
A Robust Compositional Architecture
for Autonomous Systems

Guillaume Brat, Ewen Denney, Kimberley Farrell, Dimitra Giannakopoulos, Ari J6nsson
Research Institute for Advanced Computer Science

NASA Ames Research Center, Mailstop 269-2
Moffett Field, CA 94035

(brat, edenney, Farrell, dimitra, jonsson) @email.arc.nasa.gov

Jeremy Frank
NASA Ames Research Center, Mailstop 269-2

Moffett Field, CA 94035
frank@email.arc.nasa.gov

Mark Boddy, Todd Carpenter
Adventium Labs
100 Mill Place

11 1 Third Avenue South
Minneapolis, MN 55401 USA

(mark.boddy, todd.carpenter) @adventiumlabs.org

Tara Estlin
Jet Propulsion Laboratory M / S 126-347,

4800 Oak Grove Drive
Pasadena CA 9 1 10, USA ,
tara.estlin@jpl.nasa.gov

Abstract- Space exploration applications can benefit
greatly from autonomous systems. Great distances, limited
communications and high costs make direct operations
impossible while mandating operations reliability and
efficiency beyond what traditional commanding can
provide. Autonomous systems can improve reliability and
enhance spacecraft capability significantly. However, there
is reluctance to utilizing autonomous systems. In part this is
due to general hesitation about new technologies, but a more
tangible concern is that of reliability of predictability of
autonomous software.

In this paper, we describe ongoing work aimed at increasing
robustness and predictability of autonomous software, with
the uitimate goal of building trust in such systems. The
work combines state-of-the-art technologies and capabilities
in autonomous systems with advanced validation and
synthesis techniques. The focus of this paper is on the
autonomous system architecture that has been defined, and
on how it enables the application of validation techniques
for resulting autonomous systems.

TABLE OF CONTENTS

1. ~TRODUCTION .. 1
2. A N ARCHITECTURE FOR AUTONOMY 2
3. VALIDATION OF AUTONOMOUS SYSTEMS 3
4. CONCLUDING REMARKS ... 5

REFERENCES ...
BIOGRAPHY .. 6

1. INTRODUCTION

Space exploration applications offer a unique opportunity
for the development and deployment of autonomous
systems, due to limited communications, great distances,
and high cost of direct operation. At the same time, the risk
and cost of space missions leads to reluctance to taking on
new, complex and difficult-to-understand technology.
Consequently, there is a pressing need to address the issue
of designing robust architecture for autonomous systems
and demonstrate a design process that can provide the trust
and reliability that is required for manned and unmanned
space applications.

In this paper, we describe an ongoing effort to develop a
new approach to defining, implementing and maintaining
compositional autonomous systems. There are two key
elements to the approach. One is a modular compositional
autonomy architecture where adaptation to different
applications is done in an incremental manner. The other is
a testing and validation methodology that allows the
certification of new adaptations to be limited to the
components and relations that are modified. Together, the
two elements will make future autonomy applications more
easily constructed and modified, while increasing reliability
and reducing cost of reconfiguration and maintenance.

1
' 0-7803-9546-8/06/$20.000 2006 IEEE

1

https://ntrs.nasa.gov/search.jsp?R=20060015098 2019-08-29T21:41:48+00:00Z

The work will be grounded in a specific autonomy
architecture that integrates the EUROPA planning
framework and the functional layer of the CLARAty control
architecture. EUROPA supports incremental compositional
specification of the states, commands and associated
operations rules that define how it may control a given
system. CLARAty provides a compositional approach to
defining the functional control software that interfaces with
the underlying system.

Compositional verification techniques will be used to limit
the efforts required to validate and certify a new adaptation.
These methods use known properties of unchanged
modules to limit validation and certification efforts to
changes made. The validation of core system and individual
component properties is done with both formal and
empirical analysis.

Our approach will enable the increased use of autonomy in
future space explorations, thus reducing operations costs
and increasing reliability. In addition, the methodology of
composable components and associated incremental testing
and verification, will reduce the cost of system
development, maintenance, and reconfiguration.

2. AN ARCHITECTURE FOR AUTONOMY

Autonomous systems vary greatly in the representation and
reasoning techniques utilized in such systems. Furthermore,
the interface between autonomous control and underlying
systems can be radically different between architectures.
Both of these aspects impact the application of validation
techniques to autonomous systems instmtiations.
Consequently, we define and use a general autonomous
systems architecture that uses specific representation and
reasoning approzches, combined with a structured well-
defmed interface to the underlying system. While the
architecture provides a basis for defining validation
processes and techniques, many of the general notions of
how to validate autonomous systems will be applicable to
other architectures.

