 'LETSDO: An Interactive Systems and Signals
Language,' (unpublished) U.N.H. 1980.
[9] Nahi N. E., 'Optimal recursive estimation with Uncertain
Observation,' IEEE Trans. Information Theory, IT-15, pp. 457-462, July

1969.

CHAPTER I

PERIODIC NONUNIFORM SAMPLING

Outline of Chapter I
1. Terminology and Conventions
2. Sampling Using Integration
3. Sampling Using System Observations
4. Weighted Average Burst Sampling
5. Average Eurst Sampling
6. Periodic Burst Sampling
7. Filtering by Weighted Average Burst Sampling
8. Designing Equal Ripple Samplers
9. State Space Models of Cyclicly Sampled Systems

Appendix la
Appendix lb
Notes and References I

13

Outline of Chapter I

The term periodic sampling is used to describe a class of sampling
sequences consisting of periodically repeated nonuniform patterns. This
chapter consists of 9 sections and deals with the most important cases
of periodic sampling.

In section 1 we summarize the definitions and the conventions used
in the other sections.

In section 2 the 'sampling using integration' scheme is defined
(theorem 1). Section 3 is a generalization of the previous scheme; the
'sampling using system observations' is introduced. An illustrative
example applying theorem 1 follows.

In section 4 we define the 'weighted burst sampling' which is
related to the averaging of a burst of samples (theorem 3). Section 5
is a generalization of the previous section. Another example follows
illustrating theorem 3.

In section 6 'burst sampling' is defined. The theory is formulated
with theorem 5, and an example illustrates the usage of that theorem.

Sections 7 and 8 provide the necessary theory to design equal
ripple samplers based on Tchebyscheff polynomials. Then, the design
procedure is outlined and demonstrated by an example.

Section 9 is of more theoretical importance; it provides a state
space view of periodic sampling. It consists of two main theorems (6
and 7) which prove the equivalence of a periodically sampled system to a
discrete (time varying) system.

Two appendices at the end of the chapter provide a set of formulas
used for the proof of the theorems. A reference list follows with texts
and papers related to periodic nonuniform sampling.

15

The new results claimed in this chapter are
a) the study of the frequency characteristics of periodic nonuniformly
sampled systems,
b) the design procedure of samplers to perform digital filtering, and,
c) the formulation of a state model for periodic nonuniformly sampled
systems.

Signal x(t)
This is equivalent to saying 'a real function of time'. It is assumed
that t can take both positive and negative values.

Samples of x(t)
It is assumed that a period P is implicitly defined; the samples of
x(t) consist of the sequence {x(nP)} for all neZ (Z is the set of all
integer numbers). Very often we talk about the Z transform of the
samples x(t); we mean the function

Sampled Version of x(t)
Similar to the previous definition, a period P is implicitly defined.
The sampled version of x(t) with period P is the (continous time)
generalized function x’(t) defined by

1 • Terminology and Conventions

+CD
* , *— 1 -n

n=-oo

■f CD
x(t) S(t-nP)

n=-co

16
Note that the Fourier transform of x'(t) is equal to the Z transform of
the samples of x(t) evaluated at z=exp(jwP).

Spectrum of samples
Let x(t) be a signal and It } be a sampling sequence (not necessarilyn
uniformly spaced). The spectrum of the samples of x(t) with respect
to the sequence {t } is the Fourier transform of the generalizedn
function ^

x'(t)=C £x(t).S(t-t) (i)
n=-co

where C is a constant (defined by a power normalization procedure).
Note: The spectrum of the samples of x(t) with respect to the sequence
t can be also defined as the rectangular approximation of the Fourier n

integral, that is, ^
X'(w)=C/ x(t)• (t -t)exp(-jwt)

L - i n n+1 n n
n= -co

In case of uniform sampling (t =nP) both definitions reduce to
* n

X (z) with z=exp(jwP).
The development of this chapter is based strictly on definition (i).

Periodic Expansion of a Function
The operators (in time domain) and S (in frequency domain) are

defined by the equations:

f(t+nT) (T is an arbitrary time increment)
n=-»
CO

S F(w)= V F(w+nW) (W is an arbitrary frequency increment) W n̂=-co

17

2. Sampling Using Integration

Integrating samplers are often used to convert analog signals to
digital words. They are simple to design, rather accurate and they have
excellent noise characteristics. A typical example is the integrating
analog to digital converter (ADC) and the dual slope ADC. They are used
primarily for instrumentation purposes where the accuracy is more
important than speed. The following theorem describes the frequency
response of integrating samplers in a more general fashion: the
integration period (T) is different than the sampling period (P).
Interesting results are derived in case T is greater than P. After the
theory has been presented, an example shows the effect of the ratio T/P
on the filtering properties of the samplers.

Theorem 1
Let {xCt): t R; be a signal and (y(nP): neZ} be a sampling sequence

defined by

y(nP) = 1/T J " x(nP+r)dr for n=...-2,-1,0,1,2,..
0

that is, the number y(nP) is the integral of the waveform x(t) starting
from x(nP) up to x(nP+T) (see figure 1). Also let X(w) be the Fourier
transform of x(t) and y’(t) be the sampled version of (y(nP)} defined by

00
y ’(t) = p'S_'y(nP) Ib(t-nP).

n=~«o j x (t) j
m ! (n+OF

Then the spectrum of y'(t) is given by:
Y'(w) = S X(w)f(w) W (W=2-rr/P)

with:

y(rP)

-I I
, v sin(wT/2)f(w) = ----- —--- exp(jwT/2)wT/2 Figure 1: Sampling using

(f(w) is called the sampling gain factor). integration

18

Proof

Let's define a new signal z(t) by taking the integral of x(t):
O

z(t) = j " x(r)dr
Then, -a>

T nP+T nP
y(nP') = 1/T J x(nP+r)dr = ” J " ̂x r̂)dr

0 -co -oo

= 1/T[z(nP+T) - z(nP)].

Also, QQ CD

y'(t) = P^y(nP)S(t-nP) = P/T (z(nP+T)-z(nPy) S(t-nP)
n=-oo n=-CD

Consider for simplicity that z(nP) are the samples of z(t) and
z^(nP) = z(nP+T) are the samples of z^(t) = z(t+T) with spectra

ZCw) and Z^(w)=Z(w)exp(jwT) respectively. Then, by taking the Fourier

transforms of both sides we find:

CD CD

Y'(w) = P/T £ z, (nP.'exp(-jnPw) - } z(nP)exp(-jnPw)j
n= -oo n=-co

and by using the Poisson formulas (see Appendix 1) we can find:

OO

^zCnP)exp(-jnPw) = 1/P’S^Z(w)
■n =;-oo

CD

£ z (nP)exp(-jnPw) = 1/P-3 Z (w) = 1/P’S Z(w)exp(jwT).^ 1 W 1 W
n=-oo

Substituting in Y'(w),

Y'(w)=1/T S Z(w)- f-1+exp(jwT) w I
We now define the sampling factor function f(w) by

f(w)= — — (-1+exp(jwT))= -2— exp(jwT/2) exp(jwT/2)-exp(-jwT/2)] jwT jwT i

and,
sm(wT/2) .f(w) = ---------- exp(jwT/2)wT/2

Replacing Z(w) by X(w)/jw (using the definition of z(t)) we derive

Y 1(w)=S X(w)f(w)W
which proves the theorem. An application of this theorem is given later
in example 1.

3- Sampling Using System Observations

Theorem 2 is an extension of theorem 1. It describes a more
realistic sampler with an arbitrary impulse response. Theorem 2 should
be used when a more precise modelling of the sampler is needed.

Theorem 2

Let {x(t): t£R} be a signal and h(t) be the impulse response of a
causal linear, time invariant dynamic system. Also let ty(nP)} be a

20

sampling sequence defined by the convolution integral
T

y(nP)= J " h(T-r)x(nP+r)dr n=...-2,-1,0,1,2,..,
0

that is, the number y(nP) is the value of the response at t=nP+T of the
system h, when it is excited by an input signal

{x(t): nP < t < nP+T}

and starting with zero initial conditions
(see figure 2). Then, the spectrum of y’(t)
is given by h(i)

Y'(w)= S^X(w) f (w) RESET T SAM PLE P

where,
f(w)=exp(jwT) F{h(t)(u(t)-u(t-T))} Figure 2: Sampling using

system observations
Proof

Let’s define a new signal z(t) by the convolution integral
t
r

z(t) =/ h(t-r)x(r)dr
'J-00

Then,
T T O

y(nP) = J"h(T-r)x(nP+r)dr = h(T-r)x(nP+r)dr
0 -o o -oo

nP+T nP
= (call c=nP+r) (J ~-j ") h(nP+T-c)x(c)dc

— OO — 00

21
nP+T nP
h(nP+T-r)x(r)dr - J " h(mP+T-r)x(r)dr

-oo
Define the 'shifted' impulse response g(t) by

g(t)=h(t+T)u(t)

and the corresponding Fourier transforms

h(t) <-- > H(w)
g(t) <--> G(w).

Let also
z, (t) < > H(w)X(w)h

z (t) < > G(w)X(w).
g

Then, the above expression of y(nP) is equal to

y(nP)=z (nP+T)-z (nP) h g
Here we note that

z (nP+T) is the sampled version of H(w)X(w)exo(jwT), and h
z (nP) is the sampled version of G(w)X(w)
g

The continuous signal

CO 00

y' (t)=pY^y(nP)S(t-nP) =P^~'C z (nP+T)-z (nP)]-S(nP)Z_7 h gn=-oo n=-oo
is transformed using the Poisson sum formulas and the above note to:

Y'(w) = S {H (w)X(w)exp(jwT)-G(w)X (w)}
W

and equivalently,

22

Y'(w) = S.,X(w) f (w)W
with

f(w) = H(w)exp(jwT)-G(w)

Observe that the gain factor f(w) is the Fourier transform of the signal
h(t)(u(t)-u(t-T)) shifted by T seconds. This observation conludes the
proof of the theorem.

Corollary

Consider the integrating system with inpulse response h(t)=u(t)/T.
Then,

h(t>(u(t)-u(t-T)) = (u(t)-u(t-T))/T

and the Fourier transform of this is

1 exp(-jwT)
iwT jwT

Therefore the gain factor is

exp(jwT)-1 = exp(jwT/2) 2sin(wT/2)
wT = exp(jwT/2) sin(wT/2)

wT72

which agrees with the results of theorem 1

Example 1 (Application of theorem 1)

A signal x(t) is sampled using integration for T seconds with
period P=5s. Let W=2,n'/P and assume that x(t) is bandlimited with

bandwidth B<W/2. We want to find the spectrum of the samples for T=1
T=5s and T=15s.

Using theorem 1, Y'(w)=S X(w)f(w) and because B<W/2, for w <W/2,W

|Y'(w)I = |X(w)I If(w)I with If(w)I = sin(wT/2)
wT/2

The sampling gain factor |f(w)| takes values
1 for w=0
0 for w =2kTf/T=kW/a k=+1, +2,... k

where a is the ratio T/P. Also,
sin(air/2) I(f(W/2)I=

! air/2 I

Case 1 (see figure 3a)
a=1/5
If(w)I=0 every 5W
If(W/2)I=0.984

Case 2 (see figure 3b)
a=1
If(w)|=0 every W
|f(W/2)1=0.637

Case 3 (see figure
a=3
If(w)!=0 every W/3
If(W/2)1=0.212

o

. . 0 .6 37

Figure 3a Figure 3b

W73 W /2- W /2

Figure 3c

Figure 3: Sampling using integration
(example)

(a) a=1/5
(b) a=1
(c) a=3

Figure 4 illustrates an implementation of the samplers in cases 1 and 2.
Figure 5 illustrates the sampler in case 3

RESET SAMPLE

CONTROLLER

RESET

T

SAMPLE L

Figure 4: Implementation of integrating samplers

_ 3r “ r “

C O N T R O L L E R

I 01

1j .. ,

0 n

i i ^I
J
*

J i

P
T

R{
51

R2
52

R3

53

Figure 5: Implementation of overlapping integrating samplers

25

4. Weighted Average Burst Sampling

The weighted average sample y(nP) is defined as a linear
combination of M samples x(nP+T), x(nP+2T),..., x(nP+MT) (see figure 6).
For analysis purposes the following constructive formulation of the
weighted average burst samples is'used:

i. Define the signals x (t) byk
x (t)=x(t+kT) for k=1,2,...,M k

ii. Define the signal y(t) as the linear
combination

y(t)=a.x. (t)+a_x_(t)+.. ,+a..xw(t)1 i c 2 M M
where a- are arbitrary real numbers.

Then, the uniform samples of y(t) with period P (considered as elements
of a set) are the weighted burst samples of x(t).
Note that MT is not required to be less than P. The case MT>P is
illustrated later in example 2.

Theorem 3

The spectrum of the sampled version of y(t) (called the weighted burst
sampling spectrum) is

Y»(w) = S X(w)f(w)W
where X(w) is the spectrum of x(t), W= 2'tf/P and the sampling factor
function f is given by:

f(w) = a exp(jwT) + ...+ a exp(jwMT)1 M

nP (n+5)r
y(-nP) I

T

ai ••• as I ai■ • • ae

Figure 6: Weighted average
burst sampling

26

Proof
The sampled version of y(t) is

OO

y'(t)=P X! y(nP) ̂ (t-nP)
n=-oo

with
y(nP)=a x(nP+T)+..,+a x(nP+MT) 1 M

The spectrum of y’(t) is

oo

Y'(w)=P) y(nP)*exp(-jwnP) (i)
n=-oo

The samples y(nP) have been taken from y(t) with spectrum

Y(w) = (a exp(jwT)+...+ a exp(jwMT)) X(w)1 M
or Y(w)=f(w)X(w) (ii)

Now we apply the Poisson lemma for (i):

OO
Y*(w)= Y Y(w+nW) =S Y(w)

L— i Wn=-oo
and by using (ii) the proof is complete.

5. Average Burst Sampling

For the weighted burst sampling it was necessary to have equally
spaced samples at the beginning of every period P. Theorem 4 does not
use this restriction; it deals with samples taken at

27

T.M
relative to the the beginning of the period.

Theorem 4

Let x(t) be a signal and {y(nP)} be the sequence

y(nP)=a x(nP+T)+...+a x(nP+T)1 1 M M
where (a.,...,a„) and (T„,... ,T.,) are given constants. Then the1 M 1 M
spectrum of the samples y(nP) is given by

By considering the pair
y(t)=a x (t) + ...+a x (t) <---> Y(w)=a X (w)+...+a X (w)11 M M 11 M M

we can apply Poisson's sum formula to derive

Y1(w)=S X(w)f(w) w
where

f(w)=a exD(iwT)+...+a exD(iwT)

Proof
Consider the signals

x, (t)=x(t+T) k k k=1,2 M te R.
Then the set {y(nP)} is equal to the set

Also,
y'(t)=P ^ y(nP)S(t-nP), Y'(w)=P^ y(nP)exp(-jwP)

n=-oo n=-co

28
00

P) y(nP)exp(-jnwP) = S (a X (w) + ...+a X (w)
I i W ' 1 1 M Mn= -oo

But
X^(w) = X(w)exp(jwT^)

by the definition of x 's. Therefore,k

Y ’(w)=S X(w)f(w) with f(w)=a exp(jwT)+...+a expCjwT)
W 1 1 M M

which completes the proof.

Corollary 1

Let T =kT for k=1,...,M. The theorem 4 yields theorem 3, k

Corollary 2

Let a = 1/M for k=1,...,M. Then the spectrum of the samples is

Y'(w) = S X(w)f(w)W
with

Proof

x sin(wMT/2) , . M+1f(w)= . exp(jw T)Msin(wT/2) 2

1 Mf (w) = (exp(jwT)+.. .+exp(jMwT))/M =(z + ... + z)/'M
(where z=exp(jwT))

M/2 -M/21 . M+1 .» 1 (M+1)/2 z - z•(z -z)/(z—1) = zM M 1/2 -1/2z -z
from which f(w) can be readily derived.

i

Example 2 (Application of theorem 3)

A signal x(t) is sampled using the weighted average burst sampling
technique. The sampling period is P=5s and the burst period is T=1s.
We assume that x(t) is bandlimited with bandwidth B<W/2
(W=2ff/P) and we want to find the spectrum of the samples in the cases
M=3, 5 and 15, using weights a.=1/M

The sampling gain factor !f(w)i takes values 1 for w=0 and 0 for
w=2k,tT/MT=kW/a (k=1,2,...) where a is the ratio MT/P. Also, |f(w)l is
periodic with period 2rf/T.

l
Using theorem 3, Y T (w)=SirY(w)f (w) with

W

f(w)=(exp(jwT)+...+exp(jwMT))/M
sin(MwT/2)
Msin(wT/2)

Case 1 (see figure 7a)
a=3/5
|f(w)|=0 every 5W/3

Case 2 (see figure 7b)
a=1
If(w)I=0 every W

If(W/2)|= 3sin(fl710)
sin(3tr/10)
>- :11 t v =0.873 If(W/2)1= sin(5rr/10)

Case 3 (see figure 7c)
a=3
If(w)I=0 every W/3

I f (W / 2) | s
sin(15TT/10) o _ -- ■ =0.21615sin0rr/io)

Figure 8 illustrates an implementation of the samplers in cases 1 and 2.
In case 3, the sampler can be implemented using three feedback summers
(similar to the ones in figure 8), or by cascading 15 delays (figure 9).

■ 0 .873

co

-w/2

Figure 7a

.. 0.216

W /3 W /2
Figure 7c

30

. . 0 .6 4 7

Figure 7b
Figure 7: Weighted average burst

sampling example
(a) a=3/5
(b) a=1
(c) a=3

SPST

CONTROLLER

ST
RESET

SP

m m I n nI I
I I T I

P

Figure 8: Implementation of weighted burst samplers

Figure 9: Implementation of overlapping burst samplers

31

6. Periodic Burst Sampling

Theorem 5 deals with the spectrum of a 'burst of samples' taken
every P time units. More particularly, we deal with a uniform burst of
samples, where within the burst, the samples are taken every T time
units (see figure 10). The sampling sequence looks like

... x(nP+T), x(nP+2T), ... x(nP+MT), x((n+1)P+T),...

Note that MT is not necessarily less than or equal to P. The proof is
still true for MT>P. This is illustrated later in example 3.

Theorem 5

The spectrum of the samples tx(nP+mT): neZ, m=1,2,...,M} is given
by the formula

CO

'(w) = Y

n= -oo
X(w+nW) f(n;W,T)

where
, M+1 v sin(nWMT/2)f(niW.T) = exp(jn— WT)

and W=2iT/P
Figure 10: Periodic burst

sampling
Proof
Let y'(t) be the sampled version of a function of the samples of x(t).
Then, co M

x(nP+mT)§(t-nP-mT)
n=-com=1

The Fourier transform of y'(t) is

32

M oo

Y'(w)=) (p) x (nP)exp(-jwnP))exp(-jwmT)
L— ' L— 1 mm=1 n=-<»

where x (t) is defined to be x(t+mT). m
Now, we apply Poisson Sum formulas for the summation with respect to n.
This yields

M
Y'(w)= / (S X (w))exp(-jwmT) ‘— 1 W m

m=1

But
X (w) = X(w)exp(jwmT) m

from the definition of x (t). Then, expanding the S operator,m W
M co

Y f(w) = ^ X(w+nW)exp(j(w-nW)mT))exp(-jwmT)
m=1 n=-co

But the product of the two exponentials equals exp(-jnWmT) (which does
not depend on w). Interchanging the order of the summations,

oo
v -1Y'(w) = ̂ X(w+nW) f(n;W,T)
n=-oo

where
f(n;W,T)=exp(-jnWT)+exp(-jnW2T)+...+exp(-jnWMT)

Call z=exp(-jnWT). Then,

M+1, . 2 M z -z , M+1 sin(nWMT/2)f(n;W,T)=z+z +...+Z = ------- = exp(jn-- WT) ----;;--- -rr-z-1 2 sin(nWT/2)
which completes the proof of the theorem.

33
Corollary 1

Let P=T and M=1. Then WT=21T. Also,

exp(jn(M+1)WT/2) = (-1)n(M+1)= 1
and

lim f(n;W,T)
WMT-»2'rf sin(nWT/2)

.. sin(nWMT/2) lim -- — ----- -

which gives oo

n=-oo
This last statement is the spectrum of the uniform samples (every P).

Corollary 2

Let MT=P and M be any arbitrary integer number. We will prove that
theorem 5 results in the sampling theorem:

is equal to M for n=0, M, 2M, ... and is equal to 0 for the remaining
integer values of n. Because MT=P, WT=2,tt/M. Also, for n=kM,

exp(jnWT)=exp(-jkM 2'n'/M) = 1.
This proves the first assertion. To prove the second, we use:

oo
X(w+2nir/T)

n=-oo

To prove that, it suffices to prove that

f(n;W,T)=exp(-jnWT)+exp(-jnW2T)-!-.. .+exp(-jnWMT)

M-1 Mf(n;W,T) = z(1+z+...+z)=z(z - 1)/(z-1)

3^

Mwhere z=exp(-j2n'n/M) = 1 if n=kM. But z =exp(-j2Tf) = 1. This completes the
proof.

Example 3 (Application of theorem 5)

A burst of M samples every T=1s is collected from a signal x(t)
The sampling period is P=5s. The signal x(t) is bandlimited with
bandwidth B<W/2 (W=2ff/P). We want to describe the spectrum of the
samples fo”* M=3,4,5 and 15
Using the results of theorem 5,CO

Y ’(w)=M £ X(w+nW)f(n;W,T)
with

1f(n;W,T)I= sin(nWMT/2)

for
Msin(nWT/2)

n=0, |f(n;W,T)|= 1
sinCMTf/B)n=1, If(n;W,T)I -

n=k, If(n;W,T)|=

Msin(iT/5)

| sinCkM-if/B)
IMsin(kn75)

Also, f(n;W,T) is the same as f(n+51;W,T) for all integers 1.
In this example it is important to note that the sampling gain factor
remains constant over the bands (-kW/2,kW/2) for all k.

Case 1 (see figure 11a) Case 2 (see figure 11b)
M=3 M=4

I f (0 W,T) I=1 . 000 I f (0 ; W, T) = 1 000

I f (1 W.T) I=0 . 539 l f (1 ; W , T) =0 .250

I f (2 W,T) | =0 . 392 I f (2 ; W, T) =0 .250

I f (3 W,T) | =0 . 392 l f (3*,w,T) =0 .250

I f (4 W,T) I =0 . 539 I f (4 ; W, T) =0 .250

I f (5 W,T) | =1 . 000 l f (5 ; W , T) 1=1 .000

35
Case 3 (see figure 11c)
M=5,15,...,5i,..•
If(0;W,T)1=1
If(i;W,T)I=0 for i=1,2,...

CO
- w- 2 W

Figure 11a

n = ln =-

- 2 W -w w0

Figure 11b

CO
-2w w

Figure 11c
Figure 11: Periodic Burst Sampling (example)

(a) M=3, (b) M=4, (c) M=5i i=1,2,3...

36

7. Filtering by Weighted Average Burst Sampling

Theorem 3 indicates that the spectrum of the weighted burst samples
depends on the frequency characteristics of the sampling factor f(w).

Because f(w) is a function of the weights a., the shape

of the spectrum of Y'(w) can be modified by choosing the weights
properly. The magnitude of the sampling factor f(w) is calculated
below.

.M-1 .if(w)|=|z(a +a2z+...+aMz) I

= clz-z.IIz-z I I ... Iz-z

z=exp(jwT)

M-1

M-1 „where z is the i-th root of the equation a +a z+...+a z =0 i 1 2 M
If the w's corresponding to the z's are placed on the unit circle, i i
(see figure 12) the value of f(w) depends on the distances of w from

V V - V r

Figure 12: Calculation of the magnitude of the sampling factor
In the following we study the various possibilities for f(w).

Uniform f(w)
In this case, f(w) has equal weights for all the samples. Then,

and
37

lf(w)|= sin(wMT/2)
Msin(wT/2)

Figures 13 and 14 (graph 3) illustrate the uniform gain factor for M=8
and 20 respectively. For comparison purposes, the function

sin(wMT/2)
wMT/2

(graph 4) is also drawn.

Binomial f(w)
In this case, f(w) has a multiple zero at z=-1+j0. Then,

f(
M-1

= 2
M _

1) v M-1 m M-l" M-1 M
) z = 1 z+...+ M-1 z
m=1 mL J __• - - .M-1

and

I f (w) I = 1+exp(jwT) M-1
=Icos(wT/2)I M-1

Figures 13 and 14 (graph 1) illustrate the binomial gain factor; note
that this function does not have any side lobes but the width of main
lobe is more than all the other gain functions.

Triangular f(w)
For M equal to an odd number, the triangular sampling factor function is

defined by
2.(M-1)/2'l2f(w)=z 1+z+z +...+z M+1

This gain function is also illustrated in figures 13 and 14 (graph 2).

Equal ripple f(w)
The equal ripple sampling function has equal side lobes around the main
lobe. One possible realization is based on Tchebyscheff polynomials.
The theory and the selection of the coefficients a. of

the sampling factor function follows. Finally, an example illustrates
the calculation steps to obtain a.’s

39

M =8
0.6

0.4

0 . 2 n 2 . 4 n

Figure 13: Comparison of sampling gain functions for M=8
. M-1(1) lcos(x)

(2)

(3)

(4)

sin(Mx/2)
Mx/2

sin(Mx)
Msin(x)
sin(Mx)
Mx

Binomial gain factor

Triangular gain factor

Uniform gain factor

Continuous gain (for comparison)

40

M= 20

O i!L — lUL £ll 7n 3" lOn20 20 20 20 20 20 20 20 20 20

Figure 14: Comparison of sampling gain functions for M=20
.M-1(1) lcos(x)l

(2)

(3)

(4)

sin(Mx/2)
Mx/2

sin(Mx)
Msin(x)
sin(Mx)
Mx

Binomial gain factor

Triangular gain factor

Uniform gain factor

Continuous gain (for comparison)

8. Designing Equal Ripple Samplers

Preliminaries

Let T (x) be the (M-1)th order Tchebyscheff polynomial with M even. M-1
Consider also the mapping

y=arcos(x/x) x=x cos(y)o °

where x is an arbitrary constant. Then T .(x(y)) has maxima and o M-1
minima at

with values

(see figure 15). Therefore there exist a one-to-one correspondence
between x and R. Given an R, x can be found by solving the equation o o
(see appendix lb)

y =kir k=0,1,2

cosh((M-1)arcosh(x))=Ro
1/(M-1) i

o L
Futhermore, T (x) has M-1 roots given by (see appendix lb)M-1

X =cos k ♦ • • •

so, T (x(y)) becomes 0 when y=y with M-1 k

y =arcos(x /x) k=1,2k k o

k2

2n

2n

Figure 15: Using the mapping x=XQccsy with the Tchebyscheff

polynomial T (x)5

The following two lemmas are used for the design of the equal ripple
sampling factor.

Lemma 1

The sampling factor
2 Mf(w)=a, z+a.z +...+a z with z=exp(jwT) (or exp(-jnWT)) 1 I n

under the assumptions that
(1) M =even integer
(2) a =aw , . for k=1,2t...k M-k+1

^3
(2) k=1,2,...

can be transformed to
(M-1)/2(3) f(w)=2z (a cos(M-1)y+a cos(M-3)y+...+a cosy)1 2 M/2

where y=wT/2 (or nWT/2)

Proof
1 M-1

f(w)=z(a +a z +...+a z).
1 2 M

Consider the sums

Then,

k-! M-k „ , „ „s =a z +a z for k=1,2,...,M/2k k M-k+1

f(w)=z(s1+s2+...+sM/2)

But because of the second assumption,
, k-1 M-k m, k-1-m M-k-ms s, =a, (z +z)=a, z (z +z) k k k

for all m. Now require k-1-ra=-(M-k-m). This gives

m=(M-1)/2 and k-1-m=-(M-2k+1)/2
Therefore,

(M-1)/2 k-1-m -(k-1-m) „ (M-1)/2s^=a^z (z +z)=2a^z cos(M-2k+1)y

Summing up all s 's we prove (3).it

Lemma 2

Let f(w) be the sampling factor given in lemma 1, equation (3)
the mapping

y=arcos(x/x) <=> x=x cosyo o

Then

Proof

Using the definition of the Tchebyscheff polynomials and the result of
lemma 1, the above expression is readily obtained.

Summary of the design procedure

The objective here is to find the coefficients a ,a ,...a of a1 2 M/2
sampling factor f(w) of even number of terms and with

ak=aM-k+1 for k=1 ,2.... M/2

which has the properties:

(1) All side lobes have the same maximum
(2) The main lobes are R times the side lobes

The coefficients a^ are found by the following procedure

(a) Give R, find x using

x =1/2 (R+o

(b) Require that

and using the expansions of appendix lb
determine the a ' s

i

Then, f(w) = T (x(y)) with y=wT/2 (or nWT/2)
M-1

^5

The following example illustrates the usage of the above procedure in
designing an equal ripple sampling factor based on Tchebuscheff
polynomials.

Example 4 (Applying the design procedure)

A signal x(t) is sampled using averaged weighted burst sampling
with M=8, T=4s and P=5s. It is assumed that x(t) is bandlimited with
bandwidth less than W/2 (W=2fr/P). Select the weighting coefficients
a .a^... for obtaining equal ripple lobes with R=50.

The spectrum is
Y'(w)=S X(w)f(w)W

0
f(w)sai|z+...+a z z=exp(jwT)

Let a =a , a =a , a =a. and a =a . Then, using lemma 1,1 8 2 7 3 b 4 5

7/2f (w)=2z (a.]cos7y+a2Cos5y+a2Cos3y+aitcosy)

with y=wT/2.
Following the design procedure,

 ̂ 1/T » 1/7
x =1 /2 (50+\j2501) + (5 0 - \ /2 4 9 9)) = 1 .2243o
T (x)=a T (x/x)+a T (x/x)+a T (x/x)+a T (x/x)7 1 7 o 2 5 o 3 3 o 4 1 o

and using the formulas from appendix lb,
7 5 3 7 564x -112x +52x -7x = a 64(x/x) +(-112a +I6a)(x/x) +1 o 1 2 o

3+(56a -20a^+4a)(x/x) +(-7a +5a^-3a +a,)(x/x)1 2 3 o 1 2 3 4 o

L

Solving the system
764a = 64x1 o
5-112a +16a =-112x1 2 o
3

5 6 a ^ - 2 0 a ^ + 4 a ^ = 5 6 x ^

we find
-7v 5v3w -7xo
a^=4.123i a^=9.6, a^=l6, a^=20

The following table uses the formulas
x =cos(2k+1)1T/14 k
y =arcos(x /x) k k o
w =2y /T k k
x =1.2243 o

to calculate the zeros of T (x(y))

Table 1: Calculation of the zeros of T^(x(y))

k Xk V >
w () k

0 0.975 37 18.5
1 0.782 50 25.0
2 0.434 69 34.5
3 0.000 90 45.0
4 -0.434 111 55.5

5 -0.782 130 65.0
6 -0.975 143 71.5

Figure 16 shows a the sampling gain factor for several values of R.
Note that as the ratio R increases, so does the width of the main lobe.
Because MT>P, a special implementation of the sampler is required. The
timing is illustrated with figure 17.

