
Copyright

by

Ruizhe Zhang

2023

1

The Dissertation Committee for Ruizhe Zhang
certifies that this is the approved version of the following dissertation:

Quantum Meets Optimization and Machine Learning

Committee:

Dana Moshkovitz, Supervisor

Scott Aaronson

Nai-Hui Chia

Georgios-Alexandros Dimakis

Nick Hunter-Jones

Eric Price

2

Quantum Meets Optimization and Machine Learning

by

Ruizhe Zhang

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2023

3

Acknowledgments

First, I would like to express my deepest gratitude to my Ph.D. advisor, Dana

Moshkovitz, for all the guidance and support over the last five years. Dana is a fan-

tastic advisor who’s been so kind and helpful with her invaluable advice and tailored

advising style to suit her students’ needs. She allowed me to explore diverse research

interests freely. Her enthusiasm, persistence, and vision in the pursuit of challenging

and fundamental problems in theoretical computer science have greatly inspired me.

Dana encouraged me to continue my academic journey, and she has always been an

excellent role model for me in being an exceptional researcher as well as a supportive,

open-minded advisor.

I also want to thank Scott Aaronson, who opened the doors for me to the

world of quantum computing through his fascinating and inspiring lectures. He has

been so generous with his brilliant ideas and insightful observations as a mentor and

collaborator. We had a lot of fun in our research discussions and weekly quantum

group meetings. And his book, Quantum Computing Since Democritus, made a great

impression on me during my undergraduate studies, and further influenced my own

research trajectory.

I wish to express my gratefulness to Nai-Hui Chia, Alexandros G. Dimakis,

Nick Hunter-Jones, Eric Price, together with Dana and Scott, to serve as my thesis

committee.

I’ve been so fortunate to be able to work with so many talented and amazing

coauthors over the last five years, including Scott Aaronson, Josh Alman, Nai-Hui

Chia, Andrew M. Childs, Sitan Chen, Chi-Ning Chou, Yichuan Deng, Daniel Stilck

França, Jason Gaitonde, Yeqi Gao, Max Hopkins, Baihe Huang, Shunhua Jiang, Ziyu

Jiang, Peter D. Johnson, Tali Kaufman, Tongyang Li, Jiehao Liang, Yingbin Liang,

Han-Hsuan Lin, Jiahui Liu, Jin-Peng Liu, Qipeng Liu, Shachar Lovett, Andrew C.

4

Potter, Lianke Qin, Zhao Song, Baocheng Sun, Runzhou Tao, Chunhao Wang, Guom-

ing Wang, Zhangyang (Atlas) Wang, Omri Weinstein, Hongru Yang, Shuo Yang, Xin

Yang, Mark Zhandry, Hengjie Zhang, Jiayu Zhang, Lichen Zhang, Xinzhi Zhang,

Yuxuan Zhang, Shuchen Zhu, Danyang Zhuo.

I wish to express my gratitude to my supervisor at Fudan University, Haibin

Kan, who guided me to the world of TCS and spurred my desire to conduct research

in this area. Further, I was fortunate to spend an enriching summer as an undergrad

research intern at the Shanghai University of Finance and Economics, working under

the amazing guidance of Richard Peng and Jin-Yi Cai.

I would like to thank Peter D. Johnson and Guoming Wang (now at ORCA

Computing), my mentors for two research internships at Zapata Computing, Inc.

Collaborating with them on the early fault-tolerant quantum algorithms was a highly

enjoyable experience. I am also grateful to Zapata’s generous sponsorship of my travel

to QIP 2021 and APS March Meeting 2022.

I would like to thank the computer science department and the theory group

at UT Austin. I’m very grateful to have been a part of this community. I had a lot of

fun with the people here. I wish to thank all my office mates over the past five years.

Apart from the ones already mentioned above, this includes Joshua Cook, Sabee

Grewal, Shivam Gupta, Kuan-Yi Ho, Shih-Han Hung, William Hoza, Vishnu Iyer,

Michael Jaber, Akhil Jalan, Siddhartha Jain, Niels Kornerup, William Kretschmer,

Vinayak Kumar, Lin Lin Lee, Fu Li, Jiawei Li, Daniel Liang, Vignesh Manoharan,

Geoffrey Mon, Justin Oh, Patrick Rall, Ronak Ramachandran, Adrian Trejo Nunez,

Zhiyang Xun, Justin Yirka, Joey Zhou.

I am especially thankful to Zhao Song for his substantial help in my research.

I’ve had the privilege of knowing this guy since the final year of his Ph.D. at UT

Austin, and he is, without a doubt, one of the most hard-working and productive

researchers in TCS that I’ve encountered. Zhao has shared invaluable advice on

research methodologies with me, introduced me to the fields of optimization and

5

machine learning theory, and has since become one of my most frequent collaborators.

Outside of research, playing badminton has been a huge part of my life and a

constant source of joy at UT Austin. I would like to thank all my badminton mates.

A very partial list includes Si Chen, William Kretschmer, Simon Lautenbach, Jian

He, Yuefei Huang, Qi Lei, Tianyu Liang, Yuxiang Lin, Jinsong Liu, Ziqi Liu, Hengfa

Lu, Qinlan Luo, Dilin Wang, Yingchen Wang, Yixian Wang, Feng Yuan, Hongming

Zhang, Jiyang Zhang, Weihan Zhang, Yi Zhang, Zhiting Zhu.

Lastly, I wish to extend my thanks to all the loved ones who have stood by

me throughout this journey:

To Peach the cat, your presence has provided an immeasurable amount of joy.

To Ziqi Liu, my beloved fiancée, your endless love has been my anchor in this

journey. I am deeply grateful for your companionship, understanding, patience, and

encouragement. I am truly blessed to have you in my life.

The final thank is reserved for my parents, Gang Zhang and Hong Ma, as well

as my late grandmother, Shaojun Fan. I am forever indebted to your unconditional

support throughout my life and the sacrifices you have made in raising me and shaping

me into who I am today. I’m sorry for not having been able to spend more time with

you in the past five years. To my grandmother, your love continues to inspire me and

live on in every step I take. Thank you all for everything.

6

Abstract

Quantum Meets Optimization and Machine Learning

Ruizhe Zhang, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Dana Moshkovitz

With the advent of the quantum era, what role the quantum computer will

play in optimization and machine learning becomes a natural and salient question.

The development of novel quantum computing techniques is essential to showcase

the quantum advantage in these fields. At the same time, new findings in classical

optimization and machine learning algorithms also have the potential to stimulate

quantum computing research.

In the dissertation, we explore the fascinating connections between quantum

computing, optimization, and machine learning, paving the way for transformative

advances in all three fields. First, on the quantum side, we present efficient quan-

tum algorithms for fundamental problems in sampling, optimization, and quantum

physics. Our results highlight the practical advantages of quantum computing in

these fields. In addition, we introduce new approaches to quantum complexity the-

ory for characterizing the quantum hardness of optimization and machine learning

problems. Second, on the optimization side, we improve the efficiency of the state-

of-the-art classical algorithms for solving semi-definite programming (SDP), Fourier

sensing, dynamic distance estimation, etc. Our classical results are closely inter-

twined with quantum computing. Some of them serve as stepping stones to new

quantum algorithms, while others are motivated by quantum applications or inspired

7

by quantum techniques. Third, on the machine learning side, we develop fast clas-

sical and quantum algorithms for training over-parameterized neural networks with

provable guarantees of convergence and generalization. Furthermore, we contribute

to the security aspect of machine learning by theoretically investigating some poten-

tial approaches to (classically) protect private data in collaborative machine learning

and to (quantumly) protect the copyright of machine learning models. Fourth, we

investigate the concentration and discrepancy properties of hyperbolic polynomials

and higher-order random walks, which could potentially be applied to quantum com-

puting, optimization, and machine learning.

8

Table of Contents

Acknowledgments . 4
Abstract . 7
List of Tables . 29
List of Figures . 30
Chapter 1: Introduction . 32

1.1 Organization . 35
1.2 Our Contributions in Quantum Computing 39

1.2.1 Quantum algorithms for optimization and machine Learning 40
1.2.2 New approaches to quantum complexity theory 50

1.3 Our Contributions in Optimization 53
1.3.1 Semi-definite programming 54
1.3.2 Sparse Fourier signal reconstruction 57
1.3.3 Dynamic distance estimation 61

1.4 Our Contributions in Machine Learning 62
1.4.1 Over-parameterized neural network training 63
1.4.2 Classical protection for private training data 67
1.4.3 Quantum protection for copyrights of machine learning models 70

1.5 Our Contributions in Concentration and Discrepancy 71
1.5.1 Hyperbolic-extensions of concentration and discrepancy . . . 72
1.5.2 Higher-order random walk on expanding posets 77

Part I Quantum Computing 80
Chapter 2: Quantum Speedups of Log-concave Sampling 81

2.1 Introduction . 81
2.2 Preliminaries . 88
2.3 Quantum Algorithm for Log-Concave Sampling 89
2.4 Quantum Algorithm for Estimating Normalizing Constants 93
2.5 Quantum Lower Bound . 96
2.6 Related Work . 97

2.6.1 Classical MCMC methods 97
2.6.2 Quantum methods for sampling and partition function esti-

mation . 99

9

2.7 Tools from Classical MCMC Algorithms 101
2.7.1 ULD and ULD-RMM . 101
2.7.2 Annealing for estimating the normalizing constant 105
2.7.3 Annealing Markov chains are slowly varying 107

2.8 Basic Facts about Quantum Walk 109
2.8.1 Definitions and spectral properties of quantum walk 110
2.8.2 Efficient implementation of quantum walk 115

2.9 Quantum Algorithm for Log-Concave Sampling: Details 117
2.9.1 Quantum inexact ULD and ULD-RMM 118
2.9.2 Quantum MALA . 121

2.10 Quantum Algorithm for Estimating Normalizing Constants: Details . 129
2.10.1 Quantum MALA and annealing 130
2.10.2 Quantum multilevel Langevin algorithms 133

2.11 Proof of the Quantum Lower Bound 139
Chapter 3: Quantum Speedups of Approximately Convex Optimization . . . 141

3.1 Introduction . 141
3.2 Preliminaries . 146

3.2.1 Quantum computing in continuous space 146
3.2.2 Classical and quantum walks 147
3.2.3 Hit-and-Run walk . 148

3.3 Quantum Algorithm for Optimizing Approximately Convex Functions 149
3.4 Quantum Algorithm for Zeroth-Order Stochastic Convex Bandits . . 155
3.5 Classical Approach for Optimizing Approximately Convex Functions 158

3.5.1 Low level: Hit-and-Run for approximate log-concave distribu-
tions . 158

3.5.2 Mid level: rounding into isotropic position 162
3.5.3 High level: simulated annealing 162

3.6 Quantum Speedup for Optimizing Approximately Convex Functions 164
3.6.1 Quantum speedup for low-level 164
3.6.2 Non-destructive rounding in the mid-level 170
3.6.3 Proof of Theorem 3.1 . 172

10

Chapter 4: Early Fault-Tolerant Ground-State Energy Estimation 174
4.1 Introduction . 174

4.1.1 Previous methods for ground state energy estimation 174
4.1.2 Summary of main results . 176
4.1.3 Technical overview . 178
4.1.4 Future directions . 183

4.2 Estimating ground state energy via Gaussian derivative filtering . . . 185
4.2.1 Convolving the spectral measure with a Gaussian derivative

filter . 185
4.2.2 Basic strategy for ground state energy estimation 189
4.2.3 Gaussian derivative filters with bounded band-limits 191

4.3 Complexity of Evaluating the convolution 192
4.3.1 Evaluating the convolution via Hadamard tests 193
4.3.2 Application to Gaussian derivative filters 198

4.4 Main Theorem . 199
4.5 Comparison to the Approach of [LT22] 202

Chapter 5: Early Fault-Tolerant Ground-State Property Estimation 208
5.1 Introduction . 208
5.2 Ground State Property Estimation Problem 211
5.3 An Overview of the Low-Depth Ground State Energy Estimation . . 213
5.4 Algorithm for Commutative Case . 215

5.4.1 Step 1: estimate the initial overlap 216
5.4.2 Step 2: estimate the O-weighted CDF 218
5.4.3 Putting it all together . 222

5.5 Algorithm for General Unitary Observables 223
5.5.1 2-d O-weighted density function and CDF 224
5.5.2 Estimating the 2-d ACDF 228
5.5.3 Putting it all together . 232

5.6 Handling Non-Unitary Observables 233
5.7 Applications . 236

5.7.1 Charge density . 237
5.7.2 Quantum linear system solver 238

5.8 Discussion and Outlook . 241

11

Chapter 6: QAOA for Network-Flow Optimization 247
6.1 Introduction . 247
6.2 Quantizing Network Flow Problems 250

6.2.1 Constraints in flow problems 250
6.2.2 The edge-disjoint path problem 253
6.2.3 The single source shortest path problem 254

6.3 From QAOA to Lattice QED . 256
6.3.1 Lattice QED Hamiltonian . 258
6.3.2 QED-mixer for network flow problems 259
6.3.3 Algorithm description . 266

6.4 Numerical Simulation of Algorithm Performance 267
6.4.1 Comparing mixers . 268
6.4.2 Mixer comparison on SSSP problems 269
6.4.3 EDP on undirected graphs 270

6.5 Discussion . 271
Chapter 7: Quantum Fine-Grained Complexity 275

7.1 Introduction . 275
7.1.1 Proof overview . 280

7.2 Preliminaries . 283
7.2.1 Quantum query model . 284
7.2.2 Quantum subroutine for unstructured searching and minimum

finding . 284
7.2.3 Problem definitions . 285
7.2.4 Fine-grained complexity . 286
7.2.5 The framework for quantum walk search 288

7.3 Quantum Fine-Grained Complexity 290
7.3.1 Quantum fine-grained reduction and QSETH 290
7.3.2 Lower bounds for CP, OV, and BCP in higher dimensions un-

der QSETH . 292
7.3.3 Quantum lower bound for BCP in nearly-constant dimensions

under QSETH . 302
7.4 Closest Pair in Constant Dimension 306

7.4.1 Radix tree for at most one solution 309
7.4.2 Single-shot quantum walk with complicated data structure . 311
7.4.3 Multiple-trial quantum walks with simple data structure . . . 321
7.4.4 Quantum lower bound for CP in constant dimensions 325

12

7.5 Bichromatic Closest Pair in Constant Dimensions 326
7.5.1 Quantum algorithm for (1 + ξ)-BCP 327
7.5.2 Quantum algorithm for solving BCP exactly 332
7.5.3 Quantum lower bound for BCP in constant dimensions 334

7.6 Orthogonal Vectors in Constant Dimensions 335
Chapter 8: Quantum Meta-Complexity . 341

8.1 Introduction . 341
8.1.1 The classical MCSP and its connections to other problems . . 341
8.1.2 Main results and technical overview 342
8.1.3 Discussion and open questions 356

8.2 Preliminaries . 361
8.2.1 Quantum complexity classes 361
8.2.2 Nonuniform quantum circuit complexity classes 362

8.3 Minimum Quantum Circuit Size Problems 363
8.3.1 Problem definitions . 364
8.3.2 Upper bounds for MQCSP 369
8.3.3 Hardness of quantum MCSP 370

8.4 Connections Between MQCSP and Other Problems 377
8.4.1 Cryptography and MQCSP 377
8.4.2 Learning theory . 383
8.4.3 Circuit lower bounds . 385
8.4.4 Fine-grained complexity . 393

8.5 MCSP for Quantum Objects . 398
8.5.1 Reductions for UMCSP and SMCSP 408
8.5.2 Applications of SMCSP and UMCSP 421

8.6 Proof for the Hardness of MQCSP 427
8.7 Learning Theory . 429

8.7.1 PAC learning . 429
8.7.2 Quantum learning . 432

8.8 Proofs in Section 8.4.3 . 437
8.8.1 Proof for Theorem 8.26 . 437
8.8.2 Proof of Quantum Antichecker Lemma 438
8.8.3 Quantum Impagliazzo-Wigderson generator 441

8.9 Quantum Fine-Grained Hardness Based on QETH 445
8.10 Proofs for Corollary 8.47 . 447
8.11 Quantum Circuit Class . 448
8.12 MQCSP and prBQP . 451

13

Part II Optimization 456
Chapter 9: Faster Classical Semi-Definite Programming Solver 457

9.1 Introduction . 457
9.2 An Overview of Previous Techniques 461
9.3 The Robust SDP Framework . 463
9.4 Our Techniques . 465

9.4.1 Low rank update of Hessian 466
9.4.2 Computing Hessian inverse efficiently 468
9.4.3 General amortization method 468

9.5 Solving SDP With Hybrid Barrier 470
9.6 Related Work . 474
9.7 Preliminary . 476

9.7.1 Notations . 476
9.7.2 Tools: Woodbury identity . 479
9.7.3 Tools: Properties of matrix operations 479
9.7.4 Tools: Fast matrix multiplication 483

9.8 Our Algorithm and Result . 483
9.9 Correctness . 485

9.9.1 Approximate slack maintenance 487
9.9.2 Approximate Hessian inverse maintenance 489

9.10 Time Analysis . 491
9.10.1 Initialization cost . 492
9.10.2 Cost per iteration . 493
9.10.3 Property of low rank update 495
9.10.4 Amortized analysis . 502

9.11 The Robust Interior Point Method Framework For SDP 505
9.11.1 Definitions . 505
9.11.2 One step error analysis . 508
9.11.3 η move . 513
9.11.4 y move . 514
9.11.5 Integral under local norm . 516
9.11.6 Approximate dual optimality 517
9.11.7 Our main result . 519

9.12 Hybrid Barrier-Based SDP Solver . 521
9.12.1 Basic facts on the hybrid barrier 522

14

9.12.2 Efficient implementation via robust SDP framework 523
9.12.3 Approximation to Q . 527
9.12.4 S move in hybrid barrier . 528
9.12.5 Property of low rank update for the hybrid barrier 530
9.12.6 Our result . 534

Chapter 10: High-Accuracy Quantum SDP Solver 536
10.1 Introduction . 536
10.2 Quantum Barrier with Existing Algorithms 538
10.3 Related Work . 540
10.4 Technical Overview . 541

10.4.1 Block encoding-based interior point method 542
10.4.2 Overcoming the quantum barriers 547

10.5 Preliminary . 548
10.5.1 Quantum linear algebra toolbox 550

10.6 Revisit of Robust Newton Step . 553
10.7 Quantum Second-Order SDP Solver 555

10.7.1 Slack matrix . 556
10.7.2 Gradient . 558
10.7.3 Update the changes of the dual 560
10.7.4 Combine . 562

10.8 Well-Conditioned SDP Instances . 566
Chapter 11: A Unified Approach to Fourier Set-Query 569

11.1 Introduction . 569
11.1.1 Our results . 572

11.2 Technical Overview . 574
11.2.1 A general framework for Fourier set query-type problems . . 574
11.2.2 Our techniques for signal estimation algorithms 579
11.2.3 Our techniques for discrete Fourier set query 584

11.3 Definitions of Semi-Continuous Fourier Set Query and Interpolation . 588
11.3.1 Formal definitions of Fourier set query 588
11.3.2 Formal definitions of semi-continuous Fourier interpolation . 589

11.4 Preliminaries . 591
11.4.1 Tools and inequalities . 591
11.4.2 Basics of Fourier transformation 592
11.4.3 Facts about lattices . 593

15

11.4.4 Facts about importance sampling 596
11.5 Energy Bounds for Fourier Signals 598

11.5.1 Energy bound for one-dimensional signals 599
11.5.2 Energy bound for high-dimensional signals 600
11.5.3 Energy bound for discrete Fourier signals 605
11.5.4 Energy bounds imply concentrations 606

11.6 Oblivious Sketching Fourier Sparse Signals 608
11.6.1 Weighted oblivious sketching one-dimensional signals 609
11.6.2 Oblivious sketching high-dimensional signals 612
11.6.3 Oblivious sketching discrete signals 614
11.6.4 ε-net for sparse Fourier signals 616

11.7 Fast Implementation of Well-Balanced Sampling Procedure 618
11.7.1 Randomized BSS implies a WBSP 619
11.7.2 Fast implementation of WBSP 620
11.7.3 Trade-off between preprocessing and query 626

11.8 Sketch Distillation for Fourier Sparse Signals 630
11.8.1 Sketch distillation for one-dimensional signals 630
11.8.2 Sketch distillation for high-dimensional signals 639
11.8.3 Sketch distillation for discrete signals 643

11.9 One-Dimensional Signal Estimation 646
11.9.1 Sample-optimal reduction . 646
11.9.2 High-accuracy reduction . 649

11.10 High-dimensional Signal Estimation 657
11.10.1 Sample-optimal reduction . 657
11.10.2 Bounding the sparsity . 659
11.10.3 High-accuracy reduction . 662

11.11 Discrete Fourier Set Query in One Dimension 663
11.11.1 Sample-optimal set query algorithm 663
11.11.2 Composition of two WBSPs 667

11.12 High Dimensional Reduction Under Noiseless Assumption 671
11.12.1 Fourier basis is linear independent on randomly sampled points 671
11.12.2 Reduction . 673

11.13 Semi-continuous Approximation . 675
11.13.1 Properties related to Gaussians 675
11.13.2 Continuous Fourier transform 682

16

11.13.3 Semi-continuouse approximation of Fourier-sparse signals . . 689
11.13.4 Fast optimal-sparsity Fourier sparse recovery 692
11.13.5 Semi-continuous approximation with a constant frequency gap 694

Chapter 12: Quartic Samples Suffice for Fourier Interpolation 705
12.1 Introduction . 705

12.1.1 Related works . 707
12.2 Technical Overview . 708

12.2.1 High-level approach . 708
12.2.2 Our techniques for frequency estimation 711
12.2.3 Our techniques for Fourier interpolation 723

12.3 Organization . 725
12.4 Preliminaries . 726
12.5 Energy Bounds of Fourier Sparse Signals 728
12.6 Filter in Frequency Domain . 728

12.6.1 Frequency domain filter construction 729
12.6.2 Frequency domain covering 730

12.7 Hashing the Frequencies . 733
12.7.1 HashToBins procedure . 733
12.7.2 Frequency isolation . 734
12.7.3 Large offset event . 735

12.8 Filter in Time Domain . 739
12.8.1 Time domain filter construction 740
12.8.2 Normalization factor of the filter 742
12.8.3 Fluctuation bound . 744
12.8.4 Energy preserving of the time domain filter 748

12.9 Ideal Filter Approximation . 752
12.9.1 Swap the order of filtering 753
12.9.2 Approximation error bounds 755

12.10 Concentration Property of the Filtered Signal 757
12.11 Energy Bound for Filtered Fourier Sparse Signals 762

12.11.1 Energy bound for untruncated ideally filtered signals 762
12.11.2 Energy bound for filtered signals 763
12.11.3 Technical claim . 767

12.12 Local-Test Signal . 768
12.12.1 Ideal local-test signal . 768

17

12.12.2 Ideal post-truncated local-test signal 770
12.12.3 Energy bound for local-test signals 775

12.13 Empirical Energy Estimation . 779
12.13.1 Sampling and reweighing . 780
12.13.2 Energy estimation for Fourier-sparse signals and filtered signals 782
12.13.3 Partial energy estimation for filtered signals and local-test sig-

nals . 786
12.13.4 Technical lemmas . 790

12.14 Generate Significant Samples . 793
12.14.1 Energy estimation for noisy signals 793
12.14.2 Significant sample generation for a single bin 797
12.14.3 Significant sample generation for multiple bins 800
12.14.4 Technical claims . 805

12.15 Frequency Estimation . 808
12.15.1 Frequency estimation via significant samples 808
12.15.2 Simultaneously estimate frequencies for different bins 812
12.15.3 Vote distributions in ArySearch 821

12.16 Signal Reconstruction . 831
12.16.1 Preliminary . 832
12.16.2 Heavy cluster . 834
12.16.3 Fourier set query . 835
12.16.4 High signal-to-noise ratio band approximation 838
12.16.5 Fourier interpolation with constant success probability 843
12.16.6 Min-of-medians signal estimator 850
12.16.7 Main algorithm for Fourier interpolation 855

12.17 Structure of Our Fourier Interpolation Algorithm 864
Chapter 13: Distance Oracles for Any Symmetric Norm 865

13.1 Introduction . 865
13.1.1 Our results . 868

13.2 Technique Overview . 871
13.3 Sparse Recovery Data Structure . 874
13.4 Running Time and Space of Our Algorithm 875
13.5 Correctness of Our Algorithm . 879
13.6 Conclusion . 881
13.7 Preliminaries . 882

18

13.7.1 Notations . 882
13.7.2 Probability Tools . 883
13.7.3 Stable Distributions . 883

13.8 Symmetric Norms . 884
13.8.1 Monotonicity property of symmetric norm 884
13.8.2 Concentration property of symmetric norms 884
13.8.3 Median of symmetric norm 886

13.9 Analysis of Layer Approximation . 889
13.9.1 Layer vectors and important layers 889
13.9.2 Approximated layers provides a good norm approximation . . 890
13.9.3 Contributing layers . 892
13.9.4 Contributing Layers Are Important 893

13.10 Formal Main Result and Algorithms 895
13.10.1 Formal version of our main result 895
13.10.2 Sparse recovery tools . 901

13.11 More Details of the Time Complexity 902
13.12 More Details of the Correctness Proofs 906

13.12.1 Correctness of layer size estimation 907
13.12.2 Trackability of Layers . 908
13.12.3 Probability analysis . 909
13.12.4 From probability estimation to layer size approximation . . . 912

13.13 Space Complexity . 913
13.14 Lower Bound From Previous Work 915
13.15 Details About Sparse Recovery Tools 915

13.15.1 Our sparse recovery tool . 916
13.15.2 Lp tail estimation . 918
13.15.3 Lp norm estimation . 919

Part III Machine Learning 929
Chapter 14: Training Two-Layer Over-Parameterized Neural Networks 930

14.1 Introduction . 930
14.2 Challenges and Techniques . 933
14.3 Preliminaries . 935

14.3.1 Problem formulation . 935

19

14.3.2 Data structure for Half-Space Reporting 937
14.3.3 Sparsity-based characterizations 938

14.4 Training Neural Network with Half-Space Reporting Data Structure 940
14.4.1 Weights preprocessing . 940
14.4.2 Data preprocessing . 942

14.5 Convergence of Our Algorithm . 944
14.6 Main Classical Results . 945
14.7 Discussion . 946
14.8 Complete Algorithms . 947
14.9 Preliminaries . 950

14.9.1 Half-space reporting data structures 950
14.9.2 Basic algebras . 951

14.10 Sparsity Analysis . 951
14.10.1 Bounding difference between continuous kernel and discrete

kernel . 951
14.10.2 Handling Hessian if perturbing weight 952
14.10.3 Total movement of weights 955
14.10.4 Bounded gradient . 956
14.10.5 Upper bound on the movement of weights per iteration . . . 957
14.10.6 Bounding the number of fired neuron per iteration 957

14.11 Convergence Analysis . 961
14.11.1 Upper bound the initialization 961
14.11.2 Bounding progress per iteration 961
14.11.3 Upper bound on the norm of dual Hessian 963
14.11.4 Bounding the gradient improvement term 963
14.11.5 Bounding the blowup by the dual Hessian term 964
14.11.6 Bounding the blowup by the flip-neurons term 965
14.11.7 Bounding the blowup by the prediction movement term . . . 965
14.11.8 Putting it all together . 966

14.12 Combine . 967
14.13 Bounds for the Spectral Gap with Data Separation 969
14.14 Quantum Algorithm for Training Neural Network 975
14.15 More Efficient Data Structures . 981

14.15.1 Correlation tree data structure 982
14.15.2 Training algorithms with correlation tree data structures . . 992
14.15.3 Lower bound for Dynamic Detection of Firing Neurons . . . 996

20

Chapter 15: Training Multi-Layer Over-Parameterized Neural Networks . . . 999
15.1 Introduction . 999

15.1.1 Our result . 1001
15.1.2 Related Work . 1003

15.2 Preliminaries . 1005
15.2.1 Notations . 1005
15.2.2 Problem setup . 1006

15.3 Technique Overview . 1008
15.3.1 Subquadratic time . 1008
15.3.2 Convergence analysis . 1012

15.4 Discussion and Future Directions . 1014
15.5 Preliminaries . 1016
15.6 Complete Algorithm and Its Runtime Analysis 1017
15.7 Low Rank Maintenance and Efficient Computation of the Change . . 1020

15.7.1 Low rank maintenance . 1020
15.7.2 Efficient computation of rank-1 decompositions 1023

15.8 Fast Tensor Product Regression . 1025
15.8.1 Approximate J via TensorSketch 1026
15.8.2 Approximate J via TensorSRHT 1027
15.8.3 Sketching-based Preconditioner 1028

15.9 Spectral Properties of Over-parametrized Deep Neural Network . . . 1034
15.9.1 Bounds on the Least Eigenvalue of Kernel at Initialization . . 1034
15.9.2 Bounds on the Least Eigenvalue during Optimization 1043

15.10 Convergence Analysis of Our Algorithm 1045
15.10.1 Preliminary . 1045
15.10.2 Technical lemmas . 1046
15.10.3 Bounds on initialization . 1049
15.10.4 Bounds on small perturbation 1050
15.10.5 Putting it all together . 1053
15.10.6 Bounds on the movement of weights 1059

15.11 Bounds on the Intermediate Layer Output with Shifted ReLU 1061

21

Chapter 16: Privacy Distributed Learning: A Theoretical Analysis of InstaHide’s
Security . 1066

16.1 Introduction . 1066
16.1.1 Our result . 1067
16.1.2 Comparison to recent attacks 1068

16.2 Summary of the Attack by Carlini et al. 1070
16.3 Preliminaries . 1073
16.4 Recovering All Private Images when kpriv = 2 1076

16.4.1 Retrieving Gram matrix . 1076
16.4.2 Remove public images . 1077
16.4.3 Assigning encoded images to original images 1078
16.4.4 Solving a large system of equations 1079

16.5 Missing proofs for Theorem 16.6 . 1080
16.5.1 A graph problem (kpriv = 2) 1081
16.5.2 General case (kpriv > 2) . 1083

16.6 Computational Lower Bound . 1084
Chapter 17: Symmetric Boolean Factor Analysis with Application to Private

Learning . 1091
17.1 Introduction . 1091

17.1.1 Our results . 1094
17.1.2 Related work . 1097

17.2 Technical Overview . 1102
17.2.1 Bootstrapping the tensor . 1103
17.2.2 Linear independence . 1104

17.3 Preliminaries . 1107
17.3.1 Notations . 1107
17.3.2 Basic Definitions . 1107
17.3.3 Discrete probability tools . 1107

17.4 Average-Case Algorithm . 1108
17.4.1 Non-intersection probabilities µt well-separated 1109
17.4.2 Constructing a tensor . 1110
17.4.3 Tensor decomposition . 1111
17.4.4 Linear independence of W 1111
17.4.5 Putting everything together 1119

17.5 Connections Between BkV-SUM, SSBMF, InstaHide 1120

22

17.5.1 Connection to batched k-vector sum 1120
17.5.2 Similarity oracle . 1121
17.5.3 An improved attack on InstaHide 1122

17.6 Worst-Case Algorithm . 1127
17.6.1 CSP preliminaries . 1127
17.6.2 From factorization to CSPs 1128
17.6.3 Extension to the Boolean semiring 1130

Chapter 18: Copyright Protection in the Quantum Era 1132
18.1 Introduction . 1132

18.1.1 This work . 1134
18.1.2 Technical overview . 1135
18.1.3 Other related works . 1144
18.1.4 Concurrent and independent work 1145

18.2 Preliminaries . 1146
18.2.1 Quantum computation . 1146
18.2.2 Quantum oracle algorithm 1146
18.2.3 Direct-product problem and quantum signature tokens 1147
18.2.4 Testing quantum programs: measurement implementation . . 1149

18.3 Learning Game Definitions . 1153
18.3.1 Unlearnability . 1154
18.3.2 Copy-protection . 1155
18.3.3 Copy-detection . 1157
18.3.4 Watermarking primitives with public extraction 1158

18.4 Approximating Threshold Implementation 1160
18.5 Quantum Copy-Protection Scheme 1161

18.5.1 Correctness and efficiency . 1163
18.5.2 Anti-piracy security . 1164

18.6 Quantum Copy-Detection . 1171
18.6.1 Construction . 1171
18.6.2 Efficiency and correctness . 1172
18.6.3 Security . 1172

23

Part IV Concentration and Discrepancy 1175
Chapter 19: Hyperbolic Polynomials I: Concentration and Anti-Concentration 1176

19.1 Introduction . 1176
19.1.1 Our results . 1178
19.1.2 Hyperbolic anti-concentration 1181
19.1.3 Related work . 1182
19.1.4 Technique overview . 1183
19.1.5 Discussion and open problems 1188

19.2 Preliminaries . 1189
19.2.1 Notations . 1189
19.2.2 Basic definitions of hyperbolic polynomials 1190
19.2.3 Basic properties of hyperbolic polynomials 1192
19.2.4 Concentration inequalities 1193
19.2.5 Khinchin-Kahane inequality 1194
19.2.6 Matrix analysis tools . 1194
19.2.7 Helton-Vinnikov Theorem . 1195

19.3 Hyperbolic Chernoff bound for Rademacher Sums 1195
19.3.1 Preliminaries . 1196
19.3.2 Proof of the Chernoff bound for hyperbolic polynomials . . . 1198
19.3.3 Expected hyperbolic-2q norm bound 1200

19.4 Hyperbolic Chernoff bound for hyperbolic cone vectors 1205
19.5 Hyperbolic Anti-Concentration Bound 1209

19.5.1 Our result . 1209
19.5.2 Technical lemmas . 1212

Chapter 20: Hyperbolic Polynomials II: Discrepancy and Kadison-Singer-Type
Results . 1216

20.1 Introduction . 1216
20.1.1 Our results . 1219

20.2 Related work . 1225
20.3 Proof Overview . 1227

20.3.1 Hyperbolic discrepancy for high-rank vectors 1227
20.3.2 Hyperbolic deviations . 1228
20.3.3 Generalization to strongly Rayleigh distributions 1233

20.4 Preliminaries . 1237
20.4.1 Real-stable polynomials . 1237

24

20.4.2 Hyperbolic polynomials . 1238
20.4.3 Interlacing families . 1242
20.4.4 Barrier method . 1244

20.5 High-Rank Hyperbolic Kadison-Singer with Sub-Isotropic Condition 1245
20.5.1 Formal Statements of Previous Matrix Discrepancy Results . 1245
20.5.2 Hyperbolic Kadison-Singer with relaxed condition 1246
20.5.3 Technical tools in previous work 1250
20.5.4 Upper bound for the largest root of the mixed hyperbolic poly-

nomial . 1253
20.6 Hyperbolic Spencer Result . 1254
20.7 Hyperbolic Extension of Kadison-Singer for Standard Deviations . . 1256

20.7.1 Preliminaries . 1257
20.7.2 Defining interlacing family of characteristic polynomials . . . 1259
20.7.3 From mixed characteristic polynomial to multivariate polyno-

mial . 1262
20.7.4 Applying barrier argument to bound the largest root of mul-

tivariate polynomial . 1266
20.7.5 Combining together: proof of Theorem 20.43 1270

20.8 Hyperbolic Extension of Kadision-Singer for Strongly Rayleigh . . . 1272
20.8.1 Preliminaries . 1273
20.8.2 Defining interlacing family of characteristic polynomials . . . 1275
20.8.3 From mixed characteristic polynomial to multivariate polyno-

mial . 1277
20.8.4 Applying barrier argument to bound the largest root of mul-

tivariate polynomial . 1281
20.8.5 Combining together: proof of Theorem 20.54 1283

20.9 Sub-Exponential Algorithms . 1284
20.9.1 Definitions . 1284
20.9.2 Algorithm to approximate the largest root 1285
20.9.3 Reducing Kadison-Singer to finding leading coefficients of in-

terlacing polynomial . 1286
20.9.4 Sub-exponential algorithm for Theorem 20.10 1288
20.9.5 Sub-exponential algorithm for Theorem 20.4 1290
20.9.6 Sub-exponential algorithm for Theorem 20.11 1292

20.10 Examples and Discussions . 1293

25

Chapter 21: Higher-Order Random Walk and Edge-Expansion on Posets . . 1297
21.1 Introduction . 1297

21.1.1 Background . 1301
21.1.2 Results . 1302
21.1.3 Related work . 1310

21.2 Preliminaries . 1312
21.2.1 Graded posets . 1312
21.2.2 Measured posets and the random walk operators 1314
21.2.3 Higher order random walks 1315
21.2.4 Expanding posets and the HD-Level-Set decomposition . . . 1317
21.2.5 The Grassmann poset and q-eposets 1319

21.3 Approximate Eigendecompositions and Eigenstripping 1321
21.4 Spectra of HD-walks . 1323
21.5 Pseudorandomness and the HD-Level-Set Decomposition 1327

21.5.1 ℓ2-pseudorandomness . 1329
21.5.2 ℓ∞-pseudorandomness . 1331

21.6 Expansion of HD-walks . 1334
21.7 The Grassmann and q-eposets . 1340

21.7.1 Spectra . 1340
21.7.2 Pseudorandom functions and small set expansion 1347

21.8 Eposet Parameters and Regularity 1350
Appendix A: Probability Theory Toolbox . 1357

A.1 Concentration Inequalities . 1357
A.2 Anti-Concentration . 1358

Appendix B: Quantum States, Unitary Transformations, and Quantum Cir-
cuits . 1359

B.1 Input . 1359
B.2 Quantum Process . 1360
B.3 Output . 1362

Appendix C: Omitted Materials from Chapter 5 1365
C.1 A Review of Lin-Tong’s Algorithm 1365

C.1.1 Quantum part of the algorithm 1365
C.1.2 Classical part of the algorithm 1366
C.1.3 Low Fourier degree approximation of the Heaviside function . 1375

C.2 Technical Details of the Hadamard Test of Block-Encoded Observable 1380
C.2.1 Generalized Hadamard test 1383

26

Appendix D: Omitted Materials from Chapter 6 1387
D.1 Proof of the QED-mixer’s universality for planar graphs 1387
D.2 Dual “height-model" formulation . 1388

Appendix E: Omitted Materials from Chapter 9 1390
E.1 Initialization . 1390
E.2 From Dual to Primal . 1391
E.3 Our Straightforward Implementation of the Hybrid Barrier SDP Solver 1392
E.4 Maintain the Leverage Score Matrix of the Volumetric Barrier 1396

E.4.1 Basic facts on the leverage score matrix 1397
E.4.2 Efficient algorithm for the leverage score matrix 1397
E.4.3 Maintain intermediate matrix 1401
E.4.4 Amortized running time . 1402

Appendix F: Theoretical Analysis of Sparsely Activated Wide Neural Networks 1404
F.1 Introduction . 1404

F.1.1 Related works . 1406
F.2 Preliminaries . 1407

F.2.1 Problem formulation . 1407
F.3 Main Theory . 1409

F.3.1 Convergence and sparsity . 1409
F.3.2 Generalization and restricted least eigenvalue 1412
F.3.3 Key ideas in the proof of Theorem F.5 1416
F.3.4 Key ideas in the proof of Theorem F.7 1418

F.4 Experiments . 1419
F.5 Discussion . 1420
F.6 Convergence . 1421

F.6.1 Difference between limit NTK and sampled NTK 1421
F.6.2 Bounding the number of flipped neurons 1422
F.6.3 Bounding NTK if perturbing weights and biases 1424
F.6.4 Total movement of weights and biases 1426
F.6.5 Gradient descent convergence analysis 1429
F.6.6 Bounding the number of activated neurons per iteration . . . 1437

F.7 Bounding the Restricted Smallest Eigenvalue with Data Separation . 1439
F.8 Generalization . 1443

F.8.1 Rademacher complexity . 1443
F.8.2 Analysis of radius . 1451

F.9 The Benefit of Constant Initialization of Biases 1458

27

Appendix G: Omitted Materials from Chapter 18 1461
G.1 Cryptographic Primitives . 1461

G.1.1 Public-key quantum money 1461
G.1.2 Obfuscation . 1463

G.2 Missing Details For Threshold Implementation 1463
G.2.1 Proof of Theorem 18.6 . 1463
G.2.2 Proof of Lemma 18.7 . 1465

G.3 Generalizing Learning Games . 1469
G.3.1 Generalized unlearnability 1469
G.3.2 Generalized copy protection 1473
G.3.3 Generalized copy detection 1475
G.3.4 Watermarking primitives with public extraction 1477
G.3.5 Examples of watermarking primitives 1479

G.4 General Copy-Protection Scheme . 1480
G.5 General Quantum Copy-Detection 1481

G.5.1 Construction . 1481
G.5.2 Efficiency and correctness . 1481
G.5.3 Security . 1481

G.6 Public-key Quantum Money from Copy Detection 1486
G.6.1 Security analysis . 1487

Bibliography . 1489
Vita . 1614

28

List of Tables

1.1 Summary of classical and quantum algorithms for sampling and related
problems . 46

1.2 Barrier functions for solving SDPs . 56
1.3 Summary of our Fourier set-query results. 59

2.1 Summary of classical and quantum algorithms for log-concave sampling 86
2.2 Summary of classical and quantum algorithms for estimating the nor-

malizing constant . 87

4.1 Estimated circuit cost savings by our algorithm 177

6.1 A comparison between total and feasible Hilbert space dimension . . 256

7.1 A summary of our quantum complexity results and comparison to clas-
sical results . 280

8.1 Summary of our quantum MCSP results. 455

9.1 Summary of Section 9.10. 492

10.1 Quantum algorithms for solving SDP. 542
10.2 Classical algorithms for solving SDPs 543

12.1 Summary of the results on Fourier interpolation 707

13.1 Examples of mmc(l) . 869

16.1 Comparison to recent attacks. 1068

29

List of Figures

1.1 An example of a graded poset . 78

4.1 The landscape of early fault-tolerant GSEE algorithms 177
4.2 Comparison of the convolution functions and circuit depth used by

LT22 and our method. 205
4.3 Hadamard test circuit parameterized by the Hamiltonian evolution

time τ . 205

5.1 Hadamard test circuit . 214
5.2 Quantum circuit parameterized by j. 218
5.3 Illustration of the integral regions . 228
5.4 Quantum circuit parameterized by t1, t2. 229
5.5 Illustration of “good points” . 231
5.6 Quantum circuit parameterized by t1, t2 with a block-encoded observ-

able . 234

6.1 Example flows on a 5× 5 grid graph 251
6.2 Triangle graphs used in the study of SSSP problem 255
6.3 A configuration with an isolated loop 261
6.4 An explanation of the “decision function" 262
6.5 IPR and entropy test . 265
6.6 Behavior of X-mixer QAOA with different penalties 270
6.7 Comparing different mixers . 273
6.8 RQED-Mixer Behavior at p = 1 . 274
6.9 RQED QAOA behavior in solving actual EDP problems with different

initial states . 274

7.1 An instance of the closest pair problem 275
7.2 An example of a uniquely represented radix tree 310
7.3 An example of a skip list . 313

11.1 An illustration of sketching the set query signals 578
11.2 The composition of two WBSPs may not be a WBSP 581
11.3 An example of the outer-product range tree with n = 4 584

30

12.1 Time and frequency domain filters. 710
12.2 Illustration of the high SNR band condition 712
12.3 A case that violates our high SNR band assumption but CKPS16 tries

to recover . 713
12.4 The Signal Equivalent Method . 719
12.5 An illustration of a filtered noisy signal 721
12.6 A case that violates the time domain concentration 722
12.7 The SNR of the same signal changes with different hash functions . . 723
12.8 Filters with the frequency domain covering property 730
12.9 An example of the well-isolation event in the frequency domain 734
12.10The filter H(t) of time domain . 739
12.11An illustration of the energy reduction by the ideal filter 780

16.1 An example about the cluster step in Carlini et al.’s attack 1088
16.2 The construction of the graph for min-cost max flow 1089
16.3 The result of solving the min-cost flow in Figure 16.2 1090

18.1 Quantum copy-protection scheme. 1162
18.2 Quantum copy-detection scheme. 1171

19.1 Examples of hyperbolic and non-hyperbolic polynomials 1177

20.1 An example of the Vámos matroid B 1295
20.2 An example of the spanning tree polynomial 1296
20.3 An example of the vertex matching polynomial 1296

D.1 Examples of dual picture description 1389

F.1 Sparsity pattern on different layers. 1420

G.1 Quantum copy detection scheme. 1482
G.2 Public-key Quantum Money Scheme from Copy Detection 1487

31

Chapter 1: Introduction

Quantum computing, optimization, and machine learning are three exciting

areas where the research community has achieved great success in the few years. In

quantum computing, several research teams have built increasingly powerful quantum

computers. The landmark achievement of “quantum supremacy" was demonstrated

by Google [AAB+19], USTC [ZWD+20a, WBC+21b], and Xanadau [MLA+22]. Si-

multaneously, in the field of optimization, groundbreaking algorithms for solving

problems like linear programming [CLS19], shortest paths [BNWN22], and network

flows [CKL+22] have been proposed. Furthermore, to overcome the challenges of

“big data”, the landscape of optimization has been significantly extended with numer-

ous new techniques being introduced, including distributed optimization [BPC+11],

stochastic optimization [KB15], online optimization [GKR13], and private optimiza-

tion [FKT20], among others. The third domain, machine learning, through the rise

of deep neural networks, has witnessed breakthroughs across a myriad of tasks from

natural language processing [BMR+20] to playing Go [SAH+20] and Dota 2 [OB+19].

Some people may perceive quantum computing, optimization, and machine

learning as individually isolated islands, but in fact, they are highly intertwined. A

primary objective of quantum computing is to solve problems that classical algo-

rithms struggle with. Indeed, many optimization problems, such as job scheduling,

portfolio optimization, and integrated circuit layout, pose excellent opportunities to

leverage the advantages of quantum computing. While it is unlikely that quantum

computers will find optimal solutions to NP-hard problems, we still hope they can

find approximate solutions faster than classical computers or even produce heuristi-

cally better approximations. And this hope has been largely fueled by methods based

on machine learning, such as the variational quantum algorithms [PMS+14, FGG14a]

and quantum neural networks [ASZ+21]. Furthermore, a series of techniques known

as quantum linear algebra [HHL09, CGJ19, GSLW19, LKAS+21] has been developed

32

to exponentially speed up a range of linear algebra operations, such as solving linear

systems, matrix multiplications, etc. As a result, they lay the groundwork for nu-

merous quantum optimization and machine learning algorithms that are much faster

than their classical counterparts.

Concurrently, optimization and machine learning have proved vital in address-

ing fundamental problems in quantum computing and quantum information. For

instance, semi-definite programming has emerged as an indispensable tool for char-

acterizing quantum correlations and probabilities [BZ06, Mir23]. Additionally, online

learning has been effectively applied to learn quantum states [ACH+18, CHL+22].

Furthermore, the principles of deep learning theory have been adapted to predict

complex quantum systems [HKT+22, CHC+22].

However, there remain several important questions underlying the intricate

interplay among quantum computing, optimization, and machine learning:

• Question 1: To what extent can a quantum computer assist in an optimiza-

tion or machine learning problem? On the algorithmic side, even for problems

that are well-understood in the classical context, it often proves challenging

to directly apply existing quantum techniques for their resolution. Due to the

sharp differences between quantum and classical computations, there exist some

quantum-unique issues that have never been studied in the classical literature.

On the complexity side, understanding the limitations of quantum computing

with regard to problems is a daunting task. Notably, most optimization and

machine learning problems are more complicated than those typically studied

in quantum complexity theory, and people care more about the average-case

complexity rather than their worst-case complexity, thus demanding novel ap-

proaches and techniques.

• Question 2: How kind of quantum resources are required to implement these

quantum algorithms? The capabilities of current quantum devices are still lim-

ited, and the quantum community widely believes that it may take decades to

33

construct a large-scale, fully fault-tolerant quantum computer. Therefore, the

usefulness of a quantum algorithm for optimization or machine learning essen-

tially depends on the quantum resources required (i.e., circuit depth, number

of ancilla qubits, noise tolerance, etc.). For instance, many quantum machine

learning algorithms that use quantum linear algebra will require Quantum Ran-

dom Access Memory (QRAM) to load/store classical data, which is quite chal-

lenging for real-world implementation (e.g., [JR23]). In contrast, the variational

quantum algorithms can be implemented on Noisy Intermediate-Scale Quantum

(NISQ) devices [Pre18], which could be achieved in the near future. However,

the performance of these algorithms is either constrained [MBS+18, SFGP21]

or lacks provable guarantees.

• Question 3: What are the most efficient classical algorithms for optimization

problems? Many fundamental optimization problems, such as semi-definite pro-

gramming, have broad applications in quantum computing and machine learn-

ing, but we currently do not fully understand them classically. As a result, these

classical optimization procedures often become the limiting factor in their re-

spective applications. On the other hand, classical algorithms serve as essential

benchmarks for optimization problems to gauge the effectiveness of quantum al-

gorithms. If existing classical algorithms are suboptimal or simply some naïve

approaches, it obscures the extent to which quantum computers truly help in

resolving these problems.

• Question 4: Is there any provable approach to improve the efficiency of deep

learning? The success of AIs can be partially attributed to the larger deep learn-

ing model and bigger training dataset. For instance, some of the current Large

Language Models like GPT-3 [BMR+20] and PaLM [CND+22] have more than

100 billion parameters. The training of such gigantic models, as well as their use

for inference, requires substantial computational resources. Therefore, develop-

ing more efficient training and evaluation algorithms for deep neural networks

34

become an important question for both academic and industrial fields. There

exist some training algorithms, such as SLIDE [CMJF+20], Reformer [KKL20],

and MONGOOSE [CLP+21], that can save the running time empirically. How-

ever, they lack provable guarantees of efficiency and accuracy. Thus, A gap

exists in theoretically understanding fast neural network training methods.

• Question 5: How to address security concerns emerging from machine learn-

ing? The rapid advancements of AI and machine learning increase the impor-

tance of ensuring security in several aspects. For example, when private data

(e.g., medical images or financial information) is used in training a deep model,

we are facing the challenge of protecting data privacy during training and in-

ference. Also, the developments of generative AIs [BMR+20, RDN+22] pose

potential intellectual property issues. Furthermore, the evolving role of quan-

tum computing in machine learning has both positive and negative impacts on

ML security. On the one hand, it may introduce extra power to attack existing

security protocols, thereby demanding the development of post-quantum secure

schemes. Conversely, it provides opportunities to design new cryptographic

objects that are unachievable in the classical world, such as quantum money

[AC12, Zha19] and quantum copy-protection [Aar09, CMP20]. Thus, how to

leverage quantum advantages to assist in resolving machine learning security

issues remains an open and salient question.

1.1 Organization

In this thesis, we develop theoretical insights into these questions and make

progress toward resolving them. Specifically,

1. In Section 1.2, we introduce our contributions to quantum computing, focusing

on answering Question 1 and Question 2. For the first question, we present quan-

tum algorithms for optimization and machine learning with quantum speed-ups

35

over the currently best classical algorithms. And we generalize several tech-

niques in classical complexity theory to quantum and develop new approaches to

studying the quantum hardness of learning and other natural problems. For the

second question, we propose resource-efficient quantum algorithms for Hamilto-

nian ground state estimations with provable guarantees and for solving network

flow problems. This is the subject of Chapters 2 to 8, based on the following

seven works:

• A. M. Childs, T. Li, J. P. Liu, C. Wang, R. Zhang. Quantum Algorithms

for Sampling Log-Concave Distributions and Estimating Normalizing Con-

stants. Advances in Neural Information Processing Systems 35 (NeurIPS

2022).

• T. Li, R. Zhang. Quantum Speedups of Optimizing Approximately Convex

Functions With Applications to Logarithmic Regret Stochastic Convex

Bandits. Advances in Neural Information Processing Systems 35 (NeurIPS

2022).

• G. Wang, D. S. França, R. Zhang, S. Zhu, P. D. Johnson. Quantum

Algorithm for Ground State Energy Estimation Using Circuit Depth With

Exponentially Improved Dependence on Precision. arXiv:2209.06811.

• R. Zhang, G. Wang, P. D. Johnson. Computing Ground State Properties

With Early Fault-Tolerant Quantum Computers. Quantum, 6:761, 2022.

• Y. Zhang, R. Zhang, A. C. Potter. QED Driven QAOA for Network-Flow

Optimization. Quantum, 5:510, 2021.

• S. Aaronson, N. H. Chia, H. H. Lin, C. Wang, R. Zhang. On the Quantum

Complexity of Closest Pair and Related Problems. Proceedings of the 35th

Computational Complexity Conference (CCC 2020).

• N. H. Chia, C. N. Chou, J. Zhang, R. Zhang. Quantum Meets the Mini-

mum Circuit Size Problem. Proceedings of the 13th Innovations in Theo-

retical Computer Science Conference (ITCS 2022).

36

2. In Section 1.3, we introduce our contributions to classical optimization, specif-

ically addressing Question 3. We improve the state-of-the-art classical algo-

rithms for solving SDPs with high accuracy. And our classical key technique

also serves as a stepping stone to a new quantum SDP algorithm. And we im-

prove the efficiencies of Fourier set-query and Fourier interpolation algorithms,

which have strong connections to early fault-tolerant quantum algorithms. In

addition, we design a dynamic distance oracle for general symmetric norms,

which has wide applications in machine learning. This is the subject of Chap-

ters 9 to 13, based on the following five works:

• B. Huang, S. Jiang, Z. Song, R. Tao, R. Zhang. Solving SDP Faster:

A Robust IPM Framework and Efficient Implementation. Proceedings of

the 63rd Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2022).

• B. Huang, S. Jiang, Z. Song, R. Tao, R. Zhang. A Faster Quantum

Algorithm for Semidefinite Programming via Robust IPM Framework.

arXiv:2207.11154.

• Z. Song, B. Sun, O. Weinstein, R. Zhang. Sparse Fourier Transform Over

Lattices: A Unified Approach to Signal Reconstruction. arXiv:2205.00658.

• Z. Song, B. Sun, O. Weinstein, R. Zhang. Quartic Samples Suffice for

Fourier Interpolation. Proceedings of the 64th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 2023).

• Y. Deng, Z. Song, O. Weinstein, R. Zhang. Fast Distance Oracles for Any

Symmetric Norm. Advances in Neural Information Processing Systems 35

(NeurIPS 2022).

3. In Section 1.4, we introduce our contributions to machine learning, specifically

addressing Question 4 and Question 5. First, we present classical and quantum

algorithms for training wide two-layer and multi-layer neural networks. These

37

algorithms not only improve the time complexity of traditional training methods

but also offer provable optimization guarantees. Second, we study machine

learning security from aspects: protecting private training data and protecting

copyrights of ML models. We identify a new mathematical problem underlying

the security of a recently proposed private training scheme and theoretically

analyze the time complexity and sample complexity of attacking this scheme.

In addition, we propose a quantum approach to copy-protect a large family of

programs that is post-quantum secure relative to a classical oracle. This is the

subject of Chapter 14 to 18, based on the following six works:

• Z. Song, S. Yang, R. Zhang. Does Preprocessing Help Training Over-

Parameterized Neural Networks? Advances in Neural Information Pro-

cessing Systems 34 (NeurIPS 2021).

• J. Alman, J. Liang, Z. Song, R. Zhang, D. Zhuo. Bypass Exponential Time

Preprocessing: Fast Neural Network Training via Weight-Data Correlation

Preprocessing. arXiv:2211.14227.

• Z. Song, L. Zhang, R. Zhang. Training Multi-Layer Over-Parametrized

Neural Network in Subquadratic Time. arXiv:2112.07628.

• B. Huang, Z. Song, R. Tao, R. Zhang, D. Zhuo. InstaHide’s Sample Com-

plexity When Mixing Two Private Images. arXiv:2011.11877.

• S. Chen, Z. Song, R. Tao, R. Zhang. Symmetric Sparse Boolean Matrix

Factorization and Applications. Proceedings of the 13th Innovations in

Theoretical Computer Science Conference (ITCS 2022).

• S. Aaronson, J. Liu, Q. Liu, M. Zhandry, R. Zhang. New Approaches

for Quantum Copy-Protection. Proceedings of 41st Annual International

Cryptology Conference (CRYPTO 2021).

4. In Section 1.5, we introduce our contributions to concentration and discrepancy

theory, which complement the first three parts and lay a mathematical ground-

38

work for future research in quantum computing, optimization, and machine

learning. We prove several Chernoff-type concentration inequalities in the set-

ting of the hyperbolic polynomial, which is one of the most important objects in

the field of the geometry of polynomials. We also extend several Kadison-Singer-

type discrepancy results to hyperbolic polynomials. Furthermore, we study the

concentration properties of the higher-order random walks on the expanding

posets, which is a sub-class of high-dimensional expanders that generalizes the

simplicial complexes. This is the subject of Chapter 19 to 21, based on the

following three works:

• Z. Song, R. Zhang. Hyperbolic Concentration, Anti-concentration, and

Discrepancy. Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques (RANDOM 2022).

• R. Zhang, X. Zhang. Hyperbolic Extension of Kadison-Singer Type Re-

sults. 50th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2023).

• J. Gaitonde, M. Hopkins, T. Kaufman, S. Lovett, R. Zhang. Eigenstrip-

ping, Spectral Decay, and Edge-Expansion on Posets. Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques (RANDOM 2022).

1.2 Our Contributions in Quantum Computing

Our research on quantum computing consists of two parts: 1) designing new

quantum algorithms for solving optimization and machine learning problems, and 2)

proposing new approaches to characterizing the limitations of quantum computing.

More specifically, in Section 1.2.1, we highlight our quantum algorithms for sampling

(and related problems), Hamiltonian’s ground-state estimation, and network flow

problems. In Section 1.2.2, we briefly talk about the quantum fine-grained complexity

and quantum meta-complexity.

39

1.2.1 Quantum algorithms for optimization and machine Learning

In the past few years, a large number of quantum algorithms have been pro-

posed to solve problems in many different areas, including linear algebra [HHL09,

LC17, GSLW19, LC19, MRTC21], optimization [CCLW20, AGGW20, AG19, KP20b,

KPS21], machine learning [RML14, KP17, AM20, KP20a, WZL+22], quantum chem-

istry [TMZE+18, MMS+19, Cam21], scientific computing [ALL+21, TAWL21, LKK+21],

etc. In this dissertation, we further extend the line of quantum algorithm research. We

first leverage quantum computing to solve sampling problems and achieve quantum

speedups compared to current classical algorithms. Furthermore, we also consider

the resource-limited quantum computing scenario, which closely resembles practical

constraints where a small-scale, noisy quantum device might be built soon, while

a fully fault-tolerant, large-scale quantum computer may not be feasible within a

few decades. We propose small quantum circuit depth approaches to achieve high-

accuracy estimation on the ground-state energy and properties. And we also develop

a QAOA-based algorithm for solving network flow problems.

Log-concave sampling and normalizing constant estimation Log-concave

sampling is an important problem in machine learning, physics, statistics, etc., where

you are given query access to a d-dimensional convex function f , and the goal is

to sample from a distribution with density ∝ e−f(x). Some examples of log-concave

distributions include a high-dimensional Gaussian distribution and the uniform dis-

tribution over a convex body.

More formally, we assume that f : Rd → R is L-smooth and µ-strongly convex,

i.e., L, µ > 0 are such that µI ⪯ ∇2f(x) ⪯ LI. And we denote by κ := L/µ the

condition number of f , which is an important parameter in the sample complexity.

The corresponding log-concave distribution has probability density ρ : Rd → R as

follows:

ρ(x) := Z−1 · e−f(x), where Z :=

∫

Rd

e−f(x)dx.

40

Given an ϵ ∈ (0, 1), the goal of log-concave sampling is to output a random variable

with distribution ρ̃ such that the total variation (TV) distance ∥ρ− ρ̃∥ ≤ ϵ, using as

few queries to the evaluation and gradient oracles of f as possible. A fundamental tool

in the classical log-concave sampling area is the Langevin diffusion, which is defined

by the solution (Xt)t>0 of the following stochastic differential equation (SDE):

dXt = −∇f(Xt)dt︸ ︷︷ ︸
Gradient flow

+
√
2dBt︸ ︷︷ ︸

Brownian motion

. (1.1)

And it is well-known that Langevin diffusion will converge to the target log-concave

distribution ρ(x). However, a straightforward discretization of Langevin diffusion will

introduce a bias to the stationary distribution [DMM19]. To resolve this issue, the

Metropolis-adjusted Langevin algorithm (MALA) was developed, which applies the

Metropolis-Hastings accept-reject mechanism in each iteration. It not only corrects

the bias but also mixes very fast: [LST20] proves that MALA can achieve ϵ-TV

distance using Õϵ(κd) classical queries.

In this dissertation, we proposed a quantum algorithm to speed up MALA.

Suppose we have access to the quantum evaluation oracle and quantum gradient oracle

of f defined as follows:

Of |x⟩|y⟩ = |x⟩|y + f(x)⟩ ∀x ∈ Rd, y ∈ R,

O∇f |x⟩|y⟩ = |x⟩|z +∇f(x)⟩ ∀x ∈ Rd, z ∈ Rd.

And we focus on preparing the quantum state (so-called a “qsample”) that encodes

the target log-concave distribution1:

|ρ⟩ =
∫

Rd

√
ρ(x)|x⟩dx.

Our quantum algorithm can prepare a state that is ϵ-close to |ρ⟩ using Õϵ(
√
κd)

quantum queries, achieving a quadratic quantum speedup in terms of κ compared

1If we measure the state |ρ⟩ in the standard basis, the measurement outcome will be distributed
according to the distribution ρ.

41

to the classical result [LST20]. Moreover, we also consider the warm-start scenario,

where we get access to some initial distribution that is not too far from the target

distribution.2 Classically, the currently best sample complexity is Õϵ(κ
√
d) due to

[WSC22]. Our quantum algorithm only uses Õϵ(κ
1/2d1/4) quantum queries.

A closely related problem is the normalization constant estimation, whose goal

is to output a value Z̃ such that with probability at least 2/3, (1−ϵ)Z ≤ Z̃ ≤ (1+ϵ)Z.

This problem is also known as the partition function estimation in physics, where the

distribution is called the Gibbs distribution. For discrete systems, partition function

estimation has been studied in the quantum setting [WCNA09, HW20]. However,

for continuous systems, we are the first (to the best of our knowledge) to develop

quantum algorithms for estimating normalizing constants. In this dissertation, we

combine our quantum MALA with simulated annealing and non-destructive mean

estimation to achieve an ϵ-relative error using Õ(κ1/2d3/2ϵ−1) queries, while classical

approach based on MALA uses Õ(κd2ϵ−2) queries [GLL20]. To further reduce the de-

pendence on d, we also propose quantum versions of underdamped Langevin dynam-

ics (ULD) and the randomized middle-point method for ULD (ULD-RMM). Together

with the quantum-accelerated multi-level Monte-Carlo, we achieve Õ(κ2d3/2ϵ−1) and

Õ((κ7/6d7/6+κd4/3)ϵ−1), respectively. Compared to the classical results [GLL20], our

quantum algorithms (based on ULD and ULD-RMM) quadratically speed up the ϵ-

dependence and do not require the quantum gradient oracle (i.e., they can be viewed

as zeroth-order sampling methods). In addition, we also prove a quantum query lower

bound 1/ϵ1−o(1) by reducing the normalizing constant estimation problem to the Ham-

ming weight problem [NW99], which demonstrates that our quantum algorithms have

a nearly-optimal error dependence. See Chapter 2 for more details.

Sampling beyond the log-concave regime In practice, many problems are not

convex, and it is very important to understand non-convex optimization from both

2In practice, such “warm” initial distributions can be prepared using other (possibly heuristic)
sampling methods.

42

empirical and theoretical perspectives. It is the same for the sampling problem.

Consider a sampling task for the distribution ρ(x) ∝ exp(−f(x)). When f is non-

convex, this problem is classically hard, and the Langevin diffusion (Eq. (1.1)) will

take an exponential time to converge in the worst-case. Recently, there are a lot

of classical works focusing on non-log-concave sampling for some special families of

distributions (e.g., those satisfying some functional inequality, such as log-Sobolev

inequality or Poincaré inequality [VW19, Wib19, LE20, CEL+21, MCC+19, AC23,

FYC23]; or with certain tail-growth conditions [DM17, CCAY+18, LWME19, MMS20,

EH21, HBE22]).

Then, it is natural to ask: is there any quantum advantage for sampling in

the non-log-concave regime? In general, this question might be difficult to answer

since many classical non-log-concave sampling algorithms are heuristic or based on

some irreversible process. In this dissertation, we consider a slightly non-log-concave

regime: approximately log-concave sampling, where the distribution has a kernel

function F : Rd → R satisfying

sup
x
|F (x)− f(x)| ≤ ϵ/d,

for some unknown convex function f : Rd → R. By a standard optimization to

sampling reduction, we can also ask to find an ϵ-minimizer for the function F (x),

which is denoted as the approximately convex optimization problem. This problem is

motivated by the robustness of optimization algorithms, where F (x) can be viewed

as a noisy observation of the convex function f(x). An algorithm for solving the ap-

proximately convex optimization will imply a convex optimization algorithm robust

to arbitrary point-wise noise. Classically, the state-of-the-art algorithm for this prob-

lem is by [BLNR15], which takes Õ(d4.5) queries to the evaluation oracle of F .3 In

this dissertation, we propose a quantum algorithm that takes Õ(d3) queries. The key

3Unlike the log-concave sampling, we do not get access to the gradient oracle here since F could
be non-smooth due to the noise.

43

technique of our result is a quantum speed-up of the hit-and-run walk with respect

to an approximately log-concave distribution.

A closely related problem is called the stochastic convex optimization problem.

In this problem, the objective function F : Rn → R can be expressed as:

F (x) = f(x) + ξx ∀x ∈ Rd,

where f is an unknown convex function, and ξx is an independent sub-Gaussian ran-

dom variable. The goal is to minimize f given query access to F . This problem

has a lot of applications in optimization with private data [BLNR15], stochastic pro-

gramming [DKS14], online learning [RSS12], etc. The current best classical algorithm

(due to [BLNR15]) uses Õ(n7.5/ϵ2) queries. To embed this problem in the quantum

setting, we considered the quantum stochastic oracle Ostoc
f :

Ostoc
f |x, y⟩ = |x⟩

∫

R

√
gx(z)|y + f(x) + z⟩dz ∀x ∈ Rn, y ∈ R, (1.2)

where gx is the density function of the sub-Gaussian variable ξx. By combining our

quantum hit-and-run walk sampler with a quantum sub-Gaussian mean estimator

(due to [Ham21]), we obtain a quantum algorithm for the stochastic convex opti-

mization with Õ(n5.5/ϵ) queries to Ostoc
f .

As an application, we also study the quantum version of the zeroth-order

stochastic convex bandit problem, which is a widely studied bandit model (see, e.g.,

[HL16, Lat20, LG21]). An informal definition of the problem is as follows. Let

f : Rd → [0, 1] be a convex function. An online learner and environment interact

alternatively over T rounds. In each round t ∈ [T], the learner makes a query to the

quantum stochastic evaluation oracle (Eq. (1.2)) and returns a point xt as the current

guess. The learner aims to minimize the regret

RT := E

[
T∑

t=1

(
f(xt)−min

x
f(x)

)
]
,

and the expectation is taken over all randomness. Based on our quantum stochas-

tic convex optimization algorithm, we develop a quantum algorithm that achieves

44

O(poly(d) log2(T)) regret in expectation. For comparison, the classical regret lower

bound is Ω(
√
T) by [DHK09]. The exponential quantum advantage comes from the

quadratically improved error dependence in the cost of the stochastic convex optimizer

by our quantum algorithm. See Chapter 3 for more details.

Our results on quantum algorithms for the sampling-related problems are sum-

marized in Table 1.1. We note that these algorithms require fully fault-tolerant quan-

tum computers. In the following of this sub-section, we consider more quantum

resource-efficient algorithms.

Early fault-tolerant ground-state energy and properties estimation A sig-

nificant effort in applied quantum computing has been devoted to the problem of

ground-state energy estimation (GSEE) for molecules and materials. A typical ap-

proach based on quantum singular value transformation (QSVT) can achieve nearly

optimal time complexity [LT20a] but also requires very deep quantum circuits. On the

other hand, we can also use some noisy intermediate-scale quantum (NISQ)-friendly

approaches (e.g., the variational quantum eigensolver (VQE)) to approximate the

ground state and estimate its energy by repeated measurements. However, some

recent works [SFGP21, DPMRF23] show that VQE-based methods are not robust

enough and have some limitations. Thus, we are looking for a new approach to

reliably solve the GSEE problem using small quantum circuits.

This research direction was first studied in [LT22], where they proposed the

early fault-tolerant regime to characterize the quantum resources needed for such algo-

rithms. Roughly speaking, an early fault-tolerant algorithm could run some quantum

circuits multiple times together with some classical pre-processing and post-processing

procedures. Moreover, it is desired to satisfy the following properties:

1. The maximal quantum circuit depth is small.

2. The number of ancilla qubits is O(1).

45

Problem Method Complexity

Log-concave
sampling

MALA [LST20] κd

MALA with warm start [WSC22] κd1/2

Q-MALA (Thm 2.6) κ1/2d

Q-MALA with warm start (Thm 2.36) κ1/2d1/4

Normalization
constant estimation

Annealing with MALA [GLL20] κd2ϵ−2

Multilevel ULD [GLL20] κ2d3/2ϵ−2

Multilevel ULD-RMM [GLL20] (κ7/6d7/6 + κd4/3)ϵ−2

Q-annealing with Q-MALA (Thm 2.7) κ1/2d3/2ϵ−1

Multilevel Q-ULD (Thm 2.8) κ2d3/2ϵ−1

Multilevel Q-ULD-RMM (Thm 2.8) (κ7/6d7/6 + κd4/3)ϵ−1

Quantum lower bound (Thm 2.9) ϵ−1+o(1)

Approximately convex
optimization

Classical [BLNR15] d4.5

Quantum (Thm 3.1) d3

Stochastic convex
optimization

Classical [BLNR15] d7.5ϵ−2

Quantum (Cor 3.2) d5.5ϵ−1

Stochastic convex
bandit

Classical [DHK09, LG21] Θd(
√
T) (regret)

Quantum (Thm 3.3) Od(log
2(T)) (regret)

Table 1.1: Summary of classical and quantum algorithms for sampling and related
problems. We omit all polylog(κ, d, ϵ−1) factors in the complexities. The quantum
improvements are highlighted in blue color.

46

3. The gate set is simple, i.e., no multi-qubit controlled gate.

In this dissertation, we propose an early fault-tolerant quantum algorithm for

GSEE that exponentially reduces the error dependence in the maximal circuit depth

compared to the previous methods [LT22, WBC21a, DLT22]. More specifically, let

H be a Hamiltonian (a giant complex matrix) with eigenvalues E0 ≤ E1 ≤ · · · ≤ EN

such that the energy gap E1 − E0 ≥ ∆. Suppose we can prepare an initial state ρ

with a non-trivial overlap with the ground state |E0⟩, i.e., ⟨E0|ρ|E0⟩ ≥ η. We further

assume that we are given black-box access to the controlled Hamiltonian evolution

c-exp(−2πiHt), which is a commonly-used model. And the goal is to estimate the

ground state energy E0 (the minimum eigenvalue) within additive error ϵ. As is

typical, the circuit depth and quantum runtime of the algorithm are measured in terms

of the Hamiltonian evolution time t. The maximal evolution time of our algorithm

scales as ∆−1 · poly log(∆/ϵ), while existing methods require maximal evolution time

at least ϵ−1. Our algorithm will be of great advantage to solving the GSEE for a

large family of industrially-relevant Hamiltonians in quantum chemistry with ∆ ≫
ϵ. One caveat of our algorithm is that the total cost, in terms of the Hamiltonian

evolution time, increases. However, from an implementation perspective, reducing the

maximal evolution time is the foremost object since a lower circuit depth decreases

the number of required physical qubits and minimizes the need for error correction

infrastructure. Nevertheless, we also develop another algorithm with a tunable circuit

depth between ∆−1 and ϵ−1 such that there exists a smooth tradeoff between the

maximal evolution time and the total evolution time. In particular, if we set the

circuit depth to be about ϵ−1, the total evolution time of our algorithm has the

same scaling as [LT22]. Additionally, relative to recent resource estimates of GSEE

for the industrially-relevant molecules of ethylene-carbonate and PF−6 [KLP+22], the

estimated gate count and circuit depth is reduced by a factor of 43 and 78, respectively.

The key technique of our algorithms comes from classical signal processing.

47

For an initial state ρ, its spectral density measure is defined as:

p(x) :=
N∑

j=0

pjδ(x− Ej),

where pj = ⟨Ej|ρ|Ej⟩ is the overlap between ρ and the j-th eigenstate |Ej⟩. On

the other hand, by Fourier transform, we know that p(x) is the discrete frequency

spectrum of the following signal:

p̂(t) =
N∑

j=0

pje
−2πiEjt.

By running the standard Hadamard test circuits with the unitary being the Hamil-

tonian evolution operator exp(2πiHt) on the initial state ρ, we obtain an unbiased

estimator for p̂(t). Then, the GSEE problem is reduced to find the minimum fre-

quency of a signal with gaped, discrete frequencies, given noisy observations in the

time duration [0, T]. And correspondingly, minimizing the circuit depth is equivalent

to minimizing the observing length T . Our main strategy is to apply a Gaussian

derivative filter:

gσ(x) = −
1√
2πσ3

xe−
1
2
x2/σ2

,

which will significantly suppress the magnitudes of higher frequencies and “highlight”

the minimum frequency. In this way, the minimum frequency (i.e., the ground-state

energy) can be accurately estimated by a grid search on the filtered signal. See

Chapter 4 for more details.

For more complicated tasks in quantum chemistry, e.g., computing electron

transport in materials or electric dipoles of molecules, we need to go beyond the

ground state energy and estimate additional properties of the ground state (i.e., the

expectation value of any observable). More specifically, the setting of the ground-state

property estimation (GSPE) is similar to GSEE, but we are also given an observable

O as a block-encoded unitary. And the goal is to estimate ⟨E0|O|E0⟩ within additive

error ϵ. We use similar ideas to develop an early fault-tolerant algorithm for GSPE

48

with maximal Hamiltonian evolution time depending logarithmically on the ϵ. Tech-

nically, the quantum circuit we use is a modification of the standard Hadamard test

circuit, which inserts the (unitary) observable in between two parameterized Hamil-

tonian evolution operators. From the signal processing perspective, we “lift” the 1-D

signal in GSEE to the following 2-D signal in order to deal with the observables that

are non-commute with the Hamiltonian:

q(x, y) =
N∑

j,k=0

qj,kδ(x− Ej)δ(y − Ek), and q̂(s, t) =
N∑

j,k=0

qj,ke
−2πi(Ejs+Ekt),

where qj,k := pjpk⟨Ej|O|Ek⟩. And the GSPE problem is reduced to estimating the

coefficient of the minimum frequency of a signal. Then, we leverage the polynomial

filter function proposed by [LT22] to recover the coefficient, which is of a higher degree

but more accurate compared to the Gaussian derivative filter.

Our early fault-tolerant GSPE algorithm can be applied to solve a wide range

of scientific problems. One example is to compute the charge density of a molecule,

which gives many useful properties like electric dipole moments of a molecule [RGM+21].

Another example is to estimate the linear system properties (i.e., x⊤Mx for any ma-

trix M and x = A−1b), where we can transform the linear system to a Hamiltonian

such that the ground-state corresponds to the solution. Compared to the existing

methods for these problems, our GSPE approach can significantly reduce the required

quantum circuit depths. See Chapter 5 for more details.

QAOA for network flow problems Quantum approximate optimization algo-

rithm (QAOA) is another kind of resource-efficient quantum algorithm with poten-

tial applications to solve practical combinatorial optimization problems (e.g., resource

allocation, job scheduling, and portfolio optimization). It is a quantum/classical hy-

brid algorithm that uses a parameterized quantum circuit to prepare a quantum

state that encodes the approximate solution and uses some classical optimization al-

gorithms (e.g., Adam [KB15], L-BFGS-B [BLNZ95], COBYLA [Pow07]) to optimize

the parameters.

49

In this dissertation, we presented a general framework for modifying QAOA

to solve constrained network flow problems (more specifically, the edge-disjoint path

problem). The key observation is an analogy between flow constraints and Gauss’s law

for electromagnetism. We designed lattice quantum electrodynamics (QED) inspired

mixing operators in QAOA that resulted in an exponential reduction in the size of the

search space. We also showed through numerical simulations that our algorithm can

yield higher quality approximate solutions compared to the original QAOA routine.

We believe our new QAOA approach will be useful in solving large-scale optimization

problems on graphs in the near future. See Chapter 6 for more details.

1.2.2 New approaches to quantum complexity theory

Quantum complexity aims to characterize the advantages and limitations of

quantum computers. However, for many practical and natural problems, their quan-

tum complexities remain mysterious. On the other hand, classical complexity theory

has been more thoroughly studied, and several approaches have been developed to

capture the hardness of discrete optimization and learning problems. In this part, we

will introduce two new approaches that “lift” classical techniques to help us under-

stand quantum complexity theory.

Quantum fine-grained complexity Previous studies of quantum computing fo-

cused on distinguishing problems in BQP from those that require exponential time.

However, for problems with real-world applications (e.g., those in optimization and

machine learning), only knowing they can be solved in quantum polynomial-time is

not enough, and what we need are really fast quantum algorithms. This motivates

the following question: Is there a “finer” theory to characterize the “exact” quantum

complexity of natural problems?

In this dissertation, we propose the quantum fine-grained complexity frame-

work. As an example, we revisited a fundamental problem in computational geometry—

the closest pair (CP) problem: given a set of n points in a d-dimensional space, find a

50

pair with the smallest distance. For CP in O(1)-dimension, we gave an Õ(n2/3)-time

quantum algorithm, which is optimal due to the quantum lower bound for the ele-

ment distinctness problem [AS04] and beats the classical O(n log n)-time algorithm

in the textbook (e.g., [CLRS09]). Our algorithm is based on the quantum walk on

the subsets of points (i.e., a Johnson graph). For time efficiency, we develop novel

history-independent quantum data structures to dynamically update the points and

maintain the closest pair. Here, the term “history-independent” indicates that the

memory layout of the data structure solely depends on the stored data, specifically

the maintained points, and does not consider the sequence of previous operations.

For CP in ω(log n)-dimension, the straightforward Grover’s algorithm takes

Õ(n)-time, and we prove that it is indeed nearly optimal. Similar to the classi-

cal fine-grained complexity, our quantum lower bound assumes the quantum strong

exponential-time hypothesis (QSETH), which roughly conjectures that k-SAT can-

not be solved by a 2(1/2−o(1))n-time quantum algorithm when k is large enough. The

QSETH is based on an observation that our current non-trivial quantum speedups

for k-SAT only hold for k = 3 or some small constants. For larger k, we currently

can only have Grover speedup. Our quantum fine-grained lower bound for CP follows

from the following chains of reductions:

k-SAT ≤ OV ≤ BCP ≤ CP,

where OV denotes the orthogonal vector problem, and BCP denotes the bichromatic

closest pair problem. Since the quantum fine-grained lower bounds are sublinear in

the input length, we also propose the quantum fine-grained reduction to reduce the

reduction time via quantum oracles. Additionally, we also apply the quantum fine-

grained complexity framework to study the complexity of OV, BCP, and approximate-

BCP in different dimension regimes. See Chapter 7 for more details.

Quantum meta-complexity Meta-complexity is the complexity of problems about

complexity. One important problem is the minimum circuit size problem (MCSP),

51

which asks to determine the circuit complexity of an input Boolean function. While

MCSP has been studied as early as the 1950s in the Russian cybernetics program, its

complexity remains mysterious.

In this dissertation, we initiated the study of quantum meta-complexity. We

first defined the quantum versions of MCSP for Boolean functions (MQCSP), quan-

tum states (SMCSP), and unitaries (UMCSP). For example, MQCSP is roughly de-

fined as follows: The input is the truth table of a Boolean function f : {0, 1}n → {0, 1}
and the size parameter s. The goal is to distinguish the following two cases:

• Yes: there exists a quantum circuit C of size at most s such that

∥(⟨f(x)| ⊗ I)C|x,0⟩∥2 ≥ 2/3 ∀x ∈ {0, 1}n.

• No: for all quantum circuit C of size at most s,

∥(⟨f(x)| ⊗ I)C|x,0⟩∥2 ≤ 1/3 ∃x ∈ {0, 1}n.

We remark that MQCSP is defined as a promise problem since quantum computation

is inherently random and erroneous. We investigate the basic complexity-theoretic

properties of these minimum quantum circuit size problems and show that these prob-

lems are not trivially in NP but in QCMA (or have QCMA protocols). Next, we explore

the relations between the three quantum MCSPs and their variants. We discover that

some reductions that are not known for classical MCSP exist for quantum MCSPs

for unitaries and states, e.g., search-to-decision reduction and self-reduction, which

mainly follow from the fact that quantum computation is reversible. Furthermore,

we show that MQCSP is closely related to other important quantum problems in

circuit lower bound, cryptography, learning theory, fine-grained complexity, as well

as tomography, and quantum gravity. For example,

• Circuit lower bound: an efficient quantum algorithm for MQCSP implies that

BPE and BQPQCMA do not have polynomial-sized quantum circuits.

52

• Cryptography: algorithms for MQCSP will break one-way function (OWF), and

algorithms for SMCSP will break pseudorandom state (PRS).

• Learning theory: PAC-learning for quantum circuits is “equivalent” to an effi-

cient randomized algorithm for MQCSP, and a quantum learning algorithm is

“equivalent” to an efficient quantum MQCSP algorithm.

• Fine-grained complexity: MQCSP for partial Boolean functions cannot be solved

by an N o(log logN)-time quantum algorithm unless QETH4 fails.

• Quantum gravity: estimating the volume of a wormhole can be reduced to solve

an SMCSP instance (assuming the Quantum Extended Church-Turing Thesis).

Given the fundamental differences between classical and quantum circuits, our results

require meticulous attention and unveil distinctive properties and phenomena specific

to the quantum setting. Our findings hold significant potential for future studies of

quantum meta-complexity. See Chapter 8 for more details.

1.3 Our Contributions in Optimization

Optimization is one of the most important playgrounds for demonstrating

quantum advantages, and a long line of research focuses on quantum optimization

algorithms (as we discussed in Section 1.2). Nevertheless, the study of classical op-

timization algorithms is still of great importance. On the one hand, many classi-

cal optimization algorithms are served as sub-routines in some quantum algorithms.

For example, semi-definite programming (SDP) was used in the shadow tomography

[Aar18]; sparse recovery was used in quantum benchmarking [HYF21] and phase es-

timation [YZT23]. On the other hand, developing more efficient classical algorithms

4QETH is similar to QSETH. It conjectures that 3-SAT cannot be solved by a 2o(n)-time quantum
algorithm.

53

could establish better baselines to justify the advantage of quantum optimization

algorithms.

This section mainly introduces our contributions in classical optimization al-

gorithms, which are also closely connected to quantum computing. In Section 1.3.1,

we discuss our state-of-the-art SDP solver based on a robust interior-point method

(IPM) framework, which is also the stepping stone to a high-accuracy quantum SDP

solver. In Section 1.3.2, we introduce our efficient algorithms to reconstruct contin-

uous, Fourier-sparse signals. This problem has strong motivation from early fault-

tolerant quantum algorithms. In Section 1.3.3, we present an efficient dynamic dis-

tance estimation data structure for any general symmetric norm.

1.3.1 Semi-definite programming

Semi-definite programming (SDP) is of great interest both in theory and in

practice, where many important problems can be modeled or approximated by SDPs.

An SDP instance has the following form:

max
X∈Rn×n

⟨C,X⟩ subject to ⟨Ai, X⟩ = bi, ∀i ∈ [m], X ⪰ 0,

where ⟨A,B⟩ :=∑i,j Ai,jBi,j is the matrix inner product, and C,A1, . . . , Am ∈ Rn×n

are symmetric matrices. Under strong duality, the above primal formulation is equiv-

alent to the following dual formulation:

min
y∈Rm

b⊤y subject to S =
m∑

i=1

yiAi − C, S ⪰ 0.

