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Abstract The particle support volume is crucial for simulating reactive transport with Lagrangian methods
as it dictates the interaction among particles. Assuming that it is constant in space, the particle support
volume can be selected by means of kernel density estimation theory, an approach that has been shown to
provide accurate estimates in simple setups. However, the particle support volume should intuitively vary
with the particle position and evolve with time so as to mimic the local behavior of the solute plume. In this
paper, we present a new approach to select a locally optimal particle support volume in reactive transport
simulations. We consider that each particle has a different support volume that can locally adapt its shape and
size with time based on the nearby particle distribution. By introducing a new optimality criterion,
closed-form expressions of the particle support volume are presented under certain assumptions. In
advection-dominated transport, we propose to orient the support volume along the local velocities.
Numerical simulations of solute transport in a randomly heterogeneous porousmediumdemonstrate that the
new approach can substantially increase accuracy with a more rapid convergence to the true solution with
the number of particles. The error reduction seen in local approaches is particularly important in regions with
extreme (high and low) density of particles. The method is shown to be computationally efficient, displaying
better results than traditional histogram or global kernel methods for the same computational effort.

1. Introduction

Numerical models that deal with multiple species and chemical reactions are typically based on Eulerian
approaches (e.g., Lichtner et al., 2015; Saaltink et al., 2004; Xu et al., 2014; Yeh et al., 2004). However, the
incorporation of physical and biochemical heterogeneities into grid-based Eulerian codes that solve the
multicomponent advection-dispersion equation coupled with reactions suffers from numerical problems
stemming from the need to fulfill a small grid-Peclet number Δx/a to properly simulate reactions, being a
the dispersivity and Δx the size of the numerical spatial discretization. Knowing that in porous media many
chemical reactions are driven by mixing (De Simoni et al., 2005, 2007; Dentz et al., 2011; Gramling et al.,
2002; Martinez-Landa et al., 2012) and controlled by very small values of transverse dispersivities (Cirpka
et al., 1999, 2015), these numbers are seldom achieved in practical applications, and numerical simulations tend
to overpredict the total amount of reaction produced (Benson et al., 2017; Sanchez-Vila & Fernàndez-Garcia,
2016). This renders reactive transport modeling a major challenge in hydrogeology nowadays.

Lagrangian approaches that simulate transport by moving particles with simple mechanisms constitute an
attractive technique to overcome some of these problems. These methods are well established for
nonreactive chemical systems. Different authors have compared Eulerian and Lagrangian approaches for
nonreactive transport. Salamon et al. (2006a) compared the total variation diminishing scheme in MT3D
(Zheng & Wang, 1999) with different Lagrangian approaches. These authors found that the total variation
diminishing scheme overestimates dispersion even when the velocity contrast between grid cells is relatively
small. This effect was significantly less important in the standard random walk method based on the
Ito-Fokker-Planck equation. They also concluded that the random walk method is most advantageous when
high resolution or many model runs (stochastic modeling) are needed in advective-dominated problems.
Along the same line, Boso et al. (2013) compared several popular Eulerian and Lagrangian schemes. These
authors showed that the Eulerian schemes overestimate mixing due to numerical dispersion and truncation
errors, while Lagrangian approaches, such as the random walk method (e.g., Salamon et al., 2006a) and the
smoothed particle hydrodynamics (e.g., Herrera et al., 2009; Tartakovsky & Meakin, 2005), are virtually free
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of numerical dispersion. The smoothed particle hydrodynamics was found to be computationally demanding
compared to other Lagrangian approaches.

In addition to these numerical features, several authors have demonstrated that the random walk method
can also efficiently deal with non-Fickian transport phenomena (Berkowitz et al., 2006; Cvetkovic &
Haggerty, 2002; Delay & Bodin, 2001; Dentz & Castro, 2009; Zhang & Benson, 2008) and multiple porosity
systems (Benson & Meerschaert, 2009; Huang et al., 2003; Salamon et al., 2006b; Tsang & Tsang, 2001;
Willmann et al., 2013). Linear reactive transport problems including network reactions can also be easily
handled (Henri & Fernàndez-Garcia, 2014, 2015). However, these Lagrangian methods have not been
sufficiently developed for simulating complex reactive transport problems, even though several advantages
are reported in the literature (Sanchez-Vila & Fernàndez-Garcia, 2016). For instance, the recent comparison of
Eulerian and Lagrangian reactive transports reported by Benson et al. (2017) showed that Lagrangian
simulations in a heterogeneous velocity field with a bimolecular reaction of the type A + B → P can
outperform the most popular Eulerian schemes. These authors reported twice as much excess reaction
(due to advection error) in the first-order Eulerian simulations compared to the Lagrangian, using 1 million
cells with a grid Peclet number of 10. These results indicated that a very strict constraint on the grid Peclet
number is required in Eulerian reactive transport simulations.

However, the random walk method is not free of disadvantages. The discrete nature of particles can lead to
statistical fluctuations of the concentrations, which are only eliminated by using an infinite number of
particles. In practice, this is not feasible, and one needs to deal with a limited number of particles. This causes
a subsampling problem which calls for the definition of the particle support volume. The formal
interpretation of the particle support volume is crucial for reactive transport as it defines the interaction of
one particle with nearby particles of different species. Different interpretations of the particle support volume
can be found in the literature. Some authors (e.g., Benson & Meerschaert, 2008; Edery et al., 2009; Engdahl
et al., 2017; Hansen et al., 2014; Tompson, 1993; Tompson et al., 1996) have considered that the particle
support volume is a fixed quantity defined based on the numerical discretization of the transport problem
or the particle motion. The latter approach was proposed by Benson and Meerschaert (2008) who
determined the particle support volume based on the probability of collocation of two particles due to local
dispersion. This method has been largely extended in different directions (Bolster et al., 2012, 2016; Paster
et al., 2013, 2014) and recently applied to simulate biodegradation in a real field application (Ding et al.,
2017). A different approach was introduced by Fernàndez-Garcia and Sanchez-Vila (2011) who defined the
particle support volume based on the kernel density estimation (KDE) theory. This approach expresses the
particle support volume as a function of the concentration distribution and the number of particles used.
Since concentrations are affected not only by local dispersion but also by the model-scale fluid dynamics, this
particle support volume also changes with time depending on the deformation of the particle plume. This
kernel-based approach has been demonstrated to largely minimize the errors involved in the reconstruction
of concentrations and in quantifying mixing and human health risk (Fernàndez-Garcia & Sanchez-Vila, 2011;
Pedretti & Fernàndez-Garcia, 2013; Siirila-Woodburn et al., 2015). Moreover, this approach has also been
extended to simulate nonlinear reactive transport (Rahbaralam et al., 2015; Schmidt et al., 2017). Recently,
Sole-Mari et al. (2017) extended the kernel-based approach to simulate any kind of reactions other than
bimolecular monovalent reactions. Until now, in these kernel-based methods, the particle support volume
associated with the particles of a given chemical species has been allowed to evolve in time but not in space.

In this paper we explore the potential benefits of allowing the particle support volume to vary not only in
time but also in space. We develop a novel approach capable of estimating an optimal locally adaptive kernel
function at the particle location based on the minimization of a local error criterion. Then, we compare the
new approach with the time-dependent global optimal kernel approach and the traditional binning
(histogram) method. To do so, we evaluate the estimation accuracy of the concentrations and the reaction
rates in a 2-D heterogeneous reactive transport model.