0.6

M = 8

0.4

0.2

-0. 4ir0 . 6-nr 0. 2ir 2

Figure 16: Tchebyscheff sampling gain factors

nP (n+1) P
I I

I I I I II I I I I
a a a a a a a a a a a a a1 2 3 4 4 3 2 1 1 2 3 4 4

XnP+T XnP+2T

y(nP)-

nP (n+1)P
1 I I I II I I I 1 I I

I I I II I I I I I

31 a2 a3 a4 3 4 a3 a2 31 31 3 2 33 *4

XnP+2T XnP+3T

y(nP+P)

nP (n+1)P
I I I I

I I I I I II I I I I I I II t

a1 a2 a3 34 a4 a3 32 a1 31 a2 a3

XnP+3T XnP+4T

•y(nP+2P)

Figure 17: Timing of overlapping Tchebyscheff sampling

ij.9

9. State Space Models of Cyclicly Sampled Systems

This section provides a 'system theoretic' view of the sampling
schemes discussed in the previous sections. Here we use state space
techniques to model a class of periodically sampled systems. The
section consists of two theorems: Theorem 6 proves that a periodically
sampled system is equivalent to a time invariant state equation with
time varying output equation. Theorem 7 proves that a periodically
sampled system is equivalent to an augmented time invariant state model.

The sampling sequences we deal with are of the form (see figure 18):

{y(nP+T) with n=0,1,... and m=1,2,...,M} m (i)

This is a sequence of patterns
consisting of M irregularly spaced
samples. For simplicity we assume
that T is less than P. m
We also assume that the above sequence
is sampled from a linear, time
invariant system with state equations:

dx/dt=Fx with x(0)=b
y(t) =cx

(n+l) Pv ' r

T ,7 * T3

Figure 18: Periodically sampled
state model

where c is a row vector, F is a square matrix and b is a column vector.
Note that the spectrum of y(t) is given by:

Y(w)=c(jwI-F) ”*b

50

Definition

For a given pair (n,m) (and a fixed constant M) define the mapping
k <---> (n,m)

by the equations:
k(n,m)=nM+(m-1) (1)
n(k)=int(k/M) (2)
m(k)=(k mod M)+1 (3)

where int(.) means the largest integer which is smaller than the
argument (floor of the argument) and mod is the modulo function (k mod M
means the remainder of the division k/M).
After the k=k(n,m) mapping is defined, we can create a time sequence

t =nP+T k m
and a corresponding time series

y, =y(t) k k

which consists of the same points as the set (i)

Theorem 6

The time series y can be considered as an output of a linear, timek
varying discrete system of the form:

w(k+1)=Sw(k)
y =h(k)w(k) w(0)=A(h)bk

i.e. we can use a discrete model where the states are propagated with a

51

constant matrix S, while the output matrix (row vector h(k)) becomes
time varying.

Proof

Let us assume the (n,m) are given, and k=k(n,m) is defined according to
(1). Define,

Then,

hrP/M
w(k)=w(k(n,m))=x(nP+mh)
A(r)=exp(Fr)

w(k)=A(mh)x(nP)

(4)
(5)
(6)

(7)

First we prove that w(k+1) is equal to a constant matrix times w(k).
Consider the integer k+1; depending on m,

k+1 corresponds to <
f(n+1,0) if m=M

(n,m+1) if mj&M
Therefore, if m=M,

w(k+1)=A(h)x((n+1)P)
=A(h)A(P)x(nP)
=A(h)A(Mh)x(nP)
=A(h)A(mh)x(nP)
=A(h)w(k)

In the case that m^M,

by applying (7)
using the state equations and (6)

by using (4)
because m=M
by applying (7)

w(k+1)=A((mi-1)h)x(nP) by applying (7)

52

=A(h)A(mh)x(nP) property of the transition matrix
=A(h)w(k) using (7) again

So, in both cases w(k+1)=A(h)w(k). This proves the first part of the
theorem. The second part is proved similarly:

y(t) =cx(nP+T) k m
=cA(T)x(nP) using the state modelm

=cA(T)A 1(mh)w(k) m
=cA(T -mh)w(k) m
=h(m)w(k) for h(m)=h(m(k))=cA(T -mh)m

(The third equality was derived by using (7) and the fact that A(.) is
always nonsingular so,

- 1x(nP)=A (mh)w(k)

which is substituted in place of x(nP).)

This completes the proof of the theorem 1.

Corollary 1

Let T =m(k)h (uniform sampling). Then, the model of y(t) becomesK K
w(k+1)=A(h)w(k)
y(t)=cw(k) k

l

53

Corollary 2

Let T =qm(k)h with 0<q<1. Then, the model of y(t) is& K
w(k+1)=A(h)w(k)
y(t)=cA((q-1)mh)w(k) k

Theorem 7

Define

Y(n)=(y(nP+T)|y(nP+T)|...|y(nP+T))T1 I 2 1 1 M
Then,

x((n+1)P)=A(P)x(nP)
Y(n)=Hx(nP)

where H is an appropriate constant matrix,

Proof

The first equation, x((n+1)P)=A(P)x(nP) is an immediate consequence of
the continuous state equation. The second equation comes from the fact

y(nP+T^) cA(T

y(nP+T) cA(T2

y(nP+T) M cA(T

1' cA(T^)

cA(T)
2

oA(y

•x(nP)

Corollary 1

Define the spectrum of the samples {y(t)} as the Fourier transform

of the generalized function

Then,

where

y'(t)=yy(t)S(t-t)
L— i k kk=o

Y 1(w)=Fourier transform of y'(t)

Y'(w)=g(w)K(Iz-A)"1b

A=A(P)=exp(FP)
g(w)=(exp(-jwT) exp(-jwT) ... exp(-.jwT))

1 2 M

z=exp(jwP)

Proof

^^y(nP+Tm)exp(-jw(nP+T^)) = ̂ g(w)Y(n)exp(-jwP)
n,m n=0

But,

x((n+1)P)=Ax(nP) = > zX(z)-b=AX(z) =S> X(z) = (Iz-A) -1b

Then, using the results of theorem 2,

Y'(w)=g(w)H(Iz-A)“1b

which completes the proof.

Corollary 2

The Y ’(w) found above has exactly the same poles as the Fourier
transform of the discrete sequence y(nP).

Corollary 3

Assume that T =q T for some integer q for i=1,2,...,M and i i o 1
P=q T . Then, Y'(w) is periodic with period T . o o o

Proof

Use the expression of g(w) to derive that g(w)=g(w+2'n'/TQ) which means

that g(w) is periodic with period 2 tf/T .o
- 1Let a(w)=H(Iz-A) • b; then a(w)=a(w+2,n7P). Because a(w) is periodic

in w with period 2'Ti/P, and P is a multiple of T , then a(w) is alsoo
periodic in w with period 2n'/T .o
Notes
a) The samples during the intervals [nP, (n+1)P] (for all n) can add
zeros through the g(w).

b) (Iz-A) 1 has poles associated with the period P i.e. independent of
added samples.

-1c) (Iz-A) is periodic in w with period 2-rr/P; however, g(w) is
periodic in w only if the T 's are all integer multiples of somei
period T . If this happens, g(w) is periodic with period 2 ^ /7 .

56

Appendix la

The Poisson Sum Formulas

Poisson formulas are of .fundamental importance for the sampled
systems because they relate Fourier transforms of transient signals
(that is, signals with short time records) with their periodic
expansions. Poisson's formulas are given by the following assertion:

Assertion
Let f(t) be an L function (of finite energy). We introduce the 2

operator S{.} defined by the summation:

COT-1
STf(t) = f(t+nT)

n=-co

where T is an arbitrary real number, called the replication period. The
function S^f is called the periodic expansion of f with period T.

Note that:
S^f(t+aT) = S^f(t) for any integer a.

which means that S^f is a periodic function. The Poisson formulas are:
00

1. S^S(t) = 1/T exP(jnWt)
n=-ao
OO

2. S f(t) = 1/T £ F(nW) exp(jnWt)
n=-co
oo

3. s F(w) = T y f(nT) exp(-jnTw)W L-1n=-co

where F(w) is the Fourier transform of f(t) and W is equal to 2'rf/T.

Proof of 1
Because is a periodic function, we can expand it to a Fourier

series:
00

s S(t, . £ a^exp(jnWt)
n=-oo

where the constants a are the Fourier coefficients given by:n
+T/2

a = 1/T J S(t) exp(-jnwt) dt.
n -T/2

But this last integral is equal to 1. Therefore a = 1/T and then
proof is complete.

Proof of 2
Consider a linear system H(w) with impulse response f(t). Then
F(w)=H(w), and the linearity implies:

If the input S(t) gives output f(t), then,
the input Ŝ lbCt) will give output S^fCt).

But the output of the system when the input is

oo
S $(t) = 1/T^exp(jnWt)

n=-co
can also be derived as a sum of responses of the exponentials, that is,

input = exp(jnWt) = > response = H(nW)exp(jnWt)
CO oo

input = 1/T^exp(jnWt) = > response = 1/T^H(nW)exp(jnWt)
n=-oo n=-oo

Therefore,
S f(t) = 1/T^JKnW) exp(jnWt)

n=-oo
which is the desired result (considering that F(w)=H(w)).

58

Proof of 3
The symmetry property:

if f(t) <---> F(w) are Fourier pairs,
then F(t) <---> 2‘rff(-w) are also Fourier pairs,

can be applied to the previous result to find

In this equation t is the independent variable and T has to satisfy the
equation T=2fr’/W. Therefore,

n=-oo
Finally, changing the summation index from n to -n and interchanging the
summation limits, the desired result (3) is derived.

CO

f(-nW) exp(jnWt)
n=-oo

t can be replaced by w, and,
T can be replaced by W.

This gives:

oo
S F(w) = 21T/W f(-nT) exp(jnTw)

59

Appendix lb

On Tchebyscheff Polynomials

The Tchebyscheff polynomial of order N is defined by

T (x) =cos(Narcos(x)) for -1<x<1 (1)N
and T (x) =cosh(Narcosh(x)) for Ixt>1 (2)N
Expanding the cos() and coshO functions, the following recursive
functional equation is satisfied:

T (x)=2xT (x)-T (x) (3)N+1 N N-1

0
Examples:

T (x)=1, T,(x)=x
i

Tq (x)=1 1 = T (x)

T (x)= x x = T (x)
1 1

2 2T2(x)=2x -1 x =(Tq+T2)/2

3 3T (x)=4x -3x x =(3T +T)/43 1 3
4 2 4

T4(x)=8x -8x +1 x =(3Tq+4T2+T4)/8

5 3 1 5T_(x)=16x -20x +5x x =(10T^+5T_+T_)/165 1 3 5

Tchebyscheff polynomials satisfy the following differential equation

6o

(1-X2)T*'-xT’+N2T =0 N N N
(where the prime indicates differentiation with respect to x).
The roots of the Tchebyscheff polynomials are

(2k-1)Tf(k-th root) x =cos --------- k=1,2,...,N (5)k 2N
and the k-th root is the same as the N-K+1 root.
The following equalities and inequalities are also true:

T (1) = 1 N
NT (_1)=(-1>N

T (0)=1 2k
T (0)=0 2k+1
IT (x)|<1 for -1<x<1N - -

IT (x)|<2N _ 1 x N for x<—1 and x>1N -
NIT (x)|>2 for x<—1 and x>1N -

T (x) is an even function of x 2k
T (x) is an odd function of x 2k+1

In addition, the following substitutions are very common:

for IxI<1 T (x) = cos(Nw) with x=cosw (6)- N

T (x) = (zN+z *S/2 with x=(jz+1/jz)/2 (7)N
for IxI>1 T (x) = cosh(Nw) with x=coshw (8)— N

T (x) = (zN+z N)/2 with x=(z+1/z)/2 (9)N

61

Motes and References

[1] Jerri A. J., 'The Shannon sampling theorem - Its various extensions
and applications: A Tutorial review,' Proceedings of the IEEE, vol. 65,
pp. 1565-1595, Nov. 1977.

[2] Jury E. I., 'Sampling schemes in sampled data control systems,' IRE
Trans, on Automatic Control, vol. AC-6, pp. 86-88, Feb. 1961.

[31 Jury E. I. and F. J. Mullin, 'The analysis of sampled-data control
systems with a periodically time-varying Sampling rate,' IRE Trans, on
Automatic Control, pp. 15-25, May 1959.

[3] Kalman R. E. and J. E. Bertram, 'A unified approach to the theory of
sampling systems,' J. Franklin Inst., vol. 267, pp. 405-436, May 1959.

[4] Will P. M., 'Variable Frequency Sampling,' IRE Trans, on Automatic
Control, vol. AC-7, p. 126, Oct. 1962.

[5] Yen J. L., 'On nonuniform sampling of bandwidth limited signals,'
IRE Trans. Circuit Theory, vol. CT-3, pp. 251-257, 1956.

[6] D' Angelo Henry, Linear Time Varying Systems: Analysis and
Synthesis. Boston: Allyn and Bacon Inc., 1970.

[71 King R. W., The Theory of Linear Antennas. Harvard University
Press, Cambridge, Mass. 1956.

CHAPTER I I

PARTIALLY SAMPLED ARMA MODELS

Outline of Chapter II
1. Notation and Conventions
2. Least Squares Identification
3. Sequential Identification
4. ARMA Model Identification from Partial Observations
5. Filling Missing Data Using ARMA Coefficients
6. Validation of Theorem 1
7. Applying the Results of Theorem 2

Appendix II
Notes and References II

62

63
Outline Chapter II

Autoregressive-moving average (ARMA) filters have been widely used
to model deterministic events and random processes. The most important
property of the ARMA filters is that they can adequately describe the
input-output relationship of a uniformly sampled, linear, time invariant
dynamic system. In the case of nonuniform sampling, a time invariant
system results in a time varying discrete system which can not be
analytically studied using ARMA model techniques.

In this chapter we present the results of a study that can be used
to model partially sampled dynamic systems. The term partially
sampled system is used with the following meaning: sampling of output
signals occurs periodically and uniformly but for certain time intervals
no samples are taken. We also use the term uniform sampling with
missing data points interchangeably. More specifically, the following
two problems are addressed:

(1) Given a table of input-output data of a partially sampled system,
find the ARMA coefficients corresponding to a uniformly sampled system.
(2) Given the ARMA coefficients of a partially sampled system, find the
missing output data points by interpolation.

The chapter is organized into 7 sections and an appendix. Sections
1, 2 and 3 provide the introductory background we use for the next three
sections. A list of the vector-matrix notational conventions and the
definition of the ARMA(N,M) model is given in section 1. Section 2
outlines the least squares ARMA model identification procedure and
section 3 summarizes the sequential identification algorithm based on
Kalman filter theory. In section 4 we present the new results on ARMA

6k

model identification based on partial observations and the next section
(5) deals with the interpolation of the missing data points. Sections 6
and 7 are devoted to the justification of the previous theory.
Simulation programs and results are given to validate the assertions.
Finally, in appendix II we include the programs used for the simulations
and a list of references.

1. Notation and Conventions

x=(x„ X- ... xlt) means that x is a row vector of N elements 1 2 N

x=(x ,x2,. *’V means that x is a column vector of N elements

/

xi
means that x is a column vector of N elements

A=(a .)
ij

matrix A consisting of elements a
ij

(a : i=1,N; j=1,M) matrix A with dimension N by M
ij

11 12 ... 1M
21 22 ... 2M

N1 N1 ... NM

has identical meaning with (a : i=1,N; j=1,M)
ij

65

11 ' x ... 1M'
y 22' ... 2M’

N1 1 w ... NM'

means that the elements a . a,. and a „ have12 21 N2
been replaced by the scalars x, y, w

1 2
= y i y2

3 4 y
. y3 V

In general, we write the index of the variable
instead of the indexed variable

Definition of an ARMA(N,M) model

Let {u(k)} be a deterministic sequence of real numbers and {e(k)}
be a white random process of zero mean and variance R. An ARMA model of
degrees N and M is defined by the difference equation

y(k)=a y(k-1)+a y(k-2)+...+a y(k-N)+b u(k-1)+..,+b u(k-M)+e(k) 1 2 N 1 M

where M<N and a , b are not equal to 0= N M
Taking the Z transform of the above equation and rearranging terms, we
find

-1 -Mb z +...+b z 1
Y (z) = — - ----------- U (z) + ----------------- E (z)-1 -N -1 -N1-a^z -...-aNz 1“a1z -...-a^z

The first ratio is the transfer function from U(z) to Y(z) and the
second ratio is the transfer function from E(z) to Y(z). Now, we
introduce the notation

66
f = (3 ̂ t 3^ t • • • ’ * ’ * ’ ^

C(k)=(y(k-1) ... y(k-N) u(k-1) ... u(k-M))

Then, the ARMA(N,M) equation can by written in vector form

y(k)=C(k)f+e(k) (i)

2. Least Squares Identification

The least squares identification problem is formulated in the
following manner: Estimate the vector f using the observations (y^.y^

...y) and minimizing the total equation error K

K 2
J(f) e (k)

k=1
where,

e(k)=y(k)-C(k)f for k=1,2 K

Solution

Rewriting equation (i) for k=N,N+1,...,K we form the system of linear
equations

y(N+1) ~C(N+1)" "e(N+1)
y(N+2)

_
C(N+2)

f +
e(N+2)

y(K) C(K) e(K)

6?

The coefficient matrix of f (containing the rows C(N+1)...C(K)) is
denoted by W and it is partitioned in two blocks A and B as follows

W=(AiB)

r
N

\
N-1 ... 1 N N-1

\
... N-M+1

N+1 N ... 2 N+1 N ... N-M+2

A = B =

K-1
k

K-2 ... K-N y K-1
<

K-2 K-M /

Matrix A has dimensions K-N by N and depends only on y(1),...,y(K-1).
Matrix B has dimensions K-N by M and depends only on u(N-M+1),...,u(K-
1). By defining Y to be the column vector of y's in (ii), and E to be
the column vector of e's, we can rewrite (ii) in compact form

Y=Wf+E

In this equation Y and W are known and f, E are unknowns. Also note
that minimization of the sum of squares of the errors e(k) is equivalent
to minimizing

TJ(f)=E E with respect to f.

The solution of the above problem [1] is unique in the case

rank(W|Y) = N+M

and it can be found by the formulas

f*=W+Y

68
where,

+ T -1 T W =(W W) W

resulting in a minimum total error

J(f')=YT(I-WW+)Y.
+Note that if W is a square matrix of full rank (N+M), WW =1 and

the total error J(f1) is 0. Also, by replacing W+ by the generalized
Penroze inverse [2], a less restrictive solution f' can be found
relaxing from the rank(WlY)=N+M condition.

3. Sequential Identification

Let (y(1),y(2),...,y(K)) be an observation set of K measurements
and f(K) be an estimate of f (least squares estimate or any other
estimate) based on the above set. The ARMA model equation (i) can be
written in the following state form

f(k+1)=If(k) k=K,K+1,...
y(k)=C(k)f(k)+e(k)

The unity matrix that appears in the first equation has dimensions N+M
by N+M. This means that the above system has N+M poles on the unit
circle, and because C is a function of the time index k, the system is
time varying. The problem is to find least squares estimates f(n) of f
based on the next observations K,K+1,...,K+n,...

69

Solution

The following algorithm is the result of a time varying Kalman filter
[3] for the above system:

(1) Get y(n+1) and u(n+1). Formulate
C(n+1)=(y(n) y(n-1) ... y(n-N+1) u(n) ... u(n-M+1))

(2) Compute the Kalman gain (vector)

v p (n > T ,L(n+1)= C (n+1)
P

1 P(n) T— +C(n+1)---C (n+1)
L q P

(3) Estimate f recursively by
f(n+1)=f(n)+L(n+1)£y(n+1)-C(n+1)f(n)J

(4) Update the error variance using

P(n+1)=-~— [p(n)-L(n+1)C(n+1)P(n)]

The following notes explain the meaning and the significance of the
terms that appear in the above algorithm:

(a) The inverse in step (2) is a scalar quantity. No matrix inversion
is required.

(b) Matrix P has dimensions N+M by N+M and corresponds to the variance
of the estimation error f(k)-f. Initially, for n=K, P(n) in step
(2) can be set equal to el where e is a large positive number.

(c) The scalars p and q can take the values
p=1 q=1/R for ordinary Kalman filtering (R=var{e))

0<p<1 q=1-p for exponential smoothing Kalman filtering [4]

70

p=1 q=small positive number for Kalman filtering with unknown
measurement noise.

(d) In order for the filter to converge, uniform observability [5] is
required. This implies that the Fisher information matrix [6]

F
Z c <J+1)C(j+1)
j=K

is positive definite for all the final values F>K.

Using the expression for C(j+1), we find

('
y(j)y(j) y(j)y(j-D ... y(j)u(j-M)

y(j-DyCj) y(j-Dy(j-D ... y(j—1)u(j—M)

• • • •

u(j-M)y(j) u(j-M)y(j-1) ... u(j-M)u(j-M)

where the summation limits extend from j=K to F. Observe that when
F— >oo(infinite number of observations) the above summations correspond
to the statistical autocorrelations and crosscorrelations of y and u
[6]. More specifically, if the system is unforced u(j)=0 and the Fisher
matrix is the same as the partial correlations Toepliz matrix [7].

4. ARMA Model Identification from Partial Observations

Problem Formulation
Let (v ,y ,...,y) be a set of uniformly collected observations 1 2 K

71

from which (y., y.,...yv) are missing (bad data). Assume also that 1 J K
the driving input sequence (u , u , ...,u) is partially known and1 2 K-1
(u ,u ,...,u) are missing. The problem is to find the ARMA coeffi-
i j k

cient vector f in a manner that the total equation error
2 2 2 2 e (1)+..,+e (i-1)+e (i+1)+...+e (K)
(terms i,j,...k are not included)

is minimum.

Theorem 1

The following algorithm finds the optimum vector f (in the least squares
sense) for the missing data problem:

(1) Formulate the matrix W=(A!B) and the Y vector according to
equations (ii) and (iii). Replace the unknown elements
with 0.

(2) Form the sets D(n)={n-N,n-N+1,...,n) for n=i,j,...,k
(3) Form the union U(i,j,...,k)=D(i)uD(j)u...uD(k).
(4) Define a matrix Q with elements e wherenm

e 1̂ for n=m nm '
=1 if n=m and n does not belong to U(i,j,...,k)
=0 if n=m and n belongs to U(i,j,...,k)

(5) Find the Q-weighted least, squares solution of the
equation Y=Wf+E, that is

T -1 T f=(W QW) W QY
Then, f minimizes the total equation error.

72

Proof

The proof of theorem 1 is based on the special form of the equation
Y=Wf+E. For simplicity we assume that only y(i) and u(i) are missing.

Y

1 N+1
2 N+2
• •
• •

i-N I— i s

•
!__ !
•

• •
• •
i •

K-N
•
K y

B

N N-1 ... 1
N+1 N ... 2

• • •

i-1
• • «

r ~ "l i i-1 ... i-N+1
i i+1 i ... i-N+2

|_i+N-1 ... i
• • •

• • •
*

a+

N
N+1

i-1
i
i+1

N-1 • • • N-M+1
N • • •

t i t

N-M+2

i-1

• • •

• • • i-M+1
i • • • i-M+2

-1
• • •

• • •

• • •

i-M+N

• • •

b+

u

N+1
N+2

!--11 i ' L_J
i+1

K

We observe that the missing datum y(i) appears in the (i-N)-th row of
the left side and in rows i-N+1,...,i of the right side of matrix A.
Also, because N>M, the missing input u(i) appears at most at the (i-
N+1,...,i)-th rows of the right side of matrix B. Therefore, by
deleting the rows

{i-N,i-N+1,...,i}

the resulting equations do not contain the unknowns y(i) and u(i).
Calling Y 1 and W f = CA'iBT) the vector Y and the matrix W=(AiB) after

L

73

deleting the above rows, the least squares solution of the equation

Y'sW’f+E'

with respect to f will gives the ARMA coefficients based on the
observations y(1),...,y(i-1),y(i+1),...,y(K). This solution is:

T -1 T f'=(W' W f) W Y'

But this is equivalent to

f'=(w tq w)“1wtqy

where Q is a diagonal matrix which has elements equal to 1 except at the

diagonal positions {i-N.i-N+1,...,i} which are equal to 0. When the
observations y(i),y(j),...,y(k) are missing, the above matrix Q can be
easily verified to be given by the algorithmic steps (2), (3) and (4).
This completes the proof of theorem 1.

Note

If the number of observations are K, and there are no missing
observations, the number of equations is K-N. If S sequential
observations are missing (say i,i+1,...,i+S-1) then the number of
equations reduces to (K-N)-(S+N)=K-S-2N. If S observations which are N
indices apart (say i,i+N,i+2N,...,i+(S-1)N) are missing, then the
number of equations reduces to (K-N)-S(N+1)=K-S-(S+1)N. In all the
above cases K should be sufficient large such that the resulting
equations are more than N+M. This does not guarantee the existence of a
unique solution but it is a necessary condition for it.

7^
5. Filling Missing Data Using ARMA Coefficients

Theorem 2

The following theorem can be used to interpolate missing data when the
ARMA coefficients are known.
Let (y , y ...,y) be a set of observations and (u , u ...,u) be a 1 2 K 1 2 K
set of driving inputs to an ARMA(N,M) model. Assume that:
(1) The observations with indices i,j,...,k are missing (bad data).
(2) The ARMA coefficients have been estimated. (Theorem 1 can be

used for that purpose)
(3) The equation errors e(k) have been estimated at the known data

points.
x j. kThen, the vector Y * of the missing data and the error vector

i j. kE ’ can be found by solving a least squares problem of the form
i j • k ij.k(known vector)=(known matrix)Y +E —

Note that a least squares solution implies that the total error

(E1J-k) V j-k)
is minimized.
The proof of the theorem requires several steps and some more notational
conventions. To make the proof easier to follow we give a series of 4
lemmas and then we prove the theorem. The importance of this result is
that the missing data can be expressed linearly with respect to
known quantities in an algorithmic manner.

Lemma 1
The following equality is true for any scalar s and any N dimensional
vector a.

75
r
s 12' 13’ ... IN1

r
0 12' 13' ... 1N'

21 ' s 23' ... 2N'
• a =

21 ' 0 23' ... 2N'

M1 'V. M2' M3' ... s/y M1 'V, M2' M3' ... 0 /

a + sa

Lemma 2

The following equality is true for any N dimensional vector a

N
N+1

1
i+1

N-1
N

i-1
i

Li+N-1 i+N-2
i+N

K-1 K-2

1

2

. i-N+ll

• t • i

J

K-N

a -
replace the i-th
elements with a 0's

/ •

0

a +

N
0

y.i

We now introduce the notation:

A = Matrix A after replacing the elements y by 0
i

m = Vector containing the a-vector at the corresponding rows of A a

that contain a The remaining elements of m1 are equal to 0. i a
Then, the above equation can be written in a more compact form:

i i Aa=A a+m y a l

76

Lemma 3

Let be indices of elements of matrix A (A has a similar form
as in lemma 2). Assume also that

N+1<i,j,...,k<K-N+1

Then, application of the result of lemma 2 gives

. ij.k r i J k Aa=A a+[m m ...m]a a y .
3

ij.kwhere A denotes the matrix A after replacing the elements
y . . y . y, by o.x j k
Now, use the notation

ij.k i j kM =[m m ...m] a a a a

'ij.k"

y.i

yj

ykV /
to rewrite the above equation. The result is

. „ij.k ,,ij.kv Aa=A a+M Ya ij.k
Lemma 4

Let E be a vector with elements (e^: i=1,...,N). Then,

77

r. r . 1 1E=E +n e.

where,

E = Vector E after replacing the i-th element with a 0

n1 = Column of 0's except with a 1 at the i-th position

Extending the above statement, we can derive
"e

ij.k i j k E=E +[n n ...n J

L k J

and by using the notation
ij.k i j k N =[n n ...n J

we have

Eij.k' e . J

ij.k

Proof of Theorem 2

The following equation relates the observations with the parameters f
Y=Wf+E or Y=Aa+Bb+E

where W, A and B have been defined in section 2. Using lemma 4 we can
separate unknown terras from knowns for the Y and E vectors

78

Y_y ̂J • J • ̂y
ij.k

E=Ei:i*k+N1';i’kEij.k
Then, using lemma 3, we can separate the unknown y’s from A

ij.k ij.k Aa=A J a+M Ya ij.k

Substituting in Y=Aa+Bb+E we find

„ij.k „ij.k„ .ij.k wij.k„ „ij.k „ij.k_Y +N Y =A a+M Y +Bb+E +N Eij.k a ij.k ij.k

and equivalently,

Yij.k_4ij.ka_Bb_Eij.k=(Hij.k_nij.k)Y +Mij.kE (v)
a ij.k ij.k

This equation is of the desired form
(known vector)=(known matrix) (unknown parameters)+(error vector)

To complete the proof of the theorem 2, we need to show that

(Nlj,kE)T(Nlj,kE)=e2(i)+e2(j)+...+e2(k) ij.k ij.k
But this is readily obtained from the fact that the square matrix

(NiJ-V(NiJ-k>

contains zero elements except at the i-th, j-th,...,k-th diagonal
positions. Therefore, minimization of the error term in (v) is
equivalent in minimizing the sum of the squares of the equation error at
the missing points i,j,...,k.

79

6. Validation of Theorem 1

Extensive simulations were used to validate the results of theorem
1. In this section we describe the software written for this purpose
and we summarize the experiments performed.

The software consists of two main programs and several subroutines.
The first (called ARMASIM), can be used to simulate an ARMA model; the
second (called ARMAIDE) can be used to identify an ARMA model from a
table of complete or incomplete input-output data. Several disc files
are used to hold the intermediate results, so the user can plot input-
output relations and trace back the flow of the procedures. The
subroutines called by the above programs are

ARMINI (Initiates the ARMA model)
ARMA (Finds the output of the model for a given input)
RANDUL (Random number generator)
GAUSS (Gaussian random number generator)
LSQ (High accuracy least squares equation solver)
SQRDC (Q-R decomposition routine used by LSQ)
SQRST (Used by LSQ)
VN0RM2 (Finds the Eucledian norm of a vector)

The main programs and the above subroutines are given in appendix II.
In addition, many routines from EASYPACK are called to perform matrix
operations and miscellaneous general purpose functions. (EASYPACK and
the interactive program EASY are discussed in more detail in the
appendix on software support.)

