618 research outputs found

    Functional Bipartite Ranking: a Wavelet-Based Filtering Approach

    Full text link
    It is the main goal of this article to address the bipartite ranking issue from the perspective of functional data analysis (FDA). Given a training set of independent realizations of a (possibly sampled) second-order random function with a (locally) smooth autocorrelation structure and to which a binary label is randomly assigned, the objective is to learn a scoring function s with optimal ROC curve. Based on linear/nonlinear wavelet-based approximations, it is shown how to select compact finite dimensional representations of the input curves adaptively, in order to build accurate ranking rules, using recent advances in the ranking problem for multivariate data with binary feedback. Beyond theoretical considerations, the performance of the learning methods for functional bipartite ranking proposed in this paper are illustrated by numerical experiments

    Breathing pattern characterization in patients with respiratory and cardiac failure

    Get PDF
    El objetivo principal de la tesis es estudiar los patrones respiratorios de pacientes en proceso de extubación y pacientes con insuficiencia cardiaca crónica (CHF), a partirde la señal de flujo respiratorio. La información obtenida de este estudio puede contribuir a la comprensión de los procesos fisiológicos subyacentes,y ayudar en el diagnóstico de estos pacientes. Uno de los problemas más desafiantes en unidades de cuidados intensivos es elproceso de desconexión de pacientes asistidos mediante ventilación mecánica. Más del 10% de pacientes que se extuban tienen que ser reintubados antes de 48 horas. Una prueba fallida puede ocasionar distrés cardiopulmonar y una mayor tasa de mortalidad. Se caracterizó el patrón respiratorio y la interacción dinámica entre la frecuenciacardiaca y frecuencia respiratoria, para obtener índices no invasivos que proporcionen una mayor información en el proceso de destete y mejorar el éxito de la desconexión.Las señales de flujo respiratorio y electrocardiográfica utilizadas en este estudio fueron obtenidas durante 30 minutos aplicando la prueba de tubo en T. Se compararon94 pacientes que tuvieron éxito en el proceso de extubación (GE), 39 pacientes que fracasaron en la prueba al mantener la respiración espontánea (GF), y 21 pacientes quesuperaron la prueba con éxito y fueron extubados, pero antes de 48 horas tuvieron que ser reintubados (GR). El patrón respiratorio se caracterizó a partir de las series temporales. Se aplicó la dinámica simbólica conjunta a las series correspondientes a las frecuencias cardiaca y respiratoria, para describir las interacciones cardiorrespiratoria de estos pacientes. Técnicas de "clustering", ecualización del histograma, clasificación mediante máquinasde soporte vectorial (SVM) y técnicas de validación permitieron seleccionar el conjunto de características más relevantes. Se propuso una nueva métrica B (índice de equilibrio) para la optimización de la clasificación con muestras desbalanceadas. Basado en este nuevo índice, aplicando SVM, se seleccionaron las mejores características que mantenían el mejor equilibrio entre sensibilidad y especificidad en todas las clasificaciones. El mejor resultado se obtuvo considerando conjuntamente la precisión y el valor de B, con una clasificación del 80% entre los grupos GE y GF, con 6 características. Clasificando GE vs. el resto de los pacientes, el mejor resultado se obtuvo con 9 características, con 81%. Clasificando GR vs. GE y GR vs. el resto de pacientes la precisión fue del 83% y 81% con 9 y 10 características, respectivamente. La tasa de mortalidad en pacientes con CHF es alta y la estratificación de estospacientes en función del riesgo es uno de los principales retos de la cardiología contemporánea. Estos pacientes a menudo desarrollan patrones de respiraciónperiódica (PB) incluyendo la respiración de Cheyne-Stokes (CSR) y respiración periódica sin apnea. La respiración periódica en estos pacientes se ha asociadocon una mayor mortalidad, especialmente en pacientes con CSR. Por lo tanto, el estudio de estos patrones respiratorios podría servir como un marcador de riesgo y proporcionar una mayor información sobre el estado fisiopatológico de pacientes con CHF. Se pretende identificar la condición de los pacientes con CHFde forma no invasiva mediante la caracterización y clasificación de patrones respiratorios con PBy respiración no periódica (nPB), y patrón de sujetos sanos, a partir registros de 15minutos de la señal de flujo respiratorio. Se caracterizó el patrón respiratorio mediante un estudio tiempo-frecuencia estacionario y no estacionario, de la envolvente de la señal de flujo respiratorio. Parámetros relacionados con la potencia espectral de la envolvente de la señal presentaron losmejores resultados en la clasificación de sujetos sanos y pacientes con CHF con CSR, PB y nPB. Las curvas ROC validan los resultados obtenidos. Se aplicó la "correntropy" para una caracterización tiempo-frecuencia mas completa del patrón respiratorio de pacientes con CHF. La "corretronpy" considera los momentos estadísticos de orden