104 research outputs found

    A Review of Hashing based Image Copy Detection Techniques

    Get PDF
    Images are considered to be natural carriers of information, and a large number of images are created, exchanged and are made available online. Apart from creating new images, the availability of number of duplicate copies of images is a critical problem. Hashing based image copy detection techniques are a promising alternative to address this problem. In this approach, a hash is constructed by using a set of unique features extracted from the image for identification. This article provides a comprehensive review of the state-of-the-art image hashing techniques. The reviewed techniques are categorized by the mechanism used and compared across a set of functional & performance parameters. The article finally highlights the current issues faced by such systems and possible future directions to motivate further research work

    Hough transform generated strong image hashing scheme for copy detection

    Get PDF
    The rapid development of image editing software has resulted in widespread unauthorized duplication of original images. This has given rise to the need to develop robust image hashing technique which can easily identify duplicate copies of the original images apart from differentiating it from different images. In this paper, we have proposed an image hashing technique based on discrete wavelet transform and Hough transform, which is robust to large number of image processing attacks including shifting and shearing. The input image is initially pre-processed to remove any kind of minor effects. Discrete wavelet transform is then applied to the pre-processed image to produce different wavelet coefficients from which different edges are detected by using a canny edge detector. Hough transform is finally applied to the edge-detected image to generate an image hash which is used for image identification. Different experiments were conducted to show that the proposed hashing technique has better robustness and discrimination performance as compared to the state-of-the-art techniques. Normalized average mean value difference is also calculated to show the performance of the proposed technique towards various image processing attacks. The proposed copy detection scheme can perform copy detection over large databases and can be considered to be a prototype for developing online real-time copy detection system

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Feature Reduction and Representation Learning for Visual Applications

    Get PDF
    Computation on large-scale data spaces has been involved in many active problems in computer vision and pattern recognition. However, in realistic applications, most existing algorithms are heavily restricted by the large number of features, and tend to be inefficient and even infeasible. In this thesis, the solution to this problem is addressed in the following ways: (1) projecting features onto a lower-dimensional subspace; (2) embedding features into a Hamming space. Firstly, a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) is proposed for discriminant analysis of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. Extensive experimental validation on three benchmark datasets demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification. Secondly, for action recognition, a novel binary local representation for RGB-D video data fusion is presented. In this approach, a general local descriptor called Local Flux Feature (LFF) is obtained for both RGB and depth data by computing the local fluxes of the gradient fields of video data. Then the LFFs from RGB and depth channels are fused into a Hamming space via the Structure Preserving Projection (SPP), which preserves not only the pairwise feature structure, but also a higher level connection between samples and classes. Comprehensive experimental results show the superiority of both LFF and SPP. Thirdly, in respect of unsupervised learning, SPP is extended to the Binary Set Embedding (BSE) for cross-modal retrieval. BSE outputs meaningful hash codes for local features from the image domain and word vectors from text domain. Extensive evaluation on two widely-used image-text datasets demonstrates the superior performance of BSE compared with state-of-the-art cross-modal hashing methods. Finally, a generalized multiview spectral embedding algorithm called Kernelized Multiview Projection (KMP) is proposed to fuse the multimedia data from multiple sources. Different features/views in the reproducing kernel Hilbert spaces are linearly fused together and then projected onto a low-dimensional subspace by KMP, whose performance is thoroughly evaluated on both image and video datasets compared with other multiview embedding methods

    Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.