All the experiments were performed using an input sequence u(i)

80

i=0...63 which is given in figure 1. As a first step, an ARMA(4,2)
model with coefficients

a(1)=-0.11, a(2)=-0.22, a(3)=-0.23, a(4)=-0.10
b(1)= 0.90, b(2)= 0.85

was used to find the output function y(i) (given in figure 2). At this
phase, no noise was added to the output y(i). As a second step, the
ARMAIDE program was used to identify the coefficients a(.), and b(.)
from the u~y table generated before. Then, we assumed that
y(25)...y(37) were missing and ARMAIDE was used again to find the
coefficients. A part of the printout is given in sample 1 and 2.
Figure 2 and samples 3, 4 and 5 show the effect of adding noise to the
measurements y. Notice also that in sample 3 and 5 the order of the
autoregressive part of the model (N) was assumed to be 5 instead of 4.
The results were

a(5)=-0.127E-02 and a(5)=-0.647E-02

respectively which are one order of magnitude less than the other
coefficients. In general, the identification was succesful for low
noise level measurements; the estimation error for the parameters a and
b was almost independent of the amount of missing data.

81

input u(k)

64*t i m e

Figure 1: Input sequence

response y(k)

time

Figure 2: Output sequence (no noise)

82

response y(k)

v =0.05

- a 25

-25

Figure 3: Output sequence (noise added)

B>ARMAIDE (command to execute the ARMAIDE progr

Enter estimates of the order of the model N,M: 5,2
Enter index limits of missing points 11, 12: 25, 37

Solving a system of 59 equations with 7 unknowns
Please wait...

Results: N, M, estim-a-pars estim-b-pars
1: 4.000
2: 2.000
3: -0.110
4: -0.220
5: -0.230
6: -0.100
7: 0.900
8: 0.800

Sample 1: Using the ARMAIDE program

4=given estimate of N
2=given estimate of M

The calculated parameters (a and b)
Dimensions: 6 by 1

1: - . 1 1 0

2: -.220
3: -.230 Sample 2: No noise, no missing points
4: -.100E+00
5: .900
6: .850

0.101E-05 = norm2 of the estimation error

8^

5=given estimate of N
2=given estimate of M

The calculated parameters (a and b)
Dimensions: 7 by 1

1: - . 1 2 0

2: -.208

4: -.943E-01
3: -.247 Sample 3: Variance of the noise =0.01

Missing points 25...37
5: -.127E-02
6: .89S
7: .808

0.361E—01 = norm2 of the estimation error

4=given estimate of N
2=given estimate of M

The calculated parameters (a and b)
Dimensions: 6 by 1

1: -.148E-01
2: -.260

4: -.866E-01
3: -.222 Sample 4: Variance of the noise = 0.05

No missing points

5: .899
6: .751

0.278 norm2 of the estimation error

5=given estimate of N
2=given estimate of M

The calculated parameters (a and b)

85

Dimensions: 7 by 1
1: -.130
2: -.181
3: -.297 Sample 5: Variance of the noise =
4: -.742E-01 Missing points 23...34
5: -.647E-02
6: .900

7: .850

0.181 = norm2 of the estimation error

7. Applying the Results of Theorem 2

With the following example we illustrate the details of computing
the values of missing points using the ARMA coefficients.

Assume (for the moment) that the discrete system

y(k) = -0.2y(k-1)-0.1y(k)+5.0u(k)+e(k)

is known and it is driven by the input sequence u(i) for i=0 to 15. The
following table shows an experimental input sequence u(i) and the
associated response y(i). (The table is found using the ARMASIM
program.)

u(0)=+1 y(1)= 5.00
u(1)=+1 y(2)= 4.00
u(2)=+1 y(3)= 3.70
u(3)=+1 y(4)= 3.86

86

u(4)=-1 y(5)=-6.14
u(5)=-1 y(6)=—4.16 - missing m(1)
u(6)=-1 y(7)=-3.55 - missing m(2)

u(7)=-1 y(8)=-3.87 - missing m(3)
u(8)= 0 y(9)= 1.13 - missing m(4)

u(9)= 0 y(10)= .161 - missing m(5)
u(10) = 0 y(11)=-.145 - missing m(6)
u(11)= 0 y(12)= .0129
u(12)= 0 y(13)= .0119
u(13)= 0 y(14)=-.004
u(14)= 0 y(15)=-.0005
u(15)= 0 y(16)= .0005

Now, inverting the assertion, assume that the above table is known but
the points y(6) to y(11) are ’missing' (or the collected data are
’bad’). Our objective is to find the missing points y(6)...y(11).
As a first step we find the ARMA filter coefficients by using the
program ARMAIDE and declaring that data 6 to 11 are missing; the result
is,

r
- 0.20

f= - 0 . 10

5.00

with very small error (the norm-2 of the error is of the order E-6).
Next, we apply the steps of theorem 2.
In the case that E is approximately 0, the following equations are true:

(1) Y = Wf+E
(2) Wf=W'f+M'm (Application of lemma 3)

87

(3) Y sY'+N'ra (Application of lemma 4)
(4) Y'-W’f = (M'-N'Jm (Equation to be solved from

theorem 2)

(The notation has been simplified. Instead of using the superscripts
6,7,...,11 over Y, W, M and N, we simply use a prime.)
For this example, W, W 1, and M' are

W(14 by 3) W'(14 by 3) (-1)*Mf(14 by 6)

- — —

1: 4.00 5.00 1.0 4.00 5.00 1 .0 0 0 0 0 0 0
2: 3.70 4.00 1.0 3.70 4.00 1 .0 0 0 0 0 0 0

3: 3.86 3.70 -1.0 3.86 3.70 -1 .0 0 0 0 0 0 0
4: -6.14 3.86 -1.0 -6.14 3.86 -1 .0 0 0 0 0 0 0

5: -4.16 -6.14 -1.0 0.00 -6.14 -1 .0 .2 0 0 0 0 0
6: -3.55 -4.16 -1 .0 0.00 0.00 -1.0 .1 .2 0 0 0 0

7: -3.87 -3.55 0.0 0.00 0.00 0.0 0 .1 .2 0 0 0

8: 1.13 -3.87 0.0 0.00 0.00 0.0 0 0 .1 .2 0 0

9: .161 1.13 0.0 0.00 0.00 0.0 0 0 0 .1 .2 0
10: -.145 .161 0.0 0.00 0.00 0.0 0 0 0 0 .1 .2
11: .0129 -.145 0.0 .0129 0.00 0.0 0 0 0 0 0 ,1
12: .0119 .0129 0.0 .0119 .0129 0.0 0 0 0 0 0 0

13: -.004 .0119 0.0 -.004 .0119 0.0 0 0 0 0 0 0
14: -.0005 -.004 0.0 -.0005 -.004 0.0 0 0 0 0 0 0

Of course W can not be obtained from the collected data, because
y(6)...y(11) are missing; but W ! and M' can be found because they do
not contain y(6)...y(11). In addition, the vectors Y, Y ’ and the matrix
N' for this example are:

Y(14) Y'(14) N' (14 by 6)

88

1: 3.70
2: 3.86

3: -6.14
4: -4.16
5: -3.55
6: -3.87
7: 1.13

8: .161

9: -.145
10: .0129
11: .0119
12: -.004

13: -.0005
14: .0005

3.70
3.86
-6.14
0.00
0.00
0.00
0.00
0.00
0.00
.0129
.0119
-.004

-.0005
.0005

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
r 0 0 0 0 ■“1

0 I

0 1 0 0 0 0 !
0 0 1 0 0 0 J
0 0 0 1 0 0 1
0 0 0 0 1 0 j

0 0 0 0 0 1 i --1

•0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Again, Y is not known completely, but Y' and N' can be found from the
collected data. After Y', W', M' and N' have been found, we can use (4)
to find the vector of missing points m; that is

m = (M'-N') (Y'-W’f)
where

(M + r T 1-1 T'-N') =I(M'-N') (M'-N')J (M'-N') (pseudo inverse)

All the above calculations were performed using the EASY interactive
program (see appendix on software support); it was verified that
m(1)...m(6) was identical to the original y(6)...y(11) data points.

89

Appendix II
C
c --
C Main Program for Simulating an ARMA Model Response
C --
c
C The flow chart:
C (1) Get the coefficients of the model from the user
C (2) Let the user specify an input sequence u(i)
C (3) Determine the response of the ARMA model
C (4) Save the results on the disc for later processing
C
C a, b, U, Y are in EASYPACK format
C pars is converted in EASYPACK format
C
C George Kontopidis, Oct 80, April 81
C

Dimension a(12),b(12),pars(50), U(258),Y(258),Z(258)
Common maxwrk,worksp(50)
maxwrk=50

C
Call MINP(a, 'Enter auroregressive coefficients $')
Call MINF(b, 'Enter moving average coefficients $')
ST = RGET('Enter variance of measurement noise $ ')

C
C...get an input sequense
C u(0) ,u(1) u(NS-1)
C

Call MGET('ARMAINP.DAT$', U)
NS = NDIM(U)

Check NS = IGET('Enter simulation steps (less than 256) $')
C

N = NDIM(a)
M = NDIMC b)

C
C...initiate the ARMA model and the random generator
C

Call ARMINIC a(3), b(3), N,M, pars)
Call RANDULC30117)

C
C...generate the output sequnce
C y(1) ,y(2) y(NS)

90

c
Call SETDIMC Y f NS, 1)
Do 20 i=1,NS

i11=i-1
i22=i+2
Y(i22)=ARMA(U(i22), pars) + GAUSS(0., st)
Write(5,101) 111,U(i22),i,Y(i22)

101 Format (' u(’ ,13, ') = '.1G12.2, 1 y(• ,13, ') = MG12.2)
20 Continue
C
C...save the results on disc
C

NM2=N+M+2
Call PACKC pars, NM2, NM2, 1)
Call MSTOREC 'ARMAPAR.DAT$', pars)
Call MSTOREC 'ARMAINP.DAT$', U)
Call MSTOREC fARMAOUT.DAT$', Y)

Check Call MPRNC Y.'The response is...$')
END

C
C --
C Subroutine A R M I N K a,b,N,M,pars)
C --
c
C Purpose: Initiates the ARMA model parameters in pars.
C Sets initial state 0. The notation used is
C y(k) = aC1)yCk-1)+...+a(N)yCk-N)+
C b(1)u(k-1)+...+bCM)u(k-M)
C
C Usage: Call ARMINIC a,b,N,M,pars)
C
C a(1:N) Coefficients of the autoregressive part of the model
C b(1:M) Coefficients of the moving average part of the model
C pars COutput) work space of size 2CN+M+1) containing:
C parsCl)=N, parsC2)=M, parsC3:2+N)=aCi)*s
C pars(3+N:2+N+M)=bCi)1s, parsC3+N+M:2+2N+2M)= old states.
C
C Required Libraries: EASYPACK
C
C George Kontopidis, Sep 80, March 81
C

91

Subroutine ARMINIC a, b, N, M, pars)
Dimension a(1), b(1), pars(1)
Common maxwrk,w(1)

C
NM=N+M
pars(1) = N
pars(2) = M

r

C...L always points to the next free location in pars
C

L=3
C
C...transfer a(i)*s to pars
C
C WRITE(5,101) (A(J),J=1,N)

Call VEQU(pars(L), a(1), N)
L=L+N

C
C...transfer b(i)’s to pars
C

Call VEQU(pars(L), b(1), M)
L=L+M

C
C...initiate the work space to 0 (initial conditions)
C

Call VZEROC pars(L), NM)
C L=L+NM

Return
END

C
C ---------------------------------
C Function ARMA(u, pars)
C ---------------------------------
c
C Purpose: Following the notation given in ARMINI subroutine,
C this function generates y(k+1) when called with u(k).
C
C Usage: yk = ARMA(uk, pars)
C
C uk Input real number representing the value u(k)
C pars Input-Output real vector of size 2CN+M+1) used as work

C area. Initially, pars must be set by ARMINI.
C
C Required Routines: EASYPACK
C
C George Kontopidis, Sept 80, April 81
C

Real Function ARMAC u, pars)
Real pars(1)
Common maxwrk,W(1)

C
N=pars(1)
M=pars(2)

C
C ia points the a’s in stack
C ib points the b's in stack
C iy points the y(k-1),...,y(k-N)
C iu points the u(k-2),...,u(k-M-1)
C

ia=3
ib=ia+N
iy=ib+M
iu=iy+N

C
C...push down the stack of input values
C New state: u(k-1) <new-input>, u(k-2),...u(k-M)
C

i=iu+M-1
10 If(i.le.iu) Go to 11

iold = i-1
parsC i)=pars(iold)
i=i-1
Go to 10

11 pars(iu) = u
C
C...find the output y(k)
C

ARMApr = VDOTC pars(ia), pars(iy), N)
1 + VDOTC pars(ib), pars(iu), M)

C
C...push down the stack of the output values
C New state: y(k) <new output>,y(k-1),...,y(k-N+1)

93

c
i=iy+N-1

30 If (i.LE.iy) go to 31
iold = i-1
pars(i)=pars(iold)
i=i—1
Go to 30

31 pars(iy) = ARMApr
ARMA=ARMApr
Return
END

C --
C ARMA COEFFICIENTS IDENTIFICATION ALGORITHM
C ------------ --
c
C Algorithm: Reads the input sequence ARMAINP.DAT
C Reads the output sequence ARMA0UT.DAT
C Assumes that output data 11:12 are missing
C Finds the ARMA coefficients using the remaining
C Compares these esimates with the true parameters
C
C George Kontcpidis, April 81
C

Dimension W(65,10), U(67),Y(67),pars(15),B(15),E(67)
Common maxwrk, worksp(100)

C
C...Read the data
C

ic=65
maxwrk=100
Call MGET('ARMAINP.DAT$1, U)
Call MGET('ARMAOUT.DAT $’, Y)
Call MGET('ARMAPAR.DAT$’, pars)

Check Call MPRN(U,'Verify the input vector$’)
Check Call MPRN(Y,’Verify the output vector$')
Check Call MPRN(pars,'Verify the parameter vector$')

Call PRN (’Enter estimates of the order of the model N,M $’)
Read(5,100) N,M
Call PRN (’Enter index limits of missing points 11,12 $')
Read(5,100) 11,12

100 Format(2I5)
C
C...Define some constants for later
C

nf = MDIM(Y)
nfn = nf-N
nm = N+M
ill = 11-N
i22 = 12

C
C...formulate the W matrix. Put the y's first
C

Do 10 i=1,nfn
Do 10 j=1,N

it=N+i-j+2
W(i,j)=Y(it)

10 Continue
C
C...then put the u's
C

Do 20 i=1,nfn
Do 20 j=1,M
it=N+i-j+3
jN=j+N
W(i,jN)=U(it)

20 Continue
C
C...Find the second side of the equations
C

Call VEQlK Y(3),YCN+3),nfn)
Call SETDIM(Y,nfn,1)

C
C...If there exist bad points, put a 0 there
C

If(ll.LE.O) Go to 301
If(i11.LT.2 .OR. i22.GT.nfn) Call PRN('Bad Limits.
Do 310 i=i11,i22

Do 300 j=1,nm
W(i,j)=0.

300 Continue
Y(i+2)=0.

310 Continue
301
n

Continue
L

Call PACK(W,ic,nfn,nm)
Check Call MPRN(W, 'Verify the W matrix$')

Call MSTOREC'ARMAW.DAT$',W)
Check Call MPRNCY, 'Verify the Y vector$')

Call MSTOREC'ARMAY.DAT$',Y)
c
C...Solve the linear equations
C

11 = NDIM(W)
12 = MDIM(W)
Write(5,101) i1,i2

101 FormatC' Solving a system of f,13,1 equations by ',
1 12,' unknowns')

Call LSQ(B,E, W,Y)
C
C...Print the solution
C

Call MPRN(pars, 'N, M, true a-pars, true b-parsi1)
Call IPRN(N,'=given estimate of N$')
Call IPRN(M,'=given estimate of M$')
Call MPRN(E.'The calculated parameters (a and b)$')
xn2= VN0RM2(E(3).E(1))
Call RPRN(xn2,'= norm2 of the estimation error$')
End

C
c ----------------------------------
C Generate a GAUSSIAN deviate
C ----------------------------------
c
C amean = mean value, stdev = standard deviation
C

Real Function GAUSS(amean, stdev)
Logical i

C
GAUSS = 0.
Do 10 i=1,12

10 GAUSS = GAUSS + RANDULC 0)

c
GAUSS = (GAUSS-6.)*stdev +amean
RETURN
END

C
C -----------------------------
C Random Number Generator
C -----------------------------
c
C Generates uniform random numbers using the Linear Congruential
C Method (Knuth, vol 2). The general formula is
C
C x(N+1) := (a*x(N)+b) mod M
C
C where a, b and M are ’appropriate constants'.
C
C Usage: Call RANDULC large-int) to seed (initiate)
C x = RANDULC 0) to generate a point.
C
C George Kontopidis, Aug 1980
C

Real Function RANDULC i)
Integer xn
Real norm
If(i.EQ.O) Go to 10

C
C...seed the generator for my computer
C

norm = 2.**15-1
xn = i

C
C...generate a point
C
10 xn = X'4205'*xn + 30947

RANDUL= abs(float(xn)/norm)
Return
END

97

c ---
C Main Program to Test the Random Generator RANDUL
C -------------------------------------- ------------------
c
C George Kontopidis, April 81
C

Dimension pdf(202)
irun=1

1 Call IPRNCirun,' Random Generator pdf Test $')
npoint = IGETC'Number of points $')
nint = IGETC’Number of intervals (<200) $')

C
C...Initiation of working areas
C

Call RANDULC 30201)
Call VZEROC pdf, nint)
xu=1./float(nint)
fu=1./(floatCnpoint)*xu)
Call PRNC'Next line: each # indicates 500 RANDUL calls$')
Call CRLF

C
C...PDF computation
C

Do 300 i=1,npoint
C
C...print a dot every 500 points
C

x=RANDUL(0)
IfC modCi,500).EQ.O) Call PRN$C’#$r)
Do 299 m=1,nint

t0sfloatCM-1)
tlafloatCM)
If (Cxu*t0 .LE. x) .AND. Cx .LE. t1*xu))

1 pdf(m)=pdfCm)+fu
299 Continue
300 Continue
C
C...perform the chi-square test
C

xsq=0.
Do 600 i=1,nint

600 xsq = xsq+(pdf(i)-1.)*(pdfC i)—1)
xsq = xsq * float(npoint)/float(nint)

C
C...Print the pdf distribution
C

Call PACK(pdf, nint, nint, 1)
Call RPRN(xsq, ' = chi square $')
Call MPRN(pdf, 'The result distribution is...$')
Call CRLF
irun=irun+1
Go to 1
END

C -------------------- -----------------------
C FINDS THE LEAST SQUARES SOLUTION
C --
c
C Purpose: To fine the least squares solution of the system
C
C X * B = Y + E
C where B minimizes (X*B-Y)'(X*B-Y)
C
C This subroutine has been tested in finding the minimum
C norm solution and the least squares solution of 'big'
C matrices of dimensions up to 128 by 32 using single
C precision operations only. Oveflows and underflows
C are treated properly and partial pivoting is performed.
C The main reference used was:
C
C LINPACK user's guide by Dongarra e.l. SIAM 1979
C
C It has been modified to the EASYPACK format to simplify
C the usage. The routine calls the SQRDC and SQRSL
C routines to perform the Q-R decomposition and the least
C squares formulation. The result has been found more
C accurate than the GINV routine in EASYPACK and LLSQAR
C routine of the IMSL library.
C
C Parameters:
C B (Output) Least squares solution of the system X*B=Y+E
C E (Output) Error of the least squares E=X*B-Y

o
o

99

C X (Input) Coefficient matrix X
C On return X is DESTROYED (for details see LINPACK p. 9-11
C Y (Input) Right side of equations
C
C George Kontopidis, April 81
C

Subroutine LSQ(B,E,X,Y)
Real X(1),Y(1),B(1),E(1)
Integer P
Common maxwrk,iwork(1)

C
C iwork(1:P) is used as jpvt(1:P) (pivoting indices)
C work(iw1:iw1+P) = QRAUX
C work(iw2:iw2+P) = work
C maximum work space used: 2.5*P real memory storage units
C

N = NDIM(X)
LDX = N
P = MDIM(X)
If (maxwrk.LT.2*P+(P+1)/2) Call PRN('Small wrksp for LSQ$')
iw1 = P+1
iw2 = iw1 + 2*P
Call SETDIM(E, N, 1)
Call SETDIM(B, P, 1)

C
C...Initialize jpvt so that all columns are free
C

Do 10 j=1, P
10 iwork(j)=0
C
C...QR decomposition of X
C

Call SQRDC(X(3),LDX,N,P, iwork(iwl), iwork(1), iwork(iw2),1)
C
C...Solve the least squares problem
C

Call SQRSL(X(3),LDX,N,P, iwork(iwl), Y(3), E(3),E(3),B(3),
1 E(3),E(3),110,info)

If (info.NE.O) Call PRN('Singular Array...!')

...initialize jpvt

write(5,102) (B(j+2),j=1,P)
102 FormatC* T, 10G13.6)

write(5,101) (iwork(j),j=1,P)
101 FormatC* *,2014)

Do 40 j=1,P
40 iwork(j) = -iwork(j)
C
C.. .unscramble the solution
C

Do 70 j=1,P
If(iwork(j).GT.0) go to 70
k = -iwork(j)
iwork(j)=k

50 Continue
If(k.EQ.j) Go to 60
temp = B(j+2)
B(j+2) = B(k+2)
B(k+2)= temp
•i work (k) =-i work (k)
k=iwork(k)

Go to 50
60 Continue
70 Continue
C
C...inverse the sign of E
C

Call VSCALEe E(3),-1.,E(1))
Return
END

C
C
C
c
c
c
c
c
c
c

Q-R Factorization of an N by F matrix X

X Real (LDX:N by P) input. On output X contains the
Q-R decomposition required by SQRSL.

jpvt(1:P) If job=0 jpvt is not used. Else defines the order
of searching for pivoting

workei:P) If job=0 work is not used.
QRAUX(1:P) (output) Used by SQRSL to recover the Q-R decompo-

C sition.
C job Pivoting flag; if job=1, pivoting is performed
C
C Reference: UNPACK Chapter 9 and appendix C
C
C George Kontopidis, April 81
C

Subroutine SQRDC(X,LDX,N,P,QRAUX,jpvt,work,job)
LogicaL swapj, negj
Integer LDX,N,P,job
Integer jpvt(1)
Integer j, jp, L, Lp1, Lup, maxj, pL, pu
ReaL X(LDX,1), QRAUX(1), work(1)
ReaL maxnrm, tt
ReaL sdot.nrmxL, t

C
pL = 1
pu=0
If (job.EQ.O) Go to 60

C
C...Pivoting has been requested. Rearrange the coLumns according
C...to jpvt
C

Do 20 j=1,P
swapj = jpvt(j).GT.O
negj = jpvt(j).LT.O
jpvt(j)= j
If (negj) jpvt(j) = -j
If (.NOT.swapj) Go to 10

C replaced... If(j.NE.pL) Call SSWAP(N,X(1,pL),1,X(1,J),1)
If(j.NE.pL) Call VSWAP(X(1,pL),X(1,j),N)

jpvt(j) = jpvt(pL)
jpvt(pL) = j
pL = pL+1

10 Continue
20 Continue
C

pu = p
Do 50 jj=1,P

j = P-jj+1
If (jpvt(j).GE.O) Go to 40

jpvt(j) = -jpvt(j)
If (j.EQ.pu) Go to 30

C replaced... Call SSWAPCN,X(1,pu),1,X(1,j),1)
Call VSWAP(X(1,pu), X(1,j), N)
jp = jpvt(pu)
jpvt(pu) = jpvt(j)
jpvt(j) = jp

30 Continue
pu = pu -1

40 Continue
50 Continue
60 Continue
C
C...Compute the norms of the free coLumns
C

If(pu.LT.pL) Go to 80
Do 70 j=pL,pu

C replaced..QRAUX(j) = SNRM2(M,X(1,j),1)
QRAUX(j) = VN0RM2(X(1,j),N)
work(j) = QRAUX(j)

70 Continue
30 Continue
C
C...Perform the HousehoLder reduction of X
C

Lup = MIN0 (N,P)
Do 200 L=1,Lup

If(L.LT.pL.OR.L.GE.pu) Go to 120
C
C...Locate the coLumn of Largest norm and bring it into the pivot
C position.
C

raaxnrm = 0.0
maxj = L
Do 100 j=L,pu

If (QRAUX(j).LE.maxnrm) Go to 90
maxnrm = QRAUX(j)
maxj = j

90 Continue
100 Continue

If (maxj.EQ.L) Go to 110

C replaced...

110
120

Call SSWAP(N,X(1,L),1,X(1,maxj),1)
Call VSWAP(X(1,L),X(1,maxj),N)
QRAUXCmaxj)
work (maxj)
JP
jpvt(maxj)
jpvt(L)

Continue
Continue
QRAUX(L) = 0.0
If(L.EQ.N) Go to 190

QRAUX(L)
work(L)
jpvtCmaxj)
jpvt(L)
jP

C...Compute the HousehoLder transformation for coLumn L
C

Loci = N-L+1
C replaced... nrmxL = SNRM2C Loci, X(L,L), 1)

nrmxL = VN0RM2C X(L,L),Loc1)
If (nrmxL.EQ.0.0) Go to 180
If (X(L.L).NE.O.O) nrmxL = SIGM(nrmxL,X(L,L))
Loci = N-L+1
rLoc = 1.0/nrmxL

C replaced.. Call SSCAL(Lod, rLocI, X(L,L), 1)
Call VSCALE(X(L,L), rLoc, Loci
X(L,L) = 1.0 +X(L,L)

)

C
c.
c
c

•AppLy the transformation to the remaining coLumns, updating
the norms

Lp1 = L+1
If Cp.LT.Lp1) Go to 170
Do 160 j=Lp1,p

Lod = N-L+1
T = -SDOTCLod,X(L,L),1,X(L,j),1)/X(L,L)
T = -VDOTC X(L,L),X(L,j),Loc1) /X(L,L)
Call SAXPYC Lod, T.XCL.L), 1 ,X(L, j), 1)
Call VSADDC X(L,j), T, X(L,L), Lod)
If Cj.LT.pL.OR.j.GT.pu) Go to 150
If (QRAUXCj).EQ.0.0) Go to 150
tt = 1.0-CABSCXCL,j))/QRAUXCj))**2
tt = AMAX1C tt, 0.0)
t = tt

C replaced...

C replaced...

104

tt = 1.0+0.05*tt*(QRAUX(j)/work(j))**2
If (tt.EQ.1.0) Go to 130

QRAUX(j)=QRAUX(j)*SQRT(t)
Go to 140

130 Continue
Loci = N-L

C replaced... QRAUXCj)=SNRM2(Loc1,X(L+1,j),1)
QRAUX(j)=VN0RM2(X(L+1,j),Loc1)
work(j) = QRAUX(j)

140 Continue
C
150 Continue
160 Continue
170 Continue
C
C...Save the transformation
C

QRAUX(L) = X(L,L)
X(L,L) = -nrmxL

180 Continue
190 Continue
200 Continue

Return
END

C Coordinate Transformations, Projections and Least Squares
C --
c
c
c
c

X(LDX:N by P)
QRAUXC1:P)
Y(1:N)

C
C

output of SQRDC
auxiliary output from SQRDC
input real vector

C job Specifies what to be done. Job has the decimal
C expansion ABCDE with the following meaning
C A .NE. 0 compute QY=Q*Y
C C .NE. 0 compute B (least squares solution)
C D .NE. 0 compute RSD (lsq residual)
C E .NE. 0 compute XB (X*B)
C B,C,D,E.NE. 0 compute QTY (Q-transp*Y)

Refer to LINPACK Appendic C.107

105

c
C George Kontopidis, April 81
C

Subroutine SQRSL(X,LDX,N,K ,QRAUX,Y,QY,QTY,B,RSD,XB,job,info)
Logical cb,cqy,cqty,cr,cxb
Integer LDX,N,K,job,info
Integer i,j,jj,ju,kp1
Real SDOT,t,temp
Real X(LDX,1),QRAUX(1),Y(1),QY(1),QTY(1),B(1),RSD(1),XB(1)

C
C...set info flag
C

info = 0
C
C.. .Determine what is to be computed
C

cqy =job/10000 .NE.O
cqty =mod(job,10000) .NE.O
cb =mod(job,1000)/100 .NE.O
cr =mod(job,100)/10 .NE.O
cxb =mod(job,10) .NE.O
ju =MIN0(k,N-1)

C
C...special action when N=1
C

If (ju.NE.0) Go to 40
If(cqy) QY(1) =Y(1)
If(cqty) QTY(1)=Y(1)
If(cxb) xb(1) =Y(1)
If(.NOT.cb) Go to 30

If(X(1,1).NE.0.0) Go to 10
info=1

Go to 20
10 Continue

B (1) =Y(1)/X(1,1)
20 Continue
30 Continue

If (cr) rsd(1)=0.0
Go to 250

40 Continue
C

c,
c

Set up to compute QY or QTY

(cqy)If
replaced...

If (cqty)
replaced...

Call VEQU(QY, Y, N)
Call SCOPY(N,Y,1,QY,1)
Call VEQU(QTY, Y, N)
Call SCOPY(N,Y,1,QTY,1)

If(.NOT.cqy) Go to 70

C...Compute QY
C

Do 60 j j = 1,ju
j=ju-jj+1
If (QRAUX(j).EQ.0.0) Go to 50

temp X(j,j)

C replaced..

C replaced..

50
60
70

X(j,j) = QRAUX(j)
loci = N-J+1
T =-SDOT(loc1,X(j,j),1,QY(j),1)/X(j,j)
T =-VDOT(X(j,j),QY(j),Loc1) /X(j,j)
Call SAXPY(lod,T,X(j,j),1,QY(j),1)
Call VSADD(QY(j),T,X(j,j),Loc1)
X(j,j) = temp

Continue
Continue

Continue
If(.NOT.cqty) Go to 100

C...Compute tanspose(Q)*Y
C

Do 90 j=1,ju
If(QRAUX(j).EQ.0.0) Go to 80

temp = X(j,j)
X(j,j) = QRAUX(j)
lod
T
T

replaced..

replaced..

