457 research outputs found

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Colour, texture, and motion in level set based segmentation and tracking

    Get PDF
    This paper introduces an approach for the extraction and combination of different cues in a level set based image segmentation framework. Apart from the image grey value or colour, we suggest to add its spatial and temporal variations, which may provide important further characteristics. It often turns out that the combination of colour, texture, and motion permits to distinguish object regions that cannot be separated by one cue alone. We propose a two-step approach. In the first stage, the input features are extracted and enhanced by applying coupled nonlinear diffusion. This ensures coherence between the channels and deals with outliers. We use a nonlinear diffusion technique, closely related to total variation flow, but being strictly edge enhancing. The resulting features are then employed for a vector-valued front propagation based on level sets and statistical region models that approximate the distributions of each feature. The application of this approach to two-phase segmentation is followed by an extension to the tracking of multiple objects in image sequences

    L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data

    Full text link
    Kernel density estimates are a robust way to reconstruct a continuous distribution from a discrete point set. Typically their effectiveness is measured either in L1 or L2 error. In this paper we investigate the challenges in using L ∞ (or worst case) error, a stronger measure than L1 or L2. We present efficient solutions to two linked challenges: how to evaluate the L ∞ error between two kernel density estimates and how to choose the bandwidth parameter for a kernel density estimate built on a subsample of a large data set. 1 1

    Object Tracking: Appearance Modeling And Feature Learning

    Get PDF
    Object tracking in real scenes is an important problem in computer vision due to increasing usage of tracking systems day in and day out in various applications such as surveillance, security, monitoring and robotic vision. Object tracking is the process of locating objects of interest in every frame of video frames. Many systems have been proposed to address the tracking problem where the major challenges come from handling appearance variation during tracking caused by changing scale, pose, rotation, illumination and occlusion. In this dissertation, we address these challenges by introducing several novel tracking techniques. First, we developed a multiple object tracking system that deals specially with occlusion issues. The system depends on our improved KLT tracker for accurate and robust tracking during partial occlusion. In full occlusion, we applied a Kalman filter to predict the object\u27s new location and connect the trajectory parts. Many tracking methods depend on a rectangle or an ellipse mask to segment and track objects. Typically, using a larger or smaller mask will lead to loss of tracked objects. Second, we present an object tracking system (SegTrack) that deals with partial and full occlusions by employing improved segmentation methods: mixture of Gaussians and a silhouette segmentation algorithm. For re-identification, one or more feature vectors for each tracked object are used after target reappearing. Third, we propose a novel Bayesian Hierarchical Appearance Model (BHAM) for robust object tracking. Our idea is to model the appearance of a target as combination of multiple appearance models, each covering the target appearance changes under a certain situation (e.g. view angle). In addition, we built an object tracking system by integrating BHAM with background subtraction and the KLT tracker for static camera videos. For moving camera videos, we applied BHAM to cluster negative and positive target instances. As tracking accuracy depends mainly on finding good discriminative features to estimate the target location, finally, we propose to learn good features for generic object tracking using online convolutional neural networks (OCNN). In order to learn discriminative and stable features for tracking, we propose a novel object function to train OCNN by penalizing the feature variations in consecutive frames, and the tracker is built by integrating OCNN with a color-based multi-appearance model. Our experimental results on real-world videos show that our tracking systems have superior performance when compared with several state-of-the-art trackers. In the feature, we plan to apply the Bayesian Hierarchical Appearance Model (BHAM) for multiple objects tracking

    Integral curves of noisy vector fields and statistical problems in diffusion tensor imaging: nonparametric kernel estimation and hypotheses testing

    Full text link
    Let vv be a vector field in a bounded open set GRdG\subset {\mathbb {R}}^d. Suppose that vv is observed with a random noise at random points Xi,i=1,...,n,X_i, i=1,...,n, that are independent and uniformly distributed in G.G. The problem is to estimate the integral curve of the differential equation dx(t)dt=v(x(t)),t0,x(0)=x0G,\frac{dx(t)}{dt}=v(x(t)),\qquad t\geq 0,x(0)=x_0\in G, starting at a given point x(0)=x0Gx(0)=x_0\in G and to develop statistical tests for the hypothesis that the integral curve reaches a specified set ΓG.\Gamma\subset G. We develop an estimation procedure based on a Nadaraya--Watson type kernel regression estimator, show the asymptotic normality of the estimated integral curve and derive differential and integral equations for the mean and covariance function of the limit Gaussian process. This provides a method of tracking not only the integral curve, but also the covariance matrix of its estimate. We also study the asymptotic distribution of the squared minimal distance from the integral curve to a smooth enough surface ΓG\Gamma\subset G. Building upon this, we develop testing procedures for the hypothesis that the integral curve reaches Γ\Gamma. The problems of this nature are of interest in diffusion tensor imaging, a brain imaging technique based on measuring the diffusion tensor at discrete locations in the cerebral white matter, where the diffusion of water molecules is typically anisotropic. The diffusion tensor data is used to estimate the dominant orientations of the diffusion and to track white matter fibers from the initial location following these orientations. Our approach brings more rigorous statistical tools to the analysis of this problem providing, in particular, hypothesis testing procedures that might be useful in the study of axonal connectivity of the white matter.Comment: Published in at http://dx.doi.org/10.1214/009053607000000073 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Lagrangian modeling of reactive transport in heterogeneous porous media with an automatic locally adaptive particle support volume

    Get PDF
    The particle support volume is crucial for simulating reactive transport with Lagrangian methods as it dictates the interaction among particles. Assuming that it is constant in space, the particle support volume can be selected by means of kernel density estimation theory, an approach that has been shown to provide accurate estimates in simple setups. However, the particle support volume should intuitively vary with the particle position and evolve with time so as to mimic the local behavior of the solute plume. In this paper, we present a new approach to select a locally optimal particle support volume in reactive transport simulations. We consider that each particle has a different support volume that can locally adapt its shape and size with time based on the nearby particle distribution. By introducing a new optimality criterion, closed-form expressions of the particle support volume are presented under certain assumptions. In advection-dominated transport, we propose to orient the support volume along the local velocities. Numerical simulations of solute transport in a randomly heterogeneous porous medium demonstrate that the new approach can substantially increase accuracy with a more rapid convergence to the true solution with the number of particles. The error reduction seen in local approaches is particularly important in regions with extreme (high and low) density of particles. The method is shown to be computationally efficient, displaying better results than traditional histogram or global kernel methods for the same computational effort.Peer ReviewedPostprint (published version
    corecore