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1 Introduction

Verifying properties of large real-world programs requires vast quantities of in-
formation on aspects such as procedural contexts, loop invariants or pointer
aliasing. It is unimaginable to have all these properties provided to a verifica-
tion tool by annotations from the user. Static analysis will clearly play a key
role in the design of future verification engines by automatically discovering the
bulk of this information. The body of research in static program analysis can be
split up in two major areas: one–probably the larger in terms of publications–is
concerned with discovering properties of data structures (shape analysis, pointer
analysis); the other addresses the inference of numerical invariants for integer
or floating-point algorithms (range analysis, propagation of round-off errors in
numerical algorithms). We will call the former “symbolic static analysis” and the
latter “numerical static analysis”. Both areas were successful in effectively ana-
lyzing large applications [19, 8, 12, 2, 6]. However, symbolic and numerical static
analysis are commonly regarded as entirely orthogonal problems. For example,
a pointer analysis usually abstracts away all numerical values that appear in
the program, whereas the floating-point analysis tool ASTREE [2, 6] does not
abstract the memory at all.

If one wants to use static analysis to support or achieve verification of real
programs, we believe that symbolic and numerical static analysis must be tightly
integrated. Consider the two code snippets in Fig. 1. If one wants to check that
the assignment operation in the first example is performed within the bounds
of the array, one needs a numerical property relating the sizes of the objects
pointed to by p and q and the parameter n. The second example constructs a
two-dimensional array of semaphores using VxWorks’ semCreate library func-
tion. If one wants to verify concurrency properties of the program, like the ab-
sence of deadlocks, one must be able to distinguish between the elements of
the sems array. In the first case, a static analyzer would have to construct an
abstract memory graph labeled with metavariables denoting the size of objects
and relate these metavariables with the program variables. The second case is
more complex, in the sense that the points-to relation itself has to be parame-
terized by array indices. These two examples are not artificial: the first one is
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void equate (int *p, int *q, int n) {
int i;

for(i=0; i<n; i++)

p[i] = q[i];

}

for(i=0; i<10; i++)

for(j=0; j<8; j++)

sems[i][j] = semCreate();

Fig. 1. Code samples illustrating the interaction of symbolic and numerical properties

characteristic of the object-oriented programming style used in the flight mis-
sion software developed at NASA for the Mars Exploration Program [26, 3]; the
second one comes from the controller of a science payload developed at NASA
for the International Space Station [25].

Our research work has been mostly concerned with the design of techniques
for combining symbolic and numerical static analysis in order to discover the
kind of properties described above. We came up with a number of static analysis
algorithms [23, 22, 24–26] aimed at various categories of properties and programs.
This approach proved to be successful in achieving the large-scale verification of
pointer-intensive NASA flight software [26, 3]. The major difficulty in developing
those kind of analyses lies in the absence of a general framework for guiding the
design. Except for the base idea of blending symbolic and numerical structures
together, these analyses vary broadly in terms of the semantic model used, the
abstract representation of memory and the resolution algorithms. If we add to
this list the fact that these analyses are very complex to implement, one may cast
doubts on the viability of this approach for the development of production-level
verification tools. This paper proposes a research agenda aimed at making this
technology mainstream and easily applicable to a broad spectrum of verification
problems. In Sect. 2 we will review the major achievements in the design of mixed
symbolic and numerical static analysis tools, and Section 3 will describe the re-
maining challenges. In Sect. 4 we will sketch the bases of a general abstract
interpretation framework for automating the implementation of static analyz-
ers. This framework is the formal foundation for an effort underway at Kestrel
Technology to industrialize this static analysis technology. This is discussed in
Sect. 5.