80
90
100

= N-j+1
=-SD0T(loc1,X(j,j),1,QTY(j),1)/X(j,j)
r-VD0T(X(j,j),QTY(j),Loc1) /X(j,j)

Call SAXPY(lod,t,X(j,j),1,QTY(j),1)
Call VSADD(QTY(j),t,X(j,j),Loc1)
X(j,j) = temp

Continue
Continue

Continue

c
C...Set up to compute B, RSD, or XB.
C

If(cb) Call VEQU(B,QTY,k)
C replaced... Call SCOPY(k,QTY,1,B,1)

kp1=k+1
If(cxb) Call VEQU(XB,QTY,k)

C replaced... Call SCOPY(k,QTY,1,XB,1)
loci=N-k
If(cr.AND.k.LT.N) Call VEQU(RSD(kp1),QTY(kp1),Loc1)

C replaced... Call SC0PY(loc1,QTY(kp1),1,RSD(kp1),1)
If(.NOT.cxb.OR.kp1.GT.N) Go to 120
Do 110 i=kp1,N

XB(i)=0.0
110 Continue
120 Continue

If(.NOT.cr) Go to 140
Do 130 i=1,k

RSD(i)=0.0
130 Continue
140 Continue

If(.NOT.cb) Go to 190
C
C...Compute B
C

Do 170 jj=1,k

C

If(X(j,j).ME.0.0) Go to 150
info=j
exit
Go to 180

150 Continue
B(j)=B(j)/X(j,j)
If(j.EQ.1) Go to 160

T = -B(j)
lod = j-1

C replaced... Call SAXPYClod ,T,X(1, j), 1 ,B, 1)
Call VSADD(B,T,X(1,j),Loc1)

160
170
180

Continue
Continue
Continue

190 Continue
C
C...Compute RSD or XB as required
C

Do 230 jj = 1,ju
j=ju-jj+1
If(QRAUXCj).EQ.0.0) Go to 220

temp = X C j,j)
X(j,j) = QRAUXC j)
If(.NOT.or) Go to 200

loci=N-J+1
t=-SD0T(loc1,X(j,j),1,RSD(j),1)/X(j,j)
t=-VD0T(X(j,j),RSD(j),Loc1) /X(j,j)
Call SAXPYClocI,t,X(j,j),1,RSD(j),1)
Call VSADDC RSD(j), t, X(j,j)t Loci)

Continue
If(.NOT.cxb) Go to 210

loci=N-j+1
t=-SD0T(loc1,X(j,j),1,XB(j),1)/X(j,j)
t=-VD0T(XB(j),X(j,j),Loc1) /X(j,j)
Call SAXPYClocI,t,X(j.j),1,XB(j),1)
Call VSADDC XB(j), t, X(j,j),Loc1)

Continue
X(j,j) = temp

220 Continue
230 Continue
240 Continue
250 Continue

Return
End

C ---
C FINDS THE EUCLIDEAN NORM OF A VECTOR
C ---
c
C A common problem in finding the sqrt of the sum of the
C squares of a vector is the overflows and underflows. These
C can be avoided by several techniques discussed in LINPACK
C Appendix D. This code is an adaptation for
C
C Z-80 with Microsoft Fortran,

C replaced...

C replaced...

200

C replaced...

C replaced...

210

109

c
c
c
c
c
c
c
c
c
c

Smallest real 0.1000...0 * 2 **(-127)
Largest real 0.1111...0 * 2 **(+128)
Epsilon const 0.0000...1 * 2 **(+000)

small = 0.1469368 E-38
large = 1.7014117 E+38
epsil = 0.14693681 E-38

George Kontopidis, April 81

Real Function VN0RM2(SX, N)
Real SX(1)
Data cutlo, cuthi / 4.44E-16, 1.304E+19 /

C
C the DEC-10 uses, 2**(-102) and 2**(127)
C
10 Assign 30 to NEXT

sum = 0.0
c
C...The main loop starts here
C

Assign 50 to NEXT
xmax = 0.0

C
C...Phase 1. The Sum is zero
C
50 If (SX(i).EQ.O.O) Go to 200

x
20 Go to NEXT, (30,50,70,110)
30 If (ABS(sx(i)).GT.cutlo) Go to 85

If (ABS(SX(i)).GT.cutlo) Go to 35
C

Assign 70 to NEXT
Go to 105

C
100 i = j

Assign 110 to NEXT
sum = (sum/sx(i))/sx(i)

105 xmax = ABS(SX(i))
Go to 115

C

C...Phase 2. Sum is small. Scale to avoid underflowC
70 If(ABS(SX(i)).GT.cutlo) Go to 75
C
C...Common Code for phases 2 and 4. Scale to avoid overflow
C
110 IfC ABS(SX(i)).LE.xmax) Go to 115

sum = 1.0 + sum*(xmax/sx(i))**2
xmax = ABS(SX(i))
Go to 200

C
115 sum = sum + (SX(i)/xmax)**2

Go to 200
C
75 sum = (sum*xmax) *xmax
85 hitest=cuthi/float(N)
C
C...Phase 3. The Sum is mid-range. No scaling
C

Do 95 j=i,N
If(ABS(SX(j)).GE.hitest) Go to 100

95 sum = sum+SX(j)**2
VN0RM2 = SQRT(sum)
Go to 300

C
200 Continue

i = i+1
If (i.LE.N) Go to 20

C
C...End of Main Loop
C

VN0RM2 = xmax*SQRT(sum)
300 Continue

Return
End

Ill

Notes and References I

[1] Brogan William. Modern Control Theory. Quantum Publishers, Inc.,
New York, 1974, Chapter 5.

[2] Dongarra J.J., C.B. Moler, J.R. Bunch, G.W. Stewart. Linpack,
User’s Guide. Siam, Philadelphia 1979.

[3] Sage Andrew P., James L. Melsa. Estimation Theory with Applications
to Communications and Control. McGraw-Hill Book Company, New
York, 1971, Chapter 7.

[4] Schweppe Fred C., Uncertain Dynamic Systems. Prentice-Hall
Englewood Cliffs, New Jersey, 1973, pp. 151-247.

[5] Astrom K. J., P. Eykhoff, System Identification- A Survey,
Automatica, vol. 7., Pergamon Press, 1971, pp. 123-167.

[6] Urlych Tad J., Thomas N. Bishop, Maximum Entropy Spectral Analysis
and Autoregressive Decomposition, Reviews of Geophysics and Space
Physics, vol. 13, Feb. 1975, pp. 184-199.

[7] Smylie, D. E., G. K. Clarke and T. J. Ulrych. Analysis of Irre
gularities in the Earth's Rotation. Methods in Computational
Physics, vol. 13t PP. 391-430, Academic Press, New York, 1973.

[8] Jenkins G. M., D. G. Watts. Spectral Analysis and its Applications.
Holden-Day, San Francisco, 1969.

[9] Bendat Julius S. Random Data: Analysis and Measurement Procedures.
Wiley-Interscience, New York, 1971.

[10] Willsky Alan, Relationships Between Digital Signal Processing and
Control and Estimation Theory. Proc. of IEEE, vol. 66, No. 9,
Sept. 1978, pp. 996-1017.

[11] Hsia T. C., On Least Squares Algorithms for System Parameter
Identification, IEEE Trans, on Automatic Control, vol. AC-22,
pp. 104-108.

CHAPTER I I I

INTERPOLATION
USING BANDLIHITING ASSUMPTIONS

Outline of Chapter III
1. Definition of the Discrete Fourier Transform
2. The Interpolation Theorem
3. Sensitivity of the Estimates
4. Iterative Interpolation Algorithms
5. Simulation Results

Appendix III
Notes and References III

112

113

Outline of Chapter III

This chapter deals with a special class of nonuniformly sampled
systems. Consider the case of collecting data uniformly but because of
external reasons (i.e. instrumentation failure, unpredicted power
failure) some of the data are missing or they have been collected but it
is known that they are bad. This situation is treated as a special case
of a nonuniformly sampled system. We propose an algorithm that can be
used (under certain conditions), to interpolate the missing points based
on bandlimiting assumptions about the original signal.

One of the most restrictive assumptions we make is that the indices
of the missing or bad points are known; this corresponds to the
assumption that the time of failure is known. The composite problem
dealing with unknown times and incorrect data, is much more complicated
and the solution requires a probabilistic formulation. However, in many
practical cases one can easily tell or easily detect which measurements
are faulty; in this case, the theory given in this chapter can be
applied and a very simple algorithm can be used to solve the problem.

A second assumption is also made about the bandwidth of the
original signal and the sampling rate. In order to apply our results it
is necessary to know that the discrete Fourier transform (DFT) of the
time series has nulls at several known frequency constituents. This
assumption is true in case of bandlimited signals sampled at a rate
which is a multiple of the Nyquist rate. Actually, the case of bandpass
signals or any other case at which we know apriori nulls in the
frequency domain can be treated with the same theory.

The chapter is organized in 5 sections. In the first we define the
DFT transform and we summarize the properties of the DFT matrix (W). In
the second we formulate and prove the interpolation theorem; some

114
computational aspects are also discussed. Section 3 is an error
analysis for the interpolation theorem. Section 4 is an extension of a
continuous time iterative extrapolation algorithm to discrete time.
Finally, in section 5 we include simulation results and a FORTRAN
program based on the previous theory. At last, a list of the references
appropriate to the subject of this chapter is included.

1. Definition of the Discrete Fourier Transform

Let x=(x , x ,...x) be a vector of N elements. We define a new0 1 N-1
vector a=(aQ, a ,...,a^ ^) by the formula

N-1
a = y x w n m m=0

nm w=exp(-j2'if/N) n=0,1,... ,N-1

The vector a is called the Discrete Fourier Transform (DFT) of x. The
above equation can be written in the matrix form a=Wx where W is a
square matrix (called the DFT matrix) with elements {exp(-j2Tfnm/N)
n,m=0,1,...,N-1}. A shorthand notation is used for the matrix W by
writing the product nm in place of the (n,m)-th element. Using this
convention, the matrix equation a=Wx is written explicitly:

0 0 o .. 0 0

1 0 1 (N-1) 1

2 = 0 2 2(N—1) 2

• • •

N-1 a f
•

o
• • • •

(N-1)..
• iii

. (N-1)(N-1) w
• « •

N-1

(i)

U5
Properties of the Matrix W

(1) The (n,m)-th element of W is equal to cos(2'ffnm/N)-jsin(2'n'nm/N)

(2) The inverse of W is given by

where the asterisk denotes the conjugate-transpose of a matrix.
(The proof of (2) is trivial: use the DFT inversion theorem

(3) W is a symmetric matrix (because exp(-jnm,n'/N)=exp(-jmn,n'/N))

(4) The sum of the elements of each row or column of W except the first
one is 0. This follows from

(5) The n-th row is the conjugate of the N-n row, and the n-th column
is the conjugate of the N-n column (for n=1,2,...,N-1). Proof:

N-1

N-1 N(k-n)

N for k=n

nkthe n-th row has elements w k=0 • • • • IN-1

the N-n row has elements w(N-n)k

But exp[-j2-Tf(N-n)k/N]=exp[j2-TT'nk/N]

(6) Define the periodic expansion of x by:

116

group 1 group 2 group S
x =(xo ,x i,...xn_i,xo ,x i xN_1,...Ixo,xl,...xN_l)

Then, the following property is true:

/ r-> nm (S)\ a =(/_JW x jexp(j2'n'r/N)
n ' m /

where the summation index m takes values r,r+1,...,r+N-1 for an
arbitrary r (within the indices of the augmented x)

(7) Assume that N is an even number (which is the most common case);

then there exists a row r (and a column c) called the mid rowt t
(column) with the property

* *
r = r (c = c)t t t t

This means that the t=N/2 row (column) consists of real numbers. Very
often it is convenient to use that row (column) as the ’base’ of the
indices; for example we write

rt-2,rt-1,rt,rt+1,rt+2

in order to refer to the middle 5 rows of W.

(8) If r (c) is the mid row (column) then, t t
* »

r =r (c =c)t-n t+n t-n t+n

for every n within in the limits 0 and (N/2)-1.

117

(9) Define the X matrix in the following manner

X=
0 1
x x N-1 0

x. x~1 2

... xN-1

... xN-2

Then, the eigenvalues of X are the elements of the DFT of x and the
modal matrix of X is W. Proof: Let v be the m-th column of W. Thenm

Xv =a v m m m
for m=0,1,...,N-1. This means that a and v are an eigenvalue-m m
eigenvector pair. Then, X W=W diag(a .a ,...,a) which completes0 1 N-1
the proof.

Summary
The following diagram illustrates
the symmetry and conjugate symmetry (*)
lines within W.

2. The Interpolation Theorem

The interpolation theorem provides a new method of estimating ’missing'
or 'bad' points of a time series that is known to be bandlimited. The
assumptions, the assertion and the proof of the theorem follow.

Assumptions

(1) Let x=(x ,x) be a vector of N real numbers (time0 1 N-1
series) and

be a subvector of x called the 'missing' (or 'bad') points of x.
Let also

be the subvector of x which remains after the x points have been

2
t • • • x) n„

M
removed. It is implied that

0<i <i <...<i <N-1= 1 2 M =

0<n <n <...<n <N-1= 1 2 S =
and

M+S=N

(2) The total number of points N is assumed to be an even number. A

119

similar development can be done when N is odd but the first case is more
usual in practical problems.

(3) The DFT of the time series x is assumed to have zero elements in
the zone t-b,...,t+b (t=N/2). This assumption is satisfied when the
continuous time signal from which the time series x was taken is
bandlimitted and the sampling rate is several times the Nyauist
frequency. (If the continuous time signal is generated from a bandstop
-instead of a lowpass- system and the sampling frequency is high enough,
then the DFT of x will have zeros within a band
t'-b'...t'+b' with t'^N/2; the interpolation theorem can be easily
modified to use this hypothesis instead).

Assertion: The Interpolation Theorem

Under the above assumptions, the vector of missing data xw can beM
found by solving a set of linear equations

Ax +Bx =0 M S

where A and B are real matrices and they are defined in the proof of the
theorem. The uniqueness or the multiplicity of the solutions depends on
the rank of the matrices A and B; for a unique solution a necessary
condition (but not sufficient) is

2b+1>m

Proof

By doing column permutations the DFT equation a=Wx can be written:

120

a=CCM ICS] M

where

and

C =(i ,i) -columns of WM 1 2 M

C =(n ,n ,...,n) -columns of W
o I c o

Because of the third assumption the a vector has 0 elements with indices
t-b,t-b+1,...,t,...t+b-1,t+b. Then,

A x +B x =0C M C S (i)

where
A = [0 11 j 0]Cu C i 2b+1i M

B =[0!I „ !o]CC i 2b+1i S

Both A and B are complex matrices of 2b+1 rows. Now let

t-b

t+b

be the row partition of A . Using the eighth property of W, we findC

121
real(r, .)=real(r, .) t-i t+i

-imag(r .)=imag(r .) t-i t+i

Therefore, equation (i) can be written as a set of linear equations with
real coefficients; that is, Ac is replaced by

real(r) t-b

A =

real(r ,)t-b+1

-imag(r) t+b-1

-lmag(rt+b)

(r is real according to property (7)) t
In a similar manner, we can define B to be a collection of real and
imaginary parts of rows of B . This concludes the proof of the

theorem.

122

Computation of A and B

Matrix A is written explicitly below

cos q(t-b)i^ cos q(t-b)i 2 cos q(t-b)i M

COS

• •

q(t-1)i 1

• • • •

cos q(t-1)i^ cos

• • •

q(t"1

-sin

e1

q(t-b)i^

e2

-sin q(t-b)i2 ... -sin

eM

q(t-b)iM

•

-sin

t •
q(t-1)i

• • • •

-sin q(t-1)i2 ... -sin

• • •

qU-Di. M J

where i
e =(-1) for n=1,2,...,Mn

and q=2'n'/N

Matrix B has a similar form; replace i's by n’s in the above matrix.
Note that the dimensions of A and B are,

A: (number of zero elements in DFT) by (number of missing points)
B: (number of zero elements in DFT) by (number of given points)

Very often, S>>M (which means that the number of given points is greater
than the number of missing points), so it is more appropriate to
calculate the product y=Bx directly.

This calculation is easily performed by the formulas
S

y,_ .= L x cos[q(t-i)n,] for i = 1,2,... ,t-1t-i n kk=1 k

After the y vector has been calculated, any solution of the system of
linear equations Ax +y=0 is an answer to the interpolation problem.M
The solution depends on the rank of A (2b+1 by m) and the rank of the
augmented matrix (A !y). A necessary and sufficient condition for having
at least one solution is rank(A|y)=rank(A) [53. When rank(Aiy)
/rank(A), a least squares approximate solution is possible to be found

3. Sensitivity of the Estimates

After x has been found by solving the linear equation Ax+y=0 we
would like to know how close the estimate is to the actual data. (For
this section we simply write x instead of x .)M
Let us use x' to denote the numerical solution of Ax+y=0 and x to denote
the actual values of the missing data. The reasons that x' is not equal
to x are

(a) The assumption (3) is not exactly true; this means that the DFT
elements with indices t-b,...,t,...t+b are not exactly 0 and the
equation

should be replaced by

124

where e is a complex vector with small numbers corresponding to

the frequencies that x was assumed to be 0.
(b) The matrix A can be numerically ill conditioned and the solution of
the equation Ax+y=0 is subject to large errors.

The following theorem gives a lower and an upper bound of the estimate
error x'-x. For a given matrix A we can compute a condition number [1]
K(A) which indicates the ill-ccnditioness of A; also, the sensitivity
of the solution with respect to the DFT non-zero elements is found.

Let I.I be an L(p) norm, x ' be the solution of Ax+y=0 and x be the
solution of Ax+y=e. Then,

Theorem

where - 1K(A)s|A||A I is the condition number of A

Proof

Use Ax+y=e to find -A(x'-x)=e, and

IeI<|AI Ix?-xI or Ix*-xI>IeI/1AI (i)

- 1Also, use x'=-A y to find

I x ' K I A " 1 I IyI (ii)

125

Taking the inverse of both sides of (ii) and then multiplying by (i), we
derive

tel < Ix’-xl
K(A) lyI

Use -A(x'-x)=e, to find (x’-x)=-A e and

- 1
! x* —xI< tA t lei (iii)

Also, use y =-Ax' to find

IyI<IA11x1 I or |x'l>lyl/IA| (iv)

Taking the inverse of both sides of (iv) and then multiplying by (iii),
we derive

which proves the right side inequality of the theorem.

(1) For matrices, the L(1) and L(») norms [1] are used because they
require the least amount of computations.
(2) In order to apply the interpolation theorem, the number b (number
of nulls around the mid point t) must be known. When b is not known and
M (number of missing points) is much smaller than N (total number of
points) an empirical way of estimating the missing points (x) can be
used:

(a) Assume that b is greater than or equal to (M-1)/2; then apply
the interpolation theorem to find an estimate of the missing points.

(b) Augment the vector x (of missing points) by including K known
points; then, estimate x based on the assumption that b>(K+M-1)/2.

Notes

126

(c) If answers of steps (a) and (b) are similar and the error of the
estimates of the K known points is 'small' then the bandlimiting
assumption is reasonable (and b is greater than (M-1)/2); otherwise,
the signal is not bandlimited and the theorem cannot be applied.

4. Iterative Interpolation Algorithms

This section describes another technique that can be used to solve
the interpolation problem using bandlimiting assumptions. This method
is the discrete counterpart of the algorithms given in [3, 6],
In these references it is proved that whenever a segment {x(t), a<t<b}
is known and x(t) is a bandlimited signal, then an iterative algorithm
involving Fourier transforms can be used to determine the values of x(t)
at any point t. The conjecture 'if {x(i), n<i<k} is known and x(i) is a
bandlimited sequence, then x(i) can be found at any point i' is not
true. In the following we discuss this subject in more detail.

Consider the time series x=(x(0),x(1),...,x(N-1)) and assume that

x =(x ,x ,...,x) is the subvector of 'missing' data pointsM h S S*
x =(x ,x ,...,x) is the remaining vector of known data points
s no n<,1 2 S

(the notation conventions are the same as in the Interpolation Theorem).
Assume also that the DFT transform of x(n) is 0 at the points

t-k , t-k ,t-k t+k , ...,t+k , t+k1 2 F F 2 1
where t is the mid row index.

Define the diagonal matrices E and U as follows:

127

where e.=0 if

or (D II if

where u =0 i if
1’ 2’ S'

: {t+k^, . . . ,t+k^,}

u =1 otherwise, i
This definition implies that E contains a 1 at the diagonal element
corresponding to a given data point and U contains a 1 at the diagonal
element corresponding to a non-zero DFT point.
Using these definitions,

Xg=Ex and a=Ua (a=DFT{x))

Theorem

Consider the iterative algorithm

0(1) Initial step: y =Ex, set n=0
(2) Loop:

t>n=Wyn (find the DFT of y°)

(3) an=Ut>n (filter out the zero magnitude frequencies)

(4) x°=W 1a° (find the inverse DFT)
n+1 n n(5) y =x +E(x-x)

=yn+(I-E)x? (update the estimates y° at the missing
points)

Then, the following are true:

, , n(a) All vectors y are equal to x at least at the points

128

x ; that is, y =x for i=1,2,...,S S n ni i

(b) All transforms a° (DFT’s of x°) are 0 at the t-k points
1

n n(c) The sequences of x and a do not diverge.

Proof

Use (5) to find that y° is equal to x at least at the given points.

Use (3) to find that a° are zero at the t-k.'s frequenciesi

The above prove (a) and (b). The proof of (c) is not so trivial;
n nfirst we find the discrete equations for x , and a .

xn+^=W 1an+^=W ^Ubn+^=W ^UW(xn+E(x-xn))=W ^UWE xn+W ^UWEx (i)

similarly,

n+1 n+1 n+1 - n - -1 n .a =Ub =UWy =UWEx +UWEx=UWEW a +UWEx (ii)

where E denotes (I-E). This shows that the stability of the discrete
equations depends upon the matrices

-1 - - -1As W UWE and B= UWEW.

To prove that system (i) is bounded (not unstable) we prove that

T Tx A A x / . . smax -- < 1 (m)T =1x1=1 x x

T TThe proof of this is based on the fact z Uz<z z

xTATAx =xTEW*U(W-1)*W_1UWEx (use the fact (w“1)*w“1=1/N)
T- *=(1/N) (x EW)U(WEx) (use the z-inequality)

T_ # _ #
<(1/N)x EW WEx (use the fact W W=N)

T-=x Ex (use the z-inequality)
T<x x

Therefore (iii) is true. This also proves that the eigenvalues of A are
either inside the unit circle or on the unit circle. Similar proof can
be used for the boundness of the discrete system (ii) using matrix B.

130

5. Simulation Results

The interpolation algorithm has been verified by a simulation
program. Also, simulation experiments have been performed using various
input time series with missing data. In this section we describe the
programs implemented and the observed numerical results.

An outline of the simulation steps follows:
1. A time series with known bandwidth was generated; several points
were marked as 'missing’ points.
2. The matrix A (see the interpolation theorem assertion) was
formulated according to the indices of the missing points.
3. The product y=Bx was calculated according to the formulas givens
in the section ’Computation of A and B’.
4. The linear equations Axs+y=0 were solved and the results were

compared with the original marked missing points.

Step 1 was implemented by using the program EASY (see Appendix on
Software Support). We started with a sequence of 64 points

x = 0.25(1,1,1,1,0,....0)

then we took the fast Fourier transform (FFT) of x, substitute a 0 in
place of the 28th up to 36th point, and then we took the inverse FFT
transform. Figure 1 shows the resultant time series and figure 2 shows
the corresponding magnitude of the FFT. Note that for all the programs
we start the indices of the series from 0 (and not from 1) in order to
be consistent with the interpolation theorem and the majority of the
literature.

131

Steps 2, 3 and 4 were implemented by a program (called MISS); the
source code is attached. The user can mark as many points as he wishes
and consider them as ’missing' points. Then the algorithms are applied
and the program prints the estimates of the marked points and the
percent error. If the A matrix is not square, a least square solution
is found. Also, if A is singular the program prints the dimensions and
the rank of A and finds the minimum norm solution of the missing data
points.

On the next page there is a sample run of the MISS program. The
error of estimates of the marked (missing) points is calculated less
than 0.1 for three values of the parameter b (2b+1 are the number of
zeros of the DFT).

Sample Run of the Missing Data Interpolation Algorithm
132

B>MISS (run the program)

Missing data interpolation algorithm

Enter data filename: DAT2937.064
Enter indices of 'bad' points (terminate with -1)
0, 10, 25, -1
Enter beta (the width of the 0 magnitude DFT): 3
Inverting 7 by 3...
actual-data estimates error (%)
0.2438 0.2438 0.2443E-04
0.5635E-02 0.5635E-02 0.7428E-02
-. 1853E-02 -.1853E-02 0.1119E-01

SAMPLE 1

Enter data filename: DAT2937.064
Enter indices of 'bad* points (terminate with -1)
0, 10, 25, -1
Enter beta (the width of the 0 magnitude DFT): 1
Inverting 3 by 3...

SAMPLE 2

actual-data
0.2438
0.5635E-02
-.1853E-02
Condition-1
7.1601
Condition-inf
7.6537

estimates
0.2438
0.5635E-02
-.1853E-02
low-1 bound
27.7744
low-inf bound
51.9731

error (%)

0.5315E-03
0.3151E-01
0.2468E-01
upper-1 bound (%)
1423.986
upper-inf bound (%)
3044.611

Enter data filename: DAT2937.064
Enter indices of 'bad' points (terminate with -1)
0, 10, 25, 12, 5, 30,-1
Enter beta (the width of the 0 magnitude DFT): 3
Inverting 7 by 5...

SAMPLE 3

actual-data
0.2438
0.5635E-02
-.1853E-02
0.2521
- . 1 1 7 0

estimates
0.2438
0.5635E-02
-.1853E-02
0 .2521
—.1170E—01

error (%)
0.2443E-04
0.7428E-02
0.1119E-01
0.3771E-02
0.3932E-01

0.25

0.20

0.15

0.10

0.05

0.00

6k point time series. Eandlimited.

 r-H T L ... ,t j.Y r x . - , r.̂-T ̂ T . J I , T
* M 1

Figure 1 : Eandlimited time series

64-

1.0

DFT transform. a(28)...a(36) -0
.3

.8

.7

.e

5

.3

.2

.1

o
o

Figure 2 . The DFT of the time series

13^

C Appendix III
Cc ***

c * MISSING DATA INTERPOLATION ALGORITHM *
C * GEORGE KONTOPIDIS, NOV 3 1980 UNH *
r *

C
C DATA
C X
C IBAD
C IGOOD
C W22
C W22inv
C Y
C X1
C

Data filename containing the bandlimited time series.
Array with good and bad data of length N
Indices of the bad data of length LBAD
Indices of the good data of length LGOOD
Matrix of dimensions (2*BETA+1 BY LBAD) Left side.
Inverse of W22
Vector of length 2*BETA+1. Right side.
Result vector with the interpolated points

C Several Statements start with the word 'Check'. By removing
C it, additional (testing) information can be printed out.
C Use the editor command: CCheck$Check<cr>$$ to 'remove it'
C and use CCheck<cr>$Check$$ to 'put it' back on line.

DIMENSION XC260), W22(10,10), Y(260)
DIMENSION IBAD(30),IGOOD(260), X1(260), W22inv(10,10)
LOGICAL DATA(12)
COMMON WORK(260)

C
Call PRN('Missing data interpolation algorithm$')

1 Call CRLF
IW=10

C
C...User interaction.
C

CALL SGET('Enter data filename: $’.DATA,12)
CALL MGET(DATA.X)

Check CALL MPRN(X,'Time series X$')
N=NDIM(X)

C
78 CALL PRN('Enter indices of 'bad' points (terminate with -1)$')

Call CRLF

13 5

Read(5,200) IBAD
200 Format(30I5)
C
C...I is used as counter. Indices of bad point in IBAD
C

1 = 1
5 IF(IBAD(I)) 10,20,20
20 1 =1+1

GO TO 5
10 LBAD=I-1
C
C...Get beta; check if number of points is even. Correct on error
C

IBETA=IGET('Enter beta (the width of the 0 magnitude DFT): $')
C

IF((LBAD/2)*2.NE.LBAD) GO TO 30
CALL PRN('Number of bad points must be odd for this program$')
LBAD=LBAD-1

C
C...Find the indices of the good data
C
30 1 = 1

N1=N-1
DO 40 J=0,N1

DO 41 JJ=1,LBAD
IF(J.EQ.IBAD(JJ)) GO TO 40

41 CONTINUE
IG00D(I)=J
1 = 1 + 1

40 CONTINUE
LG00D=I-1

C
C...Print the indices arrays for checking
C
Check CALL PRN('Verify indices of the bad data$')
Check WRITE(5,47) (IBAD(I),1=1,LBAD)
Check CALL PRN('Verify indices of the good data$’)
Check WRITE(5,47) (IGOOD(I),I=1,LGOOD)
Check47 FORMAT(' ',26014)
C
C.. .Pre-computations for indices and limits...
C

MID=N/2
PHI=PI(2.)/FLOAT(N)
NEQ=2*IBETA+1
ICNT=IBETA+1

C
C.. .Formulation of the left side of the equation
C

IF(IBETA) 53,53,54
54 1 = 1

DO 50 I=1,IBETA
DO 50 J=1,LBAD

DEX=(MID-IBETA-1+1)*IBAD(J)
W22(I,J)=COS(PHI*DEX)
I2=I+ICNT
W22(I2,J)=-SIN(PHI*DEX)

50 CONTINUE
C
C and the middle row...
C
53 1 = 1

DO 60 J=1,LBAD
IS=IBAD(J)
IF(2*(IS/2)-IS) 61,62,61

61 W22(ICNT,J)=-1.
GO TO 60

62 W22CICNT,J)=1.
60 CONTINUE
C
C...Pack the result matrix and print it for checking purposes
C

CALL PACK(W22,IW,NEQ,LBAD)
Check
n

CALL MPRNCW22,'This is the left side matrix$')
o
C...Now
n

find the right side. Do not form w23 excplicitly
U

IF(IBETA) 93,93,94
94 1 = 1

DO 90 1=1,IBETA
SUM1=0.0
SUM2=0.0
DO 80 J=1,LGOOD

IG=IG00D(J)

DEX=(MID-IBETA-1+1)*IG
IG3=IG+3
SUM1=SUM1+C0S(PHI*DEX)#X(IG3)
SUM2=SUM2-SIN(PHI*DEX)*X(IG3)

80 CONTINUE
Y(I)=(—1.)*SUM1
I2=I+ICNT
Y(I2)=(-1.)*SUM2

90 CONTINUE
C
C...and the middle row sum...
C
93 SUM1=0.0

DO 98 J=1,LGOOD
IG=IGOOD(J)
IF(2*(IG/2)-IG) 97,96,97

97 SUM1=SUM1-X(IG+3)
GO TO 98

96 SUM1=SUM1+X(IG+3)
98 CONTINUE

Y(ICNT)=(-1.)*SUM1
C
C...Pack it and print it for checking
C

CALL PACK(Y,IW,NEQ,1)
Check CALL MPRN(Y,’This is the right side of the equations$f)
C
C...Solve the linear equations W22 * X1 = Y
C...If W22 is not square, do least squares
C

j1=NDIM(W22)
j2=MDIM(W22)
Write(5,2010) J1,J2

2010 Format(' Inverting ',13,’ by ' ,13,'...')
CALL GINV(W22inv,W22)
CALL MULCX1,W22inv,Y)

C
C...Print the (original data) (estimate) (% error)
C

CALL PRN(’actual-data estimates error (%)$’)
DO 57 1=1,LBAD

11=3+IBAD(I)

138

12=2+1
EL0W=100.*ABS((X(I1)-X1(12))/X1(12))
WRITE(5,900) X(I1),X1(12),ELOW

57 CONTINUE
C
C.. .Calculate the condition number and the norms
C...Quit if the W22 matrix is not square
C

If (j1.NE.j2) Go to 1
AX1 = XN0RM1 (W22inv)
AX = XNORM (W22inv)
BX1 = XN0RM1 (W22)
BX = XNORM (W22)
VX1 = VNORM1 (Y(3),Y(1))
VX = VNORM (Y(3),Y(1))
AX =AX*BX
AX1=AX1*BX1
EL0W1=100./(AX1*VX1)
EUP1 =100.*AX1/VX1
EL0W =100./(AX*VX)
EUP =100.*AX/VX
CALL PRN('Condition-'! low-1 bound upper-1 bound($)$')
WRITE(5,900) AX1,EL0W1,EUP1
CALL PRN('Condition-inf low-inf bound upper-inf bound(J)$')
WRITE(5,900) AX,EL0W,EUP

900 FORMAT(' \3G14.7)
GO TO 1
END

139

Notes and References III

[1] Ralston A., P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, New York 1978.

