
Wayne State University

Wayne State University Dissertations

1-1-2015

Object Tracking: Appearance Modeling And
Feature Learning
Raed Almomani
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Almomani, Raed, "Object Tracking: Appearance Modeling And Feature Learning" (2015). Wayne State University Dissertations. Paper
1111.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1111?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1111&utm_medium=PDF&utm_campaign=PDFCoverPages

OBJECT TRACKING: APPEARANCE MODELING AND FEATURE LEARNING

by

RAED ALMOMANI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2015

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c© COPYRIGHT BY

RAED ALMOMANI

2015

All Rights Reserved

DEDICATION

This thesis is dedicated

To

My parents

My wife

My kids: Lama, Faris, Aleen and Ameer

My Brothers and Sisters

ii

ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my advisor, Prof. Ming Dong, for his continuous

support and guidance in the Ph.D. program. Prof. Ming Dong is an excellent role model for any

young researcher to emulate. During my Ph.D. study in the department of computer science

at Wayne State University, Prof. Dong has tirelessly spent numerous hours with me discussing

new ideas and writing papers. I also thank Prof. Dong for appreciating my research strengths

and patiently encouraging me to improve my weak points. Prof. Dong has been available to me

all the time whenever I needed his feedback. This dissertation would not haven been possible

without him.

Furthermore, I am very grateful to my committee members Prof. Xue-wen Chen, Prof. Jialiang

Le, and Prof. Loren Schwiebert for giving me constructive suggestions and comments on the

dissertation.

In addition, I would like to give my heartfelt appreciation to my parents, who brought me

up with their love and encouragement me to pursue advanced degrees. A spacial thanks to my

brother, Nedal, for his helping and supporting all the time.

Finally, and most importantly, I would like to thank my wife, who has accompanied me

with her love, unlimited patience, understanding, helping and encouragement. Without her

support, I would never be able to accomplish this work. Thank you!

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Chapter 1 INTRODUCTION . 1

Chapter 2 RELATED WORK . 8

2.1 Appearance Representation . 8

2.1.1 Global Appearance Representations 8

2.1.2 Local Appearance Representation . 11

2.2 Statistical Modeling for Tracking . 13

2.2.1 Mixture Generative Appearance Models 14

2.2.2 Kernel-Based Generative Appearance Models. 14

2.2.3 Boosting-Based Discriminative Appearance Models. 14

2.2.4 SVM-Based Discriminative Appearance Models. 16

2.2.5 Randomized Learning-Based Discriminative Appearance Models. . . . 16

2.2.6 Hybrid Generative-Discriminative Appearance Models. 16

Chapter 3 A MULTIPLE OBJECT TRACKING SYSTEM WITH OCCLUSION

HANDLING . 17

3.1 almomani2012building . 17

3.2 The Proposed System . 17

3.2.1 Background Subtraction . 18

3.2.2 The Improved KLT Tracker . 18

3.2.3 The Kalman Filter to Predict Object Position 23

3.3 Experimental Results . 24

3.4 Summary . 27

iv

Chapter 4 SEGTRACK: A NOVEL TRACKING SYSTEM WITH IMPROVED

OBJECT SEGMENTATION . 28

4.1 Introduction . 28

4.2 SegTrack . 28

4.2.1 Background Subtraction. 28

4.2.2 KLT Tracker. 29

4.2.3 Silhouette Segmentation Algorithm 30

4.2.4 Person Re-identification. 33

4.3 Experimental Results . 34

4.3.1 Background Subtraction . 35

4.3.2 Tracking During Partial Occlusion . 36

4.3.3 Tracking During Full Occlusion . 38

4.4 Summary . 38

Chapter 5 ROBUST OBJECT TRACKING VIA A BAYESIAN HIERARCHI-

CAL APPEARANCE MODEL . 40

5.1 Introduction . 40

5.2 Bayesian Hierarchical Appearance Model . 41

5.2.1 Chinese Restaurant Process . 42

5.2.2 BHAM . 43

5.2.3 Model Structure . 46

5.2.4 Bayesian Decision . 48

5.3 Static Camera Tracking System . 49

5.4 Moving Camera Tracking System . 52

5.5 Experiments . 55

5.5.1 Image Features . 55

5.5.2 Evaluation of Clustering Results . 57

v

5.5.3 Static Camera Tracking System . 58

5.5.4 Moving Camera Tracking System . 64

5.6 Summary . 67

Chapter 6 LEARNING GOOD FEATURES TO TRACK 69

6.1 Introduction . 69

6.2 Learning Good Features to Track . 69

6.2.1 Unsupervised Feature Training . 71

6.2.2 Supervised Feature Training . 72

6.3 The Tracking System . 73

6.4 Experimental Results . 75

6.5 Summery . 81

Chapter 7 CONCLUSION . 82

Bibliography . 84

Abstract . 100

Autobiographical Statement . 102

vi

LIST OF TABLES

Table 4.1: Average center location error (pixels). Red indicates the best performance,
blue indicates the second best. 36

Table 5.1: Summary of BHAM for the tracked object in Fig. 5.5. The number refers
to the number of instances in each cluster (C) under each view angle. 56

Table 5.2: The average center location errors (pixels) between the tracking results and
the corresponding ground truth for the videos in Figs. 5.8 and 5.9. Red
indicates the best performance and blue indicates the second best. 59

Table 5.3: The mean center location errors (pixels) between the tracking system results
and their ground truth for the videos in Fig. 5.12. Red indicates the best
performance and blue indicates the second best. 65

Table 6.1: Average center location errors (pixels) between the tracking results and the
ground truth. Red indicates the best performance and blue indicates the
second best. 76

vii

LIST OF FIGURES

Figure 3.1: The KLT features before (left) and after (right) deleting the inaccurate fea-
tures. 19

Figure 3.2: Motion Histogram is used to estimate the number of objects in blobs. (a) The
original frame with the estimated number of objects in each blob. (b) The KLT
features of comparing the frame in (a) with the previous frame. (c) The histogram
of the left blob that has two objects (The man and the lady). (d) The histogram of
the right blob that has one object (The man). 21

Figure 3.3: Histogram projection is used to estimate the number of objects in blobs. a) Orig-
inal frame with the estimated number of objects in each blob. b) The foreground/
background of the image in (a) where two objects are in the left blob and one ob-
ject is in right blob. c) The histogram of the left blob that has two objects. d) The
histogram of the right blob that has one object. 22

Figure 3.4: Tracking multiple objects with occlusion handling. (a) The foreground/background
image of frame 1436 shows the occlusion. (b) The result of our tracking system
of frame 1436. (c) The foreground background image of frame 4484 shows the
occlusion. (b) The result of our tracking system of frame 4484. 25

Figure 3.5: The result of our tracking system for multiple objects in frames 1337, 1347, 1357,
1367, 1377, and 1387 of AVSS 2007 video. The original frames have the tracking
results and foreground background images show the partial occlusion of one car
by another. 25

Figure 3.6: The result of our tracking system for multiple cars. 26

Figure 3.7: The result of tracking an object by using Predator (first row) and our system (sec-
ond row). 27

Figure 4.1: Results from SegTrack. The first column shows a person stops for a long
time and remains as a foreground object. The second column shows a
person starts moving after he stops for a while, and the ghost foreground is
detected and deleted. The third column shows tracking results with simple
and severe partial occlusions. The fourth column shows the tracking results
with full occlusion. 29

Figure 4.2: Result of comparing two consecutive frames. 32

Figure 4.3: Error plots for three video clips. 35

Figure 4.4: Stop-then-move and move-then-stop problems, traditional mixture of Gaus-
sians results (second row) and SegTrack results (third row). 36

viii

Figure 4.5: Screen shots of tracking results during partial occlusion. 37

Figure 4.6: Screen shots of tracking results during full occlusion. 38

Figure 5.1: BHAM distributes target instances to different groups based on view an-
gles. Each group instances are clustered dynamically based on visual sim-
ilarity. 41

Figure 5.2: Bayesian Hierarchical Appearance Model (BHAM). 46

Figure 5.3: The pipeline of our static camera tracking system. 50

Figure 5.4: The pipeline of the moving camera tracking system. Our system distributes
target instances to positive and negative samples. Each group instances are
clustered dynamically based on visual similarity. 53

Figure 5.5: Clustering results of the target instances under different view angles. Illu-
mination change and self occlusion made different clusters under the same
view angle. 56

Figure 5.6: Comparing clustering results between EM and BHAM. Red indicates the
best performance and blue indicates the second best. 57

Figure 5.7: The center location errors for videos from the AVSS, CAVIAR, ViSOR and
PETS 2006 datasets . 60

Figure 5.8: Comparative tracking results on the AVSS, CAVIAR, ViSOR and PETS
2006 datasets. The tracked target is highlighted by different colors: TLD
(cyan), VTD (blue), MIL (green), JointSeg (yellow), LSH (magenta), DF
(white) and our system (red). 61

Figure 5.9: Comparative tracking results on the AVSS, CAVIAR, ViSOR and PETS
2006 datasets. The tracked target is highlighted by different colors: TLD
(cyan), VTD (blue), MIL (green), JointSeg (yellow), LSH (magenta), DF
(white) and our system (red). 62

Figure 5.10: Recognizing targets after full occlusion. The systems are TLD (cyan), VTD
(blue), MIL (green), JointSeg (yellow), LSH (magenta), DF (white) and our
system (red). 63

Figure 5.11: The center location error plots. 66

Figure 5.12: Comparative tracking results of selected frames. The tracking results by
TLD, VTD, MIL, LSH, DF, and ours, are represented by cyan, blue, green,
yellow, magenta, white and red rectangles, respectively. 67

Figure 6.1: The architecture of Online Convolutional Neural Networks (OCNN). 70

ix

Figure 6.2: System Pipeline. Before tracking, OCNN is trained offline using unlabeled
data. In tracking, the collected positive (the patches on the target) and neg-
ative (the patches around the target) samples from the previously tracked
frames are used to train and update the appearance tracker and OCNN. The
appearance tracker and OCNN work cooperatively to estimate the new tar-
get location. 74

Figure 6.3: Center location errors for videos: Sylvester, Occluded Face and Pedestrian. 76

Figure 6.4: Tracking examples. Tracking results of TLD, VTD, MIL, DF, LSH and
our system are represented by green, yellow, blue, cyan, magenta and red
rectangles, respectively. The corresponding first layer feature mapping ker-
nels of OCNN are shown in the first two columns, while feature changes
between the current frame and the first frame are shown in the third and
fourth columns. 78

Figure 6.5: The results of running some convolutional layer kernels from the first and
second layers on an image. 79

Figure 6.6: The tracking results of the appearance model tracker without OCNN (the
first row) and the appearance model tracker with OCNN (the second row). . 80

Figure 6.7: The tracking results of three different tracking systems: the appearance
tracker (the first row), the appearance tracker with static CNN features (sec-
ond row) and the appearance tracker with OCNN (the third row). 80

x

1

CHAPTER 1

INTRODUCTION

Object tracking is the process of locating objects of interest in video frames. Tracking

systems are increasingly used in various applications such as surveillance, security and robotic

vision. Although many object tracking systems have been proposed, tracking is still one of the

most challenging research topics in computer vision. In tracking, one of the major challenges

comes from handling appearance variations caused by changes in scale, pose, illumination and

occlusion [137].

Appearance modeling systems consist of two main components: appearance representation

and statistical modeling. Appearance representation focuses on using one or more of the ob-

ject features to construct discriminative and robust object descriptors. Many tracking systems

applied target motion features (e.g., Kalman filter [30] and particle filter [100, 80, 55, 142]),

while others represented the target appearance by using intensity [103], color [100], texture

[14], Haar-like features [46, 44, 16, 64] or superpixels [129].

Statistical modeling focuses on building mathematical models to identify objects during

tracking. Current statistical modeling methods can be grouped in two main categories: dis-

criminative and generative approaches. Discriminative approaches deal with object tracking as

a binary classification problem by finding the best location that separates the target from the

background. For example, Avidan [13] trained Support Vector Machine off-line and Lepetit et

al. [77] trained randomized trees. The main problem with these methods is that a comprehen-

sive training dataset that covers all appearance variations and different backgrounds is required

beforehand. Other approaches applied adaptive classifiers where tracking results are used for

classifier adaptation. For example, Lim et al. [81] employed incremental subspace learning;

Avidan [14] applied adaptive ensemble classifiers; Grabner and Bischof [44] used online boost-

ing; Kalal et al. [64] applied bootstrapping binary classifiers; Babenko et al. [16] used online

2

multiple instance learning and Williams et al. [133] applied sparse Bayesian learning. How-

ever, adaptive discriminative methods suffer from drifting problem caused by the accumulation

of updating errors.

Generative approaches search in a video frame for the most similar location based on a

target appearance model [7, 27, 30, 92]. The previously observed target instances are used to

learn the appearance model before adopting it to the current frame. Many generative methods

learn a static appearance model before adopting it to the current frame. The training sets of

static appearance models are collected manually or from the first frame only [59, 76, 48, 22,

29, 6]. Generally, they are unable to cope with the sudden appearance changes, especially

when prior knowledge about the target is limited. Subsequently, adaptive appearance models

are proposed where a model is constantly updated during tracking [60, 90, 103]. Similar to the

adaptive discriminative methods, adaptive generative approaches suffer from drifting.

In this dissertation, we address these challenges by introducing several novel tracking tech-

niques, which can be grouped into three categories: occlusion handling, appearance modeling

and feature learning.

Occlusion Handling. Occlusion is one of the main challenges when building an object

tracking system. The occlusion could be a full or partial occlusion. A common approach to

handle full occlusion is to use the object previous information to predict the object new location

in next frame by using linear or nonlinear motion model, such as the Kalman filter that is used

for predicting the location and motion of objects and the particle filter that is used for state

estimation. Partial occlusion is more complex than full occlusion since it is difficult to separate

between objects during occlusion. Appearance models such as color histogram and mixture

of Gaussians are used to separate objects during partial occlusion [50, 91, 102]. In addition,

some researchers added the position of merged objects to detect and solve partial occlusion

[36, 89]. Silhouette-based approaches and contour-based approaches are common approaches

too [25, 32, 37]. Generally, the silhouette-based approaches are more stable in noisy images

3

than contour-based approaches. More complicated tracking systems assume that each person

is a connected set of blobs, such as a person’s shirt and pants, and track each part individually

[35, 69]. The object motion is also used to build tracking systems [62]. Tracking during full

or partial occlusion in complex scene is still very challenging. As a result, some systems do

not address the occlusion at all [15]. Other systems minimize the occlusion issues by using

multiple camera inputs [34] or selecting appropriate positions for cameras [23].

As challenges still exist in handling appearance changes, we propose a novel multiple ob-

jects tracking system in video sequences that deals with occlusion issues. The proposed system

is composed of two components: An improved KLT tracker, and a Kalman filter. The improved

KLT tracker uses the basic KLT tracker and an appearance model to track objects from one

frame to another and deal with partial occlusion. In partial occlusion, the appearance model

(e.g., a RGB color histogram) is used to determine an object’s KLT features, and we use these

features for accurate and robust tracking. In full occlusion, a Kalman filter is used to predict

the object’s new location and connect the trajectory parts. The system is evaluated on different

videos and compared with a common tracking system.

Another common method widely studied in computer vision to solve the occlusion problem

is segmentation by using a fixed rectangle size [93]. For example, Khan et al. [70] used

multivariate Gaussian over the brightness of object’s pixels for tracking. Nguyen et al. [96]

used Bayesian inference for tracking and a probabilistic principal components analysis for

updating the multivariate Gaussian. However, the tracking breaks down in occlusion because

fixed size rectangle will have pixels from different objects. Many tracking systems also include

object segmentation as a fundamental step. For instance, CAMSHIFT [24] builds a probability

model from the segmented object pixels, then uses the model to detect the object pixels in the

next frame.

Typically, using a larger or smaller mask will lead to loss of tracked objects. In this dis-

sertation, we propose an object tracking system (SegTrack) that deals with partial and full oc-

4

clusions by employing improved segmentation methods. Our improved mixture of Gaussians

segments foreground objects from the background and solves stop-then-move and move-then-

stop problems. Then, the KLT tracker tracks objects in consecutive frames and detects partial

and full occlusions. In partial occlusion, a novel silhouette segmentation algorithm evolves the

silhouettes of occluded objects by matching the location and appearance of occluded objects

between successive frames. In full occlusion, one or more feature vectors for each tracked

object are used to re-identify the object after reappearing. Our experimental results show that

SegTrack provides more accurate and robust tracking when compared to other state-of-the-art

trackers.

Appearance Modeling. Appearance model based tracking system can be build based on

single appearance models or multiple appearance models. In single appearance models, pre-

viously observed target instances are used to train the model, then the model is adapted to the

current frame. Collins and Liu [27] utilized target instances to learn the discriminative color

features that distinguish the target from the background. Aeschliman et al. [7] proposed a

probabilistic framework for solving segmentation and tracking problems. However, due to the

limitation of building only one appearance model that covers all target appearance changes,

these methods update the model from subsets of the previous target instances [13, 14, 27] or

the most recent ones [16, 44]. Therefore, they are intolerant of sudden appearance changes.

Multiple appearance models overcome the limitation by establishing several models and

allowing each one to represent a specific target situation. Kwon and Lee [71] decomposed the

target appearance and motion into several models and assigned a tracker for each one. Liu et

al. [84] used the sparse representation to extract samples from the training set with minimal

reconstruction errors. However, the performance of such models generally depends on the

availability of comprehensive training sets and fine tuning of the model parameters for each

video.

The design of adaptive single and multiple appearance models depends on either modeling

5

only the object [103, 17] or the object and the background [82, 45, 86, 14, 13, 127, 27]. In the

last decade, great progress has been obtained from modeling the object and the background.

The training data can be chosen by taking the current tracker location as a positive sample and

the samples around the tracker location as negative samples. Having a strong tracker is impor-

tant while providing unprecise location will degrade the model and end with a drift problem.

On the other hand, many approaches sample multiple positive samples taken from a small area

around the tracker location and the negative samples after that area. Multiple positive samples

have negative effects on the model discriminative power and confuse the model. Alternatively,

Grabner et al. [46] proposed a semi-supervised approach where only the samples extracted

from the first frame are considered as labeled data and all extracted samples after that are left

unlabeled. This method provides good results specially in full occlusion scenarios.