2 Achievements

The first occurrence in the literature of a static analysis that mixes symbolic and
numerical approximations is an alias analysis for strongly typed languages [9,
10] that is able to discover properties such as “two lists of arbitray length share
their elements pairwise”. In that model, pointer aliasing is represented by an
equivalence relation over access paths into data structures. The abstraction is
based on a finite partitioning of the set of access paths by monomial unitary-
prefix path expressions, which are given by the Eilenberg decomposition of a
rational language [11]. Monomial unitary-prefix path expressions have the form
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nπn+1 where the πi are sequences of data selectors and the
Bi are rational languages, called the bases of the decomposition. The key idea
consists of assigning a counter variable to each base and use standard numerical
lattices to set constraints between these counters. For example, two lists x and
y that share their elements pairwise can be described as follows:

x.(tl)i.hd ≡ y.(tl)j .hd ⇐⇒ i = j

by using the numerical lattice of affine equalities [13]. The pointer aliasing re-
lation is thus completely abstracted by a finite number of numerical relations.
We have designed an abstraction of relations over free monoids inspired by this
model that did not require any type annotation and did not incur the possible
exponential cost of the Eilenberg decomposition [20]. The main idea was to use a
regular automaton as the base symbolic structure and assign a numerical counter
to each transition of the automaton. The automaton describes the access paths
within data structures and is constructed jointly with the aliasing relation. Since
the aliasing relation is based on this structure, changing the automaton requires
to modify the representation of the aliasing relation accordingly. This opera-
tion was carried out by endowing the abstract domain with the structure of a
cofibered domain [20]. This allowed us to construct a pointer analysis of similar
power for dynamically typed languages like Java [23], as well as a communica-
tion analysis for systems of concurrent processes based on the π-calculus [21].
However, this numerical model has two important drawbacks: the operations on
aliasing relations are costly and arrays cannot be represented precisely.

In order to lift these limitations we built a new numerical model based on
a different interpretation of the semantics of memory allocation. Each object
allocated in memory is assigned a timestamp, which is a numerical abstraction
of the execution trace that led to the object creation. The memory is repre-
sented by a graph whose vertices are labels of allocation statements together
with a timestamp, and whose edges represent the points-to relation. Arrays can
naturally be integrated into this scheme by simply adding a numerical index to
edges. This new model allowed us to build a flow-sensitive pointer analysis for
Java-like languages [24] and a considerably simpler communication analysis for
the π-calculus [22]. It also allowed us to tackle the analysis of multithreaded pro-
grams. Flow-sensitive analyses are impractical in the presence of threads due to
the combinatorial blowup of interleaving. We have developed a pointer analysis
for the C language that lies between flow-sensitive and flow-insensitive analy-
ses [25]. An inexpensive flow-sensitive analysis is first run on each function in
order to build flow-insensitive points-to equations that incorporate all local loop
invariants. Then, these equations are solved using a constraint resolution algo-
rithm. This analysis can be seen as an homeomorphic extension of Andersen’s
analysis scheme [1] in which inclusion constraints are annotated by numerical
invariants. The constraint resolution algorithm is similar to Andersen’s except
that numerical operations are performed at each elementary step. The analysis
scales well and has been successfully applied to the control software of a science
payload for the International Space Station [25].



These encouraging results motivated us to apply these techniques to the large
mission-critical programs developed at NASA for the Mars Exploration Program.
We have developed a static array-bound checker for NASA flight software, called
C Global Surveyor, which is based on a numerical abstraction of the heap [26].
The focus of this tool was not so much on memory allocation, which is scarcely
used in mission-critical software, but on pointer arithmetic. In the family of
programs considered, data are organized in large structures and manipulated by
transmitting their address to generic functions. We designed a model in which
all data are referenced using a byte-based offset within the memory block where
they belong. The abstract heap is a points-to graph labeled with numerical
intervals representing offset ranges. This graph is iteratively refined by narrowing
intervals and pruning edges. The process is bootstrapped by using the memory
graph produced by Steensgaard’s analysis [19], and subsequent phases essentially
consist of arithmetic manipulations on the labels of the graph. We have applied
this static checker to codes ranging from 140 KLOC to 550 KLOC (the flight
software of the current mission Mars Exploration Rovers). On average, 80% of all
array accesses could be decided by the verifier, with the analysis speed peaking
at 100 KLOC/hour [3]. The only limiting factor was the enormous amount of
artifacts produced by the analyzer, which forced us to use an external storage
management that degraded the performances.