superior, siendo más robusta frente a los "outliers". Con la densidad espectral de correntropy (CSD) tanto la frecuencia de modulación como la dela respiración se representan en su posición real en el eje frecuencial. Los pacientes con PB y nPB, presentan diferentesgrados de periodicidad en función de su condición, mientras que los sujetos sanos no tienen periodicidad marcada. Con único parámetro se obtuvieron resultados del 88.9% clasificando pacientes PB vs. nPB, 95.2% para CHF vs. sanos, 94.4% para nPB vs. sanos.The main objective of this thesis is to study andcharacterize breathing patterns through the respiratory flow signal applied to patients on weaning trials from mechanicalventilation and patients with chronic heart failure (CHF). The aim is to contribute to theunderstanding of the underlying physiological processes and to help in the diagnosis of these patients. One of the most challenging problems in intensive care units is still the process ofdiscontinuing mechanical ventilation, as over 10% of patients who undergo successfulT-tube trials have to be reintubated in less than 48 hours. A failed weaning trial mayinduce cardiopulmonary distress and carries a higher mortality rate. We characterize therespiratory pattern and the dynamic interaction between heart rate and breathing rate toobtain noninvasive indices that provide enhanced information about the weaningprocess and improve the weaning outcome. This is achieved through a comparison of 94 patients with successful trials (GS), 39patients who fail to maintain spontaneous breathing (GF), and 21 patients who successfully maintain spontaneous breathing and are extubated, but require thereinstitution of mechanical ventilation in less than 48 hours because they are unable tobreathe (GR). The ECG and the respiratory flow signals used in this study were acquired during T-tube tests and last 30 minute. The respiratory pattern was characterized by means of a number of respiratory timeseries. Joint symbolic dynamics applied to time series of heart rate and respiratoryfrequency was used to describe the cardiorespiratory interactions of patients during theweaning trial process. Clustering, histogram equalization, support vector machines-based classification (SVM) and validation techniques enabled the selection of the bestsubset of input features. We defined a new optimization metric for unbalanced classification problems, andestablished a new SVM feature selection method, based on this balance index B. The proposed B-based SVM feature selection provided a better balance between sensitivityand specificity in all classifications. The best classification result was obtained with SVM feature selection based on bothaccuracy and the balance index, which classified GS and GFwith an accuracy of 80%, considering 6 features. Classifying GS versus the rest of patients, the best result wasobtained with 9 features, 81%, and the accuracy classifying GR versus GS, and GR versus the rest of the patients was 83% and 81% with 9 and 10 features, respectively.The mortality rate in CHF patients remains high and risk stratification in these patients isstill one of the major challenges of contemporary cardiology. Patients with CHF oftendevelop periodic breathing patterns including Cheyne-Stokes respiration (CSR) and periodic breathing without apnea. Periodic breathing in CHF patients is associated withincreased mortality, especially in CSR patients. Therefore it could serve as a risk markerand can provide enhanced information about thepathophysiological condition of CHF patients. The main goal of this research was to identify CHF patients' condition noninvasively bycharacterizing and classifying respiratory flow patterns from patients with PB and nPBand healthy subjects by using 15-minute long respiratory flow signals. The respiratory pattern was characterized by a stationary and a nonstationary time-frequency study through the envelope of the respiratory flow signal. Power-related parameters achieved the best results in all of the classifications involving healthy subjects and CHF patients with CSR, PB and nPB and the ROC curves validated theresults obtained for the identification of different respiratory patterns. We investigated the use of correntropy for the spectral characterization of respiratory patterns in CHF patients. The correntropy function accounts for higher-order moments and is robust to outliers. Due to the former property, the respiratory and modulationfrequencies appear at their actual locations along the frequency axis in the correntropy spectral density (CSD). The best results were achieved with correntropy and CSD-related parameters that characterized the power in the modulation and respiration discriminant bands, definedas a frequency interval centred on the modulation and respiration frequency peaks,respectively. All patients, i.e. both PB and nPB, exhibit various degrees of periodicitydepending on their condition, whereas healthy subjects have no pronounced periodicity.This fact led to excellent results classifying PB and nPB patients 88.9%, CHF versushealthy 95.2%, and nPB versus healthy 94.4% with only one parameter.Postprint (published version

