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Abstract- Space exploration applications can benefit 
greatly from autonomous systems. Great distances, limited 
communications and high costs make direct operations 
impossible while mandating operations reliability and 
efficiency beyond what traditional commanding can 
provide. Autonomous systems can improve reliability and 
enhance spacecraft capability significantly. However, there 
is reluctance to utilizing autonomous systems. In part this is 
due to general hesitation about new technologies, but a more 
tangible concern is that of reliability of predictability of 
autonomous software. 

In this paper, we describe ongoing work aimed at increasing 
robustness and predictability of autonomous software, with 
the uitimate goal of building trust in such systems. The 
work combines state-of-the-art technologies and capabilities 
in autonomous systems with advanced validation and 
synthesis techniques. The focus of this paper is on the 
autonomous system architecture that has been defined, and 
on how it enables the application of validation techniques 
for resulting autonomous systems. 
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1. INTRODUCTION 

Space exploration applications offer a unique opportunity 
for the development and deployment of autonomous 
systems, due to limited communications, great distances, 
and high cost of direct operation. At the same time, the risk 
and cost of space missions leads to reluctance to taking on 
new, complex and difficult-to-understand technology. 
Consequently, there is a pressing need to address the issue 
of designing robust architecture for autonomous systems 
and demonstrate a design process that can provide the trust 
and reliability that is required for manned and unmanned 
space applications. 

In this paper, we describe an ongoing effort to develop a 
new approach to defining, implementing and maintaining 
compositional autonomous systems. There are two key 
elements to the approach. One is a modular compositional 
autonomy architecture where adaptation to different 
applications is done in an incremental manner. The other is 
a testing and validation methodology that allows the 
certification of new adaptations to be limited to the 
components and relations that are modified. Together, the 
two elements will make future autonomy applications more 
easily constructed and modified, while increasing reliability 
and reducing cost of reconfiguration and maintenance. 
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The work will be grounded in a specific autonomy 
architecture that integrates the EUROPA planning 
framework and the functional layer of the CLARAty control 
architecture. EUROPA supports incremental compositional 
specification of the states, commands and associated 
operations rules that define how it may control a given 
system. CLARAty provides a compositional approach to 
defining the functional control software that interfaces with 
the underlying system. 

Compositional verification techniques will be used to limit 
the efforts required to validate and certify a new adaptation. 
These methods use known properties of unchanged 
modules to limit validation and certification efforts to 
changes made. The validation of core system and individual 
component properties is done with both formal and 
empirical analysis. 

Our approach will enable the increased use of autonomy in 
future space explorations, thus reducing operations costs 
and increasing reliability. In addition, the methodology of 
composable components and associated incremental testing 
and verification, will reduce the cost of system 
development, maintenance, and reconfiguration. 

2. AN ARCHITECTURE FOR AUTONOMY 

Autonomous systems vary greatly in the representation and 
reasoning techniques utilized in such systems. Furthermore, 
the interface between autonomous control and underlying 
systems can be radically different between architectures. 
Both of these aspects impact the application of validation 
techniques to autonomous systems instmtiations. 
Consequently, we define and use a general autonomous 
systems architecture that uses specific representation and 
reasoning approzches, combined with a structured well- 
defmed interface to the underlying system. While the 
architecture provides a basis for defining validation 
processes and techniques, many of the general notions of 
how to validate autonomous systems will be applicable to 
other architectures. 

Our architecture uses a constraint-based planning 
framework called EUROPA (Extendible Uniform Remote 
Operations Planning Architecture) for the core 
representation and reasoning. This provides the ability to 
make decisions about what actions to take so as to achieve 
mission goals, while ensurmg that flight rules and 
constraints are satisfied. The actions are implemented in the 
CLARAty framework (Coupled-Layer Architecture for 
Rover Autonomy), which also provides structured access to 
system states and sensory information. The architecture is 
shown in Figure 1. 

The decision-making component, implemented in 
EUROPA, uses the domain model to generate safe plans and 
decisions that respect flight rules and other constraints on 

operations. The domain model is a declarative specification 
of actions and states implemented in the functional layer, 
along with rules on how these actions can be used. The 
domain model is compositional, meaning that new actions 
and rules can be added without changing existing content. 