    Get PDF
    In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and the excessive number of weights are often deliberately built in into their design. This flexibility and performance usually come with high computational and memory demands both during training and inference. In addition, insight into the mappings DNN models perform and human ability to understand them still remain very limited. This dissertation addresses some of these limitations by balancing three conflicting objectives: computational/ memory demands, interpretability, and accuracy. This dissertation first introduces some unsupervised feature learning methods in a broader context of dictionary learning. It also sets the tone for deep autoencoder learning and constraints for data representations in light of removing some of the aforementioned bottlenecks such as the feature interpretability of deep learning models with nonnegativity constraints on receptive fields. In addition, the two main classes of solution to the drawbacks associated with overparameterization/ over-complete representation in deep learning models are also presented. Subsequently, two novel methods, one for each solution class, are presented to address the problems resulting from over-complete representation exhibited by most deep learning models. The first method is developed to achieve inference-cost-efficient models via elimination of redundant features with negligible deterioration of prediction accuracy. This is important especially for deploying deep learning models into resource-limited portable devices. The second method aims at diversifying the features of DNNs in the learning phase to improve their performance without undermining their size and capacity. Lastly, feature diversification is considered to stabilize adversarial learning and extensive experimental outcomes show that these methods have the potential of advancing the current state-of-the-art on different learning tasks and benchmark datasets

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget

    Learning Multimodal Structures in Computer Vision

    Get PDF
    A phenomenon or event can be received from various kinds of detectors or under different conditions. Each such acquisition framework is a modality of the phenomenon. Due to the relation between the modalities of multimodal phenomena, a single modality cannot fully describe the event of interest. Since several modalities report on the same event introduces new challenges comparing to the case of exploiting each modality separately. We are interested in designing new algorithmic tools to apply sensor fusion techniques in the particular signal representation of sparse coding which is a favorite methodology in signal processing, machine learning and statistics to represent data. This coding scheme is based on a machine learning technique and has been demonstrated to be capable of representing many modalities like natural images. We will consider situations where we are not only interested in support of the model to be sparse, but also to reflect a-priorily known knowledge about the application in hand. Our goal is to extract a discriminative representation of the multimodal data that leads to easily finding its essential characteristics in the subsequent analysis step, e.g., regression and classification. To be more precise, sparse coding is about representing signals as linear combinations of a small number of bases from a dictionary. The idea is to learn a dictionary that encodes intrinsic properties of the multimodal data in a decomposition coefficient vector that is favorable towards the maximal discriminatory power. We carefully design a multimodal representation framework to learn discriminative feature representations by fully exploiting, the modality-shared which is the information shared by various modalities, and modality-specific which is the information content of each modality individually. Plus, it automatically learns the weights for various feature components in a data-driven scheme. In other words, the physical interpretation of our learning framework is to fully exploit the correlated characteristics of the available modalities, while at the same time leverage the modality-specific character of each modality and change their corresponding weights for different parts of the feature in recognition

    Visual scene recognition with biologically relevant generative models

    No full text
    This research focuses on developing visual object categorization methodologies that are based on machine learning techniques and biologically inspired generative models of visual scene recognition. Modelling the statistical variability in visual patterns, in the space of features extracted from them by an appropriate low level signal processing technique, is an important matter of investigation for both humans and machines. To study this problem, we have examined in detail two recent probabilistic models of vision: a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have been widely used for visual object classification and scene analysis tasks before. This research highlights that these models on their own are not plausible enough to perform the classification task, and suggests Fisher kernel as a means of inducing discrimination into these models for classification power. Our empirical results on standard benchmark data sets reveal that the classification performance of these generative models could be significantly boosted near to the state of the art performance, by drawing a Fisher kernel from compact generative models that computes the data labels in a fraction of total computation time. We compare the proposed technique with other distance based and kernel based classifiers to show how computationally efficient the Fisher kernels are. To the best of our knowledge, Fisher kernel has not been drawn from the RBM before, so the work presented in the thesis is novel in terms of its idea and application to vision problem

    Entanglement Distillation; A Discourse on Bound Entanglement in Quantum Information Theory

    Get PDF
    PhD thesis (University of York). The thesis covers in a unified way the material presented in quant-ph/0403073, quant-ph/0502040, quant-ph/0504160, quant-ph/0510035, quant-ph/0512012 and quant-ph/0603283. It includes two large review chapters on entanglement and distillation.Comment: 192 page
    • …
    corecore