    Representing complex data using localized principal components with application to astronomical data

    Full text link
    Often the relation between the variables constituting a multivariate data space might be characterized by one or more of the terms: ``nonlinear'', ``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or, more general, ``complex''. In these cases, simple principal component analysis (PCA) as a tool for dimension reduction can fail badly. Of the many alternative approaches proposed so far, local approximations of PCA are among the most promising. This paper will give a short review of localized versions of PCA, focusing on local principal curves and local partitioning algorithms. Furthermore we discuss projections other than the local principal components. When performing local dimension reduction for regression or classification problems it is important to focus not only on the manifold structure of the covariates, but also on the response variable(s). Local principal components only achieve the former, whereas localized regression approaches concentrate on the latter. Local projection directions derived from the partial least squares (PLS) algorithm offer an interesting trade-off between these two objectives. We apply these methods to several real data sets. In particular, we consider simulated astrophysical data from the future Galactic survey mission Gaia.Comment: 25 pages. In "Principal Manifolds for Data Visualization and Dimension Reduction", A. Gorban, B. Kegl, D. Wunsch, and A. Zinovyev (eds), Lecture Notes in Computational Science and Engineering, Springer, 2007, pp. 180--204, http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173750210-

    Grammatical evolution decision trees for detecting gene-gene interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal of human genetics is the discovery of polymorphisms that predict common, complex diseases. It is hypothesized that complex diseases are due to a myriad of factors including environmental exposures and complex genetic risk models, including gene-gene interactions. Such epistatic models present an important analytical challenge, requiring that methods perform not only statistical modeling, but also variable selection to generate testable genetic model hypotheses. This challenge is amplified by recent advances in genotyping technology, as the number of potential predictor variables is rapidly increasing.</p> <p>Methods</p> <p>Decision trees are a highly successful, easily interpretable data-mining method that are typically optimized with a hierarchical model building approach, which limits their potential to identify interacting effects. To overcome this limitation, we utilize evolutionary computation, specifically grammatical evolution, to build decision trees to detect and model gene-gene interactions. In the current study, we introduce the Grammatical Evolution Decision Trees (GEDT) method and software and evaluate this approach on simulated data representing gene-gene interaction models of a range of effect sizes. We compare the performance of the method to a traditional decision tree algorithm and a random search approach and demonstrate the improved performance of the method to detect purely epistatic interactions.</p> <p>Results</p> <p>The results of our simulations demonstrate that GEDT has high power to detect even very moderate genetic risk models. GEDT has high power to detect interactions with and without main effects.</p> <p>Conclusions</p> <p>GEDT, while still in its initial stages of development, is a promising new approach for identifying gene-gene interactions in genetic association studies.</p

    Entropy-based particle correspondence for shape populations

    Get PDF
    Statistical shape analysis of anatomical structures plays an important role in many medical image analysis applications such as understanding the structural changes in anatomy in various stages of growth or disease. Establishing accurate correspondence across object populations is essential for such statistical shape analysis studies

    A Framework for Unbiased Model Selection Based on Boosting

    Get PDF
    Variable selection and model choice are of major concern in many statistical applications, especially in high-dimensional regression models. Boosting is a convenient statistical method that combines model fitting with intrinsic model selection. We investigate the impact of base-learner specification on the performance of boosting as a model selection procedure. We show that variable selection may be biased if the covariates are of different nature. Important examples are models combining continuous and categorical covariates, especially if the number of categories is large. In this case, least squares base-learners offer increased flexibility for the categorical covariate and lead to a preference even if the categorical covariate is non-informative. Similar difficulties arise when comparing linear and nonlinear base-learners for a continuous covariate. The additional flexibility in the nonlinear base-learner again yields a preference of the more complex modeling alternative. We investigate these problems from a theoretical perspective and suggest a framework for unbiased model selection based on a general class of penalized least squares base-learners. Making all base-learners comparable in terms of their degrees of freedom strongly reduces the selection bias observed in naive boosting specifications. The importance of unbiased model selection is demonstrated in simulations and an application to forest health models
    corecore