In this dissertation, we propose a novel Bayesian Hierarchical Appearance Model (BHAM)

for robust object tracking. Our idea is to model the appearance of a target as combination of

multiple appearance models, each covering the target appearance changes under a specific cri-

teria (e.g. view angle). Specifically, target instances are modeled by Dirichlet Process and

dynamically clustered based on their visual similarity. Thus, BHAM provides an infinite non-

parametric mixture of distributions that can grow automatically with the complexity of the ap-

pearance data. To show the effectiveness of using BHAM, we plugged BHAM into static and

moving camera tracking systems. In the static camera tracking system, we integrated BHAM

with background subtraction and the KLT tracker. In the moving camera tracking system, we

applied BHAM to cluster negative and positive target samples. In our tracking systems, the

target object can be chosen arbitrary with no prior knowledge except its location in the first

frame. Our experimental results on real-world videos show that our systems have superior

performance when compared with several state-of-the-art trackers.

Feature Learning. With a wide range of applications of object tracking, it is important to

explore new strategies that can learn good features to track generic objects in various environ-

6

ments. Our idea here is inspired by the recent development of deep learning [19]. Deep learning

is a machine learning method based on learning representations. It addresses the problem of

what makes better representations and how to learn them. Involving artificial neural network

in deep learning is considered as one of the most important reasons for success. Many deep

neural network architectures can be viewed as hierarchical layers where each layer consists of

non-linear filtering and pooling stages. Recent research shows incredible results of using deep

networks for learning features in either supervised [74, 111] or unsupervised manner [123]. In

many situations where labeled data is limited or not available, deep learning is shown to have

the capability to produce good features for generic object reconstruction and provide excellent

results for object classification.

Many methods applied static discriminative classifiers in tracking. A comprehensive train-

ing dataset that covers all appearance variations and different backgrounds is required for these

approaches to obtain good results. In cases that few prior training data are available, tracking

results are used for classifier adaptation. Garbner et al.[46] applied semi-online boosting and

used both labeled and unlabeled data to update the classifier. Usually, adaptive discriminative

methods suffer from drifting caused by the accumulation of updating errors. To this end, meth-

ods combining two or more trackers are proposed [107]. More recently, unsupervised feature

learning, e.g., sparse representation, has been introduced in tracking. Mei et al. [92] built the

appearance model from object images and solved the `1 minimization problem to track the

object, specially during occlusions. Jia et al. [61] proposed a tracking method based on local,

sparse and fixed number of discriminative features. In general, these methods depend on cer-

tain kind of image features for tracking and fail when those features are not suitable anymore

due to appearance variation. In real-world scenarios, good features to track could be different

from one video to another and from one frame to another.

Conventual Neural Network (CNN) is a multistage HubelWiesel architecture [74] that pro-

vides good performance for visual classification and recognition tasks. Sharing weights is

7

considered the main property of CNN. Serre and Poggio [112] trained CNN by hard-wired Ga-

bor filters for object recognition. However, fixed filters are not well suited for object tracking

as they can not cover all variations of the target appearance. In addition, training with compre-

hensive datasets using huge networks [33] is time consuming and generally not applicable to

real time tracking, even though it is very successful in tasks such as image classification.

As tracking accuracy depends mainly on finding good discriminative features to estimate

the target location, we propose online feature learning in tracking and propose to learn good

features to track generic objects using online convolutional neural networks (OCNN). OCNN

has two feature mapping layers that are trained offline based on unlabeled data. In tracking, the

collected positive and negative samples from the previously tracked frames are used to learn

good features for a specific target. OCNN is also augmented with a classifier to provide a

decision. We built a tracking system by combining OCNN and a color-based multi-appearance

model. Our experimental results on publicly available video datasets show that the tracking

system has superior performance when compared with several state-of-the-art trackers.

The remaining of the dissertation is organized as follows. We review related work in Chap-

ter 2. Then, we present our multiple object tracking system with occlusion handling in Chapter

2.2.6. Next, we present SegTrack: a novel tracking system with improved object segmentation

in Chapter 3.4. In Chapter 4.4, we present a robust object tracking system via a Bayesian hi-

erarchical appearance model. In Chapter 6, we show how feature learning can help us achieve

robust tracking. Finally, Chapter 7 concludes.

8

CHAPTER 2

RELATED WORK

In this section, we provide essential background on appearance model-based tracking sys-

tems and review related work in the literature. Appearance model-base tracking systems gener-

ally consists of two components [137, 79]: appearance representation and statistical modeling.

In the following sections, we review both in details.

2.1 Appearance Representation
In tracking systems, object appearance representations can be grouped into global appear-

ance representations and local appearance representations. The global appearance representa-

tions focus on the global statistical properties of object appearance and the local appearance

representations focus on the statistical properties of certain interest points in the object appear-

ance. In the following sections, we provide a brief review for both approaches.

2.1.1 Global Appearance Representations

Global appearance representations are applied for online tracking systems because of their

simplicity and efficiency. The main disadvantage of the global appearance representations is

their sensitivity to global appearance changes, such as illumination variation. To deal with

this problem, many tracking systems combine global appearance representations and other

object information (e.g. shape, position, and texture) to achieve better performance. In general,

global appearance representations can be categorized into five groups: raw pixel representation,

optical flow representation, histogram representation, texture representation and active contour

representation.

9

Raw pixel representation

The color (e.g. RGB and HSV) or intensity values of the image pixels are directly used

to represent object appearance. Raw pixel representation can be created in two ways: vector-

based [117, 103] and matrix-based [56, 131]. As raw pixels are susceptible to image noise,

researchers combined raw pixel representation and other object information such as edges [126]

and texture [9] to build robust tracking systems.

Optical flow representation

Optical flow is a set of displacement vectors for the translation of certain region pix-

els caused by the relative motion between objects and background. Typically, optical flow

representation can be categorized into two groups: Constant-Brightness-Constraint (CBC)

[88, 54, 132, 113, 104, 107] and Non-Brightness-Constraint (NBC) [21, 108, 48, 20, 57, 135].

The CBC optical flow representation is computed based on colors. So, illumination changes

and image noise have a negative impact on CBC. To deal with illumination variations, the

NBC optical flow representation is computed based on image geometric information instead of

image color information.

A common method in optical flow representation is the KLT detector. The KLT detector

finds the interest points by converting color images into gray-scale images first. Then, the

directional intensity variations in the gray-scale images are computed by applying the first

order image derivative on the Ix and Iy directions and computing the second moment matrix

M :

M =

 ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

 (2.1)

10

And the suitability (S) for each pixel is calculated by using the following equation:

S = det(M)− k.trace(M)2 (2.2)

where det(M) = determinant(M) = λ1.λ2, trace(M) = λ1λ2, (λ1, λ2) are the eigenvalues

of the matrix M and k is a constant.

Finally, the point that shows strong intensity variation regarding to its neighbors -S is

greater than a threshold- is considered as an interest point. The KLT detector eliminates all

candidate points that are close to each other than a threshold. The remaining interest points

that are provided by the KLT detector are invariant to rotation and translation.

Histogram representation

Many tracking systems applied histogram to effectively and efficiently capture the dis-

tribution characteristics of the object appearance features. HSV (Hue-Saturation-Value) is a

common color space for building object appearance histograms. Bradski [24] applied HSV

color histogram for object appearance representation and CAMSHIFT for statistical modeling

when building a tracking system. Comaniciu at al. [30] applied weighted RGB color histogram

to avoid losing spatial appearance information because of using HSV color histogram directly.

Histogram representation captures the distribution characteristics of the object appearance

but not the structural information. So, the histogram representation is often affected by the

background, especially when there is a high color similarity between the tracked object and

the background. To deal with this problem, many proposed tracking systems enhanced the

tracking results by combining the histogram representation and other object information. For

example, Nejhum et al. [95] divided the object region into patches and built a color histogram

for each patch. Haritaoglu and Flickner [50] represented the object appearance by applying the

color histogram and edge density information. Wang and Yagi [128] applied weighted shape

information and weighted color space histograms for object appearance representation. Ning

11

et al. [97] proposed a robust object tracking system by combining color histogram and texture

histogram.

Texture representation

Texture features are not as sensitive to illumination as color features, which is considered

as the main advantage of using texture to represent object appearance. Texture representation

starts by filtering the object image in different scales and directions as a preprocessing step.

Then, the statistical properties (e.g. texture histograms) of the object appearance are obtained

from the output image. For example, He et al. [51] applied Gabor filters on images to get the

texture information of the object appearance.

Active contour representation

Active contour representation is widely used to track complex nonrigid objects [31, 9, 119].

In active contour representation, the energy function is computed for each interest object to

evolve the closed contour to the object’s boundary. The energy function has three values:

internal energy (internal constraints), external energy (likelihood of pixels to belong to the

target) and shape energy (shape prior constraints).

2.1.2 Local Appearance Representation

Local appearance representation provides local structural appearance information of the

target. In general, local appearance features are more stable than global appearance feasters

regarding global appearance changes such as illumination changes, partial occlusion and rota-

tion. Noise and background information have bad effect on the accuracy of the local appearance

representation. The most common local appearance representation are: local-template based

representation, segmentation based representation, SIFT based representation, SURF based

representation and local feature pool based representation.

12

Local template-based representation

The object region is divided into a set of templates where each template carries both spatial

and appearance information. This explains the ability of local template to deal with partial

occlusion effectively when compared with global template. For example, Lin et al. [83] utilized

hierarchical local template for human segmentation and detection.

Segmentation-based representation

Segmentation algorithms divide the image into perceptually similar regions and track the

interest regions. Commaniciu and Meer [28] proposed a cluster approach (Mean-Shift) that

uses color and spatial location information to find clusters. The accuracy of the Mean-Shift

results depends on tuning the Mean-Shift parameters correctly. Wang et al. [129] combined

between local template-based representation and superpixel segmentation where a set of super-

pixels are used to represent the target.

SIFT-based representation

The Scale Invariant Feature Transform (SIFT) [87] detector depends on the structural in-

formation of the object region to introduce robust points under different transformations. The

detection is performed in four steps: 1) convolving the image at different scales with chosen

Gaussian filters, 2) computing the difference image from the successive convolved images and

selecting the candidate interest points regarding the maxima and minima in the difference im-

age, 3) updating the candidate location by interpolating candidate nearby data and rejecting the

candidates along the edges or with low contrast, and 4) a descriptor vector for each interest

point is computed.

Zhou et al. [141] proposed a consistent and stable tracking system by applying SIFT and

Mean Shift. First, Mean Shift is applied to find the similar regions via color histograms. Then,

SIFT features are applied to find correspondences between regions in consecutive frames.

13

However, recent research papers show that the SIFT detector is not robust to viewpoint change

[101] and not suitable for sever change in rotation and scaling [136].

SURF-based representation

Speeded Up Robust Feature (SURF) [18] is a faster version of SIFT with scale-invariant,

rotation-invariant and computational efficiency properties (less computation time than SIFT).

Recently, He et al. [53] proposed a tracking system that employs SURF for object appearance

representation to track the target.

Local feature pool-based representation

Many researchers proposed using ensemble learning method based on local feature pool-

based representation where the local features are collected from the object representations.

Usually, many weak classifiers are constructed from a large number of different features. Then,

the weak classifiers are combined together to provide one strong classifier. The strong classifier

is applied to segment the target from the background. The most common features that are

used in local feature pool-based representation are color, texture (e.g. Gabor filters), Haar-like

features and histogram of oriented gradients. For example, Grabner and Bischof [44] built an

ensemble classifier from many weak classifiers, where each classifier is trained to distinguish

between the target and the background regarding to one of the following feature: Haar-like

features, histograms of oriented gradient and local binary patterns.

2.2 Statistical Modeling for Tracking
Object tracking is the process of locating objects of interest in video frames. Current track-

ing methods can be grouped in three main categories: generative, discriminative and hybrid

generative-discriminative models. Generative approaches search in a video frame for the most

similar location based on a target appearance model. Discriminative approaches deal with

object tracking as a binary classification problem by finding the best location that separates

14

the target from the background. As generative and discriminative appearance models have

different advantages and disadvantages, researchers proposed hybrid generative-discriminative

appearance models to achieve better performance. However, hybrid appearance models are not

guarantee to provide better performance than either model alone.

2.2.1 Mixture Generative Appearance Models

Typically, mixture models learn multiple components to capture all the object appearance

variations. Gaussian mixture models are common methods for mixture models. In Gaussian

mixture models, the approximation density function of the object appearance is computed by

applying multiple of Gaussians [130, 139, 49]. Wang et al. [126] captured the spatial object

layout and the object color information by applying a mixture of Gaussians appearance model.

In practice, selecting the correct number of components (e.g. number of Gaussians, mean,

covariance and weight) is a difficult task. Many researcher applied heuristic criteria to solve

the problem, which generally depends on the data availability.

2.2.2 Kernel-Based Generative Appearance Models.

Kernel-based generative appearance models represent the target objects by applying kernel

density estimation to build kernel-based visual representations, and then applying mean shift

for estimating the object location. In this direction, Comaniciu et al. [30] applied mean shift

and Bhattacharyya distance for estimating the new target location and used color histograms

for target appearance. Kernel models are very sensitive to occlusion and background clutters.

So, many researchers applied other object information (e.g. shape and edges) in addition to the

kernel-based model to build their tracking systems.

2.2.3 Boosting-Based Discriminative Appearance Models.

Boosting-based discriminative appearance models are generally applied to online tracking

systems because the training to find discriminate features in boosting models can be done

quakily. Regarding the learning strategy, boosting models can be grouped into self-learning or

co-learning. In self-learning, the first classifier training set is collected regarding the chosen

15

target (e.g. positive and negative samples). The collected training set is applied to train a

classifier to distinguish the target from background and other objects. Then, the classifier is

applied to evaluate the object representation in the current frame. Finally, a set of positive

and negative samples are collected regarding to the current tracker result and applied to update

the classifier. Appearance changes have negative effects on the reliability of the collected

samples which could leads to inaccurate tracking and, ultimately, the loss of the object due

to the drifting problem. The second type of boosting-based models is co-learning boosting

models that collect the samples from multiple sources. The collected samples are applied to

train multiple classifiers, each classifier for a certain type of samples (source). All classifiers

are combined together to build one strong classifier.

Alteratively, boosting models can be grouped into two groups regrading object visual rep-

resentation: single instance and multiple instances. In single instance case, only one instance

is used to update the classifier, so the precise object location is important to avoid the drift

problem. When detecting the precise object location under different appearance changes (e.g.

partial occlusion) is a challenge, multi-instances are applied. In multi-instance case, the track-

ing system utilizes the current tracker location to collect multiple image patches around the

tracker location. Then, the collected patches are applied to update the classifier.

Many tracking systems have applied different boosting models. For example, Parag et al.

[99] built a tracking system based on self-learning and single-instance strategies. The tracking

system depends on weighted weak classifiers. The system updates the classifiers parameters

regarding the scene changes. The flexibility of the tracker is limited in practice because of

using fixed number of classifiers. As self-learning suffers from drifting, Liu et al. [85] applied

co-learning strategy and update all classifiers while other researchers updated only the strong

classifier. To solve the sever appearance change problem, Li et al. [78] built a tracking sys-

tem (MIL: Multiple Instance Learning) based on self-learning and multi-instance appearance

model.

16

2.2.4 SVM-Based Discriminative Appearance Models.

SVM-based discriminative appearance models aim to train SVM classifier and apply the

trained SVM classifier to segment the target from the background. The availability of training

sets for all target objects is considered as the main problem that prevents us from using these

systems as general tacking system. For example, Tian et al. [121] applied weighted linear SVM

classifiers in a tracking system where the classifier weight could be changed during the time

regarding discriminative ability. In general, SVM-based models need heuristically positive and

negative samples collected around the current tracker location to update the SVM classifier.

2.2.5 Randomized Learning-Based Discriminative Appearance Models.

Randomized learning-based discriminative appearance models aim to train multiple classi-

fiers by using random feature selection and random input selection. The main advantages of

using Randomized learning models are the computational efficiency and the ability to execute

the method on multi-core or GPU [115]. However, due to using random feature selection, the

performance of these models varies even for the same target in the same situation. Random-

ized learning models are else applied to tracking systems. For example, Godec et al. [43] used

online random naive Bayes classifier to build a tracking system.

2.2.6 Hybrid Generative-Discriminative Appearance Models.

As each type of the appearance models (generative or discriminative appearance models)

has different advantages and disadvantages, many tracking systems have been proposed to

combine them to achieve a better performance. Usually, a weight is given to each generative or

discriminative model to generate better tracking results[68]. For example, Lei et al. [75] built

a tracking system by using a discriminative classifier and Gaussian mixture as a generative

model. Furthermore, Everingham and Zisserman [39] used a discriminative classifier to detect

and estimate the target pose. Then, a generative model is applied to find the target identity.

However, combining generative and discriminative models does not guaranty getting better

results than using only one generative or discriminative model.

17

CHAPTER 3
A MULTIPLE OBJECT TRACKING SYSTEM WITH

OCCLUSION HANDLING

3.1 almomani2012building
Video tracking systems are increasingly used day in and day out in various applications

such as surveillance, security, monitoring and robotic vision. While the problem of robust

object tracking in the presence of occlusion has been studied in literature, to the best of our

knowledge none of these methods provide accurate tracking of the occluding objects. In this

chapter, we propose a novel multiple objects tracking system in video sequences that deals with

occlusion issues [10]. The proposed system is composed of two components: An improved

KLT tracker, and a Kalman filter. The improved KLT tracker uses the basic KLT tracker and an

appearance model to track objects from one frame to another and deal with partial occlusion.

In partial occlusion, the appearance model (e.g., a RGB color histogram) is used to determine

an object’s KLT features, and we use these features for accurate and robust tracking. In full

occlusion, a Kalman filter is used to predict the object’s new location and connect the trajectory

parts. The system is evaluated on different videos and compared with a common tracking

system. The rest of this chapter is organized as follows: Section 3.2 describes the proposed

system, and Section 3.3 presents the experimental results on different testing videos. Finally,

Section 3.4 summary.

3.2 The Proposed System
In the proposed system, we automatically search for tracking multiple objects and dealing

with occlusion issues. The whole proposed tracking system is described in detail as follow.

18

3.2.1 Background Subtraction

The first step in tracking objects is to separate the objects from the background. Background

subtraction is a straightforward and widely used method [94, 134]. Background subtraction is

performed by finding the difference between the current frame and an image of the statistical

background image. The statistical background image can be built by using a single Gaussian

kernel with YUV color space [134] or a Gaussian mixture model with RGB color space [118]

that is used in our system. After removing shadows and reflections [63] then small blobs, a set

of foreground blobs will be the result of our background subtraction system where each blob

is one object or overlapped objects.