2. Background
2.1. KDE and Random Walk Models

KDE is a nonparametric technique that has become popular in the field of data analytics. It is typically used to
estimate the underlying probability density function (pdf) of a continuous random variable given a sample
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{X1,…,XN}. Its superiority over other estimators such as histograms (i.e., counting values that fall into a given
support volume or bins) has been theoretically shown in the literature (e.g., Härdle, 1991; Silverman, 1986). In
the classical multivariate KDE approach, the pdf p(x) is approximated as

p xð Þ≅bp xð Þ ¼ 1
N

∑
N

α¼1
WH x� Xα;Hð Þ; (1)

where the bandwidth matrix H is a symmetric positive definite d × dmatrix, being d the dimensionality of x,
and WH is a scaled kernel function defined as

WH u;Hð Þ¼ Hj j�1
2 W H�1

2 u
� �

: (2)

Here the kernel function W integrates to 1, has zero-mean, and satisfies

μ2 Wð Þ ¼ ∫ℝdu uT W uð Þdu ¼ μ2 Wð ÞId; (3)

where μ2(W) is the second moment matrix of the kernel W, and Id is the d × d identity matrix. The order of a
kernel is defined as the lowest positive integer k for which the kth moment is nonzero. For simplicity, we con-
sidered a second-order kernel function,meaning thatμ2(W)≠ 0. A common choice forW is theGaussian kernel,

W uð Þ ¼ 2πð Þ�d
2 exp � 1

2
uTu

� �
: (4)

If the kernel function is Gaussian, H is the covariance matrix of WH.

In the context of random walk particle tracking (RWPT) models of solute transport in porous media, p(x)
represents the continuum-scale distribution of the mass of a specific solute in a porous medium at the x loca-
tion, and Xα is the position of the αth numerical particle. Then, p(x) can be directly linked with resident solute
concentrations c(x) by

c xð Þ ¼ M
p xð Þ
ϕ xð Þ ; (5)

where c(x) is expressed as amount of substance per unit volume of solution, ϕ(x) is volume of solution per
unit d-dimensional volume of medium (effective porosity in the case of a fully saturated 3-D porous medium),
and M is the total amount of substance of the solute,

M ¼ ∫ℝdϕ xð Þc xð Þdx: (6)

The bandwidth matrix H of the kernel function can be seen here as the support volume of a particle. This
parameter is crucial in reactive transport simulations as it defines the potential interaction among particles.
To illustrate this point, let us consider a chemical reaction A + B → C with a reaction rate described as
r = kfcAcB, where the subscripts A and B refer to the chemical species and kf is the reaction rate coefficient.
In this case, Sole-Mari et al. (2017) suggested that the probability of reaction of particle Aα in a given time
interval [t, t + Δt] is

P Aα→Cγ
� � ¼ kf

ϕ XAB
αβ

� �Δt ∑
NB

β¼1
mB

βW XA
α � XB

β ;H
A
α þ HB

β

� �
; (7)

whereXA
α,X

B
β,H

A
α, andH

B
β are the positions and kernel bandwidth matrices for particles Aα and Bβ, respectively,

and the porosity ϕ is evaluated at a weighted midpoint:

XAB
αβ ¼ HA�1

α þ HB�1

β

� ��1
HA�1

α XA
α þ HB�1

β XB
β

� �
: (8)

This formulation can be extended to more complex stoichiometries and nonlinear reaction rates by simply
adding a compensation function (Sole-Mari et al., 2017), as described in Appendix A. In any case, the impor-
tant point here is that the probability of reaction directly depends on the distance between particles asso-
ciated with different species and their corresponding bandwidth matrices.
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2.2. Selection of the Optimal Bandwidth Matrix

The resulting estimates of concentrations and reactions strongly depend on the choice of the bandwidth
matrix H. If |H| is too large, the estimated concentrations will be oversmoothed and reactions overpredicted.
If |H| is too small, the estimated concentrations will display fluctuations leading to incomplete mixing (Benson
& Meerschaert, 2008). Consequently, an optimal bandwidth matrix exists. A common optimality criterion in
statistics for the selection of H is the Mean Integrated Squared Error, formally written as

MISE Hð Þ ¼ ∫
ℝd
E bp xð Þ � p xð Þð Þ2
n o

dx; (9)

where E{·} is the expected value operator. It can be shown that in the limit, when N|H|1/2→∞ and |H|→ 0, the
MISE approaches an asymptotic value, typically denoted as AMISE (e.g., Härdle, 1991), given by

AMISE Hð Þ≈ R Wð Þ
N Hj j12

þ 1
4
μ2
2 Wð ÞT p;Hð Þ; (10)

where

R Wð Þ ¼ ∫ℝdW2 yð Þdy; (11)

T p;Hð Þ ¼ ∫ℝd tr2 H
∂2p xð Þ
∂x∂xT

� �
dx: (12)

The first term on the right-hand side of (10) is the asymptotic integral of the mean variance, and the second
term is the asymptotic integral of the mean squared bias. tr indicates the trace of a matrix. For completeness,
the derivation of expression (10) is given in Appendix B. The optimal bandwidth matrix is the one that mini-
mizes the AMISE with respect to H. Closed-form solutions to this minimization problem only exist for certain
parametrizations of H (Wand & Jones, 1993). For d> 1, the unconstricted case (without a priori assumptions)
does not have a closed-form solution, although it can be solved numerically (e.g., Gramacki, 2018). The sim-
plest approach is what we refer to as the Global Isotropic (GI) method, which parametrizes the bandwidth

matrix using only one parameter: H¼h2GIId . In this case, the optimal hGI (obtained by imposing ∂AMISE/∂
hGI = 0) can be written as (e.g., Silverman, 1986)

hGI ¼ d R Wð Þ
μ2
2 Wð Þ N T p; Idð Þ

� � 1
dþ4

: (13)

Since hGI in (13) depends on the unknown second spatial derivatives of the true pdf through T(p, Id), a variety
of methods have been developed for selecting the bandwidth matrix. The general consensus is that the most
useful methods are the plug-in and the cross validation (Jones et al., 1996; Park &Marron, 1990). In this article,
we will use the plug-in method (Botev et al., 2010; Sheather & Jones, 1991), which consists in determining T(p,
Id) with another kernel estimator. The bandwidth of this kernel depends in turn on the squared integral of
higher-order derivatives of p(x), which can also be estimated by other kernel estimators. Recursively, this
leads to an infinite sequence, which is typically solved by assuming a normal distribution of p(x) in the esti-
mation of some high-order integral squared derivatives (Sheather & Jones, 1991).

As presented so far, the minimization of AMISE provides a globally optimal bandwidth matrix, which is
assumed constant in space. However, spatially variable degrees of smoothing may be needed in real
situations, most particularly at the edges of the particle distributions where fewer data points exist. To
overcome this problem, two different types of locally adaptive kernel estimators have been proposed
in the literature that allow the bandwidth matrix H to vary as a function of the estimation location x
(balloon estimator) or the particle position Xα (sample-point estimation). We refer to Sain (2002) for a
detailed review on locally adaptive multivariate KDE approaches. The most popular balloon estimator is
the nearest neighbor density estimator introduced by Loftsgaarden and Quesenberry (1965). Assuming
an isotropic parametrization H = h2Id, this method considers that h is proportional to the distance from x
to the kth nearest data point (which is asymptotically equivalent to considering that h ∝ 1/p). When
applied pointwise, the balloon estimator behaves just like the fixed bandwidth estimator (Terrell &
Scott, 1992). However, this method is not mass-conservative (the pdf does not need to integrate to 1)
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and suffers from severe bias problems as well as discontinuities (Hall, 1983; Mack & Rosenblatt, 1979). In
contrast, sample-point estimators (Breiman et al., 1977) associate a different bandwidth matrix with each
sample point. Most of these approaches set the bandwidth as proportional to hGI multiplied by some
negative power of a pilot density estimate evaluated at Xα (e.g., Abramson, 1982; Breiman et al., 1977;
Pedretti & Fernàndez-Garcia, 2013; Silverman, 1986). For example, Abramson’s (1982) square root law sug-
gests that h ∝ p�1/2. In these sample-point methods, the local bandwidth is not independent from the
global one, and it is restricted to be only a function of the magnitude of the density (Sain, 2002).
Hence, the effect of more complex features of the local density distribution is neglected. Moreover, these
methodologies do not determine the kernel shape in multivariate KDE. A more general approach is the
diffusion kernel by Botev et al. (2010), who also define a priori the dependence of the kernel function
on a pilot estimate of p. Sain and Scott (1996) proposed dividing the domain of a univariate distribution
in a number of bins (5–30) and applying a piecewise constant bandwidth to each bin. They optimized the
set of bin bandwidths numerically to minimize the MISE. The method renders a considerable gain in accu-
racy with respect to the fixed bandwidth estimator. Sain (2002) extended this methodology to implement
it on bivariate distributions.