Our architecture uses a constraint-based planning
framework called EUROPA (Extendible Uniform Remote
Operations Planning Architecture) for the core
representation and reasoning. This provides the ability to
make decisions about what actions to take so as to achieve
mission goals, while ensurmg that flight rules and
constraints are satisfied. The actions are implemented in the
CLARAty framework (Coupled-Layer Architecture for
Rover Autonomy), which also provides structured access to
system states and sensory information. The architecture is
shown in Figure 1.

The decision-making component, implemented in
EUROPA, uses the domain model to generate safe plans and
decisions that respect flight rules and other constraints on

operations. The domain model is a declarative specification
of actions and states implemented in the functional layer,
along with rules on how these actions can be used. The
domain model is compositional, meaning that new actions
and rules can be added without changing existing content.

Figurel: Autonomy architecture outline

The executive, implemented in an execution framework
called PLEXIL, executes the plans and actions specified by
the decision layer. It also monitors the execution, ensuring
that the constraints and assumptions in the given plan are
satisfied in the system during execution. When deviations
occur, the executive can either recover or call on the
decision layer to decide how to proceed. I The functional
layer is part of the CLARAty framework. It is a set of
functional components, arranged in a hierxckj where
higher-level components utilize capabilities and services of
lower-level Components. The knctionzl layer thus provides
a compositional apprczch tc implementkg interfaces tg
system functions.

The verification and validation methods are applied to all
levels of the architecture. The details are further described
here below in the section on validation. The automated
synthesis techniques iire then used te gemrate, h m high-
level specification, both CLARAty functional layer
components and the associated specifications in the domain
model. This approach, combined with the compositional
nature of the overall architecture, enables rapid adaptation
and reconfiguration of the autonomy system.

EUROPA - constraint- based plann ing

The Extensible Universal Remote Operations Planning
Architecture (EUROPA) is a model-based planning and
scheduling architecture descended from the Remote Agent
Planner [Jonsson, et al., 20001. Users of EUROPA can
specify the rules of planning domains using a rich domain
description language that supports time, resources,
disjunctive preconditions and conditional effects. EUROPA
makes extensive use of constraint based representation and

2

reasoning, which allows for more concise representation of
planning models, and more efficient reasoning during
planning [Frank and Jonsson, 20031. EUROPA provides
support for “foreign function” calls implementing complex
constraints such as power consumption and generation.

EUROPA consists of a hierarchy of highly configurable
components, supporting the building many types of planners
and plan representations. The modeling language, NDDL,
contains a small number of elementary entity types,
providing ease in modeling. These types can be extended to
provide more specialized components, leading to a rich set
of modeling primitives. The plan database contains the
current plan and information about its state. The database
provides mechanisms to efficiently query the plan state and
modify the plan. Modification leads to inference, which is
performed by a rules engine module and a constraint
reasoning engine module. The rules engine determines
which rules in the domain description apply after each
modification of the plan, and updates the state accordingly.
The constraint reasoning module is further broken down
into specialized modules that efficiently handle particular
classes of constraints, such as temporal constraints. Finally,
EUROPA provides interfaces to specialized heuristics
modules that provide search control to planners.

EUROPA can also be customized to support both long-
range deliberative planners as well as short-horizon
continuous planners that may operate on the same model.
This approach partially resolves problems due to building
multiple models in different languages for the same
autonomy system (e.g. [Muscettola et al, 19981). For
example, one planner may have a time horizon limited to 5
minutes into the future, and can delay subgoals. Another
planner may only plan activities for a hazard avoidance
system, leaving other goals to other planners. EUROPA
supports customizations of this form by limiting a planners’
“view” to a subset of the model. EUROPA also allows
multiple planners to modify the same plan concurrently, by
providing authority mechanisms indicating what planners
may modify.

Automated planning technology such as EUROPA has been
utilized as part of on-board autonomy architectures for deep
space probes [Jonsson, et al., 20001, robotic rovers p i a s et
al. 20031 and free-ftying robots [Muscettola et al, 20021.