Inspired by the best linear programming solver due to [CLS19], which runs in

the current matrix multiplication time; ideally, we want to solve a general SDP in-

stance with high accuracy in matrix multiplication time, i.e., (mn2+mω+nω) log(1/ϵ),

where m is the number of constraints, n is the dimension of the matrices, ϵ is the ac-

curacy parameter, and ω ≈ 2.373 is the fast matrix multiplication exponent [AW21].

Unfortunately, the state-of-the-art result due to [JKL+20] is still
√
n-times slower.

54

In this dissertation, we improve the running time of [JKL+20]’s SDP solver to:

O∗
(
(
√
n(m2 + n4) +mω + n2ω) · log(1/ϵ)

)
,

where O∗ hides (mn)o(1) terms. In particular, for the tall dense SDP instances (i.e.,

m = Ω(n2)), our SDP solver runs in the current matrix multiplication time mω. And

we remark that there are many applications for tall dense SDPs (e.g., the sparsest

cut [ARV09], the minimum uncut [ACMM05], the metric embedding [LLR95], etc.),

and it is one of the two predominate cases in [JKL+20]. Moreover, the tall, dense

case was a milestone for solving LP in matrix multiplication time [LS15].

Technically, [JKL+20]’s algorithm is based on the interior-point method (IPM),

which constructs a path (so-called “central path”) connecting the initial solution to

the optimal solution. More formally, the central path is defined by the solution of the

following unconstrained optimization problem parameterized by η > 0:

min
y∈Rm

fη(y) where fη(y) := η · ⟨b, y⟩+ ϕ(y),

where ϕ(y) is a barrier function such that ϕ(y)→∞ as y approaching to the boundary

of the feasible region K = {y ∈ Rm | S =
∑m

i=1 yiAi − C ⪰ 0}. And we can see that

as η → ∞, the central path converges to the optimal solution of the SDP instance.

Hence, IPM starts with an initial feasible solution y for a small η, and increases η

in each iteration. To keep y in the proximity of the central path, it takes a Newton

step δy = −H(y)−1g(y) in each iteration, where g(y) = ∇fη(y) and H(y) = ∇2fη(y)

are the gradient and Hessian, respectively. Therefore, the total runtime of an IPM

algorithm can be expressed as:

TIPM = #iterations× cost-per-iteration.

The number of iterations depends on the self-concordance parameter of the barrier

function ϕ(y). For a θ-self-concordant barrier function, the IPM takes
√
θ log(θ/ϵ)

iterations to obtain an ϵ-optimal solution. There are three choices of barrier functions

for solving SDPs: logarithmic barrier, volumetric barrier, and hybrid barrier. Their

55

definitions and self-concordance parameters are summarized in Table 1.2. Thus, for

the log-barrier ϕlog(y) used in [JKL+20], it requires ∼ √n iterations to converge.

Ref. Barrier functions Self-concordance
[NN92, JKL+20] ϕlog(y) = − log det(S) n

[Vai89a, NN94] ϕvol(y) =
1
2
log det(∇2ϕlog(y)) m

√
n

[Ans00] ϕhyd(y) = c1ϕlog(y) + c2ϕvol(y)
√
mn

Table 1.2: Barrier functions for solving SDPs. For the hybrid barrier, c1 =
225
√
n/m(n− 1)/(m− 1), and c2 = 225

√
n/m.

The cost-per-iteration is dominated by the cost for computing the Hessian

inverse H(y)−1, which takes mω-time per iteration. Therefore, the total running time

is at least
√
n ·mω-time if we implement the IPM iterations exactly.

The high-level idea of our algorithm is to develop some numerical data struc-

tures to dynamically maintain the gradient g(y), Hessian H(y), and Newton’s step δy
in a fast but inexact way. More specifically, to speed up the computation of H(y)−1,

we apply a low-rank approximation for the change of the slack matrix S in each it-

eration, and use the Woodbury identity and the low-rank update for the Kronecker

product to very efficiently update H(y) and its inverse. Then, we propose a general

amortization technique that can automatically determine the truncated rank of S in

each iteration to optimize the total running time. However, the approximation errors

in each IPM iteration could make the algorithm converge to some in-optimal solu-

tion. To rule out this bad case, we develop a robust IPM framework that guarantees

the convergence of the IPM iterations even if there exist some errors in the gradient,

Hessian, and Newton’s step in each iteration. Based on our framework, we obtain a

more efficient high-accuracy SDP solver. Additionally, we also apply the robust IPM

framework to improve the hybrid barrier-based SDP solver [Ans00]. See Chapter 9

for more details.

On the other hand, there has been a long line of research on quantum SDP

solvers [BS17, AGGW17, BKL+19, KP20b, KPS21, ANTZ21], but they only achieved

56

low accuracy (or feasibility). On the one hand, some of these works quantized the

first-order SDP solvers, whose running times intrinsically depend on 1/ϵ. For those

quantum second-order methods, the bottleneck is that the gradient, Hessian, and

Newton step computed in each iteration need to be transferred between quantum

and classical memory, which incurs a poly(1/ϵ) factor to the running time due to the

cost of the high-accuracy quantum state tomography.

In this dissertation, we overcome the quantum bottleneck and show a high-

accuracy quantum SDP solver with running time:

(mn1.5 + n3) · poly(κ, log(mn/ϵ)),

where κ includes the condition numbers of the intermediate matrices. We note that

our quantum SDP solver can achieve quantum speedups and high accuracy on a large

family of well-conditioned SDP instances.

The main insight of our result is that, despite the requirement for state to-

mography, our robust IPM framework enables us to achieve quantum-classical data

transfer in IPM iterations with only O(1)-accurate tomography. This approach cir-

cumvents the poly(1/ϵ) barrier present in previous quantum SDP solvers. Then, by

carefully implementing the IPM SDP algorithm using several techniques in quantum

linear algebra, we obtain the above-stated total time complexity. See Chapter 10 for

more details.

1.3.2 Sparse Fourier signal reconstruction

Fast Fourier transform (FFT) is one of the most important algorithms of the

20th century. However, many real-world signals are (almost) sparse, which moti-

vates the study of Sparse Fourier transform (SFT). For discrete-time signals, SFT

has been well-studied, with time/sample complexity nearly linear in the signal’s spar-

sity [HIKP12a, HIKP12b, IKP14, NSW19]. But for continuous-time Fourier-sparse

57

signals, i.e.,

x(t) =
k∑

j=1

vj exp(2πifjt) ∀t ∈ [0, T],

SFT is currently far from being well-studied. In addition to its essential real-world

applications for continuous audio or radio signals, as we discussed in Section 1.2.1,

Continuous SFT is closely related to the early fault-tolerant quantum algorithms

for estimating a Hamiltonian’s ground-state energy/properties. More specifically,

given an initial quantum state as input, the energy information of the Hamiltonian is

encoded in a continuous-time signal x(t) =
∑N

j=1 pj exp(−2πiEjt), where Ej’s are the

eigenenergies of the Hamiltonian and pj’s are the overlaps between the initial state

and the eigenstates. By running the Hadamard-test quantum circuit (with parameter

t), we get a noisy observation of the signal at time t5. Thus, estimating the ground-

state energy corresponds to locating the minimum frequency, and estimating the

ground-state properties corresponds to reconstructing the coefficient.

Prior research shows that if we want to recover the ground-truth “tones” (i.e.,

{(vj, fj)}) from noisy observations, the frequency gap mini ̸=j∈[k] |fi − fj| must be

large [Moi15, PS15]. This phenomenon is known as the “super-resolution”. For a

continuous-time Fourier-sparse signal with gapped frequencies, an interesting question

is: can we reconstruct the coefficients corresponding to a given set of frequencies? This

problem is known as the Fourier set-query problem, and we expect an algorithm’s cost

only proportional to the size of the frequency set. [Kap17] studied this problem for

discrete signals. In this dissertation, we develop a unified framework for the Fourier

set-query problem, which consists of the following four steps:

• Step 1: Proving energy bound for the signal family, which controls the sample

complexity of the algorithm.

5More precisely, each observation can be written as x(t) + zt, where E[zt] = 0 and |zt| ≤ 1 is
independent random noise.

58

• Step 2: Obliviously sketching the signal, which draws random samples to shrink

the continuous universe to a discrete set.

• Step 3: Distilling the sketch via some carefully designed sub-sampling distri-

bution, which effectively minimizes the required number of samples.

• Step 4: Applying a weighted linear regression on the sketch to recover the

signal.

Then, we instantiate this framework for continuous and discrete Fourier set-query

in one-dimension and high-dimension, which are briefly summarized in Table 1.3.

Compared to [Kap17]’s discrete Fourier set-query algorithm, we achieve the same

sample complexity. And more importantly, our time complexity depends linearly on d,

while [Kap17] has an exponential dependence on d due to the curse of dimensionality.

See Chapter 11 for more details.

Signals Sample Time

1-D cont. k kω+1

ϵ−1k ϵ−1kω

d-D cont. k kO(d)

ϵ−1kO(d) ϵ−1kO(d)

d-D disc. ϵ−1k ϵ−1(kω+1 + kω−1d)

Table 1.3: Summary of our Fourier set-query results. For continuous signals, we
propose a sample-efficient algorithm and a high-accuracy algorithm. ϵ is the error
parameter. k is the output-sparsity of the algorithms. For discrete signals, k = |L|,
the size of the queried frequency set. And for continuous signals, k ∝ |L| and also
depends on the frequency gap.

Another research problem is the SFT without the frequency gap assumption.

In this setting, we can only reconstruct a signal that “looks like” the ground-truth

signal, but the tones could be very different, which is called the Fourier interpolation

problem. More formally, given noisy access to the ground truth k-Fourier-sparse signal

x∗(t) in limited time duration t ∈ [0, T], the goal is to reconstruct a k̃-Fourier-sparse

59

signal y(t) such that

∥y − x∗∥2T :=
1

T

∫ T

0

|y(t)− x∗(t)|2dt ≤ c ·
(
∥g∥2T + δ∥x∗∥2T

)
,

where g(t) is the noise in the observations, c is the approximation ratio, and k̃ is the

output sparsity. while there is a polynomial-time algorithm for Fourier interpolation

(due to [CKPS16]), it is not very efficient (with at least k51 sample complexity, k62

running time, k̃ ≥ k10 output sparsity, and c ≥ 2000 approximation ratio.), let alone

practical. An open question is: can we improve the efficiency and accuracy of the

Fourier interpolation algorithm?

In this dissertation, we push forward the research on this problem. We ob-

serve that the Fourier interpolation problem can be divided into two tasks: frequency

estimation and signal estimation. During frequency estimation, we identify a set of

k̃ candidate frequencies such that there exists a signal y∗(t) supported on these fre-

quencies and well-approximates the ground-truth signal x∗(t). Subsequently, in the

signal estimation phase, we reconstruct the coefficients of the signal y∗(t).We propose

another algorithm that improves the sample complexity to Õ(k4), time complexity to

Õ(k4ω), and output sparsity to Õ(k4), where ω ≈ 2.372 is the fast matrix multiplica-

tion exponent. It is worth noting that the current state-of-the-art sample complexity

of Fourier interpolation is ∼ k4, but was only known to be achieved by an exponential-

time algorithm [CP19a]. In contrast, our algorithm uses the same number of samples

but runs in polynomial time, presenting a significant advancement toward an effi-

cient Fourier Interpolation solution. Technically, at the core of our algorithm lies a

new spectral analysis tool called the Signal Equivalent Method, which leverages the

inherent structure of Fourier signals to establish energy properties that are nearly op-

timal. The utilization of this method becomes instrumental in achieving both efficient

and accurate frequency estimation. Complementing this technique, we introduce a

new criterion for frequency recovery, called the high signal-to-noise ratio (SNR) band

condition, which effectively prunes unnecessary frequencies from the observed signal

60

while preserving accuracy. By combining these components, we devise a cheap algo-

rithm capable of estimating “significant” frequencies within a narrow range. Finally,

we incorporate a signal estimation procedure to complete the Fourier interpolation

task. See Chapter 12 for more details.

1.3.3 Dynamic distance estimation

Estimating and detecting similarities in datasets is a basic subroutine in most

industry-scale optimization and machine-learning applications. It motivates the no-

tion of distance oracles (DO) [Pel00, GPPR04, WP11], which asks for a small-space

data structure such that after preprocessing a dataset of n points {x1, . . . , xn} in Rd,

in each query, given any point q ∈ Rd and a subset S ⊂ [n], it can very efficiently

estimate all distances ∥q − xi∥l for all i ∈ S (faster than the trivial O(d|S|)-time).

By considering the inner-product distance ⟨xi, q⟩, DO can be viewed as generalizing

matrix-vector product X · q, and we aim for this computation to be accomplished in

significantly less than nd time.

For ℓ1-norm and ℓ2-norm, the standard dimension-reduction (sketching) [JL84,

AC09, LDFU13] provides very efficient solutions for DO. For ℓp norms, the DO prob-

lem is well-understood [BYJKS04], where the standard tool for constructing the

data structure is via randomized linear sketching [SS02, BYJKS04, Ind06, KNPW11,

CN20]. Nevertheless, in numerous real-world scenarios, these metrics may not ade-

quately capture the underlying similarities between data points. Extensive research

has shown that employing more intricate metrics can substantially enhance predic-

tion accuracy and data compression [DKJ+07]. Over the past decade, many efforts

have been dedicated to extending optimization problems beyond the common met-

rics [ANN+17, ANN+18, LSV18, SWY+19, SWZ19]. These endeavors motivate us to

study DO in more general distance metrics.

In this dissertation, we propose a dynamic DO for any general symmetric

norm, which is invariant under permutations on coordinates. Some examples of sym-

61

metric norms include Orlicz norms, top-k norms, max-mixture and sum-mixture of ℓp
norms, small-support norms, and the box-norm, which can be very useful in modeling

complicated real-world problems. More specifically, our data structure supports the

following operations:

• Initialization: it takes Õ (n · (d+mmc(l))2 · poly(1/ϵ))-time and space to pre-

process the dataset {xi}i∈[n] ⊆ Rd, where ϵ is the error parameter and mmc(l)

is a complexity measure (concentration modulus) of the symmetric norm ∥ · ∥l.

• Query: for any query point q ∈ Rd and subset S ⊆ [n], it outputs a set of

estimates {dst}i∈S in Õ(d+ |S| ·mmc(l)2)-time, such that

(1− ϵ)∥q − xi∥l ≤ dsti ≤ (1 + ϵ)∥q − xi∥l ∀i ∈ S.

• Update: it takes Õ(d · poly(1/ϵ))-time to set xi ← z.

And we note that when l = ℓp, the running time of our result matches the state-of-art

DOs. Our algorithm follows a “sketch-and-decode” approach. During the preprocess-

ing phase, each data point xi ∈ Rd is compressed into a linear sketch Φxi ∈ Rd′ with

d′ ≪ d while ∥Φxi∥l ≈ ∥xi∥l. For each query, it first computes the sketch of the query

point, i.e., Φq, and then decodes the distance ∥q− xi∥l from the difference Φq−Φxi.

To achieve this, We employ a sketching method based on the layer approximation

[IW05, BBC+17]. Notably, we introduce several novel techniques, including shared

randomness, locate-and-verify decoding, etc., to adapt this sketching method to the

DO setting with highly efficient time and space complexities. See Chapter 13 for more

details.

1.4 Our Contributions in Machine Learning

Machine learning has achieved incredible success over the past few years in

many different areas. Even in quantum computing, machine learning has played an

62

important role in learning quantum states [ACH+18, CHL+22] and predicting predict

complex quantum systems [HKT+22, CHC+22]. Moreover, there has been a large

amount of work on quantum algorithms for machine learning (e.g., [RML14, AdW17,

KLP19, BBF+20, AHKZ20]). However, we currently do not fully understand why the

large models will work so well, and several classical and quantum machine learning

algorithms still lack provable guarantees.

Our research focuses primarily on the theoretical aspects of machine learning

and aims to address fundamental challenges, such as efficient training, data privacy,

and intellectual property protection. First, how to train large neural networks more

efficiently has become a crucial concern in the era of giant AI models. In Section 1.4.1,

we present several classical and quantum training algorithms with provable efficiency

and convergence guarantees. Second, the success of AI heavily relies on large quanti-

ties and high-quality data, which also raises concerns about privacy. In Section 1.4.2,

we discuss private data protection in a collaborative training experiment. Third,

how to ensure the secure distribution of pre-trained models to clients while preserv-

ing ownership and intellectual property rights is another important question for AI

companies. In Section 1.4.3, we introduce a new theoretical approach to copyright

protection of ML models (and other types of programs) with the help of quantum

computers.

1.4.1 Over-parameterized neural network training

Designing a fast and provable training method for neural networks stands as

a fundamental and formidable challenge. Currently, most deep learning models are

optimized using gradient descent or its variants. The overall training time can be

divided into two components: the number of iterations and the cost-per-iteration.

Several practical studies [CMJF+20, LXJ+20, CLP+21, DMZS21] have explored the

use of nearest-neighbor search data structures to reduce cost-per-iteration. Empiri-

cally, these approaches have demonstrated significant advantages over straightforward

training methods across various deep neural network architectures. However, none

63

of these approaches provide a provable guarantee. This raises a crucial and natu-

ral question: Is it possible to enhance the cost-per-iteration of neural network train-

ing algorithm theoretically? Addressing this question and establishing a theoretical

foundation for fast neural network training remains an open and promising area of

research.

In this dissertation, we make some progress toward resolving this research

question. We first theoretically improve the training algorithms for the two-layer

neural network with the ReLU activation function. Let n denote the number of

training data points in d-dimension, and m denote the number of neurons6. Then,

the neural network can be expressed as:

f(x) =
1√
m

m∑

i=1

ai · σ(⟨wi, x⟩),

where σ(z) = max{z, 0} is the ReLU function, ai ∈ {±1} is the output layer’s

weight, and wi ∈ Rn is the weight of the i-th neuron. In each gradient descent (GD)

iteration, the bottleneck is to compute the neural network predictions f(xi) for all n

training data points, and each requires computing m inner-products in d-dimension.

Hence, the cost-per-iteration in training neural networks (including both forward and

backward computation) faces a natural barrier of Ω(mnd). We manage to overcome

this barrier and present a classical and a quantum training algorithm with O(mαnd)

cost-per-iteration, where 0 < α < 1 is a universal constant. Furthermore, we can

prove a linear convergence rate for our algorithms.

To bypass the Ω(mnd) barrier, we observe that the bottleneck of each iteration

is the identify those neurons with non-zero outputs (or so-called “activated neurons”).

It motivates us to explore the possibility of leveraging quantum computing to speed

up this step. More specifically, Grover’s search algorithm [Gro96] is one of the most

6We assumed the over-parameterization regime where the number of neurons is much larger than
the number of training data points, i.e., m ≫ n. It is a very common regime in deep learning
theory [AZLS19a, AZLS19b, DZPS19], where the convergence and generalization of the gradient
descent-based training algorithms have provable guarantees.

64

famous quantum algorithms and can find one specific element out of n elements in

Õ(
√
n)-time. Moreover, if there are k such elements, Grover’s algorithm can find all

of them in Õ(
√
nk)-time. Therefore, a natural idea is to use Grover’s algorithm to

find the set of activated neurons, denoted as Sfire. Then, the forward computation

can be written as follows:

f(x) =
1√
m

∑

i∈Sfire

ai · σ(⟨wi, x⟩).

Hence, the cost of the forward (and backward) computation only depends on |Sfire|,
instead of m. When the number of activated neurons is small (i.e., sublinear in m),

Grover’s algorithm can offer a nearly quadratic speedup, and the training algorithm

will have a o(mnd) cost-per-iteration.

However, by the standard randomized initialization for the neural network,

each wi is sampled from a Gaussian distribution. As a result, about half of the

neurons are activated, and we still need to take Ω(m)-time to find all of them. There-

fore, sparsity is the key to speed-up. In this dissertation, we design a shifted-ReLU-

sparsifier by adding a small threshold in the ReLU activation function. That is,

σb(z) := max{z− b, 0} for some small b > 0. Each training iteration is guaranteed to

have o(m) number of activated neurons. Furthermore, we developed a shifted neural

tangent kernel (NTK) to provide a convergence analysis rigorously. In this way, we ob-

tained a hybrid quantum-classical algorithm with a truly sublinear cost-per-iteration.

Moreover, we observe that only the quantum part of our training algorithm is using

Grover’s algorithm to find Sfire. It can be formulated as a computational geometry

problem: we are given n points in d-dimension. In each query, the input is a half-

space, and the goal is to find all the points contained in this half-space. This problem

has been studied by [AEM92]. They proposed half-space reporting (HRS) data struc-

tures such that after preprocessing the dataset, each query can be answered with

sublinear costs.7 Therefore, we can use the HRS data structures to replace Grover’s

7More precisely, the costs are o(n) +O(k), where k is the output size.

65

algorithm. By preprocessing the training data points or the initial weights, we obtain

purely classical training algorithms with sublinear cost-per-iteration.

However, our sublinear-cost training algorithms are far from being practical

since the HRS data structures are extremely complicated with very large preprocessing

costs. In this dissertation, we also propose much-simplified tree-based data structures

for preprocessing in the two-layer training algorithm so that the d-dependence in the

preprocessing time is exponentially improved, with a slightly worse (but still sublin-

ear) cost-per-iteration. In addition, we proved a strong exponential-time hypothesis

(SETH)-based lower bound for the task of identifying the activated neurons, which

indicates that one could not improve much on the running time of our data structures.

See Chapter 14 for more details.

On the other hand, we theoretically improve the efficiency of training a multi-

layer wide neural network, which is of the following form:

f(W,x) = a⊤σ(WL(σ(· · ·σ(W1x)))),

where W1, . . . ,WL are m-by-m matrices. Naively, one has to pay Ω(m2) time to read

the weight matrix and evaluate the neural network function in both forward and

backward computation. We present a classical algorithm that only pays O(m2) in

the preprocessing phase, and each iteration takes truly sub-quadratic time, i.e., m1+β

for some universal constant β ∈ (0, 1). Technically, we apply the shifted ReLU-based

sparsifier to the multi-layer setting to reduce the number of activated neurons in

each iteration. And we analyze the convergence behavior of a general Gram-based

optimization framework, which provides the convergence guarantee for our training

algorithm. Moreover, we develop a novel algorithm to efficiently and accurately solve

tensor-based regression, which is a pivotal part of our training algorithm. See Chap-

ter 15 for more details.

66

1.4.2 Classical protection for private training data

The concept of collaboratively training neural networks using sensitive data

is highly attractive and applicable to numerous AI domains, ranging from health-

care to virtual assistants. One commonly employed strategy is to incorporate dif-

ferential privacy [DMNS06, CMS11, ACG+16] into the training process by adding

noise to gradients. This approach aims to prevent the trained model from contain-

ing sufficient information to reveal individual training data. Nevertheless, utilizing

differential privacy in the training process often results in a notable reduction in test

accuracy. Another strategy is to employ cryptographic tools like fully holomorphic

encryption (FHE) or multiparty computation (MPC) to safeguard sensitive training

data. However, the downside of these cryptographic protocols is that they often re-

sult in a substantial decrease in efficiency. Preserving data confidentiality, training

efficiency, and prediction accuracy while training neural networks has emerged as

a critical and common research objective in both academic and industrial domains

[SS15, KMY+16, MMR+17, RTD+18, PAH+18].

InstaHide is a private distributed learning scheme proposed by [HSLA20b] that

provides privacy without slowing down training or reducing accuracy. The key idea

is to train the model on a dataset where (1) each synthetic image is a mix of kpriv
private images and kpub public images, and (2) each pixel is independently sign-flipped

after the mixing. It shows promising prediction accuracy on several image data sets.

To evaluate the security aspect of the InstaHide scheme in real-world deployment

scenarios, the authors present a challenge [HSLA20a]. The challenge entails npriv =

100 private images, with the public images sourced from the ImageNet [DDS+09].

The challenge dataset comprises m = 5000 synthetic images, where each image is a

combination of kpriv = 2 private images and kpub = 4 public images, and the sign of

each pixel is randomly flipped. The objective is to recover a private image using the

set of sample images. Unfortunately, this challenge was broken by heuristic-based

practical attacks [CDG+20, LXW+21], which are capable of reconstructing images

67

visually similar to the private images in the InstaHide challenge data set. However,

the key drawback of these attacks is that they lack provable guarantees, and it is

unclear whether they still work when we use InstaHide to protect large numbers of

private images (i.e., large npriv). This raises a salient question: Is InstaHide scheme

secure in any provable sense?

InstaHide’s sample complexity [CLSZ21] is the first theoretical work that for-

mulates the InstaHide attack problem as a recovery problem. They proposed an

algorithm to recover a private image assuming each private and public image is a

random Gaussian image (i.e., each pixel is an i.i.d. sample from N(0, 1)). The algo-

rithm shows that O(nkpriv−2/(kpriv+1)
priv) sample images are sufficient to recover one private

image.

In this dissertation, we proposed an algorithm that recovers all private images

using only Ω(npriv log(npriv)) samples when mixing two private images (i.e., kpriv = 2

as in the InstaHide challenge setting), improving [CLSZ21]’s algorithm which needs

O(n
4/3
priv) samples. Furthermore, we summarized the existing attacks into a unify-

ing framework and revealed the vulnerability of the existing methods to recover all

private images by proving a computational hardness of approximation result: ℓ2-

regression with hidden signs cannot be (1 + ϵ)-approximated in 2o(n)-time, assuming

the exponential-time hypothesis (ETH). Our results demonstrate that InstaHide is

not information-theoretically secure but computationally secure in the worst case,

even in the simplest setup of mixing two private images. See Chapter 16 for more

details.

Efficient InstaHide attacking algorithm with provable guarantee We ob-

serve that a key step in the existing InstaHide attacks can be formulated as the

batched-k-vector sum (BkV-Sum) problem: let X = {x1, . . . , xr} be a hidden set of

d-dimensional vectors. We are given vectors y1, . . . , ym with the promise that for each

j ∈ [m], there is a set Sj ⊂ [r] of size k for which yj =
∑

i∈Sj
xi. The goal is to

68

recover sets S1, . . . , Sm. In the context of InstaHide, r = npriv represents the number

of private images, k = kpriv denotes the number of private images used for mixing, and

the set Sj provides information about which private images were used to generate the

j-th synthetic image. [CLSZ21, CDG+20] demonstrated that when xi are Gaussian

vectors or real images, it is possible to construct a similarity oracle. It takes any

yi and yj as inputs, and returns |Si ∩ Sj|. In the presence of such an oracle, BkV-

Sum can be reduced to the sparse symmetric Boolean matrix factorization problem

(SSBMF). It is a variant of the well-studied non-negative matrix factorization problem

[AGKM12, Moi13, RSW16, SWZ17, SWZ19]. In SSBMF, we are given a symmetric

non-negative matrix M ∈ Rm×m
≥0 , and the goal is to find an m-by-r Boolean matrix W

with k-row-sparse such that ∥M −WW⊤∥0 is minimized. This problem is intriguing

not only due to its connection to InstaHide attacks but also because it is closely re-

lated to other significant problems in combinatorics and theoretical computer science,

such as hypergraph reconstruction, clique decomposition, and more. Thus, exploring

this problem offers valuable insights into various research areas.

In this dissertation, we conduct systematic research on SSBMF. We first show

that it is NP-hard in the worst case. And we present a quasi-polynomial-time algo-

rithm for approximating SSBMF, based on the dense 2-CSP solver by [MM15]. Then,

we study the SSBMF in the average case. More specifically, we assume that each row

of the ground-truth W is randomly sampled from the set of k-sparse Boolean vectors,

and the input matrix M = WW⊤. By a bootstrapping technique and Jennrich’s ten-

sor decomposition algorithm [HAR70, LRA93], we show that W can be reconstructed

up to a permutation of its rows with high probability. In the analysis of our algo-

rithm, we establish a novel result in random matrix theory concerning the probability

of a rectangular k-sparse Boolean random matrix being singular. Furthermore, we

leverage our average-case algorithm for SSBMF to obtain the first provable attack on

InstaHide with a polynomial runtime in all parameters, including m, d, kpriv, and npriv.

More specifically, we show that when the sets Sj are uniformly random k-subsets and

m ≥ Ω̃(rk), given a similarity oracle, there exists a O(mω+1 +mrd)-time algorithm

69

to approximately recover the magnitudes of the “heavy” coordinates of every vector

in the original data set X = {x1, . . . , xr}. Remarkably, this recovery can be achieved

even if we only have access to the entrywise absolute values of the yi’s. In the context

of InstaHide, this algorithm can recover the “significant pixels” in each private image,

which are sufficient in many real-world scenarios. See Chapter 17 for more details.

1.4.3 Quantum protection for copyrights of machine learning models

Training large-scale ML models, such as GPT-4 [Ope23], necessitates vast

amounts of training data and GPU resources. Consequently, many AI companies

have adopted the business strategy of selling pre-trained models. However, a signif-

icant concern arises regarding the vulnerability of these sold models or programs to

unauthorized copying and sharing. One conventional solution is to incorporate wa-

termarking techniques into machine learning models [ZGJ+18, LNE+21, FAESS22],

enabling the detection of pirated models. Unfortunately, this approach can adversely

affect training efficiency and may not withstand transfer learning or fine-tuning, as mi-

nor modifications to the model could remove the watermark. Furthermore, achieving

a provable security guarantee in this context is exceptionally difficult. Another com-

mon approach is to offer ML services through cloud platforms exclusively. However,

reliance on cloud services can be inconvenient due to the risk of leaking private data

during network communication and potential server outages. Therefore, developing

a reliable and efficient approach to protect machine learning intellectual property has

become a critical demand.

In this dissertation, we investigate a new approach to protect the copyrights

of ML models using quantum computers. Provably secure copy-protection in the

classical world is theoretically impossible since we cannot prevent adversaries from

copying the program codes. In the quantum realm, we use the no-cloning theorem to

propose a scheme that provides provable protection against piracy for any unlearnable

program, resolving a long-standing open question in [AC12]. Notably, compared to

the prior quantum copy-protection scheme [Aar09], which is relative to a quantum

70

oracle, our protocol only relies on a classical oracle, making it more practical. By

instantiating the classical oracle with post-quantum candidate obfuscation, we will

obtain a heuristic construction of copy protection. Moreover, we establish that any

program with a watermarking can be copy-detected, i.e., piracy may not be prevented

but can be detected. Our quantum copy-protection results provide a new approach to

theoretically copy-protecting a pre-trained ML model with the assistance of quantum

computers, with the security guarantee that adversaries can only pirate it by training

the model from scratch. See Chapter 18 for more details.

1.5 Our Contributions in Concentration and Discrepancy

Concentration inequalities play an important role in various fields of com-

puter science and mathematics by demonstrating that random quantities are likely

to be close to their means. The most popular concentration inequalities might be

the Chernoff bound [Che52], which provides an exponential tail-bound for the sum of

independent and identically distributed (i.i.d.) scalar random variables. One applica-

tion of Chernoff bounds is the probabilistic method, which is a powerful technique for

proving the existence of desired objects through random constructions (see [AS16]).

However, it does not always yield optimal solutions. One such example is the dis-

crepancy minimization problem, where we are given n subsets of [n], and the goal

is to find a bi-coloring of the elements that minimizes the maximum discrepancy or

imbalance among the subsets. By Chernoff bound, we can easily show that a random

coloring has discrepancy O(
√
n log n). However, Spencer’s famous result of “six stan-

dard deviations” [Spe85] states that there exists a bi-coloring with the discrepancy

at most 6
√
n. Discrepancy theory has important connections to other fields, such as

theoretical computer science and optimization, and has found applications in both

theory and practice [Cha00b].

More recently, many efforts have been devoted to extending these findings to

the matrix settings. For instance, researchers have generalized scalar Chernoff bounds

71

to matrix Chernoff bounds in studies such as [AW02, RV07, Tro12, MJC+14, Tro15,

Tro18]. Additionally, works like [Mek14, MSS15b, Coh16a, Brä18, KLS20, HRS21,

DJR21, BJM22] have investigated matrix discrepancy in various settings.

We further extend the line of research on concentration and discrepancy. In

Section 1.5.1, we introduce the hyperbolic polynomial, which is a natural general-

ization of matrix and has important applications in TCS and mathematics. We

generalize several Chernoff-type and Spencer-type results to the hyperbolic setting.

In Section 1.5.2, we introduce the expanding posets (eposets), which are closely re-

lated to the recent breakthrough of c3-LTC, NLTS conjecture, etc. We show the

relationship between the concentration properties of the higher-order random walk

and the underlying structure of the poset. Although these results may not have im-

mediate applications in quantum computing, optimization, or machine learning, we

believe that they hold promise for future studies and can contribute to advancing our

understanding of these fields.

1.5.1 Hyperbolic-extensions of concentration and discrepancy

We say a real, multivariate homogeneous polynomial h(x) ∈ R[x1, . . . , xm] to

be hyperbolic in direction e ∈ Rm if its univariate restriction h(te−x) ∈ R[t] has only

real roots for any x. Hyperbolic polynomials were initially explored in the field of

partial differential equations [Går51, Hor83, Kry95]. Güler [Gül97] was the first to

discover its application in optimization, specifically hyperbolic programming (HP),

which is a generalization of LP and SDP. Later, substantial efforts have been dedicated

to developing efficient HP solvers (e.g., [RS14, Ren16, Ren19a]) and investigating the

relationship between HP and SDP (e.g., [HV07, LPR05, Brä14, Sau18, RRSW19]).

Moreover, hyperbolic polynomials serve as a powerful tool in resolving significant

problems in mathematics and TCS. These include the Van der Waerden/Schrijver-

Valiant conjecture [Gur06, Gur07], Kadison-Singer problem [MSS15b, Brä18], and

the construction of bipartite Ramanujan graphs [MSS18].

72

An intriguing property of the hyperbolic polynomial is that it induces a norm

known as the hyperbolic norm, which is a natural generalization of the matrix spec-

tral norm. Specifically, the matrix spectral norm ∥X∥ is defined as the maximum

absolute value among the eigenvalues of X. Alternatively, ∥X∥ corresponds to the

largest root (in absolute value) of the polynomial det(tI − X) ∈ R[t]. Notably, the

determinant polynomial det(X) for a real symmetric matrix X is hyperbolic in the

direction I.8 Hence, it motivates us to extend the notions of eigenvalue and spec-

tral norm to all hyperbolic polynomials. Let h(x) ∈ R[x1, . . . , xm] be a hyperbolic

polynomial in direction e. For any vector x, its hyperbolic eigenvalues are the roots

of h(te − x) = 0, denoted as λ1(x) ≥ · · · ≥ λd(x). And its hyperbolic norm is

∥x∥h := maxi∈[n]{|λi(x)|}. In addition to the determinant polynomial, another ex-

ample of the hyperbolic polynomial is h(x) =
∏m

i=1 xi with the hyperbolic direction

e = (1, . . . , 1). It is easy to see that the hyperbolic norm induced by this polynomial

corresponds to the ℓ∞-norm, i.e., ∥x∥h = ∥x∥∞. Our research mainly lies in exploring

the concentration and discrepancy properties with respect to the hyperbolic norm.

Hyperbolic concentration As we discussed earlier, concentration inequalities

for random matrices have been studied for decades. The matrix Chernoff bound

[Tro15] shows that for d-by-d symmetric matrices X1, . . . , Xn and a uniformly ran-

dom Boolean vector r ∈ {±1}n,

Pr
r∼{±1}n

[∥∥∥
n∑

i=1

riXi

∥∥∥ > t
]
≤ 2d · exp

(
− t2

2 ∥∑n
i=1X

2
i ∥
)
∀t > 0.

In this dissertation, we prove several Chernoff-type results for the hyperbolic

norm. First, we show a nearly optimal hyperbolic Chernoff bound for Rademacher

sums. Specifically, let h be an m-variate, degree-d hyperbolic polynomial in direction

8We vectorize n-by-n symmetric matrices as vectors in Rn(n+1)/2.

73

e. Let x1, . . . , xn ∈ Rm such that
∑n

i=1 ∥xi∥2h ≤ σ2. Then, we have

Pr
r∼{±1}n

[∥∥∥
n∑

i=1

rixi

∥∥∥
h
> t
]
≤ 2 exp

(
− ct2

σ2 log(s+ 1)

)
∀t > 0.

By choosing different hyperbolic polynomials, this result can recover Hoeffding’s in-

equality [Hoe63], the dimension-free vector-valued Bernstein inequality [Min17], and

the matrix Chernoff bound [Tro15]9.

Second, similar to the matrix Chernoff bound for positive semi-definite (PSD)

matrices ([Tro15]), we also prove a hyperbolic Chernoff bound for random vectors in

the hyperbolic cone Γh+, which is defined to be the set of vectors with all hyperbolic

eigenvalues being non-negative. Suppose x1, . . . , xn are n independent random vectors

over Λ+ such that λmax(xi) ≤ R for all i ∈ [n] and
∑n

i=1 E[λmax(xi)] = µmax. Then,

we have

Pr
[
λmax

(n∑

i=1

xi
)
≥ (1 + δ)µmax

]
≤ d ·

((1 + δ)1+δ

eδ

)−µmax/R

∀δ ≥ 0.

In addition, we have a similar result for the minimum hyperbolic eigenvalue.

Third, we delve into the anti-concentration with respect to the hyperbolic

norm. Anti-concentration provides an opposite perspective of concentration inequal-

ities by focusing on how random variables avoid clustering or becoming overly con-

centrated in specific regions. A notable example is the Littlewood-Offord theorem

[LO43], which states that the probability of a random hypercube vertex laying on

the boundary of any d-dimensional half-plane 1⟨a,x⟩≤θ with |ai| ≥ 1 is at most O(1√
d
).

Recently, this theorem was extended from half-plane to polytope [OST19] and pos-

itive spectrahedron [AY22]. We establish a similar result in the hyperbolic setting,

demonstrating that the hyperbolic spectral norm of a Rademacher sum of vectors in

the hyperbolic cone cannot concentrate within a small interval. It has some potential

applications in constructing pseudorandom generators that fool hyperbolic cones. See

Chapter 19 for more details.

9In fact, our result only implies the matrix Chernoff bound for constant-dimensional or constant-
rank matrices.

74

Hyperbolic discrepancy The discrepancy minimization has been extensively stud-

ied across various settings. In the context of a set system over [n], Spencer’s theorem

[Spe85] establishes an upper bound of O(
√
n) on the discrepancy. Similary, the min-

imum discrepancy of n matrices X1, . . . , Xn ∈ Rd×d can be defined as

min
s∈{±1}n

∥
n∑

i=1

siXi∥.

Using the matrix Chernoff bound, we can derive an upper bound of O(
√
n log d) on the

matrix discrepancy, and it is conjectured that the log d factor can be shaved [Mek14].

When the matrices are rank-one, this problem is strongly connected to the Kadison-

Singer (KS) problem [KS59] in functional analysis, which was resolved by the seminal

work of Marcus, Spielman, and Srivastava [MSS15b]. Specifically, for any independent

random vectors u1, · · · , un ∈ Cm in isotropic positions10 in expectation, there is a

positive probability that ∥∑n
i=1 uiu

∗
i ∥ ≤ 1 + O(maxi∈[n] ∥ui∥). From a discrepancy

theory perspective, this result implies that: for any isotropic u1, . . . , un ∈ Cm with

∥uiu∗i ∥ ≤ ϵ, it holds that

min
s∈{±1}n

∥∥∥
n∑

i=1

siuiu
∗
i

∥∥∥ ≤ O(
√
ϵ),

which corresponds to the matrix Spencer conjecture with rank-one isotropic matrices.

Several generalizations of the Kadison-Singer-type results have been established. For

instance, [KLS20] relaxed the condition on the norm of each rank-one matrix to

the norm of the sum of squared matrices, i.e., ∥∑n
i=1(uiu

∗
i)

2∥ ≤ σ2, and showed a

discrepancy bound of 4σ. [AO15] relaxed the independent sampling of ui’s to sampling

from any strongly Rayleigh distribution. [Coh16a, Brä18] proved the Kadison-Singer

theorem for high-rank matrices. In particular, [Brä18] obtained this result by proving

a hyperbolic version of the Kadison-Singer theorem.

Our contribution to the hyperbolic discrepancy theory consists of two parts.

10We say vectors v1, . . . , vn are in isotropic positions if
∑n

i=1 viv
∗
i = I.

75

First, in the hyperbolic rank-one setting11, we generalize [KLS20] and [AO15]’s results

to the hyperbolic setting:

• Four hyperbolic deviations suffice for the hyperbolic KS: Let h ∈ R[x1, . . . , xm]

denote a hyperbolic polynomial in direction e ∈ Rm. Let v1, . . . , vn ∈ Γh+ be

n vectors in the hyperbolicity cone with σ := ∥∑n
i=1 trh[vi]vi∥h, where the

hyperbolic trace trh[x] :=
∑d

i=1 λi(x). Then it holds that

min
s∈{±1}n

∥∥∥
n∑

i=1

sivi

∥∥∥
h
≤ 4σ.

• Hyperbolic KS with a strongly Rayleigh distribution: Let h ∈ R[x1, . . . , xm]

denote a hyperbolic polynomial in direction e ∈ Rm. Let v1, · · · , vn ∈ Γh+ such

that
∑n

i=1 vi = e, and ∥vi∥h ≤ ϵ2 for all i ∈ [n]. Let µ be a homogeneous strongly

Rayleigh probability distribution12 on [n] such that the marginal probability of

each element is at most ϵ1. Then, it holds that there exists S ⊆ [n] in the

support of µ, such that
∥∥∥
∑

i∈S

vi

∥∥∥
h
≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2.

In addition, we present an algorithm that runs sub-exponentially in m to construct

the solutions in both cases.

Second, we have some preliminary results about the hyperbolic discrepancy

for general vectors. Note that [Brä18]’s result requires that the vectors are in the

hyperbolic cone Γh+ and in an isotropic position. We relax this condition to hyper-

bolic cone vectors in a sub-isotropic position and slightly improve their hyperbolic

discrepancy bound. Additionally, We put forward the hyperbolic Spencer conjecture,

which states that for any x1, . . . , xn ∈ Rm with ∥xi∥h ≤ 1, there exists an s ∈ {±1}n

11The hyperbolic rank of a vector x is the number of its non-zero hyperbolic eigenvalues.
12A distribution µ over the subsets of [n] is strongly Rayleigh if its generating polynomial gµ(z) :=∑
S⊆[n] µ(S)z

S ∈ R[z1, . . . , zn] is a real-stable polynomial, i.e., no root in the upper-half of Cn.

76

such that ∥∑n
i=1 sixi∥h ≤ O(

√
n). This conjecture is a natural generalization of the

matrix Spencer conjecture. And we prove a special case when the hyperbolic rank

of each vector is constant. We hope our results will be helpful in fully resolving the

matrix Spencer conjecture in the future. See Chapter 20 for more details.

1.5.2 Higher-order random walk on expanding posets

High-dimensional expanders (HDXs) and random walks on them have gar-

nered significant attention in mathematics, theoretical computer science, and quan-

tum computing. They exhibit strong connections to various areas such as approximat-

ing constraint satisfaction problems (CSPs) [AJT19, ALG20], approximate sampling

and counting [ALGV19], agreement testing [DD19], constructing c3-locally testable

codes (LTCs) [DEL+22] and good quantum low-density parity-check (LDPC) codes

[PK21, LH22, LZ22], resolving no low energy state conjecture (NLTS) [ABN23], etc.

While most studies on HDXs have focused on hypergraphs or simplicial complexes,

the understanding of non-simplicial objects (e.g., the Grassmanian complex) remains

unclear. In this thesis, we delve into a generalized notion of high-dimensional ex-

pansion on partially ordered sets (posets) called expanding posets, as introduced by

[DDFH18], and quantify the advantage of different poset architectures, highlighting

how structural regularity controls the spectral decay and edge-expansion of corre-

sponding random walks.

We specifically focus on the d-dimensional graded poset, which is a set X

equipped with a partial order “<”. Each element x ∈ X has a rank r(x) ∈ [d]

that respects the partial order and partitions X into levels X(0) ∪ . . . ∪ X(d). For

instance, in hypergraph, the rank of an element is the size of the subset, while in

the Grassmann poset, where elements represent subspaces, the rank corresponds to

the subspace dimension. Random walks on a graded poset are called higher-order

random walks, which can be defined by composing the following up-operator and

77

down-operator:

Uif(x) = E
y⋖x

[f(y)], Dif(y) = E
x⋗y

[f(x)] ∀f : X(i)→ R,

where y ⋖ x denotes y < x and r(y) = r(x) − 1. For example, the upper walk

Di+1Ui can be described as: starting from x ∈ X(i), first moving up to y ∈ X(i+ 1)

with x < y, and then moving down to x′ ∈ X(i) with x′ < y. One motivation for

the higher-order random walks is they determine the expansion of the underlying

poset. Inspired by the notion of spectral expansion of a graph, [DDFH18] defines the

(δ, γ)-expansion of a poset for δ ∈ [0, 1]d and γ ∈ [0, 1) as:

∥Di+1Ui − (1− δi)I − δiUi−1Di∥ ≤ γ ∀1 ≤ i < d.

And we call an expanding graded poset an eposet.

X(3):

X(2):

X(1):

X(0):

Figure 1.1: An example of a graded poset. The relation “⋖” corresponds to the edges
in the figure.

Our research is centered around the concentration behavior of the higher-

order walks on eposets, shedding light on their spectral properties. We demonstrate

that the eigenvalues of the walk operators concentrate within strips around a small

number of approximate eigenvalues, controlled by the regularity of the poset. More

specifically, we establish that the i-th approximate eigenvalue of the walk operator can

78

be expressed as λi = R(k−1,i)
R(k,i)

, where k is the dimension of the random walk and R(j, i)

denotes the total number of rank-i elements less than any fixed rank-j element. Our

findings indicate an exponential decay of eigenvalues in the poset architectures like the

Grassmann, whereas architectures like hypergraphs exhibit only linear decay. This

distinction is crucial in applications to the hardness of approximation and agreement

testing, such as the recent proof of the 2-2 Games Conjecture [SMS18]. In contrast to

the previous study on eposets [KT21a], which focuses only on the second eigenvalue,

our result goes beyond and captures the full spectrum. It allows us to obtain a more

comprehensive understanding of the concentration behavior of higher-order random

walks on eposets.

As a consequence, we show a tight variance-based characterization of edge-

expansion on eposets, which is an important combinatorial property used in algo-

rithms and hardness of unique games [BBK+20, BHKL20, SMS18]. We prove that

the expansion of any i-link13 of an eposet is almost exactly 1−λi(M), where M is the

higher-order random walk operator. And conversely, any set with expansion less than

1 − λi(M) has a high variance across i-links. While a similar result was presented

in a previous work [BHKL20], their proof heavily relies on the simplicial structure.

Furthermore, we conduct a thorough analysis of the Grassmann, showing that our

results are tight for a natural set of sparsifications of the Grassmann graphs (i.e., the

q-eposets). See Chapter 21 for more details.

13For a rank-i element x, its k-dimensional link consists of all the rank-k elements y > x.

79

Part I

Quantum Computing

80

Chapter 2: Quantum Speedups of Log-concave
Sampling

2.1 Introduction

Sampling from a given distribution is a fundamental computational problem.

For example, in statistics, samples can determine confidence intervals or explore pos-

terior distributions. In machine learning, samples are used for regression and to train

supervised learning models. In optimization, samples from well-chosen distributions

can produce points near local or even global optima.

Sampling can be nontrivial even when the distribution is known. Indeed,

efficient sampling is often a challenging computational problem, and bottlenecks the

running time in many applications. Many efforts have been made to develop fast

sampling methods. Among those, one of the most successful tools is Markov Chain

Monte Carlo (MCMC), which uses a Markov chain that converges to the desired

distribution to (approximately) sample from it.

Here we focus on the fundamental task of log-concave sampling, i.e., sam-

pling from a distribution proportional to e−f where f : Rd → R is a convex function.

This covers many practical applications such as multivariate Gaussian distributions

and exponential distributions. Provable performance guarantees for log-concave sam-

pling have been widely studied [DCWY18]. A closely related problem is estimating

the normalizing constants of log-concave distributions, which also has many applica-

tions [GLL20].

Quantum computing has been applied to speed up many classical algorithms

based on Markov processes, so it is natural to investigate quantum algorithms for

log-concave sampling. If we can prepare a quantum state whose amplitudes are

the square roots of the corresponding probabilities, then measurement yields a ran-

dom sample from the desired distribution. In this approach, the number of re-

81

quired qubits is only poly-logarithmic in the size of the sample space. Unfortu-

nately, such a quantum state probably cannot be efficiently prepared in general,

since this would imply SZK ⊆ BQP [ATS03]. Nevertheless, in some cases, quan-

tum algorithms can achieve polynomial speedup over classical algorithms. Exam-

ples include uniform sampling on a 2D lattice [Ric07], estimating partition func-

tions [WA08, WCNA09, Mon15, HW20, AHN+21], and estimating volumes of convex

bodies [CCH+19]. However, despite the importance of sampling log-concave distribu-

tions and estimating normalizing constants, we are not aware of any previous quantum

speedups for general instances of these problems.

Formulation In this chapter, we consider a d-dimensional convex function f : Rd →
R which is L-smooth and µ-strongly convex, i.e., µ, L > 0 and for any x, y ∈ Rd, x ̸= y,

f(y)− f(x)− ⟨∇f(x), y − x⟩
∥x− y∥22/2

∈ [µ, L]. (2.1)

We denote by κ := L/µ the condition number of f . The corresponding log-concave

distribution has probability density ρf : Rd → R with

ρf (x) :=
e−f(x)

Zf
, (2.2)

where the normalizing constant is

Zf :=

∫

x∈Rd

e−f(x) dx. (2.3)

When there is no ambiguity, we abbreviate ρf and Zf as ρ and Z, respectively. Given

an ϵ ∈ (0, 1),

• the goal of log-concave sampling is to output a random variable with distribution

ρ̃ such that ∥ρ̃− ρ∥ ≤ ϵ, and

• the goal of normalizing constant estimation is to output a value Z̃ such that with

probability at least 2/3, (1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z.

82

Here ∥ · ∥ is a certain norm. We consider the general setting where the function f is

specified by an oracle. In particular, we consider the quantum evaluation oracle Of , a

standard model in the quantum computing literature [CCH+19, AGGW20, CCLW20,

ZLL21]. The evaluation oracle acts as

Of |x, y⟩ = |x, f(x) + y⟩ ∀x ∈ Rd, y ∈ R. (2.4)

(Quantum computing notations are briefly explained in Section 2.2.) We also consider

the quantum gradient oracle O∇f with

O∇f |x, z⟩ = |x,∇f(x) + z⟩ ∀x, z ∈ Rd. (2.5)

In other words, we allow superpositions of queries to both function evaluations and

gradients. The essence of quantum speedup is the ability to compute with carefully

designed superpositions.

Contributions Our main results are quantum algorithms that speed up log-concave

sampling and normalizing constant estimation.

Theorem 2.1 (Main log-concave sampling result). Let ρ denote the log-concave dis-

tribution (2.2). There exist quantum algorithms that output a random variable dis-

tributed according to ρ̃ such that

• W2(ρ̃, ρ) ≤ ϵ where W2 is the Wasserstein 2-norm (2.8), using Õ(κ7/6d1/6ϵ−1/3 +

κd1/3ϵ−2/3) queries to the quantum evaluation oracle (2.4); or

• ∥ρ̃ − ρ∥TV ≤ ϵ where ∥ · ∥TV is the total variation distance (2.7), using Õ
(
κ1/2d

)

queries to the quantum gradient oracle (2.5), or Õ
(
κ1/2d1/4

)
queries when the initial

distribution is warm (formally defined in Section 2.9.2.1).

In the above results, the query complexity Õ(κ7/6d1/6ϵ−1/3 + κd1/3ϵ−2/3) is

achieved by our quantum ULD-RMM algorithm. Although the quantum query com-

plexity is the same as the best known classical result [SL19], we emphasize that our

83

quantum algorithm uses a zeroth-order oracle while [SL19] uses a first-order oracle.

The query complexity Õ
(
κ1/2d

)
is achieved by our quantum MALA algorithm that

uses a first-order oracle (as in classical algorithms). This is a quadratic speedup in κ

compared with the best known classical algorithm [LST20]. With a warm start, our

quantum speedup is even more significant: we achieve quadratic speedups in κ and d

as compared with the best known classical algorithm with a warm start [WSC22].

Theorem 2.2 (Main normalizing constant estimation result). There exist quantum

algorithms that estimate the normalizing constant by Z̃ within multiplicative error ϵ

with probability at least 3/4,

• using Õ(κ7/6d7/6ϵ−1 + κd4/3ϵ−1) queries to the quantum evaluation oracle (2.4); or

• using Õ(κ1/2d3/2ϵ−1) queries to the quantum gradient oracle (2.5).

Furthermore, this task has quantum query complexity at least Ω(ϵ−1+o(1)) (Theo-

rem 2.9).

Our query complexity Õ(κ7/6d7/6ϵ−1 + κd4/3ϵ−1) for normalizing constant es-

timation achieves a quadratic speedup in precision compared with the best known

classical algorithm [GLL20]. More remarkably, our quantum ULD-RMM algorithm

again uses a zeroth-order oracle while the slower best known classical algorithm uses

a first-order oracle [GLL20]. Our quantum algorithm working with a first-order or-

acle achieves polynomial speedups in all parameters compared with the best known

classical algorithm [GLL20]. Moreover, the precision-dependence of our quantum

algorithms is nearly optimal, which is quadratically better than the classical lower

bound in 1/ϵ [GLL20].

To the best of our knowledge, these are the first quantum algorithms with

quantum speedup for the fundamental problems of log-concave sampling and es-

timating normalizing constants. We explore multiple classical techniques includ-

ing the underdamped Langevin diffusion (ULD) method [DM17, DK19, DMM19,

VW19], the randomized midpoint method for underdamped Langevin diffusion (ULD-

RMM) [SL19, RSBG19], and the Metropolis adjusted Langevin algorithm (MALA) [DCWY18,

84

CDWY20, LST20, CLA+21, WSC22, LST21], and achieve quantum speedups. Our

main contributions are as follows.

• Log-concave sampling. For this problem, our quantum algorithms based on ULD

and ULD-RMM have the same query complexity as the best known classical algo-

rithms, but our quantum algorithms only use a zeroth-order (evaluation) oracle,

while the classical algorithms use the first-order (gradient) oracle. For MALA, this

improvement on the order of oracles is nontrivial, but we can use the quantum gra-

dient oracle in our quantum MALA algorithm to achieve a quadratic speedup in the

condition number κ. Furthermore, given a warm-start distribution, our quantum

algorithm achieves a quadratic speedup in all parameters.

• Normalizing constant estimation. For this problem, our quantum algorithms pro-

vide larger speedups. In particular, our quantum algorithms based on ULD and

ULD-RMM achieve quadratic speedup in the multiplicative precision ϵ (while us-

ing a zeroth-order oracle) compared with the corresponding best-known classical

algorithms (using a first-order oracle). Our quantum algorithm based on MALA

achieves polynomial speedups in all parameters. Furthermore, we prove that our

quantum algorithm is nearly optimal in terms of ϵ.

We summarize our results and compare them to previous classical algorithms

in Table 2.1 and Table 2.2. See Section 2.6 for more detailed comparisons to related

classical and quantum work.

Techniques In this chapter, we develop a systematic approach for studying the

complexity of quantum walk mixing and show that for any reversible classical Markov

chain, we can obtain quadratic speedup for the mixing time as long as the initial dis-

tribution is warm. In particular, we apply the quantum walk and quantum annealing

in the context of Langevin dynamics and achieve polynomial quantum speedups.

The technical ingredients of our quantum algorithms are highlighted below.

85

Table 2.1: Summary of the query complexities of classical and quantum algorithms
for sampling a d-dimensional log-concave distribution. Here κ = L/µ in (2.1) and ϵ
is the error in the designated norm.

Method Oracle Complexity Norm

ULD [CCBJ18] gradient Õ
(
κ2d1/2ϵ−1

)
W2

ULD-RMM [SL19] gradient Õ
(
κ7/6d1/6ϵ−1/3 + κd1/3ϵ−2/3

)
W2

MALA [LST20] gradient Õ(κd) TV
MALA with warm start [WSC22] gradient Õ

(
κd1/2

)
TV

Quantum Inexact ULD (Theorem 2.30) evaluation Õ
(
κ2d1/2ϵ−1

)
W2

Quantum Inexact ULD-RMM (Theorem 2.31) evaluation Õ
(
κ7/6d1/6ϵ−1/3 + κd1/3ϵ−2/3

)
W2

Quantum MALA (Theorem 2.38) gradient Õ
(
κ1/2d

)
TV

Quantum MALA (warm start) (Theorem 2.36) gradient Õ
(
κ1/2d1/4

)
TV

• Quantum simulated annealing (Lemma 2.5). Our quantum algorithm for estimat-

ing normalizing constants combines the quantum simulated annealing framework

of [WA08] and the quantum mean estimation algorithm of [Mon15]. For each

type of Langevin dynamics (which are random walks), we build a corresponding

quantum walk. Crucially, the spectral gap of the random walk is quadratically

amplified in the phase gap of the corresponding quantum walk. This allows us to

use a Grover-like procedure to produce the stationary distribution state given a

sufficiently good initial state. In the simulated annealing framework, this initial

state is the stationary distribution state of the previous Markov chain.

• Effective spectral gap (Lemma 2.21). We show how to leverage a “warm” initial

distribution to achieve a quantum speedup for sampling. Classically, a warm start

leads to faster mixing even if the spectral gap is small. Quantumly, we generalize

the notion of “effective spectral gap” [Rei09, LMR+11, CCH+19] to our more general

sampling problem. We show that with a bounded warmness parameter, quantum

algorithms can achieve a quadratic speedup in the mixing time. By viewing the

sampling problem as a simulated annealing process with only one Markov chain, we

prove a quadratic speedup for quantum MALA by analyzing the effective spectral

86

Table 2.2: Summary of the query complexities of classical and quantum algorithms
for estimating the normalizing constant of a d-dimensional log-concave distribution.
Here κ = L/µ in (2.1) and ϵ is the multiplicative error.

Method Oracle Complexity

Multilevel ULD [GLL20] gradient Õ
(
κ2d3/2ϵ−2

)

Multilevel ULD-RMM [GLL20] gradient Õ
(
κ7/6d7/6ϵ−2 + κd4/3ϵ−2

)

MALA [GLL20] gradient Õ
(
κd2ϵ−2 max{1, κd}

)

Multilevel Quantum Inexact ULD (Theorem 2.47) evaluation Õ
(
κ2d3/2ϵ−1

)

Multilevel Quantum Inexact ULD-RMM (Theorem 2.48) evaluation Õ
(
κ7/6d7/6ϵ−1 + κd4/3ϵ−1

)

Quantum annealing with Quantum MALA (Theorem 2.43) gradient Õ
(
κ1/2d3/2ϵ−1

)

gap.

• Quantum gradient estimation (Lemma 2.27). We adapt Jordan’s quantum gradient

algorithm [Jor05] to the ULD and ULD-RMM algorithms and give rigorous proofs

to bound the sampling error due to gradient estimation errors.

Open questions Our work raises several natural questions for future investigation:

• Can we achieve quantum speedup in d and κ for unadjusted Langevin algorithms

such as ULD and ULD-RMM? The main difficulty is that ULD and ULD-RMM are

irreversible, while most available quantum walk techniques only apply to reversible

Markov chains. New techniques might be required to resolve this question.

• Can we achieve further quantum speedup for estimating normalizing constants with

a warm start distribution? This might require a more refined version of quantum

mean estimation.

• Can we give quantum algorithms for estimating normalizing constants with query

complexity sublinear in d? Such a result would give a provable quantum-classical

separation due to the Ω(d1−o(1)/ϵ2−o(1)) classical lower bound proved in [GLL20].

87

2.2 Preliminaries

We defer the basics of quantum computing to Appendix B. In this subsection,

we introduce a standard “quantum approach” to black-box access some functions—

quantum oracle and quantum query access. We also introduce the application of

quantum computing in sampling problems. Then, we provide some important nota-

tions/definitions in classical literature that are used in this chapter.

Quantum query access and quantum sampling Quantum access to a function,

referred to as a quantum oracle, must be reversible and allow access to different values

of the function in superposition (i.e., for linear combinations of computational basis

states). For example, consider the unitary evaluation oracle Of defined in (2.4).

Given a probability distribution {pi}ni=1 and a set of points {xi}ni=1, we have

Of

n∑

i=1

√
pi|xi⟩|0⟩ =

n∑

i=1

√
pi|xi⟩|f(xi)⟩. (2.6)

Then a measurement would give f(xi) with probability pi. However, a quantum

oracle can not only simulate random sampling, but can enable uniquely quantum

behavior through interference. Examples include amplitude amplification—the main

idea behind Grover’s search algorithm [Gro96] and the amplitude estimation proce-

dure used in this chapter—and many other quantum algorithms relying on coherent

quantum access to a function. Similar arguments apply to the quantum gradient

oracle (2.5). If a classical oracle can be computed by an explicit classical circuit,

then the corresponding quantum oracle can be implemented by a quantum circuit

of approximately the same size. Therefore, these quantum oracles provide a useful

framework for understanding the quantum complexity of log-concave sampling and

normalizing constant estimation.

To sample from a distribution π, it suffices to prepare the state |π⟩ :=∑x

√
πx|x⟩

and then measure it. For a Markov chain specified by a transition matrix P with sta-

tionary distribution π, one can construct a corresponding quantum walk operator

88

W (P). Intuitively, quantum walks can be viewed as applying a sequence of quantum

unitaries on a quantum state encoding the initial distribution to rotate it to the sub-

space of stationary distribution |π⟩. The number of rotations needed (i.e., the angle

between the initial distribution and stationary distribution) depends on the spectral

gap of P , and a quantum algorithm can achieve a quadratic speedup via quantum

phase estimation and amplification algorithms. More background on quantum walk

is given in Section 2.9.2.2.

Classical definitions Throughout this chapter, the big-O notationsO(·), o(·), Ω(·),
and Θ(·) follow common definitions. The Õ notation omits poly-logarithmic terms,

i.e., Õ(f) := O(fpoly(log f)). We say a function f is L-Lipschitz continuous at x if

|f(x) − f(y)| ≤ L∥x − y∥ for all y sufficiently near x. The total variation distance

(TV-distance) between two functions f, g : Rd → R is defined as

∥f − g∥TV :=
1

2

∫

Rd

|f(x)− g(x)| dx. (2.7)

Let B(Rd) denote the Borel σ-field of Rd. Given probability measures µ and

ν on (Rd,B(Rd)), a transference plan ζ between µ and ν is defined as a probability

measure on (Rd × Rd,B(Rd)× B(Rd)) such that for any A ⊆ Rd, ζ(A× Rd) = µ(A)

and ζ(Rd×A) = ν(A). We let Γ(µ, ν) denote the set of all transference plans. We let

W2(µ, ν) :=

(
inf

ζ∈Γ(µ,ν)

∫

Rd×Rd

∥x− y∥22 dζ(x, y)
) 1

2

(2.8)

denote the Wasserstein 2-norm between µ and ν.

2.3 Quantum Algorithm for Log-Concave Sampling

In this section, we describe several quantum algorithms for sampling log-

concave distributions.

89

Quantum inexact ULD and ULD-RMM We first show that the gradient oracle

in the classical ULD and ULD-RMM algorithms can be efficiently simulated by the

quantum evaluation oracle via quantum gradient estimation.

Suppose we are given access to the evaluation oracle (2.4) for f(x). Then by

Jordan’s algorithm [Jor05] (see Lemma 2.27 for details), there is a quantum algorithm

that can compute∇f(x) with a polynomially small ℓ1-error by querying the evaluation

oracle O(1) times. Using this, we can prove the following theorem (see Section 2.9.1

for details).

Theorem 2.3 (Informal version of Theorem 2.30 and Theorem 2.31). Let ρ ∝ e−f

be a d-dimensional log-concave distribution with f satisfying (2.1). Given a quantum

evaluation oracle for f ,

• the quantum inexact ULD algorithm uses Õ(κ2d1/2ϵ−1) queries, and

• the quantum inexact ULD-RMM algorithm uses Õ(κ7/6d1/6ϵ−1/3+κd1/3ϵ−2/3) queries,

to quantumly sample from a distribution that is ϵ-close to ρ in W2-distance.

We note that the query complexities of our quantum algorithms using a zeroth-

order oracle match the state-of-the-art classical ULD [CCBJ18] and ULD-RMM

[SL19] complexities with a first-order oracle. The main technical difficulty of apply-

ing the quantum gradient algorithm is that it produces a stochastic gradient oracle

in which the output of the quantum algorithm g satisfies ∥E[g]−∇f(x)∥1 ≤ d−Ω(1).

In particular, the randomness of the gradient computation is “entangled” with the

randomness of the Markov chain. We use the classical analysis of ULD and ULD-

RMM processes [RSBG19] to prove that the stochastic gradient will not significantly

slow down the mixing of ULD processes, and that the error caused by the quantum

gradient algorithm can be controlled.

Quantum MALA We next propose two quantum algorithms with lower query

complexity than classical MALA, one with a Gaussian initial distribution and another

90

with a warm-start distribution. The main technical tool we use is a quantum walk in

continuous space.

The classical MALA (i.e., Metropolized HMC) starts from a Gaussian distri-

bution N(0, L−1Id) and performs a leapfrog step in each iteration. It is well-known

that the initial Gaussian state

|ρ0⟩ =
∫

Rd

(
L

2π

)d/4
e−

L
4
∥z−x⋆∥22 |z⟩ dz (2.9)

can be efficiently prepared. We show that the quantum walk update operator

U :=

∫

Rd

dx

∫

Rd

dy
√
px→y|x⟩⟨x| ⊗ |y⟩⟨0| (2.10)

can be efficiently implemented, where px→y := p(x, y) is the transition density from

x to y, and the density p satisfies
∫
Rd p(x, y) dy = 1 for any x ∈ Rd.

Lemma 2.4 (Informal version of Lemma 2.35). The continuous-space quantum walk

operator corresponding to the MALA Markov chain can be implemented with O(1)

gradient and evaluation queries.

In general, it is difficult to quantumly speed up the mixing time of a classical

Markov chain, which is upper bounded by O(δ−1 log(ρ−1min)), where δ is the spectral

gap. However, [WA08] shows that a quadratic speedup is possible when following a

sequence of slowly-varying Markov chains. More specifically, let ρ0, . . . , ρr be the sta-

tionary distributions of the reversible Markov chains M0, . . . ,Mr and let |ρ0⟩, . . . , |ρr⟩
be the corresponding quantum states. Suppose |⟨ρi|ρi+1⟩| ≥ p for all i ∈ {0, . . . , r−1},
and suppose the spectral gaps of M0, . . . ,Mr are lower-bounded by δ. Then we can

prepare a quantum state |ρ̃r⟩ that is ϵ-close to |ρr⟩ using Õ
(
δ−1/2rp−1

)
quantum walk

steps. To fulfill the slowly-varying condition, we consider an annealing process that

goes from ρ0 = N(0, L−1Id) to the target distribution ρM+1 = ρ in M = Õ(
√
d) stages.

At the ith stage, the stationary distribution is ρi ∝ e−fi with fi := f + 1
2
σ−2i ∥x∥2. By

properly choosing σ1 ≤ · · · ≤ σM , we prove that this sequence of Markov chains is

slowly varying.

91

Lemma 2.5 (Informal version of Lemma 2.15). If we take σ2
1 = ϵ

2dL
and σ2

i+1 =

(1 + 1√
d
)σ2

i , then for 0 ≤ i ≤M , we have |⟨ρi|ρi+1⟩| ≥ Ω(1).

Combining Lemma 2.4, Lemma 2.5, and the effective spectral gap of MALA

(Lemma 2.21), we have:

Theorem 2.6 (Informal version of Theorem 2.38). Let ρ ∝ e−f be a d-dimensional

log-concave distribution with f satisfying (2.1). There is a quantum algorithm (Algo-

rithm 1) that prepares a state |ρ̃⟩ with ∥|ρ̃⟩ − |ρ⟩∥ ≤ ϵ using Õ(κ1/2d) gradient and

evaluation oracle queries.

Algorithm 1 Quantum MALA for Log-concave Sampling (Informal)
Input: Evaluation oracle Of , gradient oracle O∇f
Output: Quantum state |ρ̃⟩ close to the stationary distribution state

∫
Rd e

−f(x)/2 d|x⟩
1: Compute the cooling schedule parameters σ1, . . . , σM
2: Prepare the state |ρ0⟩ ∝

∫
Rd e

− 1
4
∥x∥2/σ2

1 d|x⟩
3: for i← 1, . . . ,M do
4: Construct Ofi and O∇fi where fi(x) = f(x) + 1

2
∥x∥2/σ2

i

5: Construct quantum walk update unitary U with Ofi and O∇fi
6: Implement the quantum walk operator and the approximate reflection R̃i

7: Prepare |ρi⟩ by performing π
3
-amplitude amplification with R̃i on |ρi−1⟩|0⟩

8: end for
9: return |ρM⟩

For the classical MALA with a Gaussian initial distribution, it was shown by

[LST21] that the mixing time is at least Ω̃(κd). Theorem 2.6 quadratically reduces

the κ dependence.

Note that Algorithm 1 uses a first-order oracle, instead of the zeroth-order

oracle used in the quantum ULD algorithms. The technical barrier to applying the

quantum gradient algorithm (Lemma 2.27) in the quantum MALA is to analyze the

classical MALA with a stochastic gradient oracle. We currently do not know whether

the “entangled randomness” dramatically increases the mixing time.

More technical details and proofs are provided in Section 2.9.

92

2.4 Quantum Algorithm for Estimating Normalizing Constants

In this section, we apply our quantum log-concave sampling algorithms to the

normalizing constant estimation problem. A very natural approach to this problem is

via MCMC, which constructs a multi-stage annealing process and uses a sampler at

each stage to solve a mean estimation problem. We show how to quantumly speed up

these annealing processes and improve the query complexity of estimating normalizing

constants.

Quantum speedup for the standard annealing process We first consider the

standard annealing process for log-concave distributions, as already applied in the

previous section. Recall that we pick parameters σ1 < σ2 < · · · < σM and construct

a sequence of Markov chains with stationary distributions ρi ∝ e−fi , where fi =

f + 1
2σ2

i
∥x∥2. Then, at the ith stage, we estimate the expectation

Eρi [gi] where gi = exp

(
1

2
(σ−2i − σ−2i+1)∥x∥2

)
. (2.11)

If we can estimate each expectation with relative error at most O(ϵ/M), then the

product of these M quantities estimates the normalizing constant Z =
∫
Rd e

−f(x) dx

with relative error at most ϵ.

For the mean estimation problem, [Mon15] showed that when the relative vari-

ance Varρi [gi]

Eρi [gi]
2 is constant, there is a quantum algorithm for estimating the expectation

Eρi [gi] within relative error at most ϵ using Õ(1/ϵ) quantum samples from the distri-

bution ρi. Our annealing schedule satisfies the bounded relative variance condition.

Therefore, by the quantum mean estimation algorithm, we improve the sampling

complexity of the standard annealing process from Õ(M2ϵ−2) to Õ(Mϵ−1).

To further improve the query complexity, we consider using the quantum

MALAs developed in the previous section to generate samples. Observe that Al-

gorithm 1 outputs a quantum state corresponding to some distribution that is close

93

to ρi, instead of an individual sample. If we can estimate the expectation without de-

stroying the quantum state, then we can reuse the state and evolve it for the (i+1)st

Markov chain. Fortunately, we can use non-destructive mean estimation to estimate

the expectation and restore the initial states. A detailed error analysis of this algo-

rithm can be found in [CCH+19, HW20]. We first prepare Õ(Mϵ−1) copies of initial

states corresponding to the Gaussian distribution N(0, L−1Id). Then, for each stage,

we apply the non-destructive mean estimation algorithm to estimate the expectation

Eρi [gi] and then run quantum MALA to evolve the states |ρi⟩ to |ρi+1⟩. This gives

our first quantum algorithm for estimating normalizing constants.

Theorem 2.7 (Informal version of Theorem 2.43). Let Z be the normalizing constant

in (2.3). There is a quantum algorithm (Algorithm 2) that outputs an estimate Z̃

with relative error at most ϵ using Õ
(
d3/2κ1/2ϵ−1

)
queries to the quantum gradient

and evaluation oracles.

Algorithm 2 Quantum MALA for Estimating Normalizing Constant (Informal)
Input: Evaluation oracle Of , gradient oracle O∇f

Output: Estimate Z̃ of Z with relative error at most ϵ
1: M ← Õ(

√
d), K ← Õ(ϵ−1)

2: Compute the cooling schedule parameters σ1, . . . , σM
3: for j ← 1, . . . , K do
4: Prepare the state |ρ1,j⟩ ∝

∫
Rd e

− 1
4
∥x∥2/σ2

1 |x⟩dx
5: end for
6: Z̃ ← (2πσ2

1)
d/2

7: for i← 1, . . . ,M do
8: g̃i ← Non-destructive mean estimation for gi using {|ρi,0⟩, . . . , |ρi,K⟩}
9: Z̃ ← Z̃g̃i

10: for j ← 1, . . . , K do
11: |ρi+1,j⟩ ← QuantumMALA(Ofi+1

,O∇,fi+1
, |ρi,j⟩) ▷ Algorithm 1

12: end for
13: end for
14: return Z̃

94

Quantum speedup for MLMC Now we consider using multilevel Monte Carlo

(MLMC) as the annealing process and show how to achieve quantum speedup. MLMC

was originally developed by [Hei01] for parametric integration; then [Gil08] applied

MLMC to simulate stochastic differential equations (SDEs). The idea of MLMC is

natural: we choose a different number of samples at each stage based on the cost and

variance of that stage.

To estimate normalizing constants, a variant of MLMC was proposed in [GLL20].

Unlike the standard MLMC for bounding the mean-squared error, they upper bound

the bias and the variance separately, and the analysis is technically difficult. The first

quantum algorithm based on MLMC was subsequently developed by [ALL+21] based

on the quantum mean estimation algorithm. Roughly speaking, the quantum algo-

rithm can quadratically reduce the ϵ-dependence of the sample complexity compared

with classical MLMC.

In this chapter, we apply the quantum accelerated MLMC (QA-MLMC) scheme

[ALL+21] to simulate underdamped Langevin dynamics as the SDE. One challenge

in using QA-MLMC is that gi in our setting is not Lipschitz. Fortunately, as sug-

gested by [GLL20], this issue can be resolved by truncating large x and replacing gi
by hi := min

{
gi, exp

((r+i)2

σ2
i (1+α

−1)

)}
, with the choice

α = Õ

(
1√

d log(1/ϵ)

)
r+i = Eρi+1

∥x∥+Θ(σi
√

(1 + α) log(1/ϵ)) (2.12)

to ensure hi
Eρigi

is O(σ−1i) Lipschitz. Furthermore,
∣∣Eρi(hi − gi)

∣∣ < ϵ by Lemmas C.7

and C.8 in [GLL20]. For simplicity, we regard gi as a Lipschitz continuous function

in our main results. We present QA-MLMC in Algorithm 3, where the sampling

algorithm A can be chosen to be quantum inexact ULD/ULD-RMM or quantum

MALA.

This QA-MLMC framework reduces the ϵ-dependence of the sampling com-

plexity for estimating normalizing constants from ϵ−2 to ϵ−1 in both the ULD and

ULD-RMM cases, as compared with the state-of-the-art classical results [GLL20].

95

Algorithm 3 QA-MLMC (Informal)
Input: Evaluation oracle Of , function g, error ϵ, a quantum sampler A(x0, f, η) for

ρ
Output: An estimate of R̃ = Eρh
1: K ← Õ(ϵ−1)
2: Compute the initial point x0 and the step size η0
3: Compute the number of samples N1, . . . , NK

4: for j ← 1, . . . , K do
5: ηj ← η/2j−1

6: for i← 1, . . . , Nj do
7: Sample Xηj

i by A(f, x0, ηj), and sample Xηj/2
i by A(f, x0, ηj/2)

8: G̃−i ← QMeanEst({g(Xηj
i)}i∈[Nj]) ▷ Quantum Mean Estimation

9: G̃+
i ← QMeanEst({g(Xηj/2

i)}i∈[Nj])
10: end for
11: end for
12: return R̃ = G̃0 +

∑K
j=0(G̃

−
i − G̃+

i)

Using the quantum inexact ULD and ULD-RMM algorithms (Theorem 2.3) to

generate samples, we obtain our second quantum algorithm for estimating normalizing

constants (see Section 2.10 for proofs).

Theorem 2.8 (Informal version of Theorem 2.47 and Theorem 2.48). Let Z be the

normalizing constant in (2.3). There exist quantum algorithms for estimating Z with

relative error at most ϵ using

• quantum inexact ULD with Õ(d3/2κ2ϵ−1) queries to the evaluation oracle, and

• quantum inexact ULD-RMM with Õ((d7/6κ7/6+d4/3κ)ϵ−1) queries to the evaluation

oracle.

2.5 Quantum Lower Bound

Finally, we lower bound the quantum query complexity of normalizing constant

estimation.

Theorem 2.9. For any fixed positive integer k, given query access (2.4) to a function

96

f : Rk → R that is 1.5-smooth and 0.5-strongly convex, the quantum query complexity

of estimating the partition function Z =
∫
Rk e

−f(x) dx within multiplicative error ϵ

with probability at least 2/3 is Ω(ϵ−
1

1+4/k).

The proof of our quantum lower bound is inspired by the construction in

Section 5 of [GLL20]. They consider a log-concave function whose value is negligible

outside a hypercube centered at 0. The interior of the hypercube is decomposed

into cells of two types. The function takes different values on each type, and the

normalizing constant estimation problem reduces to determining the number of cells

of each type. Quantumly, we follow the same construction and reduce the cell counting

problem to the Hamming weight problem: given an n-bit Boolean string and two

integers ℓ < ℓ′, decide whether the Hamming weight (i.e., the number of ones) of this

string is ℓ1 or ℓ2. This problem has a known quantum query lower bound [NW99],

which implies the quantum hardness of estimating the normalizing constant. The full

proof of Theorem 2.9 appears in Section 2.11.

2.6 Related Work
2.6.1 Classical MCMC methods

Our quantum algorithms are inspired by a major class of classical MCMC

algorithms based on Langevin dynamics. There has been extensive work on non-

asymptotic error bounds for the mixing times of Langevin-type algorithms for sam-

pling [DCWY18, SL19, CDWY20, LST20, WSC22]. One commonly used type of

algorithm is based on the mixing time of Langevin dynamics, including the under-

damped Langevin diffusion process described by the stochastic differential equations

dvt = −γvt dt− u∇f(xt) dt+
√

2γu dWt (2.13)

dxt = vt dt (2.14)

with parameters γ, u, where Wt ∼ N(0, t) is a standard Wiener process. The coef-

ficients of (2.13) are Lipschitz continuous since f is L-smooth; and the overdamped

97

Langevin diffusion process

dxt = −u∇f(xt) dt+
√
2u dWt (2.15)

is obtained by taking γ →∞ and t→ t/γ.

It can be shown that taking γ = 2 and u = 1/L, the stationary distribution

of the underdamped Langevin diffusion (2.13) is proportional to e−(f(x)+L∥v∥2/2), and

the marginal distribution of x is proportional to e−f(x). When γ →∞, the stationary

distribution of the overdamped version (2.15) is proportional to e−f(x). The numerical

discretization of (2.15) is used in unadjusted Langevin algorithms, while sampling

algorithms based on the discretization of (2.13) can have a better dependence on d

and ϵ.

We now introduce a few common classical sampling algorithms: the under-

damped Langevin diffusion (ULD) method; the randomized midpoint method for

underdamped Langevin diffusion (ULD-RMM), with the best known dependence on

d; and the Metropolis adjusted Langevin algorithm (MALA), with the best known

dependence on κ and ϵ. To simulate the random process in discrete time, ULD can

be viewed as the first-order forward Euler discretization of the continuous process

(2.13). In particular, ULD takes Õ
(
κ2
√
d/ϵ
)

steps to approximate the stationary

distribution e−f(x) within ϵ in the Wasserstein 2-norm [CCBJ18], where κ is the

condition number of f , and d is the dimension. ULD-RMM approximates the in-

tegral of the random process (2.13) by randomly choosing the midpoint in the in-

tegral, which reduces the bias in the accumulation of the integration. As a more

accurate approximation, ULD-RMM converges in the Wasserstein 2-distance ϵ with

Õ
(
κ7/6d1/6

ϵ1/3
+ κd1/3

ϵ2/3

)
steps [SL19], a polynomial reduction in κ, d, ϵ over ULD. As an

alternative approach, MALA also constructs the Euler discretization of (2.13), and

then applies the Metropolis-Hastings acceptance/rejection step to ensure convergence

to the correct stationary distribution. It was first shown that MALA converges

in the total variation distance ϵ with Õ
(
κdmax{1, κ/d} log(κd/ϵ)

)
steps for Gaus-

sian initial distributions [DCWY18, CDWY20]. Later, this result was improved

98

to Õ
(
κd log(κd/ϵ)

)
based on an improved non-asymptotic analysis of the mixing

time [LST20]. For warm-start distributions, the complexity of MALA can be fur-

ther reduced to Õ
(
κd1/2 log(κd/ϵ)

)
[WSC22]. Compared to ULD and ULD-RMM,

this exponentially improves the dependence on ϵ, and polynomially improves the de-

pendence on κ, while it suffers from a worse dependence on d. We introduce the

algorithms and complexities of ULD and ULD-RMM in Section 2.7.1, and introduce

these results of MALA in Section 2.9.2.1.

For the task of estimating the normalizing constant (2.3), the state-of-the-art

classical results are given by [GLL20]. That work applies the classical sampling al-

gorithms described above with an annealing strategy. The normalizing constant is

estimated by a sequence of telescoping sums, each of which can be approximated by

a Monte Carlo method that samples from a log-concave distribution. We introduce

this annealing procedure in Section 2.7.2. Reference [GLL20] employed the mixing

time of MALA for Gaussian initial distributions developed by [DCWY18, CDWY20]

with the annealing procedure, achieving the overall complexity Õ
(
κd2

ϵ2
max{1, κ/d}

)

for estimating the normalizing constant. They also combined ULD and ULD-RMM

with the annealing and the multilevel Monte Carlo (MLMC) method to achieve com-

plexities of Õ
(
κ2d3/2

ϵ2

)
and Õ

(
κ7/6d7/6

ϵ2
+ κd4/3

ϵ2

)
, respectively. Here MLMC, introduced

in Section 2.10.2, is utilized to resolve the worse dependence on ϵ in ULD and ULD-

RMM, resulting in the same Õ(1/ϵ2) scaling of the error compared to the annealing

with MALA. Annealing with MLMC and ULD/ULD-RMM also has a better depen-

dence on d over annealing with MALA, while they suffer from a worse dependence

on κ.

2.6.2 Quantum methods for sampling and partition function estimation

Previous literature developed alternative approaches to generating quantum

states corresponding to classical probability distributions on a quantum computer,

sometimes referred to as quantum sampling (or qsampling) from a distribution. Ref-

erences [Zal98], [GR02], and [KM01] propose direct state generation approaches using

99

controlled rotations. However, this approach is limited to the regime in which the

distribution is efficiently integrable. As an alternative, [ATS03] develops an adia-

batic approach to qsampling. They apply adiabatic evolution techniques to qsample

the stationary distributions of a sequence of slowly varying Markov chains, a tech-

nique referred to as quantum simulated annealing (QSA) in subsequent literature

[SBB07, SBBK08, WA08, YAG12, HW20]. The time complexity of Aharanov and

Ta-Shma’s approach is O(1/δ) as a function of the spectral gap δ, comparable to the

running time of analogous classical sampling methods. Reference [WA08] adopted

Szegedy’s quantum walks [Sze04] and amplitude amplification [BHMT02] to improve

the time complexity of this qsampling procedure to O(1/
√
δ), achieving a quadratic

speedup in the spectral gap. As a generalization, [TOV+11] proposes a quantum

Metropolis sampling method that extends qsampling to quantum Hamiltonians, with

time complexity O(1/δ). Reference [YAG12] combines quantum Metropolis sampling

with QSA to achieve time complexity O(1/
√
δ). Another alternative approach is

quantum rejection sampling [ORR13, LYC14, WG15], which provides a method for

transforming an initial superposition of desired and undesired states into the de-

sired state using amplitude amplification. Reference [WG15] employs semi-classical

Bayesian updating to achieve time complexity O(1/
√
ϵ) as a function of the approx-

imation error ϵ. The quantum rejection sampling approach is generally less efficient

than the QSA approach, as the latter can achieve O(log 1/ϵ) by choosing proper slowly

varying MCs that mix rapidly.