3. A Locally Adaptive Kernel Density Estimator

In this section we develop a sample-point estimator that relies on a new local definition of the estimation
error used to select the locally optimal kernel bandwidth in 2-D and 3-D problems. As opposed to balloon
estimators, a sample-point estimator is inherently mass-conservative (the estimated pdf always integrates
to 1). We do not rely on simple rules such as h ∝ p�1/2, but the local variations of the kernel in space occur
naturally to satisfy a minimum error criterion. Unlike the approach proposed by Sain and Scott (1996), the
support volume is not piecewise constant in a set of bins but varies smoothly with the particle location.
Under different assumptions on the kernel shape, we give the corresponding expressions of the bandwidth
matrix. Then, in section 3.2, we present the implementation algorithm.

3.1. Theoretical Development

Given a random distribution of particles {X1,…,XN} obtained from a RWPT simulation at a given time t, the
kernel density estimate bp xð Þ of p(x) is defined as

bp xð Þ ¼ 1
N

∑
N

α¼1
WH x� Xα;Hαð Þ; (14)

where Hα is the bandwidth matrix associated with the αth particle at the Xα position, that is, Hα = H(Xα). The
bandwidth matrix Hα is determined based on the minimization of the Local Asymptotic Mean Integrated
Squared Error centered at the particle position, which we define as

LMISEα Hαð Þ ¼ ∫
ℝd
E bp xð Þ � p xð Þð Þ2
n o

WH x� Xα;H0ð Þ dx: (15)

The kernel function WH(x � Xα,H0) is used to penalize the error distance away from the particle position
where the approximation is centered. The bandwidth matrix H0 controls the strength of this penalty, which
is assumed constant for all particles. Assuming that the bandwidthmatrix does not substantially vary near the
particle position Xα (i.e., within the support volume defined by H0), the LMISEα approaches to an asymptotic
expression, in the limit when N|Hα|

1/2 → ∞ and |Hα| → 0, denoted here as ALMISEα. This is demonstrated in
Appendix B. The ALMISEα can be formally written as

ALMISEα Hαð Þ≈ 1

N2 nα ρð ÞR Wð Þ Hαj j�1
2 þ 1

4
μ2
2 Wð ÞTα ρ;Hαð Þ

� �
; (16)

where ρ is the density of particles defined as the number of particles per unit volume, that is, ρ(x) = Np(x), and

Tα ρ;Hαð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ tr2 Hα
∂2ρ

∂x∂xT

� �
dx; (17)

nα ρð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ ρ xð Þ dx: (18)
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The first term on the right-hand side of (16) is the variance. It directly depends on the smoothed particle den-
sity nα and the volume of the kernel bandwidth, |Hα|

1/2, meaning that excessively small kernel bandwidths
can generate noise in the estimation. The second term is the squared bias. It is proportional to the value of
the net roughness Tα, which can be seen as a measure of the degree of curvature of the hills and valleys of
the density distribution near the particle position Xα weighted by Hα. Strong spatial variations of the density
gradients combined with excessively big or wrongly oriented kernel bandwidths can cause oversmoothing.

The optimal bandwidth matrix, which balances the variance and the bias terms, can be determined from the
solution of the following minimization problem:

Hα ¼ arg min
H
0
α

ALMISEα H
0
α

� �
: (19)

When a full bandwidth matrix parametrization is used, the minimization of ALMISEα involves d(1 + d)/2 para-
meters. Similar to the global case, a closed-form solution does not exist for d > 1. Although numerical opti-
mization would still be possible, it would entail an unpractical amount of calculations. However, it is possible
to derive explicit solutions of Hα under certain assumptions. Let us first decompose the bandwidth matrix
into three components (similar to eigenvalue decomposition),

Hα¼h2αVαSαVT
α; (20)

where Vα is the rotation matrix, Sα is the shape matrix that defines the relative elongation of the ellipsoidal
kernel, and hα is the scaling parameter of the kernel. At this point, Vα and Sα are assumed different from Id.
At the end of this section we introduce possible assumptions that lead to different variants of the local
approach. The shape matrix is a diagonal matrix defined as Sα = diag (s1,…, sd) with |Sα| = 1. Knowing that

|Sα| = 1, the last component of Sα can be written as sd ¼ ∏
d�1

i¼1
si

� ��1

. In order to reduce the number of para-

meters, we considered that the principal directions of the bandwidth matrix Hα are predetermined, that is,
the rotation matrix Vα is known. From this, ALMISEα is a function of the following d parameters: {hα, s1,…,
sd � 1}. Substituting (20) into (16) and defining the projected Hessian matrix as

Gα¼VT
α

∂2ρ
∂x∂xT

Vα; (21)

we have

ALMISEα hα; s1;…; sd�1ð Þ≈ 1

N2

nα ρð Þ R Wð Þ
hdα

þ h4α
4
μ2
2 Wð Þ Tα ρ; Sαð Þ

 !
; (22)

where

Tα ρ; Sαð Þ ¼ ∑
d

i¼1
∑
d

j¼1
sisjψij ρð Þ; (23)

ψij ρð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ Gii xð ÞGjj xð Þdx: (24)

Here the coefficients Gii are the diagonal components of Gα, which are the projections of the Hessian along
the eigenvectors of the local bandwidth matrix Hα, and ψij form a symmetric matrix ψα, designated here as
the roughness matrix.

Taking ∂ALMISE/∂hα = 0 and ∂ALMISE/∂sk = 0 for k = 1, …, d � 1, we obtain that the optimal kernel scaling
parameter can be written as

hα ¼ d R Wð Þnα ρð Þ
μ2
2 Wð ÞTα ρ; Sαð Þ

� � 1
dþ4

; (25)

and the shape matrix components can be written as
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s1 ¼ ψ22

ψ11

� �1
4

; s2 ¼ ψ11

ψ22

� �1
4

; for d ¼ 2; (26)

s1 ¼ ψ22ψ33

ψ2
11

� �1
6

; s2 ¼ ψ11ψ33

ψ2
22

� �1
6

; s3 ¼ ψ11ψ22

ψ2
33

� �1
6

; for d ¼ 3: (27)

The derivations of these expressions are given in Appendix C. It should be noted that the solution for the case
d = 3 is an approximation. Substituting (26) and (27) into (23), we have

Tα ¼ 2 ψ11ψ22ð Þ12 þ 2ψ12; for d ¼ 2; (28)

Tα ¼ 3 ψ11ψ22ψ33ð Þ13 þ 2ψ23 ψ22ψ33=ψ
2
11

� �-16 þ 2ψ13 ψ11ψ33=ψ
2
22

� �-16
þ 2ψ12 ψ11ψ22=ψ

2
33

� ��1
6; for d ¼ 3: (29)