[2] Rabiner L. R., B. Gold. Theory and Application of Digital Signal
Processing. Prentice Hall, Eglewood Cliffs, New Jersey 1975

[33 Papoulis A. Signal Analysis. McGraw-Hill, New York 1977.

[4] Griffiths L. J., High Resolution Spectral Estimates Obtained Using
Data Extrapolation, ICASSP 80 Proceedings, Denver Colorado, 1980.

[5] Brogan William L. Modern Control Theory. Quantum Publishers, Inc.
New York, 1974.

[6] Papoulis A., A New Algorithm in Spectral Analysis and Band-
limited Extrapolation, IEEE Trans. Circuits Syst., vol. CAS-22,
no. 9, pp. 735-742, Sept 1975.

[7] Lacoss R. T., Data Adaptive Spectral Analysis Methods, Geophysics,
vol. 86, pp. 661-675, 1971.

CHAPTER IV

RANDOMLY SAMPLED SYSTEMS

Outline of Chapter IV
1. Notation and Conventions
2. Definition of Commonly Used pdf's
3. Examples of Random Sampling Processes
4. Propagation of the Mean State Values
5. Propagation of the Mean Square State Values
6. Defining the Power Spectral Density Gain

Appendix IVa
Appendix IVb
Notes and References IV

Outline of Chapter IV

This chapter discusses randomly sampled systems.
Sections 1 and 2 summarize the notation and basic definitions used

in the other sections. Because characteristic functions are extensively
used to simplify integral equations, we associate the probability
density functions p(x) (lower case p) with the characteristic functions
P(jw) (upper case P). The same convention is used for the bilateral
Fourier transform pairs.

In section 3 we give several examples of random sampling processes,
the corresponding probability densities and the characteristic
functions.

Section 4 consists of four theorems (1 to 4) and their proofs. All
of them deal with the propagation of the mean values of the states of a
randomly sampled system. The theorems give methods of calculating the
mean values at the sampling instants (whenever a sample is taken) and at
any time instant between (absolute time independent of the sampling
process).

Section 5 deals with the propagation of the mean square values of
the states in a manner similar to section 4. The problem here is more
difficult because of the nonlinearities involved, but usage of the
direct products simplify the development.

Section 6 discusses the frequency characteristics of randomly
sampled systems. We define the power spectral density gain, and we
derive an expression for it involving the system parameters and the
sampling characteristics.

Finally, two appendices are given with the required details for
several points in the proofs of the theorems. In particular, appendix
IVb consists of a collection (and proofs) of the Kronecker (direct)
operations which are used extensively in sections'5 and 6. At last,

142

references used in the study of the subject of this chapter are listed.
The new results claimed in this chapter are:

(a) The propagation of the mean state values of a multi-input multi
output stochastic, randomly sampled system.
(b) The propagation of the mean square values of the above system.
(c) The definitions and the associated theory of the power spectral
density gain of a randomly sampled system.

1. Notation and Conventions

T (As a superscript) denotes the transpose of a matrix
T, T , {T } Time intervals. T may denote a random variable and T n n n

can be interpreted as a realization of T. {T } inn
general means the sequence of T ’s.n

t, t , (t } Time instants. The meaning of t, t and (t } is n n n n
similar to T, T and {T }. In general T refers to time n n
differences and t refers to absolute time.

r,t,u,h Dummy variables for time used in definitions and
integrals.

a,b,c Dummy integration variables for random variables.

X(s), Lx(t), Bilateral Laplace transform of the function x(t).
(Lx)(s)
*

X (z), Zx(n), Z transform of the sequence x(n) defined by the
(Zx)(z) summation

00

(Zx) (z) = Y x(n)z n=0
F (x) Cumulantive probability function of X evaluated at x.A

pxCx) Probability density function (pdf) of X evaluated at

P (s) Characteristic function of X evaluated at s. NoticeX
that the characteristic function of X is defined as
the Bilateral Laplace transform of the probability
distribution of X.

Pr(A) Probability of the event (or set of values) A.
Ex(t), Ex Expected value of x evaluated at t.

Tvartx}, Variance of x, E(x-Ex)(x-Ex)
V (t)fV(x;t)

Tcov{x,y} Covariance of x and y, E(x-Ex)(y-Ey)
Tmsq{x}, Mean square value of x. That is, msq{x} = Exx .

M (t),M(x;t) x Tcor{x,y} Correlation of x with y. That is Exy .
TR(x;t,s), Autocorrelation Ex(t+s)x (t)

R (t;s) x
TR(x;s), Rx(s) Autocorrelation of a stationary process Ex(t+s)x (t).

2. Definition of Commonly Used pdf’s

a. Consider the random variable T of the sampling intervals. The
of T’s at the sampling intervals T=r is denoted by

P,Jr>T
and has the following meaning:
Pr(the sampling period is inside the interval (r,r+dr))=p^(r)dr

144

Note that pT(r)=0 for r<0 by definition.

b. The characteristic function of p^C.) is denoted by

P (s) or P (jw)T T
and it is related to pt(.) by the equations:

+■ 00 +CD

PT(jw)= f PT(t) e jWtdt pT(t) = 1/2'n'J*PT(jw)e';iWtdw
-oo -co

c. Consider the random variable t . The pdf of t 's which isk k
is denoted by

p (r;k),

has the meaning:
Pr(the k-th sampling point has value inside the interval (r,r+dr))=

p (r;k)dr

d. The characteristic function of p (r;k) is denoted as

P (s;k) t
Because the random variable t equals the sum of the k independentk
random variables T , T , ...T and by assuming that all T's0 1 k-1
have the same distribution, we have the following result:

P (s,k) = P^s). t T

145

3. Examples of Random Sampling Processes

a. Gaussian Sampling

Gaussian sampling is defined by requiring the sampling intervals T to be
independent and identically distributed Gaussian random variables with
mean T and standard deviation a. o
It is also assumed that a<<T in order that the distribution nearlyo
vanish for negative values of the argument.

2 - 1 / 2 2 2 p (T) = (2'rfa) exp(-(T-T) / 2a) T o
2 2P (s) = exp(-sT + s a /2)T o

Because of the independence,

p (h ,h, h)=p (h) p(h)...p (h)T ,T ,...T 1 2 n T 1 T 2 n1 2 n

b. Raleigh Sampling

The sampling intervals T are assumed to be independent and identically
distributed Raleigh random variables. The probability density function
and the characteristic function in this case are:

p?(T) = (T/a2) exp(-T2/ 2a2) for T>0

p (T) = 0 for T<0T
2 1 / 2 2 2 P (s) = -s (2tfa) exp(a s /2)T

146

1 /2The mean value of the periods T is equal to a(iT/2) [1,2]

c. Quantized Sampling Intervals

The sampling intervals cannot be arbitrary numbers but can take on only
discrete values. That is:

T takes on one value from the set {T , T ,...T }1 2 q
and

Pr(T=T)=P for i=1,2,...ql l
Also,

p (T)=P 5(T-T)+..,+P 5(T-T)T i l q q
P,p(s)=P.]exp() +...+ P^exp()

d. Uniformly Distributed Sampling Intervals

The sampling intervals T are idependent and identically distributed RVs
with uniform probability density. That is,

p (t)= — — [u(t-(T -a))-u(t-(T +a))] T >a T 2a o o o

P_(s) = exp(-T s) sinh(as)/as T o

e. Independent Skip Sampling

Let us consider a sequence {h } of fixed time points called then

1^7

'scheduled* times. Assume also that the following probabilities are
given.

Pr(of taking a sample at the scheduled time h)=pn
Pr(of not taking a sample at time hn)=q=1-p

Based on the above sequence, we can define a random sequence {t }n
according to the following algorithm:

step 0: start with n=1, k=1
step 1: If a sample is taken, set t =h and increment n and kk n

Else, increment n
step 2: Go to step 1 and repeat the loop.

We now simplify the case by considering h =nA i.e. uniform scheduledn
times. Then,

Pr(the m-th interval (period) T is equal to k A)=m
Pr(the n-th scheduled sample was taken AND

the n+1, n+2,...,n+k-1 scheduled samples were not taken)
k-1 ,= pq (because of the independence)

The following figure illustrates the relation between the scheduled and
sampling times

-kA-

s s s n+1 n+2 n+3 n+k-1

m
| = scheduled times
IS
I = sampling times

m+1

Figure 1: Independent skip sampling

148

The pdf and the characteristic function of T are:

oo

p (T)=£p qk~1S(T-kA)
k=1

-sA -sAPT(s)= pe / (1-qe)

f. Poisson Sampling

Let us assume that m is the expected number of sampling points per unit
time interval. Assume also that

Pr(of taking n samples during dt) = mdt

Then, integration of the above differential equation [1] gives,

(mT)ne"mTPr(of taking n samples in interval of length T) = -------

Also,
p (T) = mexp(-mT) i.e. Pr(T <T<T +dh)= mexp(-mT)dh T k k k k k
P (s)= m/(s+m).T

4. Propagation of the Mean State Values

This section is devoted to the statistical description of the state
values of a system. More specifically, we deal with the mean value of
the states first at the sampling instances and second at any time
instant. The study is logically separated into four parts (theorems
1 to 4). Theorem 1 uses a simple state model to find a way to compute
the mean values of the states at any sample instant. Because of the
randomness of the sample points, knowledge of the mean at the sample
points does not provide much 'useful' information. We propose theorem 2
which finds the same result but at any time instant. Finally, theorems 3
and 4 use a different state model, less restrictive than the one used in
theorems 1 and 2, to answer the same questions:
(a) What is the expected value of the states whenever a sample is
taken?
(b) What is the expected value of the states at any time t?

Theorem 1

Consider the state equations:

x(t „)=A(T)x +B (T)u +B (T)w, k+1 k k u k k w k k
with,
A(.), B (.), B (.) given functions u w
T random with given pdf p (T;k)XV 1
x(t) a given vector o

{w } is a white random process of zero mean and independent of T

lu) is a deterministic sequence of numbers with known Z transform, k

150

Then
(1) Ex = EA-Ex + EB -uk+1 k u k

1
(2) EX (z) = (Iz - EA)” EB •U (z)u

Proof

Taking the expectation of the state equations we find:

Ex =EA(T)x + EB (T)u + EB (T)w k+1 k k u k k w k k

Because A(T) depends only on T and x depends only on k k k
T , T , ...,T the independence of the T's gives:0 1 k-1

Ex „ =EA-Ex, + EB • u, + EB • Ew, k+1 k u k w k

But the {w} process has zero mean; therefore, (1) is true. The second
part of the theorem can be readily derived by taking the Z transform of
the first part.

Remark 1

The phrase 'taking the expectation of the state equations' requires a
more precise definition. The state equation can be seen as a
transformation of three random variables (namely x(t), T , w,)k k k

to a new random variable (namelly x(t)).k+1
A more rigorous derivation and a more precise notation are given in
notes 1 and 2 of the appendix IVa.

151

Remark 2

The following property is true:
Z(Ex) = E(Zx) k k

The proof is based on the linearity of the operators E and Z. It is
assumed that the Z transform of the sequence and the expectation of the
values x exist and they are finite. This property has to be used to
prove part 2 of theorem 1.

Theorem 2

Consider the discrete state model of theorem 1 with the additional
equation:

x(t + r)= A(r)x(t) + B (r)u +B (r)w r>0k k u k w k =

Then

The Laplace transform of the expected value of x (as a function of t),
is given by

- 1 *EX(s) = (A (s) C zl - EA] EB + B (s))-U (z)F u uF

evaluated at z = 1/ P (s) and using the notationT

A (s) = L{ A(t) [1 —F (t)] }F T
B (s)= L{ B (t)[1 —F (t)] } uF u T
F is the cumulative distribution of T T

152

Proof

The proof given here is based on the conditional expectation of x. In
the appendix IVa (note 3) there is a detailed description of all the
'obvious' steps used below. We start from:

Ex(t) = E E{ x(t +r) GIVEN r }t=t +r kk
But,

Ex(t +r) = EA(r)x(t,) + EB (r)u, + EB (r)w(t) k k u k w k
= A(r) Ex + B (r)u, k u k

Substituting into the first equation we find,

Ex(t) = E A(r) Ex + B (r)ut=t +r k u kk

j V (A(r) Ex +B (r)u,) p (t-r;k)* (1-F (r))• dr / L-‘n k u k t TJ k=0
all r

Then,

CD
EX(s) = y A (s)P (s;k)*Ex + B (s)*P (s;k)u , _ F t k uF t kk=0

By considering that,

Pfc(s;k) = p£(s)

and
CD
V k * -1P (s)*Ex = EX (z) evaluated at z = P (s),
k=0

153

we derive,
1

EX(s) = A (s)-EX (z) + B (s)-U (z) at z=P~ (s) F uF T

Finally, application of theorem 1 gives the desired result
_1 * *

EX(s) = A (s)-(Iz- EA) EB U (z)+ B U (z)F u uF
and the proof is complete.

Algorithm for computing EX(s)

1. Find A (s) and B (s) (as in theorem 2) F uF
2. Find EA and EB by using

all r
3. Find the matrix-functions

W(s) = (I/P (s) - EA) T
- 1

H(s) = A (s)W(s) EB + B (s) F u uF
4. Evaluate (Zu)(z) at z = 1/P(s)

5. Calculate

EX(s) = H(s)-U (1/P (s))T

Theorem 3
Consider the state model

154

with
A(.) f B (.), B (.) given functionsu w
T random with given pdf p (r;k) k T
x a given vector 0

{w } is a white random process of zero mean and independent of {T } k k
{u(t)} is a sequence of numbers, samples of u(t) at the random n
points {t }. It is assumed that u(t) is obtained from the inverse n
Laplace transform of a given U(s). Note that the sequence {u(t)}K.
is not known because t is a random variable.k
Then

(1) Ex „ = EA"Ex + EB-Euk+1 k u k
where,

+co
UCjw) P (-jw) dw

-go T

(2) (ZEx)(z) = (zl - EA)’1EB (ZEu)(z)u
where, +c0

(ZEu)(z) = —— f — ----- dw
2rt j -1J 1 - z P (—jw)-CD T

Proof

Because the variables ACT), B (T) and B (T) are independent ofk u k w k
x(t), u(t) and w respectively, proceeding in the same manner as in k k k
theorem 1, we derive:

Ex „ = EA-Ex +EB ■ Eu(t) (i)k+1 k u k

155

Using +co
u(t)= 1/2*/u(jw) exp(jwt) dw

-oo
and the definition

Eu(t,) = I u(r) p (r;k) dr k / t
all r

we derive
Eu(t^) = 1/2^ • // U(jw) p^(r;k) exp(jwr) drdw

all r,w
But

/ p (r;k)•exp(jwr) dr = P(-jw;k) = P^(-jw)
J t t T

all r
Therefore,

Eu(t) = 1/2,n'/u(jw) Pk(-jw) dw k J T
all w

This proves assertion (1). The second assertion of the theorem is
proved by taking the Z transform of both sides of (i) and using:

Z{E{ u(tfe) }} = 1/2irJU(jw) Z{pk(-jw) }• dw

all w
But,

k -1Za = 1/(1 - z a)
So, +co

... ... 1 f U(jw)(ZEuKz) = -— / -------------- dw
2 tt / -1

* 1 - z P_(-jw)
-CD T

156

Theorem

Consider the discrete state model of theorem 3 and the additional
equation

x(t +r) = A(r)x(t,)+B (r)u(t)+B (r)w r>0k k u k w k =
Then, the Laplace transform of the expected value of x at any time point

t is given by
-1EX(s) = (A_(s) (zl - EA) EB + B)*(ZEu)(z)F u uF

where,

CZEuXz) = J U(_:U) -dw
1 - z PT(-j«)

and z= 1/P (jw)T

Proof
Ex(t)=E E{x(t +r) GIVEN r}t=t +r kk
Ex(t, +r)=A(r)* Ex +B (r)*Eu, k k u k

where Eu is defined in theorem 3. Then, from note 3 of appendix IVa k

ao

Ex(t)= / Y (A(r)Ex +B (r)Eu.)• (1-F_(r)) p, (t-r;k)-dr
\ L-‘ k u k T t

J k=0
all r

and by taking the Laplace transform,
co

EX(s) = Y (A (s)pk(s)•Ex + B (s)Pk(s)Eu)F T k uF T kk=0
Then,

EX(s) = A (s)•EX*(z) + B (s)-(ZEu)(z) F uF

157

with
z=1/P (s) and (ZEuKz) as given in theorem 3.T

5. Propagation of the mean square state values

This section is a continuation of the study of the statistical
properties of the system state values. More specifically, we deal with
the mean square matrix of the state values. Theorem 5 tells us how the
mean square matrix propagates from one sample point to the next.
Theorem 6 finds the mean square matrix at any time point t. For both
theorems, results of section 4 (Propagation of the mean state values)
are used. Also, the lexicographic multiplication (described in the
appendix IVb) is extensively used. The reader must be familiar with the
notation used and the complexity involved. As an example, we explain
the computation of two expessions:

Z[M] can be calculated by: k
(a) Considering the sequence of matrices M i=1,2,...l»
(b) Converting the sequence to the vector [M^] sequence

where the [.] means the lexicographic column.
(c) Finding the Z-transform of that sequence.

Remark
The following are true:

(a) <EX> is NOT equal to E<X>
(b) (Z<X>)(z) is NOT equal to <(ZX)(z)>
(c) [EX] is equal to E[X]
(d) Z[EX] is equal to E[ZX]

158

Theorem 5

Consider the state model:
x(t)=A(T)x(t)+B(T)w k+1 k k k k
y(t) = Cx(t)+v k k k
with,
A(.), B (.) given matrix functions

random with given pdf equal to p^(r,k)

x(t) a given vector o
{w } a white random process of zero mean and independent of T k k
with variance Q, .k
{v } a white random process of zero mean and independent of T k k
with variance R .k

Then

1. The mean square values of x at the sampling points satisfy the
equation

[M] = E<A> CM] + E [Q] k+1 k k
where:

TM = msq{ x(t) }=matrix of Ex(t)x (t) k k k k
[X] = lexicographic column of the matrix X
<X> = Kronecker product X * X

2. The mean square value of the output y at the sample points satisfies
the equation

159

msq{y(t)} = C*M • C^+ R k k k
3. The Z transform of the mean square of the output is given by

& T *
(Zmsq{y})(z) = C-M (z)-C + R (z)
*

where, M (z) satisfies the equation
_1 *

[M (z)] = (zl- E<A>) E [Q (z)l

Proof

Using the definition of the mean square of x we can easily derive

M = Ex(t)xT(t) k+1 k+1 k+1

= EA(T)x(t)xT(t)AT(T) +EB(T)w wV(T) + k k k k k k k k

+EA(T)x(t)wTBT(T)+EB(T)w xT(t)AT(T) k k k k k k k k

Because x(t) does not depend on w (it depends only on the previous k k
values of w), and because Ew = 0, the last two terms are zero. Ink
order to separate the expectations with respect to T and x, we use the
lexicographic multiplication for the remaining two terms of the equation
above:

[M „] = E{ <A> [x(t)xT(t)] }+ E{ [w w^] } k+1 k k k k

In this equation, the <A> and depend on the random variable Tk
which is independent of x and w. Therefore,

CM] = E<A> [M] + E [Q] k+1 k k
which proves part (1). At this point it is worth noting that the

16o

lexicographic column of the mean square values of x satisfies a first
order recursive equation very similar to the state equations.
Part (2) is trivially proved by taking the expectation

T T T TEy(t)y (t) = C*Ex(t)x (t)*C + Ev v k k k k k k

The third part is proved easily by taking the Z transform of (1),

Z[M J = E<A>*Z[M] + E* Z[Q,] k+1 k k
ft £ ft

z-CM (z)] = E<A>•[M (z)] + E•[Q (z)]

#
from which [M(z)] can be found.

Theorem 6

Consider the discrete state model of theorem 5 with the additional
equation:

x(t +r) =A(r)x(t)+B(r)w k k k
and use the notation:

<X> = Kronecker product of X'(t) by X ’(t) with F

X ’(t)=X(t) (1-F (t))1/2Then

The Laplace transform of the (lexicographic ordered) mean square value
of x (as a function of t), is given by:

ELM](s) =
-1L{<A> }(zl - E<A>) E + L{ }F F)

[Q (z)]

161

evaluated at z=1/P̂ ,(s)

Proof

We evaluate the expression:
Tmsq{x(t)} = E E{x(t +r)x (t +r) GIVEN r}t=t, +r k kk

Here, the second expectation equals:
T T TEx(t +r)x (t +r) = A(r)M A (r) + B(r)Q B (r) k k k k

where M =msq(x) as it was determined by theorem (5).K K
Now we take the expectation with respect to t=t +r

K

T TE A(r)M A (r)+B(r)Q B (r) =t=t +r k kk

t CD

= f d r y (1-F (r)) p (t-r;k) [A(r)M A (r)+B(r)Q B (r)|X „ T t I k k)0 k=0
Let's call the above expectation M(t). Then, the Laplace transform of
M(t) can be used to replace the convolution integral with a product of
terms. That is:
L{M(t)} = (LM)(s) =

CD

= £ L{p (t;k)} L{(1-FT(t))(A(t)MkAT(t) +B(t)QkB Ct)) }
k=0

Using the lexicographic multiplication we have,co
CLM(s)] = £ U p (t;k)} L{ <A>F[Mkl + FCQk] }

k=0
The infinite summation that appears above can be computed by using

Lp (t;k) = pN s) t T
and the property of the Z transform:

162
oo

y! (function of k) Pk(s) = (Z-transform of the functionTk=0 evaluated at z=1/P (s))T
Then,

CLM(s)] = L{ <A> [ZM] + <3> [ZQ,] }F k F k

evaluated at z = 1/P (s)T
and,

ft
[LM](s) = L{<A> }’[M (z)3 + L{ }•[Q (z)]F F

Using the result (3) of theorem 5 we can compute the M (z) in
terms of Q (z) and complete the proof of the theorem.

6. Defining the Power Spectral Density Gain

The power spectral density gain of a randomly sampled system is
defined by taking the Fourier transform of the autocorrelation function
of the output of the system when the input is a white noise process of
unit intensity. The development has two parts; first we present a
lemma which shows the steps in defining the power spectral density of a
nonrandom linear system, and second, we extend the definitions to random
systems. At the end, an example is given to indicate the procedure for
calculating the bandwidth of a first order randomly sampled system.

Lemma

Consider the following multiple-input multiple-output linear system,

163

x = Fx+Gw, Ew(t)wT(r) = Q 5(t-r)
y = Cx Ew(t)=0
with F stable.

Let M(t) be the variance of x(t); because the system is assumed to be
stable and time invariant, M(t) reaches a steady state matrix, denoted

by M.
Also, let A(t) be the transition matrix exp(Ft).

Then

1. The correlation function R(t) of the output is given by

R(t) = CA(t)MCT for t>0
TR(t) = CMC for t=0 (R(t) is continous at 0)
T TR(t) = CMA (-t)C for t<0

2. The power spectral gain matrix of the system,
*

H(jw)H (jw) (* means conjugate and transpose)

can be found by replacing Q by I and taking the Fourier transform of
R (t)

Proof

Because Ex(t)=0, the variance and the autocorrelation of x(t) have the
same value. The correlation of the output y(t) is calculated below for
lag r>0.

R(r) = Ey(t+r)yT(t) = C Ex(t+r)xT(t) CT=
T T T= CA(r) Ex(t)x (t) C = CA(r)M(t)C

16^

For r<0, we can write
TR(r) = E y(t)y (t-r)

and following similar steps, we can find,

R(r) = CM(t)AT(-r)CT

which proves the first part of the lemma. The second part can be proved
by taking the Fourier transform of R(t). To simplify the notation we
use

F {g(t)} for the Fourier transform of the positive values of t

F {g(t)} for the Fourier transform of the negative values of t
Then,

F{R(t)} = F+{R(t)} + F~{R(t)} = F+{CA(t)MCT}+F~{CMAT(-t)CT}
-1 T T -1 T= C(jwl-F) MC + CMC-jwI-F) C

= C(jwI-F)"1{ M(-jwI-FT)+(jwI-F)M} C-jwI-FT)“1C

= C(jwl-F)_1{ -MFT-FM } (-jwI-F7)"1CT

To continue, we make use of the fact that M(t) satisfies the first order
linear matrix differential equation:

T T M(t) = FM(t)+M(t)F +GQG

which, in the case of a stable system at the steady state, gives
T T 0 = FM+MF +GQG.

Solving for the last term and replacing Q by I (as part 2 requires),
we can substitute in the previous expression of F{R(t)} to find,

F{R(t)} = C(jwI-F)"1GGT(-jwI-FT)"1CT

165

= H(jw)H*(jw)

which completes the proof of the lemma.

Power Gain of Randomly Sampled Systems

Consider the randomly sampled system:

x(t)=A(T)x(t)+B(T)w k+1 k k k k
y(t)=Cx(t)+v k k k

where T is random with given pdf, var(w)=Q and var(v)=R . k k k k k
Then, according to theorem 1,

msq{y(t)}=CM C+R k k k
where the matrix satisfies the first order difference equation:

[Mk+1] = E<A>,CMk] + E'[Qkl

Now, let's make the following assumptions:

(a) E<A> has eigenvalues inside the unit circle
(b) Q and R are not functions of k.k k

Under these assumptions, the linear system which propagates [M]K
is stable and for some k (large enough) it reaches a steady state.
Then,

[M]=E<A>[M]+E[Q]ss ss

[M] = (I -E<A>)"1E [Q]. ss
In this manner, the steady state variance of the states at the sampling

166

points can be calculated. Let's now define:
TR(r;t)=Ey(t +r)y (t) k k k

namely, R(r;.) is the correlation of the output function at lag r.
Then, for all k, and a fixed r>0,

R(r;t)=CA(r) E{x(t)xT(t)} C^+ R k k k
and when k is large R(r;t) does not depend on t , and equals:

rC tC

TR(r) = C A(r) M C + R ss
or * T “1[R(r)]= (CA(r)*C) (I-E<A» E [Q] + [R]

which is the lexicographic form of the previous one.
In order to define the power spectral gain function we make the
additional assumptions:

(c) R=0 (no observation noise)
(d) w and y are scalar functions.
(e) Q=1, i.e. the input noise is of unity intensity.
(f) The matrix A(r) is the transition matrix of a continous time

system, that is, there exist a matrix F such that A(r)=exp(Fr).

Then, the correlation function (scalar) of the output is:

R(t) = (c A (t) * C T) (I - E < A >) “ 1E for t > 0 ,

and (following similar steps we can find that):
/ T T\ -1R(t) ~\C *k (-t)C J(I-E<A>) E for t<0.

Notice that the only place that t (lag) appears is in the transition
matrix A(t). The power spectral gain function will be found by taking

167

the Fourier transform of R(t):

S(w) = (FR)(jw) = (c(jw-F)~1*CT + C*(-jw-FT)"1CT)(I-E<A>)"1E

This function describes the frequency characteristics of a randomly
sampled system; notice that S(w) depends only on the expected values of
<A> and and not on higher order statistics.

An Example

Lets try to compute the power spectrum gain of a randomly sampled system
of first order, which is the sampled version of the continuous system:

dx/dt = f-x + g-w.
y = c • x

The randomly sampled version is:

x(t +r) = a(r) x(t)+b(r)w k k k
where a(r)=exp(fr), b(r)=(1-a(r))g/f. Assume also that the sampling
process is such that:

2 2 E<a(t)> (which is the same as Ea (t)) = a

E<b(t)> =b2

We apply first the above formula that gives S(w). The various 'pieces'
are calculated below:

- 1 2 2 (I-E<A>) E = b / (1 - a)
-1 T 2 C(jw-F) *C = c / (jw-f)
T -1 T 2 C*(-jw-F) C = c / (-jw-f)

168

T -1 T 2 C*(-jw-F) C = c / (-jw-f)

and combining them we derive:
2 2 2

— . * 2f a b cS(w) = — 2 2 w + f
The 3-db point of this function occurs at the frequency w=-f (minus

because dx/dt=fx+gw has to be a stable system, so f is a negative
number). Notice that the bandwidth of the first order randomly sampled
system HAPPENS to be the same as the continuous system. In general the
power spectral gain function S(w) has MORE poles than the order of the
original system, and the bandwidth of S(w) is different than the
original continuous system.

169

Appendix IVa
Details in Calculations of Expectations

Note 1 (Interpretation of Ex =AEx); scalar case ----- n+1 n

Let !x } be a (discrete time) stochastic process, and denote by n
x(i;n) the value of the i-th realization of the process {x } at timen
t . For a given time index n, the setn

(x(i;n) i=1,2,..}

is considered as the image of a random variable with probability density
function p(x;n). That is

Pr({i: at time t the value x(i;n) belongs to (a,a+da)}) = n
= p(a;n)da.

Now, let us assume that the process {x } has additionally then
property

x(i;n+1)=Ax(i;n) for all i and n, for A>0. (1)

In words, for a given realization i of the process the values at any
time instant are A times the value of the process one time instant
before. Because of this additional property, p(x;n) must satisfy the
equation

1
p(x;n+1)= p(x/A;n) (2)A

This is derived by considering the transformation (1) of the random
variables x(i;n+1) and x(i;n) C33. It is claimed that:

Ex(i;n+1)= A Ex(i;n) (3)

170

where
Ex(i;n) = J ap(a;n)da.

all a
The proof of (3) is based on (2); starting from the left side, we find
the right side:

Jxp(x;n+1)dx = J x/A•p(x/A;n)da = J ~ A-(x/A)-p(x/A;n)-d(x/A) =

= A j ap(a;n)da

Note 2 (Detailed derivation of Ex = EA-Ex) ----- n+1 n

With this note we explain in detail the meaning of the equation

x = A(T)•x (1)n+1 n n
where the T are random. Then we prove that the expectation of x n n

satisfies a similar recursive equation.
First we define the process {x } and then we find the expectation Exn
at a fixed point n.

Let T be a random variable with probability density function

p (h) for h >0 T
By performing an experiment that produces independent values of T we can
generate a sequence of numbers such as

V V T2 V"*
Because of the independence, the composite event:

V={ T e(h ,h +dh) AND T e(h -h +dh).. .AND Te(h ,h +dh)} 0 0 0 0 1 1 1 1 n n n n

171
has elementary probability

Pr(V)= pT(hQ)pT(h1)...pT(hn) dhQdh^... dhn

The sequence {T } is associated with the sequence {x }, generated n n
the recursive relation

x. =A(T.)x. i+1 1 l

XQ is given

A(.) is a given function.