3 Challenges

Anyone reading the literature on mixed symbolic and numerical static analysis
would rapidly come to the conclusion that all those analyses are completely ad
hoc and difficult to reproduce. If there were not the scalability issues, a general
framework like three-valued logic [18, 15] looks more appealing because most of
the technicalities are hidden inside a generic engine. Hence, we need a general
and practical framework for the integration of symbolic and numerical static
analysis. In the following sections, we describe the three major challenges that
lie ahead.

3.1 Nonstandard Semantics

A static analysis is defined by an abstract interpretation of the concrete seman-
tics [4, 5]. In order to be able to relate a symbolic information with a numerical
one, we need to provide a numerical encoding of the symbolic part. Standard
semantic models are almost always inadequate, and this requires the defini-
tion of a more appropriate semantics. Examples are the storeless [9, 23] and
timestamp [24, 25] semantics of aliasing. This is the most critical design decision
since this choice will drive the precision and efficiency of the analysis. The defi-
nition of a nonstandard semantics is very similar in its purpose to the choice of
instrumentation predicates in three-valued logic [15]. In practice, the definition
of a nonstandard semantics–however baroque it may be–is quite straightforward
and just takes few lines. The major difficulty is that the whole analysis entirely



depends on the choice of this semantics. Finding out after experiments that this
semantics is inadequate essentially implies rewriting the whole analysis, which is
a tremendous work. Hence, we need to be able to generate most of the analysis
implementation from a relatively small specification of the concrete semantics.

3.2 Complexity of the Abstract Domain Construction

The structure of the abstract domains for these analyses is extremely complex,
which makes the construction of the semantic transformers very tedious and
lengthy. However, the structure of the domains is very modular and the seman-
tic transformers closely mimick those of the concrete semantics. Although the
complete formal specification of the analysis is bulky and intricate, its stepwise
construction is fairly systematic. If this systematic construction can be mecha-
nized, then the core of the analysis engine can be automatically generated from
a description of the abstract domain’s structure.

3.3 Techniques for Scalability

Making the analyzer scale to large code bases entails doing some tradeoffs that
further complicates the construction of the analyzer. For example, flow-sensitive
pointer analysis does not scale up to the hundreds of KLOC, whereas flow-
sensitivity is required in order to compute numerical loop invariants. The analy-
ses described in [26, 25] perform a flow-sensitive numerical analysis combined
with a shallow pointer analysis first, and then a deep pointer analysis. This means
that two different abstract domains have to be constructed, one for each phase
of the analysis. To take another example, performances of important numeri-
cal abstract interpretations like polyhedra [7] or difference-bound matrices [17]
degrade rapidly with the number of variables analyzed, whereas the numerical
encoding of symbolic information tends to introduce a lot of variables. The so-
lution consists of partitioning the set of variables in small clusters for which
the numerical algorithms perform well. From our experience, the clustering sig-
nificantly complicates the implementation of the analysis engine. Ideally, these
optimizations should be orthogonal to the construction of the abstract interpre-
tation. The fact that they are deeply interwoven with the specification of the
analysis makes this separation all the more challenging.

4 Sections, Coverings and Glueing

We propose a unified framework for tackling all the challenges listed in the pre-
vious section. Our approach is based on constructions inspired from algebraic
topology. The theory of sheaves and fiber bundles [16] in particular, provide
techniques for studying global properties of complex topological spaces possess-
ing a regular structure locally. Similarly, the abstract semantic domains used in
mixed symbolic and numerical static analysis can be seen as bundles of simple
numerical lattices. All semantic operations on these domains can be interpreted



as the “patching” of abstract values defined on local lattices. This provides us
with a uniform algebraic framework that can be used as the foundation of a
generic analysis engine for this class of static analysis. In the rest of this section
we will sketch the main lines of our approach, and show how existing mixed
symbolic-numerical analyses can be expressed in this framework.