3.2.2 The Improved KLT Tracker

The foreground blobs are tracked from one frame to another by using the KLT (Kanade,

Lucas and Tomasi) tracker [116]. The KLT tracker identifies the most significant features

to track (e.g., the KLT features) by comparing consecutive frames and using the foreground

image from the background subtraction step as a mask. The goal of finding the KLT features

is to determine distance (d) between the KLT feature at location (x) in the first frame (I) and

the new location (x + d) in the second frame (J) that minimizes dissimilarity (ε) where the

dissimilarity computes from Equation 3.1 and the residual is minimized by solving Equation

3.2 [42]:

ε =

∫ ∫
w

[J(x+ d)− I(x)]2dx (3.1)

Zd = e (3.2)

19

Where:

Z =

∫ ∫
w

 g2
x gxgy

gxgy g2
y

 dx (3.3)

e =

∫ ∫
w

[I(x)− J(x)]

gx
gy

 dx (3.4)

I (x) denotes the intensity of the feature point x = [xy] in image (I), J (x + d) denotes the

intensity of the feature point with constant displacement (d) in image (J), w is the window

size, gx and gy are the intensity gradients for x and y directions.

Figure 3.1: The KLT features before (left) and after (right) deleting the inaccurate features.

Some KLT features are not accurate and could have a negative effect on the tracking results

as show in Fig.3.1. We improve the KLT tracker by removing the KLT features that are longer

than the max speed of the objects in the previous frame. After the removal, the system uses the

remaining KLT features to find the relationship between the blobs in the previous frame with

the blobs in the current frame by counting the number of KLT features and connect between

blobs that have the max number of features. For each blob in the current frame, there are four

cases: New blob, existing blob, splitting blob and merging blob. These cases are described in

detail as follow.

20

• New blob: There is no match between the blob in the current frame with any blob in the

database that has all the active blobs. We add the blob to the database as a new blob and

extract four types of features: Location, area, variance of motion direction and centroid.

• Exiting blob: There is a match between the blob in the current frame and a blob in the

database. We update the blob information in the database.

• Splitting blob: There are more than one new blob in the current frame that are matched

to one blob in the database. We add the new blobs to the database as new blobs.

• Merging blob: There is one new blob in the current frame that is matched to more than

one blob in the database. The basic KLT tracker alone is not enough in this case to

keep tracking each blob individually because it cannot separate each blob’s KLT features

from the other merged blob features. The improved KLT tracker is used to keep tracking

partial occlusion blobs by building a RGB color histogram for each overlapped blob by

using the information of the blobs before they merge. Then, the KLT features in the

overlapping area are classified and assigned to each blob based on the histograms and

the RGB color of the KLT features. The KLT features of each blob are used to determine

the blob’s bounding box. Finally, KLT features in each bounding box are used to match

the blob with an existing blob in the database.

For each blob that is added to the database as a new blob, our system runs two methods,

motion histogram and histogram projection [114], respectively, to estimate the number of ob-

jects in the blob. Motion histogram is built by using KLT features since the magnitude and

direction of KLT features of an object are mostly the same. The number of objects in the blob

can be estimated by the number of peaks in the motion histogram. The motion histogram gives

a correct estimation when the objects in the blob have different magnitude or direction and

separates them in different bounding boxes. Each bounding box is built to include all the KLT

features of a peak in the motion histogram. Figurer 3.2 (a) shows the original image with the

21

Figure 3.2: Motion Histogram is used to estimate the number of objects in blobs. (a) The original
frame with the estimated number of objects in each blob. (b) The KLT features of comparing the frame
in (a) with the previous frame. (c) The histogram of the left blob that has two objects (The man and the
lady). (d) The histogram of the right blob that has one object (The man).

estimated number of objects in each blob and the corresponding KLT features are shown in

Figurer 3.2 (b). Figure 3.2 (c) shows the motion histogram of the left blob that has two objects

and Figure 3.2 (d) shows the motion histogram of the right blob that has one object. Clearing,

in this case the motion histogram correctly estimates the number of object where the number

of peaks refers to the number of objects.

When objects are located different distances away from the camera (i.e., in the Y direc-

tion), their KLT features usually have different magnitude, resulting in a correct estimation by

the motion histogram. However, this may not be the case for the objects with similar Y coor-

dinates. To this end, we further employ the histogram projection in the X direction for a more

accurate estimation in each bounding box. The histogram projection is built by counting the

foreground pixels on each point in the X direction. The number of peaks in the histogram refers

to the number of objects in the blob. Figure 3.3 (a) shows the result of running the histogram

22

Figure 3.3: Histogram projection is used to estimate the number of objects in blobs. a) Original frame
with the estimated number of objects in each blob. b) The foreground/ background of the image in (a)
where two objects are in the left blob and one object is in right blob. c) The histogram of the left blob
that has two objects. d) The histogram of the right blob that has one object.

projection on a frame that has two blobs. The left blob has two objects (the two ladies) and the

right blob has one object (the man). Figure 3.3 (b) shows the foreground/background for the

image in (a). Figures 3.3 (c) and (d) show the result of building the histogram projection for

the two blobs. Clearly, in this case the histogram projection can correctly estimate the number

of objects in each blob based on the number of peaks in the projection. The system repeats the

examination of the blob for a number of successive frames and uses the average of the results

to represent the number of objects in the blob. The system tracks the objects in the blob as one

blob and tracks each object individually when it separates from the blob.

For all blobs in the database that cannot be matched in the current frame, there are two

scenarios: The blob is either fully occluded or it is a stopped object. For the first case: Our

system runs a Kalman filter to predict each blob’s position as we are going to explain later.

The system tries to find a match between these positions and the positions of the blobs that are

23

added to the database as new blobs, and we update the active blob database for each match.

For the second case: Our system checks the centroid of the blob in the last few frames. If there

is a little change, it is considered as a stopped object and marked accordingly in the database.

Finally, a blob is deleted from the database when it has no match and the prediction of the

Kalman filter is out of the frame.

3.2.3 The Kalman Filter to Predict Object Position

The Kalman filter [67] is a mathematical method that uses the previous object information

to predict the state of the object in the next frames. In this section, a Kalman filter is used to

predict the object location after the object is full occluded or has no KLT features. Let the state

vector is X = [x , y , Sx , Sy ,Ax ,Ay], where [x , y] is the object location, [Sx , Sy] is the object

speed in the x and y directions, and [Ax ,Ay] is the object area. So, the Kalman filter system

model and Measurement model are:

xk = Fxk−1 + wk (3.5)

zk = Hxk + vk (3.6)

24

where:

F =

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

(3.7)

H =

1 0 0 0 0 0

0 1 0 0 0 0

 (3.8)

wk : N (0 ,Cov1) is the process noise and vk : N (0 ,Cov2) is the observation noise.

3.3 Experimental Results
The proposed system can track multiple objects in real-time and efficiently deal with partial

and full occlusions. Our system draws a bounding box with different color to each tracked

object in the scene. A line that has the same color of the object’s bounding box is used to show

the object’s trajectory. The two numbers at the top of the bounding box are used to provide the

blob ID and the estimated number of objects in the blob, respectively.

We have tested the system on a computer that has AMD Sempron 2.10 GHz processor and

2.00 GB RAM. Four publicly videos are used to evaluate our proposed system. These videos

consists of indoors/outdoors and one object / multiple objects testing environments.

Figure 3.4 shows an example of tracking multiple objects with partial and complete oc-

clusions. The video is from the AVSS 2007 dataset. The AVSS 2007 dataset is provided by

the 2007 IEEE International Conference on Advanced Video and Signal based Surveillance.

Each video is digitized with a frame size 720 by 520 and rate of 25 FPS. The video includes

moving persons and trains. Figure 3.4-(a) shows the foreground/background of frame 1436 in

25

Figure 3.4: Tracking multiple objects with occlusion handling. (a) The foreground/background image
of frame 1436 shows the occlusion. (b) The result of our tracking system of frame 1436. (c) The
foreground background image of frame 4484 shows the occlusion. (b) The result of our tracking system
of frame 4484.

Figure 3.5: The result of our tracking system for multiple objects in frames 1337, 1347, 1357, 1367,
1377, and 1387 of AVSS 2007 video. The original frames have the tracking results and foreground
background images show the partial occlusion of one car by another.

26

Figure 3.6: The result of our tracking system for multiple cars.

Figure 3.4-(b), and three objects are merged together. Cleary, our system tracks the two per-

sons after they disappear behind the pole (full occlusion) and show up again. In addition, the

three objects -the two guys and the lady- are tracked during the partial occlusion as shown in

Figure 3.4-(b). Figure 3.4-(c) shows the foreground/background of frame 4484 from the same

video sequences and the two guys are merged in one blob. Each object of the three objects

in the frame 4484 is tracked individually without any effect to partial occlusion as shown in

Figure 3.4-(d). So, a correct segmentation is made during the partial occlusion and each object

is tracked individually.

Figure 3.5 shows an example of tracking multiple objects during partial occlusion. The

video is from the AVSS 2007 dataset. The video includes moving persons and cars. Figure

3.5 shows the result of tracking multiple cars where one car is partially occluded by another

one for about 50 frames as the foreground background images show. Our system smoothly and

nicely tracks the multiple objects with and without occlusion.

Figure 3.6 shows the result of tracking multiple objects in video sequences that are selected

from are real surveillance videos that are taken on intersections during daytime. The moving

cars are tracked nicely as shown by the different colors for the bounding boxes and trajectories

as Figures 3.6 (a) and (c) show. For a more complex scene, Figure 3.6-(b) shows multiple

stop-and-go cars, in which some cars stop for a short time before the traffic light and then start

27

Figure 3.7: The result of tracking an object by using Predator (first row) and our system (second row).

moving again. Our system keeps tracking them and maintains a bounding box around each car.

We also compared our system with a state-of-the-art tracking system that is called Predator

[64] as Figure 3.7 shows. The first row in Figure 3.7 shows the results of using Predator to

track an object in a subway and the second row shows the results of tracking the same object

by using our system. The object is tracked nicely in our system where Predator failed.

3.4 Summary
In this chapter, we have proposed a novel tracking system for effectively tracking objects

in surveillance videos. The proposed system is composed of two components: An improved

KLT tracker, and a Kalman filter. The improved KLT tracker uses the basic KLT tracker and an

appearance model to track objects from one frame to another and deal with partial occlusion.

In partial occlusion, the appearance model (e.g., a RGB color histogram) is used to determine

an object’s KLT features during partial occlusion, and we use these features for accurate and

robust tracking. In full occlusion, a Kalman filter is used to predict the object’s new loca-

tion and connect the trajectory parts. The experimental results demonstrated that our system

successfully tracks multiple objects with partial or full occlusions.

28

CHAPTER 4
SEGTRACK: A NOVEL TRACKING SYSTEM WITH

IMPROVED OBJECT SEGMENTATION

4.1 Introduction
Most tracking methods depend on a rectangle or an ellipse mask to segment and track

objects. Typically, using a larger or smaller mask than the actual object will lead to loss of

tracked objects. In this section, we propose SegTrack [11] : an object tracking system that is

more efficient in dealing with partial and full occlusion as shown in Fig. 4.1. Our improved

mixture of Gaussians segments foreground objects from the background and solves stop-then-

move and move-then-stop problems. Then, KLT tracker tracks objects in consecutive frames

and detects partial and full occlusions. In partial occlusion, a novel silhouette segmentation al-

gorithm evolves the silhouettes of occluded objects by matching the location and appearance of

occluded objects between successive frames. In full occlusion, one or more feature vectors for

each tracked object are used to re-identify the object after reappearing. SegTrack is evaluated

by comparing it with other state-of-the-art methods on public video datasets. The rest of this

chapter is organized as follows: Section 4.2 describes the SegTrack system, and Section 4.3

presents the experimental results on different testing videos. Finally, Section 4.4 summarizes.

4.2 SegTrack

4.2.1 Background Subtraction.

The first step in SegTrack is segment the foreground object from the background by apply-

ing background subtraction [134] as explain in 3.2.1. In SegTrack, the statistical background

model is built by using a mixture of Gaussians [63]. The output of the background subtrac-

tion module is a set of foreground blobs where each blob consists of one or more (overlapped)

objects.

29

Figure 4.1: Results from SegTrack. The first column shows a person stops for a long time and
remains as a foreground object. The second column shows a person starts moving after he stops
for a while, and the ghost foreground is detected and deleted. The third column shows tracking
results with simple and severe partial occlusions. The fourth column shows the tracking results
with full occlusion.

Adapting the mixture of Gaussians at a slower rate than the foreground scene produces

false foreground areas (ghosts) [110], a problem referred as the ”stop-then-move” problem.

SegTrack determines if a blob is a ghost based on the ratio between the ghost pixels and the

border pixels, where a border pixel is a contour pixel whose eight neighborhood contains non-

foreground pixels, and a ghost pixel is a border pixel and does not belong to any neighborhood

Gaussian models. If the ratio is bigger than a threshold, the blob is deleted from the foreground.

The second problem is move-then-stop problem where stopped object may become as a part of

the background model after a few frames. SegTrack deals with the problem by preventing the

blob regional pixels from participating in the background updates if there is no change to the

blob location (stopped blob).

4.2.2 KLT Tracker.

The foreground blobs are tracked from one frame to another by using the improved KLT

tracker as explain in Section 3.2.2. After removing inaccurate KLT featuers, SegTrack uses the

remaining KLT features to connect between blobs in consecutive frames. KLT tracker detects

the partial occlusion if a new blob in the current frame is matched to more than one blob in

the previous frame. In this case, a silhouette-based segmentation method is used to evolve

30

each object’s silhouette in the occluded region. Then, the KLT features are used to match the

evolved blobs with the previous existing blobs. All old blobs that cannot be matched in the

current frame are considered as fully occluded blobs.

4.2.3 Silhouette Segmentation Algorithm

Many tracking systems use probabilistic model to segment objects during occlusions. Pre-

vious knowledge and learning are main concerns as no information in real time video about

tracked objects is known until they appear at the first time. In addition, some of these systems

evaluate all foreground pixels with the probabilistic model without using the object’s previous

location, which is critical in tracking. Our silhouette segmentation algorithm uses the objects

locations in previous frame to improve the segmentation results and reduce the number of eval-

uated foreground pixels. The silhouette segmentation algorithm is run only when the merged

blobs (partial occlusion) are detected as we explained in the previous section. The silhouette

for each object is evolved as follows:

First: The Teh-Chin chain approximation algorithm is used to evolve the contour of each

blob (B) in the previous frame (Fi = {Bi1, Bi2, ..., Bin}). The algorithm determines the sup-

port region of a point (pi) as follows [120]:

D(pi) = {pi−k, ..., pi−1, pi, pi+1, ..., pi+k} (4.1)

The length of the support region (k) starts with k=1 and keeps increasing by one until inequality

(4) or both inequalities in (5) hold:

lik ≥ li,k+1 (4.2)

31

or

dik
lik
≥ di,k+1

li,k+1

for dik > 0 (4.3)

dik
lik
≤ di,k+1

li,k+1

for dik < 0

where the length of the chord joining the points pi−k and pi+k is lik = |pi−kpi+k|, and (dik) is

the perpendicular distance of the point pi to the chord pi−kpi+k. Each point should survive from

the following operations, where S is the measure of significance and CUR is the curvature (see

[120] for more details):

|S(pi)| ≥ |S(pj)| for all j: |i− j| ≤ ki/2 (4.4)

CURi1 = 0

if([kiofD(pi)] = 1)and(pi−lorpi+lstill survived)then

if(|S(pi)| ≤ |S(pi−l)|)or(|S(pi)| ≤ |S(pi+l)|)then

further suppress pi

Second: One contour from the list of contours that are computed in first step is chosen as

our target contour. A green color (G) is given to the target contour pixels (P) and a blue color

(B) is given to all other contour’s pixels as follows:

Color(P) =

G : P ∈ Bik.

B : P ∈ Bit and k 6= t.

 (4.5)

Third: Match the result from step two with the current foreground image (Fj) and color

each pixel in the current foreground image to green (G), blue (B) or red (R) based on Equation

32

(4.6). Fig. 4.2 shows the result of matching two consecutive foreground images.

Color(P) =

G : P ∈ Fi and P is green

B : P ∈ Fi and P is blue

R : P ∈ Fj and P /∈ Fi

 (4.6)

Figure 4.2: Result of comparing two consecutive frames.

Fourth: For each red pixel (Pr), it is used as a centroid of a rectangle (Rct) whose size

is determined by the maximum moving speed of the tracked objects in this blob. The green

(Pg) and blue (Pb) pixels in the previous frame, before objects merging, are used as a base of

comparing as we know which pixel belongs to which object exactly. The comparison is done

using the nearest neighbor algorithm by computing the Euclidean distance (ED) in the RGB

color space. The red pixels are the recolored as follows:

∀Pg ∈ Rct and ∀Pb ∈ Rct (4.7)

Find ED(RGB(Pr ∈ Fj), RGB(Pg ∈ Fi))

Find ED(RGB(Pr ∈ Fj), RGB(Pb ∈ Fi))

Keep the Nearst NeighborP (PNN)

Color(Pr) =

G : PNN is Green

B : PNN is Blue

Fifth: The green pixels from steps two and four are added to a new foreground image if the

33

distance to other objects is larger than the target object’s speed. This is important to maintain

a sufficient space between tracked objects to obtain accurate contours for the next iteration.

Then open morphology is run to smooth the contour for current object (green pixels). The new

foreground image is used as a base of matching with the next frame if occlusion is detected.

Otherwise, the foreground image from background subtraction will be used. Finally, if the size

of an object becomes very small due to heavy occlusion, for example, less than 10% of its

original size before occlusion, SegTrack treats it as a full occluded object.

4.2.4 Person Re-identification.

Object re-identification solves full occlusion cases that are detected in the KLT tracker as

explained in section 4.2.2. We cast the object re-identification problem into a distance problem.

For blob (A) that is marked as a full occluded blob in the database, we need to successfully

identify the blob if it is recaptured elsewhere in space and time. This can be achieved by using

a distance function D(B1, B2) so that:

D(B1, B2) < threshold (4.8)

where B1 and B2 are different blobs for the same target blob (A). Due to computing time

concerns, we use a fast distance matching method, i.e., the Bhattacharyya distance [47] defined

in Equation (4.9),

D(V1, V2) =

√
1− 1√

V̄1V̄2N2

∑√
V1.V2 (4.9)

where V1 and V2 are the feature vectors for B1 and B2, respectively, and N is the vector length

The feature vector for each target is built by dividing the target image into three horizontal

strips: head, upper body and lower body with (1:2:3) as the ratio. Because the head does not

have many distinctive features, it is not used. For the upper and lower body, the RGB and HSV

are computed and represented as histograms. Each channel is represented by a 16 dimensional

34

histogram vector, and thus each target image is represented by a 192 dimensional feature vector.

The RGB and HSV are common color spaces to represent a object’s appearance [140].