Assume now that the numbers T^,...,T have been generated and the

resulting sequence of x's is x ,..,,x . Then1 n+1

x =A(T)A(T)...ACT)x_n+1 n n-1 0 0
and by the fundamental theorem of expectation [1]

Ex :(I A(h) A(h)p (h)...p (h)dh ...dh \xn+1 \/ n 0 T n T 0 n 0 / 0
all h's

But the integral

A(h.)p_(h.)dh. i T i i
all hl

has been defined as EA(T). Therefore,

Ex = EA-Ex n+1 n
This concludes the proof. The expectation of x may be interpretedn

172

in two manners:
(a) Ex is the mean value of x when T , T ...T „ varyn n 0 1 n-1
(b) Ex is the mean value of x's (in ensemble sense) for given nn

The first interpretation is obvious from the above note and the usage of
the fundamental theorem of expectation. The second interpretation is
based on the definition of the E operator. A related formalism is

If x=f(T) and the pdf of T is p^(h), then

(a) Ex = j f(h)p^(h)dh (over all possible values of h)

(b) Ex = hp (h)dh (over all possible values of h)

Note 3 (Detailed derivation of Ex(t))

In this note we find the expectation of x at any time instant t.
First we define rigorously the meaning of x(t). In Note 2, the sequence
{T } was defined; here, we associate the partial sums n

n-1
t = 7] T. n=1,2,...n i i=0

with {T } n
The above definition creates a new sequence, namely

t̂ » t^, •••»

For completeness, we define t^ =0 as the 'time origin'.

Now the following assumptions are made:
(a) t is a (fixed) positive number
(b) t is the largest t which is not less than t with 0<n<kk n = =

173

(c) h is the difference t-tk (greater than or equal to 0)

(d) x, (t) is given byk
x (t)= A(h)x k k

where A(.) is a given deterministic function.

The above assumptions are illustrated by the following figure

x, (t) k+1

k-1
h

(time)
t t t tk-1 k k+1

Figure 2: Derivation of Ex(t)

Notice that assumption (a) declares t to be a fixed number, assumption
(b) declares t as a random variable and assumption (c) k
means h is a random variable. In the following, we will calculate the
expectation of x (t). By definition,

E{x (t)} = /b dPr(the number x (t) lies in the interval (b,b+db)
k b k

= fb dPr(A(h)x belongs to (b,b+db))
J k

over all possible values of x^(t).

Because k is not fixed, the following relation is true:

Pr(A(h)x is in I) = Pr(A(h)x is in I) + Pr(A(h)x is in I) + ... k 0 1

174

for any interval I since the various events are mutually exclusive.
Then the previous equation yields

E{x (t)} = (V'bdPrC A(h)x is in (b,b+db) with t=t +h ANDk J n nb n=0
t is the maximum t. which is less than t) n 1

Next, we apply Bayes rule for the conditional expectations, namely,
Pr(A) = sum over all h of Pr(A|h)Pr(h)

and find
E{x (t)} = / • bJ*dPr(A(h)x is in (b,b+db) GIVEN h=a)•

J n=0 n
over b over a

. dPr(h is a number in the interval (a,a+da) and t=t+h)n
Because b appears only in the first probability, the following
integration is necessary

/ bdPr(A(h)x is in (b,b+db) GIVEN that h=a) =J n
over all b

/ - 1 - 1 - 1bdPr(x is in (A (a)b,A (a)b + d(A (a)b))n
over all b

A(a) / r dPr(x is in (r,r+dr)) = A(a)Ex n n
over all r

175

Now we may substitute this result into the original expectation to find

00 /«

E{x Ct)} / A(a)*Ex • dPr(h is in (a,a+da) and t=t +h)k L-‘ / n nn=o J
over all a

The probability that appears above is easily calculated by

dPr(h belongs to (a,a+da) and t=t +h) =n
Pr(having no other t in the interval (t ,t)) timesi n
dPr(t belongs to the interval (t-a-da, t-a)) n.

But,
Pr(having no other t in the interval (t , t))=i n
Pr(no T has value less than a=t-t)=n
1 - Pr(all T have values less than a) =

1 - FT(a)

And,

Pr(t belongs to (t-a-da, t-a)) = p (t-a;n)da n t
Substituting the last two expessions into the expectation of x, we find

r CD

Ex (t) =/ V A(a) Ex • (1 —F_(a)) • p(t-a;n) da k / > n T t
J n=0
over all a

The calculation of the integral can be simplified by using the
convolution theorem for the functions

A (t) = A(t)(1 —F (t)) F T

p (t;n)

over all a
where P (s;n) is the Laplace transform of p (t;n). Define, t t

EX(s) = L{ E{ x (t) } } n
then, a,

EX(s) = > (LA)(s) P (s;n) Ex
£-> F t nn=0

Calculation of the infinite summation is accomplished by using the fact

P (s;n) = pj(s)

and the definition of the Z transform of Ex ,n
CO

EX'(z) = Z{ E{ x } }
n n=0

= Y ex z7n Z_j n

Then,
*

EX(s) = LAp(s) • EX (z) evaluated at z=1/P (s)

Appendix IYb
On Kronecker Operations [4]

The Kronecker product (or direct product or lexicographic
multiplication) is defined in proposition 1. The defining equation

TS = AQB « = * [S3 = (A*B) [Q]

is of fundamental importance because it converts matrix equations to

177

simple linear vector equations. The symbols [Q], A*B, and <A> are also
defined in proposition 1. The reduced lexicographic multiplication is
discussed in proposition 2 and then several properties of the Kronecker
products are given. Following that the Kronecker sum A//B (or direct
sum) is defined and the property

exp(A#B) = exp(A) * exp(B)
is pointed out. The eigenvalues of the direct products and sums, which
play an significant role in determining the stability of variance
equations, are calculated. Finally, two applications illustrate the
usefulness of the direct operations.

Proposition 1 (Lexicographic Multiplication)

Let A, Q, B be three matrices of dimensions N by M, M by L and P by
L respectively, and S (N by P) be the product

TS = A Q B.

We also introduce the notation:

a) [Q] to mean a column of ML elements q in the order
i j

qir q12,’**q21’ q22 qML‘
That is, q is before q if the number (i-1)L+j is less thanij kl

(k-1)L+l. Notice that this happens if i is less than or equal to k and
j is less than 1.

Tb) [Q]’ to mean [Q] (vector of ML elements taken column by column).
c) A*B to mean a matrix of dimensions NP by ML consisting of blocks

a B i=1,2,...,N j=1,2,...,M.
U

(A*B is called the Kronecker product or the direct product of A

d) <A> to mean A#A (Notice that A need not be a square matrix).

Then:
1. [S] = (A*B) [Q]
2. [S]' = (B*A) [Q]»

T3. If S=AQA then [S]=<A>[Q].

Proof:
To prove (1) we use the Einstein summation notation for the product

TS = A Q B,
s. ,=a. (q ,b)ij lm ml jl

where 1 and m are dummy summation indices. Then,

Therefore,
[S] = matrix of blocks a B times [Q].

ij
This also means that the ij block of the matrix A*B is the block

a. .B ij
which proves part (1). Part (2) is proved using part (1) as follows:

iji iji iji iji iji

S=AQB then, S =B-Q-A and [S]=(B*A)[Q].
TUsing the definition [S]’=[S], the second assertion is proved. Part

(3) is a trivial case of part (1) using the notation (d)

Proposition 2 (The Reduced Lexicographic Multiplication)

180

Let Q be a symmetric M by M matrix, A be an N by M matrix, and
TS = A-Q-A.

Let us also use the notation:

a) [Q] to mean a column of M(M+1)/2 elements q in the order
r ij

Q 0 • • • Q 0 « « • Q • • • • 011 12 1M 22 2M MM
That is, [Q] can be generated from [Q] by deleting the elements with r

i>j.
b) <A> to mean the matrix <A> with the following modificatios:r
- Associate the rows of <A> with the elements of the [S] vector. The
indices of the tS] vector are 11, 12,..., 21, 22,...,ij,..; then delete
the rows of <A> corresponding to indices ij with i>j.)
- Associate the columns of <A> with the elements of the [Q] vector.
Then, replace the mn columns of <A> with m<n by the sum of the mn and nm
columns; then delete the nra columns.

Then:
[S] = <A> [Q]r r r

Proof:
The proof is based on the previous result [S] = <A>[Q]. Because Q is
symmetric, S is also symmetric. Therefore,

s =s.
ij Ji

This means that the ij-th and the ji-th equation of the system
[S]=<A>[Q], are the same. So we can ignore one of them, say the one
that i>j. This explains why we can delete the ij (with i>j) elements of
[S] and the ij (with i>j) rows of <A>. Also, because Q is symmetric

Following the rule that q should be deleted if m>n, the equationmn
below shows how the matrix <A> should be transformed so that the linear
system equations [S] = <A>CQ] will be true.

(nm column of <A>)q +(mn column of <A>)q +(additional clmns)nm mn
=(nm column of <A> PLUS ran column of <A>)q +(addit. columns)mn
This proves the proposition. The importance of the reduced
lexicographic multiplication is based on the reduction of the number of
the multiplications and additions. Many equations (in theorems 5,6, etc)
are written in terms of the lexicographic multiplication; some of them
satisfy the assumptions of the preceeding proposition, therefore the
reduced lexicographic multiplication can be used instead. The reader
should substitute the reduced form, when it is possible (despite the
fact we do not mention it there).

Properties of the Kronecker Product [4]

The following are true
1. (A+B)*C = A*C+B*C (distributive law)
2. A*(B*C) = (A*B)*C (associative law)
3. (A*B)(C*D) = (AC)*(BD)
4. (A *B)(A *B)...(A *B) = (A B)*(A B)*...*(A B)1 1 2 2 n n 11 2 2 n n
5. I *1 = In ra n+m

6. (A*B)“1= (A_1)*(B~1)
7. tr(A*B) = tr(A) tr(B)

3. |A*B| = IA In IBIm
The proofs of most of the above are based on the definition of the

182

direct product. Justification of (3), (4) and (6) follows.
Consider P and Q satisfying the equation

TP=(AC)Q(BD)

then,
[P]= (AC)*(BD)•[Q] (i)

But P can also be written as
T T

P=A(CQD)B
T TP=ARB with R=CQD

Writing P and R in lexicographic order, the above yields

[P]=(A*B)[R] with [R]=(C*D)[Q]
or

[P]=(A*B)(C*D)[Q] (ii)

Because P and Q were arbitrary, (i) and (ii) imply that
(AC)*(BD)=(A*B)(C*D).
Property (4) is proved by using finite induction of (3).
To prove (6) we verify that the product

(A*B) (A“V)

is equal to I by applying properties (3) and (5).

(A»B)(A~V) = (A*A_1)*(B B“1)=I *1 =1n m n+m
Kronecker Sums

Let A and B be two square matrices of dimensions n and m respectively.
The sum

A*I +1 *B n m

183

is called the Kronecker sum and it is denoted by the symbol A#B.
The following are true:

1. If X(t) and Y(t) are matrix functions of t satisfying the
differential equations

dX/dt = AX
dY/dt = BY

then: d(X*Y)/dt = (A#B) (X*Y)
2. exp(A#B)=exp(A)*exp(B)

The proof of 1. follows
D(X*Y)=DX*Y+X*DY=AX*Y+X*BY=AX*IY+IX*BY=(A*I)(X*Y)+(I*B)(X*Y)=(A#B)(X*Y)
where D=d/dt. Assertion 2. is proved by expanding both sides in Taylor
series and by writing M B explicitly [4].

Eigenvalues of Kronecker Products and Sums

Let A and B be two square matrices of dimension n and m respectively,
and assume (for simplicity) that both A and B have simple eigenvalues
a_,...,a and b ,...,b respectively. Then 1 n 1 m
1. A*B has as eigenvalues all possible products a b .

i J
2. M B has as eigenvalues all possible sums a.+b.

Proof of 1:
Let u and v be the eigenvectors corresponding to a and b . i j i j
Then,

Au = a u i i i
Bv = b v

j J j
so,

184-
X T xA u v B = a b u v

i j i J i j
or

T T(A*B)[u v] = a b [u v] i J i j i j
which verifies that A*B has eigenvalues all possible products a b

i J
Proof of 2:

Then,

T TAu v = a u v for all v
i j i i j j
X T T

u v B = b u v for all ui j i i j i

X H T
Au.v.I + Iu.v.B = (a.+b.) u.v. i J i J l j i j

x T
(A#B) [u v 3 = (a +b)[u v.]

i J i J i J
which proves that A#B has eigenvalues all the possible sums a +b .

i J
Applications

1. Solution of the Liapunov equation

Readily,

therefore,

TQ = AQA + P

[Q] = <A> CQ] + [P] r r r r

[Q] = (I-<A> T V] r r r
In order that the inverse exist, the eigenvalues of A must satisfy the
property

a.a. not equal to 1 for all i,j 1 J
Corrolary: If A is a strictly stable matrix (with eigenvalues inside the
unit circle), the recursive equation

185

Q =AQ AT+P n+1 n
converges for n-*- cd.

2. Solution of the reduced Riccati equation
TdQ/dt=FQ+QF +U(t)

Then,

dQ/dt=FQI+IQFT+U(t)
Therefore,

d[Q]/dt=(F//F) CQ]+[U]

The transition matrix of the above first order equation is

exp(F#F)t = exp(Ft)*exp(Ft)
Conditions for stability can be found by examining the sums of all the
possible combinations of the eigenvalues of F.

Example 1

This example is an application of proposition 1 (assertions 1 and 3).
It illustrates how to form the Kronecker product of two 3x3 matrices and
how to perform the lexicographic multiplication.

0 7 6 1 6 0 r \3 4 1
Let: A= 5 1 0 B= 1 0 4 Q= 2 1 0

COCOo 5 2 3' i 0 4 5k 4

The matrix S is defined by the product AQA. This product is

200 134 222

Q = 143 37 142
136 76 165

Following the rules of making the [S], A*B and [Q], we find

[S] =

/ t /*200 0 0 0 i 7 42 0 Ii 6 36 0 3
134 0 0 0 ; 7 0 28 | 6 0 24 4
222 0 0 0 1' 35 14 I21 , 30 12 18 1

-

143 5 30 0 I 1
|

6 0 i I 0 0 0 2
37 A*B= 5 0 20 | 1 0 4 | 0 0 0 [Q] = 1

142 25 10 15 | 5 2 3 ! 0 0 0 0
136 0 0 0 ! 8 48 0 1 t 3 18 0 0
76 0 0 0 I 8 0 32 | 3 0 12 4

165 0 0 0 I 40 16 24 | 15 6 9 5

Using the EASY interactive matrix operations program, we can verify that
the equality [S]=(A*B)[Q] is true.

187
Example 2

This example shows to things: (a) how to form the lexicographic product
of rectangular matrices and (b) how to form the reduced lexicographic
product. It follows the theory presented in proposition 2 and all the
notation used here is consistent with the theoretical proof.

1 2 5' 3 0 i

Let: A = 3 4 5 (N=2, M=3) and Q = 0 5 1 (3x3 symmetric)
7 1 8N /

The product S=AQA can be found in a straight forward manner:
313 468^

S = 468 695
- TThe lexicographic columns [S] AND [Q] and the product A*A can also be

found

[S3 =

313 1 2 5 2 4 10 | 5 10 25 s(1,1)
468 3 4 6 i 6 8 12 i ______I15 20 30 s(1,2)
468 A*A = 3 6 15 4 8 2C | 6 12 30 s(2,1)
695 9 12 18 ,12 16 24 j18 24 36 s(2,2)

>
[Q]T=|'3 0 7 ; 0 5 1 i

.
7 1 8]

c!1iqi2qi3 q21q22q23 q31q32q33
(the s(i,j) and q(i,j) are the elements of S and Q respectively). By
using EASY again, we can verify that [S]=(A*A)[Q]. By inspecting the
A*A matrix we can see some redundancy in the multiplications because of
symmetry. This point is exactly what the reduced lexicographic
multiplication is about. To form the reduced [S] and [Q] we delete the
s(i,j) and q(i,j) elements with i>j. The result is:

188

and

CQ]^=(3 0 7 5 1

[S]r=
313
468
695

qH qi2qi3 q22q23

8)

33

Since we deleted the s(2,1) element of [S]f (3rd row) we also delete the
3rd row of A*A. Since we deleted the q(2,1), q(3,1) and q(3,2) (3rd,
6-th and 7-th column) elements of [Q], we must also delete the 3-rd,

6-th and 7-th columns of A*A, after we add them to the (1,2), (1,3) and
(2,3) columns (that is, the 2-nd, 3-rd and 6-th). The result is:

A*A=r

1 4 10
3 10 21

9 24 36

4 20
8 32
16 48

25
30
36

s(1,1)
s(1,2)
s(2,2)

The result [S] = (A*A) [Q] can also be verified. Note that the 4x9 A*A r r r
matrix has now been reduced to 3x6.

189

Motes and References IV

[1] Papoulis Athanasios, Probability, Random Variables and Stochastic
Processes. New York: McGraw Hill, 1965.

[2] Hwei P. Hsu, Fourier Analysis. New York: Simon and Schuster,
1978.

[3] Wozencraft J.M., Irwin M. Jacobs, Principles of Communication
Engineering. New York: John Wiley and Sons, Inc., 1965.

[4] Kalman Ruldolf, Analysis and Synthesis of Randomly Sampled
Systems. Ph.D. Dissertation, Columbia University, 1957.

CONCLUSION

This dissertation has studied irregularly sampled systems. Both
nonuniformly sampled and randomly sampled systems have been analyzed in
time and frequency domain. Particular emphasis has been given to the
applicability of the theories in signal processing areas and modern
control. We have presented the results following a definition-theorem-
proof approach which is a precise and ellegant way of expressing the
theory. On the other hand, the various examples and simulations have
been written in a simplistic manner in order to show how the theory can

be applied to practical problems. Processing nonuniformly sampled data
is indeed possible and is not as hopeless as at first it might seem.

In the following, we review the material presented in this work and
we point out the main contributions to the area of irregular sampling.
Then we include an indication of where future work needs to be done to
extend the range of applicability of the results obtained.

Summary

In chapter I we have discussed a class of irregular sampling
sequences, namely periodic nonuniform sequences. Periodic nonuniform
sampling is interesting because we can modify the frequency domain
characteristics of the sampled signal by changing a few sampling
parameters. The importance of this work is two fold; first it unifies

190

191

a class of irregular sampling under a unique theoretical framework, and
second, it provides the analytic and synthetic tools for finding the
sampling laws that achieve certain design criteria.

Chapter II has extended the current available ARMA techniques to
nonuniformly sampled systems. Both coefficient estimation and missing
data interpolation are new results in this area.

Chapter III has presented three new points: An interpolation
theorem, sensitivity of the estimates and an iterative interpolation
algorithm. The above results are used to fill in (interpolate) missing
data of a bandlimited sampled signal. Because it is not necessary to
use a particular model for the time series, the techniques discribed can
be applied to a wide class of (bandlimited) sequences.

Chapter IV contains several new topics and a variety of extensions
to Kalman’s work. The propagation of the mean-values and the mean-
square values of the outputs of a randomly sampled system are the most
important. The usage of direct multiplication to simplify matrix
equations is not a new technique but the extensive usage in this
particular area has been of great importance. The idea of using the Z-
transforra in the expressions of the mean and variance simplifies the
results significally. Finally, the topic on power gain of randomly
sampled systems is a significant result in the area of random sampling
because it has been derived from a completely different route than the
existing results (by Leneman and Masry) in the literature.

We also consider the sofware support of the dissertation a
contribution to the system simulation and signal processing areas. The

192

fact that all the subroutines have been optimized from the memory
requirement viewpoint and they are running under a microcomputer
environment is the uniqueness of this work. Using the suggested
EASYPACK data type to represent array structures allows the user to
concentrate on the problem itself without worrying about the format
requirements of a specific language.

Trends and Future Extensions

Irregular sampling is a new area of research and there is much work
to be done. The topics with the most iteresting applications are
periodic nonuniform sampling and random sampling. Missing data problems
are also of great interest and have not been explored deeply enough.

Periodic nonuniform sampling can be used in many practical
situations to replace digital filters and achieve better frequency
domain characteristics. For that purpose, extensive simulations are
needed to verify that the required properties can be obtained.
Futherraore, stochastic properties of periodically sampled systems are
required to be found; the case of a random process sampled periodically
(using nonuniform patterns) has not been studied in this dissertation
but is of interest.

Problems associated with missing (or bad data) appear very often in
data acquisition systems, and it would be worthwhile to provide more
theoretical emphasis to their solution. In this dissertation we give
two approches to this class of problems (chapter II and III), but we
realize that futher refinements of the algorithms are necessary.

193

Finally, randomly sampled systems can be practically used only when
the synthesis problems (estimation and parameter determination from
external characteristics) are solved. Our work was limited to the
analysis problem which is only the first step toward the synthesis
problems.

APPENDIX

SOFTWARE SUPPORT

Outline of the Appendix
EASYPACK Documentation
EASYPACK Source Code
EASY: Matrix Reverse Polish Calculator
EASYPACK Command Summary
Matrix Reverse Polish Calculator: Command Summary

Outline of the Appendix
195

This appendix is devoted in describing the tools used for the
various simulations in this dissertation. Several main programs
(described in chapter II and III) use the programs described here to
perform most of the simulation objectives. Each main program plus the
routines of this appendix can run in almost any hardware environment
(including machines of 8 to 36 bits); the language used is FORTRAN-IV
with some minor I/O extentions.

A common requirement for all the simulations needed is the ability
to perform vector oriented operations; this is the main reason of
creating the EASYPACK subroutines. EASYPACK is a collection of
subroutines in a form of a library file, so that the user can call a
specific routine to perform a desired function.

A second program called EASY has been created to supplement the
user's tools; EASY is an interactive main program organized in Reverse
Polish Notation. It was primarily written to exercise and test the
EASYPACK features but it has been extended to include signal processing
algorithms commonly needed for simulations. Using EASY, one can solve a
(rather large) class of signal processing problems interactively with
not much programminng experience. We should also mention the fact that
both programs (EASYPACK and EASY) have been developed and operated in a
micro computer environment which shows the compactness of the code and
the minimal requirements.

The outline of the appendix follows. First we provide the
documentation of the EASYPACK routines; there, some examples of using
EASYPACK are given. Then we include the source code of the subroutines.
In sequence we provide the source code of the EASY main program. To use
EASY it is sufficient to know how to run a Hewlett Packard calculator
and to remember the EASYPACK features. Finally, a summary of all the
EASYPACK and EASY 'commands' is provided for futher reference.

196

1. EASYPACK Documentation

Introduction

EASYPACK is a set of FORTRAN-IV subroutines and functions to perform
matrix and vector operations. The package has been designed with
the following specifications:

(1) Each operation is performed by a routine with the minimum number
of arguments. This helps the readability of the main program
and reduces the number of possible errors.

(2) The subroutines check the dimensions of the arguments; if an
error is detected it is reported properly.

(3) The subroutines are optimized in terms of memory requirements.
They have been designed for micro- and mini- computer usage.
Machines of 8, 16 and 32 bits can easily run the code.
The execution speed is sacrificed only for checking purposes.

(4) EASYPACK arrays can be easily passed to existing FORTRAN programs
and FORTRAN arrays can be easily converted to EASYPACK format in
place (without wasting extra memory).

A new data structure for matrices (EASYPACK format) is used. In FORTRAN
an array of dimensions N by M declared with maximum row dimension IA,
occupies IA*M real number memory locations. In EASYPACK, an array A
of dimensions N by M is stored as a list of (N, M, A(1,1), A(2,1),...,
A(N,M)).

Usage

A typical main program using EASYPACK is given below

(1)
(2)
(2.1)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Dimension A(100), B(100), C(100)
Common maxwrk, WORK(100)
maxwrk=100
Call MINP(B, 'Enter matrix B$')
Call MINP(C, 'Enter matrix C$')

Call MUL(A, B, C)
Call GINV(B, B)

Call MPRN(A, 'This is the product B*C$')
Call MPRN(B, 'This is the inverse of B$')
END

197
Line (2) is necessary to declare some work space needed for EASYPACK
Line (2.1) is used to specify the available work space for the
subroutines. If an EASYPACK subroutine needs more work-space than
maxwrk, an error message is printed.
Notice the readability of the code, the simplicity of writing it and
the 'dimensionless1 calling of the subroutines.
The following example shows how to call the FORTRAN routine

SUBROUTINE EXAMPLE(ARRAY, IA, N, M, ...)

from a main program that uses matrices in EASYPACK format; that is,

Real A(100)
• • • • • •

CALL EXAMPLEC A(3), A(1), A(1), A(2), ...)

Note that despite the fact IA, N and M are of type integer, and
A is of type real, when EXAMPLE is called the dimensions are passed
as the addresses of AC 1) and A(2). (Note: assume that FORTRAN stores
the integers in two bytes and the reals in 4 bytes. Assume also that
ADDR is the address of A(1). Then, N is stored in ADDR and ADDR+1, and
M is stored at ADDR+3 and ADDR+4. In this manner, A(1) and A(2)
correspond to N and M respectively. All FORTRAN particularities are
handled by SETDIM, NDIM, MDIM and NM2DIM. In this manner the
portability of the package is established.)
The following example shows how to convert the FORTRAN array A
with dimension N, M, and maximum row dimension IA to EASYPACK format

CALL PACK(A, IA, N, M)

if A is in EASYPACK format,

N = NDIM(A) gives the row dimension of A
M = MDIM(A) gives the column dimension of A
s = ELE(A, i, j) gives s=A(i,j) and checks if the indices

i and j are inside the dimensions of A.
s = A(ii) where ii = 2+i+(NDIM(A)-1)*j, gives

the (i,j) element of A with no dimension
checking.

198
Conventions

The following conventions are used for the arguments of the
subroutines:
(1) A are result matrices in EASYPACK format
(2) B, C are parameter matrices in EASYPACK format
(3) X is a result vector
(4) Y, Z are parameter vectors
(5) s, p, q, are scalar quantities.
(6) When there are more than two arguments, in place operation

is allowed; for example, Call MUL(A, A, C) will perform
A:=A*C.

(7) When a routine is called, the arguments have the form
resultl, result2, ..., parameter1!, parameter2,...
or, destinationl, destination2, ..., sourcel, source2, ...

EASYPACK Utilities and I/O

Call PACK(A, IA,N,M)
A := packed form of A
On entry, A is a N by M matrix with max row dimension IA.
On exit, A is in EASYPACK format

N = NDIM(B), M = MDIM(B), NM2 = NM2DIMC B)
Return the number of rows (N), the number of columns (M),
and the total number of elements (N*M+2) of the matrix B.
It is assumed that B is in EASYPACK format.

Call SETDIMC A, N, M)
Redefines A to new dimensions N by M.
On entry and on exit, A is in EASYPACK format.

s = ELE(B, i, j)
Returns s:=B(i,j) when B is in EASYPACK format.

Call MINP(A, lcomment$l)
Inputs the matrix A in EASYPACK format.
Prints the comment first, then asks for dimensions and
finally reads the matrix from the terminal.
Checks for valid dimensions greater then 1.

Call MPRNC A, ,comment$l)
Prints the matrix A. (A in EASYPACK format)
It prints the comment first, then the dimensions and
finally the matrix row by row.
The maximum number of elements per row is 20.

Call ALTER(A, lcomment$')
Used to correct a matrix A. (A in EASYPACK format)
Prints the comment, then asks for (i,j) indices;
prints that element and allows alterations.
If j is not given, 1 is assumed. Use i=0 to exit.
No checking if i and j are inside the dimensions of A

Call MGET('filename.ext$*, A)
Reads A from the (binary) filename given.
A in EASYPACK format
Calls RDMBIN(,filename$,t A, N, M)

Call MSTOREC 1 filename.ext$', A)
Stores A in the filename given. Binary form is used.
A in EASYPACK format
Calls WRMBIN(,filename$', A, N, M)

Call RDCBINC 'filename.ext$', X, N)
Reads the vector X(1 to N) from the given binary file

Call WRCBINC 'filename.ext$•, X, N)
Writes the vector X(1 to N) to the given binary file.

EASYPACK matrix operations and functions

Call UNITC A, N)
Defines A to be the unity matrix N by N.
A in EASYPACK format

Call ZER0(A, N, M)
Defines A to be the zero matrix N by M.
A in EASYPACK format

Call RAMPC A, N)
Defines A to be N by 1 with elements 0, 1, 2, ..., N-

A in EASYPACK format

Call EQU(A, B)
Equates A to B.
A and B in EASYPACK format

Call ADD(A, B, C)
Matrix addition A:=B+C
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SUB(A, B, C)
Matrix subtraction A:=B-C
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SADD(A, B, s, C)
Performs the operation A:=B+sC
A, B, C in EASYPACK format
Checks if B and C have the same dimensions.

Call SCALE(A, s, B)
Scales B by s; that is A:=sB
A, B in EASYPACK format

Call TRN(A, B)
Finds the transpose of B, that is A:=(B transpose).
A, B in EASYPACK format

Call MUL(A, B, C)
Finds the matrix product A:=B*C
Checks if B and C are comformable.
A, B, C in EASYPACK format
A common block of size A is needed.

Call MULT(A, B, C)
Performs the multiplication A:=B * (transpose of C)
Checks if B and C-transpose are comformable.
A, B, C in EASYPACK format
A common block of size A is needed

Call QUA(A, B, C)
Finds the matrix A:= (transpose of B)*C*B.

Checks if B-transpose, C and B are comformable.
A, B, C in EASYPACK format
A common block of size A is needed.

Call GINV(A, B)
A := generalized inverse of B
Common: the size of B.
In place inversion is allowed, i.e. Call GINV(A, A)
A, B in EASYPACK format.
No dimension checking.
B can be N by M with N>M but N<30. Least squares solution.
If B is singular, the routine prints the rank of B and the
pseudo inverse is calculated.

Call PARK A, B, N1,N2,M1,M2)
Creates matrix A by extracting the N1...N2 rows and
M1...M2 columns of B.
In place operations are NOT allowed.
A, B in EASYPACK format
No dimensional checking takes place.

Call AUGM(A, N, M, B)
Augments matrix A by inserting matrix B. The upper left
element of A where B is substituted has indices N, M.
In place augmentation is NOT allowed.
A, B in EASYPACK format
Checks if the dimensions of B 'fit1 in A.

s = XN0RM1(B)
Finds the 1-norm of a square matrix B; that is,
s is the maximum sura of the absolute values of the elements
of the columns of B.
B in EASYPACK format

s = XNORM(B)
Finds the infinity norm of a square matrix B; that is,
s is the maximum sum of the absolute values of the elements
of the rows of B.
Note that XNORM(B)=XN0RM1(B-transpose).
B in EASYPACK format

EASYPACK Vector Operations and Functions

Call VEQU(X, Y, N)
Equates X and Y; X:=Y (1 to N).