CLARAty - layered architecturefor robotics

Most robotic control systems employ a variant of the Three-
Layer Architecture pioneered by Brooks in 1987.
CLARAty is an evolution of the three-layer architecture that
provides a wide-range of robotic functionality and
simplifies the integration of new technologies on robotic
platforms. CLARAty is a joint project between the NASA
Jet Propulsion Laboratory, NASA Ames Research Center,
Carnegie Mellon University and a number of other
universities and has been designed specifically for space-

based robotic control applications. CLARAty features a
Functional Layer of robotic primitives, coupled with a
Decision Layer of planning and execution functionality;
each of these layers contains a hierarchy of components
ranging from the most elementary to the most “intelligent”.

The Functional Layer (FL) provides a set of standard,
generic robot capabilities that interface to system hardware.
These capabilities are organized as a software class
hierarchy of robotic components; for example, wheeled-
mobility is a subclass of mobility, and individual rover
wheel assemblies are child classes. As is natural in object-
oriented systems, the interface is separated from
implementation. Physical limitations of devices are
distinguished from algorithmic limitations. Finally, runtime

Figure 2: CLARAty framework organization

models of devices are incorporated in the Functional Layer.

3. VALIDATION OF AUTONOMOUS SYSTEMS

In the autonomy architecture outlined here, an instantiation
of an autonomous system consists of the following
elements :

The core EUROPA planning and decision-making
framework, which will largely be unchanged between
applications and thus can be validated without
reference to the specific instantiation.

The CLARAty instantiation for the system in question,
which consists of a set of core CLARAty components
and the specific components used to operate the
system. The core CLARAty components can be

3

(3)

(4)

(5)

validated separately, while the specific components are
validated as part of the instantiation process. Some
components may be synthesized, which offers an
opportunity for easier validation of those components.

The execution system that links CLARAty and
EUROPA and provides monitoring capabilities to
ensure that execution does not continue when the
assumptions supporting the plan no longer hold. The
core execution system is validated once, but online
validation and checking techniques can be used to
validate specific executable plans.

The domain model describing possible actions and the
flight rules governing those actions and the related
system states. Model validation is a key element of
ensuriig that the autonomy system instantiation is
robust and safe.

The properties that should hold for the system and
various components. These define the criteria for
validation of the system.

The validation of an instantiation thus involves validating
core architecture systems, instantiation-specific CLARAty
components, the domain model used by the planner and
executive, and finally, the overall properties for the
instantiated system. To tackle this, we apply three kinds of
techniques. Model-based validation, using compositional
verification, can be applied to core software as well as
special-purpose components. In addition, compositional
techniques allow us to verify system-level properties from
component properties. Static analysis is a powerful
technique to directly analyze software code, without
reqEiring a formal modeling of the software components
and properties. Finally, automated synthesis techniques
allow us to generate instance-specific elements from high-
level specifications. Ln_ addition to sLmp!ifj&g the process
of implementing instantiations, synthesis offers an
additional level of validation by generating provably correct
code.

Compositional verijkation

Model-based verification techniques use exhaustive search
through possible execution trajectories to verify desired
system properties. While these techniques can provide the
formal validation desired for our autonomous systems, they
suffer f?om state-space explosion, making them impractical
to use. In addition, they do not lend themselves to
incremental validation, as we desire to do for instantiations
of autonomous systems.

To address these issues, we turn to compositional
verification techniques. The basic idea is as follows:
Consider a system consisting of two components X and Y.
The desire is to prove that a property P is satisfied by the
overall system XIY. In compositional verification, this is
done by identifying an intermediate properly A, called an
assumption, and using that to split the validation into two

smaller problems. The first part is to prove that X satisfies
A, and the second part is to prove that given A, Y satisfied
P.

This notion can be utilized in different ways. If the X and Y
components are already validated, it is likely that the
assumption A is already known and the compositional
verification techniques can be applied directly. This is
likely to be the case in situations such as where new
CLARAty components are being added on top of existing
ones. The propertie2 of the core components are known and
validated, so the new components can be validated against
these proven assumptions.

A more interesting case is when the assumption A is not
known. To address that, we turn to techniques for
automatically generating such assumptions from the
components X and Y. Recently developed techniques make
this possible, and allow both the generation of a weakest
valid assumption for a given component, and an easier-to-
find stronger but also valid assumption that is still satisfied
and suffices to prove the overall properly P.

As outlined above, we will rely heavily on these
compositional verification techniques in our work, both to
address computational cost issues, and to enable incremental
validation of autonomy system instantiations.

