74 research outputs found

    Nonrepetitive colorings of lexicographic product of graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1il1\le i\le l. Given graphs GG and HH with V(H)=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. %Our main results are the following. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+k/23k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+k/23k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    On the facial Thue choice index via entropy compression

    Full text link
    A sequence is nonrepetitive if it contains no identical consecutive subsequences. An edge colouring of a path is nonrepetitive if the sequence of colours of its consecutive edges is nonrepetitive. By the celebrated construction of Thue, it is possible to generate nonrepetitive edge colourings for arbitrarily long paths using only three colours. A recent generalization of this concept implies that we may obtain such colourings even if we are forced to choose edge colours from any sequence of lists of size 4 (while sufficiency of lists of size 3 remains an open problem). As an extension of these basic ideas, Havet, Jendrol', Sot\'ak and \v{S}krabul'\'akov\'a proved that for each plane graph, 8 colours are sufficient to provide an edge colouring so that every facial path is nonrepetitively coloured. In this paper we prove that the same is possible from lists, provided that these have size at least 12. We thus improve the previous bound of 291 (proved by means of the Lov\'asz Local Lemma). Our approach is based on the Moser-Tardos entropy-compression method and its recent extensions by Grytczuk, Kozik and Micek, and by Dujmovi\'c, Joret, Kozik and Wood

    A new approach to nonrepetitive sequences

    Full text link
    A sequence is nonrepetitive if it does not contain two adjacent identical blocks. The remarkable construction of Thue asserts that 3 symbols are enough to build an arbitrarily long nonrepetitive sequence. It is still not settled whether the following extension holds: for every sequence of 3-element sets L1,...,LnL_1,..., L_n there exists a nonrepetitive sequence s1,...,sns_1, ..., s_n with siLis_i\in L_i. Applying the probabilistic method one can prove that this is true for sufficiently large sets LiL_i. We present an elementary proof that sets of size 4 suffice (confirming the best known bound). The argument is a simple counting with Catalan numbers involved. Our approach is inspired by a new algorithmic proof of the Lov\'{a}sz Local Lemma due to Moser and Tardos and its interpretations by Fortnow and Tao. The presented method has further applications to nonrepetitive games and nonrepetitive colorings of graphs.Comment: 5 pages, no figures.arXiv admin note: substantial text overlap with arXiv:1103.381
    corecore