Call VSWAP(X, Y, N)
Swaps the X and Y vectors, that is X:=Y and Y:=X.

Call VZERO(X, N)
Defines a zero vector of N elements.

Call VSCALE(X, s, N)
Scales X in place, that is, X:=sX

Call VSADDC X, s, Y, N)
Performs the vector addition X:=X+sY.

s = VDOT(Y, Z, N)
Finds the dot product of Y and Z. That is,
s:=(Y-transpose)*Z.

s = VMIN(Y, N)
Finds the minimum element of Y from 1 to N.

s = VMAX(Y, N)
Finds the maximum element of -Y from 1 to N.

s = VN0RM1(Y, N)
Finds the 1-norm of the vector Y; that is the sum of the
absolute values of the elements of Y.

s = VNORM(Y, N)
Finds the infinity norm of the vector Y; that is, s equals
to the element of Y with the largest absolute value.

Call CFFT(X, Y, N)
Performs in place complex FFT transform on the X+jY time
3eries. N must be a power of 2.

Call IFFT(X, Y, N)
Performs in place the inverse FFT transform. N must be a
power of 2.

Call MAGN(X, Y, N)
Converts the X+jY complex vector of N elements to polar
coordinates. The magnitude is passed back in X and the
phase is passed in Y (in radian).

Call RECK X, Y, N)
Converts the polar coordinates X*exp(jY) to rectangular
coordinates X+jY.

EASYPACK scalar operations

i = IGET(1comment$')
Print the comment and wait till an integer is typed

r s RGET(,comment$')
Print the comment and wait till a real is typed.

Call SGET(1comment$', a, N)
Read the array aC1 to N) using A1 format

Call PRN(,comment$,)
Print the comment.

Call IPRN(i, lcomment$,)
Print the integer i, then the comment (decimal form).

Call RPRN(r, ,comment$l)
Print the real r, then the comment

Call HPRN(i, ,comment$,)
Print the real i in hexadecimal form.

Call GOPEN(i, ’filename$')
Open a file, i is the channel number

a = DEG(x), a = RAD(x), a = PI(b)
DEG converts x (in rad) to degrees
RAD converts x (in degrees) to rad.
PI returns a := b times pi.

204

2. EASYPACK Source Code
C--- C
C EASYPACK Rev 2.0, 2.1, 2.2 C
C C
C Common block /SCRACT/ of 10 integer places C
C is used to save some memory for local variables. C
C Rev 2.2 uses maxwrk to test available work space C
C corrects the problem with MGET and adds C
C routine RECT and VSWAP. C
C C
C Common block WORK is used as a work space. C
C C
C External Calls: PRN, IPRN, GOPEN C
C C
C George Kontopidis, March 81 C
C--------------------------------------- C
C
C GINV
C

SUBROUTINE GINV(A,B)
DIMENSION A(1),B(1)
COMMON maxwrk,W(1)
N = NDIM(B)
M = MDIM(B)
If(maxwrk.LT.N*M) Call PRN('Small wrksp for GINV$')
CALL EQU(W.B)
CALL GMINV(W(3),N,N,M, A,MR)
Call PACKC A, N,M,N)
RETURN
END

C
C GMINV
C

SUBROUTINE GMINV(A,IDIM,NR,NC,U,MR)
C
C Rust, B., Burrus, W.R. and Schneeberger, C., 'A Simple Algorithm
C for Computing the Generalized Inverse of a Matrix', Comm. ACM
C Vol. 9, No. 5, May 1966.
C

DIMENSION A(1),U(1),S(30)
C

205
IDIM1=IDIM+1
TOL=1.E-14
ADV=1.E-24
MR=NC
NRM1=NR-1
TOL1=0.
JJ=1

C
DO 10 J=1,NC

S(J)=VDOT(A(JJ),A(JJ),NR)
IF(S(J).GT.T0L1) T0L1=S(J)
JJ=JJ+IDIM

10 CONTINUE
C

T0L1=ADV*T0L1
ADV=T0L1

C
JJ=1
DO 100 J=1,NC

FAC=S(J)
JM1=J-1
JRM=JJ+NRM1
JCM=JJ+JM1
DO 20 I=JJ,JCM

U(I)=0.
20 CONTINUE

U(JCM)=1.0
IF(J.EQ.1) GO TO 54
KK=1
DO 30 K=1,JM1

IF(S(K).EQ.1.0) GO TO 30
TEMP=-VDOT(A(JJ),A(KK),NR)
CALL VSADD(U(JJ),TEMP,U(KK),K)
KK=KK+IDIM

30 CONTINUE
DO 51 L=1,2

KK=1
DO 50 K=1,JM1

IF(S(K).EQ.O.) GO TO 50
TEMP=-VDOT(A(JJ),A(KK),NR)
CALL VSADD(A(JJ),TEMP,A(KK),NR)
CALL VSADD(U(JJ),TEMP,U(KK),K)

20 6

50
51
C

54

55

C

65

70

72
75
C

80
C

85

100
C

110

KK=KK+IDIM
CONTINUE

CONTINUE

TOL1=TOL*FAC+ADV
FACsVDOT(A(JJ),A(JJ),NR)
IF(FAC.GT.TOLI) GO TO 70
DO 55 I=JJ,JRM
A(I)=0.
S(J)=0.

KK=1
DO 65 K=1,JM1

IF(S(K).EQ.O.) GO TO 65
TEMP=-VDOT(U(KK),U(JJ),K)
CALL VSADD(A(JJ),TEMP,A(KK),NR)
KK=KK+IDIM

CONTINUE
FAC=VDOT(U(JJ),U(JJ),J)
MR=MR-1
GO TO 75
S(J)=1.0
KK=1
DO 72 K=1, JM1

IF(S(K).EQ.1.) GO TO 72
TEMP=-VDOT(A(JJ),A(KK),NR)
CALL VSADD(U(JJ),TEMP,U(KK),K)
KK=KK+IDIM

CONTINUE
FAC=1./SQRT(FAC)

DO 80 I=JJ,JRM
A(I)=A(I)*FAC

DO 85 I=JJ,JCM
U(I)=U(I)*FAC

JJ=JJ+IDIM
CONTINUE

IFCMR.EQ.NR.OR.MR.EQ.NC) GO TO 120
WRITEC5,110) NR,NC,MR
FORMAT(' ’,13,1HX,I2,8H M:RANK,12)

207

120 NEND=NC*IDIM
C

JJ=1
DO 135 J=1,NC

DO 126 1=1,NR
II=I-J
S(I)=0.
DO 125 KK=JJ,NEND,IDIM

IK=II+KK
S(I)=S(I)+A(IK)*U(KK)

125 CONTINUE
126 CONTINUE

II=J
DO 130 1=1,NR

U(II)=S(I)
II=II+IDIM

130 CONTINUE
JJ=JJ+IDIM1

135 CONTINUE
RETURN
END

C
C PACK
C

SUBROUTINE PACK(A,IA,N,M)
DIMENSION A(1)
COMMON/SCRACT/NM,I,J,I1,12,NOTH(5)
NM=N»M

C
C COMPRESS THEM IN PLACE
C

DO 10 J=1,M
DO 10 1=1,N

11=I+(J-1)*N
I2=I+(J-1)*IA
A(11)=A(12)

10 CONTINUE
C
C SHIFT BY TWO
C

DO 20 J=1,NM
I=NM+1-J

208

12=1+2
A(I2)=A(I)

20 CONTINUE
CALL SETDIM(A,N,M)
RETURN
END

C
C ALTER
C

SUBROUTINE ALTER(A,COMMEN)
DIMENSION A(1)
COMMON/SCRACT/ I,J,II,NOTH(7)
CALL PRN(COMMEN)

1 WRITE(5,100)
READ(5,200) IfJ
IF(I.LE.O) RETURN
IF(J.EQ.O) J=1
II=2+I+(J-1)*NDIM(A)
WRITE(5,300) I,J,A(II)
READ(5,400) A(II)
GO TO 1

10 RETURN
C
100 FORMAT(1 Enter indices (0 to exit): ')
200 Format(216)
300 FORMAT(' Element (',14,1,',14,') =',014.7,’ Enter value: ')
400 FORMAT(1G14.7)

END
C
C MGET
C

SUBROUTINE MGET(FILE, A)
DIMENSION A(1), FILE(1)
CALL RDMBIN(FILE, A(3), A(1), A(2))
RETURN
END

C
C MSTORE
C

SUBROUTINE MSTORE(FILE,A)
DIMENSION A(1), FILE(1)
CALL WRMBIN(FILE, A(3), A(1), A(2))

209
RETURN
END

C
C UNIT
C

SUBROUTINE UNIT(A,N)
DIMENSION A(1)
COMMON/SCRACT/I,NN,NOTH(8)
NN=N»N
CALL SETDIM(A,N,N)
CALL VZERO(A(3),NN)
DO 20 1=1,N

NN=2+I+(I-1)*N
A(NN)=1.

20 CONTINUE
RETURN
END

C
C ZERO
C

SUBROUTINE ZEROC A,N,M)
DIMENSION A(1)
COMMON/SCRACT/NM,I,NOTH(8)
CALL SETDIM(A,N,M)
NM=N»M
CALL VZER0(A(3),NM)
RETURN
END

C
C RAMP
C

SUBROUTINE RAMP(A,N)
DIMENSION A(1)
COMMON /SCRACT/I,12,N0TH(8)
CALL SETDIM(A,N,1)
DO 10 1=1,N

12=1+2
A(I2)=I-1

10 CONTINUE
RETURN
END

C

210
C—
C

100

500

600

C
C—
C

1

200

2

50
400

C

■MPRINT

SUBROUTINE MPRN(A,COMMEN)
DIMENSION A (1) ,COMMEN(1)
COMMON/SCRACT/N, M , 1, 11,12, K ,NOTH(4)
CALL PRN(COMMEN)
N=NDIM(A)
M=MDIM(A)
WRITE(5,100) N,M
FORMATC Dimensions: ' ,16,' by ',16)
DO 500 1=1,N

11=2+1
I2=2+I+(M-1)*N
WRITE(5,600) I,(A(K),K=I1,I2,N)

CONTINUE
CALL CRLF
RETURN
FORMATC 1,14,': 1,20G10.3)
END

■MINPUT

SUBROUTINE MINP(A,COMMEN)
DIMENSION A(1),COMMEN(1)
COMMON/SCRACT/ N,M,I1,I2,K,N0TH(5)
CALL PRN(COMMEN)
CALL PRN('Type dimensions: $')
READ(5,200) N,M
FORMAT(216)
IF(N*M) 1,1,2
CALL PRN('Type now the matrix row by row $')
Call CRLF

DO 50 1=1,N
11=2+1
12=2+1+(M-1)*N
READ(5,400) (A(K),K=I1,I2,N)
CONTINUE

FORMAT(20G14.7)
CALL SETDIM(A,N,M)
RETURN
END

211

C
C DEG
C

REAL FUNCTION DEG(X)
DEG=180.*X/PI(1.)
RETURN
END

C
C RAD
C

REAL FUNCTION RAD(X)
RAD=X«PI(1.)/180.
RETURN
END

C
C PI

s C
REAL FUNCTION PI(S)
DATA PII/3.141592654/
PI=S*PII
RETURN
END

C
C EQU
C

SUBROUTINE EQU(A.B)
DIMENSION A(1),B(1)
COMMON /SCRACT/NM2,NOTH(9)
NM2=NM2DIM(B)
CALL VEQU(A(1),B(1),NM2)
RETURN
END

C
C ADD
C

SUBROUTINE ADD(A,B,C)
CALL SADD(A,B,1. ,C)
RETURN
END

C
C SUB
C

SUBROUTINE SUB(A,B,C)
CALL SADD(A,B,-1.,C)
RETURN
END

C
C SADD
C

SUBROUTINE SADD(A,B,S,C)
DIMENSION A(1),B(1),C(1)
COMMON/SCRACT/I,J,K,NB,MB,NM2,NOTH(4)
NB=NDIM(B)
MB=MDIM(B)
IF((NB-NDIM(C))*(MB-MDIM(C))) 100,200,100

200 NM2=NB*MB+2
DO 10 1=3,NM2

10 A(I)=B(I)+S»C(I)
CALL SETDIM(A ,NB,MB)
RETURN

100 Call PRNC’Dim Err SADD$')
RETURN .
END

C
C SCALE
C

SUBROUTINE SCALE(A,S,C)
DIMENSION A(1),C(1)
COMMON /SCRACT/M,NM,I,N ,NOTH(6)
N=NDIM(C)
M=MDIM(C)
NM=NM2DIM(C)
DO 10 1=3,NM

10 A(I)=S*C(I)
CALL SETDIM(A,N,M)
RETURN
END

C
C MULT
C

SUBROUTINE MULT(A,B,C)
CALL TRN(A,C)
CALL MUL(A,B,A)
RETURN

213

END
C
C QUA
C

SUBROUTINE QUA(P,A,Q)
CALL TRN(P,A)
CALL MUL(P,Q,P)
CALL MUL(P,A,Q)
RETURN
END

C
C MUL
C

SUBROUTINE MUL(A,B,C)
DIMENSION A(1),B(1)tC(1)
COMMON maxwrk, W (1)
COMMON /SCRACT/ 11,M1,M2,N2,ItJ,K,NOTH(3)
N1=NDIM(B)
M1=MDIM(B)
M2=MDIM(C)
If (maxwrk.LT.N1*M2) Call PRN('Small wrksp for MUL$')
IF(M1-NDIMCC)) 200,100,200

100 DO 20 1=1,N1
DO 20 K=1,M2

SUMsO.O
DO 10 J=1,M1

10 SUM=SUM+ELE(B,I,J)*ELE(C,J, K)
I1=I+(K-1)*N1

20 W(I1)=SUM
I1=N1*M2
CALL SETDIM(A,N1,M2)
CALL VEQU(A(3),W(1),11)
RETURN

200 Call PRN('Dim Err MUL$')
RETURN
END

C
C TRN
C

SUBROUTINE TRN(A.B)
DIMENSION A(1),B(1)
COMMON maxwrk,W (1)

214

COMMON /SCRACT/ N,M,I,J,I1,NOTH(5)
N=NDIM(B)
M=MDIM(B)
If (maxwrk.LT.N*M) Call PRNCSmall wrksp for TRN$')
DO 10 1=1,N
DO 10 J=1,M

11=J+(I-1)*M
W(I1)=ELE(B,I,J)

10 CONTINUE
CALL VEQU(A(3),W(1),I1)
CALL SETDIM(A,M,N)
RETURN
END

C
C PART
C

SUBROUTINE PART(S,X,N1,N2,M1,M2)
DIMENSION X(1),S(1)
COMMON/SCRACT/I,J,K,NOTH(7)

K=3
DO 10 J=M1,M2
DO 10 I=N1,N2

S(K)=ELE(X,I,J)
K=K+1

10 CONTINUE
I=N2-N1+1
J=M2-M1+1
CALL SETDIM(S,I,J)
RETURN
END

C
C AUGM
C

SUBROUTINE AUGM(S,N,M,X)
DIMENSION SCI)tX(1)
COMMON /SCRACT/ 111tMX,NX,NS,I1,1,J,J1,NOTH(2)
NX=NDIM(X)
MX=MDIM(X)
NS=NDIM(S)
IF(N+NX-1-NS) 1,1,2

1 IF(M+MX-1-MDIM(S)) 3,3,2
3 11 =N

215
DO 20 1=1,NX

J1=M
DO 10 J=1,MX

II1=2+I1+(J1-1)*NS
S(II1)=ELE(X,ItJ)
J1=J1+1

10 CONTINUE
11=11+1

20 CONTINUE
RETURN

2 Call PRN('Dim Err AUGM$')
RETURN
END

C
C XNORM1---
C
C 1-NORM OF A SQUARE MATRIX
C

REAL FUNCTION XNORM1(A)
DIMENSION AC 1)
COMMON/SCRATC/ N,I,J,VSUM,TEMP,J1.NOTH(2)
N=NDIM(A)
TEMP=0.0

DO 5 J=1,N
J1=3+(J-1)*N
VSUM=SUMABS(A(J1),1,N)
IF(VSUM.GE.TEMP) TEMP=VSUM

5 CONTINUE
XNORM1=TEMP
RETURN
END

C
C XNORM---
C
C INFINITY NORM OF A REAL SQUARE MATRIX
C

REAL FUNCTION XNORM(A)
DIMENSION A(1)
COMMON/SCRATC/I,N ,12.TEMP,VSUM,11,NOTH(2)
TEMP=0.0
N=NDIM(A)

DO 5 1=1,N

216
12=1+2
VSUM=SUMABS(A(I2),N,N)
IF(VSUM.GE.TEMP) TEMP=VSUM

5 CONTINUE
XNORM=TEMP
RETURN
END

C
C VEQU
C

SUBROUTINE VEQU(A,B,N)
DIMENSION A(1),B(1)
DO 10 1=1,N

10 A(I)=B(I)
RETURN
END

C
C VZERO
C

SUBROUTINE VZERO(X.N)
DIMENSION X(1)
DO 10 1=1,N

10 X(I)=0.
RETURN
END

C
C VS ADD--
C

SUBROUTINE VSADD(A,C1,B,N)
DIMENSION A(1),B(1)
DO 1 1=1,N

1 A(I)=A(I)+C1*B(I)
RETURN
END

C
C VDOT
C

REAL FUNCTION VDOT(X,Y,N)
DIMENSION X(1),Y(1)
VD0T=0.
DO 10 1=1,N

10 VDOT=VDOT+X(I)*Y(I)

217

RETURN
END

C
C VMIN, VMAX
C

REAL FUNCTION VMIN(X,N)
DIMENSION X(1)
VMIN=1.E+30
DO 100 1=1,N
VMIN=AMIN1(VMIN, X(I))

100 CONTINUE
RETURN
END

C
REAL FUNCTION VMAX(X,N)
DIMENSION X(1)
VMAX=-1.E+30
DO 100 1=1,N
VMAX=AMAX1(VMAX, X(I))

100 CONTINUE
RETURN
END ..

C
C VN0RM1--
C .
C VECTOR NORM-1
C

REAL FUNCTION VN0RM1(A,N)
VNORM1=SUMABS(A,1,N)
RETURN
END

C
C VNORM
C
C VECTOR NORM INFINITY
C

REAL FUNCTION VNORM(A,N)
DIMENSION A(1)
VN0RM=0.
DO 5 1=1,N
VNORM=AMAX1(VNORM, ABS(A(I)))

5 CONTINUE

1

218

RETURN
END

C
C VSWAP
C

Subroutine VSWAPC XtY,N)
Dimension X(1),Y(1)
Do 10 i=1,N

temp = X(i)
X(i) = Y(i)
Y(i) = temp

10 Continue
Return
End

C
C IFFT(X,Y,N)
C

Subroutine IFFT(X,Y,N)
Dimension X(1)tY(1)
s1=1./float(N)
s2=-s1
Call VSCALE(Y,s2,N)
Call VSCALE(X,s1,N)
Call CFFT(X.Y.N)
s1=-1.
Call VSCALEC Y,s1,N)
Return
END

C
C VSCALE(X.s.N)
C

Subroutine VSCALE(X,s,N)
Dimension X(1)
Do 10 i=1,N

10 X(i)=s*X(i)
Return
END

C
C COMPUTES THE COMPLEX FFT A TIME SERIES
C

SUBROUTINE CFFT(DATA1, DATA2, N)
C

219

DIMENSION DATQK1), DATA2(1)
PI=4.*ATAN2(1., 1.)
FN=N

C
C... THIS SECTIONOPUTS TATA IN BIT-REVERSED ORDER
C

J=1
DO 80 1=1,N

C
C... AT THIS POINT, I AND J ARE A BIT REVERSED PAIR
C

IF(I-J) 30,40,40
C
C... EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J
C
30 TEMP1=DATA1(J)

TEMP2=DATA2(J)
DATA1(J)=DATA1(I)
DATA2(J)=DATA2(I)
DATA1(I)=TEMP1
DATA2(I)=TEMP2

C
C... IMPLEMENT J=J+1 BIT REVERSED COUNTER
C
40 M=N/2
50 IF (J-M) 70, 70, 60
60 J=J-M

M=(M+1)/2
GOTO 50

70 J=J+M
80 CONTINUE
C
C... NOW COMPUTE THE BUTTERFLIES
C

MMAX=1
90 IF (MMAX-N) 100,130,130
100 ISTEP=2*MMAX

DO 120 M=1,MMAX
THETA=PI»FLOAT((-1)*(M-1))/FLOAT(MMAX)
W1=C0S(THETA)
W2=SIN(THETA)

C

DO 110 I=M,N,ISTEP
J=I+MMAX
TEMPI=W1*DATA1(J)-W2*DATA2(J)
TEMP2=W2*DATA1(J)+W1*DATA2(J)
DATA1(J)=DATA1(1)-TEMP1
DATA2(J)=DATA2(I)-TEMP2
DATA1(1)=DATA1(1)+TEMP1
DATA2(I)=DATA2(I)+TEMP2

110 CONTINUE
120 CONTINUE

MMAX=ISTEP
GOTO 90

130 RETURN
END

C
C FINDS THE MAGNITUDE AND THE PHASE OF COMPLEX DATA
C
C... ENTER WITH THE DATA IN X, Y ARRAYS OF LENGTH N. RETURNS
C WITH THE MAGNITUDE IN X AND PHASE IN Y
C

SUBROUTINE MAGN(X, Y, N)
DIMENSION X(1), Y(1)

C
DO 10 1=1, N
TEMP=X(I)

C
X(I)=SQRT(X(I)»X(I) + Y(I)*Y(I))
IF(TEMP.NE.O.) Y(I)=ATAN2(Y(I) , TEMP)

C
10 CONTINUE

RETURN
END

r
C RECT--
C
C converts to rectangular coordinates
C

Subroutine RECT(X,Y,N)
Dimension X(1),Y(1)
Do 10 i=1,N
amag = X(i)

X(i) = araag * cos (Y(i))
Y(i) = amag * sin (Y(i))

10 Continue
Return
End

C
C SUMABS— -
C
C FINDS THE SUM OF THE ABSOLUTE VALUES OF A VECTOR
C

REAL FUNCTION SUMABS(V,INC,L)
DIMENSION V(1)
TEMP=0.
J=1+(L-1)*INC

DO 5 1=1,J,INC
TEMP =TEMP+ABS(V(I))

5 CONTINUE
SUMABS=TEMP
RETURN
END

C
C ELE
C

REAL FUNCTION ELE(A,I,J)
DIMENSION A(1)
IPOS=NDIM(A)
IF(I.GT.IPOS) CALL PRNCELE err: i out of range$f)
IF(J.GT.MDIM(A)) CALL PRNCELE err: j out of range$')
IP0S=2+I+(J-1)*IPOS
ELE=A(IPOS)
RETURN
END

C
C NDIM, MDIM, NM2DIM
C

INTEGER FUNCTION NDIM(IA)
NDIM=IA
RETURN
END

INTEGER FUNCTION MDIM(IA)
DIMENSION IA(3)

222

MDIM=IA(3)
RETURN
END

INTEGER FUNCTION NM2DIM(IA)
DIMENSION IA(3)
NM2DIM=IA(1)*IA(3)+2
RETURN
END

C
C SETDIM
C

SUBROUTINE SETDIM(IA,N,M)
DIMENSION IA(3)
IA(1)=N
IA(3)=M
RETURN
END

C
C READ A COLUMN FROM A BINARY FILE
C
C THE FILE IS OPENED AND AFTER READING IT IS
C CLOSED.
C

SUBROUTINE RDCBIN(FILE,DATA,N)
CALL RDMBIN(FILE,DATA,N,M)
RETURN
END

C
SUBROUTINE RDMBIN(FILE,DATA,N,M)
DIMENSION DATA(1),BUFFER(32)
LOGICAL FILEO)

C
C OPEN THE FILE AND READ THE DATA
C

CALL GOPEN(1,FILE)
IREC=0
READ(1,REC=1,ERR=2,END=1) BUFFER
N=BUFFER(1)
M=BUFFER(2)
NM=N#M

C

223
C READ THE ACTUAL DATA
C

IREC=2
51 READ(1,REC=IREC,ERR=2,END=1) BUFFER

DO 56 1=1,32
11=(IREC-2)*32+1
If (i1.GT.NM) Go to 3
DATA(11)=BUFFER(I)

56 CONTINUE
C

IREC=IREC+1
IF(I1.LT.NM) GO TO 51
ENDFILE 1
RETURN

1 CALL IPRN(IREC,’=(record numb) passes the end of file mark$')
ENDFILE 1
RETURN

2 CALL IPRN(IREC,'=(record numb) error in reading binary file$')
3 ENDFILE 1

Return
END

C
C WRITE BINARY FILE
C

SUBROUTINE WRCBIN(FILE,DATA,N)
CALL WRMBIN(FILE,DATA,N,1)
RETURN
END

SUBROUTINE WRMBIN(FILE,DATA,N,M)
DIMENSION DATA(1),BUFFER(32)
LOGICAL FILE(1)

C
CALL GOPEN(2,FILE)
BUFFER(1)=N
BUFFER(2)=M
DO 10 J=3,32

10 BUFFER(J)=0.
WRITE(2,REC=1,ERR=2) BUFFER

C
IREC=2

51 DO 56 1=1,32

22^

11=(IREC-2)*32+1
BUFFER(I)=DATA(11)

56 CONTINUE
C

WRITE(2,REC=IREC,ERR=2) BUFFER
IREC=IREC+1
IF(I1.LT.N«M) GO TO 51
ENDFILE 2
RETURN

2 Call IPRN(IREC,'=error in writting this record number$')
ENDFILE 2
Return
END

C
C READ A NUMBER FROM BINARY FILE
C
C Usage: A=DSKRD(index, device-number)
C

FUNCTION DSKRD(I,IDEV)
DIMENSION BUFFER(32)
IREC=d-1)/32 + 1
IPOS=I-(IREC-1)«32
IREC=IREC+1
READ(IDEV,REC=IREC,ERR=2,END=1) BUFFER
DSKRD=BUFFER(IPOS)
RETURN

1 CALL IPRN(I,'=passes the end of file mark$')
RETURN

2 CALL IPRN(I,'=error in reading binary file$')
Return
END

225
3. EASY; Matrix Reverse Polish Calculator

I - - - - - - - - _c
Rev 1.0, 1.1 C
G.K March 81 c

- - - - - - - - - c

Dimension X(100),Y(100),Z(100),T(100)
Dimension R1(100),R2(100)
Logical file(20)
Real table(52)
Common maxwrk,W(100)
Common /regX/ X
Common /regY/ Y
Common /regZ/ Z
Common /regT/ T

C
Data table/

1 'minp' ,'mprn' ,'alte','mget', 'msto' , 'map ','rot ', 'unit
c
r

10 20 30 40 50 60 70 80
L*

2 1 zero1,1 add 1,1 sub 1,'seal', 'xchg' , 'trn ','mul ','tmul
c
n

90 100 110 120 130 140 150 160
U

3 'mult' ,'ginv' ,'cfft','ifft', 'magn' , 'max ','min ','help
c
n

170 180 190 200 210 220 230 240

4 'in *,'x ' *V 1t y »'z ',•t ', 'get ','save' , '1
c
n

10 20 21 22 23 40 50 80
0

5 • + • »_ i• ,'xy 'xz ','xt ',4H' i * t9 ,4H' *
C
r

100 110 130 131 132 140 150 160
\J

6 4H*' t i «♦ '# '* " 9 ' 0 ', 'stol', 're d ','push' ,'plot
c 170 180 120 90 250 260 270 280
C

7 'sto2','rec2',' ','rect'/
C 290 300 001 310
C
C initiation
C

maxwrk=100

226

CALL PRN(' Matr
Call PRN(' George
Call CRLF
NC=52
i=5
Call ZER0(X.i.i)
Call ZER0(Y.i.i)
Call ZER0(Z.i.i)
Call ZER0(T.i.i)
Call ZER0(W.i.i)

Apr 81, Rev 1.1$')

C
C main prompting loop
C
1 Call PRN('ready... $')

Read(5,3000) cmd
3000 Format(A4)
C
C... search for command pointer
C

Do 2 i=1,NC
2 If(crad.EQ.table(i)) Go to 3

Call PRN('Illegal Command$')
Go to 1

C
C... dispatch'
C
3 Goto (10, 20, 30, 40,, 50,, 60,, 70,, 80,

1 90, 100, 110, 120,,130,,140,,150,,160,
2 170, 180, 190,200,,210,,220,,230,,240,
3 10, 20, 21, 22,, 23,, 40,, 50,, 80,
4 100, 110, 130, 131,,132,,140,,150,,160,
5 170, 180, 120, 90,,250,,260,,270,,280,
6 290,300, 1,310),i

PAUSE EASY??
C
C minp, in
10 Call PUSH

Call MINP(X.’X matrix$')
Go to 1

C
C mprn, x
20 CALL MPRNC X,'X matrix$')

Call MPRNC Y,'Y matrix$')
Go to 1

— y

Call MPRN(Z,'Z matrix$')
Go to 1

Call MPRNC T.'T matrix$')
Go to 1

 alter
Call ALTER(X.'X matrix$’)
Go to 1

 mget,
Call PUSH
Call SGETC 'Enter filename: $\file,20)
Call MGETC file, X)
Go to 1

 mstore
Call SGETC’Enter filename: $’,file,20)
Call MSTOREC file, X)
Go to 1

 map
nx=NDIM(X)
mx=MDIM(X)
ny=NDIMCY)
my=MDIMCY)
nz=NDIMCZ)
mz=MDIM(Z)
nt=NDIMCT)
mt=MDIMCT)
nR1=NDIMCR1)
mR1=MDIMCR1)
nR2=NDIMCR2)
mR2=MDIMCR2)

228

2000

C
C
70

C
C
80

Write(5 2000) nx.mx, ny.my nz,mz
Format(x e ,15, * by ' ,15,)'/

1 YC ,15, ' by ’ ,15,)'/
2 Z C .15, ' by 1,15,)'/
3 T(' ,15, ’ by ' ,15,)'/
1 R 1 (' ,15, ' by ',15,)'/
2 R2C ,15, ’ by ',15,)'/)

C
c
90

1000

c
c
100

c
c
110

c
c
120

Go to 1

CALL EQU(WjT)
CALL PUSH
Call EQU(X,W)
Go to 1

Call PUSH
N=IGET('Enter dimension: $')
Call UNIT(X,N)
Go to 1

Call PUSH
Call PRN('Enter dimensions: $')
Read(5,1000) N,M
Format(216)
Call ZER0(X,N,M)
Go to 1

Call ADD(X,X,Y)
Call POP
Go to 1

Call SUB(X,X,Y)
Call POP
Go to 1

s=RGET('Enter scale factor: $')
Call SCALE(X,s,X)

 rot

 unit, 1

 zero, 0

 add, +

 sub, -

 scale, if

Go to 1
C
C-- xchg, xy
130 Call EQU(W,Y)

Call EQU(Y,X)
Call EQU(X,W)
Go to 1

C
C — — xz
131 Call EQU(W,Z)