Previous quantum computing literature on partition function estimation mainly

focused on discrete systems with

Z(β) =
∑

x∈Ω

e−βH(x), (2.16)

where β is an inverse temperature and H is a Hamiltonian function of x over a finite

state space Ω. The space Ω is usually assumed to be a simple discrete set, such as

{0, 1}n, and H is assumed to be a sum of local terms. For instance, [Mon15] considers

H taking integer values {0, 1, . . . , n}, and [HW20] assumes 0 ≤ H(x) ≤ n for all x.

100

To estimate Z = Z(∞) in (2.16), [Mon15] considers a classical Chebyshev cool-

ing schedule 0 = β0 < β1 < . . . βl =∞ for Z with the length l = O(
√
log |Ω| log log |Ω|)

[ŠVV09]. Reference [Mon15] applies fast qsampling algorithms to estimate Z with

Õ(l2/
√
δϵ) = Õ(log |Ω|/

√
δϵ) quantum walk steps to sample from Gibbs distributions

πi(x) =
1

Z(βi)
e−βiH(x), whereas a corresponding classical algorithm takes Õ(l2/δϵ2) =

Õ(log |Ω|/δϵ2) random walk steps. Here ϵ denotes the relative error for estimating

Z, and δ denotes the spectral gap of the Markov chains with stationary distribu-

tions πi(x). Reference [Mon15] also points out that this quantum algorithm relies

on classical Markov chain Monte Carlo for computing the Chebyshev cooling sched-

ule, introducing an overhead of Õ(log |Ω|/δ) [ŠVV09]. Hence, the overall cost is

Õ(log |Ω|/
√
δ(ϵ +

√
δ)), a quadratic reduction with respect to ϵ over classical algo-

rithms. Reference [HW20] develops a fully quantized version of the Chebyshev cool-

ing schedule that only requires additional cost Õ(log |Ω|/
√
δ). This results in overall

cost Õ(log |Ω|/
√
δϵ), a quadratic speedup in terms of δ over [Mon15] and classical

algorithms. Reference [AHN+21] constructs a shorter Chebyshev cooling schedule

by using a paired-product estimator with length l = O(
√
log |Ω|), eliminating the

l = O(log log |Ω|) factors in the previous schedule [ŠVV09]. Reference [AHN+21] de-

velops a fully quantized version of this shorter schedule, almost matching the same

overall cost Õ(log |Ω|/
√
δ(ϵ+

√
δ)) of [HW20].

Estimating the partition function of a discrete system corresponds to a discrete

counting problem, with applications such as counting colorings or matchings of a

graph and estimating statistics of Ising models, while estimating partition functions

of continuous systems is relevant to the volume estimation problem.

2.7 Tools from Classical MCMC Algorithms
2.7.1 ULD and ULD-RMM

We now describe underdamped Langevin diffusion (ULD) and the random-

ized midpoint method for underdamped Langevin diffusion (ULD-RMM), as intro-

101

duced in [GLL20] with Lipschitz continuous constants. We consider the underdamped

Langevin diffusion with parameters γ, u:

dvt = −γvt dt−∇f(xt) dt+
√
2γu dWt, (2.17)

dxt = vt dt, (2.18)

The discrete dynamics of ULD can be described by

dvht = −γvht dt− u∇f(xh⌊t/h⌋h) dt+
√

2γu dWt, (2.19)

dxht = vht dt. (2.20)

According to [GLL20], taking γ = 2 and u = 1/L, the explicit discrete-time update

of ULD is integrated as

vht+h = e−2hvht +
1

2L
(1− e−2h)∇f(xht) +

2√
L
W h

1,t, (2.21)

xht+h = xht +
1

2
(1− e−2h)vht +

1

2L
[h− (1− e−2h)]∇f(xht) +

1√
L
W h

2,t, (2.22)

where

W h
1,t =

∫ h

0

e2(s−h)dBt+s, (2.23)

W h
2,t =

∫ h

0

(1− e2(s−h))dBt+s. (2.24)

W h
1,t and W h

2,t can be obtained by sampling the d-dimensional standard Brownian

motion Bt.

The ULD algorithm is presented in Algorithm 4. The convergence of ULD has

been established by Theorem 1 of [CCBJ18], which was restated by Theorem C.3 of

[GLL20] as follows.

Lemma 2.10 (Theorem 1 of [CCBJ18]). Assume the target distribution ρ is strongly

log-concave with L-smooth and µ-strongly convex negative log-density. Let ρn be the

distribution of the underdamped Langevin diffusion with the initial point x0 satisfying

102

Algorithm 4 Underdamped Langevin Dynamics (ULD)
1: procedure ULD(f , h, T , x0) ▷ f is the function, h is the step size, T is the

time, and x0 is sampled from the initial distribution ρ0
2: xh0 ← x0
3: for t = 0, h, . . . , ⌊T ⌋ do
4: Draw W h

1,t =
∫ h
0
e2(s−h)dBt+s, W h

2,t =
∫ h
0
(1− e2(s−h))dBt+s

5: vht+h ← e−2hvht +
1
2L
(1− e−2h)∇f(xht) + 2√

L
W h

1,t

6: xht+h ← xht +
1
2
(1− e−2h)vht + 1

2L
[h− (1− e−2h)]∇f(xht) + 1√

L
W h

2,t

7: end for
8: return xhh, x

h
2h, . . . , x

h
⌊T ⌋+1

9: end procedure

∥x0 − x∗∥ ≤ D, step size h ≤ ϵ
104κ

√
1

d/µ+D2 , and time T ≥ κ
2
log
(

24
√
d/µ+D2

ϵ

)
. Then

ULD achieves

E
(
∥X̂n −XT∥2

)
≤ Õ

(d2κ2h2
µ

)
, (2.25)

W2(ρn, ρ) ≤ ϵ, (2.26)

using

T

h
= Θ̃

(κ2
√
d

ϵ

)
(2.27)

queries to ∇f .

According to [GLL20], the explicit discrete-time update of ULD-RMM is in-

tegrated as

vht+h = e−2hvht +
h

L
e−2(1−α)h∇f(yht) +

2√
L
W h

1,t, (2.28)

xht+h = xht +
1

2
(1− e−2h)vht +

h

2L
(1− e−2(1−α)h)∇f(yht) +

1√
L
W h

2,t, (2.29)

yht+h = xht +
1

2
(1− e−2αh)vht +

1

2L
[αh− (1− e−2αh)]∇f(xht) +

1√
L
W h

3,t, (2.30)

103

where

W h
1,t =

∫ h

0

e2(s−h)dBt+s, (2.31)

W h
2,t =

∫ h

0

(1− e2(s−h))dBt+s, (2.32)

W h
3,t =

∫ αh

0

(1− e2(s−h))dBt+s. (2.33)

W h
1,t, W h

2,t, and W h
3,t can be obtained by sampling the d-dimensional standard Brow-

nian motion Bt.

The ULD-RMM algorithm is presented in Algorithm 5. The convergence of

ULD-RMM has been established by Theorem 3 of [SL19], which was restated by

Theorem C.5 of [GLL20] as follows.

Algorithm 5 Underdamped Langevin Dynamics with Randomized Midpoint Method
(ULD-RMM)
1: procedure ULD-RMM(f , h, T , x0) ▷ f is the function, h is the step size, T is

the time, and x0 is sampled from the initial distribution ρ0
2: xh0 ← x0, yh0 ← x0
3: for t = 0, h, . . . , ⌊T ⌋ do
4: Draw W h

1,t =
∫ h
0
e2(s−h)dBt+s, W h

2,t =
∫ h
0
(1− e2(s−h))dBt+s, W h

3,t =
∫ αh
0

(1−
e2(s−h))dBt+s

5: vht+h ← e−2hvht +
h
L
e−2(1−α)h∇f(yht) + 2√

L
W h

1,t

6: xht+h ← xht +
1
2
(1− e−2h)vht + h

2L
(1− e−2(1−α)h)∇f(yht) + 1√

L
W h

2,t

7: yht+h ← xht +
1
2
(1− e−2αh)vht + 1

2L
[αh− (1− e−2αh)]∇f(xht) + 1√

L
W h

3,t

8: end for
9: return xhh, x

h
2h, . . . , x

h
⌊T ⌋+1

10: end procedure

Lemma 2.11 (Theorem 3 of [SL19]). Assume the target distribution ρ is strongly

log-concave with L-smooth and µ-strongly convex negative log-density. Let ρn be the

distribution of the randomized midpoint method for underdamped Langevin diffusion

with the initial point x0, step size h ≤ min
{

ϵ1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ϵ

) , ϵ2/3µ1/3

d1/3 log1/3
(√

d/µ

ϵ

)
}
, and

104

time T ≥ 2κ log
(

20d/µ
ϵ2

)
. Then ULD-RMM achieves

E
(
∥X̂n −XT∥2

)
≤ Õ

(dκh6
µ

+
dh3

µ

)
, (2.34)

W2(ρn, ρ) ≤ ϵ, (2.35)

using

2T

h
= Θ̃

(κ7/6d1/6
ϵ1/3

+
κd1/3

ϵ2/3

)
(2.36)

queries to ∇f .

2.7.2 Annealing for estimating the normalizing constant

Having described the sampling procedure for a log-concave function, we now

move to the problem of estimating the normalizing constant

Z =

∫

x∈Rd

e−f(x)dx. (2.37)

We consider a sequence of auxiliary distributions, given by

fi(x) =
1

2

∥x∥2
σ2
i

+ f(x) (2.38)

for i ∈ [M], where σ1 ≤ σ2 ≤ · · · ≤ σM . We define σM+1 = ∞ and fM+1 = f for

convenience. We consider the sequence of distributions

ρi(dx) = Z−1i e−fi(x)dx, (2.39)

where Zi is the normalizing constant

Zi =

∫

x∈Rd

e−fi(x)dx. (2.40)

Then Z is estimated by the telescoping product

Z = ZM+1 = Z1

M∏

i=1

Zi+1

Zi
. (2.41)

In (2.41), we first approximate Z1 by the normalizing constant of the Gaussian dis-

tribution with variance σ2
1, which is bounded by the following lemma.

105

Lemma 2.12 (Lemma 3.1 of [GLL20]). Letting σ2
1 = ϵ

2dL
, we have

(
1− ϵ

2

)∫

x∈Rd

e
− 1

2
∥x∥2

σ2
1 dx ≤ Z1 ≤

∫

x∈Rd

e
− 1

2
∥x∥2

σ2
1 dx. (2.42)

We then approximate Zi+1

Zi
by sampling the distribution ρi, with

Zi+1

Zi
= Eρi(gi), (2.43)

where

gi = exp
(1
2

(1
σ2
i

− 1

σ2
i+1

)
∥x∥2

)
. (2.44)

If X(1)
i , X

(2)
i , . . . , X

(K)
i are i.i.d. samples generated according to the distribution ρi,

then

Zi+1

Zi
≈ 1

K

K∑

k=1

gi(X
(k)
i). (2.45)

For the sequence of σ2
i with the annealing schedule σ2

i+1

σ2
i

= 1 + α, we aim to

bound the relative variance of Zi+1

Zi
. First, for ZM+1

ZM
, we have the following lemma.

Lemma 2.13 (Lemma 3.2 of [GLL20]). For σ2
M ≥ 2

µ
, we have

EρM (g2M)

EρM (gM)2
≤ exp(

4d

µσ4
M

). (2.46)

When σ2
M ≥ 2

√
d

µ
, and assuming µ < 1, we have EρM

(g2M)

EρM
(gM)2

≤ e.

Second, for Zi+1

Zi
with i ∈ [M − 1], the relative variance of can be bounded by

the following lemma.

Lemma 2.14 ([Lemma 3.3 of [GLL20]). Let ρ be a log-concave distribution. For

α ≤ 1
2
, we have

Eρi(g2i)
Eρi(gi)2

=
Eρ
[
exp(−1+α

2
∥x∥2
σ2)

]
· Eρ
[
exp(−1−α

2
∥x∥2
σ2)

]

Eρ
[
exp(−1

2
∥x∥2
σ2)

]2 ≤ exp(4α2d). (2.47)

106

Therefore, if we choose the annealing schedule

σ2
i+1

σ2
i

= 1 +
1√
d
, (2.48)

then Eρi (g
2
i)

Eρi (gi)
2 ≤ e4.

The estimate of the normalizing constant (2.3) relies on the above annealing

framework and the sampling algorithms for the log-concave distribution ρi including

ULD, ULD-RMM, and MALA. In the following sections, we discuss the quantum

speedup for (2.3) using MALA and annealing and using multilevel ULD/ULD-RMM

and annealing.

2.7.3 Annealing Markov chains are slowly varying

The goal of this subsection is to prove the following lemma.

Lemma 2.15 (Slowly varying MCs). Let f0(x) = ∥x∥2
2σ2

1
and let dπ0 = (2πσ2

1)
d/2 ·

e−f0(x)dx be the Gaussian distribution. For i ∈ {1, . . . ,M}, let fi(x) = f(x) + ∥x∥2
2σ2

i

and let dπi = Z−1i e−fi(x)dx be its stationary distribution. Let fM+1(x) = f(x) and let

dπM+1 be the target log-concave distribution. Define the qsample state

|πi⟩ =
∫

Ω

dx
√
πi(x)|x⟩ ∀ 0 ≤ i ≤M + 1. (2.49)

Then, for 0 ≤ i ≤M , we have

|⟨πi|πi+1⟩| ≥ Ω(1). (2.50)

Proof. First, we consider the case when i = 0. Note that |⟨π0|π1⟩| can be written as

|⟨π0|π1⟩| =
∫

Ω

dx · (2πσ2
1)
−d/4e−

1
2
f0(x) · Z−1/21 e−

1
2
f1(x) (2.51)

=

∫
Ω
e
− 1

2
f(x)− ∥x∥2

2σ2
1 dx

(2πσ2
1)
d/4 · √Z1

. (2.52)

107

Since 0 ≤ f(x) ≤ 1
2
L∥x∥2, the numerator can be lower bounded by

∫

Ω

e
− 1

2
f(x)− ∥x∥2

2σ2
1 dx ≥

∫

Ω

e−
1
2
(L/2+σ−2

1)∥x∥2dx =
(
2π(L/2 + σ−21)−1

)d/2 (2.53)

and the denominator can be upper bounded by

(2πσ2
1)
d/4 ·

√∫

Ω

e−f(x)−
1
2
∥x∥2/σ2

1dx ≤ (2πσ2
1)
d/4 ·

√∫

Ω

e−
1
2
∥x∥2/σ2

1dx = (2πσ2
1)
d/2.

(2.54)

Therefore

|⟨π0|π1⟩| ≥
(
2π(L/2 + σ−21)−1

)d/2

(2πσ2
1)
d/2

= (1 + σ2
1L/2)

−d/2 ≥ e−σ
2
1dL/4. (2.55)

By our choice of σ2
1 = ϵ

2dL
, we have |⟨π0|π1⟩| ≥ e−ϵ/8 = Ω(1).

Now consider the case where 1 ≤ i ≤M − 1. The inner product between |πi⟩
and |πi+1⟩ can be written as

|⟨πi|πi+1⟩| =
∫

Ω

dx · Z−1/2i e−
1
2
fi(x) · Z−1/2i+1 e−

1
2
fi+1(x) (2.56)

=

∫
Ω
e−f(x)−

∥x∥2
4

(σ−2
i +σ−2

i+1)dx√
ZiZi+1

. (2.57)

Let σ2 = σ2
i+1 and σ2/(1 + α) = σ2

i . Also, let ρ be the log-concave distribution

ρ(dx) = Z−1e−f(x)dx. Then we have
∫

Ω

e−f(x)−
∥x∥2

4
(σ−2

i +σ−2
i+1)dx = Z · Eρ

[
e−

1+α/2

2σ2 ∥x∥2
]
. (2.58)

Similarly,

Zi = Z · Eρ
[
e−

1+α

2σ2 ∥x∥2
]

and Zi+1 = Z · Eρ
[
e−

1
2σ2 ∥x∥2

]
. (2.59)

Hence,

|⟨πi|πi+1⟩| =
Eρ
[
e−

1+α/2

2σ2 ∥x∥2
]

Eρ
[
e−

1+α

2σ2 ∥x∥2
]1/2
· Eρ
[
e−

1
2σ2 ∥x∥2

]1/2 . (2.60)

108

Let α′ := α
α+2

and σ′2 := σ2

1+α/2
. Then

|⟨πi|πi+1⟩| =
Eρ
[
e−

1
2σ′2 ∥x∥2

]

Eρ
[
e−

1+α′
2σ′2 ∥x∥2

]1/2
· Eρ
[
e−

1−α′
2σ′2 ∥x∥2

]1/2 (2.61)

≥ e−2α
′2d, (2.62)

where the last step follows from Lemma 2.14. Since we choose α = d−1/2, we have

α′ = 1
1+2
√
d
= O(d−1/2), which implies that e−2α2d = Ω(1).

Finally, we consider the case where i =M . The inner product can be written

as

|⟨πM |πM+1⟩| =
∫
Ω
dx · e− 1

2
f(x)− 1

4
∥x∥2/σ2

M · e− 1
2
f(x)

√
ZM
√
Z

(2.63)

=

∫
Ω
dx · e−f(x)− 1

4
∥x∥2/σ2

M

√
ZM
√
Z

. (2.64)

Let ρ′ be a log-concave distribution with density proportional to e−f(x)−
1
4
∥x∥2/σ2

M . Then
∫
Ω
dx · e−f(x)− 1

4
∥x∥2/σ2

M

√
ZM
√
Z

= Eρ′
[
e−

1
4
∥x∥2/σ2

M

]−1/2
· Eρ′

[
e

1
4
∥x∥2/σ2

M

]−1/2
(2.65)

≥ e
− d

2µσ4
M , (2.66)

where the second step follows from the proof of Lemma 2.13 in [GLL20]. Since we

take σ2
M = Θ(

√
d
µ
), we find that |⟨πM |πM+1⟩| ≥ e−Θ(1) = Ω(1).

Combining the three cases, the proof is complete.

2.8 Basic Facts about Quantum Walk

In this section, we first define the quantum walk operators and introduce some

spectral properties. Then, we show how to efficiently implement a quantum walk.

109

2.8.1 Definitions and spectral properties of quantum walk

Let P be the transition operator of the classical Markov chain over the space

K such that
∫

K

P (x, y)dy = 1 ∀x ∈ K.

We define the following states, which capture key properties of the quantum walk:

|ψx⟩ :=
∫

K

√
P (x, y)|y⟩dy ∀x ∈ K.

Definition 2.1 (Quantum walk operators). The quantum walk uses the following

three operators:

• U :=
∫
K
|x⟩|ψx⟩⟨x|⟨0|dx for any x ∈ K.

• Π :=
∫
K
|x⟩|ψx⟩⟨x|⟨ψx|dx is the projection to the subspace span{|x⟩|ψx⟩}x∈K .

• S :=
∫
K

∫
K
|y⟩|x⟩⟨x|⟨y|dxdy is to swap the two quantum registers.

Then, the quantum walk operator W is defined by:

W := S(2Π− I).

Definition 2.2 (Alternative definition of quantum walk operator, [WA08]). Define

the quantum walk operator

W ′ := U †SURAU
†SURA,

where RA denotes the reflection about the subspace A := {|x⟩|0⟩ | x ∈ K} for random

walk space K, S is the swap operator, and U is the following operator:

U |x⟩|0⟩ =
∫

y∈K

√
P (x, y)|x⟩|y⟩dy,

for P being the transition operator of the Markov chain.

110

Fact 2.16 (Equivalence of the definitions, [CCH+19]). Let W be defined as in Defi-

nition 2.1 and let W ′ be defined as in Definition 2.2. Then, W ′ and W have the same

set of eigenvalues.

Fact 2.17 ([CCH+19]). Let D be the discriminant operator of P defined as D(x, y) :=
√
P (x, y)P (y, x). Then, P and D have the same set of eigenvalues.

Fact 2.18 ([CCH+19]). Let {λj} be the eigenvalues of D. Then, the eigenvalues of

W are
{
±1, λj +

√
1− λ2j i

}
.

If we have a sequence of slowly varying log-concave distributions ρ0, . . . , ρr, we

can quantumly sample from ρr via MALA with a quadratic speedup.

Theorem 2.19 (Quantum speedup for slowly varying Markov chains [WA08]). Let

M0, . . . ,Mr be classical reversible Markov chains with stationary distributions ρ0, . . . , ρr
such that each chain has spectral gap at least δ−1. Assume that |⟨ρi|ρi+1⟩| ≥ p for

some p > 0 and all i ∈ {0, . . . , r − 1}, and that we can prepare the state |ρ0⟩. Then,

for any ϵ > 0, there is a quantum algorithm which produces a quantum state |ρ̃r⟩ such

that ∥|ρ̃r⟩ − |ρr⟩|0a⟩∥ ≤ ϵ, for some integer a. The algorithm uses

Õ

(
δ−1/2 · r

p

)
(2.67)

applications of the quantum walk operators W ′
i corresponding to the chains Mi for

i ∈ [r].

However, we cannot directly apply Theorem 2.19 to speed up many “useful”

Markov chains in the continuous space (e.g., the hit-and-run walk [LV07], MALA

[LST20], etc.) since their spectral gaps are very difficult to bound directly. Classically,

several techniques have been developed to overcome this issue. One approach is to

only consider good initial distributions, i.e., warm-starts. Another approach is to

bound more restricted quantities that discard some small and problematic sets when

111

computing the spectral gap, e.g., s-conductance. It is an interesting question to see

whether these techniques can be adapted to a quantum setting. [CCLW20] used the

idea of the effective spectral gap of a Markov chain. The intuition is that suppose we

know the mixing time t = tmix(ϵ, π0) for some initial distribution π0, then we can show

that |π0⟩ has very small overlap with the eigenspace of W ′ with the corresponding

eigenvalues of P that are very close to 1. More formally,

Lemma 2.20 (Effective spectral gap for ℓ2-warm start, [CLW19]). Let M = (Ω, p) be

an ergodic reversible Markov chain with a transition operator P and unique stationary

state with a corresponding density ρ. Let {(λi, fi)} be the set of eigenvalues and

eigenfunctions of P , and |ψi⟩ be the eigenvectors of the corresponding quantum walk

operator W . Let ρ0 be a probability density that is a warm start for ρ and mixes up to

TV-distance ϵ in t steps of M . Furthermore, assume that ∥ρ/ρ0∥ =
∫
Ω

ρ(x)
ρ0(x)

ρ(x)dx ≤
γ.

Let |ϕρ0⟩ be the resulting state of applying the quantum walk update operator

U to the state |ρ0⟩:

|ϕρ0⟩ =
∫

Ω

√
ρ0(x)

∫

Ω

√
P (x, y)|x⟩|y⟩dxdy.

Then, we have |⟨ϕρ0|ψi⟩| = O(γ1/4ϵ3/4 +
√
ϵ) for all i with 1 > λi ≥ 1−O(1/t).

Note that Lemma 2.20 requires the initial distribution to satisfy an L2-norm

condition. We can relax this requirement in the following lemma, which only relies

on the standard warmness of the initial distribution.

Lemma 2.21 (Effective spectral gap for warm start). Let M = (Ω, p) be an ergodic

reversible Markov chain with a transition operator P and unique stationary state with

a corresponding density ρ. Let {(λi, fi)} be the set of eigenvalues and eigenfunctions

of P , and let |ui⟩ be the eigenvectors of the corresponding quantum walk operator W .

Let ρ0 be a probability density that is a warm start for ρ and mixes up to TV-distance

112

ϵ in t steps of M . Furthermore, assume that ρ0 is a β-warm start of ρ. Let |ϕρ0⟩ be

the state obtained by applying the quantum walk update operator U to the state |ρ0⟩:

|ϕρ0⟩ =
∫

Ω

√
ρ0(x)

∫

Ω

√
px→y|x⟩|y⟩ dx dy. (2.68)

Then |⟨ϕρ0|ui⟩| = O(β
√
ϵ) for all i with 1 > |λi| ≥ 1−O(1/t).

Furthermore, for MALA with ρ0 being N(0, L−1I), |⟨ϕρ0|ui⟩| = O(
√
ϵ).

Remark 2.1. Since |vi⟩ = U †|ui⟩ is the corresponding eigenvector of W ′, and |ϕρ0⟩ =
U |ρ0, 0⟩, Lemma 2.21 implies that |⟨ρ0, 0|vi⟩| ≤ β

√
ϵ for any i with |λi| ∈ (1 −

O(1/t), 1). In other words, effectively, the spectral gap is Ω(1/t).

Proof. Let S :=
{
x ∈ Rd : ρ(x)

ρ0(x)
≥ 1

ϵ

}
. Since Eρ0

[
ρ(x)
ρ0(x)

]
= 1, by Markov’s inequality,

we have
∫

S

ρ0(x)dx = Pr
ρ0
[x ∈ S] ≤ ϵ. (2.69)

Then we define a quantum state |ρ1⟩ such that ⟨ρ1|x⟩ = ⟨ρ0|x⟩ for x /∈ S, and

⟨ρ1|x⟩ = 0 for x ∈ S. Furthermore, let |ϕρ1⟩ := U |ρ1⟩.

We have

∥|ϕρ0⟩ − |ϕρ1⟩∥ =
∥∥∥∥
∫

S

√
ρ0(x)T |x⟩dx

∥∥∥∥ =

∣∣∣∣
∫

S

ρ0(x)dx

∣∣∣∣
1/2

≤ √ϵ, (2.70)

where T is the isometry

T :=

∫

Ω

∫

Ω

√
px→y|x, y⟩⟨x| dx dy.

Moreover, by Eqs. (4.35) and (4.36) in [CCH+19], if 1 > λi ≥ 1− O(1/t), we

have

|⟨ϕρ1|ui⟩| ≤ 2|⟨ρ1|vi⟩| = 2

∣∣∣∣∣

∫

S

√
ρ(x)

ρ0(x)

ρ0(x)fi(x)

ρ(x)
dx

∣∣∣∣∣ ≤
2⟨ρ0, fi⟩ρ
ϵ1/2

= O(β
√
ϵ), (2.71)

where the third step follows from ρ(x)
ρ0(x)

≤ 1
ϵ

for x /∈ S and the Cauchy-Schwarz

inequality, and the last step follows from the claim that ⟨ρ0, fi⟩ρ = O(βϵ).

113

Combining these observations, we find

|⟨ϕρ0|ui⟩| ≤ |⟨ϕρ0 − ϕρ1|ui⟩|+ |⟨ϕρ1 |ui⟩| ≤
√
ϵ+O(β

√
ϵ) = O(β

√
ϵ) (2.72)

when 1 > λi ≥ 1−O(1/t), which gives the desired result.

Now, it remains to prove the claim that ⟨ρ0, fi⟩ρ = O(βϵ) for 1 > λi >

1 − O(1/t). Suppose ρ0 can be decomposed in the eigenbasis of P as ρ0 = ρ +
∑∞

i=2⟨ρ0, fi⟩ρfi. Then P tρ0 = ρ +
∑∞

i=2 λ
t
i⟨ρ0, fi⟩ρfi, where λi is the eigenvalue of

fi. Since ∥P tρ0 − ρ∥1 ≤ ϵ, by Fact 2.22, we have ∥P tρ0 − ρ∥ρ ≤ βϵ. Hence, by the

orthogonality of fi, we have λti⟨a, fi⟩ρ ≤ βϵ. Therefore, when 1 > λi > 1 − O(1/t),
we have λti = Ω(1), which implies that ⟨ρ0, fi⟩ρ = O(βϵ).

For MALA, by Fact 2.22, ∥PO(t)ρ0−ρ∥ρ ≤ O(ϵ), which implies that ⟨ρ0, fi⟩ρ =
O(ϵ) by the same argument. Therefore, we get that for MALA with Gaussian initial

distribution, |⟨ϕρ0|ui⟩| ≤ O(
√
ϵ) for i with 1 > |λi| > 1−O(1/t).

Fact 2.22. Let ρ0 be a β-warm start of a Markov chain with transition operator P and

stationary distribution ρ. If ∥P tρ0−ρ∥1 ≤ ϵ for some t > 0, then ∥P tρ0−ρ∥ρ ≤ β · ϵ.
For MALA with ρ0 = N(0, L−1I), ∥PO(t)ρ0 − ρ∥ρ ≤ ϵ.

Proof. We expand ∥P tρ0 − ρ∥ρ in terms of its definition, giving

∥P tρ0 − ρ∥ρ =
∫

Rd

(P tρ0 − ρ)2(x)
ρ(x)

dx =

∫

Rd

(P tρ0)
2(x)

ρ(x)
dx− 1 = χ2(P tρ0, ρ), (2.73)

where the second step follows since P tρ0 and ρ are distributions, and the last step

follows from the definition of χ2-distance. Let ρ1 := P tρ0. By Lemma 27 in [CLA+21],

we know that ρ1 is also β-warm. Furthermore, by Lemma 28 in [CLA+21], the χ-

square distance can be upper bounded by

χ2(P tρ0, ρ) ≤ β · ∥P tρ0 − ρ∥1 ≤ βϵ (2.74)

as claimed. For MALA, as shown in [CDWY20], MALA with a Gaussian start also

mixes in about O(t) steps in
√
χ2 metric. Therefore, we have χ2(PO(t)ρ0, ρ) ≤ ϵ.

114

2.8.2 Efficient implementation of quantum walk

The goal of this section is to give a user-friendly quantum walk implementation

cost analysis (Theorem 2.25).

Lemma 2.23 (Approximate reflector, [CCH+19, Corollary 4.1]). Let W be a uni-

tary operator with a unique leading eigenvector |ψ0⟩ with eigenvalue 1. Denote the

remaining eigenvectors by |ψj⟩ with corresponding eigenvaluese e2πiξj for j ≥ 1. For

any ∆ ∈ (0, 1] and ϵ < 1/2, define a := log(1/∆) and c := log(1/
√
ϵ). Let R be the

reflector such that R = α|ψ0⟩⟨ψ0|+ (I − |ψ0⟩⟨ψ0|).

For any constant α ∈ C, there exists a quantum circuit R̃ that uses a ·c ancilla

qubits and invokes the controlled-W gate 2a+1c times such that

• R̃|ψ0⟩|0⟩⊗ac = R|ψ0⟩|0⟩⊗ac.

•
∥∥R̃|ψj⟩|0⟩⊗ac −R|ψj⟩|0⟩⊗ac

∥∥
2
≤ √ϵ for j ≥ 1 with ξj ≥ ∆.

Lemma 2.24 (π/3-amplitude amplification, [WA08, Lemma 1]). Let |ψ⟩, |ϕ⟩ be two

quantum states with |⟨ψ|ϕ⟩| ≥ p for some p ∈ (0, 1]. Let ω = eiπ/3. Define Rψ :=

ω|ψ⟩⟨ψ| + (I − |ψ⟩⟨ψ|), and Rϕ := ω|ϕ⟩⟨ϕ| + (I − |ϕ⟩⟨ϕ|). Then, for m ≥ 1, there

exists a sequence of unitaries:

V0 = I, Vj+1 = VjRψV
†
j RϕVj ∀j ∈ [m],

such that

|⟨ψ|Vm|ϕ⟩|2 ≥ 1− (1− p)3m .

Furthermore, the unitaries Rϕ, Rψ and their inverses are used at most 3m times in

Vm.

Theorem 2.25 (Quantum walk implementation cost). Let M0,M1 be two ergodic

reversible Markov chains with stationary distributions π0, π1, respectively. Suppose

π0 is β0-warm with respect to M1 and mixes up to total variation distance ϵ in t0(ϵ)

115

steps. Similarly, suppose π1 is β1-warm with respect to M0 and mixes in t1(ϵ) steps.

Let β := max{β0, β1}. Moreover, we assume that |⟨π0|π1⟩| ≥ p.

Given |π0⟩, we can obtain a state |π̃1⟩ such that ∥|π̃1⟩ − |π1⟩∥2 ≤ ϵ using

O
(√

t0(ϵ) + t1(ϵ) · p−1 log(β/p) log2(1/(pϵ))
)

calls to the controlled walk operators controlled-W ′
0, controlled-W ′

1.

Proof. By assumption, we know that π0 mixes in t′0 = t0(ϵ1/β
2
0) steps in M1 to achieve

total variation distance ϵ1/β2
0 , where ϵ1 is a parameter to be chosen later. Similarly,

π1 mixes in t′1 = t1(ϵ1/β
2
0) steps in M0 to achieve total variation distance ϵ1/β2

1 .

We start from |π0⟩. By Lemma 2.21, we have |π0⟩ = |π0,good⟩ + |e0⟩, where

|π0,good⟩ lies in the subspace spanned by the eigenvectors |ψj⟩ ofW ′
1 with corresponding

eigenvalue λj of P1 such that λj = 0 or λj ≤ 1−Ω(1/t′0). Let e2πiξj be the eigenvalue

of |ψj⟩ of W ′
1. By Fact 2.16 and Fact 2.18, we get that ξj = 0 or ξj ≥ Ω(t′0

−1/2). By

Lemma 2.21, we also have ∥|e0⟩∥ ≤ ϵ1.

Then, by Lemma 2.23 with ∆ = Ω(t′0
−1/2) and ϵ = ϵ21, we can implement

R̃1 such that ∥R1|ϕ⟩ − R̃1|ϕ⟩∥2 ≤ 2ϵ1 using O(
√
t′0 log(1/ϵ1)) calls to controlled-W ′

1,

where |ϕ⟩ is any state that occurs during π/3-amplitude amplification (Lemma 2.24)

for |π0⟩ towards |π1⟩.

In the same way, we can start from |π1⟩ and show that R̃0 can be implemented

using O(
√
t′1 log(1/ϵ1)) calls to controlled-W ′

0 such that ∥R0|ϕ′⟩−R̃0|ϕ′⟩∥ ≤ 2ϵ1, where

|ϕ′⟩ is any state that occurs during π/3-amplitude amplification for |π1⟩ towards |π0⟩.

Suppose we can implement R0 and R1 perfectly. Then, we can prepare a

state |π̃1⟩ such that |⟨π̃1|π1⟩| ≥ 1 − (1 − p)3
m using 3m calls to R0, R1 and their

inverses, by applying π/3-amplitude amplification (Lemma 2.24) to |πi⟩. Thus, by

taking m = O(p−1 log(1/ϵ2)) where ϵ2 is a parameter to be chosen later, we have

∥|π1⟩ − |π̃1⟩∥2 ≤ ϵ2. However, since each call to R̃0 or R̃1 causes an error of ϵ1, the

116

total error will be

O(ϵ2 + ϵ1 · p−1 log(1/ϵ2)) = ϵ,

where we take ϵ1 := O(pϵ log−1(1/ϵ)) and ϵ2 := ϵ21.

Therefore, the total number of calls to controlled-W ′
0, controlled-W ′

1 is

O
(
(
√
t′0 +

√
t′1) · p−1 log2(1/pϵ)

)
,

where t′i = ti(ϵ1/β
2
i) = O(ti(ϵ) · log(βi/p)).

The theorem is then proved.

The following corollary is an immediate consequence of Theorem 2.25, and it

also gives Theorem 3.5.

Corollary 2.26 (Quantum walk implementation cost (ℓ2-warm starts)). Let M0,M1

be two ergodic reversible Markov chains with stationary distributions π0, π1, respec-

tively. Suppose π0 mixes towards π1 in M1 up to total variation distance ϵ in t0(ϵ)

steps. Similarly, suppose π1 mixes towards π0 in M0 in t1(ϵ) steps. Suppose ∥π0/π1∥ =
O(1) and ∥π1/π0∥ = O(1). Moreover, we assume that |⟨π0|π1⟩| = Ω(1).

Given |π0⟩, we can obtain a state |π̃1⟩ such that ∥|π̃1⟩ − |π1⟩∥2 ≤ ϵ using

O
(√

t0(ϵ) + t1(ϵ) log
2(1/ϵ)

)

calls to the controlled walk operators controlled-W ′
0, controlled-W ′

1.

2.9 Quantum Algorithm for Log-Concave Sampling: Details

In this section, we provide several quantum algorithms for sampling log-concave

distributions. In Section 2.9.1, we show that the classical underdamped Langevin

diffusion (ULD) and the randomized midpoint method for underdamped Langevin

diffusion (ULD-RMM) can be improved by replacing the first-order oracle by the

117

zeroth-order quantum oracle, while achieving the same efficiency and accuracy guar-

antees. In Section 2.9.2, we show that the Metropolis adjusted Langevin algorithm

(MALA) can be quantumly sped up in terms of query complexity, for both Gaussian

initial distributions and warm-start distributions.

2.9.1 Quantum inexact ULD and ULD-RMM

In the quantum setting, we can estimate ∇f(x) by using Jordan’s algorithm

with queries to the quantum zeroth-order evaluation oracle (2.4). The following

lemma provides an ℓ1-error guarantee.

Lemma 2.27 (Lemma 2.3 in [CCLW20]). Let f be a convex, L0-Lipschitz continuous

function that is specified by an evaluation oracle with error at most ϵ. Suppose f is

L-smooth in B∞(x, 2
√
ϵ/L). Let

g̃ = SmoothQuantumGradient(f, ϵ, L0, L, x). (2.75)

Then for any i ∈ [d], we have |g̃i| ≤ L0 and E|g̃i −∇f(x)i| ≤ 3000
√
dϵL; hence

E∥g̃ −∇f(x)∥1 ≤ 3000d1.5
√
ϵL. (2.76)

If L0, 1/L, and 1/ϵ are poly(d), the SmoothQuantumGradient algorithm uses

O(1) queries to the quantum evaluation oracle and Õ(d) gates.

We then introduce inexact ULD and ULD-RMM by using a stochastic zeroth-

order oracle as follows.

Lemma 2.28 (Theorem 2.2 of [RSBG19]). Let ρn be the distribution of the under-

damped Langevin diffusion with the initial point x0 satisfying ∥x0 − x∗∥ ≤ D, step

size h ≤ ϵ
104κ

√
1

d/µ+D2 , and time T ≥ κ
2
log
(

24
√
d/µ+D2

ϵ

)
. Assume there is a stochas-

tic zeroth-order oracle that provides an unbiased evaluation of ∇f(x) with bounded

variance E∥g̃ −∇f(x)∥2 ≤ σ2. Then inexact ULD achieves W2(ρn, ρ) ≤ ϵ using

T

h
= Θ̃

(κ2
√
d

ϵ

)
(2.77)

118

iterations and

b =
d1.5max{1, σ2}

ϵ
(2.78)

queries to the zeroth-order oracle per iteration. The total number of calls is bT
h

.

Lemma 2.29 (Theorem 2.3 of [RSBG19]). Let ρn be the distribution of the random-

ized midpoint method for underdamped Langevin diffusion with the initial point x0,

step size h ≤ min
{

ϵ1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ϵ

) , ϵ2/3µ1/3

d1/3 log1/3
(√

d/µ

ϵ

)
}
, and time T ≥ 2κ log

(
20d/µ
ϵ2

)
.

Assume there is a stochastic zeroth-order oracle that provides an unbiased evaluation

of ∇f(x) with bounded variance E∥g̃ − ∇f(x)∥2 ≤ σ2. Then inexact ULD-RMM

achieves W2(ρn, ρ) ≤ ϵ using

2T

h
= Θ̃

(κ7/6d1/6
ϵ1/3

+
κd1/3

ϵ2/3

)
(2.79)

iterations and

b =
dκ

h3
(2.80)

queries to the zeroth-order oracle per iteration. The total number of calls is bT
h

.

As a quantum counterpart, we are able to reduce the number of queries from

O(b) to O(1) for each iteration in Lemma 2.28 and Lemma 2.29 based on Lemma 2.27.

Here we are able to choose ϵ = O(σ
2

d3L
) to preserve the condition

E∥g̃ −∇f(x)∥2 ≤ E∥g̃ −∇f(x)∥21 ≤ σ2 (2.81)

used in Lemma 2.28 and Lemma 2.29 with O(1) additional quantum queries. The

total number of calls is O(T
h
) in Lemma 2.28 and Lemma 2.29, the same scaling as in

Lemma 2.10 and Lemma 2.11. The query complexities of ULD and ULD-RMM are

as follows.

Theorem 2.30. Assume the target distribution ρ is strongly log-concave with L-

smooth and µ-strongly convex negative log-density. Let ρn be the distribution of the

119

underdamped Langevin diffusion with the initial point x0 satisfying ∥x0 − x∗∥ ≤ D,

step size h ≤ ϵ
104κ

√
1

d/µ+D2 , and time T ≥ κ
2
log
(

24
√
d/µ+D2

ϵ

)
. Then quantum inexact

ULD (Algorithm 6) achieves

E
(
∥X̂n −XT∥2

)
≤ Õ

(d2κ2h2
µ

)
, (2.82)

W2(ρn, ρ) ≤ ϵ, (2.83)

using

T

h
= Θ̃

(κ2
√
d

ϵ

)
(2.84)

queries to the quantum evaluation oracle.

Proof. By Lemma 2.28, we know that the number of iterations of ULD with an inexact

gradient oracle is Õ(κ2
√
d/ϵ), as long as the oracle satisfies E∥g̃ − ∇f(x)∥2 ≤ σ2.

By Lemma 2.27, this condition can be achieved by the quantum gradient algorithm

such that each gradient computation takes O(1) queries to the quantum evaluation

oracle. Therefore, the total number of queries is Õ(κ2
√
d/ϵ) for the quantum inexact

ULD.

Theorem 2.31. Assume the target distribution ρ is strongly log-concave with L-

smooth and µ-strongly convex negative log-density. Let ρn be the distribution of the

randomized midpoint method for underdamped Langevin diffusion with initial point x0,

step size h ≤ min
{

ϵ1/3µ1/6

κ1/6d1/6 log1/6
(√

d/µ

ϵ

) , ϵ2/3µ1/3

d1/3 log1/3
(√

d/µ

ϵ

)
}
, and time T ≥ 2κ log

(
20d/µ
ϵ2

)
.

Then quantum inexact ULD-RMM (Algorithm 7) achieves

E
(
∥X̂n −XT∥2

)
≤ Õ

(dκh6
µ

+
dh3

µ

)
, (2.85)

W2(ρn, ρ) ≤ ϵ, (2.86)

using

2T

h
= Θ̃

(κ7/6d1/6
ϵ1/3

+
κd1/3

ϵ2/3

)
(2.87)

queries to the quantum evaluation oracle.

The proof is almost the same as Theorem 2.30, so we omit it here.

120

Algorithm 6 Quantum Inexact Underdamped Langevin Dynamics (Quantum IULD)
1: procedure QuantumIULD(f , h, T , x0, ϵ, L, β) ▷ Function f , step

size h, time T , and a sample x0 from a starting distribution ρ0, evaluation error
ϵ, Lipschitz constant L, smoothness parameter β

2: xh0 ← x0
3: g̃(x0)← SmoothQuantumGradient(f, ϵ, L, β, x0)
4: for t = 0, h, . . . , ⌊T ⌋ do
5: Draw W h

1,t =
∫ h
0
e2(s−h)dBt+s, W h

2,t =
∫ h
0
(1− e2(s−h))dBt+s

6: vht+h ← e−2hvht +
1
2L
(1− e−2h)g̃(xht) + 2√

L
W h

1,t

7: xht+h ← xht +
1
2
(1− e−2h)vht + 1

2L
[h− (1− e−2h)]g̃(xht) + 1√

L
W h

2,t

8: g̃(xht+h)← SmoothQuantumGradient(f, ϵ, L, β, xht+h)
9: end for

10: return xhh, x
h
2h, . . . , x

h
⌊T ⌋+1

11: end procedure

2.9.2 Quantum MALA

In Section 2.9.2.1, we introduce several classical results on the mixing of

MALA. Then, in Section 2.9.2.2, we describe how to implement a quantum walk

for MALA. Then, in Section 2.9.2.3 and Section 2.9.2.4, we show quantum MALA

with a warm start distribution and a Gaussian initial distribution, respectively.

2.9.2.1 Mixing time and spectral gap of MALA

The Metropolis adjusted Langevin algorithm (MALA) is a key method for sam-

pling log-concave distributions. Classically, the state-of-the-art mixing time bound

of MALA was proven by [LST20]. They show that MALA is equivalent to the

Metropolized Hamiltonian Monte Carlo method (HMC) and use the blocking con-

ductance analysis of [KLM06] to upper bound the mixing time.

Define H(x, v) := f(x) + 1
2
∥v∥22. Let dπ⋆ denote the target distribution, i.e.,

dπ⋆(x)/dx ∝ exp(−f(x)). Then the Markov chain defined by Algorithm 8 has the

following property.

Lemma 2.32 ([LST20]). The Markov chain of Algorithm 8 is reversible, and its

121

Algorithm 7 Quantum Inexact Underdamped Langevin Dynamics with Randomized
Midpoint Method (Quantum IULD-RMM)
1: procedure QuantumIULD-RMM(f , h, T , x0) ▷ Function f , step size h, time
T , and a sample x0 from a starting distribution ρ0

2: xh0 ← x0, yh0 ← x0
3: g̃(xh0)← SmoothQuantumGradient(f, ϵ, L, β, xh0)
4: g̃(yh0)← SmoothQuantumGradient(f, ϵ, L, β, yh0)
5: for t = 0, h, . . . , ⌊T ⌋ do
6: Draw W h

1,t =
∫ h
0
e2(s−h)dBt+s, W h

2,t =
∫ h
0
(1− e2(s−h))dBt+s, W h

3,t =
∫ αh
0

(1−
e2(s−h))dBt+s

7: vht+h ← e−2hvht +
h
L
e−2(1−α)hg̃(yht) +

2√
L
W h

1,t

8: xht+h ← xht +
1
2
(1− e−2h)vht + h

2L
(1− e−2(1−α)h)g̃(yht) + 1√

L
W h

2,t

9: yht+h ← xht +
1
2
(1− e−2αh)vht + 1

2L
[αh− (1− e−2αh)]g̃(xht) + 1√

L
W h

3,t

10: g̃(xht+h)← SmoothQuantumGradient(f, ϵ, L, β, xht+h)
11: g̃(yht+h)← SmoothQuantumGradient(f, ϵ, L, β, yht+h)
12: end for
13: return xhh, x

h
2h, . . . , x

h
⌊T ⌋+1

14: end procedure

stationary distribution is dπ⋆.

The main result of [LST20] is the following theorem on the mixing time of

Algorithm 8.

Theorem 2.33 (Mixing of Hamiltonian Monte Carlo, Theorem 4.7 of [LST20]).

There is an algorithm initialized from a point drawn from N(x⋆, L−1Id) that iterates

Algorithm 8

O(κd log(κ/ϵ) log(d log(κ/ϵ)) log(1/ϵ)) (2.88)

times and produces a point from a distribution ρ such that ∥ρ− π⋆∥TV ≤ ϵ.

The algorithm in the above theorem defines a new Markov chain where in each

step, we draw an integer j uniformly from 0 to O(κd log(κ/ϵ) log(d log(κ/ϵ))) and run

Algorithm 8 for j iterations. One step of this Markov chain gives a distribution with

122

Algorithm 8 Metropolis adjusted Langevin algorithm (MALA)

1: procedure MALA(x0, h) ▷ Initial point x0 ∈ Rd, step size h
2: for k ≥ 0 do
3: Draw zk+1 ∼ N(0, Id)
4: zk+1 ← xk − h∇f(xk) +

√
2hzk+1

5: Compute

αk := min
{
1,

exp(−f(zk+1)− ∥xk − zk+1 + h∇f(zk+1)∥22/(4h))
exp(−f(xk)− ∥xk − zk+1 + h∇f(xk)∥22/(4h))

}

6: Draw u ∼ U([0, 1])
7: if u ≤ αk then
8: xk+1 ← zk+1

9: else
10: xk+1 ← xk
11: end if
12: end for
13: return {xk}k≥0
14: end procedure

TV-distance from π⋆ at most (2e)−1 [LST20]. Hence, if we run for log(1/ϵ) steps, we

get ϵ TV-distance.

Furthermore, we can show that MALA converges faster under a certain warm

start condition [DCWY18, WSC22, CLA+21]. We say the initial distribution ρ0 is

β-warm if there is a constant β independent of κ, d such that

sup
S∈B(Rd)

ρn(S)

ρ(S)
≤ β. (2.89)

The warmness of the Gaussian ρ0 = N(x∗, 1
L
I) satisfies β ≤ κd/2 [DCWY18, WSC22].

Given a β-warm initial distribution, MALA has the following improved con-

vergence.

Lemma 2.34 (Theorem 1 of [WSC22]). Assume the target distribution ρ is strongly

log-concave with L-smooth and µ-strongly convex negative log-density. Let ρn be

the distribution of the 1
2
-lazy version of MALA with β-warm initial distribution ρ0

123

and step size h = c0(Ld log
2(max{κ, d, β

ϵ
, c2}))−1. There exist universal constants

c0, c1, c2 > 0, such that MALA achieves

dTV (ρn, ρ) ≤ ϵ (2.90)

after

n ≥ c1κ
√
d log3(max{κ, d, β

ϵ
, c2}) (2.91)

steps.

2.9.2.2 Quantum walks for MALA

The goal of this section is to show quantum speedup for the Metropolis ad-

justed Langevin algorithm (MALA) using the continuous-space quantum walks de-

fined by [CCH+19], which generalize the discrete-time quantum walk of [Sze04] to

continuous space.

Section 2.8 contains a detailed introduction of the quantum walk. To im-

plement a quantum version of Algorithm 8, we prepare the initial state |π0⟩ and

implement the quantum walk operator W .

Initial state. For the initial state |ρ0⟩, by Theorem 2.33, it suffices to take ρ0 =

N(x⋆, L−1Id), where x⋆ is the minimum point of f(x). Suppose we already have x⋆.

Appendix A.3 of [CCH+19] shows that the state
∫

Rd

(
L

2π

)d/4
e−

L
4
∥z∥22|z⟩dz (2.92)

can be efficiently prepared by applying a Box-Muller transformation to the state

corresponding to the uniform distribution (i.e., an equal superposition of points).

Then, for the ith register, we apply the shift operation Ushift with Ushift|xi⟩ = |xi + x⋆i ⟩.
The resulting state is

|ρ0⟩ =
∫

Rd

(
L

2π

)d/4
e−

L
4
∥z−x⋆∥22|z⟩dz. (2.93)

124

Quantum walk operator. The quantum walk operatorW (P) can be implemented1

using the quantum walk update unitary U that maps each point |x⟩ to the superpo-

sition
∫
Rd dy

√
px→y|y⟩. We show how to efficiently implement U .

We first prepare a standard Gaussian state

|ξ⟩ :=
∫

Rd

(
1

2π

)d/4
e−

1
4
∥z∥22|z⟩dz. (2.94)

Then, we apply an affine transformation to change the distribution: for any z ∈ Rd,

|x⟩|z⟩ 7→ |x⟩
∣∣∣x− h∇f(x) +

√
2hz
〉
.

This step will query the gradient oracle O∇f . Then, we apply a controlled rotation

to the third register based on the following accept/reject probability:

α(x, z) := min
{
1,

exp(−f(z)− ∥x− z + h∇f(z)∥22/(4h))
exp(−f(x)− ∥x− z + h∇f(x)∥22/(4h))

}
∀x, z ∈ Rd.

That is, based on the values x and z in the first and second registers, we have

|x⟩|z⟩|0⟩ 7→ |x⟩|z⟩
(√

α(x, z)|0⟩+
√
1− α(x, z)|1⟩

)
.

It can be implemented by querying the evaluation oracle Of and the gradient oracle

O∇f . After that, we post-select the third register to be zero. Note that the cost of the

post-selection depends on the acceptance probability of the classical MALA. It was

shown in [DCWY18, Section 4.4] that by choosing a proper step size, the acceptance

probability will be a constant. Therefore, the cost of the post-selection is O(1).

Overall, the resulting state will be the desired quantum walk state:

|x⟩|ψx⟩ := |x⟩
∫

Rd

√
px→y|y⟩dy.

It is equivalent to the classical MALA with one acceptance step. And this process

will query the evaluation oracle and gradient oracle for O(1) times. We note that an

alternative implementation of the quantum walk operator for the Metropolis-Hastings

type Markov chains is shown in [LHP+20].

1As shown in [WA08], W (P) = U†SURU†SUR, where S is the swap gate and R is a reflection
operator with respect to the state space span{|x⟩|0⟩ : x ∈ Rd}.

125

Algorithm 9 Quantum Update Unitary
1: procedure QuantumUpdate(|ρ⟩|0⟩) ▷ |ρ⟩ =

∫
Rd dx

√
ρx|x⟩

2: Prepare |ρ⟩|ξ⟩ where |ξ⟩ is a d-dimensional Gaussian state
3: Apply an affine transformation on the second register: ▷ Query O∇f

|x⟩|z⟩ 7→ |x⟩
∣∣∣x− h∇f(x) +

√
2hz
〉

4: Apply a controlled rotation: ▷ Query Of and O∇f

|x⟩|z⟩|0⟩ 7→ |x⟩|z⟩
(√

α(x, z)|0⟩+
√

1− α(x, z)|1⟩
)
,

where α(x, z) := min
{
1,

exp(−f(z)−∥x−z+h∇f(z)∥22/(4h))
exp(−f(x)−∥x−z+h∇f(x)∥22/(4h))

}

5: Post-select the third register being zero and drop the register
6: return the final state |ϕ⟩ ▷ |ϕ⟩ =

∫
Rd dx

√
ρx|x⟩

∫
Rd dy

√
px→y|y⟩

7: end procedure

Algorithm 10 Quantum MALA
1: procedure QuantumMALA(Of , O∇f , |ρ0⟩) ▷ Evaluation oracle Of , gradient

oracle O∇f , initial state |ρ0⟩
2: Construct quantum walk update unitary U from QuantumUpdate with Of

and O∇f ▷ Algorithm 9
3: Implement the quantum walk operator W (P)
4: Perform π

3
-amplitude amplification with W (P) on the state |ρ0⟩|0⟩

5: return the resulting state |ρ̃⟩ ▷ |ρ̃⟩ ≈
∫
Rd e

−f(x)d|x⟩, the stationary
distribution state

6: end procedure

126

Lemma 2.35 (Continuous-space quantum walk implementation). The Markov chain

of Algorithm 8 can be implemented as a continuous-space quantum walk where the

quantum walk unitary for one step can be implemented with O(1) queries to the gra-

dient oracle and the evaluation oracle, and O(d) quantum gates.

2.9.2.3 Quantum MALA with a warm start

We first show that quantum MALA can achieve quadratic speedup in query

complexity when the initial distribution is a warm start (Theorem 2.36).

Theorem 2.36 (Quantum MALA with warm start). Let |ρ0⟩ be a β-warm start with

respect to the log-concave distribution ρ ∝ e−f . Let t(ϵ) = Õ(κ
√
d log3(β/ϵ)) be the

mixing time of classical MALA with initial distribution ρ0 as shown in Lemma 2.34,

i.e., ∥P t(ϵ)ρ0− ρ∥TV ≤ ϵ. Then there is a quantum algorithm that prepares a state |ρ̃⟩
that is ϵ-close to |ρ⟩ using

Õ(κ1/2d1/4β1/2) (2.95)

queries to the evaluation oracle Of and gradient oracle O∇f .

Proof. Let |ρ0⟩ be the initial state corresponding to a distribution ρ0 that is β-warm.

Then we know that t = t(ϵ/β) steps of the classical MALA random walk suffice to

achieve ∥P tρ0 − ρ∥1 ≤ ϵ/β.

By Lemma 2.21, we have |ρ0⟩ = |ρ′0⟩ + |e⟩, where |ρ′0⟩ lies in the space of

eigenvectors |vi⟩ of W such that λi = 1 or λi ≤ 1− Ω̃(t−1), and ∥|e⟩∥ ≤ ϵ1.

Hence, by Corollary 4.1 in [CCLW20], the approximate reflection in the quan-

tum walk R̃ can be implemented using Õ(t1/2) calls to the controlled-W operator.

Furthermore, β-warmness also implise that |⟨ρ0|ρ⟩| ≥ β−1/2. Thus, the approxi-

mated stationary state |ρ̃⟩ can be prepared via O(β1/2 log(1/ϵ2)) recursive levels of
π
3
-amplitude amplification such that ∥|ρ⟩ − |ρ̃⟩∥ ≤ ϵ2.

127

By choosing ϵ1 = ϵ/(2 log(2/ϵ)) and ϵ2 = ϵ/2, we achieve a final approximation

error of O(ϵ1 log(ϵ2) + ϵ2) ≤ ϵ. By Lemma 2.35, each controlled-W operator takes a

constant number of queries to Of and O∇f . Therefore, by plugging-in the classical

mixing time of MALA, we obtain the desired query complexity.

Algorithm 11 Quantum MALA with Warm Start
Input: Evaluation oracle Of , gradient oracle O∇f , smoothness parameter L, convex-

ity parameter µ, warm-start state |ρ0⟩
Output: Quantum state |ρ̃⟩ close to the stationary distribution state

∫
Rd e

−f(x)d|x⟩
1: |ρ̃⟩ ← QuantumMALA(Ofi ,O∇fi , |ρ0⟩) ▷ Algorithm 10
2: return |ρ̃⟩

2.9.2.4 Quantum MALA with the Gaussian-start

We cannot directly apply Theorem 2.36 for a Gaussian initial distribution

because the overlap between |ρ0⟩ and |ρ⟩ is exponentially small. Instead, we use the

idea of simulated annealing and construct a sequence of slowly-varying Markov-chains

(as in [WA08]). We have the following result, which looks like Theorem 2.19. But

our result uses the effective spectral gap of MALA (by Lemma 2.21).

Corollary 2.37 (Quantum speedup for slowly varying MALAs). Let ρ0, . . . , ρr be a

sequence of log-concave distributions such that |⟨ρi|ρi+1⟩| ≥ p for some p > 0 and for

all i ∈ {0, . . . , r − 1}. Suppose we can prepare the initial state |ρ0⟩. Then, for any

ϵ > 0, there is a quantum procedure to produce a state |ρ̃r⟩ such that ∥|ρ̃r⟩− |ρr⟩∥ ≤ ϵ

using

Õ(κ1/2d1/2 · (r/p)) (2.96)

applications of the quantum walk operators Wi corresponding to the MALA procedure

for ρi for i ∈ [r].

Proof. For two consecutive distributions, quantum MALA can evolve |ρi⟩ to |ρi+1⟩
using Õ(

√
κd · p−1) quereis, which follows from Theorem 2.36 and Theorem 2.33

128

(which holds for all initial distributions with warmness β ≤ κd/2). Then, the corollary

immediately follows.

Algorithm 12 Quantum MALA for Log-concave Sampling
Input: Evaluation oracle Of , gradient oracle O∇f , smoothness parameter L, convex-

ity parameter µ
Output: Quantum state |ρ̃⟩ close to the stationary distribution state

∫
Rd e

−f(x)d|x⟩
1: Compute the cooling schedule parameters σ1, . . . , σM
2: Prepare the state |ρ0⟩ ∝

∫
Rd e

− 1
4
∥x∥2/σ2

1d|x⟩
3: for i← 1, . . . ,M do
4: Construct Ofi and O∇fi where fi(x) = f(x) + 1

2
∥x∥2/σ2

i

5: |ρi⟩ ← QuantumMALA(Ofi ,O∇fi , |ρi−1⟩) ▷ Algorithm 10
6: end for
7: return |ρM⟩

Theorem 2.38 (Quantum MALA for log-concave sampling). Assume the target dis-

tribution ρ ∝ e−f is strongly log-concave with f : Rd → R+ being L-smooth and µ-

strongly convex. Let |ρ⟩ be the quantum state corresponding to the distribution ρ.

Then, for any ϵ > 0, there is a quantum algorithm (Algorithm 12) that prepares a

state |ρ̃⟩ such that ∥|ρ̃⟩ − |ρ⟩∥ ≤ ϵ using Õ(κ1/2d) queries to the evaluation oracle Of

and gradient oracle O∇f .

Proof. By Lemma 2.15, we know that the cooling schedule σ1, . . . , σM gives a sequence

of slowly-varying Markov chains with overlap p = Ω(1). We also know that the length

of the schedule is M = Õ(d1/2).

Hence, by Corollary 2.37 with r = Õ(d1/2) and p = Ω(1), |ρ̃⟩ can be prepared

by Õ(κ1/2d) quantum walk steps. By Lemma 2.35, each step queries Of and O∇f

twice. The result follows.

2.10 Quantum Algorithm for Estimating Normalizing Con-
stants: Details

We now come back to the problem of estimating the normalizing constant.

129

2.10.1 Quantum MALA and annealing

In this section, we first describe a quantum speedup for the annealing process

via a quantum-accelerated Monte Carlo method, which quadratically improves the

ϵ-dependence of the sampling complexity of the classical algorithm. Then we further

reduce the κ- and d-dependence of the query complexity using the quantum MALA

procedure developed in Section 2.9.2.

2.10.1.1 Quantum speedup for the standard annealing process

Reference [Mon15] developed a quantum-accelerated Monte Carlo method for

mean estimation with B-bounded relative variance.2 We state the result as follows.

Lemma 2.39 (Theorem 6 of [Mon15]). Assume there is an algorithm A such that

v(A) ≥ 0 and Var(v(A))
E[v(A)]2

≤ B for some B ≥ 1, and an accuracy ϵ < 27B/4. Then there

is a quantum algorithm which outputs an estimate µ̃ such that

Pr
[
|µ̃− E[v(A)]| ≥ ϵE[v(A)]

]
≤ 1

4
, (2.97)

with

O
(B
ϵ
log3/2

(B
ϵ

)
log log

(B
ϵ

))
(2.98)

queries to A.

Lemma 2.40 (Lemma 1 of [Mon15]). Let A be a (classical or quantum) algorithm

which aims to estimate some quantity µ, and whose output µ̃ satisfies |µ − µ̃| ≤ ϵ

except with probability γ, for some fixed γ < 1/2. Then, for any δ > 0, it suffices to

repeat A O(log 1/δ) times and take the median to obtain an estimate which is accurate

to within ϵ with probability at least 1− δ.

2Reference [AHN+21] improves the scaling from Õ(B/ϵ) to Õ(
√
B/ϵ). Such a result also follows

from the quantum Chebyshev inequality of [HM19]. Since B = O(1) in our case, we apply the
original algorithm of [Mon15].

130

This result provides a way of estimating the telescoping product (2.41). The

following theorem and its proof closely follows Theorem 8 of [Mon15], while the

definitions of the partition function and the cooling schedule are different.

Theorem 2.41 (Quantum speedup of annealing). Let Z be the normalizing constant

in (2.3). Consider a sequence of values gi as in (2.44), with Eρi (g
2
i)

Eρi (gi)
2 = O(1). Further

assume that we have the ability to sample ρi for i ∈ [M]. Then there is a quantum

algorithm which outputs an estimate Z̃, such that

Pr[(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z] ≥ 3

4
, (2.99)

using

O
(M2

ϵ
log3/2

(M
ϵ

)
log log

(M
ϵ

))
= Õ

(M2

ϵ

)
(2.100)

samples in total.

Proof. For i ∈ [M], we estimate Eρi(gi) with output g̃i up to additive error (ϵ/2M)Eρi(gi)

with failure probability 1/4M . We output as a final estimate

Z̃ = Z̃1

M∏

i=1

g̃i, (2.101)

where Z̃1 is the normalizing constant of the Gaussian distribution with variance σ2
1

as in Lemma 2.12. Assuming that all the estimates are indeed accurate, we have

1− ϵ ≤ (1− ϵ

2
)
(
1− ϵ

2M

)M
≤ Z̃

Z
≤
(
1 +

ϵ

2M

)M
≤ eϵ/2 ≤ 1 + ϵ. (2.102)

Thus |Z̃ − Z| ≤ ϵZ with probability at least
(
1− 1

4M

)M
≥ 1− 1

4
=

3

4
. (2.103)

Based on Lemma 2.13 and Lemma 2.14, Eρi (g
2
i)

Eρi (gi)
2 = O(1), so Varρi (gi)

Eρi (gi)
2 = O(1).

By Lemma 2.39, each requires

O
(M
ϵ
log3/2

(M
ϵ

)
log log

(M
ϵ

))
(2.104)

131

samples from ρi, and the total number of samples is

O
(M2

ϵ
log3/2

(M
ϵ

)
log log

(M
ϵ

))
. (2.105)

This completes the proof.

2.10.1.2 Quantum MALA for estimating the normalizing constant

We now describe how to combine quantum annealing with quantum MALA

to reduce the query complexity of estimating the normalizing constants.

We begin with the following lemma on non-destructive mean estimation.

Lemma 2.42 (Non-destructive mean estimation with quantum MALA). For ϵ < 1,

given Õ(ϵ−1) copies of a state |ρ̃i−1⟩ such that ∥|ρ̃i−1⟩ − |ρi−1⟩∥ ≤ ϵ, there exists a

quantum procedure that outputs g̃i such that

|g̃i − Eρi [gi]| ≤ ϵ · Eρi [gi] (2.106)

with success probability 1− o(1) using

Õ(κ1/2d1/2ϵ−1) (2.107)

steps of the quantum walk operator corresponding to the MALA with stationary dis-

tribution ρi, where δ is the spectral gap of the Markov chain. The quantum procedure

also returns Õ(ϵ−1) copies of the state |ρ̃i⟩ such that ∥|ρ̃i⟩ − |ρi⟩∥ ≤ ϵ.

Proof sketch. This lemma is a variant of Lemma 4.4 in [CCLW20]. Notice that Corol-

lary 2.37 implies that we can prepare |ρ̃i⟩ from |ρ̃i−1⟩ using Õ(κ1/2d1/2p−1) quantum

walk steps, where p ≤ |⟨ρi|ρi−1⟩|. By Lemma 2.15, we have p = Ω(1). The lemma

follows by properly choosing the parameters in Lemma 4.4 in [CCLW20].

Theorem 2.43 (Quantum speedup using MALA, annealing, and quantum walk).

Let Z be the normalizing constant in (2.3). Assume we are given the access to query

132

the quantum gradient oracle (2.5). Then there is a quantum algorithm which outputs

an estimate Z̃, such that

Pr[(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z] ≥ 3

4
, (2.108)

using

Õ
(
d3/2κ1/2ϵ−1

)
(2.109)

queries to the quantum gradient oracle in total.

Proof. The number of annealing stages is M = Õ(
√
d). At the ith stage, we estimate

Eρi [gi] with relative error ϵ/M . Hence, we can apply Lemma 2.42 M times, where

each application takes

Õ(κ1/2d1/2(ϵ/M)−1) = Õ(κ1/2dϵ−1) (2.110)

MALA quantum walk steps. This process takes

M · Õ(κ1/2dϵ−1) = Õ(κ1/2d3/2ϵ−1) (2.111)

steps in total.

By Lemma 2.35, each step of the quantum walk operator can be implemented

by querying the gradient oracle and the evaluation oracle O(1) times. Therefore, we

can estimate Z with relative error ϵ using Õ(κ1/2d3/2ϵ−1) queries to the gradient and

evaluation oracles.

2.10.2 Quantum multilevel Langevin algorithms

We now consider an alternative approach for estimating the normalizing con-

stant, by replacing MALA by a multilevel Langevin approach. More concretely, for

each sample we perform the underdamped Langevin diffusion (ULD) or the random-

ized midpoint method for underdamped Langevin diffusion (ULD-RMM) that has

133

an improved dependence on the dimension, and apply the multilevel Monte Carlo

(MLMC) to preserve the dependence on the accuracy.

Multilevel Monte Carlo methods have attracted extensive attention in stochas-

tic simulations and financial models [Gil08, Gil15]. This approach was originally de-

veloped by [Hei01] for parametric integration, and used to simulate SDEs in [Gil08].

Considering a general random variable P , MLMC gives a sequence of estimators

P0, Pl, . . . , PL for approximating P with increasing accuracy and cost, and uses the

telescoping sum of E[Pl−Pl−1] to estimate E[P]. For Pl−Pl−1 with smaller variance

but larger cost, MLMC performs fewer samples to reach a given error tolerance, re-

ducing the overall complexity. MLMC has been widely discussed and improved under

many settings, and has been used in various applications [Gil15].

To estimate normalizing constants, a variant of MLMC has been proposed by

[GLL20, Lemmas C.1 and C.2]. Unlike standard MLMC for bounding the mean-

squared error, this approach upper bounds the bias and the variance separately, mak-

ing the analysis more technically involved. The first quantum algorithm based on

MLMC was developed by [ALL+21, Theorem 2]. They upper bound the additive er-

ror with high probability (as is common for quantum algorithms). They also observe

that the mean-squared error can control both the bias and the variance [ALL+21,

Section 2.2] and that the mean-squared error is almost equivalent to the additive

error with high probability [ALL+21, Appendix A]. Considering this, we still use the

additive error scenario for estimating normalizing constants, both for convenience and

for compatibility with the quantum annealing speedup of Theorem 2.41.

We first introduce the general quantum speedup of MLMC as described in [ALL+21],

and then apply these results to our problem.

2.10.2.1 Quantum-accelerated multilevel Monte Carlo method

We begin by describing the following general result on quantum-accelerated

multilevel Monte Carlo (QA-MLMC).

134

Lemma 2.44 (Theorem 2 of [ALL+21]). Let P denote a random variable, and let

Pl (for l ∈ {0, 1, . . . , L}) denote a sequence of random variables such that Pl approx-

imates P at level l. Also define P−1 = 0. Let Cl be the cost of sampling from Pl, and

let Vl be the variance of Pl − Pl−1. If there exist positive constants α, β = 2β̂, γ such

that α ≥ min(β̂, γ) and

• |E[Pl − P]| = O(2−αl),

• Vl = O(2−βl) = O(2−2β̂l), and

• Cl = O(2γl),

then for any ϵ < 1/e there is a quantum algorithm that estimates E[P] up to additive

error ϵ with probability at least 0.99, and with cost

O
(
ϵ−1(log 1/ϵ)3/2(log log 1/ϵ)2

)
, β̂ > γ,

O
(
ϵ−1(log 1/ϵ)7/2(log log 1/ϵ)2

)
, β̂ = γ,

O
(
ϵ−1−(γ−β̂)/α(log 1/ϵ)3/2(log log 1/ϵ)2

)
, β̂ < γ.

(2.112)

We apply this result to the payoff model of general stochastic differential equa-

tions (SDEs) as discussed in [ALL+21]. Consider an SDE

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt (2.113)

for t ∈ [0, T], where we assume µ and σ are Lipschitz continuous. Given an initial

condition X0 and an evolution time T > 0, we aim to compute

E[P(XT)], (2.114)

where P(X) is the so-called payoff function as a functional of X. In Lemma 2.44, we

denote P(XT) as P , and the goal is to estimate E[P].

We also consider a numerical scheme that produces X̂k with time step size

h = T/n. We say the scheme is of strong order r if for any m ∈ {1, 2}, there exists a

constant Cm such that

E
(
∥X̂n −XT∥m

)
≤ Cmh

rm. (2.115)

135

Note that it suffices to verify this condition for m = 2 since (E∥X̂n−XT∥)2 ≤ E∥X̂n−
XT∥2. We further assume the coefficients of the scheme are Lipschitz continuous. For

the discretization nl = 2l with step size h = T/2l, we let Pl denote P(X̂nl
), an

estimator of P .

Finally, we assume P(X) is LP -Lipschitz continuous. Thus, we have satisfied

the three assumptions of Proposition 2 of [ALL+21], which estimates the rates of

|E[Pl − P]|, Vl, Cl in Lemma 2.44. We state a simpler version as follows.

Lemma 2.45 (Proposition 2 of [ALL+21]). Given an SDE and a scheme of strong

order r with Lipschitz continuous constants, and given a Lipschitz continuous payoff

function P, we have α = r, β = 2r, and γ = 1.

Note that while we relax the definition of a scheme of strong order r, our

definition (2.115) is sufficient to prove Lemma 2.45. More concretely, in the proof of

Proposition 2 of [ALL+21], we have the following simplified inequalities:

|E[Pl − P]| ≤ E|P(X̂n)− P(XT)| ≤ LPE∥X̂n −XT∥ ≤ LPC1h
r = O(2−rl), (2.116)

Vl ≤ E|P(X̂n)− P(XT)|2 ≤ LPE∥X̂n −XT∥2 ≤ LPC2h
2r = O(2−2rl), (2.117)

Cl = O(nl) = O(2l), (2.118)

and therefore α = r, β = 2r, and γ = 1.

Finally, we can characterize the performance of QA-MLMC as follows.

Lemma 2.46 (Theorem 3 of [ALL+21]). Given an SDE and a scheme of strong

order r with Lipschitz continuous constants, and given a Lipschitz continuous payoff

function P, QA-MLMC estimates E[P] up to additive error ϵ with probability at least

0.99 with cost

O
(
ϵ−1(log 1/ϵ)3/2(log log 1/ϵ)2

)
, r > 1, (2.119)

O
(
ϵ−1(log 1/ϵ)7/2(log log 1/ϵ)2

)
, r = 1, (2.120)

O
(
ϵ−1/r(log 1/ϵ)3/2(log log 1/ϵ)2

)
, r < 1. (2.121)

136

Note that we can amplify the success probability to 1− δ for arbitrarily small

δ > 0 using the powering lemma (Lemma 2.40).

2.10.2.2 Quantum-accelerated multilevel Langevin method

We have described ULD and ULD-RMM in Algorithm 4 and Algorithm 5,

respectively. We now apply these schemes to simulate the underdamped Langevin

dynamics as the SDE. According to (2.115), ULD and ULD-RMM are schemes of

order 1 and 1.5, respectively.

Let the payoff function P be gi as defined in (2.44). Our goal is to estimate

the mean of P(X̂nl
) = gi(X̂nl

) using several samples X̂nl
produced by ULD or ULD-

RMM. If g is assumed to be Lg-Lipschitz as in Lemma C.2 of [GLL20], we have a

Lipschitz continuous payoff function P with LP = Lg. Although gi = exp
(∥x∥2
σ2
i (1+α

−1)

)

is not Lipschitz, according to Section 4.3 of [GLL20], we can truncate at large x and

replace gi by hi := min
{
gi, exp

((r+i)2

σ2
i (1+α

−1)

)}
with

α = Õ

(
1√

d log(1/ϵ)

)
, (2.122)

r+i = Eρi+1
∥x∥+Θ(σi

√
(1 + α) log(1/ϵ)), (2.123)

to ensure hi
Eρigi

is O(σ−1i) Lipschitz and
∣∣Eρi(hi − gi)

∣∣ < ϵ by Lemmas C.7 and C.8

of [GLL20]. For simplicity, as in Section 4.2 of [GLL20], we regard gi as a Lipschitz

continuous payoff function in our main results.

Thus, using Lemma 2.46 to estimate Zi+1

Zi
= Eρi(gi), QA-MLMC using either

ULD or ULD-RMM can reduce the ϵ-dependence of the number of steps to Õ(ϵ−1).

Then each step of ULD or ULD-RMM uses the value of ∇f(x) about O(1) times as

shown in Algorithm 4 and Algorithm 5.

Having described the implementations of quantum inexact ULD and ULD-

RMM, we now state the quantum speedup for estimating normalizing constants using

multilevel ULD and annealing, or multilevel ULD-RMM and annealing, as follows.

137

Theorem 2.47 (Quantum speedup using multilevel ULD and annealing). Let Z

be the normalizing constant in (2.3). Assume we are given access to the quantum

gradient oracle (2.5). Then there is a quantum algorithm which outputs an estimate

Z̃ such that

Pr[(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z] ≥ 3

4
(2.124)

using

Õ
(d3/2κ2

ϵ

)
(2.125)

queries to the quantum gradient oracle.

Proof. As in Theorem 2.41 and Theorem 2.43, for i ∈ [M] with M stages, we estimate

Eρi(gi) with output g̃i up to additive error (ϵ/2M)Eρi(gi) with failure probability

1/4M , which ensures |Z̃ − Z| ≤ ϵZ with probability at least 3
4
.

According to Lemma 2.46, each sample of ρi using multilevel ULD uses Õ(Mκ2
√
d

ϵ
)

queries to the quantum evaluation oracle (2.4) used in Algorithm 6 or Algorithm 7.

For M = Õ(
√
d) stages, the query complexity of estimating the normalizing constant

is Õ(M2κ2
√
d

ϵ
) = Õ(d

3/2κ2

ϵ
).

Theorem 2.48 (Quantum speedup using multilevel ULD-RMM and annealing). Let

Z be the normalizing constant in (2.3). Assume we are given the access to the quantum

gradient oracle (2.5). Then there is a quantum algorithm which outputs an estimate

Z̃ such that

Pr[(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z] ≥ 3

4
(2.126)

using

Õ
(d7/6κ7/6 + d4/3κ

ϵ

)
(2.127)

queries to the quantum gradient oracle.

138

Proof. As above, for i ∈ [M] with M stages, we estimate Eρi(gi) with output g̃i up

to additive error (ϵ/2M)Eρi(gi) with failure probability 1/4M .

According to Lemma 2.46 and Lemma 2.11, each sample of ρi using multilevel

ULD uses Õ(M(κ7/6d1/6+κd1/3)
ϵ

) queries to the quantum gradient oracle (2.5) or the

quantum evaluation oracle (2.4) (with additional Õ(1) cost). For M = Õ(
√
d) stages,

the query complexity of estimating the normalizing constant is Õ(M
2(κ7/6d1/6+κd1/3)

ϵ
) =

Õ(d
7/6κ7/6+d4/3κ

ϵ
).

2.11 Proof of the Quantum Lower Bound

To prove Theorem 2.9, we use the following quantum query lower bound on

the Hamming weight problem.

Proposition 2.49 (Theorem 1.3 of [NW99]). For x = (x1, . . . , xn) ∈ {0, 1}n, let

∥x∥1 =
∑n

i=1 xi be the Hamming weight of x. Furthermore, let ℓ, ℓ′ be integers such

that 0 ≤ ℓ < ℓ′ ≤ n. Define the partial boolean function fℓ,ℓ′ on {0, 1}n as

fℓ,ℓ′(x) =

{
0 if ∥x∥1 = ℓ

1 if ∥x∥1 = ℓ′.
(2.128)

Let m ∈ {ℓ, ℓ′} be such that |n
2
−m| is maximized, and let ∆ = ℓ′− ℓ. Then given the

quantum query oracle

Ox|i⟩|b⟩ = |i, b⊕ xi⟩ ∀i ∈ [n], b ∈ {0, 1}, (2.129)

the quantum query complexity of computing the function fℓ,ℓ′ is Θ(
√
n/∆+

√
m(n−m)/∆).

Now we prove Theorem 2.9 using a construction motivated by Section 5 of

[GLL20].

Proof. We start from a basic function f0(x) = ∥x∥2
2

. The partition function of f0 is
∫

Rk

e−f0(x)dx = (2π)k/2. (2.130)

139

We then construct n cells in Rd. Without loss of generality we assume that n1/k is

an integer, and let l := 1/(
√
kn1/k). We partition [−1/

√
k, 1/
√
k] into n1/k intervals,

each having length 2l. Let Ii denote the ith interval, where i ∈ [n1/k]. Each cell

will thus be represented as a k-tuple (i1, . . . , ik) ∈ {1, 2, . . . , n1/k}k corresponding to

Ii1 × · · · × Iik ⊂ Rk.

Next, each cell τ = (i1, . . . , ik) with center denoted vτ is assigned one of two

types (as detailed below), and we let

f(x) =

{
f0(x) if cell τ is of type 1
f0(x) + cτq(

1
l
(x− vτ)) if cell τ is of type 2.

(2.131)

The function q and the normalizing constant cτ are carefully chosen, following Lemma

D.1 in [GLL20], such that

• f(x) is 1.5-smooth and 0.5-strongly convex; and

• the partition function Zf =
∫
Rk e

−f(x)dx = (2π)k/2 − C · n2

n
, where n2 is the

number of type-2 cells, and C is at least Ω(l2).

With these properties, we consider two functions as follows. We choose δ such

that ϵ = Θ(δ1+4/k). One of the functions has a 1/2+δ fraction of its cells of type 1 (and

a 1/2−δ fraction of type 2). The other function has a 1/2−δ fraction of its cells of type

1 (and a 1/2 + δ fraction of type 2). Note that one query to the quantum evaluation

oracle (2.4) can be implemented using one quantum query to the binary information

indicating the type of the corresponding cell. In addition, by Proposition 2.49 with

ℓ = (1 − δ)n/2 and ℓ′ = (1 + δ)n/2, it takes Ω(1/δ) quantum queries to distinguish

whether there are (1 + δ)n/2 or (1 − δ)n/2 cells of type 1. Since C = Ω(l2), the

partition functions of the two functions differ by a multiplicative factor of at least

1 + Ω(l2δ), where l = Θ(n−1/k) = Θ(δ2/k), and hence l2δ = Θ(δ1+4/k) = Θ(ϵ). The

quantum query complexity is therefore Ω(1/δ) = Ω(ϵ−
1

1+4/k) as claimed.

140

Chapter 3: Quantum Speedups of Approximately
Convex Optimization

3.1 Introduction

Optimization theory is a central research topic in computer science, mathe-

matics, operations research, etc. Currently, many efficient algorithms for optimizing

convex functions have been proposed (see for instance [BV04]), but much less is

known for nonconvex optimization. In this chapter, we investigate polynomial-time

algorithms for optimizing approximately convex functions. On the one hand, such

algorithms enjoy robustness and cover many natural scenarios including stochastic

convex optimization, empirical risk minimization, etc. On the other hand, approxi-

mately convex optimization paves the way of understanding nonconvex optimization

in the general case.

Specifically, let K ⊆ Rn be a convex set. We call F : Rn → R as an approxi-

mately convex function over K if there is a convex function f : K→ R such that

sup
x∈K
|F (x)− f(x)| ≤ ϵ/n. (3.1)

Throughout the chapter, we assume that f is L-Lipschitz with respect to ℓ∞ norm, i.e.,

|f(x)−f(y)| ≤ L∥x−y∥∞ for any x, y ∈ K. We assume that B2(0, 1) ⊆ K ⊆ B2(0, R),

i.e., the convex body K contains the unit ball centered at 0 and is contained by a ball

of radius R centered at 0. Unless otherwise mentioned, we aim at algorithms with

poly(logR) dependence in R.

It is standard to assume the zeroth-order oracle of F , which returns the func-

tion value F (x) given an input x. As far as we know, the state-of-the-art algorithm

for finding an x∗ ∈ K such that F (x∗) −minx∈K F (x) ≤ ϵ with high probability was

proposed by Belloni et al. [BLNR15], which takes Õ(n4.5)1 queries to the zeroth-order

1The Õ and Ω̃ notation omits poly-logarithmic terms, i.e., Õ(g) = O(g poly(log g)) and Ω̃(g) =

141

oracle. On the other hand, Ref. [RL16] proved that if the approximation error in (3.1)

is at least Ω̃(max{ϵ/n, ϵ2/√n}), there exists a function F which no algorithm can find

a point x∗ ∈ K such that F (x∗) − minx∈K F (x) ≤ ϵ using poly(n, 1/ϵ) queries to F .

In other words, the ϵ/n term in (3.1) is fundamental, and it has been the standard

assumption of studying approximately convex optimization in [BLNR15, RL16].

Based on approximate convex functions, a closely related scenario is stochastic

convex functions, where we have a function F : Rn → R such that F (x) = f(x) + ϵx.