Note from (25) that smaller values of the optimal scaling parameter hα will occur for higher values of the net
roughness Tα. This elucidates the mimetic nature of the local adaption: The kernel becomes larger in those
areas where concentrations are smoother, and it becomes smaller in the presence of abrupt hills and valleys
of the concentrations. Similarly, note from (26) and (27) that the smallest eigenvalue of the kernel shape cor-
responds to the local dominant orientation of the curvature of the particle densities. That is to say that the
local kernel is more elongated along the minimum curvature, where fluctuations are smaller. Based on this,
we propose two different ways to choose the rotation matrix Vα in RWPT simulations. The first one considers
a rotation matrix that aligns the kernel bandwidth matrix along the mean flow direction or any other foresee-
able direction of marked anisotropy in the velocity field. This has the advantage that Vα becomes a constant
matrix that does not depend on the particle position Xα. It is therefore computationally more efficient. We call
this parametrization the Local Diagonal (LD) approach. The other consists of orienting the kernel bandwidth
matrix along the local flow velocity vector, estimated as

vα ¼ ∫ℝdWH x� Xα;H0ð Þ v xð Þdx; (30)

where v(x) is the flow velocity at position x. This is most appropriate in advection-dominated transport. We
call this parametrization the Local Rotated (LR) approach. The rotation matrix in this case can be written as

Vα¼ 1
w2

v1 �v2

v2 v1

� 	
; for d ¼ 2; (31)

Vα¼ 1
w2w3

v1w2 �v2w3 v1v3

v2w2 v1w3 v2v3

v3w2 0 �w2

264
375; for d ¼ 3; (32)

where vi is the ith component of vα, w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
, and w3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
.

In addition to the LD and LR, we also considered a third variant of the method, the Local Isotropic (LI), in
which Sα is assumed unitary instead of adopting the optimal shape described by (26) and (27). Table 1 sum-
marizes the relevant equations for the three approaches, namely, those defining the factors of the optimal
kernel matrix (20) and the main parameters involved in the optimization.

Figure 1 exemplifies the locally adaptive behavior of the three proposed kernels, graphically represented by
the 95% confidence region of the Gaussian kernel determined by Hα, for an illustrative distribution
of particles.

3.2. Implementation

By examining expressions (21) to (29), we see that the asymptotically optimal bandwidth matrix (20) depends
on the second spatial derivatives of the unknown density of particles defined by the Hessian matrix of ρ(x).
Following the basic ideas of the plug-in method, we estimated these second spatial derivatives with another
kernel estimator, defined as
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∂2ρ
∂xi∂xj

xð Þ≅ ∑
N

α¼1
W 2ð Þ

ij x�Xα;H
2ð Þ
ij

� �
; (33)

where

W 2ð Þ
ij ¼ ∂2WH

∂xi∂xj
: (34)

Table 1
Summary of Relevant Equations for the Different Local Approaches

Rotation (Vα) Shape (Sα) Scaling (hα)
Net roughness

(Tα)
Roughness

(ψα)
Projected Hessian

(Gα)

Isotropic Id Id equation (25)
∑
d

i¼1
∑
d

j¼1
ψij

equation (24) ∂2ρ
∂x∂xT

Diagonal Id equations (26)
and (27)

equation (25) equations (28)
and (29)

equation (24) ∂2ρ
∂x∂xT

Rotated equations (31)
and (32)

equations (26)
and (27)

equation (25) equations (28)
and (29)

equation (24) equation (21)

Figure 1. Illustrative representation of the local kernel adaptation at different positions of a particle plume, for the three
proposed local approaches. The ellipsoids cover the 95% confidence region of the kernel.
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This estimator can be directly obtained by taking partial derivatives of bp(x) in (1). The bandwidthmatrix of this

estimator is not necessarily the same as Hα. In fact, obtaining the optimalH 2ð Þ
ij (by the plug-in method) entails

the estimation of fourth-order density derivatives, which in turn requires determining other bandwidth
matrices that involve the estimation of sixth-order density derivatives and so on (e.g., Botev et al., 2010;
Gramacki, 2018). In this work, we use the Improved Sheather and Jones (ISJ) algorithm developed by Botev

et al. (2010) for the computation of H 2ð Þ
ij .

The LR approach involves the estimation of vα, which is computed with a simple quadrature. To do this, the
domain is divided into regular bins of size λ centered at the following positions: {x1,…, xη}. Then

vα≅λd ∑
η

ξ¼1
WH xξ � Xα;H0ð Þ v xξð Þ: (35)

Expressions (33) and (35) allow for the computation of Gα(x) at any point by (21), which enables the estima-
tion of ψij:

ψij≅λ
d ∑

η

ξ¼1
WH xξ � Xα;H0ð ÞGii xξð ÞGjj xξð Þ: (36)

We found that λ = hGI provides an adequate discretization of these integrals (further decreasing the value of λ
did not significantly alter the results), being hGI the optimal bandwidth size of the GI method. The density of
particles can be easily computed by introducing (14) into (18), which gives the following expression

nα ¼ ∫RdWH x� Xα;H0ð Þρ xð Þdx≅ ∑
N

ω¼1
∫RdWH x� Xω;H0ð ÞWH x� Xα;Hαð Þdx

¼ ∑
N

ω¼1
WH Xω � Xα;H0 þ Hαð Þ:

(37)

A rough estimate of nα can be obtained here by setting Hα as the optimal bandwidth size of the GI method,

Hα¼h2GIId . Note that the local analysis window defined by H0 is also an input parameter. We found that H0

should be as small as possible while complying with H0 > Hα for all α and all principal directions. Note that
this constitutes an implicit rule. In this study, setting H0 = (3hGI)

2Id yielded adequate results.

Algorithm for local optimization:

1. Compute H 2ð Þ
ij by using a plug-in method such as ISJ.

2. On each evaluation point xξ = {x1,…, xη}, compute ∂2ρ
∂x∂xT xξð Þ by (33).

3. On each integration point Xα = {X1,…,XN},

a If local rotation (LR method), compute vα by (35) and apply rotation (21) to compute Gα on the neighbor-
ing xξ. Otherwise, Gα xξð Þ ¼ ∂2ρ

∂x∂xT xξð Þ .
b Compute ψα by (36).
c Compute nα by (37).
d Use the relevant expressions given in section 3.2 to compute Hα.

Since performing step 3 on every Xα can be computationally demanding, one can select a reduced number of

integration points X
0
1;…;X

0
μ

n o
to calculate the corresponding local bandwidth matrices and compute Hα for

all particles by interpolation. In this work, we took the set X
0
1;…;X

0
μ

n o
to be the same as {x1,…, xη}.

The equivalent global approaches can be obtained by replacingWH(xξ � Xα;H0) in (18), (24), and (30) by 1/Ω,
where Ω is the total d-dimensional volume of the model domain. In this case, we have that nα = N/Ω and
vα = 〈v〉, where 〈v〉 is the mean flow velocity. Note that the latter condition renders the Global Diagonal
(GD) and Global Rotated approaches identical. The functionals ψij in the global case can be written as

ψij ¼
1
Ω
∫ℝd

∂2ρ
∂x2i

∂2ρ
∂x2j

dx: (38)
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These integrals can be solved either by means of a simple quadrature as done here for the local approaches
or by direct computation of the kernel convolutions between pairs of individual particles. We refer to
Silverman (1986), Härdle (1991), Botev et al. (2010), or Gramacki (2018) for details on possible algorithms to
solve these integrals. In this work, we used the ISJ method presented by Botev et al. (2010), which relies
on the discrete cosine transform to compute (38).