Call EQU(Z,X) .
Call EQU(X,W)
Go to 1

C
C -- xt
132 Call EQU(W,T)

Call EQU(T,X)
Call EQU(X,W)
Go to 1

C
C trn, 1
140 Call TRN(X,X)

Go to 1
C
C -- mul, *
150 Call MUL(X,X,Y)

Call POP
Go to 1

C
C -- traul, '*
160 Call TRN(X,X)

Call MUL(X.X.Y)
Call POP
Go to 1

C
C -- mult, *'
170 Call MULT(X,XtY)

Call POP
Go to 1

C
C -- ginv, '
180 If(NDIM(X).LT.MDIM(X)) Go to 181

230

181

C
C
190

C
C
200

C
C
210

C
C
220

C
C
230

C
C
240

245
247

242

241

C
C

Call GINV(X,X)
Go to 1
Call PRN('# of rows of X must be .GE. than # of columns$')
Go to 1

 cfft
Call CFFT(X(3), Y(3), X(1))
Go to 1

 if ft
Call IFFT(X(3), Y(3), X(1))
Go to 1

 magn
Call MAGN(X(3),Y(3),X(1))
Go to 1

 vmax
nx=NDIM(X)*MDIM(X)
s=VMAX(X(3), nx)
Call RPRNCs,'smaximum of X$')
Go to 1

 vmin
nx=NDIM(X)*MDIM(X)
s=VMIN(X(3), nx)
Call RPRN(s,'=minimum of X$')
Go to 1

 help
Call Gopen(1,'EASY.HLP$')
i=1
Read(1,247,END=241) (W(j),j-1,63)
Format(64A1)
Write(5,242) (W(j),j=1,63)
FormatC ',64A1)
i=i+1
Go to 245
Endfile 1
Go to 1

 stol

231
250 Call EQU(R1,X)

Go to 1
C
c r e d
260 Call EQU(X,R1)

Go to 1
C
C push
270 Call PUSH

Go to 1
C
C plot
280 Call prnC'Paper limits (left, width): $')

Read(5,281) left.ibase
Call prnCData limits (xmin,xmax,dx): $')
Read(5,282) xmin,xmax,dx
Call prn('Index limits (str,end,incr): $')
Read(5,281) i1,i2,i3
Call D0TARY(X(3), i1,i2,i3, xmin,xmax,dx, left, ibase)
Go to 1

281 Format(3l6)
282 Format(3G14.7)
C
C sto2
290 Call EQU(R1,X)

Call EQU(R2,Y)
Go to 1

C
C rec2
300 Call EQU(X,R1)

Call EQU(Y,R2)
Go to 1

C
C rect
310 Call RECT(X(3),Y(3),X(1))

Go to 1
END

C
Subroutine PUSH
Common /regX/ X(1)
Common /regY/ Y(1)
Common /regZ/ Z(1)

232
Common /regT/ T(1)
Call EQU(T,Z)
Call EQU(Z,Y)
Call EQU(Y,X)
Return
END

C
Subroutine POP
Common /regX/ X(1)
Common /regY/ Y(1)
Common /regZ/ Z(1)
Common /regT/ T(1)
Call EQU(Y,Z)
Call EQU(Z,T)
Return
END

C
C Plots an ARRAY of real numbers
C
C....x(.) i1,i2,i3 (limits) real array
C....xmin,xmax,dx virtual minimum, maximum, increment
C....left.ibase paper left margin, paper width in dots (<1180)
C

Subroutine D0TARY(array,i1,i2,i3,xmin,xmax.dx,left,ibase)
Dimension arrayO),iarray(27),narray(27)
image(x)=left+INT(float(ibase)*(x-xmin)/(xmax-xmin))

C
C...Initiate printer
C

NSP =INT((xmax-xmin)/dx)
Call INIDOT

C
C...Draw the scale line
C

x=xrain
Do 10 i=1,NSP
iarray(i)=iraage(x)
narray(i)-image(x)

10 x=x+dx
NSP1=NSP+1
iarray(NSP1)=image(array(il))
Call D0TS(iarray, NSP1)

233
c
C...Draw the array
C

i21=i2-1
Do 20 i=i1,i21,i3
iarray(1)=left
iarray(2)= image(array(i+1))
Call D0TS(iarrayC1),2)

20 Continue
C
C...print the scale again
C

Call DOTSC narray(1), NSP)
Return
End

C
C Image: convert virtual to paper coordinates
C
C Integer function image(x)
C Common xmin,xmaxtleft,ibase
C
C...Print a series of N dots according to the values
C...of the iarray. Limits 0:1180
C

Subroutine D0TS(iarray.N)
Dimension iarrayC1)

C
C...sort
C

Call SORT(iarray.N)
If (N-1) 30,30,40

C
C...find the relative distances
C
40 i=N
41 i1=i—1

iarray(i)=iarray(i)-iarray(i1)
If(iarray(i).LT.0) pause Dots
i=i—1
If(i-1) 30,30,41

C
30 continue

23^
Do 50 i=1,N

50 Call D0T(iarray(i))
Call HALFLN
Return
End

C
C...Bubble sorting routine for an integer array
C...IN PLACE sorting in ascending order
C

Subroutine S0RT(iarray.N)
Dimension iarray(1)

C
If (N-1) 20,20,10

10 N1=N-1
Do 130 i=1,N1
j1=i+1

C...FIND max
Do 30 jaJ1,N
iar=iarray(i)
If(iarrayCj).GE.iar) Go to 30
iarrayCi)=iarray(j)
iarrayCj)=iar

30 Continue
130 Continue
C
20 Return

END

4. EASYPACK Command Summary

Utilities and I/O

Call PACKC A, IA,N,M)
N = NDIMC B)
M = MDIMC B)
NM= NM2DIMC B)
Call SETDIMC A, N, M)
s = ELEC B, i, j)
Call MINPC A, ,comment$’)
Call MPRNC A, 'comment$')

Call ALTER(A, 'comment$')
Call MGETC 'filename.ext$’, A)
Call MSTOREC 'filename.ext$1, A)
Call RDCBIN(1 filename.ext$1, X, N)
Call WRCBIN(»filename.ext$', X, N)

Matrix operations and functions

Call UNIT(A, N)
Call ZERO(A, N, M)
Call RAMPC A, N)
Call EQU(A, B)
Call ADD(A, B, C)
Call SUB(A, B, C)
Call SADD(A, B, s, C)
Call SCALE(A, s, B)
Call TRN(A, B)
Call MUL(A, B, C)
Call MULT(A, B, C)
Call QUA(A, B, C)
Call GINV(A, B)
Call PARK A, B, N1,N2,M1,M2)
Call AUGM(A, N, M, B)
s = XN0RM1(B)
s = XNORMC B)

Vector operations and functions

Call VEQU(X, Y, N)
Call VZERCK X, N)
Call VSCALE(X, s, N)
Call VSADD(X, s, Y, N)
s = VDOT(Y, Z. N)
s = VMIN(Y, N)
s = VMAX(Y, N)
s = VN0RM1C Y, N)
s = VNORM(Yf N)
Call CFFT(X, Y, N)
Call IFFT(X, Y, N)
Call MAGN(X, Y, N)

Scalar operations

i = IGET(1comment$')
r = RGET(,comment$')
Call SGET(,corament$’, a, N)
Call PRN(lcomment$')
Call IPRN(i, ,comment$’)
Call RPRN(r, ,coraraent$,)
Call HPRN(i, ,comlnent$,)
Call GOPENC i, 1filename$’)
a = DEG(x)
a = RAD(x)
a = PI(b)

Alphabetical order

Call ADD(A, B, C)
Call ALTER(A, lcomment$f)
Call AUGM(A, N, M, B)
Call CFFT(X, Y, N)
a = DEG(x)
s = ELE(B, i, j)

Call EQU(A, B)
Call GINV(A, B)
Call 'GOPEN(i, 'filename$')
Call HPRN(i, !comraent$')
Call IFFT(X, Y, N)
i =" IGET('comment$')
Call IPRN(i, ,comment$’)
Call MAGN(X, Y, N)
M = MDIM(B)
Call MGET('filename.ext$', A)
Call MINP(A, lcorament$,)
Call MPRN(A, ,coIfflnent$,)
Call MSTORE('filename.ext$», A
Call MUL(A, B, C)
Call MULT(A, B, C)
N = NDIM(B)
NM = NM2DIM(B)
Call PACK(A, IA,N,M)
Call PARK A, B, N1,N2,M1,M2)

a = PI(b)
Call PRN(,comment$')
Call QUA(A, B, C)
a = RAD(x)

Call RAMP(A, N)
Call RDCBINC ,filename.ext$', X, N)
r = RGET(* corament$')

Call RPRN(r, 'comment$')
Call SADD(A, B, s, C)
Call SCALE(A, s, B)
Call SETDIM(A, N, M)
Call SGET(,comraent$l, a, N)
Call SUB(A, B, C)
Call TRN(A, B)
Call UNIT(A, N)
Call VEQUC X, Y, M)
3 = VDOT(Y, Z, N)
3 = VMAX(Y, N)
3 = VMIN(Y, N)
S = VN0RM1(Y, N)
S = VNORMC Y, N)

Call VSCALE(X, s, N)
Call VSADD(X, s, Y, N)
Call VZEROC X, N)
Call WRCBIN(’filename.ext$1, X, N)
s = XN0RM1C B)
s = XNORM(B)

Call ZERO(A, N, M)

5. MATRIX REVERSE POLISH CALCULATOR: Command Summary

Matrix registers: x (top of stack), y, z, t (bottom)
Matrix buffers: R1, R2

f (x) — ->x f(x,y)— »(x,y) ?? — -»x
push

f(x,y)— >x
pop

alter cfft zero 0 add +
scale # if ft unit 1 sub -

trn V magn minp in mul *
ginv fl rect mget get tmul i*

mult

exchanges display utilities

xy xchg x mprn mstore save
xz y map
xt z help
rot t
stol max
rec2 min
sto2 plot
rec2
push

BIBLIOGRAPHY

1. Articles and Dissertations
2. Books and Texts

239

Bibliography

This bibliography is divided into two sections; the first contains
the reviewed articles and dissertations and the second contains the
reviewed books and texts in the areas of

random sampling,
maximum entropy,
signal processing, and
estimation-identification.

Both sections have been ordered alphabetically. For convenience, at the
end of the text references the Library of Congress Classification Call
number (or the Dewey Decimal number for older texts) is usually added
inside angle brackets. Single letters inside angle brackets are used
for personal filing and they should be ignored.

1 • Articles and Dissertations

Astrom K. J. and P. Evkhoff, 'System identification. A survey,'
Automatica, vol. 7., pp. 123-162, 1971.

Auslander D. M., Y. Takahashi and M. Tomizuka, 'Direct digital process
control: Practice and algorithms for microcomputer application,' Proc.
of the IEEE, vol. 66, Feb. 1978.

Bar-Shalom Yaakov, 'Optimal Simultaneous State Estimation and parameter
identification in linear discrete time systems,' IEEE Trans, on
Automatic Control, vol. AC-17, pp. 308-309, June 1972. <C>

Balakrishnan A. V., 'On the problem of time jitter in sampling,' IRE
Trans, on Information Theory, vol. IT-8, pp. 226-236, April 1962.

Burg J. P., 'Maximun entropy spectral analysis,' 37th Meeting of the

241

Society of Exploration Geophysicists, Oklahoma, 1967. <M>

Burg J. P., 'General principles for estimation of covariance matrices,'
Unpublished, Sept. 28, 1973. <M>

Buetler F. J, and 0. A. Z. Leneraan, 'Random sampling of random
processes: stationary point processes,' Inform, and Control, vol. 9, pp.
325-346, 1966.

Buetler F. J., 'Alias free randomly timed sampling of stochastic
processes,' IEEE Trans, on Information Theory, vol. IT-16, pp. 147-152,
March 1970. <C>

Buetler F. J., 'Error free recovery of signals from irregularly spaced
samples,' SIAM, vol. 8, pp. 328-335, July 1966. <C>

Clark Ronald R., 'Meteor Wind Measurements at Durham N.H.,' Journal of
Atmospheric Sciences, vol. 32, pp. 1689-1693, Sept 1975. <R>

Conant R.C. and W.R. Ashby, 'Every good regulator of a system must be a
model of that system,' International Journal of Systems Science, vol. 1,
No. 2, pp. 89-97, 1970. <4>

Carlson Neal A., 'Fast Triangular Formulation of the square root
filter,' AIAA Journal, vol. 11, no. 9, pp. 1259-1265, Sept. 1973. <C>

Chow Joseph C., 'On estimation of the moving average parameters,' IEEE
Trans, on Automatic Control, vol. AC-17, pp. 268-269, April 1972. <C>

Ciscato D. and L. Mariani, 'On increasing sampling efficiency by
adaptive sampling,' IEEE Trans, on Automatic Control, vol. AC-12, pp.
318, June 1967. <R>

Daniel Willie L. and W. E. Bennett, 'Improvement of system response by
reducing quantization error through adaptive sampling,’ IEEE Trans.
Automatic Control, vol. AC-19, pp. 598-599, October 1974. <R>

2h z

Dorf R., M. C. Farren, C. A. Phillips, 'Adaptive sampling for sampled
data control systems,7 IEEE Trans, on Automatic Control, vol. AC-7, pp.
38-47, Jan. 1962.

Galiana F. D. and E. Handschin and A. R. Fiechter, 'Identification of
stochastic electric load models from physical data,' IEEE Trans.
Automatic Control, vol. AC-19, pp. 887-898, Dec. 1974. <C>

%

Fougere P. F., 'A solution to the problem of spontaneous line splitting
in maximum entropy power spectrum analysis,' Annual AGU Meeting, San
Francisco, CA, 1975. <M>

Gerardi F. R., 'Application of Mellin and Hankel Transforms to networks
with time varying parameters,' IRE Trans, on Circuit Theory, vol. CT-6,
pp. 197-207, 1959. <R>

Harrison S. R,, 'Digital Filters,' Ph.D. Dissertation, Purdue Univ.,
1970. <P>

Holm S. and J. M. Hovem, 'Estimation of scalar ocean wave spectra by the
maximum entropy method,' IEEE Journal of Oceanic Engin., vol. 0E-4, pp.
76-83, July 1979. <M>

Hoskins W. D. and D. J. Walton, 'A faster method of computing the square
root of a matrix,' Trans, on Automatic Control, AC-23, pp. 494-495, June
1978.

Jerri A. J., 'The Shannon sampling theorem - Its various extensions and
applications: A Tutorial review,' Proceedings of the IEEE, vol. 65, pp.
1565-1595, Nov. 1977. <C>

Jury E. I., 'Sampling schemes in sampled data control systems,' IRE
Trans, on Automatic Control, vol. AC-6, pp. 86-88, Feb. 1961.

Jury E. I. and F. J. Mullin, 'The analysis of sampled-data control

24-3

systems with a periodically time-varying Sampling rate,’ IRE Trans, on
Automatic Control, pp. 15-25, May 1959. <C>

Kalman R. E., 'A new approach to linear filtering and prediction
problems,' Trans. ASME, vol. 82D, pp. 35-45, March 1960.

Kalman R. E., 'Analysis and synthesis of linear systems operating on
randomly sampled data,' Ph.D. dissertation, Dept, of Elect. Engin.,
Columbia University, New York, 1957.

Kalman R. E. and J. E. Bertram, 'A unified approach to the theory of
sampling systems,' J. Franklin Inst., vol. 267, pp. 405-436, May 1959.

Kontopidis G. D.., 'Nonuniformly sampled systems,' Master's Thesis,
University of New Hampshire, 1976.

Kontopidis G. D., 'Models of man-machine tasks based on nonuniformly
sampled systems,' 2nd Intern. Confer, on Information Sciences and
Systems, Patras Greece, July 1979.

Kontopids G. D., 'Stochastically sampled systems: A state approach,'
(unpublished) U.N.H. 1979.

Kontopidis G. D., 'Noniterative algorithms to compute expressions
involving the matrix exponential,' (unpublished), U.N.H. 1980.

Kontopidis G., F. Glanz and D. Limbert, 'Models for Human Operators
based on nonuniformly sampled systems,' Proc. 15th Annual Conf. on
Manual Control, Dayton Ohio, March 1979.

Kontopidis G., D. Limbert and F. Glanz, 'A study of nonuniformly sampled
systems,' Intern. Confer, on Cybernetics and Society, Denver Colorado,
Oct. 1979.

Kontopidis G., D. Limbert and F. Glanz, 'Computer controlled systems
using multiplexed I/O,' IECI'80 Intern. Confer, on Mini-and Micro

244
Computer Applications, Philadelphia, March 1980.

Kaminski P. G., A. E. Bryson and S. F. Schmidt, 'Discrete square root
filtering: A survey of cureent techniques,' IEEE Trans, on Automatic
Control, vol. AC-16, pp. 727-735, Dec 1971.

Kwatny H. G., 'A note on stochastic approximations algorithms in system
identification,' IEEE Trans, on Automatic Control, vol. AC-17, pp.
571-572, August 1972.

Lacoss R. T., 'Data adaptive spectral analysis methods,' Geophysics,
vol. 36, pp. 661-675, August 1971. <M>

Lainiotis Demetrios G., 'Optimal adaptive estimation: Structure and
parameter adaptation,' IEEE Trans, on Automatic Control, vol. AC-16, pp.
160-170, April 1971.

Landau I. D., 'A survey of model reference adaptive techniques (Theory
and Applications),' Automatica, vol. 10, July 1974.

Lawson F. R., 'Signal processing with sampled correlators,' Ph.D.
Dissertation, Purdue, 1970. <P>

Linden D. A., Adramson N. J., 'A generalization of the sampling
theorem,' Inform. Control, vol. 3, pp. 26-31, March 1960.

Liu B. and T. P. Stanley, 'Error bounds for jittered sampling,' IEEE
Trans, on Automatic Control, vol. AC-10, pp. 449-454, October 1965. <C>

Leneman 0. A. Z., 'Random sampling of random processes: mean-square
behavior of a first-order closed-loop system,' IEEE Trans, on Automatic
Control, pp. 429-432, August 1968. <C>

Leneman 0. A. Z., 'A note on the mean square behavior of a first order
random sampling system,' IEEE Trans, on Automatic Control, pp. 452-453,
Aug 1968. <C>

24-5

Leneman 0. A. Z., 'On some results in random pulse trains,' IEEE Trans,
on Automatic Control, vol. AC-11, p. 331, April 1966.

Leneman 0. A. Z. and Lewis J. B., 'Random sampling of random processes:
Mean square comparison of various interpolators,' IEEE Trans, on
Automatic Control, vol. AC-11, pp. 396-403, July 1966

Lui M. C., 'Spectral estimation of continous parameter processes from
randomly spaced observations,' Ph. D. Dissertation, University of
California at San Diego, 1974.

Magill D. T., 'Optimal adaptive estimation of sampled stochastic
processes,' IEEE Trans, on Automatic Control, vol. AC-10, pp. 434-439,
October 1965.

Masry E., 'Alias free sampling: An alternative conceptualization and its
applications,' IEEE Trans, on Information Theory, vol IT-24, pp.
317-324, May 1978. <C>

Masry E. and Ming-Chuan C. Lui, 'Discrete time spectral estimation of
continuous parameter processes. A new consistent estimate,' IEEE Trans,
on Information Theory, vol. IT-22, pp. 298-312, May 1976. <C>

Mehra Raman K., 'Optimal input signals for parameter estimation in
dynamic systems. A survey,' IEEE Trans, on Automatic Control, vol. AC-
19, pp. 798-809, Dec. 1974.

Mehra Raman K., 'Approaches to adaptive filtering,' IEEE Trans.
Automatic Control, vol. AC-17, pp. 693-698, August 1972.

Mitchell J. R. and W. L. McDaniel, 'Adaptive sampling techniques,' IEEE
Trans. Automatic Control, vol. AC-19, pp. 200-202, April 1969.

Middleton D. and R.Esposito, 'Simultaneous optimum detection and
estimation of signals in noise,' IEEE Trans. Information Theory, vol.

2k-6

IT-14, pp. 434-444, May 1968.

Morf M., A. Vieira, D. T. Lee and T. Kailath, 'Reqursive multichannel
maximum entropy spectral estimation,' IEEE Trans, on Geoscience
Electronics, vol. GE-16, pp. 85-94, April 1978. <M>

Nahi N. E., 'Optimal recursive estimation with Uncertain Observation,'
IEEE Trans. Information Theory, IT-15, pp. 457-462, July 1969. <C>

Otnes R. K., 'Instability thresholds in digital filters,' Ph. D.
Dissertation, University of California, Los Angeles, Jan. 1970.

Palosky P., 'Generating discrete colored noise from discrete white
noise,' IEEE Trans, on Automatic Control, vol. AC-11, pp. 148-149,
January 1966.

Palmer E., 'Interrupted monitoring of a stochastic process,' Proc. 13-th
Annual Conf. on Manual Control, pp. 237-245, June 1977.

Papoulis Athanasios, 'New results in sampling theory,' Hawaii Intern.
Conf. on System Sciences, Jan. 1968.

Pearson A. E. 'Finite time interval linear system identification without
initial state estimation,' Automatica, vol. 12, pp. 577-587, 1976.

Rothschild D. and A. Jameson, 'Comparison of four numerical algorithms
for solving the Liapunov matrix equation,' Intern. Journal of Control,
vol. 11, pp. 181-198, 1970.

Shapiro H. S. and R. A. Silverman, 'Alias free sampling of random
noise,' SIAM vol. 8, pp. 225-248, June 1960. <C>

Sandoz D. J. and B. H. Swanick, 'A recursive least squares approach to
the adaptive control problems,' Intern. Journal of Control, vol. 16, pp.
243-258, 1972.

2 4?
Scott Paul F., ’Estimation of correlation functions and spectra from
randomly spaced data,' Record of 1977 IEEE ICASSP, pp. 70-73, 1977.

Smith Michael J., ’An evaluation of adaptive sampling,' IEEE trans. on
Automatic Control, vol. AC-16, pp. 282-284, June 1971.

Smith P. G., 'Numerical solution of the matrix equation AX+XA'+B=0,'
IEEE Trans, on Automatic Control, vol. 16, pp. 278-279, Jan. 1971.

Smylie D. E., G. K. Clarke and T. J. Ulrych, ’Analysis of irregularities
in the earth's rotation,' Methods in Computational Physics, vol. 13, pp.
391-430, Academic Press, New York, 1973. <M>

Sriyananda H., 'A simple method for the control of divergence in Kalman
filter algorithms,' Intern. Journal of Control, vol. 16, pp. 1101-1106,
1972.

Tomovic R. and G. A. Bekey, 'Adaptive sampling based on amplitude
sensitivity,' IEEE Trans, on Automatic Control, vol. AC-11, pp. 282-284,
April 1966.

Tomovic R. and G. A. Bekey, 'Sensitivity of discrete systems to
variation of sampling interval,' IEEE Trans, on Automatic Control, vol.
AC-11, pp. 284-287, April 1966.

Ulrych T. J. and T. N. Bishop, 'Maximum entropy spectral analysis and
autoregressive decomposition,' Reviews of Geophysics and Space Physics,
vol. 13, no. 1, pp. 183-200, Feb. 1975. <M>

Van-Loan Charles F., 'Computing integrals involving the matrix
exponential,' IEEE Trans, on Automatic Control, vol. AC-23, pp. 395-404,
June 1978.

Van-Ness James E., 'Inverse iteration method for finding eigenvectors,'
IEEE Trans, on Automatic Control, vol. AC-14, pp. 63-66, Feb. 1969.

248
Vaughan David R., 'A negative exponential solution for the matrix
Ricoati equation,' IEEE Trans, on Automatic Control, vol. AC-14, pp.
72-75, Feb. 1969.

Will P. M., 'Variable Frequency Sampling,' IRE Trans, on Automatic
Control, vol. AC-7, p. 126, Oct. 1962.

Yahagi Tahashi, 'A method for adaptive control using a minicomputer,'
IEEE Trans, on Industrial Electr. and Control Instrum., vol. IECI-26,
Feb. 1979.

Yen J. L., 'On nonuniform sampling of bandwidth limited signals,' IRE
Trans. Circuit Theory, vol. CT-3, pp. 251-257, 1956. <C>

Zadeh Lotfi A., 'Frequency analysis of variable networks,' IRE pp.
291-297, March 1950.

Zadeh L. A., 'From circuit to system theory,' Proceedings IRE, vol. 50,
pp. 856-865, 1962.

2. Books and.Text3

Ahlberg J. H., E. N. Nilson and J. L. Walsh, The theory of Splines and
Their Applications., Academic Press, Inc., 1967. <P>

Aoki M, Optimization of Stochastic Systems. Academic Press, New York,
1967. <QA402.3 A58>

Astrom Karl J., Introduction to Stochastic Control Theory. New York:
Academic Press, Inc., 1970. <P>

Bellman Richard, Introduction to the Mathematical Theory of Control
Processes, vol. I and II, Academic Press Inc., New York, 1967.

Bendat J. S. and A. G. Piersol, Random Data: Analysis and Measurement

24-9

Procedures. Wiley-Interscience, New York, 1971.

Box G. E. and G. M. Jenkins, Time Series Analysis Forcasting and
Control. Holden-Day, San Francisco, 1970. <QA280 B67>

Brogan William L., Modern Control Theory. Quantum Publishers Inc., New
York, 1974. <P>

Cadzow J. A., H. R. Martens, Discrete Time and Computer Control Systems.
Prentice Hall, Englewood Cliffs, New Jersey, 1963

D' Angelo Henry, Linear Time Varying Systems: Analysis and Synthesis.
Boston: Allyn and Bacon Inc., 1970.

Dongarra J. J., C. B. Moler, J. R. Bunch and G. W. Stewart, LINPACK
User's Guide. SIAM, Philadelphia, 1979. <P>

Durling Allen and Donald Childers, Digital Filtering and Signal
Processing. West Publishing Company, St. Paul, 1975. <P>

Freeman Herbert, Discrete Time Systems. John Willey Inc., New York,
1964.

Gihman I. I. and A. V. Skorohod, Stochastic Differential Equations.
Springer-Verlag, New York, 1972. <QA274 G5513>

Goodwin G. C. and R. L. Payne, Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, New York, 1977. <QA402 G66>

Hsia T. C., System Identification. Massachusetts: Lexington Books, 1977.

Kalman R. E., P. L. Falb and M. A. Arbib, Topics in Mathematical System
Theory. McGraw Hill Book Company, New York, 1969.

King R. W., The Theory of Linear Antennas. Harvard University Press,
Cambridge, Mass. 1956.

250

Kuo B. C., Discrete Data Control Systems. Engelwood Cliffs, Prentice
Hall, New Jersey, 1970.

Kuo B. C., Digital Control Systems. SRL Publishing Company, Champaign
Illinois, 1977. <TJ216 K812>

Kwakernaak H., R. Sivan, Linear Optimal Control Systems. Wiley
Interscience, 1972. <QA 402.3 K89>

Lee Robert C. K., Optimal Estimation Identification and Control.
Research Monograph No. 28, The MIT Press, Cambridge, Massachusetts,
1964.

LePage W. R., Complex Variables and Laplace Transform for Engineers.
McGraw Hill Book Company, New York, 1961. <QA 432 L32>

Luenberger David G., Optimization by Vector Space Methods. John Wiley
and Sons, Inc., New York, 1969.

Lusternik L. A. and V. J. Sobolev, Elements of Functional Analysis.
Hindustan Publishing Company, India, Delphi 1961. <517.5 L783>

Mehra Raman K. and Dimitri G. Lainiotis, System Identification: Advances
and Case Studies. Academic Press, Inc., New York, 1976.

Melsa James L.„ Stephen K. Jones, Computer Programs for Computational
Assistance in the Study of Linear Control Theory. McGraw Hill Book
Company, New York, 1973. <QA402.3 M386>

Melsa James L., and Donald G. Schultz, State Function and Linear Control
Systems. McGraw Hill Book Company, New York, 1967.

Morrison N., Introduction to Sequential Smoothing and Prediction. McGraw
Hill Book Company, New York, 1969.

251
Nahi N. E., Estimation Theory and Aplication. New York: Wiley, 1969.

Papoulis Athanasios, Probability, Random Variables and Stochastic
Processes. McGraw Hill Book Company, New York, 1965. <P>

Papoulis Athanasios, Signal Analysis. McGraw Hill Book Company, New
York 1977. <P>

Pressman R. S. and J. E. Williams, Numerical Control and Computer Aided
Manufacturing. John Wiley and Sons, N. J. 1977.

Polak E., Computational Methods in Optimization. Academic Press, New
York, 1976. <P>

Porter William A., Modern Foundations of System Engineering. McMillan
Club, New York, 1971.

Ralston A. and P. Rabinowitz, A First Course in Numerical Analysis.
McGraw Hill, New York, 1978. <QA297 R3> <P>

Rabiner Lawrence R., Theory and Application of Digital Signal
Processing. Englewood Cliffs, Prentice Hall, New Jersey, 1975. <P>

Reza F. M., An Introduction to Information Theory. McGraw Hill Book
Company, New York, 1961. <QA 360 R43>

Robinson Enders A., Multichannel Time Series Analysis with Digital
Computer Programs. Holden Day, San Francisco, 1967.

Robinson Enders A. and Sven Treitel, Geophysical Signal Analysis.
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1980. <TN269 R55>

Rudin W., Real and Complex Analysis. McGraw Hill Book Company, New
York, 1974. <QA300 R82> <P>

Rudin W., Functional Analysis. McGraw Hill Book Company, Newy York,

252

1973. <QA320 R83> <P>

Sage Andrew P., and James L. Melsa, Estimation Theory with Applications
to Communications and Control. McGraw Hill Book Company, New York,
1971. <P>

Sage Andrew P., and James L. Melsa, System Identification. McGraw Hill
Book Company, New York, 1971.

Sage Andrew P., and Chelsea C. White, Optimum Systems Control, 2nd
Edition, Englewood Cliffs, Prentice Hall, New Jersey, 1977. <P>

Schweppe F. C., Uncertain Dynamic Systems. Prentice Hall, Englewood
Cliffs, New Jersey, 1973. <P>

Sokolnikoff I. S. and R. M. Redheffer, Mathematics of Physics and Moderm
Engineering. McGraw Hill Book Company, New York, 1958. <530.15 S683>

Solodovnikov V. V., Statistical Dynamics of Linear Automatic Control
Systems. D. Van Nostrand Company, Ltd., London, 1965. <TJ213 S5643>

Takahashi Yasundo, M. J. Rabins, D. M. Auslander, Control and Dynamic
Systems. Addison-Wiley Publishing Company, New York, 1970.

Wozencraft J. M., and Irwin M. Jacobs, Principles of Communication
Engineering. John Willey and Sons, Inc., 1965. <P>

Zadeh L. A. and C. A. Desoeri Linear System Theory. The State Space
Approach. McGraw Hill, New York, 1963. <517 Z17>

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1982

	NONUNIFORMLY AND RANDOMLY SAMPLED SYSTEMS
	GEORGE DIMITRIOS KONTOPIDIS
	Recommended Citation

	00001.tif