Here f : Rn → R is a convex function and ϵx is a sub-Gaussian random variable with

parameter σ, i.e., E[exp(λϵx)] ≤ exp(σ2λ2/2) for any λ. This implies that

Pr[|ϵx| ≥ σt] ≤ 2 exp(−t2/2) ∀t ≥ 0. (3.2)

Using this fact, Belloni et al. [BLNR15] gave an algorithm for stochastic convex

optimization with Õ(n7.5/ϵ2) queries to a zeroth-order oracle of F .

Contributions. In this chapter, we conduct a systemic study of quantum algo-

rithms for the optimization of approximately convex functions, with applications to

zeroth-order stochastic convex bandits. Quantum computing is a rapidly advancing

technology, the capability of quantum computers is dramatically increasing and re-

cently reached “quantum supremacy" by Google [AAB+19] and USTC [ZWD+20b].

In optimization theory, quantum advantages have been proven for semidefinite pro-

grams [AGGW17, BKL+17, BS17, AG19], general convex optimization [AGGW20,

CCLW20], the escaping from saddle point problem in optimization [ZLL21], etc.

Nevertheless, as far as we know, quantum algorithms for approximately convex op-

timization and stochastic convex optimization are widely open. In this chapter, we

consider these problems using the quantum zeroth-order evaluation oracle OF , a stan-

dard model used in previous quantum computing literature [AGGW20, CCH+19,

Ω(g poly(log g)). Unless otherwise mentioned, both notations also omit poly(log 1/ϵ) terms.

142

CCLW20, ZLL21]:

OF |x, y⟩ = |x, F (x) + y⟩ ∀x ∈ Rn, y ∈ R. (3.3)

Here |·⟩ is the Dirac notation, and preliminaries of quantum computing will be covered

in Section 3.2. Intuitively, Eq. (3.3) can take inputs with form
∑m

i=1 ci|xi⟩⊗|0⟩ where

xi ∈ Rn ∀i ∈ [m] and
∑m

i=1 |ci|2 = 1, and if we measure the outcome quantum state,

we get F (xi) with probability |ci|2. In particular, the quantum zeroth-order oracle

allows the ability to query different locations in superposition, which is stronger than

the classical counterpart (i.e., m = 1). Nevertheless, if the classical zeroth-order oracle

can be implemented by explicit arithmetic circuits, the quantum oracle in (3.3) can

be implemented by quantum circuits of the same size up to logarithmic factors. As

for stochastic convex functions, similar to (3.3), we assume the following oracle:

Of |x, y⟩ = |x⟩
∫

ξ∈R

√
gx(ξ)|f(x) + y + ξ⟩ dξ ∀x ∈ Rn, y ∈ R, (3.4)

where for any x ∈ Rn, gx(ξ) follows a sub-Gaussian distribution as in (3.2).

Our first result is a quantum algorithm for optimizing approximately convex

functions:

Theorem 3.1. With probability at least 0.9, we can find an x∗ ∈ K such that

F (x∗)−min
x∈K

F (x) ≤ ϵ (3.5)

using Õ(n3) queries to the quantum evaluation oracle (3.3).

We remark that the succss probability can be easily boosted up to 1 − δ for

any δ ∈ (0, 1), by paying an extra log(1/δ) factor in the quantum query complexity.

Compared to the best-known classical result by Belloni et al. [BLNR15] with query

complexity Õ(n4.5), we achieve a polynomial quantum speedup in terms of n. Tech-

nically, Belloni et al.’s algorithm is based on the simulated annealing process and

using the Hit-and-Run walk to generate samples in each stage. In this chapter, we

143

give a user-friendly version of the quantum walk framework (Theorem 3.5) that can

be applied very easily to obtain quantum speedup for the mixing of classical Markov

chains. We then analyze the warmness and the overlap between adjacent Hit-and-Run

walks in the simulated annealing process, showing that our quantum walk framework

is applicable to each classical Hit-and-Run sampler. By implementing the random

walk quantumly, we improve the query complexity of the sampling procedure from

Õ(n3) to Õ(n1.5) (Theorem 3.8). We also design a non-destructive rounding proce-

dure (Lemma 3.9) in each stage of the simulated annealing that simulates the classical

rounding procedure in [BLNR15] but will not destroy the quantum states of the quan-

tum walks. Combining them together gives the Õ(n3)-query quantum algorithm for

minimizing an approximately convex function. Our result can also be applied to give

an Õ(n3)-query quantum algorithm for optimizing approximately convex functions

with decreasing fluctuations.

See Section 3.3 for more details and the proof of Theorem 3.1.

Furthermore, to estimate the mean of a random variable up to multiplicative

error ϵ, classical algorithms need to take 1/ϵ2 samples due to concentration inequalities

such as Chernoff’s bound, whereas quantum algorithms can take roughly 1/ϵ queries

(see Proposition 3.10). As a result, we obtain polynomial quantum speedup in both

n and 1/ϵ for stochastic convex optimization:

Corollary 3.2. With probability at least 0.8, we can find an x∗ ∈ K such that

f(x∗)−min
x∈K

f(x) ≤ ϵ (3.6)

using Õ(n5/ϵ) queries to the quantum stochastic evaluation oracle (3.4).

We apply Corollary 3.2 to solve the zeroth-order stochastic convex bandit

problem, which is a widely studied bandit model (see e.g., [HL16, Lat20, LG21]). The

problem is defined as follows. Let K ⊆ Rn be a convex body and f : K → [0, 1] be a

convex function. Here B2(0, 1) ⊆ K ⊆ B2(0, R). An online learner and environment

144

interact alternatively over T rounds. In each round t ∈ [T], the learner makes a query

to the quantum stochastic evaluation oracle (3.4), and returns a value xt ∈ K as the

current guess. The learner aims to minimize the regret

RT := E

[
T∑

t=1

(f(xt)− f ∗)
]
, where f ∗ = min

x∈K
f(x), (3.7)

and the expectation is taken over all randomness. The classical state-of-the-art

algorithm using a classical stochastic evaluation in each round achieves a regret

bound of Õ(n4.5
√
T) [LG21], and there is a classical lower bound Ω(n

√
T) on the

regret [DHK09]. Here we prove:

Theorem 3.3. There is a quantum algorithm for which RT = Õ(n5 log(T) log(TR)).

This achieves poly(log T) regret for zeroth-order stochastic convex bandits, an

exponential quantum advantage in terms of T compared to classical zeroth-order

stochastic convex bandits. As far as we know, we give the first quantum algorithms

with poly-logarithmic regret bound on online learning problems. An independent

work [WZL+22] gave quantum algorithms with poly-logarithmic regret for multi-

armed bandits and stochastic linear bandits, but these two types of bandits concern

reward of discrete objects and linear functions, respectively, which are fundamentally

different from the stochastic convex bandits we study.

To achieve this poly(log T) regret for zeroth-order stochastic convex bandits,

we divide the T iterations into ⌊log2 T ⌋ intervals with doubling length 1, 2, 4, We

use the quantum queries from a previous interval to run our quantum stochastic

convex optimization algorithm and use the output as the guess for all iterations in

the next interval. Since we can achieve linear dependence in 1/ϵ in Corollary 3.2, it

can be calculated that the total regret in each iteration is at most Õ(n5 log(TR)),

leading to our claim. The proof details are given in Section 3.4.

Open questions. Our work raises several natural questions for future investigation:

145

• Can we further improve the dimension dependence of our approximate convex

optimization algorithm? The current quantum speedup mainly leverages the

quantum hit-and-run walk; it is of general interest to understand whether we

can gain quantum advantage at other steps, or whether the convergence analysis

of the hit-and-run walk per se can be improved.

• Can we improve the dimension dependence of the regret of our zeroth-order

stochastic convex bandits? It is natural to check whether our n5 term can be

improved by quantizing the classical state-of-the-art [LG21] and other recent

works.

• Can we give fast quantum algorithms for more general nonconvex optimization

problems, or with poly-logarithmic regret for more general bandit problems?

3.2 Preliminaries
3.2.1 Quantum computing in continuous space

Some basic notations and properties of quantum computing are introduced in

Appendix B. Here, we note that in general, the definition of quantum states can be

extended to a continuous domain. For instance,

|v⟩ =
∫

Rn

vx|x⟩dx

represents a quantum state as long as
∫
Rn |vx|2dx = 1. To keep quantum states

normalized in ℓ2 norm, operations in quantum computing are unitary transformations.

And we note that this continuous state notation is just for simplicity and has already

been used in previous works (e.g., [CCH+19]). To implement the algorithms in real-

world quantum computers, some discretization techniques will be applied.

146

3.2.2 Classical and quantum walks

A classical Markov over the space Ω is a sequence of random variables {Xi}i∈N
such that for any i > 0 and x0, . . . , xi ∈ Ω,

Pr[Xi = xi | X0 = x0, · · · , Xi−1 = xi−1] = Pr[Xi = xi | Xi−1 = xi−1].

The Markov chain can be represented by its stochastic transition matrix P such

that
∑

y∈Ω P (x, y) = 1 for any x ∈ Ω. A distribution π is stationary if it satisfies
∑

x∈Ω π(x)P (x, y) = π(y) for any y ∈ Ω. A Markov chain is reversible if its stationary

distribution satisfies the following detailed balance condition:

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ Ω.

The mixing time of a Markov chain with initial distribution π0 is the number of steps

t = t(ϵ) ∈ N such that the total variation distance between the time-t distribution

and the stationary distribution is at most ϵ for any ϵ ∈ (0, 1), i.e.,

dTV(P
tπ0, π) ≤ ϵ.

In quantum, we can also define the discrete-time quantum walk [Sze04], which

is a quantum-analogue of classical Markov chain. More precisely, we use a quantum

state to represent a classical probability distribution:

{π(x)}x∈Ω ←→ |π⟩ =
∑

x∈Ω

√
π(x)|x⟩.

In quantum walk, there are two operations:

• Reflect: An operator R that reflects the quantum states with respect to the

subspace span{|x⟩|ψx⟩}x∈Ω, where |ψx⟩ =
∑

y∈Ω

√
P (x, y)|y⟩.

• Swap: An operator S that swap the two quantum registers: S|x⟩|y⟩ = |y⟩|x⟩.

147

Then, the quantum walk operator W is defined as: W := S ◦ R. Intuitively, the

first quantum register contains the current position of the random walk, and the

second register contains the previous position. In each step of quantum walk, the R

operator makes a superposition in the second register of the next step positions with

amplitudes proportional to their transition probabilities. Then, the S operator swaps

the two quantum registers, using the first register to store the new positions and the

second register to store the old position. In this way, we complete one-step of the

random walk coherently (in superposition).

The quantum advantage of the quantum walk comes from the spectrum of W .

Note that the state of stationary distribution
∑

x∈Ω

√
π(x)|x⟩|ψx⟩ is invariant under

W . In other words, it is an eigenvector with eigenvalue 1 (eigenphase 0). On the other

hand, the other eigenvectors of W has eigenphase at least
√
2δ, where δ is the spectral

gap2 of the transition matrix P . Therefore, applying the quantum phase estimation

algorithm using O(1/
√
δ) calls to W can distinguish the state corresponding to the

stationary distribution and other eigenstates. See [Sze04, WA08, Chi21] for more

details.

3.2.3 Hit-and-Run walk

Hit-and-Run walk was introduced by R.L. Smith [Smi84], and has a long line of

reserach [BBRR+87, BRS93, CS93, ZSM+93, Lov99, LV03, LV06, LV07, AYBGM17]

for its mixing time and applications in sampling, optimization, and volume estimation.

Intuitively, the Hit-and-Run walk is defined as follows:

1. Pick a uniformly distributed random line ℓ through the current point x.

2. Move to a random point y along the line chosen from the restricted distribution

πℓ.

2The difference between the first and the second largest eigenvalues.

148

More specifically, let f : Rn → R be a logconcave distribution density. Then, the

distribution induced by restricting f to the line ℓ is defined as follows:

πℓ(S) :=

∫
S
f(x)dx∫

ℓ
f(x)dx

∀S ⊂ ℓ.

The following lemma show the transition probability of the Hit-and-Run walk.

Lemma 3.4 ([Lov99]). Let f be the density of a logconcave distribution. If the current

point of Hit-and-Run is u, then the density function of the distribution of the next

point x is

fu(x) =
2

nπn

f(x)

µf (u, x)∥x− u∥n−1
,

where πn = πn/2

Γ(1+n/2)
and µf (u, x) is the f -measure of the chord through u and x.

3.3 Quantum Algorithm for Optimizing Approximately Con-
vex Functions

We give a polynomial quantum speedup for minimizing approximately con-

vex functions using the quantum walk algorithm [Sze04, WA08]. More specifically,

we consider the quantum walk in continuous space.3 Let P denote the (column)

stochastic transition density of a reversible Markov chain, i.e.,
∫

Rn

P (x, y)dy = 1 ∀x ∈ Rn,

and let π(x) denote the density of the stationary distribution. Then, we can imple-

ment a quantum walk unitary W (P) such that its unique eigenvector with eigenvalue

1 (or equivalently eigenphase 0) is:
∫

Rn

√
π(x)|x⟩ ⊗ |ψx⟩dx,

3It can be naturally discretized as we do in simulating a Markov chain on classical digital com-
puters.

149

where |ψx⟩ :=
∫
Rn

√
P (x, y)|y⟩dy mixes all the points that can be moved from x,

with amplitudes proportional to the transition probabilities. This quantum state can

be considered as a coherent encoding of the classical distribution π. The advantage

of quantum walk comes from the fact that W (P) has phase gap
√
δ, where δ is the

spectral gap of P . Therefore, by the quantum phase estimation algorithm [Kit95],

quantum walk can achieve quadratic speedup in δ. In general, quantum walk algo-

rithm can quadratically speedup the hitting time of classical Markov chain. For the

mixing time, it requires some additional complicated constraints on the Markov chain

and distributions (see e.g., [AAKV01, WCNA09, OBD18, CLW19]). Based on previ-

ous studies on quantum walk mixing (see Section 2.8), we summarize the following

user-friendly quantum walk framework, which gives the quantum costs for speeding

up the mixing of classical Markov chains based on three purely classical properties.

Theorem 3.5 (User-friendly quantum walk framework). Let M0 be the initial Markov

chain with stationary distribution π0, M1 be the target Markov chain with stationary

distribution π1. Suppose M0,M1 satisfy the following properties:

• Mixing time: dTV(P
t0
1 · π0, π1) ≤ ϵ and dTV(P

t1
0 · π1, π0) ≤ ϵ.

• Warmness: ∥π0/π1∥ = O(1) and ∥π1/π0∥ = O(1), where ∥π/σ∥ :=
∫
Rn

π(x)
σ(x)

π(x)dx.

• Overlap: |⟨π0|π1⟩| =
∫
Rn

√
π0(x)π1(x)dx = Ω(1).

Furthermore, suppose we have access to a unitary U that prepares the initial state

|π0⟩ =
∫
Rn

√
π0(x)|x⟩dx. Then, we can obtain a state |π̃1⟩ with ∥|π̃1⟩ − |π1⟩∥2 ≤ ϵ

using

O
(√

t0 + t1 log
2(1/ϵ)

)

calls to the quantum walk operators.

Next, we can use Theorem 3.5 to speed-up the best-known classical algorithm

for optimizing approximately convex functions [BLNR15], which has the following

three levels:

150

• High level: Perform a simulated annealing with K stages. At the i-th

stage, the target distribution πgi has density ∝ gi(x) = e−F (x)/Ti , where Ti :=

(1− 1/
√
n)i.

• Middle level: Use N samples from πgi to construct a linear transformation

Σi, rounding the distribution to near-isotropic position.

• Low level: Run the hit-and-run walk to evolve the distribution from πgi−1
to

πgi .

Here, each step of the hit-and-run walk picks a uniformly random direction at the

current point, and then walks on the 1-dimensional chord intersected by the direction

and K with probability density proportional to the logconcave density. We formally

state the hit-and-run walk in Algorithm 15.

We focus on speeding-up the Low level using Theorem 3.5. Hence, we need to

show that πgi and πgi+1
satisfy the properties therein. First of all, it has been proved

in [BLNR15] that ∥πgi/πgi+1
∥ = O(1) (Lemma 3.15). We prove the following lemma

with proof deferred to Section 3.6.1.

Lemma 3.6 (Informal version of Lemma 3.18). Let πgi be a distribution with density

proportional to gi(x) = exp(−F (x)/Ti), where F (x) is β-approximately convex. Then,

for any 0 ≤ i ≤ K − 1,

∥πgi+1
/πgi∥ ≤ 8 exp(2β/Ti+1) ≤ O(1).

Therefore, the warmness property is satisfied.

We also prove that the Markov chains in this annealing schedule are slowly

evolving:

Lemma 3.7 (Informal version of Lemma 3.20). Let πgi be a distribution with density

proportional to gi(x) = exp(−F (x)/Ti), where F (x) is β-approximately convex. Then,

for any 0 ≤ i ≤ K − 1,

|⟨πi|πi+1⟩| ≥ exp(−(β/Ti+1 + 1)/2) = Ω(1).

151

Hence, the overlap property is also satisfied.

With the warmness and classical analysis of the hit-and-run walk (Theo-

rem 3.13), we get that the classical mixing time from πgi to πgi+1
and vice versa

can be bounded by Õ(n3).

Moreover, we also show in Section 3.6.1 and Lemma 3.21 that each call to the

quantum walk operator can be implemented by querying the evaluation oracle O(1)

times.

Thus, by Theorem 3.5, we get the following theorem:

Theorem 3.8 (Low level quantum speedup, informal version of Theorem 3.22). Let

γ ∈ (0, 1/e). Let gi(x) = exp(−F (x)/Ti) be the density of πgi with F (x) being β/2-

approximately convex. Let Ti = (1− 1/
√
n)i for 0 ≤ i ≤ K. Then, for each 0 ≤ i ≤

K − 1, given a state |πgi⟩, we can produce a state |σ̂(m)
i ⟩ such that

∥|πgi+1
⟩ − |σ̂(m)

i ⟩∥2 ≤ O(γ),

using m = Õ(n1.5) calls for the evaluation oracle of F .

In the Middle level, we need to use N independent samples from πgi to con-

struct a linear transformation Σi for rounding. However, we cannot directly measure

the state |πgi⟩, since it will destroy the quantum coherence. Instead, we propose a

non-destructive approach to construct the linear transformation (the proof is deferred

to Section 3.6.2):

Lemma 3.9 (Non-destructive rounding, informal version of Lemma 3.24). For each

i ∈ [K], the linear transformation Σi can be obtained using Õ(N) copies of the states
∣∣πgi−1

〉
, with query complexity Õ(N ·n1.5). Moreover, the states

∣∣πgi−1

〉
will be recovered

with high probability.

Now, we can put all the components together and obtain a quantum algorithm

for optimizing approximately convex function with Õ(n1.5) quantum query complexity

152

(Algorithm 13). We sketch the proof in below and the formal proof is given in

Section 3.6.3:

Proof sketch of Theorem 3.1. Observe that at each annealing stage, the sample dis-

tribution is the same as the classical algorithm. Thus, by the classical analysis (The-

orem 3.17) in [BLNR15], the same optimization guarantee still holds for the quantum

algorithm. Thus, if we take K =
√
n log(n/ϵ) and N = Õ(n), the output x∗ of

QSimAnnealing procedure satisfies:

F (x∗)−min
x
F (x) ≤ O(ϵ)

with high probability.

Then, consider the query complexity. There are K stages in the annealing pro-

cess, where each stage maintains Õ(N) samples (quantum states). By Theorem 3.8,

evolving each state takes Õ(n1.5) queries. Therefore, the total query complexity is

K ·N · Õ(n1.5) = Õ(n3).

Here, we assume that the convex body K is known, e.g., K = Rn or Sn. How-

ever, even if K is unknown, we can call its membership oralce to run our algorithm.

More specifically, in constructing the initial state |π0⟩, we need to query the mem-

bership oracle for Õ(1) times. And since we prepare N copies, this step takes Õ(N)

queries in total. Then, in each step of the quantum walk, we need to query the mem-

bership oracle for Õ(1) times to determine the intersection point for the hit-and-run

process. Thus, the number of queries to the membership oracle of K is the same

as the the number of evaluation oracle queries. Hence, our algorithm will query the

membership oracle for Õ(n3) times in all.

As for the number of qubits to implement our algorithm, each state |π0⟩ uses

Õ(n) qubits. Thus, Õ(n2) qubits are used to store all states. And we need O(n)

ancilla qubits for the quantum walk unitaries. Therefore, our algorithm uses Õ(n2)

qubits in total.

153

Algorithm 13 Quantum speedup for approximately convex optimization (Informal
version)
1: procedure QSimAnnealing ▷ Theorem 3.1
2: N ← Õ(n), K ← √n log(n/ϵ)
3: Prepare N (approximately) copies of |π0⟩, denoted as |π̃(1)

0 ⟩, . . . , |π̃(N)
0 ⟩

4: for i← 1, . . . , K do
5: Use {|π̃(j)

0 ⟩}j∈[N] to nondestructively construct Σi ▷ Lemma 3.9
6: Apply quantum walk to evolve the states |π̃(j)

i−1⟩ to |π̃(j)
i ⟩ ▷ Theorem 3.8

7: end for
8: xjK ← measure the final state |π̃(j)

K ⟩ for j ∈ [N]
9: return argminj∈[N] F (x

j
K)

10: end procedure

Optimization of approximately convex functions with decreasing fluctua-

tions. Beyond the ℓ∞-norm assumption for all x ∈ K in Eq. (3.1), it is also possible

to give efficient algorithms for optimizing other types of approximately convex func-

tions. Specifically, Belloni et al. [BLNR15, Section 7] studied approximately convex

functions with decreasing fluctuations.

Suppose that the function f in (3.1) is 1-Lipschtiz and α-strongly convex with

minimum at xmin ∈ K:

f(x)− f(xmin) ≥ ⟨∇f(xmin), x− xmin⟩+ α
2
∥x− xmin∥2 ≥ α

2
∥x− xmin∥2.

Define a measure of "non-convexity" of F w.r.t to f in an n-dimensional ball of radius

r near xmin:

∆(r) := sup
x∈B2(xmin,r)

|F (x)− f(x)|.

We can call Theorem 3.1 iteratively. Suppose that at the start of the tth iteration we

have a ball B2(xt−1, 2rt−1) satisfying

B2(xmin, rt−1) ⊂ B2(xt−1, 2rt−1) ⊂ B2(xmin, 3rt−1).

After executing Theorem 3.1 in this iteration with Õ(n3) quantum queries, we reach

a point xt such that with high probability f(xt) − f(xmin) ≤ Cn∆(3rt−1)) for some

154

global constant C > 0. Due to strong convexity, this gives a new radius rt recursively:

α

2Cn
r2t :=

α

2Cn
∥xt − xmin∥2 ≤ ∆(3rt−1).

When ∆(r) = crp for some c > 0, p ∈ (0, 2), the iteration stops when r∗ = (2 ·
3pcCn/α)1/(2−p), and when ∆(r) = c log(1 + dr) for some c, d > 0, the iteration stops

at r∗ satisfying

(2cCn/α) log(1 + 3dr∗) = (r∗)2.

The total number of quantum queries is still Õ(n3).

3.4 Quantum Algorithm for Zeroth-Order Stochastic Convex
Bandits

We first prove Corollary 3.2 using quantum mean estimation with a Gaussian

tail:

Proposition 3.10 (Adapted from [Ham21, Theorem 4.2]). Suppose that X is a ran-

dom variable on a probability space (Ω, p) with mean µ and variance σ2. Suppose we

have a unitary oracle U satisfying U |0⟩ =
∫
x∈Ω

√
p(x)|x⟩dx. Then, for any ∆ ∈ (0, 1)

and τ ∈ N such that τ ≥ log(1/∆), there is a quantum algorithm that outputs a mean

estimate µ̃ such that

Pr[|µ̃− µ| > σ log(1/∆)

τ
] ≤ ∆,

using O(τ log3/2(τ) log log(τ)) queries to U .

Proof of Corollary 3.2. We follow Section 6 of [BLNR15] while use Theorem 3.1 and

Proposition 3.10. Specifically, for a parameter 0 < α < 1, we let Nα be a box grid of K

with side length α. In other words, Nα is α-net of K in ℓ∞ norm. Since K ⊆ B2(0, R),

|Nα| ≤ (R/α)n.

155

Note that for the sub-Gaussian random variable ϵx in (3.2), it has variance at

most 4σ2 because

E[|ϵx|2] =
∫ ∞

0

Pr[|ϵx| >
√
s]ds ≤ 2

∫ ∞

0

e−
s

2σ2 ds = 4σ2.

Upon a query x′ ∈ K, we define an oracle Oτ,α
f which returns f(x) + ϵ̃x for x ∈ Nα

which is closest to x′, and the ϵ̃x here is obtained by applying Proposition 3.10 with

the unitary oracle Of in Eq. (3.4) to estimate the function value f(x). Specifically,

with ∆ = exp(−t2) where t is a parameter determined later, we have

Pr[|ϵ̃x| >
σt2

τ
] ≤ exp(−t2). (3.8)

We note that in our algorithm based on the hit-and-run walk, with probability 1 we

do not revisit the same point. As a result, Oτ,α
f is no more powerful than Of since

the learner only obtains information on Nα, and in the rest of the proof we assume

Oτ,α
f as the oracle we use. We take

α = ϵ/2nL, t =
√
n ln(R/α) + ln 10.

Note that the value of t promises that exp(−t2)(R/α)n ≤ 0.1. In other words, with

probability at least 0.9, we promise that

max
x∈Nα

|ϵ̃x| ≤
σt2

τ
=
σ(n ln(R/α) + ln 10)

τ
. (3.9)

Finally, we take τ such that the RHS of (3.9) equals to ϵ/2n, which is equivalent to

τ =
2nσ(n ln(R/α) + ln 10)

ϵ
= Õ(n2/ϵ).

This will finally promise that

sup
x∈K
|F (x)− f(x)| ≤ max

x∈Nα

|ϵ̃x|+ αL ≤ ϵ

2n
+

ϵ

2n
=
ϵ

n
, (3.10)

meeting the condition of Theorem 3.1. Consequently, with probability at least 0.9 ·
0.9 > 0.8, we can find an x∗ ∈ K such that f(x∗)−minx∈K f(x) ≤ ϵ using Õ(n3) · τ =

Õ(n5/ϵ) queries to the quantum stochastic evaluation oracle (3.4).

156

Algorithm 14 Quantum zeroth-order stochastic convex bandits
1: procedure QBandits(T)
2: m← ⌊log2 T ⌋, K ← ⌊log2(TR)⌋
3: x1 ← 0
4: for i← 1, 2, . . . ,m+ 1 do
5: t← 2i−1

6: if t ≤ m then
7: L← 2i−1 ▷ Ti := {2i−1, 2i−1 + 1, . . . , 2i − 1}
8: else
9: L← T − 2m + 1 ▷ Tm+1 := {2m, 2m + 1, . . . , T}

10: end if
11: for j ← 1, 2, . . . , K do
12: yj ← QMinStocConv(Oτ,α

f , L/K)▷ Corollary 3.2 with |Ti|/K queries
13: for l← 0, 1, . . . , L/K do
14: xt+l ← x2i−1 ▷ Onliner learner’s output at time t+ l
15: end for
16: if f(yj) < f(x2i) then
17: x2i ← yj
18: end if
19: end for
20: end for
21: end procedure

Proof of Theorem 3.3. We prove that Algorithm 14 satisfies Theorem 3.3.

Intuitively, we divide the T rounds into m + 1 intervals where m← ⌊log2 T ⌋,
such that [T] =

⋃m+1
i=1 Ti and Ti := {2i−1, 2i−1 + 1, . . . , 2i − 1} for each i ∈ [m].

When executing in the interval Ti, the output required by the online learner is always

xt = x2i−1 , the x at the end of the last interval. On the other hand, the queries in the

current interval are applied to running the quantum stochastic convex optimization

algorithm in Corollary 3.2 and output a nearly-optimal solution with probability at

least 1 − O(1/T). With |Ti| = 2i−1 queries at hand, we divide them into log(TR)

repeats of Corollary 3.2, each using 2i−1/ log(TR) queries in the quantum algorithm.

As a result, each repeat j ∈ [log(TR)] outputs a value x̃2i,j such that

f(x̃2i,j)−min
x∈K

f(x) ≤ Õ(n5 log(TR)/2i−1)

157

with probability at least 0.8. We take x2i := argminj∈[log T] f(x̃2i,j). With probability

at least 1− 0.8log(TR) = 1−O(1/TR), we have

f(x2i)−min
x∈K

f(x) ≤ Õ(n5 log(TR)/2i). (3.11)

Going through all i ∈ [m+1] intervals, by the union bound, with probability at least

1− (m+ 1) ·O
(1

TR

)
= 1−O

(log T
TR

)
,

we have

f(x2i)−min
x∈K

f(x) ≤ Õ(n5 log(TR)/2i−1) ∀i ∈ [m+ 1]. (3.12)

In all, we get that the regret bound as desired:

RT = E

[
T∑

t=1

(f(xt)− f ∗)
]

≤
(
1−O

(
log T

TR

))
·
m+1∑

i=1

2i−1 · Õ
(
n5 log TR

2i−1

)
+O

(
log T

TR

)
· T · LR

= Õ(n5 log(T) log(TR)) +O(L log T)

= Õ(n5 log(T) log(TR)).

3.5 Classical Approach for Optimizing Approximately Convex
Functions

In this section, we introduce the classical approach [BLNR15] for the opti-

mization of approximately convex functions as in Eq. (3.1).

3.5.1 Low level: Hit-and-Run for approximate log-concave distributions

The Hit-and-Run walk uses a unidimensional rejection sampler to sample a

point from the distribution πg restricted to a line ℓ. The following lemma shows the

performance guarantee of the unidimensional sampler:

158

Algorithm 15 Hit-and-Run walk
1: procedure HitAndRun(π0, πg, Σ, m) ▷ πg is the target distribution on K

induced by a nonnegative function g, Σ is a linear transformation
2: x0 ← sample from π0
3: Choose accuracy parameter ϵℓ
4: for i← 1, . . . ,m do
5: u ← uniformly sample from the surface of ellipse given by Σ acting on

sphere
6: ℓ(t) := xi−1 + tu, compute [s, t]← ℓ ∩K

7: xi ← UniSampler(g, β, [s, t], ϵℓ)
8: end for
9: return xm

10: end procedure

Lemma 3.11 (Unidimensional rejection sampler, [BLNR15, Lemma 5]). Given β =

O(1). Let g be a β-log-concave function and ℓ be a bounded line segment on K. For

ϵ ∈ (0, e−2β/2), Algorithm 16 outputs a point x ∈ ℓ with a distribution π̃ℓ such that

dTV(π̃ℓ, πg|ℓ) ≤ 3e2βϵ.

Moreover, the algorithm requires Õ(1) evaluations of the function g.

The following theorem gives the mixing time of the standard Hit-and-Run

walk for an approximate log-concave distribution, where we assume that in each step

we directly sample from the restricted distribution πg|ℓ.

Theorem 3.12 (Mixing time of Hit-and-Run for approximate log-concave distribu-

tion, [BLNR15, Theorem 4]). Let πg be the stationary measure associated with the

Hit-and-Run walk based on a β/2-approximately log-concave function g, and let σ(0)

be an initial distribution with ℓ2-warmness M := ∥σ(0)/πg∥. There is a universal

constant C such that for any γ ∈ (0, 1/2), if

m ≥ Cn2 e
6βR2

r2
log4

(eβMnR

rγ2

)
log
(M
γ

)
,

then m steps of the Hit-and-Run random walk based on g yield

dTV(σ
(m), πg) ≤ γ.

159

Algorithm 16 Unidimensional rejection sampler
1: procedure InitP(g, β, ℓ = [s, t])
2: while true do
3: x1 ← 3

4
s+ 1

4
t, x2 ← 1

2
s+ 1

2
t, x3 ← 1

4
s+ 3

4
t

4: if | log(g(x1))− log(g(x3))| > β then
5: t← x3 if g(x1) > g(x3); s← x1 otherwise
6: else if | log(g(x1))− log(g(x2))| > β then
7: t← x2 if g(x1) > g(x2); s← x1 otherwise
8: else if | log(g(x2))− log(g(x3))| > β then
9: t← x3 if g(x2) > g(x3); s← x2 otherwise

10: else
11: return p← argmaxx∈{x1,x2,x3} g(x)
12: end if
13: end while
14: end procedure
15: procedure BinSearch(g,xl, xr, Vl, Vr)
16: while true do
17: xm ← (xl + xr)/2
18: if g(xm) > Vr then
19: xr ← xm
20: else if g(xm) < Vl then
21: xl ← xm
22: else
23: return xm
24: end if
25: end while
26: end procedure
27: procedure InitE(g, β, ℓ = [s, t], p, ϵℓ)
28: if g(s) ≥ 1

2
e−βϵℓg(p) then

29: e0 ← s
30: else
31: e0 ← BinSearch(g, s,p, 1

2
e−βϵℓg(p), ϵℓg(p))

32: end if
33: if g(t) ≥ 1

2
e−βϵℓg(p) then

34: e1 ← t
35: else
36: e1 ← BinSearch(g,p, t, 1

2
e−βϵℓg(p), ϵℓg(p))

37: end if
38: return e0, e1
39: end procedure

160

Algorithm 17 Unidimensional rejection sampler (Continue)
1: procedure UniSampler(g, β, ℓ = [s, t], ϵℓ)
2: p← InitP(g, β, ℓ)
3: e0, e1 ← InitE(g, β, ℓ, p, ϵℓ)
4: while true do
5: x← Uniform([e0, e1]), r ← Uniform([0, 1])
6: if r ≤ g(x)/(e3βg(p)) then
7: return x
8: end if
9: end while

10: end procedure

The next theorem shows the closeness between the output distribution of Algo-

rithm 15 and the target distribution πg. Due to the unidimensional rejection sampler

(Algorithm 16), the stationary distribution of Algorithm 15 may not be exactly πg.

Nevertheless, we can still show that it will not deviate a lot.

Theorem 3.13 (The effect of the rejection sampler, [BLNR15, Theorem 5]). Let

πg, σ(0) be defined as in Theorem 3.12. Let σ̂(m) denote the output distribution of

Algorithm 15 with initial distribution σ̂(0) in m steps. Let ϵℓ be the accuracy parameter

for the unidimensional rejection sampler (Algorithm 16). Then, we have

dTV(σ̂
(m), σ(m)) ≤ mϵℓ + 2dTV(σ̂

(0), σ(0)).

In particular, for γ ∈ (0, 1/e), suppose dTV(σ̂
(0), σ(0)) ≤ γ/8. Let s ∈ (0, 1) be

such that Hs ≤ γ/4, where Hs is defined to be:

Hs := sup
A⊂K:πg(A)≤s

|πg(A)− σ(0)(A)|.

Then, there is a constant C ′ such that, if we take ϵℓ := γe−2β/(12m) and

m ≥ C ′n2 e
6βR2

r2
log4

(eβnR
rs

)
log(1/s),

we have

dTV(σ̂
(m), πg) ≤ γ.

161

3.5.2 Mid level: rounding into isotropic position

The following lemma rounds a β-log-concave distribution to near-isotropic

position.

Lemma 3.14 (Rounding β-log-concave distribution, [BLNR15, Lemma 9]). Let π be

a β-log-concave distribution in Rn. By taking N = Θ(n log n) i.i.d. samples x1, . . . ,xn

from π, we have

1

2
≤ σmin

(1

N

∑

i∈[N]

xix
⊤
i

)
≤ σmax

(1

N

∑

i∈[N]

xix
⊤
i

)
≤ 3

2

holds with probability at least 1− n−O(1).

3.5.3 High level: simulated annealing

At high level, we run a simulated annealing for a series of functions:

hi(x) := exp(−f(x)/Ti), and gi(x) := exp(−F (x)/Ti),

where f, F satisfy Eq. (3.1) and {Ti}i∈[K] are parameters to be chosen later.

Algorithm 18 Simulated annealing
1: procedure SimAnnealing(K, {Ti}i∈[K])
2: N ← Θ(n log n) ▷ The number of strands
3: Xj

0 ∼ Uniform(K) for j = 1, . . . , N
4: K0 ← K, Σ0 ← I
5: m← Õ(n3) ▷ Theorem 3.13
6: for i← 1, . . . , K do
7: Σ′i ← the rounding linear transformation for {Xj

i−1}j∈[N]

8: Σi ← Σ′i ◦ Σi−1
9: for j ← 1, . . . , N do

10: Xj
i ← HitAndRun(Xj

i−1, πgi ,Σi,m) ▷ Algorithm 15
11: end for
12: end for
13: return argmini∈[K],j∈[N] F (X

j
i)

14: end procedure

162

Lemma 3.15 (The warmness of annealing distributions, [BLNR15, Lemma 8]). Let

g(x) = exp(−F (x)) be a β-log-concave function. Let πgi be a distribution with density

proportional to gi(x) = exp(−F (x)/Ti), supported on K . Let Ti := Ti−1

(
1− 1√

n

)
.

Then,

∥πgi/πgi+1
∥ ≤ Cγ = 5 exp(2β/Ti).

Theorem 3.16 (Sample Guarantee for the simulated annealing, [BLNR15, Theorem

6]). Fix a target accuracy γ ∈ (0, 1/e) and let g be an β/2-approximately log-concave

function in Rn. Suppose the simulated annealing algorithm (Algorithm 18) is run for

K =
√
n log(1/ρ) epochs with temperature parameters Ti = (1−1/√n)i for 0 ≤ i ≤ K.

If the Hit-and-Run with the unidimensional sampling scheme (Algorithm 15) is run

for m = Õ(n3) number of steps prescribed in Theorem 3.13, the algorithm maintains

that

dTV(σ̂
(m)
i , πgi) ≤ eγ

for each i ∈ [K], where σ̂(m)
i is the distribution of the m-th step of Hit-and-Run. Here,

m depends polylogarithmically on 1/ρ.

Then, we have the following optimization guarantee for the simulated anneal-

ing procedure:

Theorem 3.17 (Optimization guarantee for the simulated annealing, [BLNR15,

Corollary 1]). Suppose F is approximately convex and |F − f | ≤ ϵ/n as in Eq. (3.1).

The simulated annealing method with K =
√
n log(n/ϵ) epochs produces a random

point X such that

E[f(X)]−min
x∈K

f(x) ≤ ϵ,

and thus,

E[F (X)]−min
x∈K

F (x) ≤ 2ϵ.

Furthermore, the number of oracle queries required by the method is Õ(n4.5).

163

3.6 Quantum Speedup for Optimizing Approximately Convex
Functions

As we discussed in previous section, there are three levels for the optimization

algorithm. The goal of this section is to prove Theorem 3.1, where we improve

the classical query complexity Õ(n4.5) (Theorem 3.17) to quantum query complexity

Õ(n3). The main idea is to use quantum walk algorithm (introduced in Section 2.8)

to speed-up the low level such that each sample can be generated with less queries.

3.6.1 Quantum speedup for low-level

In this section, we show how to use the quantum walk algorithm to speedup the

sampling procedure in the simulated annealing process. According to the framework

(Corollary 2.26), we first show that the each Markov chain’s stationary distribution in

the annealing process is a warm-start for its adjacent chains, and the Markov chains

are slowly-varying. Then, we show how to implement the quantum walk operator for

the Hit-and-Run walk. Finally, we prove the quantum speedup from Õ(n3) classical

query complexity to Õ(n1.5) quantum query complexity.

Warmness and overlap for the stationary distributions. We first show that

πgi is a warm-start for πgi+1
, and vice versa.

By lemma 3.15, we know that ∥πgi/πgi+1
∥ ≤ 5 exp(2β/Ti). Similarly, we can

also bound ∥πgi+1
/πgi∥:

Lemma 3.18. Let g(x) = exp(−F (x)) be a β-log-concave function. Let πgi be a

distribution with density proportional to gi(x) = exp(−F (x)/Ti), supported on K .

Let Ti := Ti−1

(
1− 1√

n

)
. Then,

∥πgi+1
/πgi∥ ≤ 8 exp(2β/Ti+1).

164

Proof. Define Y (a) :=
∫
K
exp(−F (x)a)dx. Then, we have

∥πgi+1
/πgi∥ =

∫
K
exp(−F (x)(2/Ti+1 − 1/Ti))dx ·

∫
K
exp(−F (x)/Ti)dx(∫

K
exp(−F (x)/Ti+1)dx

)2

=
Y (2/Ti+1 − 1/Ti)Y (1/Ti)

Y (1/Ti+1)2
.

Define G(x, t) := g(x/t)t. Then, we have

G(λx+ (1− λ)x′, λt+ (1− λ)t′) = g
(λx+ (1− λ)x′
λt+ (1− λ)t′

)λt+(1−λ)t′

= g
(λt

λt+ (1− λ)t′
x

t
+

(1− λ)t′
λt+ (1− λ)t′

x′

t′

)λt+(1−λ)t′

≥ exp(−β(λt+ (1− λ)t′)) · g
(x
t

)λt
· g
(x′
t′

)(1−λ)t′

= exp(−β(λt+ (1− λ)t′)) ·G(x, t)λ ·G(x′, t′)1−λ

= (exp(−βt)G(x, t))λ · (exp(−βt′)G(x′, t′))1−λ,

where the inequality follows from g is β-log-concave.

By Prékopa–Leindler inequality (Theorem 3.19), it implies that
∫

K

G(x, λt+ (1− λ)t′)dx ≥
(∫

K

exp(−βt)G(x, t)dx
)λ
·
(∫

K

exp(−βt′)G(x, t′)dx
)1−λ

.

Note that
∫

K

G(x, t)dx =

∫

K

g
(x
t

)t
dx = tn

∫

K

g(x)tdx = tn
∫

K

exp(−F (x)t)dx = tnY (t).

Hence, for λ = 1
2
, we have

(t+ t′

2

)2n
Y
(t+ t′

2

)2
≥ exp(−β(t+ t′)/2) · tnY (t) · t′nY (t′),

which implies that

Y (t)Y (t′)

Y (t+t
′

2
)2
≤ exp

(β(t+ t′)

2

)
·
((t+ t′)2/4

tt′

)n
. (3.13)

165

By taking t = 2/Ti+1 − 1/Ti and t′ = 1/Ti, we have

∥πgi+1
/πgi∥ ≤

Y (2/Ti+1 − 1/Ti)Y (1/Ti)

Y (1/Ti+1)2

≤ exp(2β/Ti+1) ·
((1/Ti+1)

2

(2/Ti+1 − 1/Ti)(1/Ti)

)n

= exp(2β/Ti+1) ·
(1

(2− (1− 1/
√
n))(1− 1/

√
n)

)n

= exp(2β/Ti+1) ·
(
1 +

1

n− 1

)n

≤ exp(2β/Ti+1) · exp(n/(n− 1))

≤ 8 exp(2β/Ti+1),

where the third step follows from Ti+1 = Ti(1− 1√
n
).

The lemma is then proved.

Remark 3.1. Since we assume that |F (x)− f(x)| ≤ ϵ/n in Eq. (3.1), i.e., β = ϵ/n, by

Lemmas 3.15 and 3.18, we know that the warmnessM := max{∥πg+i/πgi+1
∥, ∥πgi+1

/πgi∥}
can be bounded by O(exp(2ϵ/(nTi+1))). Since we choose the final temperature

Tk = ϵ/n, we get that M = O(1). Therefore, it satisfies the warmness condition

in Corollary 2.26.

Theorem 3.19 (Prékopa–Leindler inequality, [Pré71, Pré73]). Let 0 < λ < 1 and let

f, g, h : Rn → [0,∞) be measurable functions. Suppose that these functions satisfy

h(λx+ (1− λ)y) ≥ f(x)λ · g(y)1−λ ∀x, y ∈ Rn.

Then, we have
∫

Rn

h(x)dx ≥
(∫

Rn

f(x)dx
)λ
·
(∫

Rn

g(x)dx
)1−λ

.

Lemma 3.20 (Bound distribution overlap). Let g(x) = exp(−F (x)) be a β-log-

concave function. Let πgi be a distribution with density proportional to gi(x) =

exp(−F (x)/Ti), supported on K . Let Ti := Ti−1

(
1− 1√

n

)
. Then,

⟨πi|πi+1⟩ ≥ exp(−(β/Ti+1 + 1)/2).

166

Proof. We can write the overlap as follows:

⟨πgi |πgi+1
⟩ =

∫
K

√
gi(x)gi+1(x)dx

(
∫
K
gi(x)dx)1/2 · (

∫
K
gi+1(x)dx)1/2

=

∫
K
exp(−F (x)(1/Ti + 1/Ti+1)/2)dx

(
∫
K
exp(−F (x)/Ti)dx)1/2 · (

∫
K
exp(−F (x)/Ti+1)dx)1/2

=
Y ((1/Ti + 1/Ti+1)/2)

Y (1/Ti)1/2Y (1/Ti+1)1/2
,

where Y (t) :=
∫
K
exp(−F (x)t)dx.

By Eq. (3.13), we have

Y (1/Ti)Y (1/TTi+1
)

Y ((1/Ti + 1/Ti+1)/2)2
≤ exp(β(1/Ti + 1/Ti+1)/2) ·

((1/Ti + 1/Ti+1)
2/4

1/(TiTi+1)

)n

= exp(β(2− 1/
√
n)/(2Ti+1)) ·

(
1 +

1

4(n−√n)
)n

≤ exp(
1

4

√
n√

n− 1
) · exp(β/Ti+1)

≤ exp(β/Ti+1 + 1),

where the second step follows from Ti+1 = Ti(1− 1/
√
n).

Therefore,

⟨πgi |πgi+1
⟩ ≥ exp(−(β/Ti+1 + 1)/2).

Remark 3.2. By taking β = ϵ/n and Ti ≥ ϵ/n in Lemma 3.20, we have for any

i ∈ [K − 1], the overlap can be upper-bounded by:

⟨πgi|πgi+1
⟩ ≥ exp(−(β/TK + 1)/2) = e−1.

Implementing the quantum walk operator. We introduce how to implement

the quantum walk update operator U such that:

U |x⟩|0⟩ =
∫

K

√
Px,y|x⟩|y⟩dy,

167

where P is the stochastic transition matrix for the Hit-and-Run walk.

Given an input state |x⟩. We first prepare an n-dimensional Gaussian state in

an ancilla register:

|x⟩|0⟩ −→ |x⟩
∫

Rn

(2π)−n/4|z⟩dz.

Then, by normalizing z and applying the linear transformation Σ in another quantum

register, we get that

|x⟩
∫

Rn

(2π)−n/4|z⟩
∣∣∣∣
Σz

∥z∥

〉
dz.

If we un-compute the |z⟩ register, we get that (ignoring the normalization factor):

|x⟩
∫

ΣSn
|u⟩du.

Next, we coherently compute the two end-points of ℓ ∩ K for ℓ(t) := x + ut in the

ancilla registers:
∫

ΣSn
du|x⟩|u⟩|0⟩ −→

∫

ΣSn
du|x⟩|u⟩|s, t⟩

We coherently simulate the unidimensional sampler (Algorithm 16). More specifically,

we can compute the points p, e0, e1 in ancilla registers:
∫

ΣSn
du|x⟩|u⟩|s, t, p, e0, e1⟩

Then, we prepare two unifrom distribution states in the next two ancilla qubits:
∫

ΣSn
du|x⟩|u⟩|s, t, p, e0, e1⟩

∫

[0,1]2
|r′, r⟩dr′dr

And the next proposed point y can be computed via y := e0 + r′(e1 − e0):
∫

ΣSn
du|x⟩|u⟩|s, t, p, e0, e1⟩

∫

[0,1]2
|r′, r⟩dr′dr|y⟩

Then, we check the condition r ≤ g(y)/(3βg(p)) by querying the evaluation oracle

twice and use an ancilla qubit to indicate whether it is satisfied:
∫

ΣSn

∫

[0,1]2
dudr′dr|x⟩|u⟩|s, t, p, e0, e1⟩|r′, r⟩|y⟩|b⟩,

168

where b ∈ {0, 1}. Then, we post-select4 the last qubit for b = 1. By un-computing

the registers for u, s, t, p, e0, e1, r, r′, we get the desired state:

|x⟩
∫

K

√
Px,y|y⟩.

By Lemma 3.11, we get that this procedure (including the post-selection cost) takes

O(1) oracle queries with high probability. Therefore, we get the following lemma:

Lemma 3.21 (Implementation cost of the quantum walk update operator). For the

Hit-and-Run walk (Algorithm 15) with the unidimensional sampler (Algorithm 16),

the quantum walk update operator U can be implemented by querying the evaluation

oracle O(1) times.

Õ(n1.5)-query quantum algorithm. We have the following theorem:

Theorem 3.22 (Quantum speedup for the Hit-and-Run sampler). Let γ ∈ (0, 1/e).

Let πg be the stationary measure associated with the Hit-and-Run walk based on a

β/2-approximately log-concave function g. Let Ti = (1− 1/
√
n)i for 0 ≤ i ≤ K be the

annealing schedule. Suppose we use the quantum walk to implement the Hit-and-Run

walk (Algorithm 15). Then, for each 0 ≤ i ≤ K − 1, given a state |πgi⟩, we can

produce a state |σ̂(m)
i ⟩ such that

∥|πgi+1
⟩ − |σ̂(m)

i ⟩∥2 ≤ O(γ),

using m = Õ(n1.5) calls for the evaluation oracle.

Proof. We use the quantum walk framework in Theorem 3.5.

For the warmness, by Remark 3.1, we know that in this annealing schedule,

∥πgi/πgi+1
∥ and ∥πgi+1

/πgi∥ are upper-bounded by some constants.

4We can measure the last qubit. If the measurement outcome is 0, we reinitialize the r, r′ registers
and re-preapre |y⟩ and |b⟩. We repeat this process until we measure b = 1.

169

Then, by Theorem 3.12, we get that the number of steps for evolving from

πgi to πgi+1
and from πgi+1

to πgi is Õ(n3) classically. The proof of Theorem 3.13

implies that the stationary distribution of the Hit-and-Run walk with unidimensional

sampler is very close to the original Markov chain, only causing a constant blowup

to the total variation distance. Thus, for γ′ = O(γ), we have t1(γ′), t2(γ′) = Õ(n3) in

Theorem 3.5.

By Remark 3.2, we know that in this annealing schedule, the adjacent distri-

butions have a big overlap. In particular, we have |⟨πgi |πgi+1
⟩| ≥ Ω(1), satisfying the

condition in Theorem 3.5.

Therefore, by Theorem 3.5, we get that the state |σ̂(m)
i ⟩ satisfying ∥|πgi+1

⟩ −
|σ̂(m)
i ⟩∥2 ≤ O(γ) can be prepared using Õ(n1.5) calls to the controlled walk operators.

By Lemma 3.21, each call to the quantum walk operator can be implemented

with O(1) query to the evaluation oracle. Hence, the total query complexity is Õ(n1.5).

The theorem is then proved.

3.6.2 Non-destructive rounding in the mid-level

In the middle level, we need to compute the linear transformation Σi that

rounds the β-logconcave distribution to near-isotropic position. Moreover, we are

given access to N copies of the quantum states |πgi⟩ and we will compute Σi in a

non-destructive way.

Classically, by Lemma 3.14, we can take

Σ′i(x
1, . . . , xN) :=

1

N

N∑

i=1

xjij
⊤
,

where xji is the j-th independent sample from πgi . Then, the linear transformation

in the i-th iteration is Σi composite with the linear transformation in the (i − 1)-th

iteration, i.e.,

Σi(x1, . . . , xn) := Σ′i(x1, . . . , xN) · Σi−1.

170

In quantum, we can use a quantum circuit to simulate the classically compu-

tation for Σ′i and Σi coherently, which computes the following superposition state:

∫

K

dx1 · · ·
∫

K

dxN
N∏

j=1

√
πgi(x

j) ·
∣∣x1
〉
· · ·
∣∣xN
〉
|Σi(x1, . . . , x

n)⟩. (3.14)

That is, the first N quantum registers contain N copies of the state |πgi⟩, and the

last quantum register contains the linear transformation Σi. If we directly measure

the last register, we can get the desired matrix, but the coherence of the quantum

states |πgi⟩ are also destroyed.

To resolve this issue, we use the following theorem of Harrow and Wei:

Theorem 3.23 (Non-destructive amplitude estimation, [HW20]). Let P be an ob-

servable. Given state |ψ⟩ and reflections Rψ = 2|ψ⟩⟨ψ| − I and R = 2P − I, and

any η > 0, there exists a quantum algorithm that outputs ã, an approximation to

a := ⟨ψ|P |ψ⟩, so that

|a− ã| ≤ 2π
a(1− a)
M

+
π2

M2
.

with probability at least 1 − η and O(log(1/η)M) uses of Rψ and R. Morover the

algorithm restores the state |ψ⟩ with probability at least 1− η.

Then, we can create O(logN) copies of the state in Eq. (3.14), and non-

destructively estimate the mean of the last quantum register via the procedure in

[CCH+19, HW20]. More specifically, we start from Õ(N) copies of the states
∣∣πgi−1

〉
,

and evolve them to |πgi⟩. In the same time, the reflection operator R can be ap-

proximately implemented by Lemma 2.23. Then, the mean value can be estimated

by Theorem 3.23. Note that we can estimate all the coordinates of Σi in the same

time using the non-destructive mean estimation quantum circuit. And we get that

the success probability of this procedure is at least 1 − 1/ poly(N). After that, the

states in the first N registers will be restored. Therefore, we get that:

171

Lemma 3.24 (Non-destructive rounding). For i ∈ [K], the linear transformation

Σi at the i-iteration of the annealing process (Algorithm 18) can be obtained using

Õ(N) copies of the states
∣∣πgi−1

〉
, with query complexity Õ(N · C) where C is the cost

of evolving
∣∣πgi−1

〉
to |πgi⟩. Moreover, the states

∣∣πgi−1

〉
will be recovered with high

probability.

3.6.3 Proof of Theorem 3.1

Algorithm 19 Quantum speedup for approximately convex optimization.
1: procedure QSimAnnealing(K, {Ti}i∈[K])
2: N ← Õ(n) ▷ The number of strands
3: Prepare N (approximately) copies of |π0⟩, denoted as |π̃(1)

0 ⟩, . . . , |π̃(N)
0 ⟩, where

π0 = Uniform(K)
4: for i← 1, . . . , K do
5: Use the N copies of the state |πi−1⟩ to nondestructively obtain the linear

transformation Σi. Let |π̂(1)
i−1⟩, . . . , |π̂(N)

i−1⟩ denote the post-measurements states ▷
Lemma 3.24

6: Apply quantum walk with Σi to evolve the states |π̂(1)
i−1⟩, . . . , |π̂(N)

i−1⟩ to
|π̃(1)
i ⟩, . . . , |π̃(N)

i ⟩ ▷ Theorem 3.22
7: end for
8: xjK ← measure the final state |π̃(j)

K ⟩ for j ∈ [N]
9: return argminj∈[N] F (x

j
K)

10: end procedure

Proof of Theorem 3.1. The quantum algorithm for optimizing an approximately con-

vex function is given in Algorithm 19. By Theorem 3.22 and Lemma 3.24, we know

that it has the same optimization guarantee as the classical procedure (Algorithm 18).

Thus, we take K =
√
n log(n/ϵ). And the output x∗ of QSimAnnealing procedure

satisfies:

F (x∗)−min
x∈K

F (x) ≤ O(ϵ)

with high probability.

172

Then, consider the query complexity. We have K =
√
n log(n/ϵ) stages in

the annealing process. In each iteration, the quantum walk has query complexity

C = Õ(n1.5) by Theorem 3.22. Thus, the query cost of Line 5 is Õ(NC) = Õ(n2.5).

Also, the query cost of Line 6 is also Õ(n2.5). Therefore, the total query complexity

of the annealing procedure is

K · Õ(n2.5) = Õ(n3).

173

Chapter 4: Early Fault-Tolerant Ground-State
Energy Estimation

4.1 Introduction

When will quantum computers solve valuable problems that are out of reach

for state-of-the-art classical approaches? To understand this future moment of quan-

tum advantage, we must identify what computational problems are most apt and

determine what quantum algorithms will be able solve them in the nearest time

frame. Despite some recent challenges being illuminated [LZUC22], estimating the

ground state energy of quantum systems [AGDLHG05] remains one of the leading

contenders for the first realization of practial quantum advantage. Solving this prob-

lem efficiently with a quantum computer would be of high value to areas including

combustion [GRB+20], batteries [KLP+22, DCR+22], and catalysts [GWL+22]. Con-

sidering that the progress in quantum hardware has consistently improved [Gam22],

we are urged to investigate: what are the minimal quantum resources needed to realize

quantum advantage with ground state energy estimation?

4.1.1 Previous methods for ground state energy estimation

Towards realizing ground state energy estimation on earlier quantum computers, re-

searchers have developed algorithms that reduce the required resource costs of the

algorithms, including number of qubits, gates, and ancillas. Most of these algo-

rithms are based on the variational quantum eigensolver (VQE) [PMS+14]. These

algorithms do not have performance guarantees and recent works have identified

roadblocks for the practicality of such approaches through the measurement problem

[GRB+20, JKG+22] and issues with optimization [MBS+18, AK22]. Yet, quantum

algorithms with performance guarantees [AGDLHG05, BGB+18, DLT22] demand

unfortunately-large quantum resources, requiring hundreds of logical qubits and over

billions of operations per circuit (e.g. greater than 1010 T gates [KLP+22]). The

174

error correction overhead needed to run such quantum circuits is far beyond what

can be realized on today’s hardware. Towards realizing practical quantum advantage

sooner, we develop quantum algorithms in the goldilocks regime of having provable

performance guarantees while also exponentially reducing the required number of

operations.

The operations involved in many GSEE algorithms, including ours, are con-

trolled time evolution operations, c-exp (iHt). For the algorithms considered, the

total number of operations per circuit and the circuit depth are proportional (ignor-

ing logarithmic factors) to the evolution time t. We will refer to this measure as the

circuit depth. The circuit depth required by a GSEE algorithm is typically costed in

terms of ϵ, the target accuracy of the ground state energy estimate, and η, a lower

bound on the overlap of the input state ρ with the ground state1. In contrast to pre-

vious GSEE methods, the costs of our GSEE algorithms will depend on ∆, a lower

bound on the energy gap (i.e. the difference between the smallest and next-smallest

eigenvalue of H), typically governs the performance of ground state preparation meth-

ods [DLT22]. With these parameters established we are able to describe the costs of

previous methods for GSEE that aim to minimize the quantum resources. Recent

work [DLT22] has developed ground state energy estimation algorithms with circuit

depths scaling as Õ(1/ϵ), which require just a single ancilla qubit, and involve no

costly circuit operations beyond controlled time evolutions. That algorithm requires

running the circuits multiple times leading to a total runtime of Õ(ϵ−1η−1), which

achieves the so-called Heisenberg limit scaling in the runtime with respect to ϵ. Other

recent work [WBC21a] combined the ideas in [LT22] with the principles of randomized

Hamiltonian evolution (QDRIFT) [Cam19] to propose a ground state energy estima-

tion algorithm which trades off between number of non-Clifford gates and runtime.

1An important caveat for all known ground state energy estimation methods (c.f Table I of
[DLT22]) is that if η is extremely small, then we have little hope of accurately estimating the ground
state energy. Thus, it is common to assume that the Hamiltonian of interest admits a good ground
state approximation.

175

All of these methods employ quantum circuits whose depth scales inversely

with the target accuracy ϵ. This circuit depth cost may put some important problem

instances out of reach for early fault-tolerant quantum computers. The question

addressed by this chapter is: is it possible to exponentially improve the accuracy-

dependence scaling of circuit depth in ground state energy estimation?

4.1.2 Summary of main results

We develop and analyze low-depth ground state energy estimation (GSEE) algorithms

with high accuracy for which the circuit depth scales exponentially better than Õ(1/ϵ).

As is typical, the circuit depth and quantum runtime of the algorithm is measured in

terms of the number of controlled evolution operations c-exp (−2πiH) referred to as

Hamiltonian evolution time.

Theorem 4.1 (Low-depth GSEE, informal version of Theorem 4.14). Let H be a

Hamiltonian with spectral gap at least ∆. Suppose we can prepare an initial state

ρ such that the overlap with the ground state satisfies ⟨E0|ρ|E0⟩ ≥ η. Given ∆, η,

and sufficiently small ϵ, there exists an algorithm to estimate the ground state energy

within accuracy ϵ with high probability such that:

• The circuit depth, measured in maximal Hamiltonian evolution time, is

Tmax = O(∆−1 · poly log ϵ−1η−1∆). (4.1)

• The quantum runtime, measured in total Hamiltonian evolution time, is

Ttot = O(η−2ϵ−2∆ · poly log ϵ−1η−1∆). (4.2)

Using the costs established in Theorem 4.1, Table 4.1 provides resource estimates that

show the reduction in gates per circuit for molecules of industrial interest. The re-

duction in gates per circuit affords a reduction in the fault-tolerant overhead required

176

New Regime

Circuit depth (Tmax)

Runtime
(Ttot)

η−2ϵ−1

η−1ϵ−1

η−1/2ϵ−1

∆−1true

η−2ϵ−2∆true

ϵ−1 η−1/2ϵ−1

Cor 4.2

Thm 4.1

[LT22, WBC21a]

[DLT22]
[DLT22]

Figure 4.1: This figure shows the landscape of early fault-tolerant GSEE algorithms
plotted according to their runtime and circuit depth measured in terms of total evo-
lution time (Ttot) and maximal evolution time (Tmax), respectively. The green region
indicates the new low-depth regime introduced in this work. The orange dot corre-
sponds to the ∆−1-depth GSEE algorithm (Theorem 4.1) when ∆ = ∆−1true, and the
curve shows the smooth trade off between Tmax and Ttot described in Corollary 4.2.
We also remark that the right-most dot which shows an algorithm in [DLT22] requires
multiple ancilla qubits and multi-qubit controlled operations, whereas the algorithms
in this work and [LT22, WBC21a] only use a single ancilla qubit. For simplicity, we
have ignored all the poly-logarithmic factors.

Molecule Gap (mHa) Gap Lower Bound (mHa) Gate Reduction [KLP+22] Gate Reduction [LT22]
EC 264± 20 244 43× 16×
PF 6

6 468± 20 448 78× 28×

Table 4.1: This table displays estimated circuit cost savings afforded by Algorithm
21 for two molecules relevant to battery design analyzed in previous work [KLP+22].
For these molecules in the cc-pVDZ basis, we can estimate the energy gaps using
EOM-CCSD calculations with ORCA software [Nee12, Nee18]. The target accuracy
considered in [KLP+22] was ϵ = 1 mHa. The standard approach to quantum phase
estimation (ignoring the cost due to imperfect ground state preparation) uses a circuit
with 2/ϵ applications of c-exp (2πiH) to achieve an ϵ accurate estimate with high
probability. We include the various logarithmic factors (c.f. Algorithm 21) and set
a conservative input state overlap value of η = 1/1000. In the last column we give
cost reductions relative to recent methods [LT22], which use 2/πϵ applications of c-
exp (2πiH).

177

to implement ground state energy estimation. These reductions may help to bring

such problem instances within reach of earlier fault-tolerant quantum architectures,

potentially realizing quantum advantage sooner.

For some molecules, it might be the case that the runtime of this low depth

algorithm is too high to outperform state-of-the-art classical methods for solving the

same problem. Our second main result (c.f. Corollary 4.15) is that we can trade

circuit depth for total runtime reduction. This gives a means of speeding up the

overall algorithm.

Corollary 4.2. Let H be a Hamiltonian with spectral gap ∆true. Suppose we can pre-

pare an initial state ρ such that the overlap with the ground state satisfies ⟨E0|ρ|E0⟩ ≥
η. Then for arbitrary α ∈ [0, 1], given ∆true, η and sufficiently small ϵ, there exists an

algorithm to estimate the ground state energy within accuracy ϵ with high probability

such that:

• The circuit depth, measured in maximal Hamiltonian evolution time, is

Tmax = Õ(ϵ−α∆−1+αtrue). (4.3)

• The quantum runtime, measured in total Hamiltonian evolution time, is

Ttot = Õ(η−2ϵ−2+α∆1−α
true). (4.4)

Through the era of early fault-tolerant quantum computing, as quantum architectures

are able to realize deeper quantum circuits, the trade-off in Corollary 4.2 may lead

to a crossover point into quantum advantage.

4.1.3 Technical overview

Before introducing the method, we define the ground state energy estimation problem.

Suppose we are given a classical description of a quantum Hamiltonian H. This

Hamiltonian has (unknown) spectral decomposition H =
∑N−1

j=0 Ej |Ej⟩ ⟨Ej|, where

178

E0 < E1 ≤ E2 ≤ ... ≤ EN−1 are the eigenvalues of H, and the |Ej⟩’s are orthonormal

eigenstates of H. Let ρ be an easy-to-prepare state (of the same dimension as H). Let

pj := ⟨Ej| ρ |Ej⟩ be the overlap between ρ and |Ej⟩, for 0 ≤ j ≤ N − 1. We assume

that two numbers η ∈ (0, 1) and ∆ > 0 are given such that p0 = ⟨E0| ρ |E0⟩ ≥ η and

E1−E0 ≥ ∆. Our goal is to estimate E0 with accuracy ϵ and confidence 1− δ, i.e. to

output a sample from a random variable Ê0 such that the failure probability satisfies

P
[
|Ê0 − E0| > ϵ

]
< δ, (4.5)

for given small ϵ > 0 and δ ∈ (0, 1). Furthermore, we want to achieve this by

using limited-depth quantum circuits and classical post-processing of the quantum

measurement outcome data.

Time signals from Hadamard tests. In our GSEE algorithm, the role of the

quantum computer is simply to provide statistical estimates of tr
[
ρe−iHτ

]
. The quan-

tum circuit we use to generate these estimates is known as a Hadamard test and is

shown in Figure 4.3. Labeling this outcome b ∈ {+1,−1}, the average value of b

output by the Hadamard test circuit is

E[b] = Re
[
tr
[
ρe−iHτ

]]
, (4.6)

when W = I and it is equal to the imaginary part when W = S† where S is the phase

gate. It is helpful to view the quantity tr
[
ρe−iHτ

]
as a complex-valued time signal,

with τ being the time. This time signal encodes information about the eigenvalues

of H and the density operator ρ. In particular, if we can determine how this signal

depends on the ground state energy E0, then we might be able to estimate E0 from

the time signal. Although we are unable to exactly determine the time signal, we

can estimate the real and imaginary parts of the signal at any time τ to within any

desired accuracy using sufficiently many Hadamard test measurement outcomes as

described above. The time cost of each Hadamard test is proportional to τ and the

total time cost will depend on how many Hadamard tests, or samples, we take over

the different chosen times τ .

179

Filtering the spectrum Here we introduce the method for estimating and pro-

cessing the signals from the Hadamard test data. The Fourier transform (or frequency

signal) of to the ideal time signal tr
[
ρe−iHτ

]
is equal to the so-called spectral measure

of H associated with the initial state ρ and is given by

p(x) :=
N−1∑

j=0

pjδ(x− Ej). (4.7)

Although p(x) itself cannot be determined exactly from Hadamard test data, we

explain how to accurately estimate any convolution of p(x) with a filter function

f(x). For our purposes, the filter function is used as a tool for organizing the time

signal data from a limited time window into useful information about the spectrum

of H. We briefly explain how to evaluate (or, rather, estimate) the complex number

(f ∗ p)(x) for any given value x using low-depth Hadamard test circuits.

Three key features make low-depth convolution estimation possible. First, the

convolution can be expressed as a linear combination of p̂(t) = tr
[
ρe−2πiHt

]
,

(f ∗ p)(x) =
∫ ∞

−∞
f̂(t)p̂(t)e2πixtdt, (4.8)

where f̂(t) denotes the Fourier transform of f(x). Second, these traces can be esti-

mated from the Hadamard test data as shown in Eq. 4.6. Third, the circuit depth

of each Hadamard test is proportional to t. We can limit the circuit depth used in

the algorithm and still obtain an accurate estimate of the convolution by judiciously

truncating the integral approximation
∫ ∞

−∞
f̂(t)p̂(t)e2πixtdt ≈

∫ T

−T
f̂(t) tr

[
ρe−2πiHt

]
e2πixtdt. (4.9)

As explained in detail in Algorithm 20, the strategy we use to estimate (f ∗p)(x) uses

a so-called multi-level Monte Carlo approach. An unbiased estimate of (f ∗ p)(x) is

constructed by first (classically) sampling a time t in [−T, T] drawn from a distribution

proportional to |f̂T (t)|. Conditioned on this outcome t, a sample is then drawn from

each of the real (W = I) and the imaginary (W = S†) part Hadamard tests with time

180

t, returning X and Y , respectively. From these outcome data (t,X, Y), we construct

a random variable whose average value is equal to (f ∗ p)(x),

Z(x; t,X, Y) = ∥f̂T∥1e2πi(tx+ϕ(t)) · (X + iY). (4.10)

where ei2πϕ(t) = f̂T (t)/|f̂T (t)|. It is important to note that the samples can be gener-

ated ahead of time; the choice of where to evaluate (f ∗ p)(x) can be made after this

data is gathered.

Designing the filters The filter function plays two roles in determining the algo-

rithm performance. First, the shape of the filter determines how easily the ground

state energy can be determined from (f ∗ p)(x). Second, the smoothness of the fil-

ter determines the severity of the truncation T that can be withstood, and therefore

the minimal viable circuit depth. This second role is what affords the exponential

reduction in circuit depth of our method.

Estimating the ground state energy from the convolution can be understood

through an example. In [LT22] they choose f(x) to be a periodic Heaviside function2.

As shown in Figure 4.2, this particular choice of convolution results in a series of steps,

the first of which is located at the ground state energy E0. Their algorithm proceeds

by using a binary search to locate this first step. The drawback of this approach is

that in order to resolve this first step to accuracy ϵ, the truncation must be Õ(1/ϵ).

This means that the circuit depth of the Hadamard test scales as Õ(1/ϵ). We design a

filter function and energy estimation strategy that requires a time window that scales

as O(log 1/ϵ). This corresponds to an exponential improvement in the circuit depth

dependence on the accuracy.

The key observation for the design of low-depth filter functions is as follows.

If a filter function satisfies the following properties, then it can isolate the minimum

2Θ(x) =

{
1 if x ∈ [2kπ, (2k + 1)π)

0 if x ∈ [(2k − 1)π, 2kπ)
∀k ∈ Z.

181

eigenvalue from the others well and the corresponding convolution can be evaluated

easily:

1. The filter function f(x) has an exponentially-decaying tail, i.e., |f(x)| = exp (−Ω(|x|))
for sufficiently large x. This enables the filter function to “almost” eliminate the

interference of other eigenvalues to the peak around E0.

2. The filter function’s Fourier transform f̂(t) also has an exponentially-decaying

tail, i.e., |f̂(t)| = exp (−Ω(|t|)) for sufficiently large t. This allows f to be

well-approximated by a band-limited function, which means that the maximal

evolution time in the Hadamard tests will be small.

Based on this observation, a natural choice are filters based on Gaussian functions.

As shown in Figure 4.2, we choose a Gaussian derivative filter gσ defined as

gσ(x) := −
1√
2πσ3

xe−
x2

2σ2 .

Since the Gaussian derivative filter has an exponentially-decaying tail, (gσ ∗ p)(x)
resembles p0gσ(x−E0) in a neighborhood of E0. In particular, the unique zero point

of gσ ∗ p in this region is close to E0. Instead of the Gaussian function itself, the

Gaussian derivative filter is chosen because its slope at the location of the ground

state energy enables better resolution compared to locating the peak of the Gaussian

(with respect to the methods we analyzed).

Ground state energy estimation algorithm Using the Gaussian derivative filter

we describe the algorithm for ground state energy estimation that proves Theorem 4.1.

This is the first GSEE algorithm that uses Õ(∆−1)-depth quantum circuits to achieve

accuracy ϵ. A detailed presentation of the algorithm can be found in Algorithm 21.

The inputs to the algorithm are the Hamiltonian H, a lower bound on its gap ∆, a

lower bound on the ground state overlap η of the input state ρ, a rough estimate Ẽ0

of E0 with O(∆) accuracy, the required accuracy ϵ, and confidence 1− δ. The output

of the algorithm is an estimate of E0. The steps of the algorithm are as follows:

182

1. Configure filter Set the Gaussian derivative filter function to have width σ ∈
Õ(∆) and choose the truncation of the filter to be T ∈ Õ(1/σ) = Õ(1/∆) (this

limits the circuit depth).

2. Estimate convolution (c.f. Algorithm 20) For a grid of M ∈ Õ(∆/ϵ) evenly-

spaced energies centered at Ẽ0 with width Õ(∆), estimate the Gaussian deriva-

tive convolution at each grid point.

(a) To estimate the Gaussian derivative convolution at each point, for Õ(η−2ϵ−2∆2)

rounds, draw a time t ∈ [−T, T] with probability proportional to |f̂T (t)|
and run depth t real and imaginary Hadamard tests to generate binary

samples X and Y .

(b) Compute Z(x; t,X, Y) (see Eq. 4.10) for each sample and average to out-

put the convolution estimate at x.

3. Estimate zero-crossing Among the M convolution estimates, find the esti-

mate closest to zero and report the corresponding energy as the ground state

energy estimate.

To realize the results in Corollary 4.2, we choose ∆ between ∆true and 1/ϵ.

4.1.4 Future directions

In this chapter we have introduced a framework for implementing ground state

energy estimation using tunable-depth quantum circuits. As shown in Figure 4.1,

the algorithms developed in this work are applicable to maximum circuit depths

ranging from Õ(1/∆) to Õ(1/ϵ). We leave to future work the development of tunable-

depth quantum algorithms outside of this region. While we have made progress

in establishing upper bounds over a range of circuit depths, an important future

direction is to establish lower bounds on depth-limited ground state energy estimation.

These directions would further the research program of characterizing the performance

183

and limitations of using depth-limited quantum computers to estimate properties of

Hamiltonians.

Our work helps to establish the paradigm of developing quantum algorithms

using the tools of classical signal processing [LT22, ZWJ22, WSJ22]. Here, the quan-

tum computer is understood to generate a stochastic signal that encodes properties

of a matrix of interest. This stochastic signal can be processed to learn the matrix

properties of interest. The signal processing paradigm is well-suited to developing

algorithms for early fault-tolerant quantum computers. Quantum computations with

such architectures will be error prone, generating noisy signals. The tools of classical

signal processing have been designed to handle such noisy signals and can aid in the

design and analysis of robust quantum algorithms [WKJC21, KKPJ21, KKJ22].

One requirement of the algorithm is that a lower bound on the energy gap must

be specified. There exist quantum chemistry methods for estimating the gap (e.g.

using the ORCA software [Nee12, Nee18] as we did for our numerical comparisons).

However, such estimates can become inaccurate for large systems. It may be helpful

to incorporate a step into the quantum algorithm that estimates this gap. Although

this estimation is computationally hard in general [Amb14], many physical systems

of interest have structures that make the estimation feasible.

In this chapter, we did not consider the impact of implementation error on the

performance of the algorithm. We expect that our algorithm is able to tolerate some

degree of variation between the ideal Hadamard tests and the implemented Hadamard

tests. Building off of recent work [KKJ22], we believe the algorithm can be operated

so as to accommodate such deviations. We leave for future work the investigation of

robust quantum algorithms for ground state energy estimation.

The methods introduced here may help to bring the target of useful quan-

tum computing closer to the present. Yet, there is still much work needed to carry

out detailed resource estimations that predict the onset of quantum advantage us-

ing methods such as those we have introduced. More broadly, our hope is that this

184

work contributes to the general understanding of how to use quantum computers

given practical constraints on their capabilities and might inspire the development of

quantum algorithms in other application domains.

4.2 Estimating ground state energy via Gaussian derivative
filtering

In this section, we propose a strategy for GSEE based on Gaussian deriva-

tive filtering. In Section 4.2.1, we define the Gaussian derivative function and prove

a nice property of the convolution between this filter and the spectral measure p.

In Section 4.2.2, we show how this property leads to a strategy for GSEE. In Sec-

tion 4.2.3, we prove that the Gaussian derivative function can be approximated by a

band-limited function, which is crucial for efficient evaluation of the convolution.

4.2.1 Convolving the spectral measure with a Gaussian derivative filter

Let us start by defining the Gaussian derivative function and demonstrating

its properties. Specifically, let σ > 0 be arbitrary, and let fσ(x) = 1√
2πσ

e−
x2

2σ2 be a

Gaussian function. The Fourier transform of fσ is

f̂σ(ξ) = e−
1
2
(σπξ)2 . (4.11)

Now consider the derivative of fσ, i.e.,

gσ(x) := f ′σ(x) = −
1√
2πσ3

xe−
x2

2σ2 . (4.12)

Then the Fourier transform of gσ is

ĝσ(ξ) = 2πiξf̂σ(ξ) = 2πiξe−
1
2
(σπξ)2 . (4.13)

The following properties of gσ and ĝσ will be useful:

Fact 4.3 (Properties of the Gaussian derivative function).

185

1. gσ(0) = 0.

2. |gσ(x)| is even, increases monotonically in (−∞,−σ] ∪ [0, σ], and decreases

monotonically in [−σ, 0] ∪ [σ,∞).

3. gσ(x) decays exponentially to 0 as x→ ±∞.

4. ĝσ(ξ) decays exponentially to 0 as ξ → ±∞.

Now let us consider the convolution between the filter gσ and the spectral

measure p:

(gσ ∗ p)(x) =
N−1∑

j=0

pjgσ(x− Ej) = −
1√
2πσ3

N−1∑

j=0

pj(x− Ej)e−
(x−Ej)

2

2σ2 . (4.14)

It turns out that if σ is appropriately chosen, then |(gσ ∗ p)(x)| is small only if x is

close to E0, assuming x is at most O(σ)-away from E0:

Lemma 4.4. Let c =
√
2 ln (10/9) ≈ 0.45904, and let ∆ and η be as in the problem

formulation in the main text. Suppose ϵ > 0 is small enough such that ϵ ≤ c ·
min

(
0.9∆√

2 ln(9∆ϵ−1η−1)
, 0.2∆

)
. Then for

σ := min

(
0.9∆√

2 ln (9∆ϵ−1η−1)
, 0.2∆

)
, (4.15)

we have

• |(gσ ∗ p)(x)| <
0.6ϵp0√
2πσ3

, ∀x ∈ [E0 − 0.5ϵ, E0 + 0.5ϵ].

• |(gσ ∗ p)(x)| >
0.8ϵp0√
2πσ3

, ∀x ∈ [E0 − 0.5σ,E0 − ϵ) ∪ (E0 + ϵ, E0 + 0.5σ].

Proof. Note that our choice of σ and the condition on ϵ imply that ϵ ≤ cσ < 0.5σ.

As a consequence, we do have E0− 0.5σ < E0− ϵ and E0 + ϵ < E0 +0.5σ. Thus, the

186

interval in the second bullet is well-defined. Moreover, we have

|gσ(0.9∆)| = 1√
2πσ3

0.9∆e−
0.81∆2

2σ2

≤ 1√
2πσ3

0.1ϵη (by the property σ ≤ 0.9∆√
2 ln(9∆ϵ−1η−1)

in Eq. (4.15))

≤ 1√
2πσ3

0.1ϵp0, (4.16)

where the last step follows from p0 ≥ η.

We prove the first and the second parts of the lemma below.

Part I. For any x ∈ [E0 − 0.5ϵ, E0 + 0.5ϵ], we have

|(gσ ∗ p)(x)| =
∣∣∣∣∣p0gσ(x− E0) +

N−1∑

j=1

pjgσ(x− Ej)
∣∣∣∣∣ (by Eq. (4.14))

≤ p0 |gσ(x− E0)|+
N−1∑

j=1

pj |gσ(x− Ej)|

≤ p0 |gσ(x− E0)|+ max
1≤j≤N−1

|gσ(x− Ej)| . (4.17)

The first term in Eq. (4.17) can be bounded as follows:

|gσ(x− E0)| ≤ |gσ(0.5ϵ)| (by |x− E0| ≤ 0.5ϵ < σ and Property 2 in Fact 4.3)

=
1√
2πσ3

0.5ϵe−
0.25ϵ2

2σ2 (by Eq. (4.12))

≤ 1√
2πσ3

0.5ϵ. (4.18)

To upper bound the second term in Eq. (4.17), first note that for each j ≥ 1,

|x− Ej| ≥ Ej − E0 − 0.5ϵ (since x ∈ [E0 − 0.5ϵ, E0 + 0.5ϵ])

≥ ∆− 0.5ϵ (since Ej − E0 ≥ E1 − E0 ≥ ∆)

> 0.9∆ (by the assumption ϵ ≤ 0.2c∆ < 0.1∆)

> σ, (4.19)

187

where the last step follows from the property σ ≤ 0.2∆ in Eq. (4.15). Then we obtain

|gσ(x− Ej)| < |gσ(0.9∆)| (by Eq. (4.19) and Property 2 in Fact 4.3)

≤ 1√
2πσ3

0.1ϵp0, (4.20)

where the second step follows from Eq. (4.16).

Combining Eqs. (4.17), (4.18), and (4.20), we get that for x ∈ [E0− 0.5ϵ, E0+

0.5ϵ],

|(gσ ∗ p)(x)| < p0 ·
1√
2πσ3

0.5ϵ+
1√
2πσ3

0.1ϵp0 =
0.6ϵp0√
2πσ3

. (4.21)

Part II. For any x ∈ [E0 − 0.5σ,E0 − ϵ) ∪ (E0 + ϵ, E0 + 0.5σ], we have

|(gσ ∗ p)(x)| =
∣∣∣∣∣p0gσ(x− E0) +

N−1∑

j=1

pjgσ(x− Ej)
∣∣∣∣∣ (by Eq. (4.14))

≥ p0 |gσ(x− E0)| −
N−1∑

j=1

pj |gσ(x− Ej)|

≥ p0 |gσ(x− E0)| − max
1≤j≤N−1

|gσ(x− Ej)| . (4.22)

The first term in Eq. (4.22) can be lower bounded as follows:

|gσ(x− E0)| > |gσ(ϵ)| (by ϵ < |x− E0| ≤ 0.5σ and Property 2 in Fact 4.3)

=
1√
2πσ3

ϵe−
ϵ2

2σ2 (by Eq. (4.12))

≥ 1√
2πσ3

ϵe−
c2

2 (by the assumption ϵ ≤ cσ)

≥ 1√
2πσ3

0.9ϵ, (4.23)

where the last step follows from c =
√

2 ln (10/9).

To upper bound the second term in Eq. (4.22), note that for each j ≥ 1,

|x− Ej| ≥ Ej − E0 − 0.5σ (since x ∈ [E0 − 0.5σ,E0 − ϵ) ∪ (E0 + ϵ, E0 + 0.5σ])

≥ ∆− 0.5σ (since Ej − E0 ≥ E1 − E0 ≥ ∆)

≥ 0.9∆ > σ, (4.24)

188

where the last two inequalities follow from the property σ ≤ 0.2∆ in Eq. (4.15). Then

we obtain

|gσ(x− Ej)| ≤ |gσ(0.9∆)| (by Eq. (4.24) and Property 2 in Fact 4.3)

≤ 1√
2πσ3

0.1ϵp0, (4.25)

where the last step follows from Eq. (4.16).

Combining Eqs. (4.22), (4.23), and (4.25), we get that for x ∈ [E0−0.5σ,E0−
ϵ) ∪ (E0 + ϵ, E0 + 0.5σ],

|(gσ ∗ p)(x)| > p0 ·
1√
2πσ3

0.9ϵ− 1√
2πσ3

0.1ϵp0 =
0.8ϵp0√
2πσ3

. (4.26)

The lemma is thus proved.