However, viewing condition, occlusion, and illumination and pose changes will cause signif-

icant appearance variations. Finding distinctive and stable features are extremely hard if not

impossible. To deal with this issue, more than one feature vector are built for each tracked

blob. The first feature vector is obtained when a blob is added to the database as a new blob.

Another feature vector is added for the same blob during tracking when the matching distance

between the current feature vector and all other feature vectors of the same blob is higher than

a threshold.

4.3 Experimental Results
We tested SegTrack on several challenging video sequences from PETS 2006 [3], CAVIAR

[1], AVSS 2007 [4] and ViSOR [5] datasets. We compare SegTrack results with several state-

of-the-art tracking methods, i.e., TLD [64], Joint Seg. [7], MIL [16] and VTD [71]. Specifi-

cally, TLD uses positive and negative samples that are collected during tracking to build and

improve the performance of a detector. KLT features are used to track the object. The detector

is employed to find the object if the tracker fails. Joint Seg. uses a probabilistic framework

based on background subtraction and pixel-level segmentation method to track objects. The

MIL method builds and updates a detector with a set of the object images even though the

image is not precisely for the object. The VTD method uses multiple observation and motion

models, each of which covers a different type of observation or motion. Then, the results are

integrated into one tracking system.

SegTrack is implemented using OpenCV and C++ language on a machine that has a Quad

(2.83GHz and 3.01GHz) processor and 4GB RAM. The codes for TLD, Joint Seg., MIL and

VTL are obtained from the authors with default parameter setting. For all the video sequences

that are used in our experiments, we manually labeled the ground truth center of each object

every 5 frames. The average center location error is used as a comparison base. The average

35

80 100 120 140 160 180 200
0

50

100

150

Frame #

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

JointSeg.

TLD

VTD

MIL

OUR

(a) AVSS

200 220 240 260 280 300 320
0

10

20

30

40

50

Frame #

P
o
s
i
t
i
o
n

E
r
r
o
r

(
p
i
x
e
l
)

JointSeg.
TLD
VTD
MIL
OUR

(b) CAVIAR

100 150 200 250 300
0

50

100

150

200

Frame #

P
o
s
i
t
i
o
n

E
r
r
o
r

(
p
i
x
e
l
)

JointSeg.

TLD

VTD

MIL

OUR

(c) ViSOR

Figure 4.3: Error plots for three video clips.

center error was computed only for the frames in which a method was able to track all targets.

The quantitative results are summarized in Table4.1 and Fig.4.3.

4.3.1 Background Subtraction

The background subtraction, the first step in SegTrack, is used to segment foreground ob-

jects with an average frame rate of 42 frame per second. Fig. 4.4 shows results of our improved

mixture of Gaussians method, where the move-then-stop and stop-then-move problems are

solved. The first row shows the original four frames from the PETS 2006 dataset where a

36

Video Clip Joint Seg TLD VTD MIL SegTrack
AVSS 45 67 64 53 6

CAVIAR 18 26 13 10 6
ViSOR 22 59 25 30 7

Table 4.1: Average center location error (pixels). Red indicates the best performance, blue
indicates the second best.

person stops for a few frames then moves. The second row shows the results of using the tra-

ditional mixture of Gaussians. The first two frames show the shadow and reflection problems;

the third frame shows the move-then-stop problem where the person is not part of the fore-

ground after he stops for a few frames; and the forth frame shows the stop-then-move problem

where both the real object and its ghost are detected as the foreground. The third row shows

the superior results obtained by SegTrack.

Figure 4.4: Stop-then-move and move-then-stop problems, traditional mixture of Gaussians
results (second row) and SegTrack results (third row).

4.3.2 Tracking During Partial Occlusion

Fig. 4.5 shows screen shots of tracking results for video sequences from AVSS, CAVIAR

and ViSOR datasets. Obviously, the joint segmentation method does not segment the objects

37

(a) AVSS

(b) CAVIAR

(c) ViSOR

Figure 4.5: Screen shots of tracking results during partial occlusion.

correctly, leading to inaccurate tracking. TLD, VTD and MIL track the wrong object and detect

the object in a wrong place. Notice that none of them can successfully track all the objects,

mainly due to severe partial occlusions. On the other hand, SegTrack segments and tracks all

38

the objects correctly in these videos. The robustness of SegTrack is clearly shown.

4.3.3 Tracking During Full Occlusion

Fig. 4.6 shows the comparison between SegTrack and all other tracking methods on the full

occlusion cases. The leftmost column shows the objects before the full occlusion and the re-

maining columns show the results of tracking by different methods. In the first row, the object

changes his direction during full occlusion. In the second two, multiple objects are presented.

In both cases, the objects are tracked nicely in SegTrack while other methods fail after the full

occlusion.

Figure 4.6: Screen shots of tracking results during full occlusion.

In our experiments, SegTrack successfully tracks all the objects for the full length of each

video sequence, which none of other trackers can achieve. Even when other methods track

objects successfully, SegTrack significantly improves the tracking accuracy, evidenced by the

lowest average center location error. The average speed for SegTrack is 20 frames per second.

4.4 Summary
In this chapter, we present a novel tracking system (SegTrack) with efficient and effective

occlusion handling. The improved background subtraction method segments foreground ob-

jects and solves stop-then-move and move-then-stop problems. The KLT tracker tracks objects

and detects partial and full occlusions. In partial occlusion, a silhouette segmentation algorithm

39

is employed to evolve the silhouettes of the occluded objects. Multi-feature vectors are used in

the full occlusion case to re-identify the objects. SegTrack shows superior performance when

compared with the other state-of-the-art trackers.

40

CHAPTER 5
ROBUST OBJECT TRACKING VIA A BAYESIAN

HIERARCHICAL APPEARANCE MODEL

5.1 Introduction
Challenges still exist in handling appearance changes during object tracking. In this chap-

ter, we propose a novel Bayesian Hierarchical Appearance Model (BHAM) for robust object

tracking. Our idea is to model the appearance of a target as combination of multiple appear-

ance models, each covering the target appearance changes under a specific criteria (e.g. view

angle). Specifically, target instances are modeled by Dirichlet Process and dynamically clus-

tered based on their visual similarity (see Fig. 5.1 for an illustrative example). Thus, BHAM

provides an infinite nonparametric mixture of distributions that can grow automatically with

the complexity of the appearance data. To show the effectiveness of using BHAM, we plugged

BHAM into static and moving camera tracking systems. In the static camera tracking system,

we integrated BHAM with background subtraction and the KLT tracker. In the moving camera

tracking system, we applied BHAM to cluster negative and positive target samples. In our

tracking systems, the target object can be chosen arbitrary with no prior knowledge except its

location in the first frame. Our experimental results on real-world videos show that our systems

can provide stable, robust tracking in complex scenes (e.g., with occlusions, illumination and

pose variations).

BHAM is different from the tracking methods in several ways. First, the number of mix-

ture components (clusters or parameters) is automatically determined based on the complexity

of the appearance data. Thus, BHAM can be used to model various amounts of appearance

changes and is widely applicable in object tracking. Second, BHAM is an online learning

model that can handle significant and abrupt appearance variations during tracking. Finally,

BHAM is a nonparametric method. Its performance does not depend on hand tuning of system

41

Figure 5.1: BHAM distributes target instances to different groups based on view angles. Each
group instances are clustered dynamically based on visual similarity.

parameters. Finally, BHAM is a general model can be applied to solve other tracking prob-

lems like multiple object tracking (e.g., [98]), contours tracking (e.g.,[58, 122]), or deformable

objects tracking (e.g.,[106]).

The rest of this chapter is organized as follows. Section 5.2 describes BHAM, the model

structure and Bayesian decision in detail. Section 5.3 and 5.4 represent our tracking systems:

static and moving camera tracking systems, respectively. Section 5.5 presents the experiment

results. Finally, Section 5.6 summary.

5.2 Bayesian Hierarchical Appearance Model
In this section, we introduce BHAM in details. We begin with an overview of Chinese

Restaurant Process (CRP) in Section 5.2.1, and our contribution and modification to the tradi-

tional CRP model in Section 5.2.2. As Dirichlet Process (DP) is a generative model, the model

structure in Section 5.2.3 shows the generative process for creating an object instance with a

specific viewing angle. Finally, the Bayesian decision in Section 5.2.4 shows how our model

is applied for object tracking during partial and full occlusions.

42

5.2.1 Chinese Restaurant Process

Our goal is to learn a target appearance model during real time object tracking. Since the

target data is unknown in advance, and the capacity of the model should grow with the data

complexity, we need a multiple statistical appearance model according to De Finetti’s theo-

rem. The theorem states that the probability distribution of infinite exchangeable observations

{x1, x2, ..., xn} is a mixture of probability distributions of these observations. That is [26],

p(x1, x2, ..., xn) =

∫
Θ

p(θ)
n∏
i=1

p(xi|θ)dθ, (5.1)

where Θ is an infinite-dimensional mixture space of probability measures and dθ defines a

probability measure over distributions.

DP [40] is a Bayesian nonparametric probabilistic model comes under De Finetti’s theorem

where a Dirichlet random variable θ with k-dimensionality have the property: θi ≥ 0 ,
∑k

i=1 θi = 1 .

DP describes the distribution of θ with the following probability density:

DP (α, θ) =
Γ(Σk

i=1αi)

Πk
i=1Γ(αi)

θα1−1
1 ...θαk−1

k , (5.2)

where the parameter α is a k -vector with components αi > 1 and Γ is the Gamma function.

As the number of clusters generally grows with the number of target instances, which is

unknown in advance, an infinite DP is required where k →∞. The equations for the infinite

DP are:

xn ∼ p(x|θm), (5.3)

θm ∼ G, (5.4)

G ∼ DP (α,G0), (5.5)

where G0 is the base distribution and α is the concentration parameter.

43

The advantage of using the infinite DP for target instance clustering over traditional clus-

tering methods lies on the number of repetitions required to infer the number of clusters. The

infinite DP automatically infers the number of clusters with a single repetition, while the tra-

ditional clustering methods need multiple repetitions to compare different hypotheses on the

number clusters before determining the best one. Moreover, during testing, DP has the flexi-

bility of allowing previously unseen data to form a new cluster.

The distribution over data partitions induced by DP is known as a Chinese Restaurant Pro-

cess (CRP) [8]. CRP can potentially model an infinite number of mixture clusters regarding

the input data, where each cluster can have infinite target’s instances. If the target’s instances

{x1, x2, ..., xn} has occupied the clusters {θ1, ..., θm}, when a new target’s instance (xn+1)

comes, the probability of joining or creating a new cluster is given as:

p(xn+1 ∈ k|x1,...,n, α) =

α

n+α
if k = θm+1

Lk

n+α
if k ∈ θ1, ..., θm

 , (5.6)

where n is the total number of target instances, Lk the number of target instances in cluster k

and α the concentration parameter (We used α = 1).

When used in tracking, CRP has the nice property where neither the number of clusters nor

the number of target instances need to be known in advance. It can dynamically increase the

number of clusters as data grows. In this section, we propose a novel appearance model based

on CRP to cluster the target instances and handle the appearance changes during tracking, as

detailed in the next section.

5.2.2 BHAM

Generally, tracking and re-identifying systems create a target appearance model by averag-

ing feature vectors from all target instances. The accuracy of these systems are badly affected

when the target instances are captured from different view angles [138]. For example, for a

person with a blue t-shirt and a red backpack, the feature vectors (e.g., color histogram) from

44

front-facing camera instances are totaly different from back-facing camera instances. Thus,

the proposed model, BHAM, includes eight CRPs, each representing the target’s appearance

in one of eight different view angles. To cover 360 degrees, forty five degree is adapted as the

difference between two consecutive view angles and the upper-left corner of frames is consid-

ered as the zero degree. Detecting the target directions (view angles) according to a static point

and other motion information is common [105, 125].

The hierarchy in our model is mainly introduced to efficiently handle the texture features

of a tracked object. In a flat model (without hierarchy), there are two possible ways to model a

object’s textural appearance: we can either build a single representative texture feature from all

the target images, or we can build one for each cluster in the model. Since target images with

different view angles tend to have different textures, the first method generally loses its dis-

criminative power for object detection. The second approach is accurate, but the computation

is very slow due to the large number of clusters generated in tracking and long time involved

to extract texture features. Thus, it is generally not applicable for a real-time tracking system.

Since the object observed from the same view angle usually shares similar texture, we

introduce the hierarchical model, in which we pool all the target images under the same view

and model them using one CRP. Subsequently, we can build one representative texture feature

for each CRP, which achieves a good balance on the computation time and discriminative

capability. In addition, the hierarchy also helps disentangle viewpoints from other factors such

as illumination so that our model is more robust and accurate.

As BHAM has eight CRPs, Equation 5.6 could be rewritten as follows:

p(xn+1 ∈ k|xv1,...,n, α, v) =

α

nv+α
if k = θvm+1

Lv
k

nv+α
if k ∈ θ1, ..., θ

v
m

 (5.7)

where nv is the total number of target instances in model v , Lv
k is the number of target instances

in model v in cluster k and {θ1 , ..., θvm} are the clusters of model v . When a new target instance

45

Algorithm 1 BHAM
INPUT: New target instance (x) and the object view angle (va).
OUTPUT: Clustering and cluster parameters.

1. Choose the view angle model (v) where v = va.

2. Sort in descending order the model v clusters {θv1 ...θvm} with probability Lv
k

nv+α
(Lvk

is the number of instances in cluster k in model v, and nv is number of instances in
model v).

3. Compute the probability of creating a new cluster α
nv+α

.

4. for i = 1 to m do
Bh = BD(x, θvi) from Equation 5.8.
if (Bh >=Theshold) and (

Lv
i

nv+α
>= α

nv+α
) then

Update θvi , Lvi and nv.
return

end if

5. end for

6. If none of the v clusters is chosen, create a new cluster θv(m+1)

7. Update θv(m+1), L
v
(m+1) and nv

comes, Equation 5.7 determines the order of the evaluation (joining an existing cluster or cre-

ating a new cluster). Specifically, it chooses the cluster with the highest number of images first.

If the similarity is lower than the preset threshold, we move to the next highest cluster. The

process is repeated until all existing clusters are exhausted. Finally, if we cannot find a cluster

with sufficient similarity, a new cluster will be created.

In our method, we employ the median flow tracker [65] to compute the global target motion

and then the view angle. Median flow tracker depends on performed forward-backward error

in time and the discrepancies between these two trajectories to detect the new object location.

All KLT features are tracked by the Median flow tracker and removed if the assigned error is

higher than a certain value. The moving direction from the remaining points is computed by

using the median over each spatial dimension.

The accuracy of the median flow tracker mainly depends on the object’s KLT features

46

Figure 5.2: Bayesian Hierarchical Appearance Model (BHAM).

[116]. In our system, we improved the tracker by removing noisy KLT features that exceed

the estimated target speed. To handle the appearance changes under the same view angle (e.g.,

illumination variations), a CRP is employed. The CRP is built based on the accumulated tar-

get’s instances over time. Instances are clustered into different groups regarding the appearance

similarity (We used 0.95) and Equation 5.7. The averaging of the feature vectors in each group

represents the group center.

For each new target instance, features are extracted as a vector (A). The median flow tracker

is used to determine the view angle model, and Equation 5.7 is used to select a cluster within

the model with the highest probability. Then, the similarity (Bhattacharyya distance) between

the new instance and the cluster center (B) is computed,

BD(A,B) =

√
1− 1√

ABN2

∑
I

√
A(I).B(I), (5.8)

where N is the dimension of the feature vectors. If the similarity is beyond a threshold, the

cluster is updated to incorporate the new instance (e.g., the number of instances in the cluster

and the cluster center). The model will be updated as well (e.g., the total number of instances).

Details are given in Algorithm 1.

5.2.3 Model Structure

Our appearance model is created based on CRP proposed by Aldous [8]. We differ from

CRP by explicitly introducing a new variable (view angle) for classification. As shown in Fig.

47

5.2, a feature vector x represents the target instance that is used as a base for clustering. A

collection of N instances for the same tracked target is denoted by X = {x1, x2, ..., xn}. Note

that x is shaded to indicate that it is an observed variable.

In our model, the generative process of creating an object instance x is given in the follow-

ing steps:

1. Choose the view angle label v ∼ p(v |β) for each instance, where

v = {1, ..., V }, V is the total number of view angles and β is a dimensional vector of a

multinomial distribution with length V .

2. Given the view angle label v , we draw a distribution by choosing θv ∼ p(θ|v , α) for

each instance, where θ is the parameter of a multinomial distribution for choosing the

clusters; α is a V × Z matrix where V is the total number of view angles and Z is the

total number of clusters under the view angles.

3. For each target instance:

(a) choose cluster assignment θc ∼Mult(θv)

(b) choose a target instance x ∼ p(x |θc).

Given the parameters α and β, the generative equation can be known. The joint probability

of an instance mixture θ, a set of N instances x and a view angle v is:

p(x, θ, v|α, β) = p(v|β)p(θ|v, α)
N∏
n=1

p(xn|θ) (5.9)

p(v|β) = Mult(v|β) (5.10)

p(θ|v, α) =
V∏
j=1

DP (θ|αj)δ(v,j) (5.11)

48

5.2.4 Bayesian Decision

In tracking, BHAM is employed to recognize the target in partial and full occlusions. In

these cases, decisions are made based on either an instance of the target (partial occlusion) or

a collection of instances of a newly tracked target (full occlusion).

Given a target instance x , we compute the probability of the view angle (v) as:

p(v|x, α, β) ∝ p(x|v, α)p(v|β) (5.12)

where p(v|β) is the probability of choosing a certain CRP (view angle model), p(x|v, α) is

the probability of choosing a certain cluster in that CRP, and α and β are parameters learned

from the target’s previously observed instance set. For convenience, the distribution of p(v |β)

is assumed to be a fixed uniform distribution: p(v) = 1/V , where V is the number of view

angles. So, Equation 5.12 could be rewritten as,

p(v|x, α, β) ∝ p(x|v, α). (5.13)

The target recognition problem is solved by computing the maximal likelihood of x given the

view angle v : maxvp(x |v , α), where p(x |v , α) is obtained by,

p(x|v, α) = maxDBD(x, yd), (5.14)

where D is the number of clusters and yd is the cluster centroid feature vector of cluster d ∈ D .

In the case of full occlusion, BHAM needs to recognize the target by comparing a newly

tracked target with previously tracked ones. That is, we need to compute the maximal likeli-

hood between two BHAMs A and B as follow:

∀v , max(D,E)BD(xvd, y
v
e) (5.15)

49

where D and E are the number of clusters under view angle v in A and B, respectively. xvd is

the cluster feature vector of cluster d ∈ D under view angle v in A and yve is the cluster feature

vector of cluster e ∈ E under view angle v in B. In addition, our system also provides an

option to compute the maximal likelihood between all the clusters in both models in the case

of no matching view angles.