We start with describing the concrete semantic domains of the mixed symbolic-
numerical static analyses defined in the literature. In each case the concrete se-
mantic domain is given by a powerset lattice D = (℘(D),⊆, ∅,∪, D,∩). In all
static analyses considered, D is a set of tuples mixing symbolic values and inte-
gers. For storeless alias analyses [10, 23] and the communication analysis of the
π-calculus of [21], the aliasing/communication structure is given by an equiva-
lence relation. The analysis of [22] represents the communication structure by
a binary relation which is not an equivalence relation. In all those cases, D is
the set of all binary relations on strings, which denote either access paths into
data structures or sequences of process interactions. In the alias analysis of [24],
the main structure is a points-to relation between ojects, which may be struc-
tured records or arrays. These objects are identified by timestamps, which are
sequences of tuples of integers. In that case, D contains all triples 〈t1, f, t2〉,
where t1, t2 are timestamps and f is either a field selector or an integer (in
the case of a points-to relation involving an array). The representation of the
points-to graph in C Global Surveyor [26] is given by a set of tuples 〈v1, i1, v2, i2〉
where v1, v2 are program variables and i1, i2 are offsets expressed in bytes and
denoting positions within v1, v2. Although it is described differently in the paper,
the pointer analysis of [25] is based on an abstraction of inclusion constraints
enriched with integer values, which denote timestamps and array indices, like
in Xi ⊇ ∗(Yj + o), where i, j, o are integers. An enriched inclusion constraint of
that form can be encoded as a tuple of symbolic variables and integers.

In each case, an abstract value is a tuple of integers and symbolic values.
The first step of the abstract interpretation process consists of building a finite
approximation of the set S of symbolic values, when S is infinite. This essentially
consists of projecting S onto a finite set B, that we call the base. We denote
by π : D → B the projection. In the case of the analyses of [9, 10], B is the
set of monomial unitary-prefix path expressions Π obtained from the Eilenberg
decomposition of the language denoting all possible access paths in the data
structures of the program. Now, we assign a set Vb of integer-valued variables
to each b ∈ B together with a family of mappings φb : π−1(b) → INVb , that we
call local trivializations. The variables of Vb represent the numerical information
associated to a symbolic element of the structure. In our example, VΠ contains
the counters associated to each base of the Eilenberg decomposition appearing
in Π . The local trivialization φΠ maps an access path π to the tuple of integers
denoting the number of times each base of Π is traversed by π.

Now, given such a structure, a tuple τ of integers and symbolic values can be
abstracted by a tuple b̄ of elements of B, together with a set Vb̄ of integer variables
denoting the integer values in τ plus the variables of the local trivializations
associated to each symbolic element of τ . We denote by B the set of tuples



of elements of B induced by this abstraction. Finally, we associate an abstract
numerical lattice F(b̄) with each b̄ ∈ B, that we call the fiber over b̄. This
abstract numerical lattice provides a computable numerical abstraction of sets
of integer valuations over the variables Vb̄ through a concretization function
γb̄ : F(b̄) → ℘(INV

b̄). We call the structure (D, B, φ,F) an abstract fiber bundle.
A section of the fiber bundle is a family (νb̄)b̄∈B

of abstract numerical relations,

where νb̄ ∈ F(b̄) for each b̄ in B. The collection of all sections endowed with the
pointwise extension of the abstract numerical lattice operations forms a lattice
Σ. This defines an approximation γ : Σ → D of the concrete domain. In our
example, the lattice of sections obtained is isomorphic to the lattice of monomial
unitary-prefix relations of [9, 10].