Figurel: Autonomy architecture outline 

The executive, implemented in an execution framework 
called PLEXIL, executes the plans and actions specified by 
the decision layer. It also monitors the execution, ensuring 
that the constraints and assumptions in the given plan are 
satisfied in the system during execution. When deviations 
occur, the executive can either recover or call on the 
decision layer to decide how to proceed. I The functional 
layer is part of the CLARAty framework. It is a set of 
functional components, arranged in a hierxckj where 
higher-level components utilize capabilities and services of 
lower-level Components. The knctionzl layer thus provides 
a compositional apprczch tc implementkg interfaces tg 
system functions. 

The verification and validation methods are applied to all 
levels of the architecture. The details are further described 
here below in the section on validation. The automated 
synthesis techniques iire then used te gemrate, h m  high- 
level specification, both CLARAty functional layer 
components and the associated specifications in the domain 
model. This approach, combined with the compositional 
nature of the overall architecture, enables rapid adaptation 
and reconfiguration of the autonomy system. 

EUROPA - constraint- based plann ing 

The Extensible Universal Remote Operations Planning 
Architecture (EUROPA) is a model-based planning and 
scheduling architecture descended from the Remote Agent 
Planner [Jonsson, et al., 20001. Users of EUROPA can 
specify the rules of planning domains using a rich domain 
description language that supports time, resources, 
disjunctive preconditions and conditional effects. EUROPA 
makes extensive use of constraint based representation and 
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reasoning, which allows for more concise representation of 
planning models, and more efficient reasoning during 
planning [Frank and Jonsson, 20031. EUROPA provides 
support for “foreign function” calls implementing complex 
constraints such as power consumption and generation. 

EUROPA consists of a hierarchy of highly configurable 
components, supporting the building many types of planners 
and plan representations. The modeling language, NDDL, 
contains a small number of elementary entity types, 
providing ease in modeling. These types can be extended to 
provide more specialized components, leading to a rich set 
of modeling primitives. The plan database contains the 
current plan and information about its state. The database 
provides mechanisms to efficiently query the plan state and 
modify the plan. Modification leads to inference, which is 
performed by a rules engine module and a constraint 
reasoning engine module. The rules engine determines 
which rules in the domain description apply after each 
modification of the plan, and updates the state accordingly. 
The constraint reasoning module is further broken down 
into specialized modules that efficiently handle particular 
classes of constraints, such as temporal constraints. Finally, 
EUROPA provides interfaces to specialized heuristics 
modules that provide search control to planners. 

EUROPA can also be customized to support both long- 
range deliberative planners as well as short-horizon 
continuous planners that may operate on the same model. 
This approach partially resolves problems due to building 
multiple models in different languages for the same 
autonomy system (e.g. [Muscettola et al, 19981). For 
example, one planner may have a time horizon limited to 5 
minutes into the future, and can delay subgoals. Another 
planner may only plan activities for a hazard avoidance 
system, leaving other goals to other planners. EUROPA 
supports customizations of this form by limiting a planners’ 
“view” to a subset of the model. EUROPA also allows 
multiple planners to modify the same plan concurrently, by 
providing authority mechanisms indicating what planners 
may modify. 

Automated planning technology such as EUROPA has been 
utilized as part of on-board autonomy architectures for deep 
space probes [Jonsson, et al., 20001, robotic rovers p i a s  et 
al. 20031 and free-ftying robots [Muscettola et al, 20021. 

CLARAty - layered architecturefor robotics 

Most robotic control systems employ a variant of the Three- 
Layer Architecture pioneered by Brooks in 1987. 
CLARAty is an evolution of the three-layer architecture that 
provides a wide-range of robotic functionality and 
simplifies the integration of new technologies on robotic 
platforms. CLARAty is a joint project between the NASA 
Jet Propulsion Laboratory, NASA Ames Research Center, 
Carnegie Mellon University and a number of other 
universities and has been designed specifically for space- 

based robotic control applications. CLARAty features a 
Functional Layer of robotic primitives, coupled with a 
Decision Layer of planning and execution functionality; 
each of these layers contains a hierarchy of components 
ranging from the most elementary to the most “intelligent”. 

The Functional Layer (FL) provides a set of standard, 
generic robot capabilities that interface to system hardware. 
These capabilities are organized as a software class 
hierarchy of robotic components; for example, wheeled- 
mobility is a subclass of mobility, and individual rover 
wheel assemblies are child classes. As is natural in object- 
oriented systems, the interface is separated from 
implementation. Physical limitations of devices are 
distinguished from algorithmic limitations. Finally, runtime 

Figure 2: CLARAty framework organization 

models of devices are incorporated in the Functional Layer. 