Finally, the similarity between the two feature vectors could be computed by applying

Bhattacharyya distance BD(., .):

BD(x, y) =

√
1− 1√

xyN2

∑
I

√
x(I).y(I), (5.16)

where N is the dimension of the feature vectors.

In the case of multiple instances, BHAM needs to recognize the target by comparing a

newly tracked target with previously tracked ones. That is, we need to compute the maximal

likelihood between two BHAMs A and B as follow:

∀v , max(D,E)BD(xvd, y
v
e) (5.17)

where D and E are the number of clusters under classification variable v in A and B, respec-

tively. xvd is the cluster feature vector of cluster d ∈ D under classification variable v in A and

yve is the cluster feature vector of cluster e ∈ E under classification variable v inB. In addition,

our system also provides an option to compute the maximal likelihood between all the clusters

in both models in the case of no matching classification variables.

5.3 Static Camera Tracking System
BHAM is a general object tracking method that can be used to track many kinds of object.

As an example, in this section we introduce in details a BHAM-based pedestrian tracking sys-

tem. KLT features are used to tracking the target from one frame to another. During tracking,

50

Figure 5.3: The pipeline of our static camera tracking system.

the median flow tracker is applied to estimate the view angle of the target, and then BHAM

will be updated. During partial occlusion, color-based appearance model is used to detect the

new target location. During full occlusion, colors and textures are used together to identify the

target after reappearance. The overview of the tracker is shown in Fig. 5.3.

In our static camera tracking system, BHAM is applied to detect the target during partial

occlusion and recognize the target after full occlusion. After a user selects a target, background

subtraction is applied to segment the moving objects from the background (i.e., a mixture

of Gaussians [63]) as the first step. Then, improved KLT features connect between blobs in

consecutive frames. KLT features detect partial occlusion when a blob in the current frame

51

is matched to more than one blob in the previous frame. All previous blobs that cannot be

matched in the current frame are considered as fully occluded.

During tracking, the median flow tracker is applied to estimate the view angle of the target.

BHAM clusters the same view angle instances in one group as an intermediate step and each

resulting group is divided into different subgroups based on the appearance similarity as the

final step. If the view angle of the target is estimated incorrectly and the target instance is

misclassified accordingly, the noisy target instance will most likely be grouped to a new cluster

in the corresponding view model as it is an outlier in that model. We will remove these noisy

clusters with a low number of samples from our model so that they will not adversely affect

the appearance model and the tracking results.

Based on the hierarchical model, both global (color histograms) and local features (texture

histograms) are extracted. Specifically, the average HSV histogram is obtained for each cluster

based on all the instances in the cluster as it can be computed very quickly. On the other

hand, due to the high computation complexity, the average texture histogram is built only at

the higher level (view angle level) based on the representative samples in the corresponding

CRP (one from each cluster). In addition, it is only computed in full occlusion cases.

During partial occlusion, the foreground in the input image is scanned across positions and

scales by applying the fast scanning window strategy [124]. At each sub-window an 80-bin

color histogram is built and sent to BHAM to decide about the presence of the object based on

the Equations in Section 5.2.4. For sub-windows with the probability higher than a threshold,

a KLT tracker is used to connect between the sub-windows in the previous frame and in the

current one.

In full occlusion, our system builds a BHAM for each new object (KLT features are used to

track all the objects to distinguish between old and new ones) after tracks it for a certain number

of frames (e.g., 10). This gives us a more accurate appearance model than single instance-based

methods. First, the color similarity between the new object and the target is computed based

52

on Eq. 5.15. Only for a new object with high color similarity, we further computes its texture

and compares it with the target. In this way, color features are used to quickly rule out the

dissimilar objects so that the computing of the expensive local texture features can be avoided.

Finally, the object with a high similarity on both color and texture is recognized as the target

for continuous tracking.

5.4 Moving Camera Tracking System
Tracking the target in moving camera videos is considered more challenging than tracking

in static camera videos where segment the foreground objects using background subtraction

methods is not applicable. In literatures, ”tracking by detection” systems appear as a suitable

alternative to separate the object from the background. These systems bootstraps themselves

by using the collected positive and negative samples around the current target location. This

makes the performance of these kind of systems depends entirely on the effectiveness of the

appearance model.

In this section, we propose a novel moving camera tracking system via BHAM. Our main

idea is to model the negative and positive target instances as the combination of multiple ap-

pearance models. Within each model, target instances are modeled by BHAM and dynamically

clustered based on their visual similarity. BHAM provides an infinite nonparametric mixture

of distributions that can grow automatically with the complexity of the appearance data. In

addition, prior off-line training or specifying the number of mixture components (clusters or

parameters) is not required. We build a tracking system in which BHAM is applied to clus-

ter negative and positive target samples and detect the new target location. The pipeline of

moving camera tracking system we implemented is illustrated in Fig.5.4 and summarized in

Algorithm 2. Our experimental results on real-world videos show that our system achieves

superior performance when compared with several state-of-the-art trackers.

The performance of the tracking system depends mainly on the effectiveness of the appear-

ance model. In this chapter, we build two models using BHAM, P-BHAM for positive samples

53

Figure 5.4: The pipeline of the moving camera tracking system. Our system distributes target
instances to positive and negative samples. Each group instances are clustered dynamically
based on visual similarity.

and N-BHAM for the negative samples. In addition to the importance of choosing an effective

appearance model, the method of choosing positive and negative samples when updating the

appearance model is also important. In our system, we applied the most common technique for

choosing positive and negative samples, in which the patch at the current tracker location is se-

lected as the positive sample and the neighborhood samples around the current tracker location

are considered as negative ones. The positive sample is used to update P-BHAM and the nega-

tive ones are used to update N-BHAM. Since determining the number of clusters in advance is

generally not possible, the needs of BHAM as an appearance model to grow dynamically with

the data complexity is clear.

Before tracking starts, a user first chooses the target of interest `(x)∗t . The system extracts

the positive samples x ∈ XP within an integer radius η from the given target location XP =

{x|η > ||`(x)∗t − `(x)t||}. η = 1 gives only one positive sample (used in our experiments)

while setting η > 1 provides multiple positive samples. For negative samples x ∈ XN , the

54

Algorithm 2 MOVING CAMERA TRACKING SYSTEM

INPUT: The target location `(x)∗t−1 in frame t− 1.
OUTPUT: The target location `(x)∗t in frame t;

1. Extract the patches from the searching area X = {x|γ > ||`(x)∗t−1 − `(x)t||}.

2. P-BHAM finds the top candidates that have highest probabilities p(x|P − BHAM)
(higher than a threshold ζ). If none of candidates is chosen, the full occlusion is
considered. In full occlusion, patches are collected from the whole frame.

3. N-BHAM chooses a candidate from the top candidates that has the lowest probability
p(x|N −BHAM) to consider as new target location `(x)∗t .

4. Extract the positive sample set: XP = {x|η > ||`(x)∗t − `(x)t||}.

5. Extract the negative sample set: XN = {x|τ > ||`(x)∗t − `(x)t|| > ω}.

6. Use XP and XN to update P-BHAM and N-BHAM, respectively.

system extracts patches from an annular region surrounding the target location, defined by

XN = {x|τ > ||`(x)∗t − `(x)t|| > ω}, where τ and ω are parameters to control the size of the

region and are set 20 and 5, respectively, in our system. The patches XP and XN are used to

update P-BHAM and N-BHAM, respectively.

In tracking, our system finds the target location `(x)∗t in frame t by extracting and evaluating

all patches X = {x|γ > ||`(x)∗t−1 − `(x)t||} that are within a search radius γ (set at 20 in our

system) from the previous target location `(x)∗t−1 in frame t − 1. Based on Eq. 5.14, the

appearance tracker first identify the candidate patches that have high probability belonging

to the positive cluster p(x|P − BHAM) (higher than a threshold ζ = 0.95 in our system).

Second, from the P-BHAM candidates patches, N-BHAM chooses a candidate that has lowest

probability belonging to the negative appearance model p(x|N − BHAM) and consider it as

the new target location `(x)∗t . If no patch is classified as positive patch in the first step, the target

is considered fully occluded. In full occlusion, the entire frame will be used as the searching

area. The detailed steps of tracking are given in Algorithm 2.

After the system detects the new tracker location, the system extracts the positive and nega-

55

tive samples. The positive samples are extracted according to XP = {x|η > ||`(x)∗t − `(x)t||}

and the negative samples are extracted according to XN = {x|τ > ||`(x)∗t − `(x)t|| > ω}.

All the positive and negative samples are used to update P-BHAM and N-BHAM, respectively.

Since the number of clusters in N-BHAM grows fast, we remove the cluster that is not updated

for a certain number of frames (set to 20 in our system).

5.5 Experiments
We evaluated our appearance model (BHAM) and tracking system on several challenging

image sequences from PETS 2006 [3], CAVIAR [1], AVSS 2007 [4] and ViSOR [5] and pub-

licly available video sequences [2]. These are challenging videos with multiple interaction

targets, occlusions, pose variations, illumination and scaling changes. We start by showing

the image features in Section 5.5.1, then clustering performance of BHAM in Section 5.5.2.

Section 5.5.3 gives the comparison on tracking results between our static camera tracking sys-

tem and several start-of-the-art trackers. Section 5.5.4 gives the comparison on tracking results

between our moving camera tracking system and several start-of-the-art trackers.

5.5.1 Image Features

Image features that are sufficiently robust to changes, such as self-occlusion and illumina-

tion, are very important for an appearance model. In our static camera tracking system, we

define the target appearance as composition of two kinds of features: a global color feature:

Hue Saturation Value (HSV) histogram, and a local texture-based feature computed by Schmid

and Gabor filters. These features are extracted from different parts of an target.

Specifically, each target instance is divided into three horizontal stripes: head (1/6), torso

(2/6) and legs (3/6). As head stripe does not have sufficient details, we encode only the torso

and legs stripes in a 40-bin HSV histogram [H=24, S=12, V=4], respectively. Twenty filters

(Gabor [41] and Schmid [109]) are applied to extract local texture features. The parame-

ters γ, λ, θ and σ2 of the Gabor filter are set to (0.3,0,4,2), (0.3,0,8,2), (0.4,0,4,1), (0.4,0,8,2),

(0.3,π
2
,8,2), (0.4,π

2
,4,2) and (0.4,π

2
,8,2), respectively, while the parameters τ and σ of the

56

Table 5.1: Summary of BHAM for the tracked object in Fig. 5.5. The number refers to the
number of instances in each cluster (C) under each view angle.

BHAM C(0) C(1) C(3) Total
View Angle (1) 32 110 11 153
View Angle (2) 28 0 0 28
View Angle (3) 37 0 0 37

Figure 5.5: Clustering results of the target instances under different view angles. Illumination
change and self occlusion made different clusters under the same view angle.

Schmid filters are set to (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2),

(10,3) and (10,4), respectively. A 16-bin histogram is obtained from each texture filter in order

to have a robust appearance representation.

Running 20 texture filters on all target instances is computationally expensive. Instead,

the most similar target instance to a group center is selected as a representative sample. The

average texture histogram is computed from all samples of a view angle (one sample for each

cluster) to represent the texture of the target under that view angle.

In our moving camera-based tracking system, instead of using texture filters as local fea-

tures, each window is divided into 4 equal sub-windows and each resulting sub-window is

further divided into 4 equal sub-windows. Each final sub-window is represented by a 40-bin

HSV color histogram. So, the final feature vector will contain 17 40-bin HSV histograms.

57

Figure 5.6: Comparing clustering results between EM and BHAM. Red indicates the best
performance and blue indicates the second best.

5.5.2 Evaluation of Clustering Results

In this chapter, we show the clustering performance of BHAM by comparing it with Expectation-

Maximization (EM). Fig 5.5 shows the target under different view angles. We track it for 218

frames (from its first appearing in the AVSS video until its disappearance). In tracking, the

target appears in three different view angles. The number of instances in each view angle are

summarized in Table 5.1. Note that the first view angle model has three clusters because of

illumination changes where the target changed his position regarding the light source.

58

We compared the performance of BHAM with EM based on Davies-Bouldin Index (DBI):

DBI =
1

T

T∑
i=1

maxi 6=j

(
Mi +Mj

d(ci, cj)

)
, (5.18)

where T is the number of clusters, ck is the centroid of the kth cluster, Mk is the average

distance between all instances in kth cluster and its centroid and d(ci, cj) is the distance between

the ith and jth cluster centroids. The clustering method that produces the smallest DBI value

is considered the best.

Fig. 5.6 summarizes the comparison. Three image sequences from PETS 2006, CAVIAR

and AVSS 2007 are used. As the number of clusters needs to be specified in EM, we run

it with different number of clusters and a blue color is used to represent the best DBI value.

We run BHAM on the same images sequences where the number of clusters are automatically

determined, and the DBI is represented by a red color for each sequence. Clearly, BHAM gives

a higher performance in all three image sequences.

5.5.3 Static Camera Tracking System

We compared our static camera tracking system with several state-of-the-art trackers, i.e.,

Tracking-Learning-Detection (TLD) [64], Joint Segmentation (JointSeg) [7], Multiple Instance

Learning (MIL) [16], Visual Tracking Decomposition (VTD) [71], Locality Sensitive His-

togram (LSH) [52] and Distribution Field (DF) [72].

In our comparison, either the binary or source codes for TLD, JointSeg, MIL, VTL, LSH

and DF are obtained from their authors. The same initialization and default parameter settings

are used in our evaluation. BHAM is implemented using OpenCV and C++ language on a

machine that has a Quad (2.83GHz and 3.01GHz) processor and 4GB RAM. The average

speed for BHAM is 23 fps with 320*270 frame size.

We manually labeled the ground truth center of each object every 5 frames for all the video

sequences that are used in our experiments. The performance of tracking is evaluated only in

59

Table 5.2: The average center location errors (pixels) between the tracking results and the cor-
responding ground truth for the videos in Figs. 5.8 and 5.9. Red indicates the best performance
and blue indicates the second best.

Sequence Joint Seg TLD VTD MIL LSH DF BHAM
Indoor Tracking 1 60 186 99 123 161 150 9
Person-Shop Enter 54 62 71 70 60 62 5

Abandoned Baggage 54 62 71 70 62 61 5
Indoor Tracking 4 16 46 39 62 3 50 2

Domotric 8 19 16 15 2 72 1
One Stop No Enter 10 48 12 10 2 49 1
One Person Enter 2 7 58 59 77 2 83 1

Shop Enter 2 9 22 72 115 5 100 2
Man with A Dog 3 102 11 24 1 67 1

Proval 12 43 49 64 3 87 2
Walking 1 3 6 6 1 178 1

the labeled frames by using the mean center location errors between the tracking results and

the ground truth. The error is reported for the frames in which a method was able to track the

target and is summarized in Table 5.2 and Fig. 5.7. Overall, our system provides the most

accurate and robust tracking.

Comparative tracking results of selected frames from AVSS, CAVIAR, ViSOR and PETS

2006 datasets are presented in Figs. 5.8 and 5.9. Specifically, in the video of Indoor Tracking

1 from IEEE ViSOR 2007, the tracking results for the target under severe partial and full

occlusion, scale and pose changes are presented. TLD, VTD, MIL, LSH, DF and JointSeg

give false detections and track the wrong target or a part of the target in many scenarios while

BHAM tracks the whole target in all the video frames. In addition, TLD, VTD, MIL, LSH and

DF frequently fail to recognize the target after occlusion while JointSeg and BHAM recognize

the target with high accuracy and robustness. Obviously, BHAM tracks the target accurately in

all different situations and gives the most accurate and robust results.

Person-Shop Enter and Abandoned Baggage videos are from the CAVIAR and IEEE AVSS

2007 datasets. The main challenges are severe partial and full occlusion and appearance

changes. VTD, MIL and JointSeg fail to detect and track the target during and after partial

60

50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(a) Indoor Tracking 1

200 210 220 230 240 250 260 270 280 290 300
0

10

20

30

40

50

60

70

80

90

100

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(b) Person-Shop Enter

4400 4450 4500 4550 4600 4650
0

50

100

150

200

250

300

350

400

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(c) Abandoned Baggage

100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(d) Indoor Tracking 4

200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

120

140

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(e) Domotric

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(f) One Stop No Enter

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

50

100

150

200

250

300

350

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(g) One Person Enter 2

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

200

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
MIL

(h) Shop Enter 2

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(i) Man with A Dog

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(j) Proval

560 570 580 590 600 610 620 630 640
0

10

20

30

40

50

60

70

80

90

100

Frame Number

C
u

rr
en

t
L

o
ca

ti
o

n
 E

rr
o

r

TLD
VTD
MIL
JointSeg
LSH
DF
OUR

(k) Walking

Figure 5.7: The center location errors for videos from the AVSS, CAVIAR, ViSOR and PETS
2006 datasets

61

(a) Indoor Tracking 1 (b) Person-Shop Enter

(c) Abandoned Baggage (d) Indoor Tracking 4

(e) Domotric (f) One Stop No Enter

Figure 5.8: Comparative tracking results on the AVSS, CAVIAR, ViSOR and PETS 2006
datasets. The tracked target is highlighted by different colors: TLD (cyan), VTD (blue), MIL
(green), JointSeg (yellow), LSH (magenta), DF (white) and our system (red).

occlusion. TLD shows a bad target detection during the partial occlusion and a very well

recognition after the full occlusion. BHAM tracks the target successfully during the partial

occlusion and gives accurate target recognition after the occlusion. TLD, VTD, MIL and LSH

give false detection during the target full occlusion while JointSeg and BHAM identify the full

occlusion and stop the tracking. DF fails totally to track the target. Finally, all tracking system

except our method failed to re-identify the target after the full occlusion. BHAM gives the

62

(a) One Person Enter 2 (b) Shop Enter 2

(c) Man with A Dog (d) Proval

(e) Walking

Figure 5.9: Comparative tracking results on the AVSS, CAVIAR, ViSOR and PETS 2006
datasets. The tracked target is highlighted by different colors: TLD (cyan), VTD (blue), MIL
(green), JointSeg (yellow), LSH (magenta), DF (white) and our system (red).

highest accuracy before, during and after the occlusion.

Indoor Tracking 4 and Domotric videos are from the ViSOR dataset. The main challenges

are appearance and pose changes and frequent severe occlusions. TLD, VTD, MIL and DF fail

to stop tracking the target during full occlusion, while LSH and BHAM detect the full occlusion

correctly. Some trackers can detect the target during partial occlusion, however, the detection

is not very accurate as parts from the background or other objects are included. One Stop No

63

Figure 5.10: Recognizing targets after full occlusion. The systems are TLD (cyan), VTD
(blue), MIL (green), JointSeg (yellow), LSH (magenta), DF (white) and our system (red).