Now, if B is the set of pairs of final states of a deterministic regular automaton
A, π maps an access path in the language recognized by A to the paccepting final
state, and φq maps an access path q to the tuple of integers denoting the number
of times each transition of the automaton is traversed by the access path, then
we obtain the abstract domain of [23, 21, 22]. The abstract domains of the other
static analyses [24, 26, 25] can be constructed along the same lines. The main idea
is that the base contains all symbolic information, whereas the fibers carry all
numerical information. Although they bear a similar name, the abstract cofibered

domains of [20] are orthogonal to this construction. Their main purpose is to
formalize the notion of an adaptive lattice, where the abstract domain changes
during the execution of the static analysis, and to provide a systematic way of
constructing widening operators. For example, cofibered domains can be used
on top of an abstrat fiber bundle when the base B of the bundle is computed
during the analysis, as it is the case in [23, 21]. They do not give any insight into
the internal structure of the domain itself, which is the purpose served by the
abstract fiber bundle.

All intermediate data structures that are created and manipulated during the
analysis are actually tuples of integer symbolic values. Therefore, the abstract
fiber bundle can be used as a universal object factory in the implementation of
the analysis engine. This brings us one step closer to a generic analysis frame-
work. Now, given two sets of numerical variables U and V , one can define a
morphism f : U → V as an injective linear transformation between the Q-vector
spaces spanned by U and V . Given a numerical abstract domain N , such a mor-
phism defines a projection map Nf from the domain NV , defined over the set
of variables V , into the abstract domain NU , defined over the set of variables U .
Hence, an abstract numerical domain can be viewed as a contravariant functor.
Now, given a family of morphisms fi : Ui → U and elements νi ∈ NUi, one
can define the glueing G〈(νi)i∈I〉 as the conjunction of all numerical constraints
defined by the νi transposed into the domain NU via the morphisms fi. This
structure is reminiscent of that of sheaves frequently used in algebraic topology.
This simple algebraic structure is sufficient to express all the operations used in
the construction of a mixed symbolic-numerical static analysis. For example, a
transitive closure step in the model of [9] is expressed as: “given an alias pair
(Π1, Π2) with the abstract numerical relation ν1, and (Π2, Π3) with the abstract



numerical relation ν2, construct the alias pair (Π1, Π3) together with the com-
position of ν1 and ν2”. In our framework, this amounts to glueing ν1 and ν3 over
the abstract domain N (VΠ1

∪ VΠ2
∪ VΠ3

) and projecting back the result into
N (VΠ1

∪ VΠ3
).

This sheaf-like structure also allows us to express the optimization techniques
used for ensuring scalability. The clustering of variables amounts to using a
covering, i.e. a family of inclusion morphisms fi : Ui → U for representing an
abstract numerical relation over U . Since all operations are expressed using the
projection morphisms and the glueing operation, using a covering of U instead
of U becomes a transparent operation. Similarly, the distinction between shallow
and deep pointer analyses vanishes, since they now share the same representation
and are manipulated using the same operations. This means that this framework
allows us to synthesize an abstract interpretation on top of a generic analysis
engine.

5 Automated Generation of Static Analyzers

The implementation of this framework is underway, based on the formal specifi-
cation environment SpecWare [14]. Our first objective is to be able to reconstruct
existing analyses using this framework. In particular, we aim at achieving the
same level of scalability. This is probably the main characteristic of our ap-
proach: unifying the construction of semantic transformers and the definition of
optimizations within a single formal framework. This comes in sharp contrast
with three-valued logic for example, where there is no handle for controlling
the scalability. Our experience with C Global Surveyor [26] showed that there
is no universal strategy for achieving scalability. This is based on a “try and
fix” process, driven by empirical data and dependent on the family of applica-
tions considered. Therefore, we believe that there is no point in trying to build
a sophisticated “push button” tool that will work well on a broad spectrum
of applications. It is more important to allow the developers to customize the
analysis rapidly and find the best blend of semantic approximation and optimiza-
tion techniques. In our opinion, this quick turnaround is the key to a successful
industrialization of the technology and its widespread use.
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