4. Numerical Investigations

In this section we compare the performance of the six different kernel density estimators listed in Figure 2,
which include the presented global and local approaches and the binning method. The latter represents
the traditional approach typically used to estimate concentrations from RWPT simulations. It consists in
counting particles falling into bins defined based on the discretization of the flow problem. In essence, each
method estimates the support volume of a particle Hα in a different way. We analyze then the effect that this
particle interpretation has on the estimates of concentrations and reaction rates. Sections 4.1 and 4.2 exam-
ine the performance of the different approaches in terms of concentrations and reaction rates, respectively.

The numerical investigations simulate solute transport in a heterogeneous confined aquifer with dimensions
100.5 × 50 m2. The distribution of the natural logarithm of the hydraulic conductivity Y(x) = ln K(x) represents
one realization of a Generalized Sub-Gaussian stochastic process (Panzeri et al., 2016; Riva, Neuman, et al.,
2015; Riva, Panzeri, et al., 2015). This model assumes that Y(x) = U(x)G(x), where G(x) is a Gaussian random
field and the subordinator U(x) is a nonnegative random process independent of G(x). We consider that

U(x) follows a lognormal distribution of zero mean and variance σ2U ¼ 2� κð Þ2 and that G(x) is characterized
by an isotropic exponential covariance function with an integral scale of IG = 3 m. When κ → 2, this model
renders a Gaussian field, Y(x) → G(x). In our simulations we set κ = 1.8, meaning that Y(x) is slightly non-
Gaussian. The mean and variance of Y(x) are given as 〈Y〉 = 0 and σ2Y ¼ 2:2. The resulting integral scale of
the non-Gaussian field is IY = 2.88 m. The porosity and the aquifer thickness are considered constant with
a value of 0.25 and 10 m, respectively. The head is prescribed on the left and right boundaries, forcing a right-
ward flow with mean velocity 〈v〉 = 0.0747 m/day. The upper and lower boundaries are impermeable. The
flow model is discretized in square cells of size 0.5 × 0.5 m2. The intercell transmissivities are computed by
the harmonic mean of the adjacent cell transmissivities. Groundwater flow is assumed at steady state and
solved by MODFLOW 2005 (Harbaugh, 2005).

Solute particles are injected uniformly in a rectangular area at t = 0 and transported according to the standard
random walk method based on the Ito-Fokker-Planck equation (e.g., Salamon et al., 2006b). Figure 2 shows a
sketch of the simulation setup. We adopt a local longitudinal dispersivity of aℓ = 5 cm and a local transverse

Figure 2. Setup of the conservative transport simulation and density estimation problem addressed in section 4.1. In the
background, the log-conductivity field Y(x). On top, the different density estimation approaches tested.
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dispersivity of at = 0.5 cm. The hybrid interpolation method (linear for advection and bilinear for dispersion)
suggested by LaBolle et al. (1996) is used to compute the particle displacements. All particles share the same
mass. The time step is dynamically estimated to satisfy a small Courant number and a high Peclet number at
each nonempty grid cell, that is, Cu = vΔt/Δx < 0.1 and Pe = Δx2/2DΔt > 10, where Δt is the time step, Δx is
the cell size, v is the norm of the particle velocity, and D is the dominant eigenvalue of the particle dispersion
tensor (D = aℓv).

4.1. Estimation of Concentrations

In this case, we simulate solute transport of a conservative (nonreactive) species moving through the Y(x) het-
erogeneous porous medium. The distribution of particles obtained at t = 300 days (when the solute plume
moved about eight integral scales) is used to analyze the convergence of the concentrations as a function
of the number of particles N. At this time, the numerical particle cloud has developed a complex shape
(Figure 2), which is seen as a worse-case scenario for reconstructing concentrations and their functionals.
For comparison purposes, we consider that the concentrations obtained with N = 1.3 × 107 and reconstructed
with the LR approach are the true solution. We note that all methods lead to this true solution
when N ≈ 1.3 × 107.

The convergence to this solution is then analyzed based on the Integrated Squared Error (ISEp) of the normal-
ized concentrations, defined as

ISEp ¼ ∫ℝd bp xð Þ � p xð Þð Þ2dx; (39)

where bp is the estimated normalized concentration, and p is the reference value. Figure 3 offers a graphical
comparison of the estimated concentrations obtained with the B, GI, and LR methods in a specific part of the
domain for N = 1.3 × 104 particles. Note that the part of the domain shown and the simulation time in
Figures 1 and 3 are the same. Even though the reduction of noise and oversmoothing from B to GI is visually
more obvious than from GI to LR, the LR method resulted in a stronger reconstruction of details. We attribute
this gain to the adaptability of the kernel function, which can adapt its size and locally elongate its shape
along the direction of minimum curvature.

Figure 4a shows the ISEp as a function of the number of particles for the different methods employed. For
comparison purposes, the ISEp is presented as a relative quantity, that is, the ratio of ISEp to the values

obtained with the GI method, denoted as ISEGIp . Therefore, the convergence of the GI method cannot be

directly seen from this figure. Yet we note that the GI method was found to converge to the true solution with
a power law behavior of type ISEp ∝ N�0.56, which agrees roughly with the theoretical convergence of the
AMISE given by AMISE ∝ N�4/(d + 4) (e.g., Härdle, 1991). Results shown in Figure 4a demonstrate that the
ISEpwas substantially reduced by the use of local kernel approaches. In general, this reduction improved with
the complexity of the kernel approach. Most importantly, the convergence rates of the local approaches (LI,
LD, and LR) were faster than their global equivalents, leading to strong differences when N > 104. The B
method is also shown in this figure to illustrate the contrast against the traditional method. In this case, since
an arbitrary-fixed support volume was used, results display the existence of a number of particles N for which
that specific bin size was optimal at that moment in time. In any case, the estimation error was always signif-
icantly larger than the one given by all kernel approaches.

To identify where this error reduction is taking place in the domain, we analyze the cumulative integrated
squared errors, CISEp(q), obtained at different thresholds of concentrations q, defined as

CISEp qð Þ ¼ ∫
ℝd

bp xð Þ � p xð Þð Þ2 H q� p xð Þð Þ dx; (40)

whereH is the Heaviside step function. CISEp(q) can be seen as the partial integration of the squared errors in
the region of concentrations below the threshold, q. This permits to identify the regions of the concentrations
with larger errors.

Figure 4b shows the ratio CISEp=CISEGIp as a function of q/pmax, for N = 1.6 × 106. CISEGIp refers to the results

obtained with the GI method, and pmax is the maximum density of the reference distribution. The ratio
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CISEp=CISEGIp provided by the local kernel approaches displayed an important increase after q/pmax ≈ 0.1,

then reached a local maximum at about q/pmax ≈ 0.38, and afterward slightly decreased with higher
threshold values. This indicates that the error reduction seen in local approaches was particularly
important in regions with high and low density of particles. We conclude then that local kernels can
better reproduce the extreme values of concentrations, including those that typically occur at the
plume edges, where most of the mixing-driven reactions are taking place in reactive transport. On the
other hand, for the binning approach, errors in low density areas were particularly high with respect to
the GI method. This result illustrates the poor capability of the B method to estimate low
concentrations, and hence, front-mixing-driven reactions.