Enter, One Person Enter 2, and Shop Enter 2 videos are from the CAVIAR dataset. Those three

videos are challenging due to scale and appearance changes during the target tracking. DF,

MIL and VTD lost the target, while TLD and JointSeg tracked the target with a high detection

error. LSH and BHAM tracked the target nicely all the time. In addition, they stop tracking the

target during the full occlusion.

Man with a Dog and Proval videos are also from the CAVIAR dataset. The target changes

his pose many times in both videos. TLD, DF and MIL do not recognize the target correctly in

these videos. Frequently, they track the background or part of the target instead of the actual

target. LSH and BHAM track the target with high accuracy. The robustness of our system is

clearly shown. Finally, Walking video is from PETS 2006 dataset. Even the target is small, all

trackers except DF detect the target and tracked it nicely with a low mean center location error.

Fig. 5.10 shows the comparison between TLD, VTD, MIL, JointSeg, LSH, DF and BHAM

on full occlusion scenarios. The first video has multiple objects presented and some of them

have a similar appearance to the target. The second video has only one object (the target) and

the target changes his direction during full occlusion. The third video has only one object (the

64

target) and the target does not change his direction during the full occlusion. In all cases, the

objects are recognized and tracked nicely in BHAM while other methods fail.

5.5.4 Moving Camera Tracking System

Our tracking systems are compared with several state-of-the-art trackers, i.e., Tracking-

Learning-Detection (TLD) [64], Multiple Instance Learning (MIL) [16], Visual Tracking De-

composition (VTD) [71], Locality Sensitive Histogram (LSH) [52] and Distribution Field (DF)

[72]. In our comparison, either the binary or source codes for TLD, MIL, VTL, LSH and DF

are obtained from their authors. The same initialization and default parameter settings are used

in our evaluation. Our tracking system is implemented using OpenCV and C++ language on a

machine that has a Quad (2.83GHz and 3.01GHz) processor and 4GB RAM. The performance

of tracking is evaluated by using the mean center location errors between the tracking results

and the ground truth. The center location error was computed only for the frames in which a

method was able to track the target object.

In this section, we evaluated our tracker on matchmarking videos [2] and compared it with

TLD, VTD, MIL, LSH and DF. The quantitative results are summarized in Table 5.3 and Fig.

5.11. Overall, our system provides the most accurate and robust tracking with average speed

20 fps on the 320*270 frame size.

Comparative tracking results of selected frames are presented in Fig. 5.12. Specifically, in

Sylvester and David videos, the tracking results for the target under lighting, scale and pose

changes are presented. Our tracker achieves the best performance compared with all other

tracking systems. TLD and LSH provide the second best performance on David video, and

MIL provides the second best performance on Sylvester video. Our system tracks the whole

target in all video frames with high accuracy and robustness.

In Face Occluded 1 and Face Occluded 2 videos, the main challenges are severe partial

occlusion and appearance changes. LSH achieved the best performance on Face Occluded 2

because it is specifically designed to handle illumination changes via locality sensitive his-

65

Table 5.3: The mean center location errors (pixels) between the tracking system results and
their ground truth for the videos in Fig. 5.12. Red indicates the best performance and blue
indicates the second best.

Sequence TLD VTD MIL LSH DF OUR
David 12 28 22 12 99 11
Dollar 65 75 22 5 80 3

Sylvester 57 13 11 17 31 5
Tiger 1 21 24 45 13 25 8
Surfer 8 25 12 15 99 10
Tiger 2 58 13 17 14 33 12

Twinning 30 11 10 14 37 10
Face Occluded 2 10 26 58 4 60 10

Coke 17 12 34 31 34 9
Face Occluded 1 34 18 17 31 11 10

tograms. However, on the similar video, Face Occluded 1, which has severe appearance

changes, LSH performs poorly. This highlights the advantages of using a dynamic appear-

ance model. Obviously, our system tracked the target accurately in all situations and provides

the most accurate and robust results.

In Tiger 1, Sylvester, David, Tiger 2 and Coke Can videos, the main challenges are appear-

ance and pose changes, fast motion and frequent severe occlusions. In all videos, our system

provides the best performance comparing with other systems because our tracker has the ability

to create a new cluster for abrupt appearance or pose changes. In addition, our system keeps a

target’s previous appearance, which helps re-detect it after full or severe occlusion.

In Dollar video, two objects have exactly the same appearance, and thus presents a big

challenge to track the right one. In Surfer video, the target is small and there is a pose and

lighting changes. In Twinning video, the object appearance is changed totally. Again, our

tracker achieved excellent tracking results on these three videos. The robustness of our system

is clearly shown. TLD provides good performance on Surfer, but gets bad results when we

have a big appearance change, i.e., in Twinning and Dollar videos. MIL provides similar

performance as ours on Twinning video, and LSH provides the second best performance on

66

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

140

160

180

200

Frame Number

C
u

rr
e

n
t

L
o

c
a

ti
o

n
 E

rr
o

r

David

TLD
VTD
MIL
LSH
DF
OUR

(a)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Frame Number

C
u

rr
e

n
t

L
o

c
a

ti
o

n
 E

rr
o

r

Dollar

TLD
VTD
MIL
LSH
DF
OUR

(b)

0 100 200 300 400 500 600 700 800 900
0

50

100

150

Frame Number

C
u

rr
e

n
t

L
o

c
a

ti
o

n
 E

rr
o

r

Face Occluded 2

TLD
VTD
MIL
LSH
DF
OUR

(c)

400 450 500 550 600 650 700 750 800
0

20

40

60

80

100

120

140

160

180

200

Frame Number

C
u

rr
e
n

t
L

o
c
a
ti

o
n

 E
rr

o
r

Surfer

TLD
VTD
MIL
LSH
DF
OUR

(d)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

Frame Number

C
u

rr
e
n

t
L

o
c
a
ti

o
n

 E
rr

o
r

Twinnings

TLD
VTD
MIL
LSH
DF
OUR

(e)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

Frame Number

C
u

rr
e
n

t
L

o
c
a
ti

o
n

 E
rr

o
r

Occluded Face

TLD
VTD
MIL
LSH
DF
OUR

(f)

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

Frame Number

C
u

rr
e

n
t

L
o

c
a

ti
o

n
 E

rr
o

r

Sylvester

TLD
VTD
MIL
LSH
DF
OUR

(g)

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

Frame Number

C
u

rr
e
n

t
L

o
c
a
ti

o
n

 E
rr

o
r

Tiger 1

TLD
VTD
MIL
LSH
DF
OUR

(h)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

Frame Number

C
u

rr
e

n
t

L
o

c
a

ti
o

n
 E

rr
o

r

Tiger 2

TLD
VTD
MIL
LSH
DF
OUR

(i)

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Frame Number

C
u

rr
e
n

t
L

o
c
a
ti

o
n

 E
rr

o
r

Coke

TLD
VTD
MIL
LSH
DF
OUR

(j)

Figure 5.11: The center location error plots.

Dollar Video.

In our experiments, BHAM successfully tracks all the objects for the full length of each

67

(a) Face Occluded 1 (b) Sylvester

(c) Tiger 1 (d) Tiger 2

(e) Coke (f) David

(g) Dollar (h) Twinning

(i) Face Occluded 2 (j) Surfer

Figure 5.12: Comparative tracking results of selected frames. The tracking results by TLD,
VTD, MIL, LSH, DF, and ours, are represented by cyan, blue, green, yellow, magenta, white
and red rectangles, respectively.

video sequence, which none of other trackers can achieve. Even when other methods track the

target successfully, our method significantly improves the tracking accuracy, evidenced by the

lowest average center location error as shown in Table 5.2 and Table 5.3.

5.6 Summary
In this chapter, we proposed a novel Bayesian Hierarchical Appearance Model (BHAM)

to handle target appearance changes during tracking. In our static camera tracking system,

68

BHAM is integrated with background subtraction and the KLT tracker. In our moving camera

tracking system, BHAM models the target positive and negative instances and dynamically

clusters them based on visual similarity. In our experiments on testing videos, our tracking

systems with BHAM successfully tracks all the objects for the full length of each video se-

quence, which none of other trackers can achieve. Even when other methods track the target

successfully, our method significantly improves the tracking accuracy, evidenced by the lowest

average center location error as shown in our experiments.

69

CHAPTER 6

LEARNING GOOD FEATURES TO TRACK

6.1 Introduction
In tracking, accuracy depends mainly on finding good discriminative features to estimate

the target location. In this chapter, we introduce online feature learning in tracking and pro-

pose to learn good features to track generic objects using online convolutional neural networks

(OCNN) [12]. OCNN has two feature mapping layers that are trained offline based on unla-

beled data. In tracking, the collected positive and negative samples from the previously tracked

frames are used to learn good features for a specific target. OCNN is also augmented with a

classifier to provide a decision. We build a tracking system by combining OCNN and a color-

based multi-appearance model. Our experimental results on publicly available video datasets

show that the tracking system has superior performance.

The rest of this chapter is organized as follows. We describe OCNN in Sections 6.2 and our

tracking system in Section 6.3. Section 6.4 presents the experimental results of our tracking

system on different testing videos. Finally, Section 6.5 is the summery.

6.2 Learning Good Features to Track
In this section, we present our unsupervised (offline) and supervised (online) feature learn-

ing strategies for OCNN in tracking. The architecture of OCNN is shown in Fig. 6.1. It has

an input layer, two convolutional (feature mapping) layers and a classifier. The input layer has

29× 29 neurons to receive normalized gray scale patches of size 29× 29. Each convolutional

layer consists of three consecutive operations: convolution with kernels, non-linear activation

function and pooling. The first and second convolutional layers contain 6 and 30 kernels, re-

spectively. All kernels in the network have a fixed size 5 × 5. The size of the feature maps in

the first convolutional layer is 27× 27 and 11× 11 in the second. The feature mapping is given

70

Figure 6.1: The architecture of Online Convolutional Neural Networks (OCNN).

as follows:

h(x) = sigmoid(Wx+ α) (6.1)

where W is the weight matrix (kernel), x ∈ Dx is an image patch and α is the bias.

The last operation in each convolution layer is pooling. One of the frequently used pooling

functions is down-sampling. We do down-sampling by using mean operation with a window

size 2× 2:

y =

√√√√ 1

mn

m∑
i=1

n∑
j=1

||h(x)||22 (6.2)

where m× n is the size of the pooling window. The output feature vector from the network is

passed to a classifier to determine the presence of the target in a video frame. The first output

layer has 100 fully connected neurons, and the second has two neurons, one for positive and

the other for negative.

The training of OCNN can be broken down into two procedures: unsupervised and su-

pervised learning. The unsupervised feature learning improves the network performance on

stability and avoids local minima [38]. The supervised feature learning is applied to identify

good features to track a specific object while the unsupervised one provides a generic visual

71

reconstruction.

6.2.1 Unsupervised Feature Training

Unsupervised feature learning has shown impressive results for many applications, e.g,

object classification. An auto-encoder is commonly used to learn a compressed representation

for a set of data. The auto-encoder has two parts: encoder and decoder. The encoder reduces

the input image representation and the decoder reconstructs the initial image by minimizing

the reconstruction error. Usually, the learning is done by training each layer individually and

use the current layer codes to feed the next layer.

In our system, the encoder function h maps the input image x ∈ Dx to a latent representa-

tion x′ ∈ Dx′ . The encoder function can be written in the form:

x′ = h(x) = s1(Wx+ α) (6.3)

where s1 is a nonlinear activation function, such as sigmoid(z) = 1
1+e−z , W is the weight

matrix, and α is the bias vector.

The decoder function g reconstructs x based on the feature vector x′ and is written as:

g(x′) = g(h(x)) = s2(W Tx′ + β) (6.4)

where s2 is the decode’s activation function, either the sigmoid or the identity function for

linear reconstruction, W T is the weight matrix shared with the encoder and β is the bias vector.

Auto-encoder trains the network by adjusting the parameters θ = {W,α, β} on the col-

lected training set to minimize the total reconstruction error:

minθ
∑
x∈D

L(x, g(h(x))) (6.5)

where we have L(x, x′) = ||x−x′||2 when s2 is a linear reconstruction function and L(x, x′) =

72

−
∑dx

i=1 xilog(x′i) + (1 − xi)log(1 − x′i) when s2 is a sigmoid function (used in our experi-

ments).

In order to avoid over-fitting during training, a regularization term is added into Equation

6.5, known as weight-decay:

minθ
∑
x∈D

L(x, g(h(x))) + λ1||W ||22 (6.6)

where the non-negative parameter λ1 controls the effect and importance of the regularization.

Note that in this stage, OCNN is trained with unlabeled data, abundant in real-world track-

ing applications.

6.2.2 Supervised Feature Training

Unsupervised training provides a network for generic visual reconstruction. In tracking,

the network needs to be updated to learn the good features to track a specific object which we

have set no limitation on its type. The supervised learning is usually much quicker than the

initial unsupervised training as the training samples are much less and are collected from the

same environment (the same camera or the same input video). Specifically, data are collected

from previously tracked frames where patches on the target is considered as positive samples

and the patches around the target serve as negative samples. These labeled samples are used to

update OCNN to learn the good features to track the target.

In tracking, it is also important to maintain the temporal smoothness of features. A sudden

feature change typically corresponds to the loss of tracking or incorrect tracking. To this end,

we propose a novel training method by penalizing the feature variations in consecutive frames.

The effect of the penalty term is to encourage robustness to variations on the collected image

patches.

73

For the feature mapping layer, our objective is to minimize:

minθΣx∈DL(x, g(h(x))) + λ2||Wt −Wt−1||22 (6.7)

where Wt and Wt−1 are the weight matrices at time t and t − 1, respectively, and λ2 is a non-

negative parameter that controls the effect and importance of the regularization. For the output

layer, the cost function is given as:

minθΣx∈DL(x, g(h(x))) + λ2||Wt −Wt−1||22 + ΣL(z, ẑ) (6.8)

where z and ẑ are the ground truth and the classifier output, respectively.

To train the network, we applied a common supervised learning technique: back-propagation.

After each sample passes the network, the error is calculated based on the previous equations

and the weights are updated regarding to the error. All samples are cycled through until the

convergence.

6.3 The Tracking System
Drifting caused by the accumulation of updating errors is a serious problem with adaptive

discriminative trackers such as OCNN. OCNN mainly uses gray-scale texture features and ne-

glects the color information. In addition, the supervised training of OCNN needs more time.

To this end, we propose to combine OCNN with BHAM (as explained in the previous chapter)

to perform real time tracking. Specifically, we first use BHAM to estimate the potential loca-

tions of the target. Then, the top candidates with high likelihood are passed to OCNN for the

final selection.

Before tracking starts, OCNN is trained for generic objects by unlabeled samples collected

randomly from the video. In tracking, a user first chooses the target of interest. The system

extracts the positive samples x ∈ XP within an integer radius η from the given target location.

η = 1 gives only one positive sample (used in our experiments) while setting η > 1 provides

74

Algorithm 3 THE TRACKING SYSTEM

INPUT: The target location `(x)∗t−1 in frame t− 1.
OUTPUT: The target location `(x)∗t−1 in frame t.

1. Extract the patches from the searching area X = {x|||`(x)∗t−1 − `(x)|| < γ}.

2. The appearance tracker finds the top candidates X ′ = {x|maxx∈Xsp(x|s =
Pos) & minx∈Xsp(x|s = Neg)}.

3. OCNN classifies all the candidate patches X ′, and the patch (x ∈ X ′) with the highest
probability belonging into the positive class is considered as the target. Its location is
set as `(x)∗t .

4. Extract the positive samples XP = {x|||`(x)− `(x)∗t || < η}

5. Extract the negative samples XN = {x|τ > ||`(x)− `(x)∗t || > η}

6. Use XP and XN to train and update the appearance model and OCNN.

Figure 6.2: System Pipeline. Before tracking, OCNN is trained offline using unlabeled data. In
tracking, the collected positive (the patches on the target) and negative (the patches around the
target) samples from the previously tracked frames are used to train and update the appearance
tracker and OCNN. The appearance tracker and OCNN work cooperatively to estimate the new
target location.

75

multiple positive samples. For negative samples x ∈ XN , the system extracts patches from an

annular region surrounding the target location, defined byXN = {x|τ > ||`(x)−`(x)∗t || > η},

where τ is the parameter to control the size of the region and is set 20 in our system. The

patches are collected every 5 pixels and used to train and update the appearance model and

OCNN for the specific target.

In tracking, our system finds the target location `(x)∗t in frame t by extracting and evaluating

all patches x ∈ X that are within a search radius γ (set to 20 in our system) from the previous

target location `(x)∗t−1 in frame t−1. Based on Eq. 10, the appearance tracker first identifies the

candidate patches that have high probability belonging to the positive cluster p(x|s = Pos) and

low probability to belonging to the negative cluster p(x|s = Neg). All the candidate patches

from the appearance tracker are then passed to OCNN for the final classification. From all the

positive patches obtained in OCNN, the system chooses the one with the highest probability

as the target, whose location is set as `(x)∗t . If no patch is classified as positive by OCNN,

the target is considered fully occluded. In full occlusion, only the appearance model will be

used to search for the target in the entire new frame. OCNN will not be used in this case

because the learned OCNN features could be different than the texture features of the target

after reappearing. The detailed steps of our tracking system are given in Algorithm 3.

6.4 Experimental Results
We evaluated our tracking system on image sequences from two challenging public datasets

[2] and TLD dataset [66]. The videos from these datasets are shot using either static or moving

cameras, and contain a wide range of generic objects such as faces, pedestrian, stuff animals,

etc. The videos also contain complex factors such as multiple interaction targets, occlusions,

pose variations, illumination and scaling changes, which makes the tracking a challenging task.

Our system detects and tracks the target in real-time, up to 30fps for a frame size 320 ×

280. This is mainly due to the quick computing and matching based on color histograms. In

addition, we only send the top candidates to OCNN for the final classification. The training and

76

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

Frame Number

C
ur

re
nt

 L
oc

at
io

n
E

rr
or

Sylvester

TLD
MIL
VTD
DF
LSH
OUR

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

Frame Number

C
ur

re
nt

 L
oc

at
io

n
E

rr
or

Occluded Face

VTD
MIL
TLD
DF
LSH
OUR

20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

Frame Number

C
ur

re
nt

 L
oc

at
io

n
E

rr
or

Pedestrian

VTD
MIL
TLD
DF
LSH
OUR

Figure 6.3: Center location errors for videos: Sylvester, Occluded Face and Pedestrian.

updating of our multi-appearance tracker is also done in real-time. Updating of OCNN takes

more time, but can be implemented on a dedicated core in the machine. Moreover, it is not

necessary to update OCNN for every frame as the good features should not change abruptly. It

can be re-trained for a fixed time interval, e.g., one second (used in our experiment), depending

on the error threshold and convergence speed.