4.2.2 Basic strategy for ground state energy estimation

Lemma 4.4 prompts us to develop the following strategy for estimating ground

state energy. We first obtain an estimate Ẽ0 of E0 such that Ẽ0 is O(σ)-close to E0

with high probability. Then we find a point at which |(gσ ∗ p)| has small value in

a region [Ẽ0 − O(σ), Ẽ0 + O(σ)]. Using Lemma 4.4 we can prove that this point is

ϵ-close to E0 with high probability. Formally, we have

Lemma 4.5. Let ∆, η, ϵ and δ be as in the problem formulation in the main text. Sup-

pose ϵ satisfies the condition in Lemma 4.4. Let σ be defined as Eq. (4.15). Suppose

Ẽ0 is a random variable such that

P
[
|Ẽ0 − E0| >

σ

4

]
<
δ

2
. (4.27)

Let M := ⌈σ/ϵ⌉+1, and let xj := Ẽ0−0.25σ+(0.5σ/M) ·(j−1) for j ∈ [M]. Suppose

h1, h2, . . . , hM are random variables such that

P
[
∀j ∈ [M] : |(gσ ∗ p)(xj)− hj| ≤

0.1ϵη√
2πσ3

]
≥ 1− δ

2
. (4.28)

Let j∗ = argmin1≤j≤M |hj|. Then we have

P [|xj∗ − E0| > ϵ] < δ. (4.29)

189

Proof. By our assumptions about Ẽ0 and h1, h2, . . . , hM and the union bound, we get

that the following events happen simultaneously with probability at least 1− δ:

• |Ẽ0 − E0| ≤ 0.25σ.

• |(gσ ∗ p)(xj)− hj| ≤ 0.1ϵη√
2πσ3 , ∀j ∈ [M].

In this case, we have x0, x1, . . . , xM ∈ [Ẽ0−0.25σ, Ẽ0+0.25σ] ⊆ [E0−0.5σ,E0+

0.5σ]. Then by Lemma 4.4, we have that

• If |xj − E0| ≤ 0.5ϵ, then

|hj| ≤ |(gσ ∗ p)(xj)|+ |(gσ ∗ p)(xj)− hj| <
0.6ϵp0√
2πσ3

+
0.1ϵη√
2πσ3

≤ 0.7ϵp0√
2πσ3

.

(4.30)

• If |xj − E0| > ϵ, then

|hj| ≥ |(gσ ∗ p)(xj)| − |(gσ ∗ p)(xj)− hj| >
0.8ϵp0√
2πσ3

− 0.1ϵη√
2πσ3

≥ 0.7ϵp0√
2πσ3

.

(4.31)

Meanwhile, note that x1 ≤ E0 ≤ xM , and |xj+1− xj| ≤ 0.5ϵ, ∀j ∈ [M − 1]. So

there exists some j0 ∈ [M] such that |xj0−E0| ≤ 0.5ϵ. This implies that |hj∗| ≤ |hj0 | <
0.7ϵp0√
2πσ3 , which in turn implies that |xj∗ − E0| ≤ ϵ. This lemma is thus proved.

It remains to show how to generate the random variables Ẽ0 and h1, h2, . . . , hM
that satisfy the conditions Eqs. (4.27) and (4.28) respectively. To obtain Ẽ0, we use

the GSEE algorithm in [LT22] which takes Õ(ϵ−1) maximal Hamiltonian evolution

time to achieve ϵ-accuracy. Since Ẽ0 only needs σ
4
-accuracy, this step has Õ(σ−1)

maximal evolution time. To obtain h1, h2, . . . , hM , we first introduce the band-limited

version of gσ, denoted as gσ,T , in Section 4.2.3, and prove that (gσ∗p)(x) ≈ (gσ,T ∗p)(x)
for a small T . Then we design a data structure ConvEval in Section 4.3 such that

this data structure can evaluate gσ,T ∗p at the points x1, x2, . . . , xM with high accuracy

and confidence after appropriate initialization.

190

4.2.3 Gaussian derivative filters with bounded band-limits

In order to efficiently evaluate gσ ∗ p at any given point, we truncate the

spectrum of gσ and construct a T -bandlimit version gσ,T such that

(gσ ∗ p)(x) ≈ (gσ,T ∗ p)(x), ∀x ∈ R. (4.32)

Specifically, we define gσ,T by restricting ĝσ to [−T, T] and performing the inverse

Fourier transform:

gσ,T (x) :=

∫ T

−T
ĝσ(ξ)e

2πixξdξ. (4.33)

Clearly, gσ,T → gσ as T →∞. The following lemma shows how to choose T such that

gσ,T can approximate gσ in L∞-norm:

Lemma 4.6. Let ϵ1 > 0 be arbitrary. Then for

T := π−1σ−1
√

2 ln
(
8π−1ϵ−11 σ−2

)
, (4.34)

we have

|gσ(x)− gσ,T (x)| ≤
ϵ1
2
, ∀x ∈ R. (4.35)

Proof. By the Fourier inversion theorem, we have

|gσ(x)− gσ,T (x)| =
∣∣∣∣
∫ −T

−∞
ĝσ(ξ)e

2πiξxdξ +

∫ +∞

T

ĝσ(ξ)e
2πiξxdξ

∣∣∣∣

≤
∫ −T

−∞
|ĝσ(ξ)| dξ +

∫ +∞

T

|ĝσ(ξ)| dξ

=2

∫ +∞

T

2πξe−
1
2
(σπξ)2dξ

=
4

σ2π
e−

1
2
σ2π2T 2

. (4.36)

By solving the inequality

4

σ2π
e−

1
2
σ2π2T 2 ≤ ϵ1

2
, (4.37)

191

we get that it suffices to take

T ≥ π−1σ−1
√
2 ln

(
8π−1ϵ−11 σ−2

)
. (4.38)

The following claim shows that the L∞-approximation for gσ implies the L∞-

approximation for gσ ∗ p.

Claim 4.7. Let T be defined as in Lemma 4.6. Then we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| ≤
ϵ1
2
, ∀x ∈ R.

Proof. For any x ∈ R, we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| =
∣∣∣∣
∫ ∞

−∞
(gσ(z)− gσ,T (z))p(x− z)dz

∣∣∣∣

≤
∫ ∞

−∞
|gσ(z)− gσ,T (z)| p(x− z)dz

≤ ϵ1
2

∫ ∞

−∞
p(x− z)dz

=
ϵ1
2
, (4.39)

where the first step follows from the definition of convolution, the section step follows

from the triangle inequality, the third step follows from Lemma 4.6, and the last step

follows from the property of Dirac delta function.

Claim 4.7 implies that in order to estimate (gσ ∗ p)(x) within ϵ1-accuracy, it

suffices to evaluate (gσ,T ∗ p)(x) within 0.5ϵ1-accuracy, which can be achieved by the

method in Section 4.3.

4.3 Complexity of Evaluating the convolution

In this section, we focus on evaluating the convolution between a filter function

f and the spectral measure p to within ϵ-additive error. In Section 4.3.1, we develop

192

an evaluation method for general filter functions with bounded band-limits. Then

in Section 4.3.2, we apply the method to the Gaussian derivative filter used in our

GSEE algorithm.

4.3.1 Evaluating the convolution via Hadamard tests

For the sake of generality, we will not restrict to a specific filter f but consider

arbitrary filters with bounded band-limits. Specifically, for a parameter T > 0, let fT
be a function with band-limit T , i.e.,

fT (x) =

∫ T

−T
f̂T (t)e

2πitxdt, (4.40)

where f̂T is the Fourier transform of fT and satisfies f̂T (t) = 0 for all t ∈ (−∞,−T)∪
(T,+∞). Furthermore, we require that f̂T is either continuous in [−T, T] or a

weighted sum of Dirac delta functions (i.e., fT has a discrete spectrum). Here we

will state the results for the former case, and the reader can easily generalize them

to the latter case.

Given such a function fT , we can define a probability density ν in terms of its

Fourier weights:

ν(t) =
|f̂T (t)|
∥f̂T∥1

, ∀t ∈ [−T, T]. (4.41)

Moreover, let ϕ(t) be the phase of f̂T (t), i.e., f̂T (t) = |f̂T (t)|ei2πϕ(t). Then we have

that

fT (x) =

∫ T

−T
∥f̂T∥1e2πi(tx+ϕ(t))ν(t)dt. (4.42)

Now given a quantum state ρ, a Hamiltonian H and a parameter t ∈ [−T, T],
we define two random variables Xt and Yt as follows. Let bI and bS† be the mea-

surement outcome of the circuit in Figure 4.3 with τ = 2πt and W = I or S† (where

S is the phase gate), respectively. Then we define Xt = (−1)bI and Yt = (−1)bS† .

193

As mentioned in the main text, we have that

E [Xt] = Re
(
tr
[
ρe−2πiHt

])
, E [Yt] = Im

(
tr
[
ρe−2πiHt

])
. (4.43)

Now given a point x ∈ R, we define the random variable Z(x) as follows. Let

t be a random variable with probability density function ν. Then we define

Z(x) := ∥f̂T∥1 · e2πi(tx+ϕ(t)) · (Xt + iYt) . (4.44)

It turns out that Z(x) is an unbiased estimator of the convolution fT ∗ p at

point x:

Lemma 4.8. For the random variable Z(x) defined as Eq. (4.44), we have that

E[Z(x)] = (fT ∗ p)(x), ∀x ∈ R. (4.45)

Proof. Let us first consider the conditional expectation E[Z(x)|t = t] for some t ∈
[−T, T]. By Eq. (4.43) and the definition of Z(x) in Eq. (4.44), we get

E[Z(x)|t = t] = E
[
∥f̂T∥1e2πi(tx+ϕ(t))(Xt + iYt)

∣∣t = t
]

= ∥f̂T∥1e2πi(t0x+ϕ(t)) tr
[
ρe−2πiHt

]
. (4.46)

By the law of total expectation, we have

E[Z(x)] =
∫ T

−T
E[Z(x)|t = t] · P [t = t] dt

=

∫ T

−T
∥f̂T∥1e2πi(tx+ϕ(t)) tr

[
ρe−2πiHt

]
ν(t)dt

=

∫ T

−T
f̂T (t)e

2πitx tr
[
ρe−2πiHt

]
dt, (4.47)

where the last step follows from the definition of ν in Eq. (4.41) and the definition of

ϕ(t).

194

It remains to prove that the above expression indeed coincides with fT ∗ p(x).
Indeed, we have that:

(fT ∗ p)(x) =
∫ ∞

−∞
p(x− y)fT (y)dy

=

∫ ∞

−∞

∫ T

−T
p(x− y)f̂T (t)e2πitydtdy

=

∫ T

−T
f̂T (t)dt

∫ ∞

−∞
p(x− y)e2πitydy. (4.48)

By the definition of p(x) in Eq. (4.7), we have that
∫ ∞

−∞
p(x− y)e2πitydy =

∫ ∞

−∞

∑

k≥0

pkδ(x− y − Ek)e2πitydy =
∑

k≥0

pke
2πit(x−Ek), (4.49)

where the last step follows from the integration of Dirac delta function. Then, it

implies that

(fT ∗ p)(x) =
∫ T

−T
f̂T (t)dt ·

∑

k≥0

pke
2πit(x−Ek) =

∫ T

−T
f̂T (t)e

2πitx tr
[
ρe−2πiHt

]
dt, (4.50)

where the last step follows from tr
[
ρe−2πiHt

]
=
∑

k≥0 pke
−2πitEk .

Comparing Eqs. (4.47) and (4.50), we conclude that E [Z(x)] = (fT ∗ p)(x) for

all x ∈ R. The lemma is thus proved.

With Lemma 4.8 established, it is now straightforward to analyze how many

samples we need to estimate the function fT ∗ p at various points within a target

accuracy.

Lemma 4.9 (Sample complexity of the convolution evaluation). Let {(t(i), X(i), Y (i))}Si=1

be S i.i.d. samples such that t(i) ∼ ν, X(i) ∼ Xti and Y (i) ∼ Yti, where ν is defined

as Eq. (4.41), and Xt and Yt are the measurement outcome of the circuit in Figure

4.3 with τ = 2πt and W = I or S, respectively. Let x1, x2, . . . , xM ∈ R be arbitrary.

195

For each j ∈ [M], let Zj be defined as follows:

Zj :=
∥f̂T∥1
S

S∑

i=1

e2πi(t
(i)xj+ϕ(t

(i))) · (X(i) + iY (i)). (4.51)

Then for any ϵ1 > 0 and δ1 ∈ (0, 1), letting

S :=

⌈
∥f̂T∥21 ln (4M/δ1)

ϵ21

⌉
, (4.52)

we have

P
[
∀j ∈ [M] : |Zj − (fT ∗ p)(xj)| ≤ ϵ1

]
≥ 1− δ1. (4.53)

Proof. Recall that Z(x) = ∥f̂T∥1·e2πi(tx+ϕ(t))·(Xt + iYt) for any x ∈ R. Then Z̄j is the

empirical mean of S i.i.d. samples of Z(xj) that correspond to {(t(i), X(i), Y (i))}Si=1,

for each j ∈ [M]. Since Xt and Yt take values in {1,−1}, we know that Re (Z(x))

and Im (Z(x)) take values in [−∥f̂T∥1, ∥f̂T∥1]. It then follows from Hoeffding’s in-

equality [Hoe63] that for our choice of S in Eq. (4.52), for any j ∈ [M], it holds

that

P
[
|Re

(
Zj

)
− E[Re (Z(xj))]| >

ϵ1√
2

]
<

δ1
2M

, (4.54)

P
[
|Im

(
Zj

)
− E[Im (Z(xj))]| >

ϵ1√
2

]
<

δ1
2M

. (4.55)

Then by the triangle inequality and union bound, we get

P
[
|Zj − E[Z(xj)]| > ϵ1

]
<
δ1
M
. (4.56)

Meanwhile, by Lemma 4.8, we know that

E[Z(xj)] = (fT ∗ p)(xj). (4.57)

Thus, we have

P
[
|Zj − (fT ∗ p)(xj)]| > ϵ1

]
<
δ1
M
. (4.58)

196

By a union bound over all j ∈ [M], we get that

P
[
∃j ∈ [M] : |Zj − (fT ∗ p)(xj)]| > ϵ1

]
< δ1. (4.59)

Remark 4.1. Note that Zj is a complex number in general, but (fT ∗ p)(xj) is real

provided that fT is real. In this case, we can re-define Zj as the real part of the

right-hand side of Eq. (4.51) and Lemma 4.9 will still hold. We envision that in some

scenarios, it is useful to have a complex filter fT , and hence define Zj as Eq. (4.51)

for the sake of generality.

Now we give a data structure ConvEval in Algorithm 20 for evaluating the

convolution fT ∗ p at multiple points.

Lemma 4.9 immediately implies that:

Corollary 4.10. Let x1, x2, . . . , xM ∈ R be arbitrary. Suppose the data structure

ConvEval is initialized with parameters (fT , ϵ, δ,M). Let hj be the output of the

procedure ConvEval.Eval(xj) for j ∈ [M]. Then we have

P [∀j ∈ [M] : |(fT ∗ p)(xj)− hj| ≤ ϵ] ≥ 1− δ. (4.60)

Lemma 4.11 (Running time of the convolution evaluation data structure). Suppose

the data structure FilterSampler runs in O(1)-time. Then, the data structure

ConvEval in Algorithm 20 has the following running times:

• Procedure Init(fT , ϵ, δ,M) has O(T) maximal evolution time and O(ST) total

evolution time, where S = O(ϵ−2∥f̂T∥21 log δ−1M).

• Procedure Eval(x) has O(S) classical post-processing time.

197

Proof. The ConvEval.Init procedure runs the Hadamard test circuit 2S times to

get the samples
{
(x(i), y(i))

}S
i=1

. Since the filter function fT has spectrum bounded in

[−T, T], the maximal evolution time is 2πT and the total evolution time is at most

4πST .

The ConvEval.Eval procedure then uses the S samples to compute the

estimate of (fT ∗ p)(x). Moreover, the computation is classical and elementary.

4.3.2 Application to Gaussian derivative filters

In this section, we apply the data structure ConvEval to the band-limited

Gaussain derivative filter gσ,T :

gσ,T (x) =

∫ T

−T
ĝσ(ξ)e

2πixξdξ = 2πi

∫ T

−T
ξe−

1
2
(σπξ)2+2πixξdξ. (4.61)

To apply Lemma 4.9, we first bound the L1-norm of its spectrum.

Claim 4.12. Let gσ,T be defined as Eq. (4.61). Then we have ∥ĝσ,T∥1 ≤ 4
πσ2 .

Proof. By the fact that ĝσ,T (ξ) = ĝσ(ξ)1|ξ|≤T and direct calculation, we obtain

∥ĝσ,T∥1 ≤ ∥ĝσ∥1 =
∫ +∞

−∞

∣∣∣2πiξe− 1
2
(σπξ)2

∣∣∣ dξ =
∫ +∞

0

4πξe−
1
2
(σπξ)2dξ =

4

πσ2
. (4.62)

Then we get the following corollary on the sample complexity of evaluating

gσ,T ∗ p on M points.

Corollary 4.13. Let ϵ1 > 0, δ1 ∈ (0, 1) and x1, x2, . . . , xM ∈ R be arbitrary. Suppose

the data structure ConvEval is initialized with parameters (gσ,T , ϵ1, δ1,M). Let hj
be the output of the procedure ConvEval.Eval(xj) for j ∈ [M]. Then we have

P [∀j ∈ [M] : |(gσ,T ∗ p)(xj)− hj| ≤ ϵ1] ≥ 1− δ1. (4.63)

Furthermore, it take S = O(ϵ−21 σ−4 logM/δ1) samples from Hadamard tests to obtain

h1, h2, . . . , hM .

198

Proof. Claim 4.12 implies ∥ĝσ,T∥1 = O(σ−2). Thus the procedure ConvEval.Init(gσ,T , ϵ1, δ1,M)

draws S = O(ϵ−21 ∥ĝσ,T∥21 logM/δ1) = O(ϵ−21 σ−4 logM/δ1) samples from Hadamard

tests. Then Eq. (4.63) follows immediately from Corollary 4.10.

4.4 Main Theorem

In this section, we describe our main results about ground state energy esti-

mation.

In this section, we describe our main results about ground state energy esti-

mation. We first present a Õ(∆−1)-depth algorithm for GSEE in Algorithm 21. Then

we prove the following theorem:

Theorem 4.14 (Ground state energy estimation). Let H =
∑N−1

j=0 Ej|Ej⟩⟨Ej| be

a Hamiltonian such that E0 < E1 ≤ E2 ≤ · · · ≤ EN−1 are the eigenvalues of H,

and the |Ej⟩’s are orthonormal eigenstates of H. Suppose we are given access to the

Hamiltonian evolution eiHt for any t ∈ R. Let ∆ > 0 be given such that ∆ ≤ E1−E0.

Moreover, suppose we can prepare a state ρ such that ⟨E0| ρ |E0⟩ ≥ η for known η > 0.

Then, for sufficiently small ϵ > 0 and any δ ∈ (0, 1), there exists an algorithm

that estimates E0 within accuracy ϵ with probability at least 1− δ such that:

• The maximal Hamiltonian evolution time is Õ(∆−1);

• The total Hamiltonian evolution time is Õ(η−2ϵ−2∆);

• The classical running time is Õ(η−2ϵ−3∆3).

Proof. Algorithm: Suppose ϵ > 0 is small enough such that it satisfies the condition

in Lemma 4.4. We first run the algorithm in [LT22] to obtain a coarse estimate Ẽ0

of E0 such that Ẽ0 is σ/4-close to E0 with probability at least 1 − δ/2, where σ is

defined as Eq. (4.15). Then we run Algorithm 21 with parameters (ϵ, δ, Ẽ0, η) and

return its output xj∗ as the final estimate of E0.

199

Correctness: By construction, Ẽ0 satisfies Eq. (4.27) in Lemma 4.5. Mean-

while, by Claim 4.7 and the choice of T in Algorithm 21, we have

|(gσ ∗ p)(x)− (gσ,T ∗ p)(x)| ≤
ϵ̃

2
, ∀x ∈ R, (4.64)

Meanwhile, since ConvEval is initialized with parameters (gσ,T , ϵ̃/2, δ/2,M) in Al-

gorithm 21, by Corollary 4.13, we get

P
[
∀j ∈ [M] : |(gσ,T ∗ p)(xj)− hj| ≤

ϵ̃

2

]
≥ 1− δ

2
. (4.65)

Then it follows from Eqs. (4.64) and (4.65) and the triangle inequality that

P [∀j ∈ [M] : |(gσ ∗ p)(xj)− hj| ≤ ϵ̃] ≥ 1− δ

2
, (4.66)

which coincides with Eq. (4.28) in Lemma 4.5, given the choice of ϵ̃ in Algorithm 21.

Now with both of its conditions met, Lemma 4.5 implies that the output of Algorithm

21, i.e., xj∗ , is ϵ-close to E0 with probability at least 1− δ, as desired.

Cost analysis: First, we run the algorithm in [LT22] to obtain Ẽ0. Since σ =

Ω̃(∆), this step has maximal evolution time Õ(∆−1), total evolution time Õ(∆−1η−2),

and classical post-processing time Õ(∆−1η−2).

Then, in Line 5 of Algorithm 21, we run ConvEval.Init(gσ,T , ϵ̃/2, δ/2, M) to

initialize the data structure ConvEval in Algorithm 20. We choose the parameters

as follows:

• ϵ̃ = Ω(ϵησ−3) = Ω̃(ϵη∆−3),

• T = Õ(σ−1) = Õ(∆−1),

• M = Θ(σϵ−1) = Θ̃(∆ϵ−1).

Thus, by Corollary 4.13, we have

S = Θ̃(ϵ−21 σ−4) = Θ̃(ϵ−2η−2∆6 ·∆−4) = Θ̃(ϵ−2η−2∆2). (4.67)

200

The for-loop in Procedure ConvEval.Init of Algorithm 20 draws S samples from

the Hadamard test circuit. The sampling process has the maximal evolution time

2πT = Õ(∆−1) and total evolution time at most O(TS) = Õ(ϵ−2η−2∆).

Next, in Line 6 of Algorithm 21, we call the procedure ConvEval.Eval M

times to evaluate the convolutions at x1, x2, . . . , xM . Each evaluation takes O(S) =

Õ(ϵ−2η−2∆2) classical time. Hence, this step takes O(MS) = Õ(∆ϵ−1 · ϵ−2η−2∆2) =

Õ(ϵ−3η−2∆3) classical time.

Combining these steps together, we get that the whole GSEE algorithm takes:

• maximal evolution time Õ(∆−1),

• total evolution time Õ(∆−1η−2 + ϵ−2η−2∆) = Õ(ϵ−2η−2∆), and

• classical post-processing time Õ(ϵ−3η−2∆3),

as claimed.

As described in the introduction, it is favorable to be able to reduce the total

evolution time at the cost of increased maximal evolution time (or circuit depth).

This allows one to make the most use of the available circuit depth afforded by the

quantum architecture. Such a feature is desirable in the era of early fault-tolerant

quantum computing where there is likely to be a limit to the available coherence of

the device [Ton22]. Fortunately, this feature follows directly from the above theorem

and we present it as a corollary below. Note that in Theorem 4.14, ∆ is merely a lower

bound on the true spectral gap ∆true := E1 − E0 of Hamiltonian H, not necessarily

∆true itself. In fact, ∆ can range from Õ(ϵ) (in order to satisfy the condition in Lemma

4.4) to ∆true. By setting ∆ = Õ(ϵα∆1−α
true) with α ∈ [0, 1], we obtain:

Corollary 4.15. Let H =
∑N−1

j=0 Ej|Ej⟩⟨Ej| be a Hamiltonian such that E0 < E1 ≤
E2 ≤ · · · ≤ EN−1 are the eigenvalues of H, and the |Ej⟩’s are orthonormal eigenstates

of H. Let ∆true = E1 − E0 be the spectral gap of H. Suppose we are given access to

201

the Hamiltonian evolution eiHt for any t ∈ R. Moreover, suppose we can prepare a

state ρ such that ⟨E0| ρ |E0⟩ ≥ η for known η > 0.

Then for any α ∈ [0, 1], for sufficiently small ϵ > 0 and any δ ∈ (0, 1), there

exists an algorithm that estimates E0 within accuracy ϵ with probability at least 1− δ
such that:

• The maximal Hamiltonian evolution time is Õ(ϵ−α∆−1+αtrue);

• The total Hamiltonian evolution time is Õ(η−2ϵ−2+α∆1−α
true);

• The classical running time is Õ(η−2ϵ−3+α∆3−α
true).

In particular, setting α = 0 or 1 leads to:

• ∆ = ∆true, for which Theorem 4.14 yields an algorithm with maximal evolution

time Õ(∆−1true) and total evolution time Õ(η−2ϵ−2∆true); or

• ∆ = Õ(ϵ), for which Theorem 4.14 yields an algorithm with maximal evolution

time Õ(ϵ−1) and total evolution time Õ(η−2ϵ−1) (i.e., the Heisenberg limit).

For general ∆ = Õ(ϵα∆1−α
true) with α ∈ [0, 1], Theorem 4.14 yields an algorithm with

maximal evolution time Õ(ϵ−α∆−1+αtrue) and total evolution time Õ(η−2ϵ−2+α∆1−α
true). In

other words, tuning ∆ between the two extremes gives a trade-off between the circuit

depth and total runtime of the algorithm.

4.5 Comparison to the Approach of [LT22]

The main advantage of our approach compared to [LT22] is in the minimal

evolution time required to achieve a desired precision. Indeed, in their approach the

evolution time scales inverse linearly with the desired precision. For our approach, the

minimal evolution time is dictated by the reciprocal of the energy gap of the Hamil-

tonian and any additional precision we wish to attain only causes a poly-logarithmic

202

factor in the evolution time. Of course, this comes at the expense of a higher sample

complexity at smaller evolution times. This trade-off between the evolution time and

the sample complexity is discussed in Corollary 4.15.

Note that this improvement in the minimal evolution time comes from two

conceptual differences in our approach compared to [LT22]: the choice of the filter

function (Heaviside versus Gaussian derivative) and how we then infer the value of

the ground state energy from the convolution (jump versus 0 of derivative).

Both our approach and that of [LT22] require a truncated approximation of the

underlying filter function to implement the algorithm with only finite-time evolutions.

However, as the Heaviside function has a jump at 0, the degree of the Fourier series

necessarily has to increase the better we want the approximation outside a small

neighborhood of 0 to be. For instance, in [LT22] they find an approximation Fd,ϵ such

that for d = O(ϵ−1 log ϵ−1δ−1) and

Fd,ϵ(x) =
1√
2π

d∑

k=−d

F̂d,ϵ,ke
ikx, (4.68)

we have3

1. − δ
2
≤ Fd,ϵ(x) ≤ 1 + δ for all x ∈ R.

2. |Fd,ϵ(x)−Θ(x)| ≤ δ for all x ∈ [−π + ϵ,−ϵ] ∪ [ϵ, π − ϵ].

Note that the evolution time required to implement the representation in Eq. (4.68)

is O(d). This scales logarithmically with the precision with which we approximate

the Heaviside function outside of the intervals [−π + ϵ,−ϵ] ∪ [ϵ, π − ϵ] and inverse-

polynomially in size of the interval around 0, (−ϵ, ϵ), where we are not guaranteed

that the two functions are close.

3note that [LT22] adopts different notations. There δ is the precision with which we approximate
the ground state energy, and here it is ϵ.

203

The approach of [LT22] consists of finding the smallest point x such that

(p ∗ Fd,ϵ)(x) ≥ η. If we were convolving with the Heaviside function, this would

correspond to the ground state energy. But we will now argue that the neighborhood

around 0 for which we have the approximation can shift where the jump occurs.

Indeed, note that for x ∈ [E0 − ϵ, E0 + ϵ] and ϵ ≤ ∆ we have that:

(p ∗ Fd,ϵ)(x) = (p ∗Θ)(x) +

∫ ϵ

−ϵ
p(x− y)(Fd,ϵ(y)−Θ(y))dy

+

∫

[−1,1]\[−ϵ,ϵ]

p(x− y)(Fd,ϵ(y)−Θ(y))dy

Note that as |Fd,ϵ(x)−Θ(x)| ≤ δ for all x ∈ [−π + ϵ,−ϵ] ∪ [ϵ, π − ϵ] we have that
∣∣∣∣∣∣∣

∫

[−1,1]\[−ϵ,ϵ]

p(x− y)(Fd,ϵ(y)−Θ(y))dy

∣∣∣∣∣∣∣
≤ δ. (4.69)

However, as we only have the promise that − δ
2
≤ Fd,ϵ(x) ≤ 1+ δ for points in [−ϵ, ϵ],

we will not be able to infer the precise point of the jump at a precision larger than

O(ϵ) with this approach. This is because the residual integral term (i.e. the one over

(−ϵ, ϵ) in Eq. (4.69)) will cause fluctuations in this interval and we will not be able

to pin down the jump.

On the other hand, by choosing our filter to be Gaussian derivatives, we are

able to obtain a good approximation everywhere on the real line. Furthermore, by

choosing the zeros of the derivative as criteria, we only need to make sure that the

standard deviation is small enough to separate different eigenvalues. This way we

obtain a smaller maximal evolution time.

204

Figure 4.2: This figure compares the convolution functions and circuit depths used
in the ground state energy estimation method of LT22 [LT22] and the method de-
veloped here. The LT22 method uses a Heaviside convolution, while our method
uses a Gaussian derivative convolution. Their method requires a steep jump in the
convolution function, which necessitates Õ(1/ϵ)-depth circuits. Our method only re-
quires that the contribution of the excited state energies to the convolution function
does not interfere too much with that of the ground state energy. This affords the
use of a less-steep convolution function, which only requires Õ(1/∆)-depth circuits.
The trade-off is that our method requires more samples, leading to an increased total
runtime.

|0⟩ H • W H

ρ e−iHτ

Figure 4.3: Hadamard test circuit parameterized by the Hamiltonian evolution time
τ . H is the Hadamard gate and W is either I or S†, where S is the phase gate.

205

Algorithm 20 Convolution evaluation data structure.
1: data structure FilterSampler
2: Init(fT) ▷ Initialize for the filter fT
3: Sample() ▷ Sample ξ ∈ R with probability ∝ |f̂T (ξ)|
4: Norm() ▷ Return ∥f̂T∥1
5: end data structure
6:
7: data structure ConvEval
8: members
9: C(t,W) ▷ Run the circuit in Figure 4.3 with τ = 2πt and W = I or S†

10: {(t(i), z(i))}i∈[S] ⊂ R× C ▷ Fourier samples
11: FilterSampler FS ▷ Filter function’s sampler
12: end members
13:
14: procedure Init(fT , ϵ, δ, M) ▷ ϵ is the target accuracy, δ is the tolerable

failure probability, M is the maximal number of points at which the convolution
is evaluated

15: FS.Init(fT)
16: L← FS.Norm()

17: S ←
⌈
L2 ln(4M/δ)

ϵ2

⌉
▷ Lemma 4.9

18: for i← 1, 2, . . . , S do
19: t(i) ← FS.Sample()
20: x(i) ← C(t(i), I) ▷ Hadamard test
21: y(i) ← C(t(i), S†) ▷ Hadamard test
22: z(i) ← L · e2πiϕ(t(i))(x(i) + iy(i))
23: end for
24: end procedure
25:
26: procedure Eval(x) ▷ Approximate (fT ∗ p)(x) within accuracy ϵ
27: Z ← 1

S

∑
i∈[S] e

2πit(i)x · z(i)
28: return Z
29: end procedure
30: end data structure

206

Algorithm 21 Low-depth ground state energy estimation algorithm.

1: procedure GSEE(ϵ, δ, Ẽ0, ∆, η)

2: σ ← min

(
0.9∆√

2 ln(9∆ϵ−1η−1)
, 0.2∆

)

3: M ← ⌈σ/ϵ⌉+ 1, ϵ̃← 0.1ϵη√
2πσ3

4: T ← π−1σ−1
√

2 ln (8π−1ϵ̃−1σ−2) ▷ Filter band-limit (Lemma 4.6)
5: ConvEval.Init(gσ,T , ϵ̃/2, δ/2, M) ▷ Algorithm 20
6: for j = 1, 2, . . . ,M do
7: xj ← Ẽ0 − 0.25σ + (0.5σ/M) · (j − 1)
8: hj ← ConvEval.Eval(xj) ▷ Algorithm 20
9: end for

10: j∗ ← argmin1≤j≤M |hj|.
11: return xj∗
12: end procedure

207

Chapter 5: Early Fault-Tolerant Ground-State
Property Estimation

5.1 Introduction

One of the primary applications of quantum computing is the simulation of

materials and molecules, which are inherently quantum mechanical. It is hoped that

future powerful quantum computers will be used in the development of materials and

drug discovery [CRAG18]. Although they have yet to realize commercial application,

quantum computers have been improving at a rapid rate, increasing the demand for

quantum algorithms with high-impact use cases. To date, the main focus of quantum

algorithm development for quantum chemistry and materials has been on ground state

energy estimation [CRO+19]. This problem is mathematically formulated as estimat-

ing the lowest eigenvalue of the Hamiltonian matrix that characterizes the physical

system. One of the first quantum chemistry applications of quantum computers was

to use quantum phase estimation for estimating the ground state energy of small

molecules [AGDLHG05]. More recently, the variational quantum eigensolver algo-

rithm [PMS+14] was developed to use near-term intermediate-scale quantum (NISQ)

computers to solve the ground state energy estimation problem.

However, in characterizing materials or analyzing small molecules for drug

discovery, one often needs to estimate properties of the ground state beyond just the

energy. These include transport properties [MW92], electric dipole moments [Jen17],

and molecular forces [OSS+19]. Such properties depend on expectation values of

observables O with respect to the ground state of a Hamiltonian H. The problem of

estimating such quantities was studied in [Amb14, GY19, GPY20], showing that it is

even harder, in a complexity theoretic sense, than the ground state energy estimation

problem in general. A straightforward approach to estimating ground state properties

is to first (approximately) prepare the ground state, from which properties can be

estimated. Many algorithms (e.g. [PW09, GTC19, LT20a]) have been developed for

208

ground state preparation. However, these algorithms only work for idealistic quantum

computers, and the quantum circuit depths involved in these methods are too deep to

even be implemented on early fault-tolerant quantum computers. Another approach

to preparing ground states that is more amenable to near-term quantum computers is

to use the variational quantum eigensolver algorithm [MMS+19, OSS+19]. However,

recent work has suggested that VQE alone is not practical for solving problems of

industrial relevance [GRB+20]; estimation methods which are more efficient (e.g.

[WKJC21]) than prepare and measure estimation, as used in VQE, seem necessary in

order for quantum computers to compete with state-of-the-art methods in quantum

chemistry and materials. Further issues with the variational quantum eigensolver

and its variants are that there are no guarantees on the quality of the output ground

state and that heuristic optimization methods struggle to prepare high-fidelity ground

states.

This motivates the development of quantum algorithms for ground state prop-

erty estimation (GSPE) which are both reliable and able to be run on near-term

quantum computers (e.g. early fault-tolerant quantum devices) with the following

characteristics: (1) The circuit depth (or the maximal Hamiltonian evolution time)

is small even with the price of increasing the total circuit size (or evolution time).

(2) The number of logical qubits is limited. The early fault-tolerant model captures

the challenges of building a large-scale long-time coherent quantum device, while also

being able to solve many important problems with provable performance guarantees

[BMN+21, BOM+21, Cam21, LT22, Lay22]. The central question that this chapter

addresses is then:

Is it possible to estimate ground state properties of a Hamiltonian reliably using

early fault-tolerant quantum computers?

In this chapter, we provide an affirmative answer to this question. Further-

more, we propose an algorithm for the ground state property estimation using low-

depth quantum circuits. The main theorem is stated as follows:

209

Theorem 5.1 (Main theorem, informal). Given a Hamiltonian H and an observable

O. Suppose we have access to a unitary UI that prepares a state |ϕ0⟩ that has non-

trivial overlap with the ground state |ψ0⟩ of H. Then, there exists an algorithm

to estimate ⟨ψ0|O |ψ0⟩ with high accuracy and low-depth: the maximal Hamiltonian

evolution time is Õ(γ−1), where γ is the spectral gap of H.

We make a few remarks about our main result. First, we note that the maxi-

mal evolution time, which is the maximal length of time we need to perform coherent

time evolution, can roughly determine the depth of the quantum circuit. Our result

achieves a nearly-linear dependence on γ−1 and only poly-logarithmic on the accu-

racy ϵ−1, which improves the Õ(ϵ−1) maximal evolution time in the ground state

energy estimation algorithms [Som19, LT22, CBKC21, Ral21]. Second, our result

does not violate the Heisenberg limit because the total evolution time still depends

on poly(ϵ−1). Third, similar to almost all prior works in ground state preparation

and energy estimation (e.g. [Som19, LT20a, LT22]), we need the assumption that

the initial state has some nontrivial overlap with the ground state, as otherwise the

problem will become computationally intractable. Last, we consider the Hamiltonian

as a black-box, which is a common model in this field. To implement our algorithm,

for sparse local Hamiltonian, we can use the current state-of-the-art Hamiltonian sim-

ulation methods [BCC+15, LC17, CMN+18, LC19] with gate complexity depending

linearly in the evolution time and logarithmically in the accuracy.

Comparison to the straightforward method. We can compare our algorithm

with the straightforward approach of GSPE that first prepares the ground state and

then applies quantum phase estimation (QPE) to estimate the ground state property.

• In the first step, to achieve an ϵ-accuracy for the estimation, the ground state

need to be prepared with fidelity at least 1 − ϵ using the methods in [GTC19,

LT20a], which have circuit depth Õ(γ−1η−1) where η is the overlap between the

initial state and the ground state.

210

• In the second step, QPE [KOS07, Ral21] requires circuit depth Õ(ϵ−1) for an

ϵ-accuracy estimation for the ground state property.

Therefore, this straightforward approach has circuit depth Õ(γ−1η−1+ϵ−1), while our

algorithm has circuit depth Õ(γ−1). Furthermore, they also need many (i.e., ω(1))

additional ancilla qubits for preparing the ground state, while we only use one ancilla

qubit. Our algorithm has a great advantage when the Hamiltonian’s spectral gap is

much larger than the estimation accuracy, making it easier to be implemented in the

early fault-tolerant devices.

Organization. In Section 5.2 we formally state the problem of ground state prop-

erty estimation. In Section 5.3 we review the method developed in [LT22] for estimat-

ing ground state energies. In the next three sections we explain our main algorithms

and give an analysis for their performances starting from the simplest case and build-

ing to the most-involved, general case. Section 5.4 presents the case of a unitary

observable which commutes with the Hamiltonian. Section 5.5 presents the case

of a unitary observable which does not necessarily commute with the Hamiltonian.

Section 5.6 describes the case of a general observable. Then, Section 5.7 gives two

applications of the ground state property estimation algorithm. Section 5.8 gives a

discussion of the results and presents some open questions.

5.2 Ground State Property Estimation Problem

In this section, we will formally define the ground state property estimation

problem. This problem was initially studied by Ambainis [Amb14] as the approximate

simulation problem (APX-SIM), and he proved that APX-SIM is PQMA[log]-complete1.

1PQMA[log] contains the problems with polynomial-time classical algorithms that are allowed to
make O(log n) queries to an oracle solving a promise problem in QMA.

211

Problem 5.2 (Approximate simulation (APX-SIM), [Amb14]). Given a k-local Hamil-

tonianH, an ℓ-local observableO, and real numbers a, b, ϵ such that b−a ≥ 1/ poly(n),

and ϵ ≥ 1/ poly(n), for n the number of qubits the Hamiltonian H acts on, decide:

• Yes case: H has a ground state |ψ0⟩ such that ⟨ψ0|O |ψ0⟩ ≤ a,

• No case: for any state |ψ⟩ with ⟨ψ|H |ψ⟩ ≤ λ0+ ϵ where λ0 is the ground state

energy of H, it holds that ⟨ψ0|O |ψ0⟩ ≥ b.

In the follow-up works, APX-SIM was shown to be PQMA[log]-complete even for

5-local Hamiltonian and 1-local observable [GY19], and also for some physics models

like 2D Heisenberg model and 1D nearest-neighbor, translationally invariant model

[GPY20, WBG20]. However, these previous studies only focused on the decision

version of this problem. For the purpose of designing efficient algorithms, we first

define the “search version” of APX-SIM as follows:

Problem 5.3 (Search version of APX-SIM). Given a Hamiltonian H, an (local) ob-

servable O, and ϵ ∈ (0, 1), with Ω(1) probability, estimate ⟨ψ0|O |ψ0⟩ with an addi-

tive/multiplicative error at most ϵ.

In general, Problem 5.3 will not be more tractable than Problem 5.2. Thus,

we may need some prior information about the Hamiltonian H and its ground state.

Motivated by the widely used variational quantum eigensolver (VQE) [PMS+14,

MRBAG16] and the Hartree-Fock method [SO12] in quantum chemistry, it is of-

ten the case that for many real-world Hamiltonians, we are able to efficiently prepare

an initial state |ϕ0⟩ that has a nontrivial overlap with the ground state. Moreover, we

assume that the Hamiltonian H has a nontrivial spectral gap, where a large family of

Hamiltonians in practice satisfy this condition. With these assumptions, we formally

define the ground state property estimation problem as follows:

Problem 5.4 (Ground state property estimation (GSPE)). Given a Hamiltonian H

with spectral gap γ and ground state |ψ0⟩, an observable O, a unitary UI such that it

212

prepares an initial state |ϕ0⟩ with |⟨ϕ0|ψ0⟩|2 ≥ η, and ϵ ∈ (0, 1), estimate ⟨ψ0|O |ψ0⟩
with an additive/multiplicative error at most ϵ with Ω(1) probability.

Remark 5.1. We notice that when O = H, Problem 5.4 becomes the ground state

energy estimation problem. Moreover, the prior knowledge of a large overlap for

the initial state is required for all quantum algorithms with provable performance

guarantees (e.g. [GTC19, LT20a, LT22]). It is also worth noting that even with these

assumptions, it is unlikely to use a purely classical algorithm to estimate the ground

state energy or property to high precision (unless P = BQP) [GLG22].

We propose a high-accuracy, early fault-tolerant quantum algorithm for GSPE

that satisfies the following properties:

• The maximal evolution time depends logarithmically on the accuracy ϵ and

overlap η.

• In addition to the Hamiltonian evolution and observable implementation, it only

uses one additional ancilla qubit.

5.3 An Overview of the Low-Depth Ground State Energy Es-
timation

In this section, we provide a brief overview of the low-depth ground state

energy estimation algorithm proposed by Lin and Tong [LT22]. Our algorithms are

inspired by this algorithm and use it as a subroutine.

More specifically, they showed that:

Theorem 5.5 ([LT22]). Given a Hamiltonian H with eigenvalues in the interval

[−π/3, π/3] and its ground state |ψ0⟩ has energy λ0. And suppose we can prepare an

initial state |ϕ0⟩ such that p0 ≥ η for some known η, where p0 := |⟨ϕ0|ψ0⟩|2. Then,

for any ϵ, ν ∈ (0, 1), there exists an algorithm that estimates λ0 with an additive

error ϵ with probability 1 − ν, by running a parameterized quantum circuit with the

213

maximum quantum evolution time Õ(ϵ−1) and the expected total quantum evolution

time Õ(ϵ−1η−2).

The pseudo-code of their algorithm is given in Algorithm 22.

The main technique of their algorithm is a classical post-processing procedure

that extracts information from the following Hadamard test circuit (Figure 5.1).

|0⟩ H • W H

|ϕ0⟩ e−ijτH

Figure 5.1: Quantum circuit parameterized by j. H is the Hadamard gate and W is
either I or a phase gate. A detailed analysis of this circuit is given in Appendix C.1.1.

Let the initial state |ϕ0⟩ be expanded as |ϕ0⟩ =
∑

k αk |ψk⟩ in the eigen-basis

of H and let pk := |αk|2 be the overlap with the k-th eigenstate. They considered the

overlaps p0, p1, . . . as a density function:

p(x) :=
∑

k

pkδ(x− λk) ∀x ∈ [−π, π]. (5.1)

Then, the cumulative distribution function (CDF) C(x) :=
∫ x
−π p(t)dt can be ex-

pressed as a convolution of p(x) and the 2π-periodic Heaviside function H(x), which

is 0 in [(2k − 1)π, 2kπ) and 1 in [2kπ, (2k + 1)π) for any k ∈ Z. Thus, C(x) is also

a periodic function, which makes it convenient to apply the Fourier approximation.

They showed that H(x) can be approximated by a low-Fourier degree function F (x)

in the intervals [−π + δ,−δ] and [δ, π − δ]. Then, they defined the approximated

cumulative distribution function (ACDF) as C̃(x) := (F ⋆ p)(x) and proved that

C(x− δ)− η/8 ≤ C̃(x) ≤ C(x+ δ) + η/8 ∀x ∈ [−π/3, π/3]. (5.2)

214

Moreover, for each x, we have

C̃(x) =
∑

|j|≤d

F̂je
ijx · ⟨ϕ0| e−ijH |ϕ0⟩ , (5.3)

where F̂j is the Fourier coefficient of F (x). Note that ⟨ϕ0| e−ijH |ϕ0⟩ can be estimated

via the parameterized quantum circuit (Figure 5.1). Hence, we can estimate the

ACDF at every point in [−π/3, π/3]. Moreover, they showed that the multi-level

Monte Carlo method can be applied here to save the number of samples needed to

achieve a high-accuracy estimation (Line 21).

Therefore, we can estimate the ground state energy λ0 by locating the first

non-zero point of the CDF C(x), which is η/8-approximated by the ACDF C̃(x).

Since we assume that p0 ≥ η, the approximation error and the estimation error of

C̃(x) can be tolerated, and we can find λ0 via a robust binary search (Line 18).

We note that the maximal evolution time of this algorithm corresponds to the

Fourier degree of F (x), which is Õ(ϵ−1) by the construction, making their algorithm

suitable for early fault-tolerant quantum devices. More details of this algorithm and

the proofs are given in Appendix C.1.

5.4 Algorithm for Commutative Case

In this section, we consider a easier case that O is unitary and commutes

with the Hamiltonian H, and give a two-step quantum-classical hybrid algorithm

for Problem 5.4. More specifically, suppose the initial state can be expanded in the

eigenbasis as follows: |ϕ0⟩ =
∑

k ck |ψk⟩ with pk := |ck|2. We note that {|ψk⟩} is also

an eigenbasis of O since O and H commute. In Step 1, we run [LT22]’s algorithm

to estimate the ground state energy λ0 and the overlap between the initial state and

the ground state p0. In Step 2, we construct a similar CDF function for the density
∑

k Okpkδ(x − λk), where Ok := ⟨ψk|O |ψk⟩. If we evaluate the CDF at λ0, we can

obtain an estimate of O0.

215

5.4.1 Step 1: estimate the initial overlap

We first run the procedure EstimateGSE (Algorithm 22) to estimate the

ground state energy λ0 with an additive error ϵ. Let x⋆ be the output. We remark

that x⋆ satisfy C(x⋆+ τϵ) ≥ p0 and C(x⋆− τϵ) = 0. However, we can only extract p0
from the ACDF C̃(x), which satisfies:

C(x− τϵ)− η/8 ≤ C̃(x) ≤ C(x+ τϵ) + η/8 ∀x ∈ [−π/3, π/3]. (5.4)

If [x− τϵ, x+ τϵ] contains a “jump” of C(x), i.e., an eigenvalue λk, then the approxi-

mation error of C̃(x) will be large.

Hence, we say a point x is “good” for λk if [x − τϵ, x + τϵ] is contained in

[τλk, τλk+1). It is easy to see that C̃(x) will be an η/8-additive approximation of
∑

j≤k pk if x is good. Our goal is to find an xgood that is good for λ0, and estimating

C̃(xgood) gives the overlap p0. The following claim gives a way to construct xgood using

the spectral gap of H.

Claim 5.6 (Construct xgood). Let γ be the spectral gap of the Hamiltonian H. For any

ϵ ∈ (0, γ/4), x⋆ + τγ/2 is good for λ0, where x⋆ is the output of EstimateGSE(ϵ, η)

(Algorithm 22).

Proof. We know that x⋆ satisfies:

x⋆ − τϵ < τλ0 ≤ x⋆ + τϵ. (5.5)

Then, we have

x⋆ + τγ/2 > τλ0 − τϵ+ τγ/2 > τλ0 + τϵ. (5.6)

We also have

x⋆ + τγ/2 < τλ0 + τϵ+ τγ/2 (5.7)

≤ τ(λ1 − γ) + τϵ+ τγ/2

= τλ1 + τ(ϵ− γ/2)

< τλ1 − τϵ. (5.8)

216

Therefore, x⋆ is good for λ0.

We note that in [LT22], the ACDF’s approximation error is chosen to be η/8.

We may directly change it to ϵη/8 without significantly changing the circuit depth,

since by Lemma C.6 the degree of F can only blowup by a log factor of ϵ.

Lemma 5.7 (Estimating the overlap). For any ϵ0, ν ∈ (0, 1), the overlap p0 :=

|⟨ϕ0|ψ0⟩|2 can be estimated with multiplicative error 1 ± O(ϵ0) with probability 1 −
ν by running the quantum circuit (Figure 4.3) Õ(ϵ−20 η−2) times with expected total

evolution time Õ(γ−1ϵ−2η−2) and maximal evolution time O(γ−1).

Proof. By Claim 5.6, if we set the additive error of ground state energy λ0 to be

O(γ), then we can construct an xgood that is good for λ0. By Theorem 5.5, it can be

done with maximum quantum evolution time Õ(γ−1) and the expected total quantum

evolution time Õ(γ−1η−2). Notice that we need to take d = O(δ−1 log(δ−1ϵ−10 η−1))

(Line 3 in Algorithm 22) to make C̃(xgood) be an O(ϵ0η)-approximation of p0, where

δ = τγ.

Next, we estimate C̃(xgood) with additive error ηϵ with probability 1− ν. We

have an unbiased estimator

G(x;Z,J) = FZeiθJ+Jx (5.9)

for C̃(x), where Z := X + iY is measured from the Hadamard test, and J is a

random variable for the Hamiltonian evolution time sampled proportional to the

Fourier weight of F , i.e., Pr[J = j] = |F̂j|/F for −d ≤ j ≤ d and F :=
∑
|j|≤d |F̂j|.

We can show that G(x;Z,J) has variance O(log2(d)), and one estimate can be

obtained with evolution time Õ(τd/ log(d)) in expectation. If we repeatedly sample

G(x;Z,J) and take the mean of them, then by Chebyshev’s inequality, the sample

complexity is Õ(ϵ−20 η−2ν−2) to have an additive error O(ϵ0η) with probability 1− ν.

Instead, we can use the so-called “median-of-means” trick to reduce the sample

complexity. More specifically, let Ng = O(log(1/ν)) and K = O(ϵ−20). We first

217

partition m = NgK samples (Z1, J1), . . . , (Zm, Jm) into Ng groups of size K. Then,

for any i ∈ [Ng], the i-th group mean is

Gi :=
1

K

K∑

j=1

G(x;Z(i−1)K+j, J(i−1)K+j). (5.10)

The final estimator is given by the median of these group means, i.e.,

G(x) := median(G1, . . . , GNg). (5.11)

By Chernoff bound, it is easy to see that G(x) has an additive error at most (ηϵ0)

with probability 1−ν. It will imply that multiplicative error is at most 1±O(ϵ0) since

p0 = Θ(η). And the sample complexity of G(x) is Õ(ϵ−20 η−2). Hence, the expected

total evolution time is Õ(γ−1ϵ−20 η−2). Since we run the same quantum circuit to

estimate G(x), the maximal evolution time is still Õ(γ−1).

5.4.2 Step 2: estimate the O-weighted CDF

To estimate the expectation value of O, consider the following quantum circuit:

|0⟩ H • • W H

|ϕ0⟩ e−ijτH O

Figure 5.2: Quantum circuit parameterized by j. H is the Hadamard gate and W is
either I or a phase gate S.

Define the random variables Xj, Yj be as follows: for W = I, Xj := 1 if the

outcome is 0, and Xj := −1 if the outcome is 1. For W = S, Yj := −1 if the outcome

is 0, and Yj := 1 if the outcome is 1.

Then, we have the following claim on the expectation of the random variables

Xj, Yj:

218

Claim 5.8 (A variant of Hadamard test). For any j ∈ Z, the random variable Xj+iYj

is an un-biased estimator for ⟨ϕ0|Oe−ijτH |ϕ0⟩.

The proof is deferred to Appendix C.1.1.

We can expand ⟨ϕ0|Oe−ijτH |ϕ0⟩ in the eigenbasis of H (which is also an eigen-

basis of O):

⟨ϕ0|Oe−ijτH |ϕ0⟩ =
∑

k,k′

c∗kck′e
−ijτλk ⟨ψk|O |ψ′k⟩

=
∑

k

pkOke
−ijτλk , (5.12)

where the last step follows from the simultaneous diagonalization of O and H, and

Ok := ⟨ψk|O |ψk⟩. We may assume that |Ok| ≤ 1 for any k ∈ N.

Inspired by the ground state energy estimation algorithm in [LT22], we define

the O-weighted “density function” for the observable as follows:

pO(x) :=
∑

k

pkOkδ(x− τλk). (5.13)

Note that pO(x) can be negative at some points.

Suppose the eigenvalues of τH is within [−π/3, π/3]. Then, we define the

O-weighted CDF and ACDF for pO(x) similar to [LT22]:

CO(x) := (H ∗ pO)(x), C̃O(x) := (F ∗ pO)(x), (5.14)

where H is the 2π-periodic Heaviside function and F = Fd,δ is the Fourier approx-

imation of H constructed by Lemma C.6. It is easy to verify that CO(x) equals to
∑

k pkOk1x≥pkOk
for any x ∈ [−π/3, π/3].

The following lemma gives an unbiased estimator for the O-weighted ACDF.

Lemma 5.9 (Estimating the O-weighted ACDF). For any x ∈ [−π, π], there exists

an unbiased estimator GO(x) for the O-weighted ACDF C̃O(x) with variance Õ(1).

Furthermore, GO(x) runs the quantum circuit (Figure 5.2) with expected total

evolution time O(τd/ log(d)), where d is the Fourier degree of F .

219

Proof. C̃O(x) can be expanded in the following way:

C̃O(x) = (F ∗ pO)(x) (5.15)

=

∫ π

−π
F (x− y)pO(y)dy

=
∑

|j|≤d

∫ π

−π
F̂je

ij(x−y)pO(y)dy

=
∑

|j|≤d

F̂je
ijx

∫ π

−π
pO(y)e

−ijydy

=
∑

|j|≤d

F̂je
ijx
∑

k

pkOke
−ijτλk

=
∑

|j|≤d

F̂je
ijx · ⟨ϕ0|Oe−ijτH |ϕ0⟩ , (5.16)

where the third step follows from the Fourier expansion of F (x − y), the fifth step

follows from the property of Dirac’s delta function, and the last step follows from the

definition of pk and the eigenvalues of matrix exponential.

Define an estimator G(x;J,Z) as follows:

G(x;J,Z) := F · Zei(θJ+Jx), (5.17)

where θj is defined by F̂j = |F̂j|eiθj , Z = X + iY measured from the quantum circuit

(Figure 5.2) with parameter j = J, and F =
∑
|j|≤d |F̂j|.

Then, we show that G(x;J,Z) is un-biased:

E[G(x;J,Z)] =
∑

|j|≤d

E
[
(Xj + iYj)e

i(θj+jx)|F̂j|
]

(5.18)

=
∑

|j|≤d

F̂je
ijx · E [Xj + iYj]

=
∑

|j|≤d

F̂je
ijx · ⟨ϕ0|Oe−ijτH |ϕ0⟩

= C̃(x), (5.19)

220

where the third step follows from Claim 5.8. Moreover, the variance of G can be

upper-bounded by:

Var[G(x;J,Z)] = E[|G(x;J,Z)|2]− |E[G(x;J,Z)]|2 (5.20)

≤ E[|G(x;J,Z)|2]

≤ 2F2, (5.21)

where the third step follows from |ei(θJ+Jx)| = 1, and the last step follows from

Xj, Yj ∈ {±1}. By Lemma C.6, we know that |F̂j| = O(1/|j|). Hence, we have

F =
∑
|j|≤dO(1/|j|) = O(log d). Thus, Var[G(x;J,Z)] = O(log2(d)).

The expected total evolution time is

Ttot := E[|J |] = τ
∑

|j|≤d

|j| · |F̂j|
F

= O(τd/ log(d)). (5.22)

The lemma is then proved.

The following lemma shows that the O-weighted CDF CO(x) can be approxi-

mated by the O-weighted ACDF C̃O(x):

Lemma 5.10 (Approximating the O-weighted CDF). For any ϵ > 0, 0 < δ < π/6,

let F (x) := Fd,δ(x) constructed by Lemma C.6 with approximation error ηϵ/8. Then,

for any x ∈ [−π/3, π/3], it holds that:

CO(x− δ)− ηϵ/8 ≤ C̃O(x) ≤ CO(x+ δ) + ηϵ/8. (5.23)

The proof is very similar to Lemma C.7, so we omit it here.

We can take δ := τγ/5 and let xgood := x⋆ + τγ/2. Then, by Claim 5.6, we

know that xgood is good for λ0, i.e., [xgood − τγ, xgood + τγ] ⊂ (τλ0, τλ1). Hence,

C̃O(xgood) satisfies
∣∣∣C̃O(xgood)− p0O0

∣∣∣ ≤ ηϵ/8. (5.24)

The following lemma shows how to estimate C̃O(xgood), which is very similar

to Lemma 5.7.

221

Lemma 5.11 (Estimating p0O0). For any ϵ1, ν ∈ (0, 1), p0O0 can be estimated with

multiplicative error 1 ± O(ϵ1) with probability 1 − ν by runs the quantum circuit

(Figure 4.3) Õ(ϵ−21 η−2) times with expected total evolution time Õ(γ−1ϵ−21 η−2) and

maximal evolution time O(γ−1).

5.4.3 Putting it all together

In this section, we will put the components together and prove the following

main theorem, which gives an algorithm for the ground state property estimation.

Theorem 5.12 (Ground state property estimation with commutative observable,

Restate). Suppose p0 ≥ η for some known η, and let γ > 0 be the spectral gap of the

Hamiltonian. Then, for any ϵ, ν ∈ (0, 1), the ground state property ⟨ψ0|O |ψ0⟩ can be

estimated within additive error at most ϵ with probability 1− ν, such that:

1. the number of times running the quantum circuits (Figure 4.3 and 5.2) is

Õ(ϵ−2η−2),

2. the expected total evolution time is Õ(γ−1ϵ−2η−2),

3. the maximal evolution time is Õ(γ−1).

Proof. By Lemma 5.7, we obtain an estimate p0 for p0 with the guarantee that

∣∣p0 − p0
∣∣ ≤ O(ηϵ0), (5.25)

where ϵ0 will be chosen shortly.

By Lemma 5.11, we obtain an estimate p0O0 for p0O0 with the guarantee that

∣∣p0O0 − p0O0

∣∣ ≤ O(ηϵ1), (5.26)

where ϵ1 will be chosen shortly.

222

Then, we have
∣∣∣∣
p0O0

p0
−O0

∣∣∣∣ =
∣∣∣∣
p0O0

p0
− p0O0

p0
+
p0O0

p0
− p0O0

p0

∣∣∣∣ (5.27)

≤ |p0O0 − p0O0|
p0

+ |p0O0|
∣∣∣∣
1

p0
− 1

p0

∣∣∣∣

≤ O(ηϵ1)

p0 −O(ηϵ0)
+ |p0O0|

∣∣∣∣
1

p0 −O(ηϵ0)
− 1

p0

∣∣∣∣

≤ O(ηϵ1)

η −O(ηϵ0)
+ |p0O0|

∣∣∣∣
1

p0 − p0O(ϵ0)
− 1

p0

∣∣∣∣
≤ O(ϵ1)(1−O(ϵ0)) + |O0|(1 +O(ϵ0)− 1)

≤ O(ϵ0 + ϵ1), (5.28)

where the second step follows from the triangle inequality, the third step follows from

Eqs. (5.25) and (5.26), the third step follows from p0 ≥ η, the fifth step follows from
1

1−x ≤ 1 +O(x) for x ∈ (0, 1).

Hence, if we take ϵ0 = ϵ1 = O(ϵ), we will achieve additive error at most ϵ.

For the success probability, we can make Eq.(5.25) hold with probability 1−ν/2
in Lemma 5.7 and Eq.(5.26) hold with probability 1− ν/2 in Lemma 5.11. Then, by

the union bound, we get a good estimate with probability at least 1− ν.

The computation costs follow directly from Lemma 5.7 and Lemma 5.11. And

the proof of the theorem is then completed.

5.5 Algorithm for General Unitary Observables

In this section, we will prove the following theorem for unitary observables in

the general case:

Theorem 5.13 (Ground state property estimation with general unitary observable).

Suppose p0 ≥ η for some known η and the spectral gap of the Hamiltonian H is at

least γ. For any ϵ, ν ∈ (0, 1), there exists an algorithm for estimating the ground state

223

property ⟨ψ0|O |ψ0⟩ within additive error at most ϵ with probability at least 1−ν, such

that:

1. the expected total evolution time is Õ(γ−1ϵ−2η−2)

2. the maximal evolution time is Õ(γ−1).

In the following parts, we will first introduce the 2-d O-weighted density func-

tion and CDF, which extend the commuting observables to the general case. Then,

we will show how to combine them with the overlap estimation in Section 5.4.1 for

proving Theorem 5.13.

5.5.1 2-d O-weighted density function and CDF

Let |ϕ0⟩ =
∑

k ck |ψk⟩ where |ck|2 = pk. In general, O andH may not commute.

Hence, we consider a more symmetric form of expectation: ⟨ϕ0| e−ijτHOe−ij′τH |ϕ0⟩,
which can be expanded in the eigenbasis of H as follows:

⟨ϕ0| e−ijτHOe−ij
′τH |ϕ0⟩ =

∑

k,k′

c∗kck′e
−ijτλke−ij

′τλk′ ⟨ψk|O |ψ′k⟩

=
∑

k,k′

c∗kck′e
−ijτλk′e−ij

′τλk′ ⟨ψk|O |ψk′⟩ (5.29)

Similar to the commutative case, we define a 2-d O-weighted density function:

pO,2(x, y) :=
∑

k,k′

c∗kck′Ok,k′δ(x− τλk)δ(y − τλk′), (5.30)

where Ok,k′ := ⟨ψk|O |ψk′⟩. Then, define the corresponding 2-d O-weighted CDF

function as follows:

CO,2(x) := (H2 ∗ pO,2)(x, y), (5.31)

where H2(x, y) := H(x) ·H(y), the 2-d 2π-periodic Heaviside function.

224

We first justify that CO,2 is indeed a CDF of pO,2 in [−π/3, π/3]:

C2(x, y) =

∫ π

−π

∫ π

−π
H2(x− u, y − v)p(u, v)dudv (5.32)

=
∑

k,k′

c∗kck′Ok,k′ ·
∫ π

−π

∫ π

−π
H2(x− u, y − v)δ(u− τλk)δ(v − τλk′)dudv

=
∑

k,k′

c∗kck′Ok,k′ ·H(x− τλk)H(y − τλk′)

=
∑

k,k′

c∗kck′Ok,k′ · 1x≥τλk,y≥τλk′

=
∑

k:τλk≤x,
k′:τλk′≤y

c∗kck′Ok,k′ . (5.33)

Hence, the definition of CO,2 is reasonable.

Then, we show that CO,2 can be approximated similar to the 1-d case. Let

F2(x) be the 2-d approximated Heaviside function, i.e.,

F2(x, y) := F (x) · F (y). (5.34)

The 2-d O-weighted approximated CDF (ACDF) is defined to be

C̃O,2(x, y) := (F2 ∗ pO,2)(x, y). (5.35)

The following lemma shows that C̃O,2(x, y) is close to CO,2(x
′, y′) for some (x′, y′)

close to (x, y).

Lemma 5.14 (Approximation ratio of the 2-d O-weighted ACDF). For any ϵ > 0,

0 < δ < π/6, let F2(x, y) := Fd,δ(x)·Fd,δ(y) constructed by Lemma C.6. Then, for any

x, y ∈ [−π/3, π/3], the 2-d O-weighted ACDF C̃O,2(x, y) = (F2 ∗ pO,2)(x, y) satisfies:

CO,2(x− δ, y − δ)− 2ϵ ≤ C̃O,2(x, y) ≤ CO,2(x+ δ, y + δ) + 2ϵ. (5.36)

Proof. By (2) in Lemma C.6, we have

|F (x)−H(x)| ≤ ϵ ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ], (5.37)

225

which implies that for all x, y ∈ [−π + δ,−δ] ∪ [δ, π − δ],

|F2(x, y)−H2(x, y)| ≤ |F (x)F (y)−H(x)H(y)| (5.38)

= |F (x)F (y)− F (x)H(y) + F (x)H(y)−H(x)H(y)|

≤ F (x)|F (y)−H(y)|+H(y)|F (x)−H(x)|

≤ (F (x) +H(y))ϵ

≤ 2ϵ, (5.39)

where the last step follows from F (x) ∈ [0, 1] by (1) in Lemma C.6. Furthermore, we

also have for x ∈ [−δ, δ], y ∈ [−π + δ,−δ],

|F2(x, y)−H2(x, y)| ≤ |F (x)F (y)−H(x)H(y)| (5.40)

= |F (x)F (y)| (H(y) = 0)

≤ F (y)

≤ ϵ. (5.41)

Similarly, for x ∈ [−π + δ,−δ], y ∈ [−δ, δ],

|F2(x, y)−H2(x, y)| ≤ ϵ. (5.42)

Define FL,2 := F2(x− δ, y − δ) such that

|FL,2(x)−H2(x)| ≤ 2ϵ ∀(x, y) ∈ [−π + 2δ, 0]× [−π + 2δ, π] (5.43)

∪ [−π + 2δ, π]× [−π + 2δ, 0]

∪ [2δ, π]× [2δ, π].

For C̃L,2(x, y) := (FL,2 ∗ pO,2)(x, y), we have C̃L,2(x, y) = C̃O,2(x− δ, y − δ).

226

Let p2 := pO,2. Then, for any x, y ∈ [−π/3, π/3], we have

∣∣∣CO,2(x, y)− C̃L,2(x, y)
∣∣∣ =

∣∣∣∣
∫ π

−π

∫ π

−π
p2(x− u, y − v)(H2(u, v)− FL,2(u, v))dudv

∣∣∣∣
(5.44)

≤
∫ π

−π

∫ π

−π
p2(x− u, y − v)|H2(u, v)− FL,2(u, v)|dudv

=

(∫ 0

−π

∫ π

−π
+

∫ π

0

∫ 0

−π
+

∫ π

2δ

∫ π

2δ

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

+

(∫ 2δ

0

∫ π

0

+

∫ π

0

∫ 2δ

0

−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ϵ ·
(∫ 0

−π

∫ π

−π
+

∫ π

0

∫ 0

−π
+

∫ π

2δ

∫ π

2δ

)
p2(x− u, y − v)dudv

+

(∫ 2δ

0

∫ π

0

+

∫ π

0

∫ 2δ

0

−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ϵ+

(∫ 2δ

0

∫ π

0

+

∫ π

0

∫ 2δ

0

−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v))|H2(u, v)− FL,2(u, v)|dudv

≤ 2ϵ+

(∫ 2δ

0

∫ π

0

+

∫ π

0

∫ 2δ

0

−
∫ 2δ

0

∫ 2δ

0

)
p2(x− u, y − v)dudv

= 2ϵ+

(∫ x

x−2δ

∫ y

y−π
+

∫ x

x−π

∫ y

y−2δ
−
∫ x

x−2δ

∫ y

y−2δ

)
p2(u, v)dudv (5.45)

= 2ϵ+ CO,2(x, y)− CO,2(x− 2δ, y − 2δ),

where the second step follows from Cauchy-Schwarz inequality, the third step follows

from partitioning the integration region, the forth step follows from Eq. (5.43) and

the fact that p(x, y) is supported in [−π/3, π/3] × [−π/3, π/3] and δ < π/6 (see

Figure 5.3 (a)), the fifth step follows from pO,2(x) is a density function, the last step

follows from CO,2(x) is the CDF of pO,2(x) in [−π, π]× [−π, π] and x, y ∈ [−π/3, π/3]
(see Figure 5.3 (b)).

Hence, we have

C̃L,2(x, y) ≥ CO,2(x, y)− (2ϵ+ CO,2(x, y)− CO,2(x− 2δ, y − 2δ))

= CO,2(x− 2δ, y − 2δ)− 2ϵ, (5.46)

227

π

1 2

2δ

0
5

3 6 4

−π
−π 0 2δ π

(a)

π/3

−π/3
−π/3 π/3x− 2δ x

y − 2δ

y

(b)

Figure 5.3: (a) is the integral region for Eq. (5.44), where the integral in regions 1-6
can be upper bounded by Eq. (5.43). (b) is the integral region for Eq. (5.45).

which proves the first inequality:

C̃O,2(x− δ, y − δ) ≥ CO,2(x− 2δ, y − 2δ)− 2ϵ. (5.47)

Similarly, we can define FR,2 := F2(x + δ, y + δ) and C̃R,2(x, y) := (FR,2 ∗
p2)(x, y). We can show that

∣∣∣CO,2(x, y)− C̃R,2(x, y)
∣∣∣ ≤ 2ϵ+ CO,2(x+ 2δ, y + 2δ)− CO,2(x, y), (5.48)

which gives

C̃O,2(x+ δ, y + δ) ≤ CO,2(x+ 2δ, y + 2δ) + 2ϵ. (5.49)

The lemma is then proved.

5.5.2 Estimating the 2-d ACDF

We use the following parameterized quantum circuit to estimate the 2-d O-

weighted ACDF C̃O,2(x, y).

228

|0⟩ H • • • W H

|ϕ0⟩ e−it1H O e−it2H

Figure 5.4: Quantum circuit parameterized by t1, t2. H is the Hadamard gate and W
is either I or a phase gate S.

Lemma 5.15 (Estimate 2-d O-weighted ACDF). For any x, y ∈ [−π/3, π/3], for any

ϵ, ν ∈ (0, 1), we can estimate C̃O,2(x, y) with additive error ηϵ with probability 1 − ν
by running the quantum circuit (Figure 5.4) O(ϵ−2η−2 log(1/ν)) times with maximal

evolution time Õ(γ−1) and total expected evolution time Õ(γ−1ϵ−1η−1).

Proof. C̃O,2(x, y) can be expanded in the following way:

C̃O,2(x, y) = (F2 ∗ p2)(x, y) (5.50)

=

∫ π

−π

∫ π

−π
F2(x− u, y − v)p2(u, v)dudv

=
∑

|j|≤d,|j′|≤d

∫ π

−π

∫ π

−π
F̂jF̂j′e

ij(x−u)eij
′(y−v)p2(u, v)dudv

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y)

∫ π

−π

∫ π

−π
p2(u, v)e

−ijue−ij
′vdudv

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y)

∑

k,k′

c∗kckOk,k′e
−ijτλke−ij

′τλk′

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
i(jx+j′y) · ⟨ϕ0| e−ijτHOe−ij

′τH |ϕ0⟩ , (5.51)

To estimate ⟨ϕ0| e−ijτHOe−ij′τH |ϕ0⟩, we use the multi-level Monte Carlo method.

Define a random variables J, J ′ with support {−d, · · · , d} such that

Pr[J = j, J ′ = j′] =
|F̂j||F̂j′|

F2
, (5.52)

229

where F :=
∑
|j|≤d |F̂j|. Then, let Z := XJ,J ′ + iYJ,J ′ ∈ {±1± i}. Define an estimator

G2(x; J, J
′, Z) as follows:

G2(x, y; J, Z) := F2 · Zei(θJ+Jx)ei(θJ′+J ′y), (5.53)

where θj is defined by F̂j = |F̂j|eiθj , and similar definition for θj′ . Then, we show that

G2(x, y; J, Z) is un-biased:

E[G2(x, y; J, J
′, Z)] =

∑

|j|≤d,|j′|≤d

E
[
(Xj,j′ + iYj,j′)e

i(θj+jx)ei(θj′+j
′y)|F̂j||F̂j′ |

]
(5.54)

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
ijxeij

′y · E [Xj,j′ + iYj,j′]

=
∑

|j|≤d,|j′|≤d

F̂jF̂j′e
ijxeij

′y · ⟨ϕ0| e−ijτHOe−ij
′τH |ϕ0⟩

= C̃2(x, y), (5.55)

where the third step follows from Claim C.1. Moreover, the variance of G2 can be

upper-bounded by:

Var[G2(x, y; J, J
′, Z)] = E[|G2(x, y; J, J

′, Z)|2]− |E[G2(x, y; J, J
′, Z)]|2 (5.56)

≤ E[|G2(x, y; J, J
′, Z)|2]

= F4 · E[|XJ,J ′ + iYJ,J ′|2]

= 2F4, (5.57)

where the third step follows from |ei(θJ+Jx)| = |ei(θJ′+J ′y)| = 1, and the last step

follows from Xj,j′ , Yj,j′ ∈ {±1}.

By Lemma C.6, we know that F = Õ(1). Hence, we have for all x, y ∈
[−π/3, π/3],

E[G2(x, y)] = C̃O,2(x, y), and Var[G2(x, y)] = Õ(1). (5.58)

Then, using median-of-means estimator, we can obtain an ϵ-additive error

estimate of C̃O,2(x, y) with probability 1− ν using O(ϵ−2η−2 log(1/ν)) samples.

230

The maximal evolution time is 2d = Õ(γ−1). And the expected evolution time

for one trial is

τ
∑

|j|,|j′|≤d

(j + j′)
|F̂j||F̂j′ |

F2
= 2τ

∑

|j|≤d

j
|F̂j|
F

= O(τd/ log(d)). (5.59)

Hence, the total expected evolution time is Õ(γ−1ϵ−2η−2).

The lemma is then proved.

λ0 xgood λ1

(a)

λ0

λ0

λ1

λ1

.

xgood

ygood

(b)

Figure 5.5: (a) shows a point that is good for λ0, where the blue interval is the
approximation region such that C̃O(xgood) is close to C(x) for some x in this interval.
(b) shows a good point in the 2-d case, where in the green square, the 2-d O-weighted
CDF CO,2 takes the same value CO,2(λ0, λ0). And the blue square is the approximation
region of (xgood, ygood) such that C̃O,2(xgood, ygood) is close to some CO,2(x, y) in this
region.

Similar to the 1-d case, we can construct a “good” point for (λ0, λ0) via the

following claim.

Claim 5.16 (Construct 2-d good point). Let γ be the spectral gap of the Hamiltonian

H. Let xgood := x⋆ + τγ/2 where x⋆ is the output of EstimateGSE(γ/8, τ, η, ν/10)

231

(Algorithm 22). Then, (xgood, xgood) is good for (λ0, λ0). In particular, for any ϵ ∈
(0, 1), if the approximation error of F (x) is set to be ϵη, then

∣∣∣C̃O,2(xgood, xgood)− CO,2(λ0, λ0)
∣∣∣ ≤ 2ϵη. (5.60)

Proof. By Claim 5.6, we know that xgood is good for λ0, i.e., [xgood − δ, xgood + δ]

is contained in [λ0, λ1). It also holds in the 2-d case for (xgood, xgood). Then, by

Lemma 5.15, we have

CO,2(xgood − δ, xgood − δ)− 2ϵη ≤ C̃O,2(xgood, xgood) ≤ CO,2(xgood + δ, xgood + δ) + 2ϵη.
(5.61)

The claim then follows from CO,2(x, y) = CO,2(λ0, λ0) for any (x, y) ∈ [λ0, λ1) ×
[λ0, λ1).

5.5.3 Putting it all together

The main algorithm for the ground state property estimation will first estimate

the ground state energy λ0 and the overlap p0, which are described in Section 5.4.1.

Then, by Lemma 5.15 and Claim 5.16, the weighted expectation p0O0 can also be

estimated. Hence, we will obtain an estimate for O0 = ⟨ψ0|O |ψ0⟩.

Proof of Theorem 5.13. We first analyze the estimation error of Algorithm 24. By

Lemma 5.7, p0 (Line 19) has additive error at most O(ηϵ). By Lemma 5.15 and

Claim 5.16, p0O0 (Line 24) has additive error at most O(ηϵ). Then, by a similar error

propagation analysis in Theorem 5.12, we get that
∣∣∣∣
p0O0

p0
−O0

∣∣∣∣ ≤ O(ϵ). (5.62)

For the success probability, Algorithm 24 has three components: estimate

ground state energy, estimate p0, and estimate p0O0. By our choice of parameters,

each of them will fail with probability at most ν/3. Hence, Algorithm 24 will succeed

with probability at least 1− ν.

232

The maximal evolution time and the total expected evolution time follows

from Theorem 5.5, Lemma 5.7, and Lemma 5.15.

5.6 Handling Non-Unitary Observables

One may notice that Algorithm 24 works only for unitary observables because

it needs to use the circuit in Figure 5.4 to estimate ⟨ϕ0| e−it2HOe−it1H |ϕ0⟩ for certain

t1, t2 ∈ R, in which controlled-O must be a unitary operation. In this section, we

show that under reasonable assumptions this algorithm can be modified to estimate

the ground state property ⟨ψ0|O |ψ0⟩ where O is a general observable.

Before we present this result, one may wonder why it is necessary. After all, we

can always decompose O into a linear combination of Pauli strings O =
∑

s⃗ws⃗Ps⃗, and

use Algorithm 24 to estimate each term µs⃗ := ⟨ψ0|Ps⃗ |ψ0⟩ individually, and return
∑

s⃗ws⃗µs⃗ as the result. While this strategy works in principle, it might be not efficient

enough to be practical, depending on the weights ws⃗’s of Pauli strings in the linear

expansion of O.

Alternatively, one can fix the issue of Algorithm 24 by designing a procedure

for estimating ⟨ϕ0| e−it2HOe−it1H |ϕ0⟩ for arbitrary non-unitary O. Such quantities are

utilized in the same way as before. We have followed this approach and found that

it is possible when there is a block-encoding of O. Namely, suppose O is an n-qubit

observable with ∥O∥ ≤ 1 and U is an (n+m)-qubit unitary operator such that

(⟨0m| ⊗ I)U(|0m⟩ ⊗ I) = α−1O (5.63)

for some α ≥ ∥O∥. More details about the block-encoding model can be found in

[CGJ19, LC19, GSLW19, Ral20]. Then we can still perform Hadamard test for U

to estimate ⟨ϕ0| e−it2HOe−it1H |ϕ0⟩ for arbitrary t1, t2 ∈ R. The main theorem of this

section is stated below:

Theorem 5.17 (Ground state property estimation with block-encoded observable).

Suppose p0 ≥ η for some known η and the spectral gap of the Hamiltonian H is at

233

least γ. Suppose we have access to the α-block-encoding of the observable O. For

any ϵ, ν ∈ (0, 1), there exists an algorithm for estimating the ground state property

⟨ψ0|O |ψ0⟩ within additive error at most ϵ with probability at least 1− ν, such that:

1. the expected total evolution time is Õ(γ−1ϵ−2η−2α2),

2. the maximal evolution time is Õ(γ−1).

Proof sketch of Theorem 5.17. The algorithm for handling non-unitary block-encoded

observables is quite similar to Algorithm 24 for handling unitary observables, except

that it relies on a different procedure to estimate ⟨ϕ0| e−it2HOe−it1H |ϕ0⟩ for arbitrary

t1, t2 ∈ R. Here we briefly describe this procedure and defer the detailed analysis to

Appendix C.2.

Let C-V := |0⟩ ⟨0|⊗ I + |1⟩ ⟨1|⊗V be the controlled-V operation for arbitrary

unitary operator V . Let |ϕ0⟩ be an arbitrary n-qubit state. Consider the following

procedure (as illustrated in Figure 5.6:

|0⟩ H • • • W H

|0m⟩
U

|ϕ0⟩ e−it1H e−it2H

Figure 5.6: Quantum circuit parameterized by t1, t2. H is the Hadamard gate and W
is either I or a phase gate S. U is the block-encoding of the non-unitary observable
O.

1. Prepare the state |0⟩ |0m⟩ |ϕ0⟩.

2. Apply a Hadamard gate on the first register.

234

3. Apply a C-e−iHt1 on the first and third registers.

4. Apply C-U on the current state, obtaining

1√
2

(
|0⟩ |0m⟩ |ϕ0⟩+ |1⟩U |0m⟩ e−iHt1 |ϕ0⟩

)
. (5.64)

5. Measure the second register in the standard basis. If the outcome is not 0m, then

this procedure fails; otherwise, continue. The probability of this step succeeding

is

psucc =
1 + α−2 ⟨ϕ0| eiHt1O2e−iHt1 |ϕ0⟩

2
, (5.65)

and when this event happens, the state becomes

1√
2psucc

[
|0⟩ |ϕ0⟩+ α−1 |1⟩Oe−iHt1 |ϕ0⟩

]
. (5.66)

6. Apply a C-e−iHt2 on the first and third registers. The state becomes

1√
2psucc

[
|0⟩ |ϕ0⟩+ α−1 |1⟩ e−iHt2Oe−iHt1 |ϕ0⟩

]
. (5.67)

7. Apply W = I or phase gate S on the first register.

8. Apply a Hadamard gate on the first register.

9. Measure the first register in the standard basis. Then if W = I, the (condi-

tional) probability of getting outcome 0 is

P[0|succ] = psucc + α−1Re[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩]
2psucc

; (5.68)

if W = S, this probability is

P[0|succ] = psucc − α−1 Im[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩]
2psucc

. (5.69)

235

Now we define two random variables X and Y as follows. First, we run the

above procedure with W = I in step 7. If step 5 fails, X = 0; otherwise, if the

measurement outcome is 0 or 1 in step 9, then X = α or −α, respectively. One can

show that X is an unbiased estimator of Re[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩], i.e.

E[X] = Re[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩]. (5.70)

Y is defined similarly. We run the above procedure with W = S in step 7. If step 5

fails, Y = 0; otherwise, if the measurement outcome is 1 or 0 in step 9, then Y = α

or −α, respectively. Then Y is an unbiased estimator of Im[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩],
i.e.

E[Y] = Im[⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩]. (5.71)

It follows that Z := X + iY is an unbiased estimator of ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩, i.e.

E[Z] = ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (5.72)

Note that |Z|2 = |X|2 + |Y |2 ≤ 2α2 with certainty.

Equipped with the above method for estimating ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ for

arbitrary t1, t2 ∈ R, we can now use the same strategy as in Lemma 5.15 to estimate

C̃O,2(x, y). The other components of Algorithm 24 remain intact. The analysis of this

modified algorithm is almost the same as before, except that now we have

Var[G2(x, y)] = Õ(α2). (5.73)

As a consequence, compared to Theorem 5.13, the total evolution time of this modified

algorithm is larger by a factor of O(α2), while its maximal evolution time is of the

same order.

5.7 Applications

In this section, we discuss some applications of our ground state property es-

timation algorithm. To define an application of the ground state property estimation

236

algorithm, we must specify a Hamiltonian of interest H and an observable of interest

O. An example application used in quantum chemistry and materials is the Green’s

function (see, e.g. [TAWL21]), where O = ai(z− (H−E0)
−1)a†j. In the following two

sections we describe another example from quantum chemistry and materials as well

as an example of a linear algebraic subroutine.

5.7.1 Charge density

The primary application of the technique is the estimation of ground state

properties of physical systems. Here we describe how to compute the charge density of

a molecule, which can be used to compute properties like electric dipole moments of a

molecule [RGM+21]. From a second-quantized representation of the electronic system

(assuming fixed positions of the nuclear positions), the charge density is determined

from the one-particle reduced density matrix as,

ρ(r⃗) = −e
∑

p,q

Dp,qϕp(r⃗)ϕq(r⃗), (5.74)

where e is the electric constant, Dp,q is the one-electron reduced density matrix

(1RDM) of the ground state, and ϕq(r⃗) are the basis wave functions chosen for the

second-quantized representation of the electronic system [HJO14]. The 1RDM of the

ground state is a matrix of properties of the ground state with each entry defined as

Dp,q = ⟨ψ0| a†paq |ψ0⟩ , (5.75)

where ap are annihilation operators. The operators involved in the 1RDM can each

be expressed as a linear combination of unitary operators using the Majorana repre-

sentation ap = 1
2
(γ2p + iγ2p+1), where the γk are hermitian and unitary2,

Dp,q =
1

4
(⟨ψ0| γ2pγ2q |ψ0⟩ − i ⟨ψ0| γ2p+1γ2q |ψ0⟩+ i ⟨ψ0| γ2pγ2q+1 |ψ0⟩+ ⟨ψ0| γ2p+1γ2q+1 |ψ0⟩) .