Static analysis

The goal of static program analysis is to assess properties of
a program without executing the program. Several
techniques can be used to perform static analysis. Theorem
proving, data flow analysis, constraint solving, and abstract
interpretation are among the most popular. Generally
speaking, a static program analyzer infers properties about
the execution of t l e prograii from its text (the source code)
and a formal specification of the semantics of the language
(which is built in the analyzer). Static program analyzers are
in general excellent to detect runtime errors.

Runtime errors are errors that cause exceptions at runtime.
Typically, in C, either they result in creating a core dump or
they cause data corruption that may cause crashes. Tire m a h
classes of runtime errors are accesses to un-initialized
variables, accesses to un-initialized pointers, out-of-bound
array accesses arithmetic underflow/overflow, invalid
arithmetic operations, non-terminating loops, and non-
terminating calls.

In general, static program analyzers aim at checking all
execution paths, sometimes at the cost of incompleteness
(i.e., impossibility of determining the safety of all
operations with exact precision). In other words, the
analyzer can raise false alarms on some operations that are
actually safe. However, if the analyzer deems an operation
safe, then errors cannot occur on any execution path. The
program analyzer can also detect certain runtime errors

4

which occur every time the execution reaches some point in
the program.

Traditionally, there are two complementary uses of a
program analyzer:

as a debugger that detects runtime errors statically
without executing the program, and

as a preprocessor that reduces the number of
potentially dangerous operations that have to be
checked by a traditional validation process (code
reviewing, test writing, and so on).

The frst use is akin to traditional debugging; the developer
tries to flush as many as bugs as he can from the code before
it gets to verification. The second use is called certification;
the goal is to prove the absence of errors of a certain class,
thus, alleviating the need for testing for this class of errors.
This requires that the static analyzer achieves a good
selectivity - the percentage of opersltions which are proven
to be safe by the program analyzer. Indeed, if 50% of all
operations in the program are marked as potentially
dangerous by the analyzer, there are no benefits to using
such techniques

Automated synthesis

The aim is to have certified components. One way of
achieving this is to verify that components are free of bugs.
Another is to generate the components in an inherently
trustworthy manner. We are developing the use of
automated code generation (also known as program
synthesis) for this. Control software is particularly
appropriate for code generation sbce it can be modeled
concisely at a high-level, while the code which implements
it tends to be idiomatic.

A code generator takes as input a domain-specific high-level
description of a task (e.g., a set of differential equations) and
produces optimized and documented low-level code (e.g., C
or C++) that is based on algorithms appropriate for the task
(e.g., the extended Kalman filter). This automation

the introduction of coding errors.
hGc,mes deve!oper productivity &IC!, ill prhcip!e, preveIIts

AutoFilter [Denney et al, Bigsky Boondoggle 20051 is a
domain-specific program synthesis system that generates
customized Kalman filters for state estimation tasks
specified in a high-ievei notation. AutoFiiter‘s speciccation
language uses differential equations for the process and
measurement models and statistical distributions to describe
the noise characteristics. It can generate code with a range
of algorithmic characteristics and for several target
platforms. The tool has been designed with reliability of the
generated code in mind and is able to automatically certify
that the code it generates is free from various error classes
(most are programming error, some address functional
concerns). Since documentation is an important part of

software assurance, AutoFilter can also automatically
generate various human-readable documents, containing
both design and safety related information

4. CONCLUDING REMARKS

The work described in this paper is an ongoing effort. The
architecture has been defined and an initial version has been
implemented. The process for validating new instantiations
has been defined and initial efforts are underway to apply
static analysis, compositional verification and automated
synthesis to parts and aspects of the autonomy architecture.

The autonomy software has been adapted to operating JPL’s
FIDO rover in simulation. As expected, the integration of
EUROPA and CLARAty has been straightforward, assisted
by the use of the PLEXTL execution framework. At this
point, the planner domain model is constructed manually
from the specification of the CLARAty interface for FIDO
control. Future efforts in the use of synthesis will focus on
automatically generating domain model information from
functional layer specifications, but the expectation is that
engineering experts will still refine the domain model to
specie the desired coostrai~ts zd flight ru!es.

Static analysis is being applied to modules of the EUROPA
framework, providing initial analysis for the current
implementation. In the near future, this work will be
extended to other modules of EUROPA and to components
of the CLARAty framework.

Compositional verification techniques are being tested on
models of autonomous rendezvous and docking systems.
The results of this work are very promising, having
denonstrated the a3ility to generate small assumptions that
ir, turn enable Yery fast validation of system properties.
These results are in stark contrast to the large amount of
time and computing res6urces needed to apply traditional
model checking methods to the full model without the
benefit of decomposition.