3. VALIDATION OF AUTONOMOUS SYSTEMS 

In the autonomy architecture outlined here, an instantiation 
of an autonomous system consists of the following 
elements : 

The core EUROPA planning and decision-making 
framework, which will largely be unchanged between 
applications and thus can be validated without 
reference to the specific instantiation. 

The CLARAty instantiation for the system in question, 
which consists of a set of core CLARAty components 
and the specific components used to operate the 
system. The core CLARAty components can be 
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(3) 

(4) 

(5) 

validated separately, while the specific components are 
validated as part of the instantiation process. Some 
components may be synthesized, which offers an 
opportunity for easier validation of those components. 

The execution system that links CLARAty and 
EUROPA and provides monitoring capabilities to 
ensure that execution does not continue when the 
assumptions supporting the plan no longer hold. The 
core execution system is validated once, but online 
validation and checking techniques can be used to 
validate specific executable plans. 

The domain model describing possible actions and the 
flight rules governing those actions and the related 
system states. Model validation is a key element of 
ensuriig that the autonomy system instantiation is 
robust and safe. 

The properties that should hold for the system and 
various components. These define the criteria for 
validation of the system. 

The validation of an instantiation thus involves validating 
core architecture systems, instantiation-specific CLARAty 
components, the domain model used by the planner and 
executive, and finally, the overall properties for the 
instantiated system. To tackle this, we apply three kinds of 
techniques. Model-based validation, using compositional 
verification, can be applied to core software as well as 
special-purpose components. In addition, compositional 
techniques allow us to verify system-level properties from 
component properties. Static analysis is a powerful 
technique to directly analyze software code, without 
reqEiring a formal modeling of the software components 
and properties. Finally, automated synthesis techniques 
allow us to generate instance-specific elements from high- 
level specifications. Ln_ addition to sLmp!ifj&g the process 
of implementing instantiations, synthesis offers an 
additional level of validation by generating provably correct 
code. 

Compositional verijkation 

Model-based verification techniques use exhaustive search 
through possible execution trajectories to verify desired 
system properties. While these techniques can provide the 
formal validation desired for our autonomous systems, they 
suffer f?om state-space explosion, making them impractical 
to use. In addition, they do not lend themselves to 
incremental validation, as we desire to do for instantiations 
of autonomous systems. 

To address these issues, we turn to compositional 
verification techniques. The basic idea is as follows: 
Consider a system consisting of two components X and Y. 
The desire is to prove that a property P is satisfied by the 
overall system XIY. In compositional verification, this is 
done by identifying an intermediate properly A, called an 
assumption, and using that to split the validation into two 

smaller problems. The first part is to prove that X satisfies 
A, and the second part is to prove that given A, Y satisfied 
P. 

This notion can be utilized in different ways. If the X and Y 
components are already validated, it is likely that the 
assumption A is already known and the compositional 
verification techniques can be applied directly. This is 
likely to be the case in situations such as where new 
CLARAty components are being added on top of existing 
ones. The propertie2 of the core components are known and 
validated, so the new components can be validated against 
these proven assumptions. 

A more interesting case is when the assumption A is not 
known. To address that, we turn to techniques for 
automatically generating such assumptions from the 
components X and Y. Recently developed techniques make 
this possible, and allow both the generation of a weakest 
valid assumption for a given component, and an easier-to- 
find stronger but also valid assumption that is still satisfied 
and suffices to prove the overall properly P. 

As outlined above, we will rely heavily on these 
compositional verification techniques in our work, both to 
address computational cost issues, and to enable incremental 
validation of autonomy system instantiations. 

Static analysis 

The goal of static program analysis is to assess properties of 
a program without executing the program. Several 
techniques can be used to perform static analysis. Theorem 
proving, data flow analysis, constraint solving, and abstract 
interpretation are among the most popular. Generally 
speaking, a static program analyzer infers properties about 
the execution of t l e  prograii from its text (the source code) 
and a formal specification of the semantics of the language 
(which is built in the analyzer). Static program analyzers are 
in general excellent to detect runtime errors. 

Runtime errors are errors that cause exceptions at runtime. 
Typically, in C, either they result in creating a core dump or 
they cause data corruption that may cause crashes. Tire m a h  
classes of runtime errors are accesses to un-initialized 
variables, accesses to un-initialized pointers, out-of-bound 
array accesses arithmetic underflow/overflow, invalid 
arithmetic operations, non-terminating loops, and non- 
terminating calls. 