Table 6.1: Average center location errors (pixels) between the tracking results and the ground
truth. Red indicates the best performance and blue indicates the second best.

Sequence TLD VTD MIL DF LSH OURS
Sylvester 57 13 11 31 17 6

Occluded Face 1 34 18 17 11 31 9
David 13 18 30 28 30 10

Pedestrian 1 18 122 44 75 45 5
Tiger 1 21 24 45 25 13 6
Tiger 2 58 13 17 33 14 9
Car 4 13 76 52 35 9 6

Our tracking systems are compared with several state-of-the-art trackers, i.e., TLD [64],

MIL [16], VTD [71], DF [73] and LSH [52]. In our comparison, either the binary or source

codes for TLD, MIL, VTL, DF and LSH are obtained from their authors. The same initializa-

tion and default parameter settings are used in our evaluation. Our system is implemented using

OpenCV and C++ language on a machine that has core i7 (1.8GHz and 2.4GHz) processor and

16GB RAM.

The performance of tracking is evaluated by using the average center location errors be-

77

tween the tracking results and the ground truth. The average center location error was com-

puted only for the frames in which a method was able to track the target object. We manually

labeled the ground truth center of each object every 5 frames for all the video sequences used

in our experiments. The quantitative results are summarized in Table. 6.1. In addition, Fig.

6.3 shows the center location errors on every labeled frame for Sylvester, Occluded Face and

Pedestrian. Overall, our system provides the most accurate and robust tracking.

Comparative tracking results of selected frames and the corresponding feature mapping

kernels are shown in Fig. 6.4. Fig. 6.4(a) shows screen shots of tracking results for the Sylvester

video, which involves uneven lighting, scale and pose changes. Our tracking system achieves

the best performance comparing with TLD, VTD, MIL, DF and LSH trackers. TLD fails early

in the tracking and does not recognize the target after that. DF and LSH fail after severe target

appearance change. MIL and VTD track the target most of the time with high center location

error, 11 and 13 pixels on average, respectively. The robustness of our system is clearly shown.

Fig. 6.4(b) shows screen shots of tracking results for the occluded face video, which has two

main challenges: occlusion and appearance changes (when the target turns his face or puts a

hat on). TLD provides the largest average center location error with 34 pixels, and our system

provides the best result with an averaged error of 9 pixels. Clearly, our system can provide

stable tracking under heavy occlusion and appearance changes thanks to the discriminative

features learned in OCNN.

Fig. 6.4(c) shows screen shots of tracking results for the pedestrian video. The pedestrian

video contains occlusion, appearance and scale changes. MIL, VTD and DF fail totally to track

the target until the end of the video. TLD tracks only the upper part of the target in most of the

image sequences. Our system tracks the whole target correctly with a low average center error

(8 pixels).

In Fig. 6.4, the learned good features (the six kernels from the first convolutional layer)

are shown for each corresponding frame. The feature changes between the current frames and

78

Figure 6.4: Tracking examples. Tracking results of TLD, VTD, MIL, DF, LSH and our system
are represented by green, yellow, blue, cyan, magenta and red rectangles, respectively. The
corresponding first layer feature mapping kernels of OCNN are shown in the first two columns,
while feature changes between the current frame and the first frame are shown in the third and
fourth columns.

the first frame are also highlighted. In the pedestrian video, the changes on the kernels are

similar as there is no large variations on the appearance of the target (no occlusion and pose

change). On the other hand, the changes on the kernels vary more in the Sylvester video. The

main reasons are occlusion, rotation and pose changes. Changes on the kernels during tracking

clearly shows the importance of online feature learning.

79

Figure 6.5: The results of running some convolutional layer kernels from the first and second
layers on an image.

Fig. 6.5 shows the results of running the convolutional layer kernels on an image (the first

column). The first and second rows show the first convolutional layer kernels (by gray-scale

images) after achieving 0.01 training error during the target tracking and the results of running

the kernels on the image. The third and fourth row show some selected kernels from the second

convolutional layer (by gray-scale images) after achieving 0.01 training error during the target

tracking and the results of running the kernel on the image. The results show the ability of our

network to obtain the representative texture.

In Fig. 6.6, the car4 video is challenging because of camera movement and the target change

scale. In addition, there is significant illumination changes because of the bridges and trees.

In first row, we show the tracking results of the appearance model tracker without OCNN.

The tracker lost the target because of the significant appearance changes and the accumulated

update errors. In the second row, we show the tracking results of the appearance model and

OCNN. It is clear here the advantage of using OCNN where the object is tracked smoothly and

nicely.

80

Figure 6.6: The tracking results of the appearance model tracker without OCNN (the first row)
and the appearance model tracker with OCNN (the second row).

Figure 6.7: The tracking results of three different tracking systems: the appearance tracker (the
first row), the appearance tracker with static CNN features (second row) and the appearance
tracker with OCNN (the third row).

Fig. 6.7 shows the results of using three different tracking systems: the appearance tracker,

the appearance tracker with static OCNN features and the appearance tracker with OCNN. The

appearance tracker fails to track the target because of large illumination changes and accumu-

lated errors. The second tracking system -the appearance tracker and the static OCNN features-

fails to track the target when the is a rotate or pose change. This shows the importance of up-

dating the features during tracking. The third tracking system -the appearance tracking system

81

and OCNN- finds and tracks the target in all frames. It is clear here the advantage of using

OCNN where the object is tracked smoothly and nicely.

In our experiments, our system successfully tracks the object in all video sequences, which

none of other trackers can achieve. Even when other methods track the target successfully, our

method significantly improves the tracking accuracy, evidenced by the lowest average center

location error.

6.5 Summery
Learning good discriminative features is important for object tracking. In this chapter, we

introduce feature learning in tracking and propose to learn good features to track generic ob-

jects using online convolutional neural network (OCNN). OCNN is first trained unsupervised.

Then, in the supervised training stage, the collected positive and negative samples are used to

obtain discriminative and stable tracking features. Our tracking system that combines OCNN

and a color-based multi-appearance model shows superior performance when compared with

several state-of-the-art trackers.

82

CHAPTER 7

CONCLUSION

Object tracking is the process of locating objects of interest in video frames. Tracking

systems are increasingly used in various applications such as surveillance, security and robotic

vision. Although many object tracking systems have been proposed, tracking is still one of the

most challenging research topics in computer vision. In tracking, one of the major challenges

comes from handling appearance variations caused by changes in scale, pose, illumination and

occlusion.

In this dissertation, we have proposed several novel techniques to deal with appearance

changes during object tracking. First, we developed a tracker with two components: An im-

proved KLT tracker, and a Kalman filter. The improved KLT tracker uses the basic KLT tracker

and an appearance model to track objects from one frame to another and deal with partial oc-

clusion. In partial occlusion, the appearance model (e.g., a RGB color histogram) is used to

determine an object’s KLT features during partial occlusion, and we use these features for ac-

curate and robust tracking. In full occlusion, a Kalman filter is used to predict the object’s new

location and connect the trajectory parts.

Second, we proposed a novel tracking system (SegTrack) with efficient and effective oc-

clusion handling. The improved background subtraction method segments foreground objects

and solves stop-then-move and move-then-stop problems. The KLT tracker tracks objects and

detects partial and full occlusions. In partial occlusion, a silhouette segmentation algorithm is

employed to evolve the silhouettes of the occluded objects. Multi-feature vectors are used in

the full occlusion case to re-identify the objects.

Third, we proposed a novel Bayesian Hierarchical Appearance Model (BHAM) to handle

target appearance changes during tracking. In our static camera tracking system, BHAM is

integrated with background subtraction and the KLT tracker. In our moving camera tracking

83

system, BHAM models the target positive and negative instances and dynamically clusters

them based on visual similarity. In our experiments on benchmarking videos, our systems with

BHAM successfully tracks all the objects for the full length of each video sequence, which

none of other trackers can achieve. Even when other methods track the target successfully, our

method significantly improves the tracking accuracy, evidenced by the lowest average center

location error as shown in our experiments.

Finally, we introduced feature learning in tracking and proposed to learn good features

to track generic objects using online convolutional neural network (OCNN). OCNN is first

trained unsupervised. Then, in the supervised training stage, the collected positive and negative

samples are used to obtain discriminative and stable tracking features. Our tracking system is

built by combining OCNN and a color-based multi-appearance model.

In the future, we plan to apply the Bayesian Hierarchical Appearance Model (BHAM)

for multiple targets tracking. The main idea is using one BHAM for each target. As each

BHAM has multiple CRPs, each CRP can be applied to different types of features. During the

training, a weight will be assigned for each CRP in order to reflect the relative importance of

that feature with respect to all other selected features. In this work, the computation time is

considered as one of the main research issues. Multithreading system will be considered in the

future development, which will also help speed up online feature learning for object tracking.

84

BIBLIOGRAPHY

[1] http://homepages.inf.ed.ac.uk/rbf/caviardata1.

[2] http://vision.ucsd.edu/bbabenko/projectmiltrack.shtml.

[3] http://www.cvg.rdg.ac.uk/pets2006/data.html.

[4] http://www.eecs.qmul.ac.uk/ãndrea/avss2007d.html.

[5] http://www.openvisor.org.

[6] ADAM, A., RIVLIN, E., AND SHIMSHONI, I. Robust fragments-based tracking us-

ing the integral histogram. In IEEE International Conference on Computer Vision and

Pattern Recognition (2006), pp. 798–805.

[7] AESCHLIMAN, C., PARK, J., AND KAK, A. A probabilistic framework for joint seg-

mentation and tracking. In IEEE International Conference on Computer Vision and

Pattern Recognition (2010), pp. 1371–1378.

[8] ALDOUS, D. Exchangeability and related topics. École d’Été de Probabilités de Saint-

Flour (1985), 1–198.

[9] ALLILI, M., AND ZIOU, D. Object of interest segmentation and tracking by using

feature selection and active contours. In IEEE Conference on Computer Vision and

Pattern Recognition (2007), pp. 1–8.

[10] ALMOMANI, R., AND DONG, M. Building a multiple object tracking system with

occlusion handling in surveillance videos. Robotic Vision: Technologies for Machine

Learning and Vision Applications: Technologies for Machine Learning and Vision Ap-

plications (2012), 98.

85

[11] ALMOMANI, R., AND DONG, M. Segtrack: A novel tracking system with improved

object segmentation. In ICIP (2013), pp. 3939–3943.

[12] ALMOMANI, R., DONG, M., AND LIU, Z. Learning good features to track. In Inter-

national Conference on Machine Learning and Applications (2014), pp. 373–378.

[13] AVIDAN, S. Support vector tracking. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (2004), 1064–1072.

[14] AVIDAN, S. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence (2007), 261–271.

[15] AZARBAYERJANI, A., AND WREN, C. Real-time 3d tracking of the human body.

Proceedings of Image’com (1997).

[16] BABENKO, B., YANG, M., AND BELONGIE, S. Visual tracking with online multiple

instance learning. In IEEE Conference on Computer Vision and Pattern Recognition

(2009), pp. 983–990.

[17] BALAN, A., AND BLACK, M. An adaptive appearance model approach for model-based

articulated object tracking. In IEEE International Conference on Computer Vision and

Pattern Recognition (2006), pp. 758–765.

[18] BAY, H., TUYTELAARS, T., AND VAN GOOL, L. Surf: Speeded up robust features. In

European Conference on Computer Vision. 2006, pp. 404–417.

[19] BENGIO, Y. Learning deep architectures for ai. Foundations and trends R© in Machine

Learning (2009), 1–127.

[20] BERGEN, J., BURT, P., HINGORANI, R., AND PELEG, S. A three-frame algorithm for

estimating two-component image motion. IEEE Transactions on Pattern Analysis and

Machine Intelligence (1992), 886–896.

86

[21] BLACK, M., AND ANANDAN, P. The robust estimation of multiple motions: Parametric

and piecewise-smooth flow fields. Computer vision and image understanding (1996),

75–104.

[22] BLACK, M., AND JEPSON, A. Eigentracking: Robust matching and tracking of artic-

ulated objects using a view-based representation. International Journal of Computer

Vision (1998), 63–84.

[23] BOBICK, A., INTILLE, S., DAVIS, J., BAIRD, F., PINHANEZ, C., CAMPBELL, L.,

IVANOV, Y., SCHÜTTE, A., AND WILSON, A. The kidsroom: A perceptually-based

interactive and immersive story environment. Presence: Teleoperators and Virtual En-

vironments (1999), 369–393.

[24] BRADSKI, G. Computer vision face tracking for use in a perceptual user interface. Intel

Technology Journal (1998), 1–15.

[25] CHEN, Q., SUN, Q., HENG, P. A., AND XIA, D. Two-stage object tracking method

based on kernel and active contour. IEEE Transactions on Circuits and Systems for

Video Technology (2010), 605–609.

[26] CHERIAN, A., MORELLAS, V., PAPANIKOLOPOULOS, N., AND BEDROS, S. Dirichlet

process mixture models on symmetric positive definite matrices for appearance cluster-

ing in video surveillance applications. In IEEE International Conference on Computer

Vision and Pattern Recognition (2011), pp. 3417–3424.

[27] COLLINS, R., LIU, Y., AND LEORDEANU, M. Online selection of discriminative track-

ing features. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005),

1631–1643.

[28] COMANICIU, D. Bayesian kernel tracking. In DAGM Symposium on Pattern Recogni-

tion. 2002, pp. 438–445.

87

[29] COMANICIU, D., RAMESH, V., AND MEER, P. Real-time tracking of non-rigid objects

using mean shift. In IEEE International Conference on Computer Vision and Pattern

Recognition (2000), pp. 142–149.

[30] COMANICIU, D., RAMESH, V., AND MEER, P. Kernel-based object tracking. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2003), 564–577.

[31] CREMERS, D. Dynamical statistical shape priors for level set-based tracking. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2006), 1262–1273.

[32] CUCCHIARA, R., GRANA, C., TARDINI, G., AND VEZZANI, R. Probabilistic people

tracking for occlusion handling. In International Conference on Pattern Recognition

(2004), pp. 132–135.

[33] DEAN, J., CORRADO, G., MONGA, R., CHEN, K., DEVIN, M., LE, Q., MAO, M.,

RANZATO, M., SENIOR, A., TUCKER, P., YANG, K., AND NG, A. Large scale dis-

tributed deep networks. In Advances in Neural Information Processing Systems (2012),

pp. 1223–1231.

[34] DOCKSTADER, S., AND TEKALP, M. Multiple camera tracking of interacting and oc-

cluded human motion. Proceedings of the IEEE (2001), 1441–1455.

[35] ELGAMMAL, A., AND DAVIS, L. S. Probabilistic framework for segmenting peo-

ple under occlusion. In IEEE International Conference on Computer Vision (2001),

pp. 145–152.

[36] ELGAMMAL, A., DURAISWAMI, R., HARWOOD, D., AND DAVIS, L. Background and

foreground modeling using nonparametric kernel density estimation for visual surveil-

lance. Proceedings of the IEEE (2002), 1151–1163.

88

[37] ENG, H.-L., WANG, J., KAM, A. H., AND YAU, W. A bayesian framework for robust

human detection and occlusion handling human shape model. In International Confer-

ence on Pattern Recognition (2004), pp. 257–260.

[38] ERHAN, D., BENGIO, Y., COURVILLE, A., MANZAGOL, PIERREAND VINCENT, P.,

AND BENGIO, S. Why does unsupervised pre-training help deep learning? The Journal

of Machine Learning Research (2010), 625–660.

[39] EVERINGHAM, M., AND ZISSERMAN, A. Identifying individuals in video by combin-

ing’generative’and discriminative head models. In IEEE International Conference on

Computer Vision (2005), pp. 1103–1110.

[40] FERGUSON, T. A bayesian analysis of some nonparametric problems. The annals of

statistics (1973), 209–230.

[41] FOGEL, I., AND SAGI, D. Gabor filters as texture discriminator. Biological cybernetics

(1989), 103–113.

[42] GHIASI, S., NGUYEN, K., AND SARRAFZADEH, M. Profiling accuracy-latency char-

acteristics of collaborative object tracking applications. In International Conference on

Parallel and Distributed Computing and Systems (2003), Citeseer.

[43] GODEC, M., LEISTNER, C., SAFFARI, A., AND BISCHOF, H. On-line random

naive bayes for tracking. In International Conference on Pattern Recognition (2010),

pp. 3545–3548.

[44] GRABNER, H., AND BISCHOF, H. On-line boosting and vision. In IEEE International

Conference on Computer Vision and Pattern Recognition (2006), pp. 260–267.

[45] GRABNER, H., GRABNER, M., AND BISCHOF, H. Real-time tracking via on-line

boosting. In British Machine Vision Conference (2006), p. 6.

89

[46] GRABNER, H., LEISTNER, C., AND BISCHOF, H. Semi-supervised on-line boosting

for robust tracking. In European Conference on Computer Vision. 2008, pp. 234–247.

[47] GRAY, D., AND TAO, H. Viewpoint invariant pedestrian recognition with an ensemble

of localized features. In European Conference on Computer Vision. 2008, pp. 262–275.

[48] HAGER, G., AND BELHUMEUR, P. Efficient region tracking with parametric models

of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine

Intelligence (1998), 1025–1039.

[49] HAN, B., AND DAVIS, L. On-line density-based appearance modeling for object track-

ing. In IEEE International Conference on Computer Vision (2005), pp. 1492–1499.

[50] HARITAOGLU, I., AND FLICKNER, M. Detection and tracking of shopping groups in

stores. In IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (2001), pp. I–431.

[51] HE, C., ZHENG, Y., AND AHALT, S. Object tracking using the gabor wavelet transform

and the golden section algorithm. IEEE Transactions on Multimedia (2002), 528–538.

[52] HE, S., YANG, Q., LAU, R., WANG, J., AND YANG, M. Visual tracking via locality

sensitive histograms. In IEEE International Conference on Computer Vision and Pattern

Recognition (2013), pp. 2427–2434.

[53] HE, W., YAMASHITA, T., LU, H., AND LAO, S. Surf tracking. In IEEE International

Conference on Computer Vision (2009), pp. 1586–1592.

[54] HORN, B., AND SCHUNCK, B. Determining optical flow. Artificial intelligence (1981),

185–203.

[55] HOTTA, K. Adaptive weighting of local classifiers by particle filters for robust tracking.

Pattern Recognition (2009), 619–628.

90

[56] HU, W., LI, X., ZHANG, X., SHI, X., MAYBANK, S., AND ZHANG, Z. Incremental

tensor subspace learning and its applications to foreground segmentation and tracking.