(5.76)

2To implement this application on a quantum computer we must represent the unitaries as opera-
tions on qubits. For an n-electron system, using the Jordan-Wigner or Bravyi-Kitaev transformation
[SRL12], each Majorana operator, and products thereof, can be represented as a Pauli string.

237

Accordingly, we may use the method of Section 5.5 to estimate each entry of the

1RDM and then obtain the charge density function of the ground state. As a point

of comparison, we could alternatively use the variational quantum eigensolver algo-

rithm to prepare an approximation to the ground state and then directly estimate

each of the Pauli expectation values. However, there is no guarantee on whether a

target accuracy for the ground state approximation can be achieved. Remarkably,

the methods introduced in this chapter can be used to ensure a target accuracy in the

estimation regardless of the quality of ground state approximation, though possibly

at the cost of an increase in runtime.

5.7.2 Quantum linear system solver

In the seminal [HHL09] paper, a quantum algorithm is proposed to generate

a quantum state approximately proportional to the solution of a linear system of

equations. Namely, given a linear system Ax⃗ = b⃗, the algorithm produces a quantum

state close to |x⟩ :=
∑

j xj |j⟩√∑
j |xj |2

, where xj’s are the entries of x⃗ = A−1⃗b. In fact, in

many cases, we only need to know ⟨x|M |x⟩, where M is a linear operator. For

example, in quantum mechanics, many features of |x⟩ can be extracted in this way,

including normalization, moments, etc. One approach to solve this problem is first

solving the linear system using any quantum linear system solver [HHL09, CKS17,

CGJ19, GSLW19] to obtain the state |x⟩ and then performing the measurement of

M . However, a shortcoming of this method is that most of the quantum linear system

solvers require deep quantum circuits. And hence, the needed quantum resources may

not be accessible in the near future.

Recently, a few quantum algorithms [BPLC+19, HBR21, SSO19] were devel-

oped to solve linear systems of equations by encoding such a system into an effective

Hamiltonian

HG := A†(I − |b⟩ ⟨b|)A, (5.77)

whose ground state corresponds to the solution vector |x⟩. We can combine this idea

238

with our ground state property estimation algorithm to get a low-depth algorithm for

estimating the properties of linear system solution. More specifically, suppose we can

simulate the Hamiltonian HG for some specified time and we know the normalization

factor τ such that the eigenvalues of τHG are in [−π/3, π/3]. For the operator M , we

can assume that M can be decomposed into a linear combination of Pauli operators

M =
∑L

ℓ=1 cℓσℓ, or we assume that M is given in the block-encoding form. The

estimation algorithm has two steps:

1. Run a quantum linear system algorithm (e.g. [SSO19], [AL22], or [LT20b]) with

constant precision to prepare an initial state |ϕ0⟩ such that | ⟨ϕ0|x⟩|2 is Ω(1).

2. Using |ϕ0⟩ from step 1 as the initial state, run Algorithm 24 to estimate ⟨x|M |x⟩
within ϵ-additive error for any ϵ ∈ (0, 1).

Step 1 takes Õ(κ) time, where κ is the condition number of A. To analyze the

computation cost of the second step, we need a lower-bound on the spectral gap of

HG. Since ⟨x|A†(I − |b⟩ ⟨b|)A |x⟩ = 0, we have λ0(HG) = 0. For the second smallest

eigenvalue, since HG = A†A− A† |b⟩ ⟨b|A, by Weyl’s inequality, we have

λ1(HG) ≥ λ0(A
†A)− λ1(A† |b⟩ ⟨b|A)

= λ0(A
†A), (5.78)

where the second step follows from A† |b⟩ ⟨b|A is rank-1. Due to the normalization,

the smallest (normalized) singular value of A is Ω(κ−1). Hence, we have γ = Ω(κ−2).

By Theorem 5.13, the maximal evolution time of the Hamiltonian will be

Õ(κ2). To further improve the circuit depth, we may apply the gap amplification

technique [SB13, SSO19] to quadratically increase the spectral gap ofHG. Specifically,

consider the following family of Hamiltonians:

H̄ ′G(s) := σ+ ⊗ Ā†(s)(I −
∣∣b̄
〉 〈
b̄
∣∣) + σ− ⊗ (I −

∣∣b̄
〉 〈
b̄
∣∣)Ā(s), (5.79)

239

where σ± = (X ± iY)/2, Ā(s) := (1− s)Z ⊗ I + sX ⊗A,
∣∣b̄
〉
:= |+⟩ |b⟩ and s ∈ [0, 1].

Note that these Hamiltonians act on the original system and two ancilla qubits. Then

we have

(H̄ ′G(s))
2 =

[
H̄G(s) 0

0 (I −
∣∣b̄
〉 〈
b̄
∣∣)Ā(s)Ā†(s)(I −

∣∣b̄
〉 〈
b̄
∣∣)

]
, (5.80)

where

H̄G(s) := Ā†(s)(I −
∣∣b̄
〉 〈
b̄
∣∣)Ā(s). (5.81)

As shown in [SSO19], the eigenvalues of H̄ ′G(s) are

{
0, 0,±

√
λ1(s),±

√
λ2(s), . . .

}
, (5.82)

where λj(s)’s are the nonzero eigenvalues of H̄G(s). Furthermore, let |x(s)⟩ be the

unique ground state of H̄G(s). Note that |x(0)⟩ = |−⟩ |b⟩ and |x(1)⟩ = |+⟩ |x⟩. Then

the ground space of H̄ ′G(s) is spanned by {|0⟩ |x(s)⟩ , |1⟩
∣∣b̄
〉
}. In addition, for s = 1,

one can use Weyl’s ineqality to show that λ1(1) ≥ κ−2, which implies that the smallest

nonzero eigenvalue of H̄ ′G(1) is Ω(κ−1), as desired.

We can use the algorithm in [SSO19] to prepare a state that has Ω(1) overlap

with |0⟩ |x(1)⟩ = |0⟩ |+⟩ |x⟩ in Õ(κ) time. Specifically, this algorithm starts with

the state |0⟩ |x(0)⟩ = |0⟩ |−⟩ |b⟩, performs a sequence of unitary operations of form

e−itkH̄
′
G(sk) on it, and outputs a state ϵ-close to |0⟩ |x(1)⟩ in Õ(κϵ−1) time. Here we

set ϵ = Θ(1) and the time cost of this procedure is Õ(κ).

After obtaining a state |ϕ0⟩ that has Ω(1) overlap with |0⟩ |+⟩ |x⟩, we run Algo-

rithm 24 on |ϕ0⟩, H̄ ′G(1) and M̃ := |0⟩ ⟨0|⊗|+⟩ ⟨+|⊗M to estimate ⟨0,+, x| M̃ |0,+, x⟩ =
⟨x|M |x⟩. Notice that since we know the ground state energy of H̄ ′G(1) is zero, we do

not need to first estimate the ground state energy using Algorithm 22. Instead, we

directly evaluate the O-weighted CDF at zero. Therefore, by Theorem 5.17, we get

the following result:

240

Corollary 5.18 (Quantum linear system solution property estimation). For a linear

system Ax⃗ = b⃗, suppose A has singular values in [−1,−1/κ]∪ [1/κ, 1] for κ > 1, and

the eigenvalues of H̄ ′G(1) (Eq. (5.79)) are in [−π/3, π/3]. Furthermore, suppose we

can implement e−itH̄′
G(s) (Eq. (5.79)) in Õ(t) time for all s ∈ [0, 1].

Then, for any linear operator M given by its α-block encoding unitary UM ,

and for any ϵ ∈ (0, 1), the expectation value ⟨x|M |x⟩ can be estimated with ϵ-additive

error with high probability such that:

• the depth of each circuit is Õ(κ).

• the expected total runtime is Õ(κϵ−2α2).

For comparison, the algorithm in [SSO19] needs Õ(κϵ−1) circuit depth to ob-

tain a state that is ϵ-close to |x⟩, which is larger than ours. Moreover, to estimate

⟨x|M |x⟩, even with amplitude estimation, it still needs Ω(ϵ−1) copies of the state to

achieve ϵ-additive error. Hence, its total runtime will be Õ(κϵ−2), nearly matching

our result (ignoring the dependence on the α factor).

5.8 Discussion and Outlook

We have shown a quantum-classical hybrid algorithm for estimating properties

of the ground state of a Hamiltonian, such that the quantum circuit depth is relatively

small and only poly-logarithmically depends on ϵ−1. Therefore, the algorithm has a

significant advantage in high-accuracy estimation, and it is possible to be implemented

in early fault-tolerant devices. In practice, our algorithm can solve many important

tasks by combining with some initial state preparation methods (e.g., VQE or QAOA).

In this chapter, we provide two examples, one in quantum chemistry and another in

solving linear systems. And we believe more applications will be explored in the

future.

Another important direction is to improve the total evolution time of our al-

gorithm which quadratically depends on ϵ−1. The blowup comes from evaluating

241

the O-weighted CDF in high precision and a trade-off between maximal evolution

time and total evolution time. However, this does not meet the Heisenberg-limit of

linear dependence on ϵ−1 for generic Hamiltonians [AA17]. In our main result (Theo-

rem 5.13), the ϵ−2η−2 factor comes from the number of samples needed to reduce the

estimator’s error to O(ϵη). Amplitude estimation can be used to reduce this number

of samples and the total evolution time. However, this comes at the cost of signifi-

cantly increasing the maximal evolution time, which could require large fault-tolerant

overheads for reliable implementation. A strategy to achieve improved performance

that is more amenable to early fault tolerant quantum computers is to use recently

introduced “enhanced sampling” techniques [WKJC21]. If λ characterizes the fidelity

decay rate of the circuit as deeper circuits are used, then we would expect to need a

maximal evolution time of O(λ−1γ−1) and an total evolution time of O(λγ−1ϵ−2η−2).

Note that because this approach incorporates the impact of error into the algorithm,

the maximal evolution time is of no concern. Rather than being a cost that needs

monitoring, the maximal evolution time is chosen by the algorithm to minimize the

total evolution time. With this, we expect that as the quality of devices is improved,

the performance of the algorithm improves proportionally. We note that a similar

approach can also be applied to improve the total evolution time in [LT22] from

Õ(ϵ−1η−2) to Õ(λϵ−1η−2).

This work fits into the paradigm of “beyond the ground state energy” and

studies more general properties of the ground state. Can we go further beyond the

ground state? Some prior works have explored the estimation of such kind of prop-

erties of Hamiltonian. For example, Brown, Flammia, and Schuch [BFS11] studied

the density of states. Jordan, Gosset, and Love [JGL10] focused on the energy of ex-

cited states. Gharibian and Sikora [GS18] identified the energy barriers. Watson and

Bausch [WB21] explored detecting phase transitions via order parameters. In general,

for an unknown Hamiltonian, these estimation problems will be hard. An interesting

open problem is, given some prior knowledge of the Hamiltonian, can we design effi-

cient or low-depth quantum algorithms for estimating Hamiltonian properties beyond

242

ground state?

243

Algorithm 22 Ground State Energy Estimation
1: procedure EstimateGSE(ϵ, τ, η, ν)
2: ▷ Initialization
3: d← O(δ−1 log(δ−1η−1)), δ ← τϵ
4: for i← −d, . . . , d do
5: F̂i ← F̂d,δ,i
6: Compute θi, the phase angle of F̂i
7: end for
8: F ←∑

|i|≤d |F̂i|
9: Nb ← Ω(log(1/ν) + log log(1/δ)), Ns ← O(η−2 log2(d))

10: ▷ Sampling from the quantum circuit
11: for k ← 1, . . . , NbNs do
12: Independently sample Jk ∼ [−d, d] with Pr[Jk = j] ∝ |F̂j|
13: Measure (Xk, Yk) by running the quantum circuit with (Figure. 5.1) pa-

rameter k
14: Zk ← Xk + iYk
15: end for
16: ▷ Classical post-processing
17: xL ← −π/3, XR ← π/3
18: while xR − xL > 2δ do ▷ Invert CDF
19: xM ← (xL + xR)/2
20: for r ← 1, . . . , Nb do
21: Gr ← F

Ns

∑rNs

k=(r−1)Ns+1 Zke
i(θJk+JkxM) ▷ Multi-level Monte Carlo

method
22: end for
23: if |{r : Gr ≥ (3/4)η}| ≤ Nb/2 then
24: xR ← xM + (2/3)δ
25: else
26: xL ← xM − (2/3)δ
27: end if
28: end while
29: return (xL + xR)/2
30: end procedure

244

Algorithm 23 Ground State Property Estimation (Commutative Case)
1: procedure EstimateGSProp(ϵ, τ, η, γ, ν)
2: δ ← O(τγ), d← O(δ−1 log(δ−1ϵ−1η−1))
3: for j ← −d, . . . , d do
4: Compute F̂j := F̂d,δ,j and θj
5: end for
6: ▷ Estimate the ground state energy
7: x⋆ ← EstimateGSE(γ/8, τ, η, ν/10)
8: xgood ← x⋆ + τγ/2
9: ▷ Generate samples from the Hadamard test circuits

10: Ng ← O(log(1/ν)), K ← O(ϵ−2)
11: for k ← 1, . . . , NgK do
12: Sample (Zk, Jk) from the quantum circuit (Figure 4.3)
13: Sample (Z ′k, J

′
k) from the quantum circuit (Figure 5.2)

14: end for
15: ▷ Estimate p0
16: for i← 1, . . . , Ng do
17: Gi ← 1

K

∑K
j=1G(xgood;Z(i−1)K+j, J(i−1)K+j)

18: end for
19: p0 ← median(G1, . . . , GNg)
20: ▷ Estimate p0O0

21: for i← 1, . . . , Ng do
22: G

′
i ← 1

K

∑K
j=1G(xgood;Z

′
(i−1)K+j, J

′
(i−1)K+j)

23: end for
24: p0O0 ← median(G

′
1, . . . , G

′
Ng
)

25: return p0O0/p0
26: end procedure

245

Algorithm 24 Ground State Property Estimation (General Case)
1: procedure EstimateGSProp(ϵ, τ, η, γ, ν)
2: δ ← O(τγ), d← O(δ−1 log(δ−1ϵ−1η−1))
3: for j ← −d, . . . , d do
4: Compute F̂j := F̂d,δ,j and θj
5: end for
6: ▷ Estimate the ground state energy
7: x⋆ ← EstimateGSE(γ/8, τ, η, ν/10)
8: xgood ← x⋆ + τγ/2
9: ▷ Generate samples from the Hadamard test circuits

10: B ← O(log(1/ν)), K ← Õ(ϵ−2)
11: for k ← 1, . . . , BK do
12: Sample (Zk, Jk) from the quantum circuit (Figure 4.3)
13: Sample (Z ′′k , J

′′
k,1, J

′′
k,2) from the quantum circuit (Figure 5.4)

14: end for
15: ▷ Estimate p0
16: for i← 1, . . . , B do
17: Gi ← 1

K

∑K
j=1G(xgood;Z(i−1)K+j, J(i−1)K+j)

18: end for
19: p0 ← median(G1, . . . , GB)
20: ▷ Estimate p0O0

21: for i← 1, . . . , B do
22: G

′′
i ← 1

K

∑K
j=1G2(xgood, xgood;Z

′′
(i−1)K+j, J

′′
(i−1)K+j,1, J

′′
(i−1)K+j,2) ▷

Eq. (5.53)
23: end for
24: p0O0 ← median(G

′′
1, . . . , G

′′
B)

25: return p0O0/p0
26: end procedure

246

Chapter 6: QAOA for Network-Flow Optimization

6.1 Introduction

Combinatorial optimization (CO) tasks present many classically-hard com-

putational problems, and abound in practical applications from vehicle routing to

resource allocation, job scheduling, portfolio optimization, and integrated circuit lay-

out. Finding optimal solutions to many practically relevant classes of CO problems is

an NP-complete task, which is effectively intractable for large problems. In the past

decades, quantum computers promise tantalizing speedups on certain classically-hard

computational problems, such as integer factoring [Sho94] and structured search-

ing [Gro96]. Unfortunately, barring an upheaval of complexity theoretic dogma, quan-

tum optimization algorithms are not expected to efficiently yield optimal solutions to

NP-hard problems. However, for classical optimization on hard problems, one typi-

cally aims for reasonable but suboptimal approximations, and tremendous effort has

been put into improving the quality of approximate solutions. In a similar vein, there

is widespread hope that quantum-heuristics could yield better approximate solutions

than their classical counterparts.

This hope has been largely fueled by the introduction of the Quantum Ap-

proximate Optimization Algorithm (QAOA), a hybrid classical/quantum framework

originally motivated as a variational spin-off of the Quantum Adiabatic Algorithm

(QAA) [FGG14b]. QAOA consists of p-rounds of stroboscopic alternation between

a classical cost Hamiltonian and a quantum mixing Hamiltonian, with time inter-

vals for each evolution treated as variational parameters that are classically opti-

mized. While it was initially suggested that even a single round (p = 1) QAOA could

provide a quantum-improvement over classical state-of-the-art [FGG14a], the quan-

tum/classical gap was quickly closed [BMO+15], and there is growing evidence [Has19,

FGG20a, FGG20b, BKKT20] that p must generically scale with the problem-size in

order to achieve improved approximate solutions. Due to the difficulty of analyzing

247

QAOA-performance at large-p, establishing rigorous evidence of quantum advantage

remains elusive, and the practical value of QAOA will likely be decided empirically

(like many successful classical heuristic methods).

Making QAOA into a successful quantum heuristic will require advances in

problem encoding, and algorithm efficiency. A key weakness of traditional QAOA is

that many relevant CO problems impose constraints among variables, which are not

respected by the QAOA heuristic. A typical approach to QAOA would be to map a

CO problem into a binary integer linear program (BILP), whose objective function is

mapped to an Ising-like spin model that can be implemented on quantum hardware.

In this formulation, constraints are typically softly enforced by adding a term to the

cost Hamiltonian that energetically penalizes constraint violations. This approach

is frequently inefficient, as it can result in exploration of an exponentially-large (in

problem size) set of infeasible (constraint-violating) configurations, which has been

shown to dramatically hamper performance [WRDR20].

An alternative technique is to modify the QAOA procedure to automatically

satisfy constraints throughout the algorithm. In [HWO+19, WRDR20], this ap-

proach was used to tackle graph-coloring problems (among others), where a number-

conserving mixing Hamiltonian was designed to preserve a one-hot encoding structure.

Due to the intimate connection between symmetries and conservation laws, this high-

lights a connection between physical symmetries and constraints in CO problems, and

suggests that physics-inspired solutions may be fruitful.

In this chapter, we exploit another common “symmetry" found in physical

systems: gauge-invariance 1, to implement a constraint-satisfying mixer for network

flow problems. Network flow problems are defined on graphs, where each link of a

graph has a directed flow of “goods” that takes real or integer values. In practice,

flow could represent an amount of vehicles, goods, communication packets, etc., being

1Strictly speaking, gauge invariance is not an ordinary symmetry, however the analogy is fre-
quently useful.

248

transported through the network. Real-valued flow problems tend to admit classi-

cally efficient solutions via linear programming, whereas multi-commodity integer flow

problems are often classically hard. Integer flow problems have a wide array of ap-

plications from vehicle routing, traffic congestion minimization, and package delivery,

to communication network optimization. Each of these problem formulations share a

common constraint structure: the amount of flow entering a vertex must match the

total outgoing flow, plus (minus) a fixed amount at certain source (sink) nodes.

This flow structure is a discrete analog of Gauss law in electromagnetism:

∇ · E = ρ, where ρ is the charge density, if we re-interpret the electric field E as a

flow emanating out of a node, and the charge ρ as the amount of sourced or sinked

goods. The central idea of this chapter will be to exploit this analogy to develop

a lattice quantum electrodynamics (QED) inspired QAOA-mixer that automatically

preserves network-problem flow constraints.

The structure of the chapter is organized as follows: we briefly summarize

QAOA from the generalized perspective advocated in [FGG14a], and review the

structure of lattice-QED. We then establish a direct relationship to flow problems on

finite-dimensional graphs, and define a constraint-preserving generalization of QAOA

using a QED-style mixer. We numerically compare the performance of modified QED-

QAOA and the original (X-mixer) QAOA on a (classically easy) flow maximization

problem, and show that the quality of approximate solutions increases in a way that

is consistent with exponential-in-problem size scaling. We then explore QED-mixer

performance on classically-hard traffic congestion minimization problems, and study

the behavior with increasing problem size and number of QAOA rounds. A key step

in the algorithm is preparing an initial constraint-preserving state that is a quantum

superposition including all constraint-preserving states. Unlike the original QAOA,

where the X-mixer ground-state can be accomplished with a transversal set of single-

qubit rotations, the QED-mixer ground-state is more complicated. We explore and

compare multiple strategies for initial state preparation, and find, perhaps surpris-

249

ingly, that the QED-mixer ground-state is not optimal, suggesting a departure from

the adiabatic-algorithm reasoning often used to motivate QAOA.

6.2 Quantizing Network Flow Problems

To set the stage, we briefly review the constraint structure of network flow

problems, introduce the specific problem types that we will use to illustrate the QED-

inspired QAOA approach, and describe an implementation of their cost function as a

quantum Hamiltonian acting on qudits.

6.2.1 Constraints in flow problems

A flow problem is defined on a graph G with vertices V and edges E =

{(u, v)| u, v ∈ V are connected}. Here G is required to be a directed graph by many

versions of flow problems, such as max-flow problems, but can be undirected in other

cases like EDP. We denote the total number of vertices as |V|, and the number of

edges as |E|. On each edge, we define a flow: f(u, v) ∈ F taking value in some field F,

with f(u, v) = −f(v, u) . To facilitate implementation on discrete-leveled quantum

computing systems, in this chapter we will specialize to integer flows of k-different

commodities (i.e. F = Zk). We define the vertex from which a commodity originates

or terminates as a source or sink node respectively. We denote the sets of source and

sink nodes as {si}ki=1 and {ti}ki=1, and the amount of flow to be delivered for the ith

source-sink pair as di.

While there are a large variety of flow-problem formulations, they all share a

common constraint structure. Namely, valid flows may begin and terminate only on

source and sink nodes, respectively:

∑

v:(u,v)∈E

fi(u, v) = di(δu,si − δu,ti) ∀ u ∈ V. (6.1)

250

𝑡2
𝑠2

𝑡1

𝑠1
22

2
2

2

2

2
1

11

1

𝑡2
𝑠2

𝑡1

𝑠1
22

2

2

1

2
2

11

1

1 1 1

Figure 6.1: Example flows on a 5× 5 grid graph A feasible network flow config-
uration (L) and an unfeasible configuration(R): the arrows stand for flow directions,
and different flows are distinguished by colors with numbers representing the amount
of flow on each edge(a certain assignment of the flows in the graph is called a config-
uration).

Figure. 6.1 illustrates selected examples of valid and invalid flow configurations.

In addition, many flow problems impose additional capacity constraints on

how many of each type of commodities may flow through a particular edge:

∑

i∈[k]

|fi(u, v)| ≤ c(u, v) ∀ (u, v) ∈ E, (6.2)

where c(u, v) ∈ Z+ is referred to as the edge-capacity: the total amount of all types

of flows cannot exceed the capacity on that edge.

Flow problems come in many varieties. Some, such as the single-commodity

max flow problem, have efficient classical algorithms. However, many practical prob-

lems require introducing multiple commodities and imposing finite edge-capacities,

which typically results in hard optimization problems. For example, the problem of

maximizing capacitated integer flow was proven to be NP-complete even for only two

source-sink pairs [EIS75].

251

6.2.1.1 Qudit encoding

To encode integer flow problems onto quantum hardware, we imagine using

a register of (2di + 1)-level qudits (possibly encoded into ordinary qubits using, e.g.

binary or one-hot encoding) for each commodity and each edge (u, v) ∈ E, with the

qudit computational basis states {| − di⟩, . . . , | − 1⟩, |0⟩, |1⟩ . . . |di⟩} indicating the

amount of flow on that link 2 We note that, for this encoding the dimension of the

entire Hilbert space is thus the same as the number of all possible configurations on

the graph, which is
∏

i(2di + 1)|E|.

The total Hilbert space of this encoded system contains exponentially many

infeasible configurations that violate the flow constraints (Eq. (6.1)). The precise ratio

of feasible (flow-conserving) to infeasible (flow-violating) solutions varies by graph;

however, it is generally exponentially small in |V|. To see this, note that, the distance

between a pair of randomly chosen source and sink points is typically poly(|V|),
and for each valid path from source to sink, removing any edge along the path from

source to sink would result in an infeasible solution, resulting in combinatorially many

infeasible solutions for each feasible one.

6.2.1.2 Flow operators

We also introduce quantum flow operators on each edge e ∈ E, and for each

commodity type i = 1 . . . k:

E(i)
e =

di∑

f=−di

f |f⟩⟨f |e ⊗ 1e′ ̸=e (6.3)

where the symbol E anticipates an analogy with electric field operators in lattice-

QED. Applying E(i)
e on a state would just return the amount of flow on edge e.

2One could partially enforce capacity constraints by restricting the basis to {| −
c(u, v)⟩ . . . |c(u, v)⟩} for each commodity, however, this choice would conflict with our scheme for
producing a valid initial state.

252

Furthermore, we denote the operator whose eigenstates are equal weighted

superpositions of flow values as:

X(i)
e =

di∑

f,f ′=−di

|f ′⟩⟨f |e ⊗ 1e′ ̸=e (6.4)

which is the natural qudit analog of the Pauli-X operator.

We also define the total flow of all goods on edge e ∈ E, as Ee ≡
∑k

i=1E
(i)
e ,

and similarly Xe ≡
∑k

i=1X
(i)
e . The conventional QAOA mixer is built from HM =

−∑eXe, which indiscriminately mixes between feasible and infeasible solutions, and

has a tendency to get “lost" in the exponentially larger infeasible parts of Hilbert

space.

6.2.2 The edge-disjoint path problem

The main problem we will consider in this chapter is a variant of the traffic

congestion minimization problem known as the edge-disjoint paths problem (EDP),

often regarded as a particularly clean problem that characterizes the NP-hardness of

flow optimization. Qualitatively, the frequently studied optimization version of EDP

seeks to route k different commodities without “congestion", i.e., without multiple

commodities flowing through the same edge:

EDP: Given a undirected graph G(V,E) with k source/sink-pairs (si, ti), find k paths

connecting si and ti for all i ∈ [k] such that the maximum of congestion in each edge

is minimized.

Since the maximum of congestion is a global function that is hard to implement

on a quantum circuit, we can reformulate EDP’s cost function by locally penalizing

253

all congested edges instead:

min C ≡
∑

(u,v)∈E

max

0,

∑

i∈[k]

|fi(u, v)| − 1

 s.t.

∑

v:(u,v)∈E

fi(u, v) = di(δu,si − δu,ti) ∀ u ∈ V. (6.5)

In other words, in this version one aims at minimizing the total amount of congestion

on all edges instead of the maximum. Notice that an optimal solution with C = 0

will still be a solution of the EDP problem (with no congestion), whereas C > 0

configurations may be regarded as approximate solutions of the relaxed EDP.

EDP has been shown to be NP-hard even with a rather modest scaling of

commodity types (k ∼ log |V|) [CL12]. We restrict our attention to EDPs on planar

graph, where the problem remains NP-hard [CL12].

To convert the EDP cost-function into a quantum Hamiltonian, we reformulate

the cost function into an analytic form, and introduce the EDP cost Hamiltonian

(using the encoding described above):

HC,EDP =
∑

e∈E

[
(2E2

e − 1)2 − 1

48
] (6.6)

which has vanishing energy for non-congested links (with Ee = 0, 1) and penalizes

higher congestion. The normalization is chosen such that minimally congested links

with Ee = ±2 have one unit of energy cost. Eq. (6.6) is a reformulation of the cost

function in Eq. (6.5), whose flow constraints will be dealt with in later sections.

6.2.3 The single source shortest path problem

For classical simulations, the fully unconstrained multi-commodity Hilbert

space quickly becomes intractable. Therefore, to benchmark the modified QAOA

performance against the original formulation, we also consider a much simpler class

of single source shortest path problem (SSSP), which seek the shortest path (on a

weighted graph) between a single source and sink with unit demand (d = 1):

254

SSSP: Given a weighted undirected graph G(V,E), with weights {we : e ∈ E}, and a

single pair of source and sink vertices s, t ∈ V, find the minimal length path connecting

s and t where length is defined as the sum of the weights along the path.

Notice that SSSP can be defined on either directed, undirected or mixed graphs,

and we choose to study the undirected version for consistency with the study of EDP.

Efficient classical algorithms for SSSP [Bel58, Dij59] are textbook-standard materi-

als (see also [KS19] for a quantum algorithm for directed acyclic graphs). In this

chapter, we do not aim to improve solution of SSSP, but only to use this problem

as a benchmark to compare the performance of different QAOA mixers in the graph

routing problem. Importantly, none of the QAOA strategies we test take advantage

of the classically efficient solution, providing a fair comparison.

s s s

t t t

Figure 6.2: Triangle graphs used in the study of SSSP problem In SSSP
simulations we look for the shortest (lowest-weight) path from the top node to the
bottom node, where weight on each edge is randomly assigned.

Since SSSP is a direct analogy of EDP (at k = 1), we can use the same

encoding scheme and write the cost Hamiltonian as

HC,SSSP =
∑

e∈E

we(Ee)
2 (6.7)

where we denote the edge e’s weight. Since only a single type of flow with demand 1

presents in the problem, the valid flow values are just -1,0,1 on any edge. The size of

the Hilbert space of SSSP is thus 3|E|, which, for large graphs, is far less than the 3k|E|

255

of
Triangles

Total #
States

#
Feasible
States

Feasible
fraction

2 729 3 4.1× 10−3

3 2187 4 1.8× 10−3

4 6561 8 1.2× 10−3

Table 6.1: A comparison between total and feasible Hilbert space dimension
Total Hilbert space dimension (|Htot|) and feasible sub-space dimension (|Hf|), and
ratio of feasible to total states |Hf|/|Htot|.

(with k ≥ 2) required for EDP, allowing us to classically simulate relatively larger

instances.

With these problem classes in hand, we now turn to the task of modifying

the QAOA algorithm to preserve the network flow constraints, beginning with a brief

review of QAOA to set notation.

6.3 From QAOA to Lattice QED

QAOA is designed to sample from low-cost states of a cost Hamiltonian HC

which is diagonal in the computational basis, and represents the objective function of

the optimization problem in question. In its original incarnation [FGG14a], the initial

state |ψ0⟩, is chosen to be the ground-state of a mixing Hamiltonian HM = HM,X

with:

HM,X = −
∑

i

Xi, (6.8)

which we will refer to as the “X-mixer." Subsequent generalizations [HWO+19] con-

sidered more complicated forms of HM designed to preserve constraints of various

forms. The algorithm proceeds by evolving:

|ψp(γ,β)⟩ =
p∏

j=1

e−iβjHM e−iγjHC |ψ0⟩ (6.9)

256

to generate a variational wave function characterized by real-parameters {γi} and

{βi} (i = 1, 2, ...p), which are classically optimized (using the classical routine of ones

choice) to minimize the expected cost: γ∗,β∗ = argmin εC , where:

εC ≡ ⟨ψp(γ,β)|HC |ψp(γ,β)⟩. (6.10)

This biases the wave-function amplitude of |ψp(γ∗,β∗)⟩ towards low-cost configu-

rations, such that repeated sampling from this state preferentially yields low-cost

solutions.

In the limit of infinite p, QAOA contains Quantum Adiabatic Algorithm

(QAA) as a subset of possible solutions and is guaranteed to find the exact opti-

mum. For hard problem instances, precisely following the adiabatic path may require

p to grow super-exponentially with problem-size, but it is hoped that approximate

short-cuts to this adiabatic solution may be variationally identified with far lower p.

To apply this formalism, one must first map the optimization problem vari-

ables onto qubits, such that the cost for each qubit configuration can be computed in

a local manner. For constrained optimization problems, this often results in a waste-

ful encoding in which many qubit states do not satisfy the feasibility constraints.

One possible strategy would be to energetically penalize the constraint violation by

introducing a penalty term into HC for unsatisfied constraints. While straightfor-

ward in its implementation, this strategy results in wasteful exploration of (typically

exponentially many) configurations corresponding to infeasible solutions, degrading

algorithm performance. An alternative option [HWO+19] is to identify an alternate

mixing term HM which automatically preserves the constraint structure. Then, if an

initial state can be prepared to satisfy all constraints, the algorithm will only search

inside the feasible subspace. In what follows, we focus on the constraints common

to a large variety of network flow problems and show how to encode them into an

appropriate constraint-preserving mixer inspired by lattice-QED.

257

6.3.1 Lattice QED Hamiltonian

The flow constraints described in Eq. (6.5) are of precisely the same form as

Gauss’s law for lattice-QED, if we interpret each commodity flow as a different “flavor"

of electric field, and the corresponding sources and sinks as positive and negative

charge di. This suggests that we can use gauge-invariant lattice-QED Hamiltonians to

implement constraint-preserving mixers for the network flow QAOA. Here, we briefly

review some relevant lattice-QED notations and formalisms. In what follows, we

specialize them to planar graphs, although our construction generalizes to arbitrary

finite-dimensional graphs (but would become infeasible for fully-connected graphs).

For notational simplicity, we initially suppress the commodity (“flavor") label.

The Hamiltonian formulation of the (compact) lattice QED, on a planar graph

G = (V,E), is defined by introducing discrete analogs of the continuum electric field

E(r) and vector potential A(r). Specifically, a (gauge-redundant) Hilbert space

is defined by electric field operators Euv = −Evu on each edge (u, v) ∈ E whose

eigenstates are denoted |euv⟩ with euv ∈ Z. Electric fields are oriented such that

Evu = −Evu. The conjugate operator to Euv is denoted by e−iAuv , which raises or

lowers the electric field:

eiAuvEuve
−iAuv = Euv + 1, (6.11)

and [e−iAuv , Ewx] = 0 for (w, x) ̸= (u, v).

Physical states are defined by projecting onto subspace that satisfies a lattice

analog of the continuum Gauss’ law ∇ ·E(r) = ρ(r), i.e.
∑

u:(u,v)∈EEuv = ρu, which

is precisely the same form as the flow constraint (Eq. (6.1)), provided that we equate

the electrical charge with demand, d. The Gauss’ law is equivalent to demanding

invariance under gauge transformations:

e−iAuv → e−iϕue−iAuveiϕv (6.12)

|ψ⟩ → ei
∑

u∈V ϕuρu |ψ⟩ (6.13)

258

for any vertex-dependent phases eiϕv ∈ U(1).

A special role is played by gauge invariant, Wilson loop operators, UΓ =

e−i
∮
Γ A⃗·dℓ⃗, which measure the magnetic flux through a closed oriented loop Γ, where

we use integral notation to indicate the product of e−iAuv over all links (u, v) on the

perimeter of Γ, with orientation along that of Γ. On planar graphs, which have trivial

homology, an arbitrary Wilson loop can be decomposed into a product of small loop

operators circling the elementary faces (plaquettes) of the graph, which we label by

F.

For dimensions d > 2, ordinary Maxwell electrodynamics emerges as the con-

tinuum and weak-coupling limit of the minimal gauge invariant Hamiltonian:

HMaxwell =
K

2

∑

uv∈E

E2
uv −

∑

f∈F

(Uf + U †f) (6.14)

where Uf denotes the Wilson loop encircling face f in the right-handed sense, and

K is a coupling constant. The first term represents an electric field line tension,

whereas the second gives an energy cost to magnetic flux (which produces quantum

dynamics for electric fields). For d = 2, the lattice-QED systems is confined by

monopole/instanton proliferation for any non-zero electric field line tension, K > 0.

6.3.2 QED-mixer for network flow problems

To obtain a flow-conserving mixer, one can nominally choose any gauge-

invariant lattice-QED Hamiltonian, replacing electric field variables with flow vari-

ables. We introduce a separate electric-field “flavor" for each type of commodity

indicated by a superscript parenthetical index: E(i) with i = 1 . . . k. In practice,

we will choose our mixing Hamiltonian as the minimal Maxwell Hamiltonian, since

it contains only the minimal elementary Wilson loops, thereby simplifying its im-

plementation. Furthermore, we will set the electric field tension K to zero, since

the goal of a mixer Hamiltonian is to produce unbiased quantum tunneling between

different flow configurations. Significant efforts have been devoted to developing

259

various schemes for “qubitization" and quantum simulation of lattice gauge theo-

ries [MWR+14]. We will remain largely agnostic about the specific implementation

details, however, it is crucial to truncate the range of electric field values to lie be-

tween −c(u, v) ≤ Eu,v ≤ c(u, v). To this end, we modify the electric field raising

operator e−iAuv to annihilate |c(u, v)⟩, without altering its action on other states. We

refer to the resulting Hamiltonian:

HM,QED = −
k∑

i=1

∑

f∈F

(U
(i)
f + h.c.) (6.15)

as the QED-mixer. We require that sufficiently many elementary faces/plaquettes

f ∈ F are included to provide a complete basis of graph cycles, so that evolution

under Hm can transfer any flow-configuration to any other flow configuration. This

is easy to satisfy for planar graphs, one can readily verify that O(|V|) applications

of Hm connect any any two flow configurations (see Appendix D.1). We note that

the circuit complexity of implementing this mixing Hamiltonian grows length with

number of minimal cycles.

6.3.2.1 Avoiding Isolated Loop Generation

As written, the QED-mixer does not allow any flow constraint violations. How-

ever, this mixer still suffers from a potential problem: it can crate isolated loops of

circulating flow that do not connect to sources or sinks (see Figure. 6.3). These

isolated loops satisfy all flow constraints, but do not correspond to a physically rel-

evant solution. One option is to simply retain these isolated loops throughout the

QAOA, and prune them from the final solutions via classical post-processing. A po-

tential drawback is that is that isolated loops may incur unphysical costs, and on

large graphs, each valid path can be dressed with exponentially many isolated loops,

each of which could incur an unphysical cost penalty, masking the true cost of the

“pruned" post-processed solution during the QAOA optimization. Throughout the

remainder of this chapter, we will restrict our attention to problems with unit de-

mand for each type of good. For this subclass of problems, we can avoid isolated

260

Figure 6.3: A configuration with an isolated loop Without the loop which is
detached from the path, this would be a feasible solution. One could remove it easily,
but having multiple isolated loops in a complicated graph would make such process
hard to perform

loop creation by introducing further restrictions on the QED-mixer, which we call

the restricted QED (RQED) mixer. In practice, this restriction will incur additional

circuit complexity and may be undesirable. We will later compare the performance

of the QED-mixer with and without restriction. The key step will be formulating a

method to efficiently detect whether acting with Uf or U †f would create an isolated

loop, depending on the graph property and specific problem. To avoid combinatorial

blow-up of Hamiltonian terms, this detection must be done locally, which we do as

follows. To determine whether adding electric field circulation around an elementary

cycle of the graph adds an isolated loop, consider acting with U †f to add an electric

field loop to a simple path and the following steps: Traverse the edge segments of

the cycle in a counterclockwise fashion. For each vertex v ∈ V, count the number

of electric field lines entering (E(i)
v,in) versus leaving (E(i)

v,out) the node. Denote their

difference-squared as

V(i) ≡
ℓ∑

j=1

(
E

(i)
vj ,in − E

(i)
vj ,out

)2
, (6.16)

where v1, . . . , vℓ are the nodes in the cycle. Notice that (E(i)
v,in−E(i)

v,out)
2 can only take

value 1 or 0. Since in our setting where maximum flow is 1, having two different

direction of flows at the same node would suggest the node being used repeatedly,

261

.
1

1

1

1

Apply loop
operator clockwise

1

1

A

B

A

B

s s

t t

1

1

1

1

Apply loop
operator clockwise

A1

B1

A2B2 1

1

A1

B1

A2B2
s

t

s

t

Figure 6.4: An explanation of the “decision function" For simplicity, we consider
only one type of flow with max capacity 1. In both pictures, a flow (marked red)
initially travels through the plaquette and then a loop operator is applied, increasing
the flow on each edge on the plaquette by 1 in clockwise direction. The only difference
between the pictures is that, the flow enters the loop twice at A1 and A2, and applying
the operator resulted in redirected flow from A1 to B2, resulting in an isolated loop
A1, B2, ..., A1. To avoid such instances, we only apply the loop operator when exactly
one continuous path of flow appears in the plaquette, which can be determined locally.

which further implies the configuration already contains an isolated loop. Imposing

the Gauss’ law constraint, V(i) is equal to the total number of electric field lines

entering or exiting the loop (if the loop does not contain a source/sink; or one could

interpret a source as outside flow entering the loop and vice versa) without regard to

sign (which is necessarily even). One can readily check that an isolated loop will be

created unless V(i) = 2 (see Figure. 6.4 for sample instances).

With this in mind, we can then left-multiply U †f by a locally evaluable “decision

function" to define a modified loop operator:

U
(i)
f → Ũ

(i)
f = δV(i),2U

(i)
f , (6.17)

which does not create isolated loops. Note that δV(i),2 commutes with U so the

multiplication order is arbitrary.

In practice, δV(i),2 can be written as a polynomial with zeros at all even values

of V(i) other than 2:

δV(i),2 =
∏

j=0,1...ℓ;j ̸=1

(
2j − V(i)

2j − 2

)
, (6.18)

which permits implementation with circuit complexity ∼ poly(ℓ). For simple graph

structures, such as grids, where the sizes of elementary cycles are bounded indepen-

262

dent of the system size, imposing this restriction adds only constant circuit-depth

overhead.

6.3.2.2 Initial state preparation

To begin the QAOA procedure, one must choose an initial state that is a quan-

tum superposition with weights on all possible solutions. In the original formulation

of QAOA, the initial state was chosen as the ground-state of the X-mixer Hamilto-

nian. This had two virtues: first, it ensured that QAOA could reduce to the quantum

adiabatic algorithm in the limit of large step number, p. Second, this state is an

equal weighted superposition of all computational states, and does not introduce an

intrinsic bias.

In contrast, for QED-mixers, the mixer ground-state is no longer an equal-

weight superposition. Moreover, it is not straightforward to implement the ground-

state of the QED or RQED mixers. For these reasons, we consider alternative state

preparation schemes. As a starting point, we assume that it is straightforward to

greedily prepare a computational basis state that satisfies the flow-constraints (a

detailed prescription will be given below for EDP problems).

Adiabatic ground-state preparation by reverse-annealing: One option would

be to adiabatically prepare the QED or RQED mixer ground-state via adiabatic

evolution from a classical Hamiltonian with the fixed computational basis state as

the ground-state to the (R)QED mixer ground-state. However, generically, the QED

mixer will have gapless photon-like excitations, whose gap scales to zero as ∼ 1/R

where R is the graph radius (maximal distance between two nodes), such that this

adiabatic ground-state preparation requires time ∼ O(R). Moreover, we will see

that starting from the ground-state of the mixer Hamiltonian actually leads to worse

QAOA performance, due to the reasons we will discuss in later sections.

263

State preparation by mixer evolution: An alternative approach is to simply

time-evolve the initial flow-constraint-preserving computational basis state with the

mixing Hamiltonian for a certain amount of time, which spreads out the weight of

the Hamiltonian onto other configurations. In analogy to photon propagation in

electrodynamics, the flow should spread out ballistically (moving with constant ve-

locity), covering the graph in time ∼ O(R). Hamiltonian simulation techniques can

implement time-evolution for time t with performance that asymptotically tends to

O(t) [BCK15]. In practice, it may not be necessary to simulate continuous time

evolution, but rather one could break HM into local terms acting on disjoint sets of

qubits and stroboscopically alternate among them to achieve similar results.

To numerically analyze the spreading of the wave function, we introduce the

inverse participation ratio (IPR) test:

IPR =
∑

i

|ψi|4, (6.19)

where ψi is the amplitude of the wave-function in computational basis state i. IPR

measure is inversely proportional to how evenly the wave-function spread-out over

the computational basis states (i.e., among potential solutions to the optimization

problem). The choice of power 4 here is because 2 would always give 1 and higher

powers contain the same information about the wave function as 4th power does

except for rare cases. When the wave-function is concentrated on a single state,

IPR = 1; whereas an equal superposition of all states yields the minimal value of

IPR = 1/|H|, where H is the size of the Hilbert space (number of feasible solutions)

Figure. 6.5 shows the evolution of IPR with evolution under the RQED-

mixer for single source-sink pairs on different sized square-grids. Since the RQED-

Hamiltonian only evolves in the feasible solution space the test is done only within a

constructed feasible subspace. The IPR decays from one, approximately saturating

to a value close-to, but below the IPR for the mixer ground-state (blue dashed line),

in characteristic time tsat ∼ O(R) (where R is the graph radius). In addition, the

264

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.80

0.85

0.90

0.95

Fl
ow

 E
nt

ro
py

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

10 2

10 1

100

IP
R

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.8

0.9

1.0

Fl
ow

 E
nt

ro
py

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

10 3

10 1

IP
R

(b)

Figure 6.5: IPR and entropy test – The figures show instances of IPR and flow
entropy (normalized to its maximum) S in the feasible space for single-source 4 × 4
(top) and 5 × 5 (bottom) square lattices for RQED-mixer in real time evolution. In
IPR tests, the black solid line stands for the minimum possible IPR value (equal
superposition of all possible paths from s to t), and the blue dashed line shows the
IPR for mixer ground state. All s− t pairs and initial paths are drawn at random. At
both sizes, the entropy curve characters the bumps and saturation in the IPR curve,
suggesting itself as a good alternative of IPR.

IPR exhibits approximately periodic revival behaviors, which are most evident on the

smaller 4×4 grid. As is well known from the study of Poincare recurrences, the period

of these revivals becomes (doubly)-exponential in size of the graph, since the number

of feasible solutions grows exponentially with the size of the graph, and can be safely

neglected even for moderate graph sizes (indeed the oscillations are negligible already

for the 5× 5 grid.)

To prepare the initial state for subsequent QAOA iterations, we evolve the

state until it just enters the saturation region where the IPR stabilizes to its long

time value (e.g. in the 5 × 5-grid this occurs around tsat ≈ 7.5, see Figure. 6.5). In

both tests, we observe that, inside the saturation region, the saturation-value of IPR

lies below that of the mixer’s ground-state, indicating that the mixer ground-state is

more biased than the time-evolved state. This feature is natural since the evolved

state is not low-energy and can be expected to contain additional configurational

265

entropy.

In practice, IPR is challenging to measure as the Hilbert space size grows

exponentially. Instead, one can determine the saturation time by monitoring local

observables that act as witnesses for the IPR. Without loss of generality we focus on

a single commodity case, since for multiple commodities, the Hilbert space is a tensor

product of the single-commodity Hilbert spaces, with no inter-commodity interactions

in the state preparation procedure. We examine the probability of observing unit flow

(of either sign) on edge e ∈ E after evolution for time t under the mixing Hamiltonian

pe(t) =
⟨E2

e ⟩∑
e∈E⟨E2

e ⟩
(6.20)

which can be estimated by sampling from the state in the computational basis.

We then define the (normalized) “flow entropy" as the von-Neumann entropy

of this probability distribution:

Sf = −
1

|E| log 2
∑

e∈E

pe log(pe). (6.21)

Larger Sf ≤ 1 represents a more even distribution of paths. Sf saturates its maximal

value of 1 when each link carries flow with equal probability. The flow entropy exhibits

similar saturation behavior to the IPR, allowing one to measure the saturation time for

a given graph. Crucially, to accurately estimate flow, the probability pe needs only be

measured to accuracy ∼ 1/|E|, which requires sampling cost ∼ |E|2 that is polynomial

in problem size (in contrast to the exponentially small IPR), allowing an efficient

measurement to identify saturation time at which to stop the state preparation step.

6.3.3 Algorithm description

We are now ready to detail the steps of the modified QAOA for network flow

problems. Given a directed graph G(V,E) as input (if the graph is undirected, simply

choose an arbitrary orientation for the edges):

266

1. Pre-process: Identify a set of elementary faces (i.e. choose a basis of closed

cycles) in G and store them. For a planar graph, this can be done classically in

polynomial time [dBCvKO08].

2. Hamiltonians simulation: Choose a technique to simulate time-evolution under

the cost and mixing Hamiltonians: HC , HM .

3. Initial state preparation: As described in Section 6.3.2.2, for each pair (si, ti)

given in the input, pick an arbitrary “seed" path, P0 (which can be found ef-

ficiently by standard methods), and define the corresponding computational

basis state as |P0⟩. Identify the saturation time tsat, for the graph by the flow-

entropy test described in the text. Then, simulate time-evolution under the

mixing Hamiltonian to form the initial state: |ψ0⟩ = e−iHM tsat|P0⟩.

4. Variational Optimization: Following the original QAOA procedure, but replac-

ing the the X-mixer with the (R)QED-mixer to avoid generated flow-constraint

violations, find γ∗,β∗ = argmin εC using any desired classical minimization

procedure,

5. Post-process Repeatedly sample from the optimized variational state |ψ(γ∗,β∗)⟩,
recording the best (lowest-cost) sample encountered as an approximate solution.

6.4 Numerical Simulation of Algorithm Performance

In this section, we present results from numerical simulation of QED-modified

and standard QAOA of small-scale network flow problems. Due to the rapid growth of

Hilbert space, |H| ∼ O(3k|E|), the accessible problem size is quite limited. In order to

provide a meaningful comparison of the QED-mixer, we first consider the (classically

easy) SSSP problem (k = 1), which will allow simulation of relatively larger graphs

to enable a comparison of QED-mixer and X-mixer. We then simulate EDP problems

with k = 2 on a grid graph for RQED-mixer only, where we can restrict our numerical

simulation to the feasible solution space of size ≪ |H|.

267

For the original X-mixer, in each step, the variational parameters can be lim-

ited to [0, 2π] for {γi} and [0, π] for {βi}, due to the periodicity of evolution under

Pauli strings. The QED-mixer has no such periodicity. However, to run the QED-

mixer for longer times would require additional circuit depth with which additional

rounds of QAOA with the X-mixer could have been performed. Hence, to make a fair

comparison, we also restrict our variational parameter ranges for the QED-mixer to

the same range as for the original X-mixer.

In all simulations, we first perform a global search with differential evolution,

and then optimize with a local BFGS method [Fle13]. For both methods, we restrict

the optimizer to at most 200 minimization steps to balance accuracy and efficiency.

To generate a larger collection of problems from a limited set of graph types and

sizes, we generate random problem instances for each graph. For the SSSP problems

we consider for each triangle graph in Figure. 6.2 with source-and-sink located at

opposite corners, we generate random problem instances by drawing random weights

we i.i.d. for each edge from the uniform distribution on the unit interval [0, 1], and

seeding the state-preparation step with a uniformly-randomly chosen path, |P0⟩. For

the EDP problem, the edges are unweighted, so we further choose the source and sink

locations uniformly at random on different-sized grid graphs.

6.4.1 Comparing mixers

To compare the performance of QAOA on network flow problems using differ-

ent X-, QED-, and RQED-mixers, we adopt a metric called the approximation ratio

(AR) [WRDR20], defined as:

AR(γ,β) =
⟨ψp(γ,β)|Π(Cmax −HC)Π|ψp(γ,β)⟩

Cmax − Cmin

(6.22)

where Cmax and Cmin respectively represent the maximum and minimum costs from

the set of feasible solutions, and Π is the projector into the feasible subspace, which

ensures that only states without constraint violations and isolated loops are counted.

268

The approximation ratio indicates fractional of improvement compared to the worst

case, normalized by the possible range of cost values, despite whether an EDP instance

on a certain problem exists. In practice, we perform multiple independent runs to

obtain average performance, namely, the average approximation ratio (AAR), as the

indicator of QAOA performance. Similarly, the variational optimization of QAOA

parameters is done with respect to the projected cost function:

ε̃C(γ,β) := ⟨ψp(γ,β)|ΠHCΠ|ψp(γ,β)⟩. (6.23)

Whereas, by construction, the QED- and RQED-mixers automatically avoid flow-

conservation violating constraints, flow-constraint violations can only be softly penal-

ized by introducing an extra term to the cost function for the X-mixer:

HC,penalty = ∆
∑

u∈V,i

 ∑

(u,v)∈E

E
(i)
(u,v) − di(δu,si − δu,ti)

2

. (6.24)

In principle, ∆ introduces an extra hyperparameter that must be optimized. Gen-

erally, ∆ should increase with problem size to avoid the tendency to lower cost by

violating constraints. For the problem-sizes we simulate, the results are not very sen-

sitive to the precise choice in ∆ (Figure. 6.6), and we choose ∆ = 1 throughout for

simplicity.

6.4.2 Mixer comparison on SSSP problems

We begin with a comparison of the performance between all three mixers: the

X-, QED- and RQED-mixer, for approximately solving SSSP problems on different

sized graphs. As expected, X-mixer exhibits substantially worse performance than

the flow-constraint preserving QED mixers. For a single QAOA round, p = 1, the

degradation in X-mixer’s performance with increasing graph sizes tracks the decreas-

ing trend of the ratio between the number of feasible solutions and the size of whole

Hilbert space (as shown in Figure. 6.7).

269

2 4 6 8 10
Penalty for each violation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

ra
tio

Figure 6.6: Behavior of X-mixer QAOA with different penalties, ∆ for SSSP
problem at P = 1. This result shows that the average behavior of X-mixer QAOA is
fairly insensitive to the precise choice of the penalty coefficient ∆.

The unrestricted QED mixer initially matches the RQED-mixer on the small-

est problem instances, for which the graphs are too small to permit isolated loop

creation. As the graph size grows, the unrestricted QED mixer’s AAR drops below

that of the RQED-mixer. For the largest graphs, the QED-mixers’ AAR approaches

the value achieved by picking feasible paths at random, showing that isolated loop

creation can substantially degrade the unrestricted QED-mixer performance at p = 1.

This shows that, although we start with a feasible solution, isolated loops can

be created when using the QED-mixer in its original version. A multi-step QAOA

simulation shows that, for the 2-triangle graph, the QED-mixers are able to solve the

problem exactly at around p = 3, which is not surprising due to the small size of the

problem.

6.4.3 EDP on undirected graphs

Even though a direct comparison between the X-mixer and the QED-mixers

for EDP problems is expensive, we test out the performance of the QED-mixers

270

alone on larger graphs by restricting the simulation to the feasible subspace to reduce

the computational power required. In order to be able to compare performances at

different graph sizes, we only consider EDP problems with k = 2 source-sink pairs. As

shown in Figure. 6.8, even though the solution space size for 4×4 grid is typically 100

or more times (depending on the location of sinks and sources) than that of the 3×3-

grid, the performance is only weakly affected – even after only a single QAOA round,

p = 1, the AAR remains higher than 0.7. As a complementary to the results in IPR

test, Figure. 6.9, shows how different initial state IPRs result in different outcomes

in solving EDP on 3× 3 grids. We observe that, the ground state preparation is not

a necessity for our mixer, but the equal superposition state of all feasible solutions

does serve as a best starting point of the three, followed closely by the initial state

prepared by evolving a random configuration with the mixing Hamiltonian, which is

with the IPR test.

These results suggest that having an unbiased ergodic superposition of solu-

tions is more advantageous than starting close to the mixer ground-state (for ordinary

QAOA with the X-mixer, these coincide).

6.5 Discussion

In this chapter, we designed and simulated a QED-inspired QAOA algorithm to

the flow network problems. In particular, we tested its performance with the EDP and

SSSP problems. The biggest difference between routing problems and other typical

QAOA benchmark problems (like MaxCut) is that the feasible solutions only consist

of an exponentially small fraction of the whole solution space. The standard QAOA

approach produces infeasible solutions with high probability. To resolve this issue,

we proposed the RQED-mixer, which automatically ensures the satisfaction of flow

constraints throughout the algorithm. By observing the analogy between Gauss’ Law

and those constraints, we theoretically and numerically demonstrated that the QED-

mixer is a natural choice for the routing problem. Although implementing the RQED-

271

mixer requires additional circuit complexity, the generating Hamiltonian is still local

and the number of terms is still linear in problem size, and optimization purely

within the feasible space makes the QAOA with RQED-mixer more likely to find

nearly optimal solutions in comparison to the standard QAOA approach. Part of the

simulation results showed that for SSSP problem, the average approximation ratio of

RQED-mixer is significantly higher than the X-mixer. For the harder problem, EDP,

our results also showed that QAOA with RQED-mixer can achieve high approximation

ratio on different size instances, although our numerical simulations were necessarily

limited to rather modest problem sizes.

Our experiments with different initial state strategies suggest an intriguing

departure from the “shortcut-to-adiabaticity" mechanism typically used to motivate

QAOA. Namely, QAOA is often motivated as a short-depth approximation to the

adiabatic mapping from mixer to the cost of ground-state. However, we have seen

that, at least on modest graph sizes available for classical simulation, starting with a

more ergodic (less biased) superposition of initial states produces better results than

starting in a low-energy state of the mixer, suggesting that a different mechanism

than approximate adiabaticity is at play.

Whether the improved performance and superiority of the non-adiabatic op-

erations extend to a larger problem size is an important question for future studies.

However, the scope of classical simulation is limited due to the typical explosion of

Hilbert space size with problem size. Analytic insights would be extremely valuable,

although have often proved challenging beyond small-p. One possible approach is to

investigate the locality of QAOA with the RQED-mixer. For standard QAOA with

X-mixer, the locality was studied [FGG20a] to prove the performance of QAOA on

the independent set problem, another famous NP-complete problem on graphs. Last

but not least, it would be desirable to implement the algorithm on near-term quantum

computers, as these devices begin to eclipse classical simulation [AAB+19].

272

2 3 4
Number of loops

10 3

10 2

10 1

100

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

ra
tio

Feasible ratio
X
RQED
QED

1 2 3 4
P

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

aa
tio

RQED
X
QED

Figure 6.7: Comparing different mixers Top: Solving SSSP on different sized
triangle graphs with different mixers; 120 runs performed for each mixer: weight on
each edge is randomly drew from [0, 1]. Bottom: A multiple-step comparison: We
compare the behavior of the 3 mixers in solving SSSP problem on the 2-triangle graph
as plotted in Figure 6.2. Each point represents an average of 200 random instances.
Notice that, for this particular graph, it is impossible for the unrestricted QED-mixer
to create an isolated loop, making its performance almost identical to the RQED-
mixer.

273

3x3 3x4 4x4
0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

ra
tio

Figure 6.8: RQED-Mixer Behavior at p = 1 The simulation is done for 3×3, 3×4,
4× 4 grids for a 2-pair EDP problem. 200 random problem instances are performed
at each graph, by choosing the location of each source, sink, state preparation seed
path at random.

1 2 3 4 5
P

0.70

0.75

0.80

0.85

0.90

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

ra
tio

State_preparation
Equal_superposition
Eigen_state

Figure 6.9: RQED QAOA behavior in solving actual EDP problems with
different initial states We compare the effect of different choices of initial states
on the RQED-mixer’s performance, averaging over 200 random problem instances.
“Eigenstate" stands for the ground state.

274

Chapter 7: Quantum Fine-Grained Complexity

7.1 Introduction

In the closest pair problem (CP), we are given a list of points in Rd, and

asked to find two that are closest. (See Fig. 7.1 for an illustration of this problem.)

This is a fundamental problem in computational geometry and has been extensively

studied. Indeed, CP is one of the standard examples in textbooks (such as [CLRS09]

and [KT06]) to introduce the divide-and-conquer technique. Moreover, CP relates to

problems that have critical applications in spatial data analysis and machine learn-

ing, such as empirical risk minimization [BIS17], point location [SH75, Bes98], time

series motif mining [MKZ+09], spatial matching problems [WTFX07], and cluster-

ing [NTM01]. Therefore, any improvement on CP may imply new efficient algorithms

for related applications.

Figure 7.1: An instance of the CP, where the the closest pair is labeled in the circle.

Like with many other geometric problems, the hardness of CP rises as the

dimension d increases. Shamos and Hoey gave the first O(n log n) deterministic algo-

rithm in R2 by using Voronoi diagrams [SH75], improving on the trivial O(n2d) upper

bound. Then, Bentley and Shamos gave an algorithm with 2O(d)n log n running time

via a divide-and-conquer approach [BS76]. A randomized algorithm by Khuller and

Matias [KM95, Rab76] takes 2O(d)n expected running time. A trivial lower bound

275

for CP is Ω(n), since one must read all points to find the closest pair in the worst

case. Yao showed an Ω(n log n) lower bound for CP on the algebraic decision tree

model [CC89].

When we consider CP in polylog(n) dimensions, the running time of all ex-

isting algorithms blows up to Ω(n2), and thus it is unknown if there exists an algo-

rithm matching the unconditional lower bounds. Nevertheless, under the Strong Ex-

ponential Time Hypothesis (SETH), Karthik and Manurangsi [KM20a], and David et

al. [DSL19], recently proved a conditional lower bound of n2−o(1) for CP in polylog(n)

dimensions. This implies that the brute force approach is nearly optimal in polylog(n)

dimensions unless SETH is false. SETH was introduced by Impagliazzo and Pa-

turi [IP01], and is the assumption that for all ϵ > 0, there exists an integer k > 2

such that no algorithm can solve k-SAT in time O(2(1−ϵ)n).

The main idea behind the results of [KM20a, DSL19] is to prove a “fine-grained”

reduction from CNF-SAT to CP in polylog(n) dimensions. Fine-grained reductions are

reductions between computational problems that keep track of the exact polynomial

exponents. For instance, [KM20a] showed that CNF-SAT with 2n(1−o(1)) time is re-

ducible to CP in polylog n dimensions with n2−o(1) time, and thus the lower bound

for CP in polylog n dimensions is n2−o(1) unless SETH is false.

Surprisingly, to our knowledge, the quantum time complexity of CP was hardly

investigated before. The trivial quantum algorithm for CP is to use Grover’s search

algorithm on all n2 pairs, which takes O(nd) time. Sadakane et al. [SST01] sketched

a quantum algorithm that runs in O(n1−1/(4⌈d/2⌉)) time. Volpato and Moura [VM10]

claimed a quantum algorithm that uses O(n2/3) queries, but no analysis was given of

the running time, and as we will see, the conversion from the query-efficient algorithm

to a time-efficient algorithm is nontrivial. As for the lower bound, any quantum

algorithm for CP needs Ω(n2/3) time, since Aaronson and Shi [AS04] proved such

a lower bound for element distinctness, and CP contains element distinctness as a

special case, where a closest pair has distance 0.

276

In this chapter, we resolve the quantum time complexity of CP. In con-

stant dimensions, we observe that by using a quantum walk for element distinct-

ness [Amb07, MNRS11], we can achieve O(n2/3) queries for CP. However, to obtain

the same time complexity, the algorithm needs some geometric data structure that

supports fast updates and checking, and that—crucially—is “history-independent”,

i.e., the data structure is uniquely represented, disregarding the order of insertion

and deletion. History-independence is essential since different representations of the

same data would destroy quantum interference between basis states.

We propose a geometric data structure that is history-independent and that

supports fast checking and updates. Our data structure works by discretizing Rd into

hypercubes with length ϵ/
√
d. Then, we use a hash table, skip lists, and a radix

tree to maintain the locations of the points and hypercubes. This data structure is

history-independent, and we can easily find pairs with distance at most ϵ with it.

We then find the closest pair by a binary search. By using our data structure and a

quantum walk [Amb07, MNRS11], we achieve quantum time complexity Õ(n2/3).

For CP in polylog(n) dimensions, one may expect a conditional lower bound

under SETH. However, SETH fails when quantum algorithms are considered since a

simple application of Grover’s search algorithm on all assignments solves CNF-SAT in

time Õ(2n/2). Furthermore, existing fine-grained reductions may require time greater

than O(2n/2).

In this chapter, we introduce the Quantum Strong Exponential Time Hypoth-

esis (QSETH) and quantum fine-grained reductions. We define QSETH as follows.

Definition 7.1 (QSETH). For all ϵ > 0, there exists some k ∈ N such that there is

no quantum algorithm solving k-SAT in time O(2(1−ϵ)
n
2).

We then observe that the classical definition of fine-grained reductions cannot

capture the features of quantum reductions such as superposed queries and speedups

277

from quantum algorithms. For instance, a fine-grained reduction may reduce problem

A to solving many instances of problem B and then output the best solution; in this

case, one can use Grover’s search algorithm to achieve a quadratic speedup. Therefore,

instead of summing the running time over all instances as in Definition 7.9, we use a

quantum algorithm which solves all instances in superposition and outputs the answer.

We give a formal definition of quantum fine-grained reductions in Definition 7.12 and

show that under QSETH, any quantum algorithm for CP in polylog(n) dimensions

requires n1−o(1) time. This implies that Grover’s algorithm is optimal for the problem

up to an no(1) factor.

Intuitively, QSETH is the conjecture that applying Grover’s search algorithm

over all assignments in superposition is the optimal quantum algorithm for CNF-SAT.

This is similar to SETH, which says that a brute force search is optimal for CNF-SAT.

A series of works on CNF-SAT [Sch99, PPSZ05, PP10, Her15, SS17] shows that for

some constant c ∈ [1, 2], there exist (randomized) algorithms for n-variable k-SAT

that run in time 2n(1−c/k). As k grows, the running time of these algorithms approach

2n. When k is small, however, there are algorithms with better running times. For

instance, when k = 3, Schöning [Sch99] obtained an algorithm with O(1.334n) running

time, which was later improved to O(1.308n) by Paturi et al. [PPSZ05]. However,

none of the above mentioned algorithms have good running time on larger k’s, so

SETH remains a plausible conjecture.

When k is small enough, there are also quantum algorithms for k-SAT [Amb04,

DKW05] running in time much less than O(2n/2). However, these quantum algorithms

mainly use Grover search to speed up the classical algorithms of [Sch99, PPSZ05],

and thus do not perform well for large k, either. Therefore, we conjecture that for

large enough k, no quantum algorithm can do much better than Grover search.

Finally, we study the bichromatic closest pair problem (BCP) and the orthog-

onal vector problem (OV). Briefly, OV is to find a pair of vectors that are orthogonal

given a set of vectors in {0, 1}d ∈ Rd, and BCP is, given two sets A,B (representing

278

two colors) of n points in Rd, to find the pair (a, b) of minimum distance with a ∈ A
and b ∈ B.

We can summarize all of our results as follows.

Theorem 7.1 (Informal). Assuming QSETH, there is no quantum algorithm running

in time n1−o(1) for OV, CP, and BCP when d = polylog(n).

Theorem 7.2 (Informal). The quantum time complexity of CP in O(1) dimensions1

is Θ̃(n2/3)2.

Theorem 7.3 (Informal). For any δ > 0, there exists a quantum algorithm for BCP

with Õ(n1− 1
2d

+δ) running time. There exists a quantum algorithm which solves (1+ξ)-

approximate BCP in time Õ(ξ−dn2/3).

Theorem 7.4 (Informal). The quantum time complexity of OV in O(1) dimensions3

is Θ(n1/2).

Table 7.1 also summarizes what is known about upper and lower bounds on

the classical and quantum time complexities of all of these problems.

Related work A recent independent work by Buhrman, Patro and Speelman [BPS19]

also studied quantum strong exponential time hypothesis. They defined (a variant

of) QSETH based on the hardness of testing properties on the set of satisfying as-

signments of a SAT formula, e.g., the parity of the satisfying assignments. Based

on these hardness assumptions extended from the original QSETH, they gave condi-

tional quantum lower bounds for OV, the Proofs of Useful Work [BRSV17] and the

1We actually give a slightly stronger result: the same time complexities still hold when d =

O
(

log logn
log log logn

)
.

2The Θ̃ notation is Θ with logarithmic factors hidden in both upper and lower bounds.
3The same time complexities still hold when d = O(log log n).
4log∗(n) := log∗(log n) + 1 for n > 1 and log∗(1) := 0. Hence, 2O(log∗ n) is an extremely slow-

growing function.

279

Dimension Lower Bound Upper Bound

CP

Θ(1)
Classical Ω̃(n) [CC89] Õ(n) [SH75, BS76, KM95]
Quantum Ω(n2/3) Theorem 7.33 Õ(n2/3) Corollary 7.32

polylog n
Classical n2−o(1) (Under SETH) [KM20a] O(n2)

Quantum n1−o(1) (Under QSETH) Theorem 7.12 Õ(n) Theorem 7.7

OV

Θ(1)
Classical Ω(n) O(n) [Wil17]
Quantum Ω(n1/2) Theorem 7.43 O(n1/2) Theorem 7.43

polylog n
Classical n2−o(1) (Under SETH) [Wil05] n2−o(1) [AWY15, CW16]
Quantum n1−o(1) (Under QSETH) Theorem 7.12 Õ(n) Theorem 7.7

BCP

Θ(1)

Classical Ω(n) O
(
n2− 2

⌈d/2⌉+1
+δ) [AESW91]

Quantum Ω(n2/3) Theorem 7.42 Õ(n1− 1
2d

+δ) for BCP Theorem 7.41
Õ(ξ−dn2/3) for (1 + ξ)-BCP Theorem 7.39

2O(log∗(n))4 Classical n2−o(1) (Under SETH) [Che18] n2−o(1) [AWY15, CW16]
Quantum n1−o(1) (Under QSETH) Theorem 7.18 Õ(n) Theorem 7.7

Table 7.1: A summary of our quantum complexity results and comparison to classical
results. The bold entries highlight our contributions in this chapter.

edit distance problem. In comparison, we formally define the quantum fine-grained

reductions and prove lower bounds for CP, OV, and BCP under the original form of

QSETH by showing the existence of quantum fine-grained reductions from CNF-SAT

to the these problems.

7.1.1 Proof overview

For ease of presentation, some notations and descriptions will be informal here.

Formal definitions and proofs will be given in subsequent sections.

We give an optimal (up to a polylogarithmic factor) quantum algorithm that

solves CP for constant dimensions in time Õ(n2/3). First note that there exists a

Johnson graph corresponding to an instance of CP, where each vertex corresponds to

a subset of n2/3 points of the input of CP, and two vertices are connected when the

intersection of the two subsets (they are corresponding to) has size n2/3−1. A vertex

is marked if the subset it corresponds to contains a pair with distance at most ϵ. Then,

the goal is to find a marked vertex on this Johnson graph and use binary search over

ϵ to find the closest pair. Our algorithm for finding a marked vertex is based on the

quantum walk search framework by Magniez et al. [MNRS11], which can be viewed as

280

the quantum version of the Markov chain search on a graph (in our case, a Johnson

graph). The complexity of this quantum walk algorithm is O(S + 1√
λ
(1√

δ
U + C)),

where λ is the fraction of marked states in the Johnson graph, δ is its spectral gap, S

is the cost for preparing the algorithm’s initial state, U is the cost for implementing

one step of the quantum walk, and C is the cost for checking the solution. For our

Johnson graph, λ = n−2/3 and δ = n−2/3. If we consider only the query complexity,

S = n2/3, U = O(1), and C = 0. However, the time complexity for C is huge in the

straightforward implementation, e.g., storing all points in an array according to the

index order, as we need to check all the pairs from the n2/3 points, which will kill

the quantum speedup. To tackle this, we discretize the space into small hypercubes.

With this discretization, it suffices to check O((
√
d)d) neighbor hypercubes to find a

pair with distance at most ϵ. To support the efficient neighborhood search, we need

an efficient data structure.

Existing data structures do not meet our need. They either have prohibitive

dependence on the dimension, such as Ω(n⌈d/2⌉) time for constructing and storing

Voronoi diagrams [Kle80], or do not have unique representation (i.e., they are history-

dependent), such as fair-split trees and dynamic trees [Bes98]. Note that the require-

ment of unique representation is due to the fact that different representations of the

same data would destroy the interference that quantum computation relies on. To

solve this problem, we propose a uniquely represented data structure that can answer

queries about ϵ-close pairs and insert/delete points efficiently. This data structure

is based on a hash table, skip lists, and a radix tree. With this data structure,

U = O(log n) and C = O(1). Hence, we have the desired time complexity (see Sec-

tion 7.4.2). We give another method for solving CP that only uses a radix tree as

the data structure. With only a radix tree, the algorithm cannot handle cases with

multiple solutions, and we need to subsequently reduce the size of the problem until

there is at most one solution (see Section 7.4.3). These two quantum algorithms have

the same time complexity.

Our quantum algorithm for solving approximate BCP follows the same spirit as

281

that for CP, except that we use a finer discritization of the space (see Section 7.5.1). To

solve BCP exactly, we need a history-independent data structure for nearest-neighbor

search, but no such data structure is known. Instead, we adapt the nearest-neighbor

search data structure by Clarkson [Cla88] to the quantum algorithm proposed by

Buhrman et al. [BdWD+01] for element distinctness, which does not require history-

independence of the data structure because in the algorithm of [BdWD+01], no in-

sertions and deletions are performed once the data structure for a set of points is

constructed (see Section 7.5.2). Sadakane et al. [SST01] sketched an algorithm for

BCP with similar ideas and running time, but we give the first rigorous analysis.

To derive our quantum fine-grained complexity results for OV and CP when

d = polylog n under QSETH, we first define quantum fine-grained reductions. In

our definition, we consider problems whose input is given in the quantum query

model, and allow the reduction to perform superposed queries and run quantum al-

gorithms, e.g., amplitude amplification. The classical reductions from CNF-SAT to

CP [KM20a, DSL19] and OV [WY14] are not “quantum fine-grained” under QSETH.

These reductions fail because their running time exceeds 2n/2(1−ϵ), which is the conjec-

tured time complexity for CNF-SAT under QSETH. Therefore, we cannot derive from

them any non-trivial lower bounds for CP or OV based on QSETH. In the following,

we use the advantages of quantum algorithms to make these reductions work.

There are two main obstacles in “quantizing” the fine-grained reductions under

QSETH. The first obstacle is that the time cost for preparing the input of the problem

we reduce to is already beyond the required running time. For instance, consider the

reduction from CNF-SAT to OV. Let φ be a CNF-SAT instance on n variables and

m clauses. The classical fine-grained reduction divides all n variables into two sets

A and B of size n/2, and then maps all assignments for variables in A and B to

two sets VA and VB of 2n/2 vectors each. It is obvious that the time for writing

down VA and VB is already Θ(2n/2). Nevertheless, many quantum algorithms achieve

sublinear query complexities by querying the input oracle in superposition. Hence,

instead of first constructing the input of OV at once and then running the algorithm,

282

we can simulate it “on-the-fly”: whenever the OV’s algorithm queries the input oracle

with some superposition of indices, we use a quantum subroutine to realize the input

oracle by mapping the query indices to the corresponding assignments in CNF-SAT,

and then to the corresponding vectors in VA and VB. This subroutine takes only O(n)

time, and therefore the quantum reduction, which has running time O(n) times the

running time of the OV algorithm, is quantum fine-grained.

Another difficulty in quantizing the fine-grained reductions is that some re-

duction needs to call the oracle multiple times, and the number of calls exceeds the

required running time. However, it is possible to achieve quadratic speedup if these

oracle calls are non-adaptive. For the reduction from BCP to CP, we can reduce a

BCP instance to n1.8+o(1) log n instances of CP, which is already larger than the con-

jectured Ω(n) quantum lower bound of BCP. By further studying the reduction, we

find that the solution to BCP is the minimum of the solutions to the the constructed

CP instances. Therefore, we can use the quantum minimum-finding algorithm to re-

duce the total time complexity to Õ(
√
n1.8+ϵ · tCP), which is enough to show that BCP

is quantum fine-grained reducible to CP.

With the above-mentioned techniques, we quantize the classical fine-grained

reductions, and show that CNF-SAT, with conjectured lower bound Ω(2n/2), is quan-

tum fine-grained reducible to OV and CP with lower bound Ω(n′)5, when the dimen-

sion d is polylog(n′).

7.2 Preliminaries

Definition 7.2 (Distance measure). For any two vectors a, b ∈ Rd, the distance

between them in the ℓ2-metric is denoted by ∥a − b∥ =
(∑d

i=1 |ai − bi|2
)1/2

. Their

distance in the ℓ0-metric (Hamming distance) is denoted by ∥a − b∥0 = |{i ∈ [d] :

ai ̸= bi}|, i.e., the number of coordinates on which a and b differ.

5n is the input size of CNF-SAT, and n′ is the input size of OV and CP.

283

7.2.1 Quantum query model

We consider the quantum query model in this work. Let X := {x1, . . . , xn} be

a set of n input points and OX be the corresponding oracle. We can access the i-th

data point xi by making the query

|i⟩ |0⟩ OX−−→ |i⟩ |xi⟩ , (7.1)

and we can make queries to elements inX in superposition. Note that OX is an unitary

transformation in the formula above. Hence, a quantum algorithm with access to OX

can be represented as a sequence of unitary transformations.

Consider a quantum algorithm A with access to an oracle O and a initial state

|0⟩ := |0⟩Q |0⟩A |0⟩W , where the registers Q and A are for the queries and the answers

from the oracle, and the register W is the working space which is always hold by A.

Then, we can represent the algorithm as

UTOUT−1 · · ·OU1 |0⟩ . (7.2)

Let |ψ⟩i = UiO · · ·OU1 |0⟩ :=
∑

i,z |i⟩Q |0⟩A |z⟩W be the state right before applying

the i-th O, then

O |ψ⟩i :=
∑

i,z

|i⟩Q |xi⟩A |z⟩W . (7.3)

7.2.2 Quantum subroutine for unstructured searching and minimum find-
ing

Definition 7.3 (Unstructured search). Given a set P of n elements in {0, 1}, decide

whether there exists a 1 in P .

Theorem 7.5 (Grover’s search algorithm [Gro96, NC10]). There is a quantum algo-

rithm for unstructured search with running time O(
√
n).

By Theorem 7.5 and BBBV’s argument [BBBV97], the quantum time com-

plexity of unstructured search is Θ(
√
n). We can also get a Õ(

√
n) quantum algorithm

for minimum finding by combining Grover’s search algorithm and binary search.

284

Theorem 7.6 (Quantum minimum finding [DH96]). There is a quantum algorithm

that finds from a set of n elements with values in R, the index of the minimum element

of the set, with success probability 1
2

and run time Õ(
√
n).

7.2.3 Problem definitions

In this subsection, we first formally define OV, CP, and BCP. Then we show

the folklore algorithms for CP, BCP, and OV by Grover’s algorithm, which run in

time Õ(n).

Definition 7.4 (Orthogonal Vectors, OV). Given two sets A,B of n vectors in {0, 1}d

as input, find a pair of vectors a ∈ A, b ∈ B such that ⟨a, b⟩ = 0, where the inner

product is taken in Z.6

We denote OV with input length n and dimension d as OVn,d. We will use this

notation when we need to specify the parameters in the following sections.

Definition 7.5 (Closest Pair Problem, CP). Given a set P of n points in Rd and a

distance measure ∆, find a pair of distinct points a, b ∈ P such that ∆(a, b) is the

smallest among all distinct pairs in P .

Similar to OV, we denote CP with input length n and dimension d as CPn,d.

We will use this notation when the parameters in the following sections are required

to be specified. Note that in this work, we consider ∆(a, b) = ∥a− b∥ as the distance

measure for CP and BCP.

Definition 7.6 (Bichromatic Closest Pair Problem, BCP). Given two sets A,B of n

points in Rd and a distance measure ∆, find a pair of points a ∈ A, b ∈ B such that

∆(a, b) = min
a∈A,b∈B

∆(a, b). (7.4)

6Our definition is slightly different than some of the literature, for example, [CW19], which
is searching among pairs inside one set. Those two definitions are equivalent up to constant in
complexities.

285

We also define an approximate version of BCP as follows.

Definition 7.7 ((1+ξ)-approximate Bichromatic Closest Pair Problem, (1+ξ)-BCP).

Given two sets A,B of n points ∈ Rd and a distance measure ∆, find a pair of points

a ∈ A, b ∈ B such that

∆(a, b) ≤ (1 + ξ) min
a∈A,b∈B

∆(a, b). (7.5)

Same as CP, we use BCPn,d and (1 + ξ)-BCPn,d to specify the parameters.

Definition 7.8 (Element Distinctness Problem, ED). Let f : [n] → [m] be a given

function. Decide whether there exist distinct i, j ∈ [n] such that f(i) = f(j).

For this problem, Ambainis [Amb07] gave a quantum algorithm with time

complexity Õ(n2/3), which matches the lower bound proved by Aaronson and Shi

[AS04] up to a polylogarithmic factor.

Theorem 7.7. There are Õ(n)-time quantum algorithms for CP and BCP when d =

O(poly log n).

Proof. We can solve CP and BCP by searching the minimum distance through all

pairs by the algorithm of Theorem 7.6. There are O(n2) pairs and checking each pair

took O(d) time, so the total running time is O(nd). For d = O(poly log n), the time

complexity equals to Õ(n).

7.2.4 Fine-grained complexity

As we have mentioned earlier in the introduction, a fine-grained reduction

from problem P to Q with conjectured lower bounds p(n) and q(n), respectively, has

the property that if we can improve the q(n) time for Q, then we can also improve

the p(n) time for P. We give the formal definition by Williams [VW15] in below.

286

Definition 7.9 (Fine-grained reduction, [VW15]). Let p(n) and q(n) be non-decreasing

functions of n. Problem P is (p, q)-reducible to problem Q, denoted as (P, p) ≤FG

(Q, q), if for every ϵ, there exist δ > 0, an algorithm R for solving P with access to

an oracle for Q, a constant d, and an integer k(n), such that for every n ≥ 1, the

algorithm R takes any instance of P of size n and

• R runs in at most d · (p(n))1−δ-time,

• R produces at most k(n) instances of Q adaptively, that is, the jth instance Xj

is a function of {(Xi, yi)}1≤i<j where Xi is the ith instance produced and yi is

the answer of the oracle for Q on instance Xi, and

• the sizes ni of the instances Xi for any choice of oracle answers yi obeys the

inequality

k(n)∑

i=1

(q(ni))
1−ϵ ≤ d · (p(n))1−δ. (7.6)

Let (P, p) ≤FG (Q, q) for some non-decreasing function p(n) and q(n). If for

every ϵ > 0, we can solve problem Q in time q(n)1−ϵ with probability 1 for all input

length n, then there exists a δ > 0 such that we can solve the problem P in time

p(n)1−δ by Eq. (7.6).

Here are some known results about fine-grained reductions.

Theorem 7.8 ([KM20a, Wil05]).

(CNF-SATn, 2n) ≤FG (OVn1,d1 , n
2
1) ≤FG (BCPn2,d2 , n

2
2) ≤FG (CPn3,d3 , n

2
3), (7.7)

where d1 = Θ(log n1), d2 = Θ(log n2) and d3 = (log n3)
Ω(1).

Remark 7.1. The second reduction from OV to BCP has been improved to d2 =

2O(log∗ n) by Chen [Che18].

287

There are several plausible hypotheses in fine-grained complexity, which can

imply conditional hardness results for many interesting problems. We first give the

definition of the strong exponential time hypothesis (SETH).

Hypothesis 7.9 (Strong Exponential Time Hypothesis, SETH). For every ϵ > 0, there

exists a k = k(ϵ) ∈ N such that no algorithm can solve k-SAT (i.e., satisfiability on a

CNF of width k) in O(2(1−ϵ)m) time where m is the number of variables. Moreover,

this holds even when the number of clauses is at most c(ϵ) ·m where c(ϵ) denotes a

constant that depends only on ϵ.

Another popular conjecture is the orthogonal vector hypothesis (OVH):

Definition 7.10 (Orthogonal Vector Hypothesis, OVH). For every ϵ > 0, there exists

a c ≥ 1 such that OVn,d requires n2−ϵ time when d = c log n.

Remark 7.2. Under SETH, we can have the following conclusions from Theorem 7.8:

• OVH is true.

• For all ϵ > 0, there exists a c > 0 such that BCPn,c logn cannot be solved by any

randomized algorithm in time O(n2−ϵ).

• For all ϵ > 0, there exists a c > 0 such that CPn,(logn)c cannot be solved by any

randomized algorithm in time O(n2−ϵ).