Automated synthesis techniques for generating Kahman
filters from formal specifications have been adapted to
generate Kalman filter components for CLARAty. Since
such filters play a key role in interpreting sensor information
for states like rover location, this is a significant step
forward.

To summarize, the effort outlined here has only recently
been started, but even at this early point in time, the results
are promising. The goal of this work is to provide a robust
verified core autonomy architecture, along with the process
and tools needed to adapt it to spacecraft operations
applications, such that the instantiated autonomous control
system is validated and robust.

5

REFERENCES

I.A. Nesnas, A. Wright, M. Bajracharya, R.
Simmons, T. Estlin, Won So0 Kim, “CLARAty:
An Architecture for Reusable Robotic Software,”
SPIE Aerosense Conference, April 2003.
B. Fischer, J. Schumann, “AutoBayes: A System
for Generating Data Analysis Programs from
Statistical Models. Journal of Functional
Programming, Vol. 13, No. 3, May 2003, pp.

J. Whittle, J. Schumann, “Automating the
Implementation of Kalman Filter Algorithms,”
Accepted for publication in ACM Transactions
on Mathematical Software (TOMS).
P. Gluck, G. Holzmann, “Using Spin Model
Checking for Flight Software Verification,”
Procedding of 2002 Aerospace Conference,
March 2002.
D. Giannakopoulou, C. Paraseanu, H. Barringer,
“Component Verification with Automatically
Generated Assumption,” Journal of Automated
Software hgineering, Vnl. 11, Klfiwer, 2004.
B. Blanchet et al. “Design and implementation of
a special-purpose static program analyzer for
safety-critical real-time embedded software.”

A. Venet “Non-uniform Alias Analysis of
Recursive Data Structures and Arrays.” In

Venet, G. Brat, ‘‘Precise and Efficient Static
Array Bound Checking for Large Embedded C
Programs,” Proceedings of PLDI 2004,
Washington, D.C., June 2004.
Venet, “A Scalable Nonuniform Pointer Analysis
for Embedded Programs,” Proceedings of the
International Static Analysis Symposium, SAS
04, Verona, Italy. LNCS 3148, Pp. 149-164,
Springer 2004.
J. R. Buch, -E.M. Clarke, K.L.McMillan, D.L.
Dill, J. Hwang, “Symbolic Model Checking:
10E20 states and beyond,” In LICS, 1990.

483-508.

LNCS 2566, pp. 85-108,2003.

SAS‘02, LNCS 2477, pp. 36-5 1,2002.

[101 J. Frank and A. Jonsson, “Constraint-Based
Attribute and Interval Planning.” In the Journal
of Constraints, vol. 8, no. 4,2003.

1111 N. Muscettola and P. Nayak and B. Pel1 and B.
Williams, “Remote Agent: To Boldly Go Where
No AI System Has Gone Before.” Artificial
Intelligence,l03(1-2), 1998.

[121 J. Frank, “Bounding the Resource Availability of
Partially Ordered Events with Constant Resource
Impact”, In Proceedings of the 10th International
Conference on Principles and Practices of

6

Constraint Programming, 2004.
[131 A. Jonsson and P. Morris and N. Muscettola and

K. Rajan and B. Smith, “Planning in
Interplanetary Space: Theory and Practice.”
Outstanding Application Award winner.
Proceedings of the International Conference on
Artificial Intelligence Planning and Scheduling,
2000.
V. Verma and T. Estlin and A. Jonsson and C.
Pasareanu and R. Simmons. Plan Execution and
Interchange Language (PLEXIL) for Executable
Plans and Command Sequences. Proceedings of
the 9” International Symposium on Artificial
Intelligence, Robotics and Automation in Space,
2005
M. Bernardine Dias and S. Lemai and N.
Muscettola. A Real-Time Rover Executive
Based on Model-Based Reactive Planning.
Proceedings of the 7” International Symposium
on Artificial Intelligence, Robotics and
Automation in Space, 2003
N. Muscettola and G. Dorais and C. Fry and R.
Levinson and C. Plaunt. IDEA: Planning at the
Core ef P,utencmeas Rszctive P q p t s .
Proceedings of the 3d International NASA
Workshop on Planning and Scheduling for Space,
2002

BIOGRAPHIES

To be filled in later.