We then analyze the influence of the Peclet number, Peℓ = IY/aℓ, the degree of heterogeneity, σ2Y, and the nor-
malizedmean travel distance, t〈v〉/IY, one at a time, on the particle support volume estimated with the LD and
GD approaches. The number of particles and the ratio of local dispersivities are maintained constant as
N = 1.6 × 106 and at/aℓ = 0.1, respectively. The impact of σ2Y is analyzed by rescaling the random field by a
constant factor. The differences are quantified through two normalized error indexes,

ϵh ¼
∑Nα¼1 hα;LD � hGD

� �2h i1
2

∑Nα¼1hα;LD
; ϵs ¼

∑Nα¼1 s1;α;LD � s1;GD
� �2h i1

2

∑Nα¼1s1;α;LD
: (41)

Figure 3. Graphical comparison of the estimation of p(x) in a specific region of the model domain at t = 300 days, obtained
by three different density estimators. The Local Rotated method (bottom) is proposed in this work.
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Figure 5 compares the distribution of the scaling and the elongation parameters {h, s1} estimated within the
solute plume by the LD and GDmethods for different problem conditions. The spatial distribution of particles
and the error indexes are also shown for completeness.

In general, results indicate that the net roughness (i.e., the degree of curvature of the concentrations; see
equations (23)–(25)) controls the scale of the particle support volume. At high Peℓ and σ2Y , solute transport
is strongly dominated by advection, displaying complex and irregular concentration structures. As a result,
h becomes small to properly represent the details. As the solute plume grows with time, resulting from a uni-
form injection in a heterogeneous medium, the particle support volume (scale and elongation) also grows
with time to better represent the deformation of the solute bodies under advection-dominated transport.

The spatial variability of the net roughness controls the spatial variability of hα within the solute plume in the
LD approach. This can be seen by noticing that ϵh increases with σ2Y and travel times. On the other hand, the
dependency of ϵh on Peℓ is complex, resulting from two sources of spatial variability; one attributed to the dif-
ferences in local dispersion and another to the differences in solute plume stretching due to advection.

The elongations s1 of the kernel function estimated with the GD and the LD methods show a clear systematic
discrepancy. The LD method can identify the local longitudinal fingers of the solute plume, whereas the GD
method can only describe the general behavior of the solute plume concentrations but not their details. For
this reason, ϵs was particularly high at early stages of the plume deformation.

4.2. Estimation of Reaction Rates

We simulate solute transport with biodegradation through the previously generated Y(x) field. The setup of
the flow and transport problem is the same as before, but we consider two chemical species undergoing an
irreversible bimolecular reaction of type A + B→ C. Transport is described by the advection-dispersion equa-
tion with a degradation term,

∂cs
∂t

¼ �v∇cs þ ∇· D∇csð Þ � r; s ¼ A; B; (42)

∂cC
∂t

¼ �v∇cC þ ∇· D∇cCð Þ þ r: (43)

The initial solute distribution is now divided into two halves, each containing 100 mol (0.8 mol/m3) of one of
the reactants (A and B), to simulate a sharp interface at t = 0 (see Figure 6). Initially, the concentration of C is 0,

Figure 4. (a) ISE in the density estimation as defined in (39), relative to the Global Isotropic method, for different numbers
of particles N and (b) the Cumulative ISE in the density estimation as defined in (40), relative to the Global Isotropic
method, as a function of the threshold q, relative to the domain’s maximum true density. The legend shows the acronyms
of the tested approaches (see Figure 2). ISE = Integrated Squared Error.
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and the same number of A and B particles are uniformly distributed with equal mass in both halves, that is,
NA = NB = N/2. The total simulated time is 830 days. The reaction rate follows a double Monod kinetic model
with limited conditions caused by simultaneously high concentrations of the electron donor (A) and the
electron acceptor (B),

r ¼ kf
cA

KA þ cA

cB
KB þ cB

; (44)

where the subscripts A, B, and C denote the chemical species. We set the kinetic constants as
KA = 1.67 mol/m3, KB = 0.0156 mol/m3, and kf = 0.003 mol·m�3·day�1. For each time step Δt of the ran-
dom walk simulation, the probability of reaction of a given particle Aα during the time interval [t, t + Δt]
is determined by

Pt Aα→CγjΔt
� � ¼ kf Δt cB XA

α ; t
� �

g cA XA
α ; t

� �
; cB XA

α ; t
� �� �

; (45)

where cA XA
α ; t

� �
and cB XA

α ; t
� �

are the concentrations of the species A and B obtained at the particle position
XA
α (here the chemical species is indicated as a superscript) at time t, estimated from the aforementioned

methods, and g is the compensation function, written here as

g cA; cBð Þ ¼ kf
1

KA þ cA

1
KB þ cB

: (46)

Equation (45) provides an efficient simplification of the probability of reaction previously determined by Sole-
Mari et al. (2017). Further details of this simplification are given in the Appendix A.

We note that significant changes in ψα and nα in (22) typically occur at a much slower pace than solute trans-
port. Consequently, the optimization of the support volume (19) does not need to be performed at every time

Figure 5. Box plots of the distribution of h and s1 in the LD (blue) and GD (red) approaches for different problem condi-
tions. Discrepancy indexes and the distribution of particles associated with extreme cases are also provided.
GD = Global Diagonal; LD = Local Diagonal.
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step. Here, in order to improve computational efficiency, we found that the following time frequency ΔtH for
kernel optimization with γ = 2.5 provided accurate results,

ΔtH ¼ γmin
Δx
v
;
Δx2

2D

� �
; (47)

where v is the highest particle velocity norm and D = aℓv.

The subsequent analysis focuses on the estimation error of the probability of reaction. For this, we use the
normalized reaction rate,

rP ¼ � 1
cA

∂cA
∂t

; (48)

This quantity can be estimated at each particle location XA
α at any given time t,

rP≅
1
Δt

Pt Aα→CγjΔt
� �

; (49)

which is directly proportional to the probability of reaction of an A-particle.

Then, we compare the time evolution of the cumulative distribution function of rP obtained with the different
estimation techniques as a function of N. A global measure of error is defined based on the Relative Root
Integrated Squared Error of the reaction rate (RRISEr):

RRISEr ¼ ∫∞0 ∫
1
0 brP β; tð Þ � rP β; tð Þð Þ2dβdt
∫∞0 ∫

1
0 rP β; tð Þð Þ2dβdt

 !1
2

; (50)

where rP(β, t) andbrP β; tð Þ are, respectively, the reference and estimated rP values for which the corresponding
cumulative distribution of rP obtained at time t is equal to β, for 0 < β < 1. The value of RRISEr can be

Figure 6. Particle plumes corresponding to species A, B, and C at different times in the reactive simulation addressed in
section 4.2. In the background, the log-conductivity field Y(x).
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understood as the relative standard error involved in the estimation of the particle reaction probabilities.
Here the reference rP values are calculated from the random walk solution obtained with N = 1.6 × 106

and interpreted with the LR approach.

Figure 7 shows RRISEr as a function of N and the central processing unit (CPU) time. The local kernel
approaches exhibited a substantial increase in accuracy and a faster convergence rate with N and CPU time
compared with their global equivalents. As expected, the estimation error of the Binning method was the
highest, displaying a decreasing rate of convergence with increasing N. As a result, the method became
highly inefficient for simulating reactions. Importantly, for a typical number of particles in RWPT simulations
(N > 5 × 104), the presented local kernel approaches were computationally efficient. That is, the local kernel
approaches required less CPU time to reach the same level of accuracy, because fewer particles were needed
to obtain similar results.