7.2.5 The framework for quantum walk search

In this subsection, we review the quantum walk framework for the Markov

chain search problem and demonstrate how to use it to solve the element distinctness

problem. For simplicity, we use the transition matrix P to refer to a Markov chain,

where P = (pxy)x,y∈X for X being the state space of P and pxy being the transition

probability from x to y. An irreducible and ergodic Markov chain has a unique

stationary distribution π, which is also the unique eigenvector of P with eigenvalue

1. Let M ⊆ X be a set of marked elements. In the Markov chain search problem, the

288

objective is to find an x ∈M . We can perform the following actions: setup, sampling

from the π with cost S; update, making a transition with cost U, and checking whether

the current state is marked or not with cost C. To solve the search problem classically,

we perform a random walk as follows. Start from a point sampled from π and check

if it is marked. If not, make a number of transitions on P until it mixes, and then

check again. We then repeat this process until a marked state is found. The cost of

this random walk algorithm is O(S + 1
λ
(1
δ
U + C)), where λ := |M |/|X| and δ is the

spectral gap of P .

Quantum analogues of random walks, namely, quantum walks, have been

developed for solving different problems. In 2003, Ambainis [Amb07] proposed a

quantum walk algorithm for solving the element distinctness problem. His algo-

rithm also solves the Markov chain search problem on the Johnson graph with cost

O(S + 1√
λ
(1√

δ
U + C)). In 2004, Szegedy [Sze04] gave a quantum walk algorithm for

more generalized Markov chains with cost O(S+ 1√
λδ
(U+C)). We can view Szegedy’s

quantum walk as a quantum counterpart of a random walk, where one checks the state

after each transition. Szegedy’s quantum walk only detects the presence of a marked

state, but cannot find one without extra costs. In 2006, Magniez et al. [MNRS11]

proposed a quantum walk search framework that unified the advantages of the quan-

tum walks in [Amb07] and [Sze04]. In this quantum walk framework, we can perform

the following operations:

• Setup: with cost S. preparing the initial state |π⟩ = 1√
|X|

∑
x

√
πx |x⟩.

• Update: with cost U. applying the transformation |x⟩ |0⟩ 7→ |x⟩∑y∈X
√
pxy |y⟩.

• Checking: with cost C, applying the transformation: |x⟩ 7→
{ −|x⟩ if x ∈M
|x⟩ otherwise.

The main result of [MNRS11] is summarized as follows.

Lemma 7.10 ([MNRS11]). Let P be an irreducible and ergodic Markov chain P on

X. Let M ⊆ X be a subset of marked elements. Let λ := |M |/|X| and δ be the

289

spectral gap of P . Then, there exists a quantum algorithm that with high probability,

determines M is empty or finds an x ∈M with cost O(S+ 1√
λ
(1√

δ
U+ C)).

To solve the element distinctness problem, we define a Markov chain, following

the work [Amb07, BJLM13, Jef14]. The state space X is all subsets of [n] with size r.

The Markov chain is based on the Johnson graph on X, where an edge is connecting

S and S ′ if and only if |S ∩ S ′| = r − 1. The transition probability on each edge is

hence 1
r(n−r) . A state S is marked when there exist distinct i, j ∈ S such the ith and

the jth items are the same. The Markov chain has spectral gap δ ≥ 1/r (see [Jef14])

and it is easy to verify that λ ≥
(
n−2
r−2

)
/
(
n
r

)
= O(r2/n2). If we only consider the query

complexity, the setup procedure costs r queries, the update procedure costs one query,

and the checking procedure does not cost any query. Choosing r = n2/3 yields the

optimal query complexity O(n2/3).

7.3 Quantum Fine-Grained Complexity

In this section, we give the formal definitions of the quantum fine-grained

reduction and quantum strong exponential time hypothesis (QSETH). Moreover, we

show that under QSETH, for d = polylog(n), the lower bounds for CPn,d and OVn,d

are n1−o(1), which nearly matches the upper bounds given in Theorem 7.7.

7.3.1 Quantum fine-grained reduction and QSETH

QSETH is defined based on the assumption that the best quantum algorithm

for CNF-SAT is Grover search when the clause width k is large enough.

Hypothesis 7.11 (QSETH). For every ϵ > 0, there exists a k = k(ϵ) ∈ N such that

no quantum algorithm can solve k-SAT (i.e., satisfiability on a CNF of width k) in

O(2(1/2−ϵ)n) time where n is the number of variables. Moreover, this holds even when

the number of clauses is at most c(ϵ)n where c(ϵ) denotes a constant that depends

only on ϵ.

290

Obviously, the Grover search can solve CNF-SAT in Õ(2n/2). To the best of

the our knowledge, there is no quantum algorithm that can do better than O(2n/2)

for any k.

We recall that in the quantum query model, the input of a problem is given

by a quantum oracle. Specifically, let P be a problem, and X be an instance of P

in the classical setting. Then, in the quantum query model, X will be given by an

oracle OX . We will denote an algorithm or an oracle A with access to OX by A(OX).

We say Aϵ is an ϵ-oracle for problem P, if for every instance OX , it holds that

Pr[Aϵ(OX) = P(X)] ≥ 1− ϵ, (7.8)

and the running time is O(1), where P(X) is the answer of X for problem P.

Definition 7.11 (Quantum oracles). Let X := {x1, . . . , xn} be an instance of some

problem and OX be the corresponding quantum oracle. To realize OX , we do not

need to write down the whole X; instead, we can just design a quantum circuit to

realize the mapping

|i⟩ |0⟩ OX−−→ |i⟩ |xi⟩ . (7.9)

Definition 7.12 (Quantum fine-grained reduction). Let p(n) and q(n) be nonde-

creasing functions of n. Let P and Q be two problems in the quantum query model

and Aϵ be an ϵ-oracle for Q with error probability ϵ ≤ 1/3. P is quantum (p, q)-

reducible to Q, denoted as (P, p) ≤QFG (Q, q), if for every ϵ, there exits a δ > 0, and

algorithm R with access to Aϵ, a constant d, and an integer k(n), such that for every

n ≥ 1, the algorithm R takes any instance of P of size n and satisfies the following:

• R can solve P with success probability at least 2/3 in time at most d · p(n)1−δ.

• R performs at most k(n) quantum queries to Aϵ. Specifically, in the jth query,

let Xj := {X1,j, X2,j, . . . } be a set instances of Q. Then, R realizes the oracles

{OX1,j
,OX2,j

, . . . } in superposition and applies Aϵ to solve the instances.

291

• The following inequality holds.

k(n)∑

j=1

c(Xj) · q(nj)1−ϵ ≤ d · p(n)1−δ,

where c(Xj) is the time required for R to realize the oracles {OX1,j
,OX2,j

, . . . }
in superposition and nj := maxi |Xi,j|.

In Definition 7.12, the input of Aϵ is given as a quantum oracle such that Aϵ
can be a quantum query algorithm with running time strictly less than the input size.

Moreover, the quantum reduction R can realize quantum oracles {OX1,j
,OX2,j

, . . . }
in superposition, and thus the time required is maxi c(Xi,j) (where c(Xi,j) is the time

required to realize OXi,j
) instead of

∑
i c(Xi,j). This also allows R to use fast quantum

algorithms to process the information of A′ϵs output (e.g., amplitude amplification).

7.3.2 Lower bounds for CP, OV, and BCP in higher dimensions under
QSETH

Here, we give nearly linear lower bounds for OV and CP under QSETH by

showing that there exist quantum fine-grained reductions from SAT to these problems.

Theorem 7.12. Assuming QSETH, for all ϵ > 0, there exists a c such that OVn,c logn
and CPn,(logn)c cannot be solved by any quantum algorithm in time O(n1−ϵ).

We prove Theorem 7.12 by showing that there exist quantum fine-grained

reductions from CNF-SAT to OV, OV to BCP, and BCP to CP with desired parameters.

We first give the reduction from CNF-SAT to OV as a warm-up.

Lemma 7.13.

(CNF-SATn, 2n/2) ≤QFG (OVn1,d1 , n1), (7.10)

where n1 = 2n/2 and d1 = Θ(n).

292

Proof. Let ϕ be a CNF formula with n variables and m = Θ(n) clauses. Let A be

an algorithm for OV. We first recall the classical reduction. Let ϕ := ϕ1 ∧ · · · ∧
ϕm. We divide the n variables into two sets A and B with |A| = |B| = n

2
. Let

A := {x1, . . . , xn/2} and B := {xn/2+1, . . . , xn}. We let SA := {a1, . . . , a2n/2} be all

assignments to A and SB := {b1, . . . , b2n/2} be all assignments to B. We describe two

mappings fA : SA → {0, 1}m and fB : SB → {0, 1}m as follows:

fA(ai) = [ϕ1(ai), . . . , ϕm(ai)]
T , and (7.11)

fB(bi) = [ϕ1(bi), . . . , ϕm(bi)]
T , (7.12)

where ϕj(ai) = 0 if ai is a satisfied assignment for ϕj, and ϕj(ai) = 1 otherwise; we

define ϕi(bi) in the same way. Let FA := {fA(ai) : i ∈ [2n/2]} and FB := {fB(bi) :
i ∈ [2n/2]}. Then, it is obvious that if there exist v ∈ FA and u ∈ FB such that

⟨v, u⟩ = 0, then ϕ is satisfiable. However, at first glance, this reduction with O(2n/2)

running time is not fine-grained since we require the cost of the reduction to be at

most 2n(1−δ)/2 for some δ > 0 by Definition 7.12, but writing down elements in FA

and FB already takes Ω(2n/2).

Nevertheless, as in Definition 7.11, a quantum fine-grained reduction only

needs to realize the functions fA and fB, which takes O(mkn) time where k is the

width of clauses. This is much less than O(2n(1−δ)/2). More specifically, fA and fB

are oracles for FA and FB, and for any quantum query to elements in FA or FB, the

reduction can implement oracles fA and fB:

|e, x⟩ |0⟩ fe−→ |e, x⟩ |fe(x)⟩ , (7.13)

where e ∈ {A,B}, and the time c(fe) for the reduction to implement fe for one quan-

tum query is at most O(kmn). Finally, this reduction only uses one oracle (FA, FB).

If there is an algorithm for OV which succeeds with probability 2/3, we can boost

the success probability of the reduction by repetition. Therefore, (CNF-SAT, 2n/2) is

quantum reducible to (OVn1,d1 , n1).

293

Then, to prove (CNF-SAT, 2n/2) ≤QFG (CPn3,d3 , n3), we show that (BCPn2,d2 , n2) ≤QFG

(CPn3,d3 , n3) and (OVn1,d1 , n1) ≤QFG (BCPn2,d2 , n2), where n2, n3, d2, d3 are some func-

tions of n specified in the following lemmas.

Lemma 7.14. For d = Θ(log n),

(BCPn,d, n) ≤QFG (CPn′,d′ , n
′), (7.14)

where n′ = nO(1) and d′ = (log n)c for some constant c and all points have {0, 1}
entries with the Hamming metric.

Remark 7.3. The points have coordinate entries in {0, 1}, and the Hamming metric

is equivalent to distance in ℓ2-metric (up to power of 2) in this case. Therefore, in the

proof of Lemma 7.14, we can consider the Hamming distance between points instead

of ℓ2 distance without loss of generality.

We first introduce the classical reductions in [KM20a] and some results we will

use to prove Lemma 7.14.

Classical reduction We can consider an instance of BCP with two sets of points

A and B as a weighted complete bipartite graph Kn,n, where the vertices are the

points in these two sets and edges’ weights are equal to the distances between the

corresponding points. Then, solving BCP is equivalent to find an edge with the

minimum weight in this graph. However, we cannot directly apply the algorithm for

CP on this graph since there could be two points in the same set (no edge connecting

them) that have a smaller distance than any pairs of points in two sets (connected by

an edge). To overcome this difficulty, we can “stretch” the points to make the points

in the same set far from each other, which is characterized by the contact dimension

of a graph:

Definition 7.13 (Contact Dimension). For any graph G = (V,E), a mapping τ :

V → Rd is said to realize G if for some β > 0, the following holds for every distinct

294

vertices u, v:

∥τ(u)− τ(v)∥2 = β if {u, v} ∈ E, (7.15)

∥τ(u)− τ(v)∥2 > β otherwise.

The contact dimension of G, denoted by cd(G), is the minimum d ∈ N such that

there exists τ : V → Rd realizing G.

That is, with the help of τ , we can restrict the optimal solution of CP to be the

points connected by an edge in G. But we cannot realize the whole complete bipartite

graph since cd(Kn,n) = Θ(n), which makes the dimension of the CP instance too large.

[KM20a] showed that we can realize a subgraph of Kn,n and apply permutations to

its vertices such that the union of these subgraphs cover Kn,n. In this way, BCP can

be computed by solving CP on each subgraph and outputting the best solution. More

specifically, the reduction in [KM20a] relies on the following theorem:

Theorem 7.15 (Theorem 4.2 in [KM20a]). For every 0 < δ < 1, there exists a

log-dense sequence (ni)i∈N such that, for every i ∈ N, there is a bipartite graph

Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and |Ei| ≥ Ω(n2−δ
i), such that cd(Gi) =

(log ni)
O(1/δ). Moreover, for all i ∈ N, a realization τ : Ai∪̇Bi → {0, 1}(logni)

O(1/δ) of

Gi can be constructed in n
2+o(1)
i time.

The log-dense sequence is defined as follows:

Definition 7.14. A sequence (ni)i∈N of increasing positive integers is log-dense if

there exists a constant c ≥ 1 such that log ni+1 ≤ c · log ni for all i ∈ N.

They also showed that, the permutations for covering the complete bipartite

graph can be efficiently found, as shown in the following lemma.

Lemma 7.16 (Lemma 3.11 in [KM20a]). For any bipartite graph G(A∪̇B,EG) where

|A| = |B| = n and EG ̸= ∅, there exist side-preserving permutations π1, . . . , πk :

295

A ∪B → A ∪B where k ≤ 2n2 lnn
|EG|

+ 1 such that
⋃

i∈[k]

EGπi
= EKn,n . (7.16)

Moreover, such permutations can be found in O(n6 log n) time.

Now, we are ready to state the quantum fine-grained reduction by “quantizing”

the classical reduction.

Proof of Lemma 7.14. Let A,B be the two sets of input points of BCP. Suppose for

BCP, there is an input oracle OBCP which, given an index, returns the corresponding

point:

|b⟩ |i⟩ |0⟩ OBCP−−→

|b⟩ |i⟩ |xi⟩ if b = 0,

|b⟩ |i⟩ |yi⟩ if b = 1,
(7.17)

where xi is the i-th point in the set A and yi is the i-th point in the set B. The sizes

of A and B are both equal to n and each point is in {0, 1}d1 , where d1 = Θ(log n) is

the dimension of BCP.

For CP, suppose there is a quantum algorithm A such that for m points in

{0, 1}d2 given by an oracle MCP , AMCP returns the closest pair of these n points with

probability at least 2/3.

Then we need to transform OBCP to some oracles Mi for CP, such that by

running A with Mi as input oracles, we can get the bichromatic closest pair between

A and B. The reduction has four steps:

1. Pre-processing. We first follow the classical reduction to pre-process the input

points of BCP. For some integer n′ ≤ n0.1, we can partition A and B into n′-size

subsets:

A = A1 ∪̇ · · · ∪̇ Ar, (7.18)

B = B1 ∪̇ · · · ∪̇ Br,

296

where r = ⌊n/n′⌋. Here, we assume that n is divisible by n′. It follows that

BCP(A,B) = min
i,j∈[r]

BCP(Ai, Bj). (7.19)

Then, we use the algorithm in [KM20a] to construct k mappings f1, . . . , fk :

[2n′]→ {0, 1}d′ such that

BCP(Ai, Bj) = min
t∈[k]

CP(ft(Ai) ∪ ft(Bj)) ∀i, j ∈ [⌊n/n′⌋]. (7.20)

More specifically, we pick n′ to be the largest number in a log-dense sequence

that is smaller than n0.1. Then, we apply Theorem 7.15 to classically construct a

bipartite graph G(A ∪ B,E) with n′ vertices in each side and a realization τ . By

choosing δ = ϵ/2 in Theorem 7.15, the graph G has |E| = Ω(n′2−ϵ/2) edges. And we

can get 2n′ 0/1-strings of length (log n′)O(2/ϵ):

τAi = τ(ui) ∀ui ∈ A, and τBi = τ(vi) ∀vi ∈ B. (7.21)

In order to cover the complete bipartite graph, we run the classical algorithm

(Lemma 7.16) to find k permutations π1, . . . , πk : [n′]→ [n′], where k is a parameter

to be chosen later.

Then, we can define the mappings as follows:

ft(u) =

xv ◦

(
τAπt(w)

)d+1

if 1 ≤ u ≤ n′

yv ◦
(
τBπt(w)

)d+1

if n′ < u ≤ 2n′
∀t ∈ [k], u ∈ [2n′], (7.22)

where ◦ means string concatenation and (s)d+1 denotes d + 1 copies of the string s.

For a point p ∈ Ai ∪ Bj, u ∈ [2n′] is the index in this union-set, v ∈ [n] is the index

in the ground set A or B, and w ∈ [n′] is the index in the subset Ai or Bj. Further,

if 1 ≤ u ≤ n′, then w := u; otherwise, w := u− n′.

297

2. Oracle construction. For i, j ∈ [r], t ∈ [k], we then construct the input oracle

Mi,j,t for the problem CP(ft(Ai) ∪ ft(Bj)). For a query index u ∈ [2n′],

Mi,j,t |u⟩ |0⟩ = |u⟩ |ft(u)⟩ . (7.23)

With the help of the input oracle OBCP, we can implement Mi,j,t in the following

way:

1. Prepare an ancilla qubit |b⟩ such that b = 1 if u > n′.

2. Transform |u⟩ to |v⟩, the index of the point in A or B, based on the value of b.

Note that the index is unique. Hence, this transformation is unitary and can

be easily achieved by a small quantum circuit.

3. Query OBCP with input |b⟩ |v⟩. Assume b = 0. Then,

|b⟩ |v⟩ |0⟩ OBCP7−−→ |b⟩ |v⟩ |xv⟩ . (7.24)

4. Similar to the second step, the index w of the point in Ai and Bj can be

computed from v by a unitary transformation:

|b⟩ |v⟩ |xv⟩ 7→ |b⟩ |w⟩ |xv⟩ (7.25)

5. Since each w corresponds to a unique string τAπt(w), we can attach d + 1 copies

of this string to the remaining quantum registers:

|b⟩ |w⟩ |xv⟩ 7→ |b⟩ |w⟩ |xv⟩
∣∣∣
(
τAπt(w)

)d+1
〉
. (7.26)

6. By recovering u from w, we get the final state:

|u⟩ |ft(u)⟩ = |u⟩
∣∣∣xv,

(
τAπt(w)

)d+1
〉
. (7.27)

298

3. Query process By Eqs. (7.19) and (7.20), we have

BCP(A,B) = min
i,j∈[r],t∈[k]

CP(ft(Ai) ∪ ft(Bj)). (7.28)

Hence, we can use quantum minimum-finding algorithm in Theorem 7.7 over the

sub-problems to find the minimum solution. For each sub-problem, we can run the

algorithm for CP with Mi,j,t as the input oracle.

4. Post-processing. In case that n is not divisible by n′, let the remaining points

in A and B be Ares, Bres, respectively. Then, we can use Grover search to find the

closest pair between Ares and B, and between Bres and A. Then, compare the answer

to the previously computed result and pick the smaller one.

Correctness. In this reduction, we do not change the constructions of the mappings

{fi}i∈[k]. By [KM20a], Eq. (7.28) is correct in the classical setting. Hence, it also holds

in the quantum setting, and we can use Grover search to find the minimum solution.

However, since the algorithm A for CP has success probability 2/3, for each tuple

(i, j, t) ∈ [r] × [r] × [k], we need to run AMi,j,t O(log n) times to boost the success

probability to at least 1 − 1
n
. Then, by the union bound, the probability that all

queries in the Grover search are correct is at least 99/100. Hence, by Theorem 7.6,

the overall success probability is at least 2/3.

Running Time of the Reduction. The running time of the pre-processing step

consists of two parts: (1) constructing the graph G and its realization τ ; (2) finding

k permutations. For the first part, by Theorem 7.15, it can be done in n′2+o(1) time.

For the second part, we pick k = O(2n
′2 logn′

n′2−ϵ/2) = O(n′ϵ/2 log n′), and by Lemma 7.16,

it can be done in O(n′6 log n′) time. Hence, the total running time of pre-processing

step is n′2+o(1) +O(n′6 log n′) = Õ(n0.6).

The oracle construction can be done “on-the-fly”. More specifically, given the

strings {τAi , τBi }i∈[n′], and permutations {πi}i∈[k], for each query index u, we can

299

simulate the oracle Mi,j,t defined in Eq. (7.23) in c(Mi,j,t) = O(d2) = (log n′)Ω(1) =

Õ(1) time.

In the query process, for each CP instance indexed by (i, j, t), suppose AMi,j,t

gets the answer in time q(n′) = n′. Moreover, for each time A querying the input

oracle Mi,j,t, we need to spend c(Mi,j,t) time to simulate the oracle. And we also have

O(log n) runs for each instance. Hence, the total running time for each CP is at most

n′1−ϵ · Õ(1) ·O(log n) = Õ(n′1−ϵ). (7.29)

Then, we use Grover’s search algorithm over r2 · k instances, which can be done by

querying Õ(
√
r2 · k) instances by Theorem 7.6. Therefore, for any ϵ > 0, we have

Õ(
√
r2k) · q(n′)1−ϵ · c(Mi,j,t) ·O(log n) = Õ(

√
(n/n′)2k · (n′)1−ϵ) (7.30)

≤ Õ(n · (n′)−ϵ) ≤ Õ(n · n−ϵ/2) ≤ n1−δ, (7.31)

where the first inequality follows from k = O(n′ϵ/2 log n′) as shown in [KM20a] and

the last inequality follows by setting δ = ϵ/10.

For the post-processing step, the sizes of Ares and Bres are at most n′. The

running time is

O(
√
n · n′ · log n) ≤ Õ(n0.55). (7.32)

Therefore, for any ϵ > 0, there exists a δ > 0 such that the Eq. (7.30) holds

and the total reduction time is O(n1−δ). By Definition 7.12, BCPn,d1 can be quantum

fine-grained reduced to CPn,d2 . This completes the proof of this lemma.

Finally, we show that (OVn,d, n) ≤QFG (BCPn,d′ , n) by quantizing the reduction

in [KM20a] following the same idea.

Lemma 7.17. For d = Θ(log n),

(OVn,d, n) ≤QFG (BCPn,d′ , n), (7.33)

where d′ = Θ(log n).

300

Proof. For an OV instance with sets of vectors A and B, let OOV be the input oracle

such that:

OOV |i⟩ |0⟩ =

|i⟩ |ai⟩ if i ∈ A,
|i⟩ |bi⟩ if i ∈ B.

(7.34)

where ai, bi ∈ {0, 1}d.

Then, similar to the classical reduction, we can construct mappings fA, fB :

{0, 1}d → {0, 1}5d such that

fA(ai)5j−4:5j =

11000 if ai(j) = 0

00110 if ai(j) = 1
∀j ∈ [d], (7.35)

and

fB(bi)5j−4:5j =

10100 if bi(j) = 0,

01001 if bi(j) = 1.
∀j ∈ [d]. (7.36)

By the classical reduction, we have

OV(A,B) = 1 if and only if BCP(fA(A), fB(B)) = 2d (7.37)

under Hamming distance.

Also, note that we can simulate the input oracle OBCP by first querying the

oracle OOV to get the vector, then applying the corresponding mapping fA or fB,

which can be done in c(OBCP) = O(d) time. Let the running time of the algorithm

for BCP be q(n) = n. Then for any ϵ > 0,

q(n)1−ϵ · c(OBCP) = n1−ϵ ·Θ(log n) ≤ n1−δ (7.38)

for some small δ > 0. Hence, by Definition 7.12, (OVn,d, n) ≤QFG (BCPn,d′ , n).

Proof of Theorem 7.12. We can prove the theorem by contradiction following Lemma 7.13,

Lemma 7.17, and Lemma 7.14. Specifically, suppose that there exists an ϵ > 0, for

301

all d = Θ(log n), there exists a quantum algorithm which can solve OV in time

O(n1−ϵ). Then, we can obtain a quantum algorithm for CNF-SAT, which runs in

time O(2n/2(1−ϵ)) by Lemma 7.13. This contradicts QSETH. The proof for CP is the

same.

7.3.3 Quantum lower bound for BCP in nearly-constant dimensions under
QSETH

A byproduct of the previous subsection is a quantum lower bound for BCP

in higher dimensions (i.e., d = polylog(n)) under QSETH (Lemma 7.17). In this

subsection, we show that this quantum lower bound for BCP even holds for nearly-

constant dimensions (i.e., d = clog
∗(n)). The main result of this subsection is the

following theorem.

Theorem 7.18. Assuming QSETH, there is a constant c such that BCP in clog
∗(n)

dimensions requires n1−o(1) time for any quantum algorithm.

We will “quantize” the results by Chen [Che18] to prove this theorem. More

specifically, we first show a quantum fine-grained self-reduction of OV from log n

dimensions with binary entries to 2log
∗(n) dimensions with integer entries (Z-OV).

Then, we give a quantum fine-grained reduction from Z-OV to BCP in nearly-constant

dimensions.

Definition 7.15 (Integral Orthogonal Vector, Z-OV). Given two sets A,B of n vec-

tors in Zd, find a pair of vectors a ∈ A and b ∈ B such that ⟨a, b⟩ = 0, where the

inner product is taken in Z.

We use Z-OVn,d to denote Z-OV with n vectors of d dimension in each set. We

then recap a theorem in [Che18]:

Theorem 7.19 ([Che18, Theorem 4.1]). Let b, ℓ be two sufficiently large integers.

There is a classical reduction ψb,ℓ : {0, 1}b·ℓ → Zℓ and a set Vb,ℓ ⊆ Z, such that for

302

every x, y ∈ {0, 1}b·ℓ,

⟨x, y⟩ = 0 ⇔ ⟨ψb,ℓ(x), ψb,ℓ(y)⟩ ∈ Vb,ℓ (7.39)

and

0 ≤ ψb,ℓ(x)i < ℓ6
log∗(b)·b (7.40)

for all possible x and i ∈ [ℓ]. Moreover, the computation of ψb,ℓ(x) takes poly(b · ℓ)
time, and the set Vb,ℓ can be constructed in O

(
ℓO(6log

∗(b)·b) · poly(b · ℓ)
)

time.

Note that the size of Vb,ℓ is at most ℓ2·6log
∗(b)·b+1. The following lemma gives a

quantum fine-grained reduction from OV to Z-OV:

Lemma 7.20. For d = Θ(log n),

(OVn,d, n) ≤QFG (Z-OVn,d′ , n). (7.41)

where d′ = 2O(log∗ n2).

Proof. Consider an OVn,d with d = c · log n, where c is an arbitrary constant. We

choose ℓ := 7log
∗ n and b := d/ℓ. Then, we can apply Theorem 7.19 to get the

mapping function ψb,ℓ and the set Vb,ℓ. For each v ∈ Vb,ℓ, we’ll construct an instance

of Z-OVn,ℓ+1 as follows:

1. Let |i⟩ be the input query index of Z-OVn,ℓ+1.

2. Query OVn,d’s input oracle OOV and get the vector |i, x⟩.

3. Compute the mapping ψb,ℓ and get |i, x⟩ |ψb,ℓ(x)⟩.

4. If x ∈ A, then attach 1 to the end of the register: |i, x⟩ |ψb,ℓ(x), 1⟩. If x ∈ B,

then attach −v to the end: |i, x⟩ |ψb,ℓ(x),−v⟩.

5. Use OOV to erase x and return the final input state |i⟩ |ψb,ℓ(x), 1⟩ or |i⟩ |ψb,ℓ(x),−v⟩.

For each instance, we can use the quantum oracle for Z-OVn,ℓ+1 to check the orthog-

onality. OVn,d is YES if and only if there exists a YES-instance of Z-OVn,ℓ+1.

303

Correctness. The correctness follows from Eq. (7.39):

⟨x, y⟩ = 0⇔ ⟨ψb,ℓ(x), ψb,ℓ(y)⟩ = v ∈ Vb,ℓ ⇔ ⟨[ψb,ℓ(x), 1], [ψb,ℓ(y), − v]⟩ = 0. (7.42)

Reduction time. Note that for ℓ = 7log
∗ n and b = d/ℓ, we have:

log
(
ℓO(6log

∗(d)·b)
)
= log ℓ ·O

(
6log

∗(d) · (d/ℓ)
)

(7.43)

= O
(
log∗(n) · 6log∗ n · c log n/7log∗ n

)
(7.44)

= o(log n). (7.45)

This implies that |Vb,ℓ| ≤ ℓ2·6
log∗(b)·b+1 ≤ no(1). Hence, the number of Z-OVn,ℓ+1

instances is no(1) and the running time for compute Vb,ℓ is no(1). And for each input

query, the oracle for Z-OVn,ℓ+1 can be simulated in c(OZ-OV) = poly(d) = poly(log n)

time. We can show that for every ϵ > 0, if Z-OVn,ℓ+1 can be decided in n1−ϵ time,

then

∑

v∈Vb,ℓ

n1−ϵ · c(OZ-OV) = no(1) · n1−ϵ · poly(log n) ≤ n1−δ (7.46)

for some δ > 0, which satisfies the definition of quantum fine-grained reduction (Def-

inition 7.12).

Therefore, OVn,O(logn) is quantum fine-grained reducible to Z-OVn,2O(log∗(n)) .

Then, we give a quantum fine-grained reduction from Z-OV to BCP:

Lemma 7.21. For d = 2O(log∗ n),

(Z-OVn,d, n) ≤QFG (BCPn,d′). (7.47)

where d′ = d2 + 2.

304

Proof. We remark here that this proof closely follows that for Theorem 4.3 in [Che18].

We nonetheless give it here as some details are different.

For an Z-OVn,d instance with (k·log n)-bit entries, we construct a BCP instance

as follows:

1. For x ∈ A, construct a vector x′ ∈ Zd2 such that x′i,j = xi · xj. Here, we index

a d2-dimensional vector by [d] × [d]. Similarly, for y ∈ B, construct a vector

y′ ∈ Zd2 such that y′i,j = −yi · yj.

2. Choose W := (d2 + 1) · n4k. For each x′, construct a vector x′′ ∈ Rd2+2 such

that

x′′ =

[
x′,
√
W − ∥x′∥22, 0

]
. (7.48)

For each y′, construct a vector y′′ ∈ Rd2+2 such that

y′′ =

[
y′, 0,

√
W − ∥y′∥22

]
. (7.49)

Then, we claim that the Z-OV instance is YES if and only if the BCP instance has

the minimum distance ≤
√
2W .

Correctness. First note that ∥x′∥22 ≤ d2 ·(2k logn)4 = d2 ·n4k. Hence, W −∥x′∥22 > 0

and W − ∥y′∥22 > 0. For any x′′ and y′′ in the new constructed instance of BCP, we

have

∥x′′ − y′′∥22 = ∥x′′∥22 + ∥y′′∥22 − 2 · ⟨x′′, y′′⟩ (7.50)

= 2 ·W − 2 · ⟨x′, y′⟩ (7.51)

= 2 ·W − 2 ·
∑

(i,j)∈[d]×[d]

xi · xj · (−yj · yj) (7.52)

= 2 ·W + 2 · (⟨x, y⟩)2. (7.53)

Hence,

⟨x, y⟩ = 0 ⇔ ∥x′′ − y′′∥22 = 2W. (7.54)

305

Reduction time. We can see from the above description that the input mapping

function is simple and can be computed by a small quantum circuit in O(d2) =

O(2O(log∗(n))) time. Hence, we have c(OBCP) = O(2O(log∗(n))). Also, by Definition 7.12,

it’s easy to check that this is indeed a quantum fine-grained reduction from Z-OV to

BCP.

Now Theorem 7.18 follows immediately from Lemma 7.20 and Lemma 7.21:

Proof of Theorem 7.18. Let ϵ > 0 be some constant. Suppose we can solve BCPn,clog∗(n)

in n1−ϵ time for all constant c > 0. Then, by Lemma 7.20 and Lemma 7.21, we can

also solve OVn,c′ logn in n1−δ time for some δ > 0 and any c′ > 0. However, this

contradicts QSETH by Theorem 7.12. Therefore, assuming QSETH, there exists a

constant c such that BCPn,clog∗(n) requires n1−o(1) time.

7.4 Closest Pair in Constant Dimension

In this section, we show that there exist almost-optimal quantum algorithms

for CP in constant dimension. The main result is the following theorem, which is a

direct consequence of Corollary 7.32 and Theorem 7.33.

Theorem 7.22. For any constant dimension, the quantum time complexity for CP

is Θ̃(n2/3).

Our approach to solve CP is first reducing to the decision version of the prob-

lem, and then apply quantum walk algorithms to solve the decision version. We define

the decision version of CP, CPϵ, as follows.

Definition 7.16 (CPϵ). Given a set of points P ⊂ Rd and ϵ ∈ R, find a pair a, b ∈ P
such that ∥a− b∥ ≤ ϵ if there is one and returns no is no such pair exists.

The reduction from CP to CPϵ is given by the following lemma.

306

Lemma 7.23. Let m be the number of bits needed to encode each coordinate as a bit

string and d be the dimension. Given an oracle O for CPϵ, there exists an algorithm

AO that runs in time and query complexity O(m+ log d) that solves the CP.

Proof. Let (P, δ) be an instance of the CP. We first pick an arbitrary pair a0, b0 ∈ P
and compute ∆(a0, b0). Then, we set ϵ to be ∆(a0, b0)/2 and run the oracle O to

check whether there exists a distinct pair with distance less than ∆(a0, b0)/2 or not.

If there exists such a pair, which we denote as (a1, b1), then we set ϵ = ∆(a1, b1) and

call O to check again. If there is no such pair, then we set ϵ = 3∆(a0, b0)/4 and call

O. We run this binary search for m+ log d iterations. Finally, the algorithm outputs

the closest pair.

In classical setting, point location is an important step in solving the closest-

pair problem, especially the dynamic version. For the quantum algorithm, as walking

on the Markov chain, we repeatedly delete a point and add a new point. Hence, in

each step, the first thing is to determine the location of the new added point.

For simplicity, we assume that m = O(log n), which is the number of digits

of each coordinate of the points. By translation, we can further assume that all the

points are lying in [0, L]d, where L = O(2m) = poly(n).

Since we are considering CPϵ, one simple way of point location is to discretize

the whole space into a hypergrid, which is defined as follows:

Definition 7.17. Let d, ϵ, L > 0. A hypergrid Gd,ϵ,L in the space [0, L]d consists of

all ϵ-boxes

g := [a1, b1)× [a2, b2)× · · · × [ad, bd), (7.55)

such that b1 − a1 = · · · = bd − ad = ϵ/
√
d 7, and ai is divisible by ϵ for all i ∈ [d].

7The diagonal length of an ϵ-box is ϵ.

307

For each point pi ∈ [0, L]d, we can identify the ϵ-box that contains it using the

function id(pi) : [0, L]
d → {0, 1}d log(L/ϵ):

id(pi) =
(
⌊pi(1)/w⌋ , ⌊pi(2)/w⌋ , . . . , ⌊pi(d)/w⌋

)
, (7.56)

where w = ϵ√
d

is the width of the ϵ-box. The number of bits to store id(pi) is

d · log(L/w) = O(d · log(L)). Since all the points in an ϵ-box have the same id, we

also use this g(id(p)) to denote this ϵ-box containing p.

For the ease of our analysis, we define the neighbors of a hypergrid.

Definition 7.18. Let ϵ ∈ R. Let g1, g2 be two ϵ-boxes in a hypergrid where id(g1) =

(x1, . . . , xd) and id(g2) = (x′1, . . . , x
′
d). We say that g1 and g2 are each other’s ϵ-

neighbor if
√√√√

d∑

i=1

∥xi − x′i∥2 ≤ ϵ (7.57)

Note that the number of ϵ-neighbors of a ϵ-box is at most (2
√
d+1)d. We also

have the following observation:

Observation 7.24. Let p1, p2 ∈ [0, L]d be any two distinct points.

• If p1 and p2 are in the same ϵ-box, then ∆(p1, p2) ≤ ϵ.

• If ∆(p1, p2) ≤ ϵ, then g(id(p1)) must be an ϵ-neighbor of g(id(p2)).

To solve CPϵ with quantum walk, we need data structures to keep track of

the pairs that have distance at most ϵ. The desired data structure should have size

Õ(n2/3), insertion/deletion time O(log n), and one should be able to check whether

there exist pairs of distance at most ϵ in time O(log n). In addition, as pointed out

in [Amb07], the data structure should have the following two properties:

• the data structure should have the bounded worst-case performance rather than

average-case performance;

308

• the representation of the data structure should be history-independent, i.e., the

data is uniquely represented regardless of the order of insertions and deletions.

We need the first property since the data structure may take too long for some

operations, and this is not acceptable. The second property is required because,

otherwise, the interference of quantum states would be messed up. In [Amb07], a

hash table and a skip list is used to for solving the element distinctness problem

using quantum walks. In [BJLM13], a simpler data structure, namely, a radix tree, is

used to achieve the same performance. More details of using a radix tree to solve the

element distinctness can be found in [Jef14]. Similar to the quantum data structure

model in [Amb07, BJLM13, Jef14], we need the quantum random access gate to

efficiently access data from a quantum memory, whose operation is defined as:

|i, b, z1, . . . , zm⟩ 7→ |i, zi, z1, . . . , zi−1, b, zi+1, zm⟩ , (7.58)

where |z1, . . . , zm⟩ is some data in a quantum memory with m qubits. We assume

this operation takes O(logm) time.

In the remainder of this section, we present two quantum algorithms for solving

CPϵ. The data structures of both versions are based on the augmented radix tree,

which we discuss in detail in the following subsection.

7.4.1 Radix tree for at most one solution

The purpose of the augmented radix tree is to quickly locate the points in an

ϵ-box given its id. An ordinary radix tree is a binary tree that organizes a set of keys

which are represented as binary strings. Each edge is labeled by a substring of a key

and each leaf is labeled by a key such that concatenating all the labels on the path

from the root to a leaf yields the key for this leaf. In addition, for each internal node,

the labels of the two edges connecting to two children start with different bit. Note

that in this definition, we implicitly merge all internal nodes that have only one child.

309

Figure 7.2: The uniquely represented radix tree that stores the keys
{0011, 0101, 1100, 1101}.

The radix tree is uniquely represented for any set of keys. An example of a radix tree

is shown as Fig. 7.2.

Our basic radix tree is essentially the one in [BJLM13, Jef14] with modification

on the nodes’ internal structure. We highlight the extra information stored in the

radix tree. First we use a local counter to store the number of points in this ϵ-box;

second, we use a flag in each leaf node to indicate whether there is a point in this

ϵ-box that is in some pair with distance at most ϵ. The flag bit in an internal node

is the OR of the ones in its children. The local counter in each internal node is the

sum of the local counters in its children. We also store at most two points that are

in the ϵ-box corresponding to this node. More precisely, let S be a subset of indices

of the input points. We use τ(S) to denote the radix tree associated with S. Then,

τ(S) consists of at most r⌈log r⌉ nodes. Each node consists of the following registers:

D×M1 ×M2 ×M3 × C× F × P1 × P2, (7.59)

where D stores the id of an ϵ-box for a leaf (and a substring of an id for an internal

node) using O(d log(L/ϵ)) bits. M1,M2, and M3 use O(log n) bits to store the pointers

to its parent, left child, and right child, respectively as well as the labels of the three

edges connecting them to this node, O(log n) bits to store the labels of the three

edges incident to it. C uses O(log n) bits to store the local counter. F stores the flag

bit. P1 and P2 stores the coordinates of at most two points in this ϵ-box, which takes

O(d logL) bits. The two points are stored in ascending order of their indices.

310

We need to pay attention to the layout of τ(S) in memory. We use three times

more bits than needed to store τ(S), this will ensure that there are always more than

1/3 of the bits that are free. We divide the memory into cells where each cell is large

enough to store one leaf node of τ(S). Besides τ(S), we also store a bitmap B, which

takes O(log n) bits to encode the current free cells (with “1” indicating occupied and

“0” indicating free). To make the radix tree history-independent, we use a quantum

state which is the uniform superposition of basis states |τ(S), B⟩ for all possible valid

layout of τ(S) and it corresponds to the bitmap B.

Insertion and deletion from τ(S) takes O(log n) time. Checking the presence

of an ϵ-close pair takes constant time — we just need to read the flag bit in the root.

Preparing the uniform superposition of all i ∈ S can be done in O(log n) time by

performing a controlled-rotation on each level of the radix tree where the angles are

determined by the local counters in the two children of a node.

In the following subsections, we present the two versions of our algorithms. The

first version invokes the quantum walk framework only once and its data structure

maintains the existence of an ϵ-close pair. The second version uses a much simpler

data structure, but it is only capable of handling CPϵ with a unique solution. Hence

it requires invoking the quantum walk framework multiple times to solve the general

CPϵ. These two quantum algorithms have almost the same time complexity.

7.4.2 Single-shot quantum walk with complicated data structure

To handle multiple solutions, our data structure is a composition of an aug-

mented radix tree, a hash table, and a skip list. We give a high-level overview of our

data structure as follows. Recall that by the discretization of the space into ϵ-boxes,

it is possible that a pair of points in different ϵ-boxes have distance at most ϵ, but

one only needs to check (2
√
d + 1)d ϵ-neighbors to detect such a case. We maintain

a list of points for each nonempty ϵ-box in an efficient way. A hash table is used to

store the tuple (i, pi) which is used to quickly find the point pi, given its index i. The

311

points are also stored in a skip list for each nonempty ϵ-box, ordered by its index i,

which allows for quick insertion and deletion of points. Each ϵ-box is encoded into a

unique key, and a radix tree is used to store such key-value pairs, where the value is

associated with a skip list. The flag bits in this radix tree maintain the presence of

an ϵ-close pair.

In the following, we present the details of the data structure and show it has

all the desired properties.

Hash table. The hash table we use is almost the same as the one used in [Amb07],

except that we do not store the ⌊log r⌋ counters in each bucket to facilitate the

diffusion operator (which is handled easily here in the quantum walk on a Johnson

graph). Our hash table has r buckets, where each bucket contains ⌈log n⌉ entries. We

use a fixed hash function h(i) = ⌊ir/n⌋ + 1 to hash {1, . . . , n} to {1, . . . , r}. That

is, for j ∈ [r], the j-th bucket contains the entries for (i, pi) in ascending order of i,

where i ∈ S and h(i) = j.

The entry for (i, pi) contains the tuple (i, pi) and ⌈log n⌉+ 1 pointers to other

entries. These pointers are used in the skip list which we will describe below. The

memory size of each entry is hence O(log2 n+d logL) and there are O(r log n) entries.

Therefore, the hash table uses O(rd log3(n+ dL)) qubits.

It is possible that more than ⌈log n⌉ points are hashed into the same bucket.

However, as shown in [Amb07], this probability is small.

Skip list. The skip list we use closely follows that in [Amb07], except that the

elements pi in our skip list is ordered by its index i. We construct a skip list for each

ϵ-box containing at least one point to store the points in it. For each i ∈ S, pi belongs

to exactly one skip list. Also, for i ∈ S, we randomly assign a level ℓi ∈ [0, . . . , ℓmax]

where ℓmax = ⌈log n⌉. The skip list associated with a ϵ-box has ℓmax + 1 lists, where

the level-ℓ list consists of all i ∈ S such that ℓi ≥ ℓ and pi is in this ϵ-box. Hence, the

312

Figure 7.3: An example of a skip list that stores {1, 2, 3, 4}.

level-0 list consists of all i ∈ S for pi in this ϵ-box. Each element of the level-ℓ list has

a specific pointer to the next element in this level, or to 0 if there is no next element.

Each skip list contains a start entry that does not contain any (i, pi) information but

ℓmax + 1 pointers to the first element of the each level. This start entry is stored in a

leaf node of the augmented radix tree (which we will describe below) corresponding

to this ϵ-box. In each skip list, we do not allocate memory for each node. Instead,

each pointer is pointing to an entry of the hash table. The pointers are stored in the

hash table (for the internal entries of each level) and in the radix tree (for the start

entry). An example of a skip list is shown in Fig. 7.3.

Given i ∈ S, we can search for pi as follows. We start from the start entry of

the level-ℓmax list and traverse each element until we find the last element jℓmax such

that jℓmax < i. Repeat this for levels ℓℓmax−1, . . . , ℓ0 and at each level start from the

element that ended the previous level. At level-0, we obtain the element j0. Then,

the next element of j0 is where pi should be located (if it is stored in this skip list)

or be inserted.

Each i ∈ S is randomly assigned a level ℓi at the beginning of computation that

does not change during the computation. More specifically, ℓi = ℓ with probability

1/2ℓ+1 for ℓ < ℓmax and with probability 1/2ℓmax for ℓ = ℓmax. This can be achieved

using ℓmax hash functions h1, . . . , hℓmax : [n] → {0, 1}. In this way, each i ∈ [n]

has level ℓ < ℓmax if h1(i) = · · · = hℓ(i) = 1 but hℓ+1(i) = 0; and it has level

ℓmax if h(i) = · · · = hℓmax(i) = 1. In this quantum algorithm, we use an extra

313

register to hold the state |h1, . . . , hℓmax⟩ which is initialized to a uniform superposition

of all possible such functions from a d-wise independent family of hash functions

(see [Amb07, Theorem 1]) for d = ⌈4 log n+1⌉. During the execution of the quantum

algorithm, a hash function from the hashing family is chosen depending on the state

in this register.

At first glance, the skip list has the same role as the hash table – finding pi
given index i. However, they have very different purposes in our algorithm. Recall

that each nonempty ϵ-box is associated with a skip list, which is used to quickly insert

and delete a point in this ϵ-box. The number of points in this ϵ-box can be as small

as one and as large as r (in the extreme case where all the points are in the same

ϵ-box). Hence, we cannot afford to have a fixed length data structure (such as a hash

table or a sorted array) to store these points. In addition, to support quick insertion

and deletion, a skip list is a reasonable choice (against an ordinary list). The purpose

of the hash table can be viewed as a uniquely represented memory storing all the r

points that can be referred to by the skip lists.

Augmented radix tree. We augment the radix tree described in Section 7.4.1 to

handle multiple solution. In this augmented radix tree, we do not need the registers

P1 and P2. Instead, we use ⌈log n⌉ pointers L1, . . . ,L⌈logn⌉ as the start entry of a

skip list. These pointers uses O(log2 n) bits. In addition, we use an external counter

in the leaf nodes to record whether there is a point in other ϵ-boxes that is at most

ϵ-away from a point in this ϵ-box, which uses O(log n) bits. More formally, let τ ′(S)

be the augmented radix tree associated with S. Each node of τ ′(S) consists of the

following registers

D×M1 ×M2 ×M3 × E× C× F × E× L1 × · · · × L⌈logn⌉. (7.60)

Next, we present how to perform the required operations on S with our data

structure.

314

Checking for ϵ-close pairs. To check the existence of an ϵ-close pair, we just read

the flag in the root of the radix tree. If the flag is set, there is at most one ϵ-close

pair in S, and no such pairs otherwise. This operation takes O(1) time.

Insertion. Given (i, pi), we perform the insertion with the following steps:

1. Insert this tuple into the hash table.

2. Compute the id, id(pi), of the ϵ-box which pi belongs to. Denote this ϵ-box by

g(id(pi)).

3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i

into the skip list corresponding to g(id(pi)); otherwise, first create a uniform

superposition of the addresses of all free cells into another register, then create

a new tree node in the cell determined by this address register and insert it

into the tree. The pointers for the start entry of the skip list is initially set to

0. Insert i into this skip list. Let τ ′(S, g(id(pi)) denote the leaf node in τ ′(S)

corresponding to g(id(pi)).

4. Increase the local counter C in τ ′(S, g(id(pi))) by 1.

5. Use Procedure 25 to update the external counters E and flags F in τ ′(S, g(id(pi)))

as well as in the leaf nodes corresponding to the neighbor ϵ-boxes of g(id(pi)).

Note that the first step takes at most O(log n) time. The second step can be

done in O(d) time. In Lines 3 and 20, the number of ϵ-neighbors to check is at most

(2
√
d+ 1)d.

To obtain a uniform superposition of the addresses of all free cells, we first

create a uniform superposition of all possible addresses to access to the bitmap |B⟩.
We also use an auxiliary register that is initialized to |0⟩. Then, the quantum ran-

dom access gate defined in Eq. (7.58) is applied on the register holding the uniform

315

superposition of all addresses, the auxiliary register, and the bitmap register, which

is effectively a SWAP operation on the second register and the corresponding bit in

|B⟩. The auxiliary register remains |0⟩ if and only if the address in the first register

is free. Since the size of memory space is chosen so that the probability of seeing a

free cell is at least 1/3 (and we know exactly this probability based on how many

cells have already been used), we can add an extra register and apply a one-qubit

rotation to make the amplitude of the second register being |0⟩ exactly 1/2. Hence,

using one iteration of the oblivious amplitude amplification (which is a generalized

version of Grover’s search algorithm. See [BCC+17] and [MW05]) with the second

register being the indicator, we obtain the uniform superposition of the addresses of

all free cells. This cost if O(log n).

In [Amb07], it was shown that with high probability, insertion into the skip list

can be done in O(d + log4(n + L)) time. Hence, with high probability, the insertion

costs O(d + log4(n + L) + d(2
√
d + 1)d) time, where O(d(2

√
d + 1)d) is the time for

checking neighbors. To further reduce the running time, we can just stop the skip

list’s insertion and deletion procedures after O(d + log4(n + L)) time, which only

causes little error (see Lemma 7.26).

Deletion. Given (i, pi), we perform the following steps to delete this tuple from our

data structure.

1. Compute the id, id(pi), of the ϵ-box which pi belongs to, and denote this ϵ-box

by g(id(pi)).

2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to

g(id(pi)).

3. Remove i from the skip list, and decrease the local counter C in τ ′(S, g(id(pi)))

by 1.

316

4. Use Procedure 26 to update the external counters E and flags F in τ ′(S, g(id(pi)))

as well as in leaf nodes corresponding to the neighbor ϵ-boxes of g(id(pi)).

5. If the local counter C = 0 in this leaf node, remove τ ′(S, g(id(pi))) from τ ′(S),

and update the bitmap B in τ ′(S) that keeps track of all free memory cells.

6. Remove (i, pi) from the hash table.

Note that the first step can be done in O(d) time. The second step can be

done in O(log n) time. Procedure 26 has the same time complexity with Procedure 25.

Hence, the cost for the deletion procedure is the same as that for insertion.

Finding a ϵ-close pair. We just read the flag in the root of the radix tree and

then go to a leaf whose flag is 1. Check the local counter C of the node. if it is at

least 2, output the first two elements in skip list. Otherwise, we find the ϵ-neighbor

of the current node whose C = 1 and then output the points in that ϵ-neighbor and

the current node.

Uniqueness. The uniqueness of our data structure follows from the analysis of [Amb07,

BJLM13, Jef14]. More specifically, the hash table is always stored in the same way,

as each i ∈ S is stored in the same bucket for the fixed hash function and in each

bucket, elements are stored in ascending order of i. The skip list is uniquely stored

once the hash functions h1, . . . , hℓmax is determined. The shape of the radix tree is

unique for S, but each node can be stored in different locations in memory. We use a

uniform superposition of all possible memory organizations (by keeping track of the

bitmap for free cells) to keep the quantum state uniquely determined by S.

Correctness. In the following, we argue that our data structure has the desired

properties. First, we prove the correctness.

317

Lemma 7.25. The flag bit in the root of τ ′(S) is set if and only if there exist distinct

i, j ∈ S such that |pi − pj| ≤ ϵ.

Proof. We show that after each insertion and deletion, the data structure maintains

the following conditions, and then lemma follows.

1. The flag bit of each leaf node of τ ′(S) is set if and only if either its local counter

is at least 2, or its external counter is at least 1.

2. The external counter of a leaf node τ ′(S, g′) is nonzero if and only if g′ contains

only one point p, and there exists another p′ in another ϵ-box g′′ such that

|p− p′| ≤ ϵ.

It is easy to check that the first condition is maintained for each insertion and deletion.

We show the second condition holds during insertions and deletion. For insertions,

we consider the first case where a point p is just inserted into the ϵ-grid g′, and p

is its only point. The first for-loop in Procedure 25 updates other ϵ-boxes that have

only one point to maintain the second condition. We consider the second case where

g′ already contains p′ and p is just inserted, then the external counter in g′ should

be 0, and the second for-loop in Procedure 25 updates other ϵ-boxes that have only

one point using the information of p′. This maintains the second condition. For

deletions, there are also two cases. First, consider p is the only one point in g′ and

it is just deleted. We use the first for-loop in Procedure 26 to update the ϵ-boxes

that has only one point using the information of p to maintain the second condition.

Second, there is another point p′ left in g′ after deleting p. In this case, we start to

check the external counter in g′. We use the second for-loop in Procedure 26 to check

other ϵ-boxes that have only one point using the information of p′ and update the

corresponding external counter to maintain the second condition.

318

Imperfection of the data structures and error analysis. Our data structure

is not perfect. As indicated by Ambainis [Amb07], there are two possibilities that

it will fail. First, the hash table might overflow. Second, it might take more that

⌈log n⌉ time to search in a skip list. To resolve the first problem, we fix the number of

entries in each bucket to be ⌈log n⌉ and treat any overflow as a failure. For the second

problem, we stop the subroutine for accessing the skip list after O(log n) steps, and

it causes an error in some cases. The original error analysis can be directly used in

our case, as our hash table doesn’t change the structure or the hash function, and

our skip lists can be viewed as breaking the skip list in [Amb07] into several pieces

(one for each nonempty ϵ-box), and each insertion/deletion only involves one of them.

Hence, the discussion in [Amb07, Section 6] can be directly adapted to our case:

Lemma 7.26 (Adapted from [Amb07]). Let |ψ⟩ be the final state of our algorithm

(with imperfect data structures) and |ψ′⟩ be the final state with the perfect data struc-

ture. Then ∥ |ψ⟩ − |ψ′⟩ ∥ ≤ O(1/
√
n).

Sketch of proof. There are two places where the data structure may give error: first,

the hash table may have overflow, and second, the algorithm cannot find the required

element in the skip lists in the desired time. The original proof showed that the

probability that any of these errors happens is negligible, and thus the two-norm

distance between |ψ⟩ and |ψ′⟩ can be bounded. Here, our data structure combining

hash table, skip list, and radix tree, only has errors from hash tables and skip lists.

The radix tree which has no error can be viewed as applying additional unitaries on

|ψ⟩ and |ψ′⟩, and this does not change the distance between the two states. Since the

probability that the errors from hash tables and skip lists happen are negligible by

following the same analysis in [Amb07], we can conclude that the two-norm distance

between |ψ⟩ and |ψ′⟩ is small.

Time complexity for CPϵ. We use the quantum walk framework reviewed in Sec-

tion 7.2.5 to solve CPϵ. We first build the Johnson graph for CPϵ, which is similar

319

to that for ED in Section 7.2.5. The vertices of the Johnson graph are S ⊆ [n] with

|S| = n2/3 and S is marked if there exist distinct i, j ∈ S such that ∆(pi, pj) ≤ ϵ. We

use |S, d(S)⟩ to represent the quantum state corresponding to S, where d(S) is the

data structure of S defined in Section 7.4.1. Consider the three operations:

• Steup: with cost S, preparing the initial state

|π⟩ = 1√(
n

n2/3

)
∑

S⊆[n]:|S|=n2/3

√
πS |S, d(S)⟩ . (7.61)

• Update: with cost U, applying the transformation

|S, d(S)⟩ |0⟩ 7→ |S, d(S)⟩
∑

S′⊆[n]:|S∩S′|=n2/3−1

√
pSS′ |S ′, d(S ′)⟩ , (7.62)

where pSS′ = 1
n2/3(n−n2/3)

.

• Checking: with cost C, applying the transformation:

|S, d(S)⟩ 7→

− |S, d(S)⟩ if S ∈M
|S, d(S)⟩ otherwise,

(7.63)

where M is the set of marked states.

We have the following result.

Theorem 7.27. There exists a quantum algorithm that with high probability solves

CPϵ with time complexity O(n2/3(d+ log4(n+ L) + d(2
√
d+ 1)d)).

Proof. The Johnson graph has λ ≥ 1/n2/3 and the Markov chain has spectral gap

δ ≥ 1/n2/3. For the setup operation, S = O(n2/3(d + log4(n + L) + d(2
√
d + 1)d)),

since preparing the uniform superposition for all |S⟩ costs O(log n) Hadamard gates

and we need to do n2/3 insertions to prepare the data structure. Each insertion costs

O(d + log4(n + L) + d(2
√
d + 1)d). For the update operation, we can implement

the quantum walk operator as described in [Jef14]: we use |S, d(S)⟩ |i, j⟩ to represent

320

|S, d(S)⟩ |S ′, d(S ′)⟩ where S ′ is obtained from S by adding index i and removing index

j. Then the diffusion can be implemented by preparing a uniform superposition of

all i ∈ S and a uniform superposition of all j ̸∈ S, which takes time O(log n), and

the “SWAP” operation can be implemented by a unitary that maps |S, d(S)⟩ |i, j⟩ to

|S ′, d(S ′)⟩ |j, i⟩. In this way, the update operation uses O(1) insertion and deletion to

construct d(S ′) from d(S), and hence U = O(d + log4(n + L) + d(2
√
d + 1)d). The

checking operation can be done in O(1) time with the data structure. Therefore, by

Lemma 7.10, the time complexity is O(S+ 1√
λ
(1√

δ
U+C)) = O(n2/3(d+ log4(n+L) +

d(2
√
d+ 1)d)).

By Lemma 7.23, we have the following corollary.

Corollary 7.28. There exists a quantum algorithm that with high probability solves

CP with time complexity O(n2/3 · (d+ log4(n+ L) + d(2
√
d+ 1)d) · (m+ log d)).

Remark 7.4. For d = O(1) dimension and m = O(log n) digits of each coordinate of

the points, the running time of the single-shot quantum algorithm is O(n2/3 · log5 n).

7.4.3 Multiple-trial quantum walks with simple data structure

In the previous subsection, we provide a quantum algorithm which solves CPϵ
in time O(n2/3(d+ log4 n+ d(2

√
d+ 1)d)), where the logarithmic cost is mainly from

the cost of the skip list. In this section we present a quantum algorithm which only

requires the radix tree, and thus improve the running time. The caveat is that, with

only the radix tree data structure, the insertion would fail if there are more than

one ϵ-close pairs. As a result, we need to keep shrinking the size of the problem

using [Amb07, Algorithm 3] until there is a unique solution with high probability,

and then run the Õ(n2/3) quantum algorithm for this unique-solution case.

In the following, we first show how to solve the unique-solution CPϵ, and then

show the reduction from the multiple-solution case to the unique-solution case.

321

Lemma 7.29. There exists a quantum algorithm that with high probability solves the

unique-solution CPϵ with time complexity O(n2/3(log n+ d(2
√
d+ 1)d)).

Data structure for unique-solution. We use the radix tree τ(S) for S defined

in Section 7.4.1. In the following, we describe the necessary operations on τ(S).

Checking for ϵ-close pair. To check the existence of an ϵ-close pair, we just read

the flag bit in the root of τ(S), which takes O(1) time.

Insertion. Given (i, pi), we perform the following steps for insertion. First compute

the id, id(pi), of the ϵ-box which pi belongs to. Denote this ϵ-box by g(id(pi)). Using

id(pi) as the key, check if this key is already in τ(S). There are two cases:

• id(pi) is already in τ(S): insert pi into τ(S, g(id(pi))), increase the local counter

in τ(S, g(id(pi))) by 1 and also set the flag. Then update the flag and local

counter of the nodes along the path from τ(S, g(id(pi))) to the root.

• id(pi) is not in τ(S): create a new leaf node for id(pi) and insert it into τ(S).

Insert pi into this new leaf node, and increase the local counter in τ(S, g(id(pi)))

by 1. Then, check the ϵ-neighbors g′ of τ(S, g(id(pi))) that contains only one

point p′ and set both flags if pi is ϵ-close to p′, and in this case, update the flag

bit and local counter on the nodes along the paths from τ(S, g(id(pi))) and g′.

Deletion. Given (i, pi), we first compute the id, id(pi) of the ϵ-box that pi belongs

to, and locate the corresponding leaf node τ(S, g(id(pi))). Decrease the local counter

in τ(S, g(id(pi))) by 1 and update the local counter in the nodes along the path from

τ(S, g(id(pi))) to the root. Check the number of points stored in τ(S, g(id(pi))). There

are two possibilities:

322

• There are two points in τ(S, g(id(pi))): unset the flag in τ(S, g(id(pi))) and

update the flag bit in the nodes along the path to the root and delete pi from

τ(S, g(id(pi))).

• pi is the only point in τ(S, g(id(pi))): check the ϵ-neighbors g′ of τ(S, g(id(pi)))

that contains only one point p′ and unset both flags if pi is ϵ-close to p′, and in

this case, update the flag bit on the nodes along the path from τ(S, g(id(pi)))

and g′ to the root. Delete pi from τ(S, g(id(pi))) and delete τ(S, g(id(pi))) from

τ(S).

As in Section 7.4.2, we use a bitmap register |B⟩ to keep track of the free cells

in τ(S). For insertion, we maintain a uniform superposition of all possible free cells

to insert a new radix tree node. For deletion, we update the bitmap |B⟩ accordingly.

This ensures the uniqueness of the quantum data structure.

The correctness of the data structure is straightforward, and the time com-

plexity is O(log n + d(2
√
d + 1)d) for both insertion and deletion. Also, preparing

a uniform superposition for all i ∈ S costs O(log n) using the local counter in each

node. By a similar analysis of Theorem 7.27, we prove Lemma 7.29 as follows.

Proof of Lemma 7.29. The algorithm uses the framework in Lemma 7.10 with the

data structure we just described in this subsection, where U = O(log n+d(2
√
d+1)d)),

C = O(1) and S = O(n2/3(log n + d(2
√
d + 1)d)). Therefore, the running time of the

algorithm is as claimed.

Next, we show how to reduce multiple-solution CPϵ to unique-solution CPϵ. A

high-level overview of Ambainis’s reduction in [Amb07] is the following. We run the

algorithm for unique-solution CPϵ several times on some random subsets of the given

input. If the given subset contains solutions, then with constant probability there

exists a subset which contains exactly one solution.

323

Definition 7.19 ([Amb07, INT05]). Let F be a family of permutations on f : [n]→
[n]. F is ϵ-approximate d-wise independent if for any x1, . . . , xd ∈ [n] and for all

y1, . . . , yd ∈ [n],

1− ϵ
n · (n− 1) · (n− d+ 1)

≤ Pr

[
n∧

i=1

fi(xi) = yi

]
≤ 1 + ϵ

n · (n− 1) · (n− d+ 1)
. (7.64)

Lemma 7.30 ([Amb07, INT05]). Let n be an even power of a prime number. For any

t ≤ n, ϵ > 0, there exists an ϵ-approximate t-wise independent family F = {πj|j ∈ [R]}
of permutations πj : [n]→ [n] such that:

• R = O

((
nt

2 · ϵ−t
)3+o(1))

;

• given i, j, πj(i) can be computed in time O(t log2 n).

The multiple-solution algorithm from [Amb07] is as follows:

We have the main result of this subsection:

Theorem 7.31. There exists a quantum algorithm that with high probability solves

CPϵ with time complexity O(n2/3 · (log n+ d(2
√
d+1)d) · log3 n) = O(n2/3 · log4 n) for

d = O(1).

Proof. We prove the running time of the algorithm here. For the correctness, one can

check [Amb07] for the detail.

By Eq. (7.65), the size of Tj+1 will be at most

4

5
· (1 + 1

8
)|Tj| =

9

10
|Tj|. (7.66)

Therefore, the while-loop takes at most O(log n) iterations in the worst case. Let

nj = |Tj| be the size of the instance in the j-th iteration. Then, the unique-solution

algorithm in Line 5 runs in O(n
2/3
j · (log nj + d(2

√
d + 1)d))-time (Lemma 7.29),

given an O(1)-time access to the set Tj. However, in Line 7 each element of the

random permutation can be computed in time O(log3 n) according to Lemma 7.30

324

with t = 4 log n, which means the unique-solution algorithm will take O(log3 n) time

for each query to Tj. Note that we will not actually compute the whole set Tj+1, as

shown in Line 9, which takes too much time. Hence, the running time for the j-th

iteration is O(n2/3
j · (log nj + d(2

√
d + 1)d) · log3 n). And the total running time for

the while-loop is
O(logn)∑

j=1

O(n
2/3
j · (log nj + d(2

√
d+ 1)d) · log3 n) (7.67)

≤ O(n2/3 · (log n+ d(2
√
d+ 1)d) · log3 n) ·

O(logn)∑

j=0

(
9

10

)2j/3

(7.68)

= O(n2/3 · (log n+ d(2
√
d+ 1)d) · log3 n), (7.69)

where the first inequality follows from nj ≤ (9
10
)j−1 · n. Finally, Line 12 runs in time

O(n2/3 log n). This completes the proof of the running time.

To conclude the quantum algorithms for solving CP in constant dimension, we

have the following corollary that is a direct consequence of either Theorem 7.27 or

Theorem 7.31.

Corollary 7.32. For any d = O(1), there exists a quantum algorithm that, with high

probability, solves CPn,d in time Õ(n2/3).

7.4.4 Quantum lower bound for CP in constant dimensions

We can easily get an Ω(n2/3) lower bound for the quantum time complexity of

CP in constant dimension by reducing the element distinctness problem (ED) to CP.

Theorem 7.33 (Folklore). The quantum time complexity of CP is Ω(n2/3).

Proof. We reduce ED to one dimensional CP by mapping the point i with value f(i)

in ED the point f(i) ∈ R in CP. If the closest pair has distance zero, we know there

is a collision f(i) = f(j). If the closest pair has distance greater or equal to one,

we know there is no collision. Therefore, ED’s Ω(n2/3) query lower bound by [AS04]

translates into Ω(n2/3) time lower bound for CP.

325

7.5 Bichromatic Closest Pair in Constant Dimensions

Classically, the bichromatic closest pair problem is harder than the closest pair

problem. In constant dimension, the best algorithms for the closest pair problem are

“nearly linear”, while the algorithm by [AESW91] for bichromatic closest pair problem

is “barely subquadratic”, running in O(n2−1/Θ(d))-time. In quantum, we found that

BCP is still harder than CP in constant dimension. In particular, we cannot adapt the

quantum algorithm in previous section for solving BCP because the data structure

cannot distinguish the points from two sets efficiently. We can only get a sub-linear

time quantum algorithm for BCP using different approach, which is a quadratic speed-

up for the classical algorithm.

Nevertheless, we show that we can find an approximate solution for BCP with

multiplicative error 1 + ξ with quantum time complexity Θ̃(n2/3). The following

theorem is a direct consequence of Theorems 7.39 and 7.42.

Theorem 7.34. For any fixed dimension and error ξ, there is a quantum algorithm

which can find an approximate solution for BCP with multiplicative error 1+ξ in time

Õ(n2/3). Moreover, all quantum algorithms which can find an approximate solution

for BCP with arbitrary multiplicative error requires time Ω(n2/3).

Similar to solving CP, we reduce BCP to its decision version of the problem,

and then apply quantum algorithms to solve the decision problem. We define the

decision problem as BCPϵ.

Definition 7.20 (BCPϵ). In BCPϵ, we are given two sets A,B of n points ∈ Rd and

a distance measure ∆. The goal is to find a pair of points a ∈ A, b ∈ B such that

∆(a, b) ≤ ϵ if it exists and returns no if no such pair exists.

To address the approximate version of BCP, we also define the approximation

version of BCPϵ as follows:

Definition 7.21 ((1 + ξ)-BCPϵ). In (1 + ξ)-BCPϵ, we are given two sets A,B of n

points ∈ Rd, a distance measure ∆, and ξ. The goal is to do the following

326

1. If there exists a pair of points a ∈ A, b ∈ B such that ∆(a, b) ≤ ϵ, output the

pair (a, b).

2. If for all pairs of points a ∈ A, b ∈ B, ∆(a, b) > (1 + ξ)ϵ, returns no.

Again, we consider ∆(a, b) = ∥a − b∥ as the distance measure in this work.

We show that BCP reduce to BCPϵ in time O(m + log d), where m is the number of

digits of each coordinate and d is the dimension.

Lemma 7.35. Given an oracle O for (1+ ξ)-BCPϵ, there exists an algorithm AO that

runs in time and query complexity O(m+ log d) solves the (1 + ξ)-BCP.

Proof. Let (A,B, δ) be an instance of the (1 + ξ)-BCP. We first pick an arbitrary

pair a0 ∈ A, b0 ∈ B and computes ∆(a0, b0). Then, we set ϵ to be ∆(a0, b0)/2 and

run the oracle O to check whether there exists a distinct pair which distance is less

than ∆(a0, b0)/2 or not. If there exists such a pair, which we denote as (a1, b1), then

we set ϵ = ∆(a1, b1) and call O to check again. If there is no such a pair, then we

set ϵ = 3∆(a0, b0)/4 and call O. We continuously run this binary search for m+ log d

iterations. Finally, the algorithm outputs the bichromatic closest pair.

In the subsections, we present a quantum algorithm for solving (1 + ξ)-BCP

and a quantum algorithm for exact BCP. To complement the algorithmic results, we

also give quantum lower bound for BCP.

7.5.1 Quantum algorithm for (1 + ξ)-BCP

The quantum algorithm is based on the quantum walk framework on a tensor

product of Johnson graphs. To begin with, we define the Johnson graphs JA and

JB for A and B, respectively. The vertices of JA, denoted by XA, is defined as the

set {S ⊆ A : |S| = n2/3}. There is an edge connecting S and S ′ if and only if

|S ∩ S ′| = n2/3 − 1. The Markov chain MA is defined on XA with pSS′ = 1
n2/3(n−n2/3)

when S and S ′ are connected by an edge. The Johnson graph for JB for B and its

327

corresponding Markov chain can be defined similarly. The tensor product MA ⊗MB

is defined as the Markov chain based on XA ×XB defined as

XA ×XB := {(SA, SB) : SA ∈ XA, SB ∈ XB}, (7.70)

with transition probability

p(SA,SB)(S′
A,S

′
B) = pSAS

′
A
· pSBS

′
B
. (7.71)

A state (SA, SB) is marked if there exists a pair a ∈ SA and b ∈ SB such that

∆(a, b) ≤ ϵ.

Now, we examine the properties of MA ⊗ MB. It is easy to see that λ =
(n−1

n2/3−1
)
2

(n

n2/3)
2 = 1

n2/3 . Let δA and δB be the spectral gap of MA and MB respectively. As

a result of [AB09, Lemma 21.17], δ ≥ min{δA, δB} = 1
n2/3 . By Lemma 7.10, the cost

for solving (1 + ξ)-BCPϵ is O(S+ n1/3(n1/3U+ C)), where S, U and C are the cost of

quantum operations defined in Section 7.4.2. Before describing the data structure to

achieve meaningful S,U, and C, we first introduce a finer discretization scheme. In

Section 7.4, we used a hypergrid consisting of ϵ-boxes. Here, we discretize the space

[0, L]d as a hypergrid consisting of ξϵ

2
√
d
-boxes. The following lemma guarantees that

distance between a ξϵ

2
√
d
-box and its ϵ-neighbor is at most (1 + ξ)ϵ.

Lemma 7.36. Let g and g′ be ξϵ

2
√
d
-boxes. If g and g′ are ϵ-neighbors, then for all

p ∈ g and p′ ∈ g′, ∆(p, p′) ≤ (1 + ξ)ϵ.

Proof. Recall the definition of the id function in Eq. (7.56). id(g) can be treated as a

point, and we can measure the distance between id(g) and other points. The lemma

can be proven via the triangle inequality:

∆(p, p′) ≤ ∆(p, id(g)) + ∆(id(g), id(g′)) + ∆(p′, id(g′) ≤ ξϵ

2
+ ϵ+

ξϵ

2
≤ (1 + ξ)ϵ.

(7.72)

328

In our algorithm, we need to search for all ϵ-neighbors that contain the other

color to report an ϵ-close pair (with an multiplicative error ξ). It’s easy to see that

the number of neighbors of a box is bounded in terms of d and ξ:

Claim 7.37. For each ξϵ

2
√
d
-box, the number of ϵ-neighbors is at most

(
4
√
d/ξ + 1

)d.

Based on this finer discretization scheme, we use the data structure defined

in Section 7.4.2 but with simple modifications on the radix tree. Instead of using

L1, . . . ,L⌈logn⌉ as the start entry of the skip list, we use ⌈log n⌉ pointers for both sets

A and B. We also need local counters CA and CB for both colors. Now, each node in

the radix tree has the following registers:

D×M1 ×M2 ×M3 × EA × EB × CA × CB×

F × LA
1 × · · · × LA

⌈logn⌉ × LB
1 × · · · × LB

⌈logn⌉. (7.73)

The points in A (or B, respectively) is organized by the skip list for A (or B, re-

spectively). The insertion and deletion operations are similar to the data structure

in Section 7.4.2, but in the procedure for updating the local and external counters

and checking ϵ-neighbors, we need to consider points of the other color. We formally

describe the two procedures as follows.

Insertion. Given a point (i, pi, x), where x ∈ {A,B} denotes the color. We perform

the insertion with the following steps:

1. Insert this tuple into the hash table corresponding to x.

2. Compute the id, id(pi), of the ξϵ√
d
-box which pi belongs to and denote it by

g(id(pi)).

3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i into the

skip list for color x corresponding to g(id(pi)); otherwise, first create a uniform

superposition of the addresses of all free cells into another register, then create

329

a new tree node in the cell determined by this address register and insert it

into the tree. The pointer for the start entry of the skip list is initially set to

0. Insert i into this skip list. Let τ ′(S, g(id(pi)) denote the leaf node in τ ′(S)

corresponding to g(id(pi)).

4. Increase the local counter Cx in τ ′(S, g(id(pi))) by 1.

5. Use Procedure 28 to update the external counters Ex,Ex̄ (here x̄ denotes the

other color than x) and flags F in τ ′(S, g(id(pi))), the leaf nodes which are

corresponding to the ϵ-neighbors of g(id(pi)), and their parent nodes.

Note that the first step takes at most O(log n) time. The second step can be

done in O(d) time. In Lines 4 and 20, the number of ϵ-neighbors to check is at most

(4
√
d
ξ

+ 1)d by Claim 7.37.

Deletion. Given (i, pi, x), we perform the following steps to delete this tuple from

our data structure.

1. Compute the id, id(pi), of the ϵξ√
d
-box which pi belongs to and denote it by

g(id(pi)).

2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to

g(id(pi)).

3. Remove i from the skip list for color x, and decrease the local counter Cx in

τ ′(S, g(id(pi))) by 1.

4. Use Procedure 26 to update the external counters Ex and Ex̄ (here x̄ denote

the other color than x) and flags F in τ ′(S, g(id(pi))) as well as in leaf nodes

corresponding to the ϵ-neighbors of g(id(pi)).

5. If both local counters Cx,Cx̄ in this leaf node are 0, remove τ ′(S, g(id(pi))) from

τ ′(S), and update the bitmap B in τ ′(S) that keeps track of all free memory

cells.

330

6. Remove (i, pi, x) from the hash table.

Note that the first step can be done in O(d) time. The second step can be

done in O(log n) time. Procedure 29 has the same time complexity with Procedure 28.

Hence, the cost for the deletion procedure is the same with that for insertion.

Checking for (1+ξ)ϵ-close pairs. To check the existence of an (1+ξ)ϵ-close pair,

we just read the flag in the root of the radix tree. If the flag is set, there is at most

one ϵ-close pair in S, and no such pairs otherwise. This operation takes O(1) time.

Finding a (1 + ξ)ϵ-close pair. We just read the flag in the root of the radix tree

and then go to a leaf which flag is 1. Check the local counters of the node. If both

local counters are at least 1, output the first elements in skip lists for A and the first

element in the skip list for B. Otherwise, check the external counters. Suppose EA is

non-zero. Then we find the ϵ-neighbor of the current node whose CB > 0 and output

the first point in the skip list of A of the current node and the first element in the

skip list of B of the ϵ-neighbor.

We have the following result.

Theorem 7.38. For any fixed dimension and fixed ξ, there exists a quantum algo-

rithm that, with high probability, can solve (1 + ξ)-BCPϵ in time O(n2/3(d+ log4(n+

L) + d(4
√
d
ξ

+ 1)d)).

Proof. The proof closely follows the analysis for Theorem 7.27, and the correctness of

the data structure and the time complexity of its operations follow from the discussion

in Section 7.4.2. Note that our algorithm will output a pair which belong to the same
ξϵ

2
√
d
-box or two of them that are ϵ-neighbors. Based on Lemma 7.36, two points which

corresponding hyercubes are ϵ-neighbors have distance at most (1+ξ)ϵ. Therefore, our

algorithm could output a pair of points which distance is at most (1 + ξ)ϵ. Another

difference is that here we need to search at most (4
√
d/ξ + 1)d neighbors during

331

insertions and deletions. As a result, U = O(d + log4(n + L) + d(4
√
d/ξ + 1)d), and

S = O(n2/3(d + log4(n + L) + d(4
√
d/ξ + 1)d). Again, C = O(1), δ ≥ 1/n2/3, and

λ ≥ 1/n2/3. Therefore, by Lemma 7.10, the total cost is O(S + 1√
λ
(1√

δ
U + C)) =

O(n2/3(d+ log4(n+ L) + (4
√
d/ξ + 1)d)).

By Lemma 7.35 and the above Theorem 7.38, we have the following theorem:

Theorem 7.39. For an fixed dimension and fixed ξ, there exists a quantum algorithm

that, with high probability, can solve (1 + ξ)-BCP in time Õ(n2/3).

7.5.2 Quantum algorithm for solving BCP exactly

In this subsection, we present a quantum algorithm for solving BCP exactly.

The main idea of this algorithm is to partition A into smaller subsets. Then we build

data structures which support nearest-neighbor search on all subsets in superposition.

We use the quantum minimum finding algorithm to find the smallest distances from

B to each subset, among which we use the quantum minimum finding algorithm again

to find the smallest distance.

Unlike the data structure for solving CP, the data structure for BCP does not

have to be uniquely represented, as no insertion and deletion are performed in this

algorithm. The data structure can have expected running time instead of the worst-

case running time. The total worst-case running time can be bounded by standard

techniques. The nearest-neighbor search data structure we use is from [Cla88], and

is reformulated in the following lemma.

Lemma 7.40 ([Cla88]). For any fixed dimension, there exists a data structure for n

points in Rd that can be built in expected time complexity O(n⌈d/2⌉+δ) for arbitrarily

small δ and the nearest-neighbor search can be performed in worst-case time complex-

ity O(log n).

332

This data structure is based on the Voronoi diagram and its triangulation

in higher dimensions. Using this data structure, we have a quantum algorithm for

solving BCP exactly, which yields the following theorem.

Theorem 7.41. There exists a quantum algorithm that, with high probability, solves

BCP for dimension d with time complexity Õ
(
n1− 1

2d
+δ
)

for arbitrarily small δ.

Proof. We first partition A into ⌈n/r⌉ subsets S1, . . . , S⌈n/r⌉, where |Si| = r for i ∈
[
⌈n/r⌉

]
. (The value of r will be determined later). For all i ∈

[
⌈n/r⌉

]
, we can find a

closest pair between Si and B as follows. First, a data structure as in Lemma 7.40 for

Si is built in expected time O
(
r⌈d/2⌉+δ

)
, which supports nearest-neighbor search in

time O(log n). Then, we use the quantum minimum finding subroutine (Theorem 7.6)

which uses the distance reported by the nearest-neighbor search as the oracle. The

closest pair between Si and B can be found in time complexity Õ(
√
n). Note that

the time complexity for building the data structure is not bounded for the worst

case. However, using Markov’s inequality, we know that with high probability, say, at

least 9/10, the time complexity is bounded by O
(
r⌈d/2⌉+δ

)
. Hence, fixing a constant

c ≥ 10, and stop the data structure construction after c · r⌈d/2⌉+δ steps. With at

most 1/10 probability, the construction will fail and this event can be detected by

checking the solution returned by the quantum minimum finding subroutine. We run

O(log n) instances of above procedure in parallel and use take the quantum minimum

of all the O(log n) results. The probability that all these instances fail is at most

(1/10)O(logn) = O(1/n). We refer to the above procedure as the “inner search”, and

its time complexity is O
(
r⌈d/2⌉+δ +

√
n
)
.

Next, we use the distance of the output of the inner search as the oracle and

perform another quantum minimum finding subroutine for i ∈
[
⌈n/r⌉

]
. We refer to

this procedure as the “outer search”. The probability that the closest pair between

A and B lies in Si and B is r/n. As a result, the number of the oracle queries for

the quantum minimum finding subroutine is Õ(
√
n/r). The time complexity for each

query is O
(
r⌈d/2⌉+δ +

√
n
)
. Therefore, the total time complexity is Õ

(
(r⌈d/2⌉+δ +

333

√
n) ·

√
n/r
)
. A simple calculation shows that this achieves the minimum (ignoring

the δ term in the exponent) when r = n1/d/(d − 1)2/d, which yields the total time

complexity

Õ
(
n1− 1

2d
+δ
)
. (7.74)

The failure probability for each query is at most O(1/n). Therefore, the total failure

probability is at most O(
√
n/r/n) = O(n−(1/2−1/2d)) for d > 1, which can be smaller

than any constant.

7.5.3 Quantum lower bound for BCP in constant dimensions

Now, we give a lower bound for (1 + ξ)-BCP, which trivially holds for BCP.

Theorem 7.42. The quantum query complexity for solving BCP is Ω(n2/3). Further-

more, the quantum query complexity for solving (1 + ξ)-BCP with an arbitrary ξ is

also Ω(n2/3).

Proof. Recall that we have shown in Section 7.4.4 that ED reduces to CP by viewing

ED as one-dimensional CP with the minimum distance 0. It is not hard to see that

ED also reduces to approximate CP with multiplicative error 1+ ξ since 0 times 1+ ξ

is still 0. For simplicity, we denote approximate CP with multiplicative error 1+ ξ as

(1 + ξ)-CP. Given a set S as a (1 + ξ)-CP instance, we choose A,B ⊂ S uniformly

at random such that A = S \B and |A| = |B|. Then, with 1/2 probability, a closest

pair in S has one point in A and another in B. Therefore, if (a, b) be a valid solution

for (1 + ξ)-BCP on (A,B), (a, b) is also a a valid solution for (1 + ξ)-CP on S with

probability 1/2.

It is obvious that following the same proof, CP reduces to BCP. Hence, the

quantum query complexity for BCP and (1+ξ)-BCP are both Ω(n2/3). This completes

the proof.

334

7.6 Orthogonal Vectors in Constant Dimensions

Theorem 7.43. The time complexity of OVn,d (Definition 7.4) in quantum query

model is Θ(
√
n) when the dimension d is constant .

Proof. We show lower and upper bounds for OVn,d:

Lower bound We reduce the search problem to an instance of 2-dimensional OV.

Let all vectors in A be (0, 1). We map an element of the search instance with value 0

as a vector in B with value (0, 1) in OVn,2, and 1 as (1, 0). An orthogonal pair must

contain the vector in B with value (1, 0) in this construction. Therefore, if we find

an orthogonal pair, we find the corresponding marked (value 1) element in the search

instance. The Ω(
√
n) lower bound of Grover’s search algorithm gives an Ω(

√
n) lower

bound to OVn,d.

Upper bound The vectors only have 2d possible values, {0, 1}d, in the d-dimensional

OV. For a particular value v ∈ {0, 1}d, we can use Grover search to check whether

there exist vector a ∈ A such that a = v in time O(
√
n), and similarly for vectors in

B. Therefore we can, for all v ∈ {0, 1}d, check whether there exist a ∈ A such that

a = v and b ∈ B such that b = v in O(2d+1
√
n) time, recording the results as two 2d

bit strings SA and SB. Then we check all 22d pairs of values (v, w) whether ⟨v, w⟩ = 0

, SA(v) = 1, and SB(w) = 1. When we found such a pair (v, w), we use Grover’s

search algorithm again to output a corresponding pair of vectors. The total running

time is O(2d+1
√
n+ 22d + 2

√
n) = Õ(

√
n).