International Journal of Computer Vision (2011), 303–327.

[57] IRANI, M. Multi-frame optical flow estimation using subspace constraints. In IEEE

International Conference on Computer Vision (1999), pp. 626–633.

[58] ISARD, M., AND BLAKE, A. Contour tracking by stochastic propagation of conditional

density. In European Conference on Computer Vision. 1996, pp. 343–356.

[59] ISARD, M., AND MACCORMICK, J. Bramble: A bayesian multiple-blob tracker. In

IEEE International Conference on Computer Vision (2001), pp. 34–41.

[60] JEPSON, A., FLEET, D., AND EL-MARAGHI, T. Robust online appearance models

for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence

(2003), 1296–1311.

[61] JIA, X., LU, H., AND YANG, M. Visual tracking via adaptive structural local sparse

appearance model. In IEEE Conference on Computer Vision and Pattern Recognition

(2012), pp. 1822–1829.

[62] JIANG, Z., HUYNH, D. Q., MORAN, W., CHALLA, S., AND SPADACCINI, N. Mul-

tiple pedestrian tracking using colour and motion models. In International Conference

on Digital Image Computing: Techniques and Applications (2010), pp. 328–334.

[63] KAEWTRAKULPONG, P., AND BOWDEN, R. An improved adaptive background mix-

ture model for real-time tracking with shadow detection. In Video-Based Surveillance

Systems. 2002, pp. 135–144.

[64] KALAL, Z., MATAS, J., AND MIKOLAJCZYK, K. Pn learning: Bootstrapping binary

classifiers by structural constraints. In IEEE International Conference on Computer

Vision and Pattern Recognition (2010), pp. 49–56.

91

[65] KALAL, Z., MIKOLAJCZYK, K., AND MATAS, J. Forward-backward error: Auto-

matic detection of tracking failures. In International Conference on Pattern Recognition

(2010), pp. 2756–2759.

[66] KALAL, Z., MIKOLAJCZYK, K., AND MATAS, J. Tracking-learning-detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2012), 1409–1422.

[67] KALMAN, R. A new approach to linear filtering and prediction problems. Journal of

basic Engineering (1960), 35–45.

[68] KELM, M., PAL, C., AND MCCALLUM, A. Combining generative and discrimina-

tive methods for pixel classification with multi-conditional learning. In International

Conference on Pattern Recognition (2006), pp. 828–832.

[69] KHAN, S., AND SHAH, M. Tracking people in presence of occlusion. In Asian Confer-

ence on Computer Vision (2000).

[70] KHAN, Z., BALCH, T., AND DELLAERT, F. An mcmc-based particle filter for track-

ing multiple interacting targets. In European Conference on Computer Vision. 2004,

pp. 279–290.

[71] KWON, J., AND LEE, K. M. Visual tracking decomposition. In IEEE International

Conference on Computer Vision and Pattern Recognition (2010), pp. 1269–1276.

[72] LARA, L., AND LEARNED-MILLER, E. Distribution fields for tracking. In IEEE In-

ternational Conference on Computer Vision and Pattern Recognition (2012), pp. 1910–

1917.

[73] LARA, L., AND LEARNED-MILLER, E. Distribution fields for tracking. IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (2012), 1910–1917.

92

[74] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning

applied to document recognition. IEEE Intelligent Signal Processing (1998), 2278–

2324.

[75] LEI, Y., DING, X., AND WANG, S. Visual tracker using sequential bayesian learn-

ing: Discriminative, generative, and hybrid. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, (2008), 1578–1591.

[76] LEPETIT, V., AND FUA, P. Keypoint recognition using randomized trees. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (2006), 1465–1479.

[77] LEPETIT, V., LAGGER, P., AND FUA, P. Randomized trees for real-time keypoint

recognition. In IEEE International Conference on Computer Vision and Pattern Recog-

nition (2005), pp. 775–781.

[78] LI, M., KWOK, J., AND LU, B. Online multiple instance learning with no regret. In

IEEE Conference on Computer Vision and Pattern Recognition (2010), pp. 1395–1401.

[79] LI, X., HU, W., SHEN, C., ZHANG, Z., DICK, A., AND HENGEL, A. A survey of

appearance models in visual object tracking. ACM Transactions on Intelligent Systems

and Technology (2013), 58.

[80] LI, Y., AI, H., YAMASHITA, T., LAO, S., AND KAWADE, M. Tracking in low frame

rate video: A cascade particle filter with discriminative observers of different life spans.

IEEE Transactions on Pattern Analysis and Machine Intelligence (2008), 1728–1740.

[81] LIM, J., ROSS, D., LIN, R., AND YANG, M. Incremental learning for visual tracking.

In Advances in neural information processing systems (2004), pp. 793–800.

[82] LIN, R., ROSS, D., LIM, J., AND YANG, M. Adaptive discriminative generative model

and its applications. In Advances in neural information processing systems (2004),

pp. 801–808.

93

[83] LIN, Z., DAVIS, L., DOERMANN, D., AND DEMENTHON, D. Hierarchical part-

template matching for human detection and segmentation. In International Conference

on Computer Vision (2007), pp. 1–8.

[84] LIU, B., YANG, L., HUANG, J., MEER, P., GONG, L., AND KULIKOWSKI, C. Ro-

bust and fast collaborative tracking with two stage sparse optimization. In European

Conference on Computer Vision. 2010, pp. 624–637.

[85] LIU, R., CHENG, J., AND LU, H. A robust boosting tracker with minimum error

bound in a co-training framework. In IEEE International Conference on Computer

Vision (2009), pp. 1459–1466.

[86] LIU, X., AND YU, T. Gradient feature selection for online boosting. In International

Conference on Computer Vision (2007), pp. 1–8.

[87] LOWE, D. Distinctive image features from scale-invariant keypoints. International

journal of computer vision (2004), 91–110.

[88] LUCAS, B., AND KANADE, T. An iterative image registration technique with an ap-

plication to stereo vision. In International Joint Conferences on Artificial Intelligence

(1981), pp. 674–679.

[89] MACCORMICK, J., AND BLAKE, A. A probabilistic exclusion principle for tracking

multiple objects. International Journal of Computer Vision (2000), 57–71.

[90] MATTHEWS, L., ISHIKAWA, T., AND BAKER, S. The template update problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence (2004), 810–815.

[91] MCKENNA, S., JABRI, S., DURIC, Z., AND WECHSLER, H. Tracking interacting

people. In IEEE International Conference on Automatic Face and Gesture Recognition

(2000), pp. 348–353.

94

[92] MEI, X., AND LING, H. Robust visual tracking using l 1 minimization. In IEEE

International Conference on Computer Vision (2009), pp. 1436–1443.

[93] MOESLUND, T., HILTON, A., AND KRÜGER, V. A survey of advances in vision-based

human motion capture and analysis. Computer vision and image understanding (2006),

90–126.

[94] MUSA, Z., AND WATADA, J. Video tracking system: A survey. An international journal

of research and surveys (2008), 65–72.

[95] NEJHUM, S., HO, J., AND YANG, M. Online visual tracking with histograms and

articulating blocks. Computer Vision and Image Understanding (2010), 901–914.

[96] NGUYEN, H., JI, Q., AND SMEULDERS, A. Spatio-temporal context for robust multi-

target tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (2007),

52–64.

[97] NING, J., ZHANG, L., ZHANG, D., AND WU, C. Robust object tracking using joint

color-texture histogram. International Journal of Pattern Recognition and Artificial In-

telligence (2009), 1245–1263.

[98] OKUMA, K., TALEGHANI, A., DE FREITAS, N., LITTLE, J., AND LOWE, D. A

boosted particle filter: Multitarget detection and tracking. In European Conference on

Computer Vision. 2004, pp. 28–39.

[99] PARAG, T., PORIKLI, F., AND ELGAMMAL, A. Boosting adaptive linear weak clas-

sifiers for online learning and tracking. In IEEE Conference on Computer Vision and

Pattern Recognition (2008), pp. 1–8.

[100] PÉREZ, P., HUE, C., VERMAAK, J., AND GANGNET, M. Color-based probabilistic

tracking. In European Conference on Computer Vision. 2002, pp. 661–675.

95

[101] RAMISA, A., VASUDEVAN, S., ALDAVERT, D., TOLEDO, R., AND DE MANTARAS,

R. L. Evaluation of the sift object recognition method in mobile robots. International

Conference of the Catalan Association for Artificial Intelligence (2009), 56–73.

[102] ROH, H., AND LEE, S. Multiple people tracking using an appearance model based on

temporal color. In Biologically Motivated Computer Vision (2000), pp. 369–378.

[103] ROSS, D., LIM, J., LIN, R., AND YANG, M. Incremental learning for robust visual

tracking. International Journal of Computer Vision (2008), 125–141.

[104] SALARI, V., AND SETHI, I. Feature point correspondence in the presence of occlusion.

IEEE Transactions on Pattern Analysis and Machine Intelligence (1990), 87–91.

[105] SALEEMI, I., HARTUNG, L., AND SHAH, M. Scene understanding by statistical model-

ing of motion patterns. In IEEE Conference on Computer Vision and Pattern Recognition

(2010), pp. 2069–2076.

[106] SALZMANN, M., LEPETIT, V., AND FUA, P. Deformable surface tracking ambiguities.

In IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

[107] SANTNER, J., LEISTNER, C., SAFFARI, A., POCK, T., AND BISCHOF, H. Prost:

Parallel robust online simple tracking. In IEEE International Conference on Computer

Vision and Pattern Recognition (2010), pp. 723–730.

[108] SAWHNEY, H., AND AYER, S. Compact representations of videos through dominant

and multiple motion estimation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (1996), 814–830.

[109] SCHMID, C. Constructing models for content-based image retrieval. In IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (2001), pp. 1–39.

96

[110] SEN-CHING, S., AND KAMATH, C. Robust techniques for background subtraction in

urban traffic video. In Electronic Imaging (2004), pp. 881–892.

[111] SERMANET, P., AND LECUN, Y. Traffic sign recognition with multi-scale convolutional

networks. In International Joint Conference on Neural Networks (2011), pp. 2809–2813.

[112] SERRE, T., AND POGGIO, T. A neuromorphic approach to computer vision. Commu-

nications of the ACM (2010), 54–61.

[113] SETHI, I., AND JAIN, R. Finding trajectories of feature points in a monocular image

sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence (1987),

56–73.

[114] SHAN, Y., SAWHNEY, H., MATEI, B., AND KUMAR, R. Shapeme histogram projection

and matching for partial object recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence (2006), 568–577.

[115] SHARP, T. Implementing decision trees and forests on a gpu. In European Conference

on Computer Vision. 2008, pp. 595–608.

[116] SHI, J., AND TOMASI, C. Good features to track. In IEEE International Conference on

Computer Vision and Pattern Recognition (1994), pp. 593–600.

[117] SILVEIRA, G., AND MALIS, E. Real-time visual tracking under arbitrary illumination

changes. In IEEE Conference on Computer Vision and Pattern Recognition (2007),

pp. 1–6.

[118] STAUFFER, C., AND GRIMSON, W. Learning patterns of activity using real-time track-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence (2000), 747–757.

97

[119] SUN, X., YAO, H., AND ZHANG, S. A novel supervised level set method for non-

rigid object tracking. In IEEE Conference on Computer Vision and Pattern Recognition

(2011), pp. 3393–3400.

[120] TEH, C., AND CHIN, R. On the detection of dominant points on digital curves. IEEE

Transactions on Pattern Analysis and Machine Intelligence (1989), 859–872.

[121] TIAN, M., ZHANG, W., AND LIU, F. On-line ensemble svm for robust object tracking.

In Asian Conference on Computer Vision. 2007, pp. 355–364.

[122] VESE, L., AND CHAN, T. A multiphase level set framework for image segmentation

using the mumford and shah model. International journal of computer vision (2002),

271–293.

[123] VINCENT, P., LAROCHELLE, H., BENGIO, Y., AND MANZAGOL, P. Extracting and

composing robust features with denoising autoencoders. In International conference on

machine learning (2008), pp. 1096–1103.

[124] VIOLA, P., AND JONES, M. Rapid object detection using a boosted cascade of sim-

ple features. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (2001), pp. I–511.

[125] VIOLA, P., JONES, M., AND SNOW, D. Detecting pedestrians using patterns of motion

and appearance. In IEEE International Conference on Computer Vision (2003), pp. 734–

741.

[126] WANG, H., SUTER, D., SCHINDLER, K., AND SHEN, C. Adaptive object tracking

based on an effective appearance filter. IEEE Transactions on Pattern Analysis and

Machine Intelligence (2007), 1661–1667.

98

[127] WANG, J., CHEN, X., AND GAO, W. Online selecting discriminative tracking features

using particle filter. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (2005), pp. 1037–1042.

[128] WANG, J., AND YAGI, Y. Integrating color and shape-texture features for adaptive

real-time object tracking. IEEE Transactions on Image Processing (2008), 235–240.

[129] WANG, S., LU, H., YANG, F., AND YANG, M. Superpixel tracking. In IEEE Interna-

tional Conference on Computer Vision (2011), pp. 1323–1330.

[130] WANG, T., GU, I., AND SHI, P. Object tracking using incremental 2d-pca learning

and ml estimation. In IEEE International Conference on Acoustics, Speech and Signal

Processing (2007), pp. I–933.

[131] WEN, J., LI, X., GAO, X., AND TAO, D. Incremental learning of weighted tensor

subspace for visual tracking. In IEEE International Conference on Systems, Man and

Cybernetics (2009), pp. 3688–3693.

[132] WERLBERGER, M., TROBIN, W., POCK, T., WEDEL, A., CREMERS, D., AND

BISCHOF, H. Anisotropic huber-l1 optical flow. In British Machine Vision Conference

(2009), pp. 1–11.

[133] WILLIAMS, O., BLAKE, A., AND CIPOLLA, R. Sparse bayesian learning for effi-

cient visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence

(2005), 1292–1304.

[134] WREN, C., AZARBAYEJANI, A., DARRELL, T., AND PENTLAND, A. Pfinder: Real-

time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine

Intelligence (1997), 780–785.

[135] WU, Y., AND FAN, J. Contextual flow. In IEEE Conference on Computer Vision and

Pattern Recognition (2009), pp. 33–40.

99

[136] XUENA, Q., SHIRONG, L., AND FEI, L. Kernel-based target tracking with multiple

features fusion. In Joint IEEE Conference on Decision and Control and Chinese Control

Conference (2009), pp. 3112–3117.

[137] YILMAZ, A., JAVED, O., AND SHAH, M. Object tracking: A survey. ACM Computing

Surveys (2006), 1–45.

[138] YU, S., TAN, D., AND TAN, T. A framework for evaluating the effect of view angle,

clothing and carrying condition on gait recognition. In International Conference on

Pattern Recognition (2006), pp. 441–444.

[139] YU, T., AND WU, Y. Differential tracking based on spatial-appearance model (sam).

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(2006), pp. 720–727.

[140] ZHENG, W., GONG, S., AND XIANG, T. Person re-identification by probabilistic rela-

tive distance comparison. In IEEE Conference on Computer Vision and Pattern Recog-

nition (2011), pp. 649–656.

[141] ZHOU, H., YUAN, Y., AND SHI, C. Object tracking using sift features and mean shift.

Computer vision and image understanding (2009), 345–352.

[142] ZHOU, S., CHELLAPPA, R., AND MOGHADDAM, B. Visual tracking and recognition

using appearance-adaptive models in particle filters. IEEE Transactions on Image Pro-

cessing (2004), 1491–1506.

100

ABSTRACT

OBJECT TRACKING: APPEARANCE MODELING AND FEATURE LEARNING

by

RAED ALMOMANI

May 2015

Advisor: Prof. Ming Dong

Major: Computer Science

Degree: Doctor of Philosophy

Object tracking in real scenes is an important problem in computer vision due to increasing

usage of tracking systems day in and day out in various applications such as surveillance,

security, monitoring and robotic vision. Object tracking is the process of locating objects of

interest in every frame of video frames. Many systems have been proposed to address the

tracking problem where the major challenges come from handling appearance variation during

tracking caused by changing scale, pose, rotation, illumination and occlusion.

In this dissertation, we address these challenges by introducing several novel tracking tech-

niques. First, we developed a multiple object tracking system that deals specially with occlu-

sion issues. The system depends on our improved KLT tracker for accurate and robust tracking

during partial occlusion. In full occlusion, we applied a Kalman filter to predict the object’s

new location and connect the trajectory parts.

Many tracking methods depend on a rectangle or an ellipse mask to segment and track ob-

jects. Typically, using a larger or smaller mask will lead to loss of tracked objects. Second, we

present an object tracking system (SegTrack) that deals with partial and full occlusions by em-

ploying improved segmentation methods: mixture of Gaussians and a silhouette segmentation

algorithm. For re-identification, one or more feature vectors for each tracked object are used

after target reappearing.

101

Third, we propose a novel Bayesian Hierarchical Appearance Model (BHAM) for robust

object tracking. Our idea is to model the appearance of a target as combination of multiple

appearance models, each covering the target appearance changes under a certain situation (e.g.

view angle). In addition, we built an object tracking system by integrating BHAM with back-

ground subtraction and the KLT tracker for static camera videos. For moving camera videos,

we applied BHAM to cluster negative and positive target instances.

As tracking accuracy depends mainly on finding good discriminative features to estimate

the target location, finally, we propose to learn good features for generic object tracking us-

ing online convolutional neural networks (OCNN). In order to learn discriminative and stable

features for tracking, we propose a novel object function to train OCNN by penalizing the

feature variations in consecutive frames, and the tracker is built by integrating OCNN with a

color-based multi-appearance model.

Our experimental results on real-world videos show that our tracking systems have superior

performance when compared with several state-of-the-art trackers. In the feature, we plan to

apply the Bayesian Hierarchical Appearance Model (BHAM) for multiple objects tracking.

102

AUTOBIOGRAPHICAL STATEMENT

RAED ALMOMANI

Raed Almomani is a Ph.D. candidate in Department of Computer Science at Wayne State

University, where he is also a research assistant in the Computer Vision and Pattern Recognition

Laboratory. He received his BS degree (1999) in Computer Science and MS degree (2003)

in Parallel Computer and Distributed Systems, from Al alByat University (AABU), Mafraq,

Jordan. He received his second MS degree (2011) in Computer Vision and Pattern Recognition,

from Wayne State University (WSU), Detroit, Michigan, USA. His research interests include

image processing, computer vision, pattern recognition, and their applications.

	Wayne State University
	1-1-2015
	Object Tracking: Appearance Modeling And Feature Learning
	Raed Almomani
	Recommended Citation

	tmp.1430916844.pdf.GK2qR