5. Conclusions

The definition of the particle support volume is crucial for simulating reactive transport with Lagrangian
methods as it dictates the interaction among particles. In this paper, we have presented a novel approach
to select the optimal particle support volume, represented by the bandwidth matrix of a kernel function, in
random walk models of reactive transport. In our method, each particle is equipped with a different support
volume that locally adapts its shape and size based on the neighboring particle distribution. For this, we have
adapted the classical principles of bandwidth selection in KDE theory to find the optimal particle support
volume in a local window environment. The kernel bandwidth matrix Hα defining the αth particle support
has been decomposed into a rotation matrix Vα, a shape matrix Sα, and a scaling parameter hα. Under
different assumptions of Vα and parametrizations of Sα, we have obtained closed-form expressions of hα
and Sα. In advection-dominated transport, we have proposed to align Vα along the local velocities.
Numerical simulations in a randomly heterogeneous porous medium have shown that this method results
in a strong reconstruction of details, which is particularly important at the edges of the solute plumes where
a small density of particles coexist with abrupt changes in concentrations. This gain has been mainly
attributed to the local adaptability of the support volume, which can adjust its size and locally elongate its
shape along the direction of minimum curvature where small changes in concentration gradients occur.
These local kernel approaches have been demonstrated to substantially increase accuracy and improve
convergence to the true solution with the number of particles. Importantly, in reactive transport RWPT
simulations performed with a typical number of particles (N > 104), these local kernel methods have been
shown to be computationally efficient, yielding better results than traditional histogram or global kernel
methods for the same computational effort.

Figure 7. RRISE of the reaction rates as defined in (50), with respect to (a) the number of particles N and (b) the normalized
CPU time (where “1” corresponds to the CPU time obtained using the LR method with 3.2 × 105 particles). The legend
shows the acronyms of the tested approaches (see Figure 2). RRISE = Relative Root Integrated Squared Error.
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Appendix A: Kernel-Based Computation of Chemical Reactions in RWPT
In this appendix, we review and simplify the kernel-based random walk methodology for reactive transport
presented in Sole-Mari et al. (2017). We consider an irreversible chemical reaction involving reactants A and B
which turn into product C, with stoichiometric coefficients χA, χB, χC:

χAAþ χBB→χCC; (A1)

with a reaction rate r(x, t) that depends on the reactants’ concentrations:

r x; tð Þ ¼ 1
χC

∂cC x; tð Þ
∂t

¼ kf cA x; tð ÞcB x; tð Þg cA x; tð Þ; cB x; tð Þð Þ; (A2)

where kf is the forward reaction coefficient, and g(cA, cB) is a function that describes the nonbilinearity of the
reaction. In pure bimolecular reactions, g = 1. Sole-Mari et al. (2017) suggested that the expression for the
probability of a reaction event for particle Aα at time t and for a time step Δt is

Pt Aα→Cγ Δtj� �
¼ χAkf

ϕ XAB
αβ

� �Δt ∑NB

β¼1
mB

βW XA
α � XB

β ;H
A
α þ HB

β

� �
g cA XAB

αβ ; t
� �

cB XAB
αβ ; t

� �� �
; (A3)

where HA
α and HB

β being the optimal kernel bandwidth matrices for Aα and Bβ and

XAB
αβ ¼ HA�1

α þ HB�1

β

� ��1
HA�1

α XA
α þ HB�1

β XB
β

� �
: (A4)

An analogous expression defines the probability of reaction of Bβ. Values for cA XAB
αβ ; t

� �
and cB XAB

αβ ; t
� �

are

obtained by KDE. In order to ensure deterministic compliance with the stoichiometry, as described in
Sole-Mari et al. (2017), the probabilities of reaction are only estimated for reactant A. Then, upon occurrence
of reaction for particle Aα, the closest Bβ particle reacts with it. The mass assigned to the resulting Cγ particle
must fulfill total mass conservation. As an alternative to stochastic particle annihilation (which is the approach
used in this paper), expression (A3) can be used for the calculation of deterministic mass variations on parti-
cles as in Bolster et al. (2016), by computing:

ΔmA
α ¼ P Aα→CγjΔt

� �
mA

α : (A5)

We refer to the original paper for the complete derivation of expression (A3) and for implementation details.

For this work, we simplify the method to improve efficiency by representing the Aα particle with a Dirac Delta

kernel function (i.e., setting HA
α→0) in (A3). This is equivalent to assuming that the position of particle Aα is

deterministic in the reaction step. Then XAB
αβ→XA

α and expression (A3) simplifies to

Pt Aα→CγjΔt
� � ¼ χA kf Δt cB XA

α ; t
� �

g cA XA
α ; t

� �
; cB XA

α ; t
� �� �

: (A6)

Appendix B: Derivation of the AMISE and ALMISEα Expressions
In this appendix we derive expressions (10) and (16), corresponding to the Asymptotic Mean Integrated
Squared Error and the Asymptotic Local Mean Integrated Squared Error, respectively. To do so, we first deter-
mine the Asymptotic Mean Squared Error AMSE(x,H) given a constant H:

Starting from (1),

bp xð Þ ¼ 1
N

∑
N

α¼1
WH x� Xα;Hð Þ; (B1)

with each Xα being a sampled value from the true distribution p(x). The expected value of bp xð Þ is
E bp xð Þf g ¼ E WH x� Xα;Hð Þf g ¼ ∫

ℝd
WH x� y;Hð Þp yð Þdy¼

¼ ∫
ℝd

Hj j�1
2W H�1

2 x� yð Þ
� �

p yð Þdy:

(B2)
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We perform a change of variable with u≡H�1
2 y�xð Þ :

∫
ℝd

Hj j-12W H-
1
2 x� yð Þ

� �
p yð Þdy ¼ ∫

ℝd
Hj j-12W uð Þp xþ H

1
2u

� �
Ju H

1
2u

� ���� ���du ¼

∫
ℝd
W uð Þp xþ H

1
2u

� �
du;

(B3)

where Ju H
1
2u

� ���� ���¼ Hj j12 is the Jacobian determinant of H
1
2u w.r.t. u. Expanding around x:

∫
ℝd
W uð Þp xþH

1
2u

� �
du ¼

¼ ∫
ℝd
W uð Þ p xð Þ þ ∂p xð Þ

∂xT
H

1
2uþ 1

2
uTH

1
2
∂2p xð Þ
∂x ∂xT

H
1
2uþ03

� 	
du ¼

¼ p xð Þ þ 1
2
∫
ℝd
W uð ÞuTH

1
2
∂2p xð Þ
∂x ∂xT

H
1
2uþ04;

(B4)

where Ok is the error associated with the truncation of the Taylor expansion terms of order ≥k. Therefore, we
have the following asymptotic expression for E bp xð Þf g as∣H ∣ → 0:

E bp xð Þf g≈p xð Þ þ 1
2
∫
ℝd
W sð ÞuTH

1
2
∂2p xð Þ
∂x∂xT

H
1
2u; (B5)

and the estimation bias can be written as

Bias bp xð Þf g ¼ E bp xð Þf g � p xð Þ≈ 1
2
∫
ℝd
W uð ÞuTH

1
2
∂2p xð Þ
∂x∂xT

H
1
2udu: (B6)

Defining

F≡H
1
2
∂2p xð Þ
∂x∂xT

H
1
2; (B7)

we obtain

1
2
∫
ℝd
W uð ÞuTH

1
2
∂2p xð Þ
∂x∂xT

H
1
2udu ¼ 1

2
∫
ℝd
W uð ÞuiFijujdu ¼

1
2
Fij ∫

ℝd
uiujW uð Þdu ¼ 1

2
μ2 Wð ÞFii ¼ 1

2
μ2 Wð Þtr Fð Þ:

(B8)

Repeated subindices in (B8) follow the Einstein notation. Introducing (B7) into (B8),