In general, static program analyzers aim at checking all 
execution paths, sometimes at the cost of incompleteness 
(i.e., impossibility of determining the safety of all 
operations with exact precision). In other words, the 
analyzer can raise false alarms on some operations that are 
actually safe. However, if the analyzer deems an operation 
safe, then errors cannot occur on any execution path. The 
program analyzer can also detect certain runtime errors 
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which occur every time the execution reaches some point in 
the program. 

Traditionally, there are two complementary uses of a 
program analyzer: 

as a debugger that detects runtime errors statically 
without executing the program, and 

as a preprocessor that reduces the number of 
potentially dangerous operations that have to be 
checked by a traditional validation process (code 
reviewing, test writing, and so on). 

The frst  use is akin to traditional debugging; the developer 
tries to flush as many as bugs as he can from the code before 
it gets to verification. The second use is called certification; 
the goal is to prove the absence of errors of a certain class, 
thus, alleviating the need for testing for this class of errors. 
This requires that the static analyzer achieves a good 
selectivity - the percentage of opersltions which are proven 
to be safe by the program analyzer. Indeed, if 50% of all 
operations in the program are marked as potentially 
dangerous by the analyzer, there are no benefits to using 
such techniques 

Automated synthesis 

The aim is to have certified components. One way of 
achieving this is to verify that components are free of bugs. 
Another is to generate the components in an inherently 
trustworthy manner. We are developing the use of 
automated code generation (also known as program 
synthesis) for this. Control software is particularly 
appropriate for code generation sbce it can be modeled 
concisely at a high-level, while the code which implements 
it tends to be idiomatic. 

A code generator takes as input a domain-specific high-level 
description of a task (e.g., a set of differential equations) and 
produces optimized and documented low-level code (e.g., C 
or C++) that is based on algorithms appropriate for the task 
(e.g., the extended Kalman filter). This automation 

the introduction of coding errors. 
hGc,mes deve!oper productivity &IC!, ill prhcip!e, preveIIts 

AutoFilter [Denney et al, Bigsky Boondoggle 20051 is a 
domain-specific program synthesis system that generates 
customized Kalman filters for state estimation tasks 
specified in a high-ievei notation. AutoFiiter‘s speciccation 
language uses differential equations for the process and 
measurement models and statistical distributions to describe 
the noise characteristics. It can generate code with a range 
of algorithmic characteristics and for several target 
platforms. The tool has been designed with reliability of the 
generated code in mind and is able to automatically certify 
that the code it generates is free from various error classes 
(most are programming error, some address functional 
concerns). Since documentation is an important part of 

software assurance, AutoFilter can also automatically 
generate various human-readable documents, containing 
both design and safety related information 

4. CONCLUDING REMARKS 

The work described in this paper is an ongoing effort. The 
architecture has been defined and an initial version has been 
implemented. The process for validating new instantiations 
has been defined and initial efforts are underway to apply 
static analysis, compositional verification and automated 
synthesis to parts and aspects of the autonomy architecture. 

The autonomy software has been adapted to operating JPL’s 
FIDO rover in simulation. As expected, the integration of 
EUROPA and CLARAty has been straightforward, assisted 
by the use of the PLEXTL execution framework. At this 
point, the planner domain model is constructed manually 
from the specification of the CLARAty interface for FIDO 
control. Future efforts in the use of synthesis will focus on 
automatically generating domain model information from 
functional layer specifications, but the expectation is that 
engineering experts will still refine the domain model to 
specie the desired coostrai~ts zd flight ru!es. 

Static analysis is being applied to modules of the EUROPA 
framework, providing initial analysis for the current 
implementation. In the near future, this work will be 
extended to other modules of EUROPA and to components 
of the CLARAty framework. 

Compositional verification techniques are being tested on 
models of autonomous rendezvous and docking systems. 
The results of this work are very promising, having 
denonstrated the a3ility to generate small assumptions that 
ir, turn enable Yery fast validation of system properties. 
These results are in stark contrast to the large amount of 
time and computing res6urces needed to apply traditional 
model checking methods to the full model without the 
benefit of decomposition. 

Automated synthesis techniques for generating Kahman 
filters from formal specifications have been adapted to 
generate Kalman filter components for CLARAty. Since 
such filters play a key role in interpreting sensor information 
for states like rover location, this is a significant step 
forward. 

To summarize, the effort outlined here has only recently 
been started, but even at this early point in time, the results 
are promising. The goal of this work is to provide a robust 
verified core autonomy architecture, along with the process 
and tools needed to adapt it to spacecraft operations 
applications, such that the instantiated autonomous control 
system is validated and robust. 
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