1
2
μ2 Wð Þtr Fð Þ ¼ 1

2
μ2 Wð Þtr H

1
2
∂2p xð Þ
∂x∂xT

H
1
2

� �
¼ 1
2
μ2 Wð Þtr H

∂2p xð Þ
∂x∂xT

� �
; (B9)

we obtained an asymptotic expression of the estimation bias:

Bias bp xð Þf g≈ 1
2
μ2 Wð Þtr H

∂2p xð Þ
∂x∂xT

� �
: (B10)

Now, for the estimation variance, we have that

Var bp xð Þf g ¼ 1
N
Var WH x� Xα;Hð Þf g ¼ 1

N
E W2

H x� Xα;Hð Þ� 
� E2 bp xð Þf g� �
: (B11)

Introducing (B5) into (B11), we have

Var bp xð Þf g ¼ 1
N

∫
ℝd
W2

H x� y;Hð Þp yð Þdy� 1
N

p xð Þ þ O2ð Þ2: (B12)
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Performing a change of variable, u≡H�1
2 y�xð Þ, on the integral in (B12):

∫
ℝd
W2

H x� y;Hð Þp yð Þdy¼ ∫
ℝd

Hj j-12W2 uð Þp xþ H
1
2u

� �
du¼

¼ ∫
ℝd

Hj j-12W2 uð Þ p xð Þ þ ∂p xð Þ
∂xT

H
1
2uþ02

� 	
du ¼ Hj j�1

2R Wð Þp xð Þ þ 02:

(B13)

Introducing (B13) into (B12), we obtain

Var bp xð Þf g ¼ 1
N

Hj j�1
2 R Wð Þp xð Þ þ O2

� �
� 1
N

p xð Þ þ O2ð Þ2: (B14)

As ∣H ∣ → 0 and N Hj j12→∞, the asymptotic expression for the estimation variance becomes

Var bp xð Þf g≈ R Wð Þ
N Hj j1=2

p xð Þ: (B15)

Given thatMSE x;Hð Þ ¼ Var bp xð Þf g þ Bias2 bp xð Þf g and knowing (B10) and (B15), we can write the Asymptotic
Mean Squared Error expression as

AMSE x;Hð Þ≈ R Wð Þ
N Hj j12

p xð Þ þ 1
4
μ2
2 Wð Þtr2 H

∂2p xð Þ
∂x∂xT

� �
: (B16)

Integration over x yields the AMISE expression given in (10):

AMISE Hð Þ ¼ ∫
ℝd
AMSE x;Hð Þdx ¼ R Wð Þ

N Hj j12
þ 1
4
μ2
2 Wð Þ ∫

ℝd
tr2 H

∂2p xð Þ
∂x∂xT

� �
dx: (B17)

Assuming that Hα does not change substantially over the local environment defined by H0, we can rewrite
the weighted integration defined in (15) in terms of (B16) and integrate to obtain the expression given in (16):

ALMISEα Hαð Þ ¼ ∫
ℝd
AMSE x;Hαð ÞWH x� Xα;H0ð Þdx ¼

¼ 1

N2 nα ρð ÞR Wð Þ Hαj j�1
2 þ 1

4
μ2
2 Wð ÞTα ρ;Hαð Þ

� �
;

(B18)

where ρ(x) = Np(x) and

Tα ρ;Hαð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ tr2 Hα
∂2ρ

∂x∂xT

� �
dx; (B19)

nα ρð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ ρ xð Þ dx: (B20)

Appendix C: Derivation of Sα for the LD and LR case
In this appendix we derive expressions (26) and (27) given in section 3.1. Starting from expression (22):

ALMISE hα; s1;…; sd�1ð Þ≈ 1

N2

nα ρð Þ R Wð Þ
hdα

þ h4α
4
μ2
2 Wð Þ Tα ρ; Sαð Þ

 !
; (C1)

where

Tα ρ; Sαð Þ ¼ ∑
d

i¼1
∑
d

j¼1
sisjψij ρð Þ; (C2)

ψij ρð Þ ¼ ∫ℝdWH x� Xα;H0ð Þ Gii xð ÞGjj xð Þdx: (C3)
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By taking ∂ALMISE/∂hα = 0 and ∂ALMISE/∂sk = 0 for k = 1, …, d � 1, we obtain the system of equations:

∂ALMISE
∂hα

¼ 1

N2 �d
nα ρð Þ R Wð Þ

hdþ1
α

þ h3αμ
2
2 Wð Þ Tα ρ; Sαð Þ

 !
¼ 0; (C4)

∂ALMISE
∂sk

¼ h4α μ
2
2 Wð Þ

2N2 ∑
d

i¼1
siψik

� �
� 1
sk

∏
d�1

i¼1

1
si

� �
∑
d

i¼1
siψid

� �� 	
¼ 0; (C5)

which simplifies to

hα ¼ d R Wð Þnα ρð Þ
μ2
2 Wð ÞTα ρ; Sαð Þ

� � 1
dþ4

; (C6)

sk ∑
d

i¼1
siψik ¼ ∏

d�1

i¼1

1
si

� �
∑
d

i¼1
siψid; for k ¼ 1;…; d � 1: (C7)

Expression (C6) is given in (25), and expression (C7) is handled differently for each value of d > 1.

Case d = 2.

In this case, (C7) can be rewritten as

s21ψ11 ¼
1
s21
ψ22: (C8)

The unique positive solution is

s1 ¼ ψ22

ψ11

� �1
4

; s2 ¼ ψ11

ψ22

� �1
4

; (C9)

which is the one given in (26).

Case d = 3.

In this case, (C7) can be rewritten as

s21ψ11 þ s1s2ψ12 ¼
1
s1
ψ23 þ

1
s21s

2
2
ψ33;

s22ψ22 þ s1s2ψ12 ¼
1
s2
ψ13 þ

1
s21s

2
2
ψ33:

8>><>>: (C10)

In principle, this system does not have a simple solution, but it becomes much easier to handle if we assume
that the “cross” terms ψij, i ≠ j, have a much smaller influence on the resulting optimal bandwidth shape com-
pared to ψii. When that condition is fulfilled, we have

s1 ¼ ψ22ψ33

ψ2
11

� �1
6

; s2 ¼ ψ11ψ33

ψ2
22

� �1
6

; s3 ¼ ψ11ψ22

ψ2
33

� �1
6

: (C11)

which is the result given in (27). Note that, while Sα in this case may not be the exact optimal bandwidth
shape, hα will still be the exact optimal scale for that given Sα.

An alternative approach for d = 3 would be to parametrize Sα with only one parameter s1 (which implies

choosing a preferential elongation direction), and then s2 ¼ s3 ¼ s�1=2
1 . It can be easily shown that the mini-

mization of the ALMISEα in this case yields

s1 ¼
8ψ11 ψ22 þ ψ33 þ 2ψ23ð Þ þ ψ12 þ ψ13ð Þ2
h i1

2 � ψ12 þ ψ13ð Þ
4ψ11

0B@
1CA

2
3

; (C12)
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s2 ¼ s3 ¼ 4ψ11

8ψ11 ψ22 þ ψ33 þ 2ψ23ð Þ þ ψ12 þ ψ13ð Þ2
h i1

2 � ψ12 þ ψ13ð Þ

0B@
1CA

1
3

: (C13)

And substituting into (C2),

Tα ¼ ψ11s
2
1 þ 2 ψ12 þ ψ13ð Þs121 þ ψ22 þ ψ33 þ 2ψ23ð Þs�1

1 : (C14)

It is worth noting that, under the same assumption of (C12), that is, by neglecting the effect of ψij, i ≠ j, on the
optimal shape matrix Sα, we would get a very similar expression for s1:

s1 ¼ ψ22 þ ψ33

2ψ11

� �1
3

: (C15)
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