335

Algorithm 25 Updating nodes for insertion.
1: procedure UpdateIns(i, pi) ▷ The leaf node in τ ′(S) corresponding to the
ϵ-box g(id(pi)), denoted by τ ′(S, g(id(pi))).

2: if the local counter C = 1 in τ ′(S, id(pi)) then
3: for all ϵ-box g′ that is a ϵ-neighbor (see Definition 7.18) of g(id(pi)) where

the local counter C = 1 in τ ′(S, g′) and the distance between pi and the point in
g′ is at most ϵ do

4: Increase the external counter E of τ ′(S, g′) by 1
5: Increase the external counter E of τ ′(S, g(id(pi))) by 1
6: if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
7: Set the flag F in τ ′(S, g′)
8: Update the flag F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
9: end if

10: end for
11: if the external counter E > 1 in τ ′(S, g(id(pi))) then
12: Set the flag F in τ ′(S, g(id(pi)))
13: Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the

root of τ ′(S)
14: end if
15: else if the local counter C = 2 in τ ′(S, id(pi)) then
16: Set the flag F in τ ′(S, g(id(pi)))
17: Update the flag F in the nodes along the path from τ ′(S, g(id(pi))) to the

root of τ ′(S)
18: Set the external counter E = 0 in τ ′(S, id(pi))
19: Let i′ be the other index (than i) stored in the skip list corresponding to

g(id(pi))
20: for all ϵ-box g′ that is a ϵ-neighbor of g(id(pi)) where the local counter

C = 1 in τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ϵ do
21: Decrease the external counter of τ ′(S, g′) by 1
22: if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
23: Unset the flag F in τ ′(S, g′)
24: Update the flag F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
25: end if
26: end for
27: end if
28: end procedure

336

Algorithm 26 Updating nodes for deletion.
1: procedure UpdateDel(i, pi) ▷ The leaf node in τ ′(S) corresponding to the
ϵ-box g(id(pi)), denoted by, τ ′(S, g(id(pi))).

2: if the local counter C = 0 in τ ′(S, id(pi)) then
3: Unset the flag F in τ ′(S, g(id(pi)))
4: Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root

of τ ′(S)
5: Set the external counter E = 0 in τ ′(S, id(pi))
6: for all ϵ-box g′ that is a ϵ-neighbor (see Definition 7.18) of g(id(pi)) where

the local counter C = 1 in τ ′(S, g′) and the distance between pi and the point in
g′ is at most ϵ do

7: Decrease the external counter E of τ ′(S, g′) by 1
8: if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
9: Unset the flag F in τ ′(S, g′)

10: Update the flag F in the nodes along the path from τ ′(S, g′) to the
root of τ ′(S)

11: end if
12: end for
13: else if the local counter C = 1 in τ ′(S, id(pi)) then
14: Let i′ be the only index stored in the skip list corresponding to g(id(pi))
15: for all ϵ-box g′ that is a ϵ-neighbor of g(id(pi)) where the local counter

C = 1 in τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ϵ do
16: Increase the external counter E of τ ′(S, g′) by 1
17: Increase the external counter E of τ ′(S, g(id(pi))) by 1
18: if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
19: Set the flag F in τ ′(S, g′)
20: Update the flag F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
21: end if
22: end for
23: if the external counter E = 0 in τ ′(S, g(id(pi))) then
24: Unset the flag F in τ ′(S, g(id(pi)))
25: Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the

root of τ ′(S)
26: end if
27: end if
28: end procedure

337

Algorithm 27 The algorithm for multiple ϵ-close pair
1: procedure MultiCP(S, ϵ) ▷ |S| = n.
2: Let T1 = S and j = 1
3: while |Tj| > n2/3 do
4: Run the algorithm described in Lemma 7.29 on Tj, and Measure the final

state.
5: If there is a pair with distance less than ϵ, output the pair and stop
6: Let qj be an even power of a prime with |Tj| ≤ qj ≤ (1 + 1

8
)|Tj|.

7: Select a random permutation πj on [qj] from the 1
n
-approximately 4 log n-

wise independent family of permutations as in Lemma 7.30
8: Let

Tj+1 :=

{
π−11 · π−12 · · · π−1j (i), i ∈

[⌈
4qj
5

⌉]}
. (7.65)

9: j ← j + 1
10: end while
11: if |Tj| ≤ n

2
3 then

12: Run Grover’s search algorithm on Tj for a pair with distance at most ϵ
13: end if
14: end procedure

338

Algorithm 28 Updating nodes for insertion for the bichromatic case.
1: procedure UpdateInsBCP(i, pi, x) ▷ the leaf node in τ ′(S) corresponding to
g(id(pi)), denoted by τ ′(S, g(id(pi))).

2: Let x̄ ∈ {A,B} and x̄ ̸= x
3: if Cx = 1 in τ ′(S, id(pi)) and Cx̄ = 0 then
4: for all ϵ-neighbor g′ (see Definition 7.18) of g(id(pi)) where Cx̄ ≥ 1 in
τ ′(S, g′) do

5: Increase Ex of τ ′(S, g′) by 1
6: Increase Ex̄ of τ ′(S, g(id(pi))) by 1
7: if Ex in τ ′(S, g′) was increased from 0 to 1 then
8: Set the flag F in τ ′(S, g′)
9: Update the flags F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
10: end if
11: end for
12: if Ex̄ ≥ 1 in τ ′(S, g(id(pi))) then
13: Set the flag F in τ ′(S, g(id(pi)))
14: Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the

root of τ ′(S)
15: end if
16: else if Cx = 1 and Cx̄ ≥ 1 in τ ′(S, g(id(pi))) then
17: Set the flag F in τ ′(S, g(id(pi)))
18: Update the flags F in the nodes along the path from τ ′(S, g(id(pi))) to the

root of τ ′(S)
19: Set Ex̄ = 0 in τ ′(S, id(pi))
20: for all g′ that is an ϵ-neighbor of g(id(pi)) where the the local counter

Cx̄ ≥ 1 in τ ′(S, g′) do
21: Decrease Ex of τ ′(S, g′) by 1
22: if Ex in τ ′(S, g′) was decreased from 1 to 0 then
23: Unset the flag F in τ ′(S, g′)
24: Update the flags F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
25: end if
26: end for
27: end if
28: end procedure

339

Algorithm 29 Updating nodes for deletion for the bichromatic case.
1: procedure UpdateDelBCP(i, pi, x) ▷ the leaf node in τ ′(S) corresponding to
g(id(pi)), which we denote as τ ′(S, g(id(pi))).

2: Let x̄ ∈ {A,B} and x̄ ̸= x
3: if Cx and Cx̄ in τ ′(S, id(pi)) = 0 then
4: Unset the flag F in τ ′(S, g(id(pi)))
5: Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the

root of τ ′(S)
6: Set Ex = 0 and Ex̄ = 0 in τ ′(S, id(pi))
7: for all g′ that is an ϵ-neighbor (see Definition 7.18) of g(id(pi)) where the

local counter Cx̄ ≥ 1 in τ ′(S, g′) do
8: Decrease Ex of τ ′(S, g′) by 1
9: if Ex in τ ′(S, g′) was decreased from 1 to 0 then

10: Unset the flag F in τ ′(S, g′)
11: Update the flags F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
12: end if
13: end for
14: else if Cx = 0 and Cx̄ ≥ 1 then
15: for all g′ that is an ϵ-neighbor of g(id(pi)) where the local counter Cx ≥ 1

in τ ′(S, g′) do
16: Increase Ex̄ of τ ′(S, g′) by 1
17: Increase Ex of τ ′(S, g(id(pi))) by 1
18: if Ex̄ in τ ′(S, g′) was increased from 0 to 1 then
19: Set the flag F in τ ′(S, g′)
20: Update the flags F in the nodes along the path from τ ′(S, g′) to the

root of τ ′(S)
21: end if
22: end for
23: if Ex = 0 in τ ′(S, g(id(pi))) then
24: Unset the flag F in τ ′(S, g(id(pi)))
25: Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the

root of τ ′(S)
26: end if
27: end if
28: end procedure

340

Chapter 8: Quantum Meta-Complexity

8.1 Introduction

The Minimum Circuit Size Problem (MCSP) is one of the central computa-

tional problems in complexity theory. Given the truth table of a Boolean function

f : {0, 1}n → {0, 1} and a size parameter s (in unary) as inputs, MCSP asks whether

there exists a circuit of size at most s for f . While MCSP has been studied as early

as the 1950s in the Russian cybernetics program [Tra84], its complexity remains mys-

terious: we do not know whether it is in P or NP-hard. Meanwhile, besides being

a natural computational problem, in recent years, researchers have discovered many

surprising connections of MCSP to other areas such as cryptography [RR97], learn-

ing theory [CIKK16], circuit complexity [KC00], average-case complexity [Hir18], and

others.

Quantum computing is of growing interest, with applications to cryptogra-

phy [Sho94], machine learning [BWP+17], and complexity theory [JNV+20], etc. In-

spired by the great success of MCSP in classical computation and the flourishing of

quantum computers, we propose a new research program of studying quantum com-

putation through the lens of MCSP. We envision MCSP as a central problem that

connects different quantum computation applications and provides deeper insights

into the complexity-theoretic foundation of quantum circuits.

8.1.1 The classical MCSP and its connections to other problems

It is immediate that MCSP ∈ NP because the input size is 2n so one can verify if

a circuit (given as the certificate/proof) computes the input truth table in time 2O(n).

However, there is no consensus on the complexity status of this problem – MCSP could

be in P, NP-complete, or NP-intermediate. Several works [MW17, KC00] showed

negative evidence for proving the NP-hardness of MCSP using standard reduction

341

techniques. We also do not know whether there is an algorithm better than brute

force search (see Perebor conjecture for MCSP [Tra84]) or whether there is a search-

to-decision reduction or a self-reduction1 for MCSP2. On the other hand, several

variants of MCSP are NP-hard under either deterministic reductions [Mas79, HOS18]

or randomized reductions [Ila19, ILO20].

Researchers have discovered many surprising connections of MCSP to other

fields in Theoretical Computer Science including cryptography, learning theory, and

circuit lower bounds. To name a few, Razborov and Rudich [RR97] related natural

properties against P/poly with circuit lower bounds and pseudorandomness. Ka-

banets and Cai [KC00] showed that MCSP ∈ P implies new circuit lower bounds, and

that MCSP ∈ BPP implies that any one-way function can be inverted. Allender and

Das [AD14a] related the complexity class SZK (Statistical Zero Knowledge) to MCSP.

Carmosino et al. [CIKK16] showed that MCSP ∈ BPP gives efficient PAC-learning

algorithms. Impagliazzo et al. [IKV18] showed that the existence of indistinguish-

able obfuscation implies that SAT reduces to MCSP under a randomized reduction.

Hirahara [Hir18] showed that if an approximation version of MCSP is NP-hard, then

the average-case and worst-case hardness of NP are equivalent. Arunachalam et

al. [AGG+20] proved that MCSP ∈ BQP implies new circuit lower bounds. All these

results indicate that the MCSP serves as a “hub” that connects many fundamental

problems in different fields. Therefore, a deeper understanding of this problem could

lead to significant progress in Theoretical Computer Science.

8.1.2 Main results and technical overview

In this chapter, we consider three different natural objects that a quantum

circuit can compute: Boolean functions, unitaries, and quantum states. We start

1Roughly, a problem is self-reducible if one can solve the problem with size n by algorithms for
smaller size.

2It is worth noting that every NP-complete problem has search-to-decision reductions and self-
reductions.

342

with giving the informal definitions of the minimum circuit size problem for each of

them. See Section 8.3 and Section 8.5 for the formal definitions.

Definition 8.1 (MQCSP, informal). Given the truth table of a Boolean function f

and a size parameter s in unary, decide if there exists a quantum circuit C which has

size at most s and uses at most s ancilla qubits such that C computes f with high

probability.

Definition 8.2 (UMCSP, informal). Given the full description of a 2n-dimensional

unitary matrix U and a size parameter s in unary, decide if there exists a quantum

circuit C which has size at most s and uses at most s ancilla qubits such that C and

U are close3.

Definition 8.3 (SMCSP, informal). Let |ψ⟩ be an n-qubit state. Given size param-

eters s and n in unary and access to arbitrarily many copies of |ψ⟩ (or the classical

description of |ψ⟩), decide if there exists a quantum circuit C which has size at most

s using at most s ancilla qubits such that C|0n⟩ and |ψ⟩ are close in terms of fidelity.

In the rest of this subsection, we first discuss several challenges and difficulties

we encountered in the study of MCSP when moving from the classical setting to the

quantum setting. Next, we give an overview of all the results and techniques. In

particular, we focus on both interpreting the new connections we establish as well as

the technical subtleties when quantizing the previous works in the classical setting.

For a quick summary of the results, please take a look at Table 8.1.

8.1.2.1 Challenges and difficulties when moving to the quantum setting

In the following, we summarize several fundamental properties of quantum

circuits, unitaries, and quantum states that induce problems and difficulties that

would not appear in the classical setting.

3We say C and U are close if |(⟨ψ| ⊗ I)U†C(|ψ⟩|0⟩)| is large for all |ψ⟩.

343

Quantum computation is generally random and erroneous. It is natural to

consider quantum circuits that approximate (rather than exactly computing) the de-

sired unitary. One immediate consequence is that we have to define the quantum

MCSPs as promise problems (with respect to the error)4, which is more challenging

to deal with. Moreover, since unitaries and quantum states are specified by com-

plex numbers, we also need to properly tackle the precision issue. These quantum

properties make generalizing classical results to the quantum setting non-trivial. For

instance, some classical analyses (see [AGG+20] for an example) rely on the fact that

the classical circuits are deterministic after the random string is made public, while

any intermediate computation of a quantum circuit is inherently not deterministic.

Quantum circuits are reversible. This follows from the fact that every quantum

gate is reversible. While this seems to be a restriction for quantum circuits, we observe

that this enables search-to-decision reductions for UMCSP and SMCSP. Note that the

existence of such reduction is a longstanding open question for classical MCSP. This

suggests that quantum MCSPs can provide a new angle to leverage the reversibility

of quantum circuits.

The introduction of ancilla qubits. As quantum circuits are reversible, every in-

termediate computation has to happen on the input qubits. Thus, it is very common

to introduce ancilla qubits which are extra qubits initialized to all zero and can be re-

garded as additional registers for intermediate computation. Ancilla qubits introduce

complications in quantum MCSPs. First, the quantum circuit complexity of an object

could be very different when the allowed number of ancilla qubits is different. Second,

the classical simulation time of a quantum circuit scales exponentially in the number

of input qubits plus the number of ancilla qubits. Namely, when the number of ancilla

4The definitions above are not promise problems for simplicity. Check Section 8.3 and 8.5 for
formal definitions.

344

qubits is super-linear, classical simulations would require super-polynomial time5. An

immediate consequence is that, unlike classical MCSP, MQCSP is not trivially in NP

when allowing a super-linear number of ancilla qubits. In addition, the output of

quantum circuits on ancilla qubits can be arbitrary quantum states in general. This

property makes certain reductions for quantum MCSPs fail when considering many

ancilla qubits.

Various universal quantum gate sets. The choice of the gate set affects the cir-

cuit complexity of the given Boolean functions (and unitaries and states). There are

various universal quantum gate sets, and transforming from one to the other results in

additional polylogarithmic overhead to the circuit complexity by the Solovay-Kitaev

Theorem. We note that when considering certain hardness results, the choice of the

gate set might matter. Take the approximate self-reduction for SMCSP (in Theo-

rem 8.9) as an example, we start from constructing such reductions for a particular

gate set. We then generalize the result to an arbitrary gate set via the Solovay-Kitaev

Theorem; however, it introduces additional overhead to the approximation ratio. An-

other example is proving NP-hardness for multi-output MQCSP, where we show that

the problem is NP-hard when considering particular gate sets, and it is still open

whether the problem is NP-hard for all universal gate sets.

8.1.2.2 The Hardness of MQCSP and cryptography

We start with stating the hardness results of MQCSP and its implications in

cryptography.

Theorem 8.1 (Informal).

1. MQCSP is in QCMA ⊆ QMA.

5The running time is measured with respect to the size of the truth table or the size of the
unitary/quantum state.

345

2. If MQCSP can be solved in quantum polynomial time, then quantum-secure one-

way function (qOWF) does not exist.

3. If one can solve MQCSP efficiently, then all problems in SZK have efficient

algorithms.

4. Suppose that quantum-secure indistinguishability obfuscator (iO) for polynomial-

size circuits exists. Then, MQCSP ∈ BQP implies NP ⊆ coRQP6.

5. Multiple-output MQCSP (under a gate set with some natural properties) is NP-

hard under randomized reductions.

We have discussed why MQCSP is not trivially in NP earlier. So, it is natural

to wonder what can be a tighter upper bound for MQCSP. Instead of considering

classical verifier, we allow the verifier to check the given witness circuit quantumly

and thus are able to prove that MQCSP is in QCMA (which is a quantum analogue

of MA allowing efficient quantum verifiers but classical witness).

For item 2 – 5, we study whether some hard problems reduce to MQCSP.

Classically, many results use the fact that an MCSP oracle can break certain pseudo-

random generators to show reductions from hard problems to MCSP. A distinguisher

can break a pseudorandom generator by viewing that the string is a truth table of

some Boolean function and using the MCSP oracle to decide if the function has small

circuit complexity7. We generalize this idea to the quantum setting by observing that

if the Boolean function has small classical circuit complexity, then its quantum circuit

complexity is also small. It is worth noting that the second result implies efficient

algorithms for some lattice problems if MQCSP is in BQP.

6coRQP is a complexity class of quantumly solvable problems with perfect soundness and
bounded-error completeness.

7If the truth table is truly random, it corresponds to a random function and must have large
circuit complexity with high probability.

346

For item 5, we generalize the recent breakthrough of Ilango et al. [ILO20] on

the NP-hardness of MCSP. We note that the formal theorem statement depends on

the gate set choices of MQCSP. To prove this theorem, we follow the proof ideas in

[ILO20] and overcome some additional obstacles that appear in the quantum world.

The new obstacle comes from (i) the quantum gate set is different from the one in

the classical case; (ii) in the quantum world, we need to deal with error terms. We

carefully handle these issues and extend the proof to the quantum setting.

8.1.2.3 MQCSP and learning theory

A central learning theory setting is (approximately) reconstructing a circuit

for an unknown function given a limited number of samples. Learning Boolean func-

tions in the classical setting was extensively studied (see, for example, a survey by

Hellerstein and Servedio [HS07]); however, relatively few explorations have been made

under the quantum setting. There are two natural quantum extensions: (i) learning

a quantum circuit and (ii) adding quantumness in the learning algorithm. We study

both scenarios and provide generic connections between MQCSP and the two settings

PAC learning for quantum circuits. Probabilistic approximately correct (PAC)

learning [Val84] is a standard theoretical framework in learning theory. There are

several variants, but for simplicity, we focus on the query model where a classi-

cal learning algorithm can query an unknown n-bit Boolean function f on inputs

x1, . . . , xm ∈ {0, 1}n and aim to output a circuit approximating f with high probabil-

ity. To have efficient PAC learning algorithms for polynomial-size quantum circuits,

we show that it is necessary and sufficient to have efficient algorithms for MQCSP or

its variants.

Theorem 8.2 (Informal). The existence of an efficient PAC learning algorithm for

BQP/poly is equivalent to the existence of an efficient randomized algorithm for

MQCSP.

347

Quantum learning. In the past two decades, there has been increased interest in

quantum learning (see a survey by Arunachalam and de Wolf [AdW17]) due to the

success of machine learning and quantum computing. While there have been interest-

ing quantum speed-ups for specific learning problems such as Principal Component

Analysis [LMR14] and quantum recommendation system [KP17], it is unclear whether

the quantumness can provide a generic speed-up in learning theory. A recent result of

Arunachalam et al. [AGG+20] suggested that this might be difficult by showing that

the existence of efficient quantum learning algorithms for a circuit class would imply

a breakthrough circuit lower bound. We further generalize their result by showing

the equivalence of efficient quantum PAC learning and the non-trivial upper bound

for MQCSP.

Theorem 8.3 (Informal). The existence of efficient quantum learning algorithms

for PAC learning a circuit class C is equivalent to the existence of efficient quantum

algorithms for C-MQCSP8.

The proof idea is to quantize the “learning from a natural property” paradigm

of [CIKK16]. Briefly speaking, the converse direction “algorithms for MQCSP imply

learning algorithms” follows from the idea that one can use the Boolean function

(the object to be learned) to construct a PRG with the property that breaking the

PRG implies a reconstructing algorithm for f . Then, since an algorithm for MQCSP

can break PRG, we obtain an algorithm for f . Another direction follows from the

observation that we can still apply the learning algorithm given the truth table of

the function. Specifically, for Theorem 8.2, it turns out that the converse direction

is straightforward because P/poly ⊂ BQP/poly while the forward direction requires

the number of ancilla bits to be O(n) due to the overhead from a classical simulation

for quantum circuits. For Theorem 8.3, the difficulty lies in the fact that a quantum

circuit is inherently random and one cannot arbitrarily compose quantum circuits as

8C-MQCSP is MQCSP with respect to circuit class C.

348

their wishes. To circumvent these issues, we invoke the techniques in [AGG+20] which

built up composable tools for reconstructing a circuit from a quantum distinguisher.

See Theorem 8.23, Theorem 8.22, and Section 8.4.2 for more details.

8.1.2.4 MQCSP and quantum circuit lower bounds

The classical MCSP is tightly connected to circuit lower bounds. We generalize

the results of Oliveira and Santhanam [OS16], Arunachalam et al. [AGG+20], and

Kabanets and Cai [KC00] to MQCSP.

Theorem 8.4 (Informal). Suppose that MQCSP ∈ BQP. Then

1. BQE ̸⊂ BQC[nk] for any constant k ∈ N9; and

2. BQPQCMA ̸⊂ BQC[nk] for any constant k ∈ N.

For item 1, we use MQCSP to construct a BQP-natural property against quan-

tum circuit classes. Then, with a quantum-secure pseudorandom generator, we can

use a “win-win argument” to show that BQE ̸⊂ BQC[nk] for any k > 0. The proof

mainly follows from [AGG+20, OS16]. However, we extend their proofs to the quan-

tum natural properties against quantum circuit classes. One technical contribution is

a diagonalization lemma for quantum circuits.

For item 2, we follow the idea in [KC00] to show that the maximum quantum

circuit complexity problem10 can be solved in exponential time with a QCMA oracle.

The main difference from the classical case is that we require a QCMA oracle instead

9BQC[nk] is the complexity class for problems that can be solved by O(nk)-size quantum circuits
with bounded fan-in, and BQE in the set of problems that can be solved in 2O(n) time by quantum
computers. Previously, Aaronson [Aar06] showed that PPP ̸⊂ BQC[nk] unconditionally. However,
the relations between PPP, BQE, and BQPQCMA are still unclear.

10The problem is, given 1n, ask for a Boolean function f : {0, 1}n → {0, 1} that has the maximum
complexity.

349

of an NP one, which follows from the fact that we assume MQCSP is in BQP11. Then,

the statement follows from the standard padding argument.

Another aspect of quantum circuit complexity is hardness amplification. Ka-

banets and Cai [KC00] showed that MCSP can be used as an amplifier to generate

many hard Boolean functions. In this part, we show that with an MQCSP oracle,

given one quantum extremely hard Boolean function, there is an efficient quantum

algorithm that outputs many quantum-hard functions.

Theorem 8.5 (Hardness amplification by MQCSP, informal). Assume MQCSP ∈
BQP. There exists a BQP algorithm that, given the truth table of a Boolean function

with quantum circuit complexity 2Ω(n), outputs 2Ω(n) Boolean functions with m =

Ω(n) variables such that each function has quantum circuit complexity greater than

2m/(c+ 1)m for c some constant.

The proof of Theorem 8.5 closely follows the proof in [KC00]. The key ingredi-

ent is a quantum Impagliazzo-Wigderson generator, which “quantizes” the construc-

tion in [IW97]. The quantum Impagliazzo-Wigderson generator can transform the

given quantum extremely hard function to a quantum pseudorandom generator that

fools quantum circuits of size 2O(n). Since we assume MQCSP ∈ BQP, it means that

we can construct a small quantum distinguishing circuit to accept the truth tables of

hard functions. And we can show that our quantum Impagliazzo-Wigderson gener-

ator can fool the distinguishing circuit. Hence, most of the outputs of the quantum

pseudorandom generator will have high quantum circuit complexity.

To quantize the Impagliazzo-Wigderson generator, we construct a quantum-

secure direct-product generator, and also use the quantum Goldreich-Levin Theorem

and quantum-secure Nisan-Wigderson generator developed in [AGG+20].

11Along this line, the result still holds if we consider MCSP ∈ BQP and maximum classical circuit
complexity.

350

Hardness magnification is an interesting phenomenon in classical circuit com-

plexity defined by [OS18]. It shows that a weak worst-case lower bound can be

“magnified” into a strong worst-case lower bound for another problem. (See a recent

talk by Oliveira [Oli19].) In this part, we show that MQCSP also has a quantum

hardness magnification.

Theorem 8.6 (Hardness magnification for MQCSP, informal). If a gap version of

MQCSP does not have nearly-linear size quantum circuit, then QCMA cannot be com-

puted by polynomial size quantum circuits.

We note that this is a nontrivial theorem because even if we assume QCMA ⊆
BQC[poly(n)], we can only show MQCSP ∈ BQC[poly(2n)], i.e., MQCSP has a polynomial-

size quantum circuit by the fact that MQCSP ∈ QCMA. But the theorem implies that

some gap-version of MQCSP has nearly-linear size circuit!

We prove the above theorem via a quantum antichecker lemma, whose classical

version was given by [OPS19, CHO+20]. And we observe that the two key ingredients:

a delicate design of a Boolean circuit and a counting argument can be quantized.

8.1.2.5 MQCSP and quantum fine-grained complexity

Fine-grained complexity theory aims to study the exact lower/upper bounds

of some problems. For example, most theorists believe 3-SAT is not in P, but we

do not know if it can be solved in 2o(n) time. Exponential Time Hypothesis (ETH)

is a commonly used conjecture in this area which rules out this possibility (see a

survey by Williams [Wil18]). Very recently, [Ila20b] showed the fine-grained hardness

of MCSP for partial function based on ETH. In the quantum setting, [ACL+20,

BPS21] proposed quantum fine-grained reductions and quantum strong exponential

time hypothesis (QSETH) to study the quantum hardness of problems in BQP. In

this part, we follow the works of [Ila20b, ACL+20] and prove the quantum hardness of

MQCSP for partial functions based on the quantum ETH conjecture,which conjectures

351

that there does not exist a 2o(n)-time quantum algorithm for solving 3-SAT12.

Theorem 8.7 (Fine-grained hardness of MQCSP⋆, informal). Quantum ETH implies

N o(log logN)-quantum hardness of MQCSP for partial functions.

To prove the above theorem, we basically follow the reduction path in [Ila20b],

which gave a reduction from a fine-grained problem studied by [LMS11] to MQCSP

for partial functions. But we need to bypass two subtleties:

• The proof of [Ila20b] relies on the structure of the classical read-once formula,

but there is no direct correspondence with quantum;

• [LMS11] only proved the classical hardness of the bipartite permutation inde-

pendent set problem, but we need quantum hardness result.

For the first issue, we prove an unconditional quantum circuit lower bound

for that function in the reduction. More specifically, we first show that if a small

quantum circuit can compute the partial function γ in the reduction, then that circuit

is a quantum read-once formula (defined by [Yao93]); and vice versa. And then, we

apply a “dequantization” result by [CKP13] to show that the quantum read-once

formula can be converted to a classical read-once formula with the same size. Then,

by the structure of the “dequantized” read-once formula, we finally conclude that

deciding MQCSP for γ is equivalent to solving the bipartite permutation independent

set problem.

For the second issue, we use the quantum fine-grained reduction framework and

give a reduction from 3-SAT to the bipartite permutation independent set problem.

Therefore, the quantum hardness of MQCSP for partial function follows from the

quantum hardness of deciding 3-SAT conjectured by the quantum ETH.

12Existing quantum SAT solvers are not much faster than Grover’s search; they need 2Ω(n)-time
even for 3-SAT.

352

8.1.2.6 Quantum circuit complexity for states and unitaries

In this section, we study UMCSP and SMCSP. For SMCSP in Definition 8.3, we

consider two types of inputs: quantum states and the classical description of the state.

We consider the inputs as quantum states since we generally cannot have the classical

description of the quantum state in the real world, and many related problems (such as

shadow tomography [Aar18], quantum gravity [BFV20], and quantum pseudorandom

state [JLS18]) have multiple copies of states as inputs. Although this input format

makes SMCSP harder, we are able to show that SMCSP has a QCMA protocol13.

Furthermore, the search-to-decision reduction and the self-reduction in Theorem 8.9

hold for both versions of SMCSP. We first show hardness upper bounds for UMCSP

and SMCSP.

Theorem 8.8 (Informal). (1) UMCSP ∈ QCMA. (2) SMCSP can be verified by QCMA

protocols.

To prove Theorem 8.8, we use the swap test to test whether the witness circuit

C outputs the correct states. This suffices to show that SMCSP has a QCMA protocol.

To show that UMCSP is in QCMA, checking if the circuit C and U agree on all inputs

by using swap test is infeasible since there are infinitely many quantum states in the

2n-dimensional Hilbert space. If one only checked all the computational basis states

(i.e., {|x⟩ : x ∈ {0, 1}n}), it is possible that the circuit C and the given unitary U

are not close on inputs in the form of superposition states. This can come from the

following two sources. (a) C can introduce different phases on different computational

basis states; (b) using ancilla qubits to implement U results in entanglement between

the output qubits and ancilla qubits, which may fail the swap test.

To deal with these difficulties, we introduce an additional step in the test called

“coherency test”. This step tests the circuit output on all the initial states in the form

13Note that since SMCSP has quantum inputs, the problem is not in QCMA under the standard
definition.

353

of |a⟩+ |b⟩, where |a⟩, |b⟩ are different computational basis states. We can prove that

it forces the behavior of C to be coherent on all the computational basis states, and

forces the phases to be roughly the same.

Reductions for UMCSP and SMCSP that are unknown to the classical MCSP.

In addition to the upper bounds, we also show interesting reductions for UMCSP and

SMCSP.

Theorem 8.9 (Informal).

• Search-to-decision reductions: There exist search-to-decision reductions for

UMCSP and SMCSP when no ancilla qubits are allowed.

• Self-reduction: SMCSP is approximately self-reducible.

• A gap version of MQCSP reduces to UMCSP.

Classically, it is unknown whether MCSP is self-reducible or has search-to-

decision reductions. Ilango [Ila20a] proved that some variants of MCSP have search-

to-decision reductions. Recently, Ren and Santhanam [RS21] showed that a rela-

tivization barrier applies to the deterministic search-to-decision reduction and self-

reduction of MCSP. We prove the existence of search-to-decision reductions by using

the property that “quantum circuits are reversible”. In particular, we guess the i-th

gate, uncompute the gate from the state or the unitary, and use the decision oracles

to check whether the complexity of the new state or the new unitary reduces. By

repeating this process for all gates, we can find the desired circuits. This approach

suffices for the case where the quantum circuits use no ancilla qubits. On the other

hand, when the quantum circuits use ancilla qubits and are not forced to turn ancilla

qubits back to the all-zero state, this approach does not work. Consider UMCSP. The

quantum circuit may implement a unitary U ⊗ V . To find the circuit, the approach

above needs to start from U ⊗ V and do the uncomputation iteratively. However, V

is unknown. SMCSP has the similar issues.

354

For the self-reducibility of SMCSP, we show that one can approximate the

circuit complexity of an n-qubit state by computing the circuit complexities of (n−1)-
qubit states. Roughly, we find a “win-win decomposition” of an n-qubit state such

that its circuit complexity is either close to the circuit complexity of an (n− 1)-qubit

state or can be approximated by two (n− 1)-qubit states.

Finally, we show a reduction related to MQCSP and UMCSP. The proof is

by encoding a Boolean function into a particular unitary and showing that the cir-

cuit complexity of that unitary gives both upper and lower bounds for the circuit

complexity of the Boolean function.

Implications of Hardness of SMCSP and UMCSP For UMCSP, one applica-

tion is related to a question Aaronson asked in [Aar16]: does there exist an efficient

quantum process that generates a family of unitaries that are indistinguishable from

random unitaries given the full description of the unitary? If there is an efficient algo-

rithm for UMCSP, then there is no efficient quantum process that generates unitaries

indistinguishable from random unitaries given the full unitary.

Moreover, several implications of MCSP carry to UMCSP by Theorem 8.9.

This follows from the fact that the gap version of MQCSP suffices to break certain

pseudorandom generators.

For SMCSP, we focus on the version where the inputs are copies of quan-

tum states and present its relationships to quantum cryptography, tomography, and

quantum gravity.

Theorem 8.10 (Informal).

1. If SMCSP has quantum polynomial-time algorithms, then there are no pseudo-

random states, and thus no quantum-secure one-way functions.

2. Assuming additional conjectures from physics and complexity theory, the exis-

tence of an efficient algorithm for SMCSP implies the existence of an efficient

355

algorithm for estimating the wormhole’s volume.

3. If SMCSP can be solved efficiently, then one can solve the succinct state tomog-

raphy problem14 in quantum polynomial time.

The first result in Theorem 8.10 follows from the observation that we can

use SMCSP algorithms to distinguish whether the given states have large circuit

complexities. This results in algorithms for breaking pseudorandom states, and thus

algorithms for inverting quantum-secure one-way functions by [JLS18]. It is worth

noting that a recent work by Kretschmer [Kre21] showed some relativized results for

the problem of breaking pseudorandom states. Since that problem reduces to SMCSP,

his results would provide another angle for understanding the hardness of SMCSP.

We show the second result under the model and assumptions considered in [BFV20].

Roughly speaking, the volumes of wormholes correspond to circuit complexities of

particular quantum states. Thus efficient algorithms for one implies solving the other

one efficiently if the correspondence can be computed efficiently. The third result

mainly uses the search-to-decision reduction in Theorem 8.9 to find the circuit that

computes the state.

8.1.3 Discussion and open questions

We lay out the following three-aspect road map for the quantum MCSP pro-

gram. For each aspect, we present several results and also propose many open direc-

tions to explore. We have also summarized all results in this chapter in Table 8.1.

First, we define the Minimum Quantum Circuit Size Problem (MQCSP) and

study upper bounds and lower bounds for its complexity. Furthermore, we explore the

connections between MQCSP and other areas of quantum computing such as quantum

14The succinct state tomography problem is that given many copies of a state with the promise
that its circuit complexity is at most certain s, the problem is to find a circuit that computes the
state.

356

cryptography, quantum learning, quantum circuit lower bounds, and quantum fine-

grained complexity.

Then, we further extend MQCSP to study the quantum circuit complexities

for quantum objects, including unitaries and states.15 We want to investigate their

hardness and connections to other areas in TCS. In this chapter, we show upper

bounds and lower bounds for their complexities, search-to-decision reductions (for

UMCSP and SMCSP), a self-reduction (for SMCSP), and reductions from MQCSP

to UMCSP. In addition to connections generalized from classical analogues (such

as cryptography, learning, and circuit lower bounds), we also find connections that

might be unique in the quantum setting, such as tomography and quantum gravity.

For the last part, we want to turn around and ask what could happen when con-

sidering quantum algorithms or quantum reductions for MCSP (and also for MQCSP,

UMCSP, and SMCSP)? In the previous two parts, we have already observed that

efficient quantum algorithms for these problems result in surprising implications to

other fields. One can further consider other influences of quantum algorithms to

study quantum and classical MCSPs. For example, can SAT reduce to MCSP under

quantum reductions?

Following the three-aspect road map for the quantum MCSP program, there

are many open directions to explore. In particular, we are interested to understand

the hardness of these problems, the relationships between them, and their connections

to other fields in computer science.

8.1.3.1 Open problems: the complexity of quantum circuits

We start with open problems related to the hardness and relationships between

quantum MCSPs. The most basic questions are to understand the complexity of

15Aaronson has raised questions about quantum circuit complexity for unitaries or states
in [Aar16].

357

different quantum MCSPs. As we have already seen, it is unclear if quantum MCSPs

are in NP. Besides, we do not know if NP- or QCMA-hard problems reduce to them.

Open Problem 8.1. Are UMCSP, MQCSP, and SMCSP in NP? Are these problems

NP-hard, QCMA-hard, or C-hard for some complexity class C that is between QCMA

and SZK?

We note that the case that makes these problems not known to be in NP

is when there are more than linearly many ancilla qubits. Therefore, if one can

show that adding superpolynomially many ancilla qubits does not lead to significant

improvement on quantum circuit complexity, then we are likely to put these problems

in NP directly. Along this line, we pose the following open question:

Open Problem 8.2. For every n, s, t ∈ N with t ≤ s ≤ 2O(n), is BQC(s, t) ⊂ BQC(poly(s, t), O(n))?

For the hardness of UMCSP and SMCSP, One potential approach for proving

NP-hardness of UMCSP is as follows: Prove the NP-hardness of the gap version of

certain variants of MQCSP (such as sparse MQCSP or multiMQCSP), and then reduce

it to UMCSP via the last reduction in Theorem 8.9. The hardness of SMCSP seems to

be slightly more mysterious than UMCSP. One reason for this is that we do not know

any relationship between SMCSP and other quantum MCSPs, and thus the approach

of reducing particular variants of quantum MCSP to SMCSP does not directly work.

This leads to another important open question:

Open Problem 8.3. What are the relationships between UMCSP, MQCSP, and SMCSP?

To answer whether quantum MCSPs are NP-complete, we can also study these

problems from another angle, that is, check if quantum MCSPs have particular re-

ductions that all NP-complete problems have. In the previous section, we observed

that quantum circuits have some properties leading to search-to-decision reductions

for UMCSP and SMCSP without ancilla qubits and an approximate self-reduction for

SMCSP. Therefore, we ask whether we can have search-to-decision reductions and

self-reductions for these quantum MCSPs.

358

Open Problem 8.4. Are there search-to-decision reductions and self-reductions for

quantum MCSPs?

It is worth noting that our search-to-decision reductions fail when ancilla qubits

are allowed. This mainly follows from the fact that the circuit of the solution can

be an non-identity operator on the ancilla qubits in general. This could possibly be

addressed by iterating all possible unitaries or states on an ϵ-net when the number

of ancilla qubits are not large (e.g., at most log log n). However, we need new ideas

when considering more ancilla qubits.

Moreover, it would be interesting to investigate the applications of these re-

ductions. For instance, we have seen that the search-to-decision reductions give algo-

rithms with UMCSP or SMCSP oracle additional power to obtain the circuits. This

power may lead to interesting applications.

Open Problem 8.5. Is there any application of search-to-decision reductions or self-

reductions for quantum MCSPs?

The hardness of average-case quantum MCSPs (which inputs are given ran-

domly) is another interesting topic to explore. Hirahara [Hir18] showed that there

is a worst-case to average-case reduction for the (gap version of) classical MCSP.

We wonder if we can prove that quantum MCSPs have worst-case to average-case

reductions.

Open Problem 8.6. Are there worst-case to average-case reductions for quantum

MCSPs?

Note that there is negative evidence [BT06] showing that such classical reduc-

tions might not exist for NP-complete problems16. The existence of such reduction

could result in important applications in cryptography, which we will discuss later.

16However, there is no evidence for the existence of quantum worst-case to average-case reductions
for NP-complete since the analysis in [BT06] fails in the quantum setting. See [CHS20] for related
discussion.

359

Finally, we can also try to prove the hardness of quantum MCSPs under

stronger assumptions or more powerful reductions.

Open Problem 8.7. Assuming QETH or QSETH, is MQCSP, UMCSP, or SMCSP quan-

tumly hard?

Open Problem 8.8. Does quantum reduction provide more power to show the hardness

of MCSP? Specifically, is NP ⊆ BQPMCSP or NP ⊆ BQPMQCSP?

8.1.3.2 Open problems: potential connections to other areas

In this chapter, in addition to generalizing several known connections for MCSP

to quantum MCSPs, we have also discovered several connections which could be

unique for quantum MCSPs. There are still many classically existing or unknown

connections that we can explore. One fascinating question is whether we can base

the security of one-way functions on any of these problems.

Open Problem 8.9. Can we base the security of cryptographic primitives on MQCSP,

UMCSP, SMCSP, or some variants of these problems?

Note that since quantum MCSPs considered in this chapter are all worst-case

problems, to answer Problem 8.9, we probably need worst-case to average-case reduc-

tions discussed in Problem 8.6. Moreover, Liu and Pass [LP20b] recently showed that

the existence of classical one-way function is equivalent to the average-case hardness

of a type of Kolmogorov complexity on uniform distribution. However, the average-

case hardness of MCSP on uniform distribution is not known to imply one-wayness

even classically, and the quantum version faces a similar obstacle. Very recently,

Ilango, Ren, and Santhanam [IRS21] showed that the average-case hardness of Gap-

MCSP on a locally samplable distribution is equivalent to the existence of one-way

function. Liu and Pass [LP21] further generalized this result to show equivalence be-

tween the existence of one-way functions and the existence of sparse languages that

are hard-on-average (including Kolmogorov complexity, k-SAT, and t-Clique). It is

natural to ask whether their results can be generalized to quantum MCSPs. In addi-

tion to one-way functions, We are interested in connections between quantum MCSPs

360

and “quantum-only” primitives, e.g., quantum iO, copy protection, quantum process

learning, etc.

Along this line, as many quantum problems have quantum inputs, it is natural

to consider quantum MCSPs with quantum inputs. We have shown how SMCSP con-

nects to problems in quantum cryptography, quantum gravity, and tomography given

quantum states as inputs. This fact gives the possibility that MQCSP, UMCSP, and

SMCSP with “succinct” quantum or classical inputs may have surprising connections

to other problems in quantum computing. For instance, one can consider inputs which

are quantum circuits that encode some objects (e.g., unitaries). Then, the problem

is to find another significantly smaller circuit. In [CCCW21], Chakrabarti et al. have

studied this problem and show applications to quantum supremacy.

8.2 Preliminaries

The basics of quantum computing are deferred to Appendix B. In this subsec-

tion, we will introduce some quantum complexity classes and non-uniform quantum

circuit classes.

8.2.1 Quantum complexity classes

We introduce quantum complexity classes that are related to our study on

the quantum MCSP. The classes we define in below are actually PromiseBQP and

PromiseQCMA. To avoid abuse of notation, we just denote them as BQP and QCMA.

We first give the definition of the quantum analogue of BPP and P.

Definition 8.4 (BQP). A promise problem P = (PY , PN) is in BQP if there exists

a polynomial-time classical Turing Machine that on input 1n for any n ∈ N outputs

the description of a quantum circuit Cn with poly(n) gates and poly(n) ancilla qubits

such that for x ∈ {0, 1}n the following holds:

1. if x ∈ PY , Pr[M1 ◦ Cn|x, 0t⟩ = 1] ≥ 2/3;

361

2. if x ∈ PN , Pr[M1 ◦ Cn|x, 0t⟩ = 1] ≤ 1/3,

where M1 is the computational-basis measurement on the first qubit of the given

state.

We also consider the quantum analogue of NP and MA in this chapter.

Definition 8.5 (QCMA). A promise problem P = (PY , PN) is in QCMA if there

exists a quantum polynomial-time (QPT) algorithm V such that

1. for x ∈ PY , there exists w ∈ {0, 1}poly(n) such that Pr[V (x,w) = 1] ≥ 2/3;

2. for x ∈ PN , for all w ∈ {0, 1}poly(n), Pr[V (x,w) = 1] ≤ 1/3.

Another quantum analogue of MA and NP is called QMA. The difference

between QMA and QCMA is that QMA allows the certificates to be quantum states.

This difference makes QCMA ⊆ QMA17.

We also consider the class RQP, which is the one-sided error version of BQP:

Definition 8.6 (RQP). A promise problem P = (PY , PN) is in RQP if there exists a

QPT algorithm A such that

1. for x ∈ PY , then Pr[A(x) = 1] ≥ 1
2
;

2. for x ∈ PN , then Pr[A(x) = 1] = 0.

8.2.2 Nonuniform quantum circuit complexity classes

With the mathematical background of quantum computing, we can define

nonuniform quantum circuit complexity classes. We define the quantum analogues

17One may expect that the quantum certificate gives the malicious prover more power to cheat in
the soundness case. However, it can be shown that the existence of such a cheating prover in QMA
would also imply a cheating prover in QCMA by the convexity of quantum states.

362

of MCSP as promise problems. (We will justify the reason later in Section 8.3.)

Therefore, we also define complexity classes for promise problems. A promise problem

is defined as P = {P n}, where P n = (P n
Y , P

n
N) satisfying P n

Y ∩P n
N = ∅ and P n

Y ∪P n
N ⊆

{0, 1}n. We say a promise problem P is in some class C if there exists a language L ∈ C

such that PY ⊆ L and PN ⊆ {0, 1}∗\L. In other words, for x ∈ {0, 1}∗\P , the answer

could be arbitrary. Note that promise problems are naturally considered in quantum

computing; for example, the local Hamiltonian problem [KSV02] (which is QMA-

complete) and Identity check on basis states [WJB03] (which is QCMA-complete.)

Definition 8.7 (BQC(s, t,G)). Let s, t : N → N and G be a quantum gate set.

BQC(s, t,G) is the set of promise problems P = {P n : n > 0} for which there exists a

circuit family {Cn : n > 0} ∈ QC(s, t,G) such that for n > 0, for any x where |x| = n,

• if x ∈ P n
Y , then Pr[M1 ◦ Cn|x, 0t⟩ = 1] ≥ 2/3;

• if x ∈ P n
N , Pr[M1 ◦ Cn|x, 0t⟩ = 1] ≤ 1/3.

Here, M1 is the computational-basis measurement on the first qubit.

In the rest of the chapter, we will write BQC(s, t,G) as BQC(s) for simplicity

if the number of ancilla qubits is at most O(s).

In addition to BQC, we will also consider quantum complexity classes such

as QMCA and BQP. For the same reason, the classes we consider are actually

PromiseBQP and PromiseQCMA. To avoid abuse of notation, we just denote them as

BQP and QCMA. Also, when NP is mentioned, we are actually considering PromiseNP.

The formal definitions of these classes are given in Appendix 8.2.1.

8.3 Minimum Quantum Circuit Size Problems

We start off the quantum MCSP program by giving the definitions of various

quantum analogs of the classical MCSP in Section 8.3.1 and investigating some basic

complexity-theoretic results in Section 8.3.2 and Section 8.3.3.

363

8.3.1 Problem definitions

While classical computation works on Boolean strings, quantum computation

works on unit complex vectors. Thus, there are multiple natural notions of MCSP

that can be defined and studied in the quantum realm. But first let us formally define

the classical MCSP as follows.

Definition 8.8 (Classical MCSP). Let n, s ∈ N18. Let f : {0, 1}n → {0, 1} be

a Boolean function. The problem is, given the truth table tt(f) of f and the size

parameter s in unary, decide if there exists a classical Boolean circuit C of size at

most s such that C(x) = f(x) for all x ∈ {0, 1}n.

Note that MCSP ∈ NP because given a truth table tt(f) a circuit C, we can

verify whether C(x) = f(x) for all x ∈ {0, 1}n in poly(|tt(f)|, 1s) time. On the other

hand, when s = Ω(n), the number of circuits of size at most s is 2Θ(s log s), which is

2ω(n) by the counting argument. Besides, for every Boolean function, there exists a

circuit with size at most O(2n/n) [Lup58]; therefore, we can suppose the s = O(2n/n),

which implies that brute-force search takes 2O(2n) time to solve MCSP in the worst

case and it is the best known algorithm for MCSP.

As quantum computation is generally believed to be more powerful than clas-

sical computation, it is likely that the quantum circuit complexities for some Boolean

functions are much different from their classical circuit complexities. Specifically,

quantum circuits can create quantum entanglement between qubits that cannot be

simulated classically. Therefore, we define the following problem for studying the

quantum circuit complexity of the given Boolean function.

18For every Boolean function, there is a circuit with size at most O(2n/n). Therefore, one can
suppose s is at most O(2n/n). Besides, one can also consider s is given in unary, such that the
problem is still well-defined in the sense that it is trivially in NP.

364

Definition 8.9 (MQCSPα,β). Fix a universal gate set G. Let n, s, t ∈ N and t ≤ s.

Let f : {0, 1}n → {0, 1} be a Boolean function. Let α, β ∈ (1/2, 1) such that α− β ≥
1

poly(2n)
. MQCSP is a promise problem defined as follows.

• Inputs: the truth table tt(f) of f , the size parameter s in unary representation,

and the ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and

operating on at most n + t qubits such that for all x ∈ {0, 1}n, ∥(⟨f(x)| ⊗
In+t−1)C|x, 0t⟩∥2 ≥ α.

• No instance: for every quantum circuit C using at most s gates and oper-

ating on at most n + t qubits, there exists x ∈ {0, 1}n such that ∥(⟨f(x)| ⊗
In+t−1)C|x, 0t⟩∥2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the

problem is to decide whether the input is a yes instance or not.

Remark 8.1. Here, we set the thresholds for the yes and no instances to be α, β such

that 1/2 < β < α < 1 and α − β > 1
poly(2n)

. We require α and β to be greater than

1/2 because a quantum circuit that outputs a uniformly random bit (e.g., measure

|+⟩ in the computational basis) can compute f(x) with 1/2 probability for all x. For

simplicity, in the rest of the work, we will ignore the subscription α, β and will specify

them when it is necessary.

For MQCSP, which gate set G is used is another important parameter to be con-

sidered. One may ask if circuit complexity can significantly change when considering

different G. Fortunately, according to the Solovay-Kitaev Theorem in Theorem B.1,

we can conclude that any s-gate circuit using gates from G can be ϵ-approximated

by an (s · polylog s
ϵ
)-gate circuit from another universal gate set. Hence, the circuit

complexity only modestly changes when considering different gate sets.

Claim 8.11. Fix two universal gate sets G and G′. Suppose that there exists a s-gate

circuit C that uses gates from G such that for all x, ∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥ ≥

365

1− δ. Then, there exists another circuit C′ that uses s · polylog s
ϵ

gates in G′ such that

∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥ ≥ 1− δ − ϵ2/2.

Proof. The proof simply follows from the Solovay-Kitaev Theorem in Theorem B.1.

The only subtlety is that the distance measure in Theorem B.1 is L2 norm distance.

However, for any two states |ψ⟩ and |ϕ⟩, we have |⟨ψ|ϕ⟩| ≥ 1− 1
2
∥|ψ⟩ − |ϕ⟩∥2. Thus,

we can obtain the lower bound for ∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥ by using the L2 norm

between C and C′.

In this chapter, we mainly focus on arbitrary gate sets containing one- and two-

gates and |G| = O(1). However, for some applications, we may require a particular

gate set such as {Toffoli,H}. We will specify G when it is necessary. We assume t ≤ s

without loss of generality since we mainly consider the gate set G to have one- and

two-qubit gates. Specifically, if there are more than s ancilla qubits, there must be

ancilla qubits that are not used by any gate.

We define the problem as a promise problem for two reasons: first, applying

measurements on quantum states generally gives probabilistic outputs. Similar to

many probabilistic algorithms, we say a quantum algorithm solves a problem if it

outputs the answer with high probability in general. Check the definition of BQP

for an example. Along this line, we expect a quantum circuit C to implement the

given Boolean function f with high probability, i.e., for each input x, the circuit

outputs f(x) with high probability. The second reason is about verifying the circuit.

Consider the case where C only fails on one x with success probability 2/3−ϵ, where ϵ

is some extremely small number. In this case, it is hard to verify the circuit efficiently.

Therefore, we require a gap for efficient verification and say that C does not implement

f if it can only output f(x) with probability with small probability for some x.

Other variants. In many applications, the gap-version of MCSP is much easier

and more flexible to work with. Below we define the gap-version of MQCSP and the

multi-output MQCSP.

366

Definition 8.10 (MQCSPa,b[s, s
′, t]). Let n, s, s′, t ∈ N such that t ≤ s < s′ ≤

2O(n). Let a − b ≥ 1/ poly(2n, 1|s|). Let f : {0, 1}n → {0, 1} be a Boolean function.

MQCSP[s, s′] is a promise problem defined as follows.

• Input: the truth table tt(f) of f , the size parameter s in unary, and the ancilla

parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and oper-

ating on at most n+ t qubits such that for all x ∈ {0, 1}n,

∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥2 ≥
2

3
.

• No instance: for every quantum circuit C using at most s′ gates and operating

on at most n+ t qubits, there exists x ∈ {0, 1}n such that

∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥2 ≤
1

2
.

With the promise that the input must be either a yes instance or a no instance, the

problem is to decide whether the input is a yes instance or not.

When it is clear from the context, we may use MQCSP⋆ to denote MQCSPa,b[s, s
′, t].

Definition 8.11 (G-multiMQCSPα,β(s, t)). Let m, s, t be functions of n such that

t ≤ s ≤ 2o(n) and m ≤ n + t. Let α, β ∈ [2−m, 1] such that α − β > 1
poly(2n)

. Let

f : {0, 1}n → {0, 1}m be a multioutput function. G−multiMQCSPα,β(s, t) is a promise

problem that

1. Input: the truth table tt(f) of f .

2. Yes instance: there exists a quantum circuit C using at most s gates from G and

operating on at most n+ t qubits such that for all x ∈ {0, 1}n,

∥(⟨f(x)| ⊗ In+t−m)C|x, 0t⟩∥2 ≥ α,

367

3. No instance: for any quantum circuit C using at most s gates from G and

operating on at most n+ t qubits, there exists x ∈ {0, 1}n such that

∥(⟨f(x)| ⊗ In+t−m)C|x, 0t⟩∥2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the

problem is to decide whether the input is a yes instance or not.

Natural property. It is worth noting that we can view an efficient quantum algo-

rithm for MQCSP as quantum natural property against quantum circuit classes. Natu-

ral properties against circuit classes were first defined by Razborov and Rudich [RR97],

and recently, Arunachalam et al. [AGG+20] further considered quantum natural prop-

erties against circuit classes.

Definition 8.12 (Natural Property [RR97]). Let C be a uniform complexity class

and C ′ be a circuit class. We say that a property Γ = {Γn : n ∈ N} is C-natural

against C ′ if the following holds.

1. Constructivity: for all L ∈ Γ, L ∈ C.

2. Largeness: There exists n0 ∈ N, for n ≥ n0, |Γn|/|Fn| ≥ 1
2
, where Fn is the set

of all Boolean functions with input length n.

3. Usefulness: There exists n0 ∈ N, for n ≥ n0, Γn ∩C ′n = ∅, where C ′n is the set

of circuits in C ′ on n (qu)bits.

Note that an MQCSP oracle can be used to construct natural properties against

quantum circuit classes BQC[s] for any s. Therefore, if we suppose that MQCSP is

in BQP, then we can have properties that are BQP-natural against quantum circuit

classes. For simplicity, we call properties that are BQP-natural as quantum natural

properties. Arunachalam et al. [AGG+20] first considered quantum natural proper-

ties against circuit classes, and proved circuit lower bounds for quantum complexity

classes. Our work can also be viewed as a study of quantum natural properties against

quantum circuit classes. The formal definition of BQP-natural property is in below:

368

Definition 8.13 (BQP-Natural Property [AGG+20]). We say that a combinatorial

property Γ is C-natural against polynomial-size quantum circuits (BQC[poly]) if the

following holds.

1. Constructivity: for any string L ∈ Γ, L can be accepted by a BQP algorithm.

2. Largeness: There exists n0 ∈ N, for n ≥ n0, |Γn|
|Fn| ≥

1
2
.

3. Usefulness: There exists n0 ∈ N, for n ≥ n0, any string accepted by BQC[poly]

is not in Γn.

Then, our observation on the connection between MQCSP and quantum nat-

ural property is formally stated as follows:

Observation 8.12. If MQCSP ∈ BQP, then there exists a BQP-natural property

against quantum circuits QC[nk] for any k ∈ N+.

8.3.2 Upper bounds for MQCSP

It turns out that, unlike the classical MCSP, MQCSP is not trivially in NP.

The best upper bound we are able to get for MQCSP is QCMA, the quantum analogue

of NP (or MA). Before showing that MQCSP is in QCMA, we first discuss why it is

not trivially in NP like the classical MCSP. One obvious reason is that MQCSP is

a promise problem. Therefore, we consider PromiseNP, which definition is the same

as NP except that PromiseNP relax the definition of NP to contain promise problems

that have NP certificates. For the ease of presentation, we will use NP for both NP

and PromiseNP. Then, when the number of ancilla qubits is linear, one can verify the

given circuit by simply writing down the corresponding unitary.

Theorem 8.13. MQCSP is in NP when only a linear number of ancilla qubits are

allowed.

369

However, when the number of ancilla qubits is superlinear, e.g., n2, the quan-

tum circuit C operates on 2O(n2) qubits, and thus the corresponding unitary UC has

dimension 2O(n2) which is superpolynomial in 2n. In this case, the verifier cannot

compute UC classically in time poly(2n). Therefore, the trivial approach does not

work.

Note that although the trivial approach fails to show that MQCSP is in NP,

it does not rule out the possibility that MQCSP can be efficiently verified via other

approaches. In the following theorem, we show that a quantum verifier can efficiently

verify the given quantum circuit, and thus MQCSP is in QCMA.

Theorem 8.14. MQCSP ∈ QCMA.

We leave the proof to Appendix 8.6 for completeness.

8.3.3 Hardness of quantum MCSP

It is a major open problem in complexity theory to understand the hardness

of classical MCSP. Here, we show that the state-of-the-art hardness results on MCSP

(and its variants) can be extended to MQCSP. We remark that this is actually not

straightforward to see because the classical MCSP is incomparable with MQCSP.

First, we show that the SZK-hardness result of MCSP by Allender and Das [AD14a]

can be extended to MQCSP. Here, SZK stands for the complexity class Statistical

Zero Knowledge that lies between P and NP. We first define SZK and the statistical

distance as follows.

Definition 8.14 (Statistical Distance SD(X, Y)). Let X and Y be two probability

distributions, the statistical distance between X and Y can be defined as follows:

max
S⊆{0,1}m′

|Pr[X ∈ S]− Pr[Y ∈ S]|

Definition 8.15 (SZK). A promise problem P = (PY , PN) is in SZK if there ex-

ists a PPT verifier V and an interactive proof system (P, V) satisfying the following

properties:

370

1. Completeness: For x ∈ PY , there exists P such that Pr[⟨P, V ⟩(x) = 1] ≥ 2
3
.

2. Soundness: For x ∈ PN , for all P , Pr[⟨P, V ⟩(x) = 1] ≤ 1
3
.

3. Statistical zero-knowledge: There exists a PPT simulator S, for all PPT

verifier V ∗, for all x ∈ PY ,

SD(S(V ∗)(x), ⟨P, V ∗⟩(x)) ≤ negl(n).

We introduce an SZK-complete problem by Ben-Or and Gutfreund [BOG08].

Definition 8.16 (Polarized Image Intersection Density (PIID), [BOG08]). Given two

circuits C0, C1 : {0, 1}m → {0, 1}m′ of size nk with the promise that either

1. maxS⊆{0,1}m′ |Prx[C0(x) ∈ S]− Prx[C1(x) ∈ S]| ≤ 1
2n

, or

2. Prx∈{0,1}m′ [∃y ∈ Im(C0) such that C1(x) = y] ≤ 1
2n

,

where n = poly(m) and Im(C) := {C(x) : x ∈ {0, 1}m}. The problem is to decide

which case is true.

Theorem 8.15. SZK ⊆ BPPMQCSP

To prove Theorem 8.15, we first observe that the existence of small classical

circuit implies the existence small quantum circuits and an MQCSP oracle can invert

one-way functions (which we will prove in Section 8.4.1.1). Then, we can show that

PIID is in BPPMQCSP following the framework of [AD14a]. We leave the proof to

Appendix 8.6 for completeness.

Next, we quantize the recent breakthrough of Ilango et al. [ILO20] on the NP-

hardness of classical MCSP. There are two main differences between the classical and

quantum settings: (i) the circuit model is different and hence makes the combinatorics

different, and (ii) the quantum setting allows the output to have some errors. We

partially overcome these two difficulties and prove the following theorem.

371

Theorem 8.16. Suppose CNOT ◦ (I ⊗ X),Toffoli ∈ G. Every multi-bit gate in G

behaves classically on classical inputs and has at most 1 target wire and at most 2

control wire. (That is, except 1 wire, the outputs of the other wires, at most 2, are

the same as their corresponding classical inputs. For example, CNOT gate.) Then

G-multiMQCSP is NP-hard under randomized reduction.

CNOT◦(I⊗X) is the following operation on two input wires, denoted as control

wire and target wire: first do a X on the target wire, and do a CNOT from the control

wire to the target wire. We consider it as a single gate, as the analog of the classical

NOT gate.

Here the choice of gate set matter: we need the quantum gate set to contain

the analog of the usual classical gate set. CNOT ◦ (I ⊗ X) is the analog of classical

single-bit NOT operation, and Toffoli is the analog of classical AND operation. Here

the correspondence has two properties: (1) if the target wire is in the zero state and

the control wire is classical, the output of the target wire will be the corresponding

classical logical computation result; (2) if the input of the control wire is classical,

the output of the control wire will remain the same. Since in the quantum world data

copy is not for free, the second property is important for deriving our result.

The proof follows the outline of the proof in [ILO20]. We note there are two

differences during the proof in the quantum case compared to the classical case:

• The circuit model is different. In the classical world the gates are single-output

and we assume free-copy. And the basic gate set contains AND, OR, NOT

gates. In quantum world, data copy is not for free and we need to use the

Toffoli gate to implement the AND/OR gates.

Remark 8.2. One idea might be to use the Solovay-Kitaev theorem to switch

the gate set and make the theorem general. But this does not work here in

an immediate way. Our proof does not imply the problem is also NP-hard to

approximate multiplicatively. On the other hand, the classical result [ILO20] is

not known to be general on different gate set either.

372

• In the definition of multi-output minimum quantum circuit size problem, we

allow the output to have some errors, which is not considered in the classical

world.

Proof of Theorem 8.16. We consider the same construction as [ILO20]. Let’s restate

it here for completeness.

1. Choose a large enough constant r so that 20-approximating r-bounded set cover

problem is NP-hard. Consider an instance (1n, S) of this problem.

2. m is the least power of 2 that is greater than n3. Sample the truth table T

representing a function on {0, 1}logm → {0, 1} uniformly at random. Construct

g := •S∈SEval-DNFT⟨Sm⟩ where:

– To define DNFf that encode the truth table f , we first repeat the con-

struction in [ILO20] for completeness:

DNFf := ((x1 = y11)∧ · · · ∧ (xn = y1n))∨ · · · ∨ ((x1 = yt1)∧ · · · ∧ (xn = ytn))

where y1, · · · yt are YES inputs of f in lexicographical order, x1, · · · xn index

the bits of the input string x, yj1, · · · yjn index the bits of yj, and (xi = yti)

denotes (xi ⊕ (1⊕ yji)).
We use the same construction with one difference: here ∨ is further de-

composed to ¬ and ∧.

– T⟨S⟩ is the truth table that is equal to T for input in S and 0 everywhere

else.

– Sm := ∪i∈SPm,n
i where Pm,n

i := {j ∈ [m] : j ≡ i mod n}. This step closes

the gap between [m] (the MCSP size) and [n] (the set cover size).

– “•” is used on two functions that have the same input domain, and it

concatenates the outputs of these functions to get a new function.

373

– To define Eval-C, we first consider x1 • x2 • · · ·xn • g1 • g2 • · · · gs where

g1, · · · gs are the output of each gate in circuit C. Then we remove the gate

output that are the same on all the inputs.

3. As in [ILO20], define k as the number of distinct components of g that are

not directly a function identical to an input. Note that this can be efficiently

computed.

Take α = 1, β = 0.99, t = 10s (s is the output number of our construction).

Define CCα,β(t, tt(f)) as the subroutine that uses binary search to find the mini-

mum s such that G−multiMQCSPα,β(s, t)(tt(f)) = true.19 Use the multiMQCSP

oracle and compute

∆ := CCα,β(t, tt(T • g))− k

as the approximation of the set cover instance (1n, S).

To analyze this reduction, we need to prove the followings steps:

1. CCα,β(t, tt(g)) = k

2. ∆ ≤ 3 · cover([n], S) + 1 where cover([n], S) is the size of the minimum set cover

solution for S.

3. ∆ ≥ cover([n], S)/6− 6 with probability 1− 2−Ω(m).

Then we get an approximation to the set cover problem.

Let us prove the three statements step-by-step.

19Since multiMQCSP is a promise problem this routine does not necesarrily find the minimum
s but should return a value that there exists a circuit of this size that approximate the function
everywhere with correct probability β. This is sufficient for later proof.

374

Step 1: The ≤ part is proved by the function construction itself. We implement ¬
with the CNOT ◦ (I⊗X) gate (and write the output on an empty ancilla system) and

implement ∧ with the Toffoli gate.

The ≥ part is slightly different since in quantum case the gate model is differ-

ent. In classical world all the gates are single-output, while in quantum world there

are multi-output gates. However, for the multi-output gates like CNOT and Toffoli,

there is only one target wire, and the other wires are control wire. Thus for each

output component, we can always find the nearest gate that does not use it as a con-

trol wire (if there is such a gate along the way, ignore it). In this way each different

output component corresponds to a different gate in the circuit, which completes the

proof.

Step 2: As [ILO20], when cover([n], S) = ℓ, without loss of generality assume

S1, · · ·Sℓ are a set cover. Then T = T⟨Sm
1 ⟩ ∨ · · · ∨ T⟨Sm

ℓ ⟩. This can be computed

using 3ℓ+1 extra gates on the minimum circuit of Eval-g. (Note that in the quantum

world we need slightly more gates than the classical world. And we need to evaluate

the OR gate by NOT-AND-NOT gates to get T .)

Step 3: Denote ℓ = ⌊cover([n], S)/6⌋. The goal is to show that the probability that

∆ ≤ ℓ is small by showing that T satisfying ∆ ≤ ℓ must have a short description.

Suppose T is a truth table such that the condition ∆ > ℓ does not hold. We need to

find a circuit of gate number ≤ 2ℓ where:

• The inputs are: the bits of x; and the output of g.

• It encodes the output of T .

We use the similar idea to [ILO20] but we need to address the two problems discussed

before this proof.

375

As what we did in Step 1, we can associate each output component (gi(x), for

example) to a unique gate in the circuit. As [ILO20], we remove these gates from the

circuit. There might be some gates between this gate and the output gi(x) that use

the wire as control wires. For these gates, simply use gi(x) as the control value.

As in [ILO20] we have CCα,β(t, tt(T • g)) ≤ ℓ + k. And since for each gi at

least one gate is removed, the remaining circuit is a circuit D that takes log(m) + k

inputs and has at most ℓ gates such that

D(x, g1(x), · · · gk(x)) encodes T (x)

Then since each gate has fan-in at most 3 the circuit uses at most 3ℓ components

of g. Then after a possible relabling of g1 · · · gk we can assume D takes log(m) + 3ℓ

inputs such that

D(x, g1(x), · · · g3ℓ(x)) encodes T (x)

The new circuit does not necessarily behave the same as the original circuit, but they

do behave the same (up to a global phase) on the subspace that all the outputs are

computed correctly. By the definition of multiMQCSP and the choices of parameters

this is true with norm ≥ 0.99. Thus we can view the shrinked circuit as an encoding

of T by focusing on the most-possible outputs of this circuit. Then by the same

argument as [ILO20] such a shrinked circuit has a description of (1 − Ω(1))m bits,

which implies such T has at most 2(1−Ω(1))m choices thus a random T falls into this

case with exponentially small probability.

However, we don’t know whether this problem is NP-complete, since it’s not

known to be in NP. With a proof similar to that of Theorem 8.14, we only know

multiMQCSP ∈ QCMA. Namely, there remains a gap between our understandings of

the upper bound and hardness of multiMQCSP. We pose it as an open problem to

settle the complexity of multiMQCSP.

376

8.4 Connections Between MQCSP and Other Problems
8.4.1 Cryptography and MQCSP

Classically, we have already known connections between MCSP and one-way

functions [KC00, RR97] and indistinguishable obfuscation [IKV18]. In this section,

we show the quantum analogies of these results.

8.4.1.1 Quantum cryptographic primitives

We first introduce relevant primitives in cryptography.

Definition 8.17 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ be

a polynomial-time computable function. Let ℓ : N → N be a polynomial-time com-

putable function such that ℓ(n) > n for all n. G is a pseudorandom generator of

stretch ℓ(n) if it satisfies:

1. |G(x)| = ℓ(|x|) for all x ∈ {0, 1}∗, and

2. for all Probabilistic polynomial-time (PPT) algorithm A, there exists a negligi-

ble function ϵ : N→ [0, 1] such that for all n ∈ N
∣∣∣∣ Pr
x∼{0,1}n

[A(G(x)) = 1]− Pr
y∼{0,1}ℓ(n)

[A(y) = 1]

∣∣∣∣ ≤ ϵ(n).

We say that a PRG is local if every output bit of the PRG can be computed in

time poly(n). In the following, we define PRG secure against any quantum polynomial-

time adversary.

Definition 8.18 (Quantum-Secure Pseudorandom Generator (qPRG)). LetG : {0, 1}∗ →
{0, 1}∗ be a polynomial-time computable function20. Let ℓ : N→ N be a polynomial-

time computable function such that ℓ(n) > n for all n. G is a pseudorandom generator

secure against quantum adversaries of stretch ℓ(n) if it satisfies:

20It is worth noting that G can be any function that is efficiently computable in either quantum
or classical polynomial time.

377

1. |G(x)| = ℓ(|x|) for all x ∈ {0, 1}∗, and

2. for all quantum polynomial-time (QPT) algorithm A, there exists a negligible

function ϵ : N→ [0, 1] such that for all n ∈ N
∣∣∣∣ Pr
x∼{0,1}n

[A(G(x)) = 1]− Pr
y∼{0,1}ℓ(n)

[A(y) = 1]

∣∣∣∣ ≤ ϵ(n).

In this chapter, we consider two ways of constructing quantum-secure PRGs

based on different cryptographic primitives. One is based on the quantum-secure

one-way functions and the other one is based on the hard function.

Definition 8.19 (Quantum-Secure One-Way function (qOWF)). A function f :

{0, 1}∗ → {0, 1}∗ is a quantum-secure one-way function, if the following conditions

hold: For every n ∈ N, for any x ∈ {0, 1}n picked uniformly at random,

1. There exists a poly(n)-time deterministic algorithm for computing f .

2. For any poly(n)-time quantum algorithm A′, Prx[A
′(f(x)) ∈ f−1(f(x))] =

negl(n).

Definition 8.20 (GGM Construction [GGM86]). Let G : {0, 1}n → {0, 1}2n be a

(q)PRG. For every z ∈ {0, 1}m, the GGM construction of a pseudorandom function

family {hz : {0, 1}n → {0, 1}n}z∈{0,1}m is defined as follows:

fz(x) = Gzm ◦Gzm−1 ◦ · · · ◦Gz1(x),

where we denote by G0(x) the first n bits of G, and by G1(x) the last n qubits.

Lemma 8.17 ([HILL99]). If OWFs exist, then for every c ∈ N, there exists a secure

PRG with stretch ℓ(n) = nc.

Since the security proof of Lemma 8.17 is black-box, the analysis carries over

to the quantum setting directly if the one-way function is secure against quantum

adversaries. Therefore, we can obtain Lemma 8.18.

378

Lemma 8.18 (Folklore). If qOWFs exist, then for every c ∈ N, there exist qPRGs

with stretch ℓ(n) = nc.

Lemma 8.19. Suppose that there exists a qPRG G : {0, 1}n → {0, 1}2n. Then, for

m = O(log n), there exists a local qPRG Ĝ : {0, 1}n → {0, 1}2m.

Proof. We first give the construction of Ĝ. Follow the GGM construction in Defini-

tion 8.20, we let

h′x(z) = Gzm ◦Gzm−1 ◦ · · · ◦Gz1(x)

where z ∈ {0, 1}m, x ∈ {0, 1}n. We let hx(z) be the first output bit of h′x(z) and

define the qPRG as

Ĝ(x) = hx(0) | hx(1) | · · · | hx(2m − 1).

It is obvious that each bit of Ĝ(x) can be computed in time m times the runtime of

G.

We then prove that Ĝ(x) is indistinguishable from a truly random string by

the standard hybrid approach. For i ∈ [m], we define

H i(z) = (Gzm ◦Gzm−1 ◦ · · · ◦Gzi(yz,i))1,

where yz,i is drawn independently and uniformly randomly from {0, 1}n. Note that

H1(z) = hz(x) and Hm(z) is a random bit. Let

Ĝi = H i(0) | H i(1) | · · · | H i(2m − 1) ∀i ∈ [m].

Suppose that there exists a QPT algorithm A such that
∣∣∣∣ Pr
x∼{0,1}n

[A(Ĝ(x)) = 1]− Pr
u∼{0,1}2m

(A(u))

∣∣∣∣ ≥ 1/ poly(n).

Then, by the triangular inequality,

m−1∑

i=1

∣∣∣Pr[A(Ĝi) = 1]− Pr[A(Ĝi+1) = 1]
∣∣∣ ≥ 1/ poly(n)

379

which implies that there exists i∗ such that |Pr[A(Ĝi∗) = 1] − Pr[A(Ĝi∗+1) = 1]| ≥
1/ poly(n). Since distinguishing Ĝi∗ and Ĝi∗+1 implies that one can distinguish G(x)

from a random string, G is not a qPRG. This completes the proof.

8.4.1.2 Implications for quantum-secure one-way functions (qOWF)

Here, we show a quantum analogous result for [KC00, RR97] by considering

the implication of the existence of efficient quantum algorithms for either classical or

quantum MCSP.

Theorem 8.20. If MQCSP ∈ BQP, then there is no quantum-secure one-way function

(qOWF).

Proof. Let f : {0, 1}∗ → {0, 1}∗ be any function. By Lemma 8.18, we construct

Gf : {0, 1}n → {0, 1}na that is a qPRG if f is a qOWF. We denote the runtime for

Gf as O(nb) for some constant b.

Given Gf , we construct a qPRG Ĝ : {0, 1}n → {0, 1}2m where m = O(log n)

by Lemma 8.19. Then, we view the outputs of Ĝ(x) as a truth table of some

Boolean function gx : {0, 1}m → {0, 1}. Note that according to the construction

in Lemma 8.19, the time for evaluating gx on z ∈ {0, 1}m is O(m · nb) = Õ(nb). On

the other hand, for a random Boolean function from {0, 1}m to {0, 1}, we know from

Claim 8.74 that its circuit complexity is greater than 2m

(c+1)m
with high probability.

Therefore, by setting m = d log n for some constant d≫ b, the circuit complexity of

the random function is Õ(nd)≫ Õ(nb) with high probability.

Algorithm 30 A quantum algorithm for breaking qPRG

Input: Given tt(h) for h : {0, 1}m → {0, 1} constructed from Ĝ in Lemma 8.19.
1: Runs the quantum algorithm for MQCSP with s = 2m

(c+1)m

2: return “Yes” if the algorithm in previous step outputs yes.
3: return “No”, otherwise

380

Since we assume MQCSP ∈ BQP, we obtain a quantum polynomial-time al-

gorithm A for distinguishing {gx}x∈{0,1}n and the random function family Fm as in

Algorithm 30. The circuit complexity for gx is at most Õ(nb) and the for a random

function h is greater than 2m

(c+1)m
= Õ(nd) for d≫ b. thus, we obtain

∣∣∣∣ Pr
x∼{0,1}n

[A(tt(gx)) = 1]− Pr
h∼Fm

[A(tt(h)) = 1]

∣∣∣∣ ≥ 1/ poly(n).

This implies that we can use A to breakG in quantum polynomial time by Lemma 8.19.

Finally, by Lemma 8.18, we obtain a quantum polynomial-time algorithm Ainv for

inverting any f .

8.4.1.3 Implication for quantum-secure iO

In this section, we use Theorem 8.20 and quantum-secure iO to show that if

MQCSP can be solved by a BQP algorithm, then NP ⊂ coRQP, which is the class of

one-sided error quantum polynomial-time algorithms such that a “Yes” instance will

always be accepted while a “NO” instance will be rejected with high probability.

We define the quantum-secure iO as follows:

Definition 8.21 (Quantum-secure indistinguishability obfuscation, iO). A proba-

bilistic polynomial-time machine iO is an indistinguishability obfuscator for a circuit

class {Cλ}λ∈N if the following conditions are satisfied for all λ ∈ N:

• Functionality: For any C ∈ Cλ, for all inputs x, iO(C)(x) = C(x).

• Indistinguishability: For any C1, C2 ∈ Cλ such that |C1| = |C2| and C1(x) =

C2(x) for all inputs x, any quantum polynomial-time distinguisher A cannot

distinguish the distributions iO(C1) and iO(C2) with noticeable probability,

i.e.,
∣∣Pr[A(iO(C1)) = 1]− Pr[A(iO(C2)) = 1]

∣∣ ≤ negl(λ).

Remark 8.3. We note that there are some (candidate) constructions of post-quantum

iO, based on different assumptions. For example, [BDGM20] constructed iO based

381

on the circular security of LWE-based encryption schemes, which is conjectured to be

quantum-secure. [WW20] showed a construction of iO based on the indistinguisha-

bility of two distributions which is also arguably quantum-secure.

Theorem 8.20 implies the following result for quantum-secure iO:

Theorem 8.21. Suppose that quantum-secure iO for polynomial-size circuits exists.

Then, MQCSP ∈ BQP implies NP ⊆ coRQP.

Proof. Let fC(r) := iO(C, r), where r is the random string. Then, by Theorem 8.20,

we know that there exists a quantum polynomial-time algorithm Ainv with access to

an MQCSP oracle and a non-negligible function p such that for any circuit C,

Pr
r

[
fC(A

MQCSP
inv (C, iO(C, r))) = fC(r)

]
≥ p(|r|). (8.1)

Then, we can use Ainv to solve the Circuit-SAT problem. The algorithm is as

follows:

Algorithm 31 A quantum algorithm for Circuit-SAT
Input: The description of a circuit C : {0, 1}n → {0, 1}.
1: s← |C|.
2: Compute ⊥s. ▷ A canonical unsatisfiable circuit
3: Ĉ ← iO(C, r).
4: r′ ← AMQCSP

inv (⊥s, Ĉ).
5: return “No” if Ĉ = iO(⊥s, r′).

We assume that for any s ≥ 0, we can compute a canonical unsatisfiable circuit

of size s in poly(s) time.

If C ∈ UNSAT, then C ≡ ⊥s. If C = ⊥s, by Eq. (8.1), AMQCSP
inv finds r

with probability at least p(|r|). Otherwise, by the indistinguishability of iO and

MQCSP ∈ BQP, AMQCSP
inv is a quantum polynomial-time algorithm and hence cannot

distinguish C ∈ UNSAT\{⊥s} and ⊥s with more than negl(|r|) probability. Therefore,

Algorithm 31 will reject C with probability O(p(|r|)).

382

If C ∈ SAT, then C ̸≡ ⊥s. By the functionality of iO, for any r, r′, iO(C, r) ̸=
iO(⊥s, r′). Hence, Algorithm 31 will always accept C.

Hence, by repeatedly running Algorithm 31 many times, we get that NP ⊂
coRQP, the one-sided error analog of BQP

Remark 8.4. It is worth noting that in the classical setting, the existence of iO implies

that NP and MCSP are equivalent under randomized reductions; the other direction

directly follows from the fact that MCSP ∈ NP. However, since it is unclear if

MQCSP ∈ NP, we can only conclude that NP ⊆ RQPMQCSP assuming the existence of

quantum-secure iO.

8.4.2 Learning theory

In this section, we discuss connections between MQCSP and learning theory.

We consider two standard settings: probably approximately correct (PAC) learning

and quantum learning. We postpone the details to Appendix 8.7.

PAC learning. Let C be a circuit class. We are interested in how to efficiently

learn a function in C. PAC learning is a theoretical framework to evaluate how well a

learning algorithm is. Here we focus on a special setting of PAC learning where the

algorithm is able to query any input to the unknown function. In the following, we

denote C-MCSP as the classical MCSP problem with respect to the circuit class C.

Definition 8.22 (PAC learning over the uniform distribution with membership

queries). Let C be a circuit class and let ϵ, δ > 0. We say an algorithm (ϵ, δ)-PAC-

learns C over the uniform distribution with membership queries if the following hold.

For every n ∈ N and n-variate f ∈ C, given membership query access to f , the algo-

rithm outputs a circuits C such that with probability at least 1− δ over its internal

randomness, we have Prx∈{0,1}n [f(x) ̸= C(x)] < ϵ. The running time of the learning

algorithm is measured as a function of n, 1/ϵ, 1/δ and, size(f).

383

The seminal paper of Carmosino et al. [CIKK16] showed that efficient PAC

learning for a (classical) circuit class C is equivalent to the corresponding MCSP

being easy. Here, we quantize this connection and show in the following theorem that

efficient PAC-learning for BQP/poly is equivalent to efficient algorithm for MQCSP.

Here, BQP/poly is defined as
⋃
s≤poly(n) BQC(s).

For technical reason, we need to work on a gap version of MQCSP in one

direction of the equivalence. Let τ : N→ (0, 1/2), MQCSP[s, s′, t, τ] is defined as the

gap problem where the No instances in Definition 8.10 becomes “for every quantum

circuit C using at most s′ gates and operating on at most n + t qubits, there are at

least τ fraction of x ∈ {0, 1}n such that ∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥2 ≤ 1
2
”.

Theorem 8.22 (Equivalence of efficient PAC learning for BQP/poly and efficient

randomized algorithm for MQCSP).

• If MQCSP ∈ BPP, then there is a randomized algorithm that (1/ poly(n), δ)-PAC

learns f ∈ BQP/poly under the uniform distribution with membership queries

for every δ > 0. Specifically, the algorithm runs in quasi-polynomial time.

• If there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly

under the uniform distribution with membership queries for some δ > 0 in

2O(n) time, then we have MQCSP[poly(n), ω(poly(n)), poly(n), τ] ∈ BQP and

MQCSP[poly(n), ω(poly(n)), O(n), τ] ∈ BPP for every τ > 0.

Similarly, the positive resolution of Open Problem 8.2 would strengthen the

conclusion of the second item in Theorem 8.22 to MQCSP[poly(n), ω(poly(n)), poly(n), τ] ∈
BPP.

Quantum learning. As it could be the case that MQCSP might have non-trivial

quantum algorithm, it is also of interest to study the connection to quantum learn-

ing [AGG+20].

384

Definition 8.23 (Quantum learning). Let C be a circuit class of boolean functions

and let ϵ, δ > 0. We say a quantum algorithm (ϵ, δ)-learns C if the following hold. For

every n ∈ N and n-variate f ∈ C, given quantum oracle access to f , the algorithm

outputs a polynomial-size quantum circuit U such that with probability at least 1−δ,
we have Ex∈{0,1}n [|(⟨f(x)| ⊗ I)U |x, 0m⟩|2] > 1 − ϵ. The running time of the learning

algorithm is measured as a function of n, 1/ϵ, 1/δ and, size(f).

It turns out that efficient quantum learning for a circuit class C (could be either

a classical circuit class or a quantum circuit class) is equivalent to efficient quantum

algorithm for C-MCSP. Similarly, C-MCSP[s, s′, τ] is defined as the gap problem with

the No instances being the truth tables where every circuit C of size s′ errs on τ

fraction of the inputs.

Theorem 8.23 (Equivalence of efficient quantum learning and efficient quantum

algorithm for C-MCSP). Let C be a circuit class.

• If C-MCSP ∈ BQP, then there exists a quantum algorithm that (1/ poly(n), δ)-

learns C for every δ > 0. Specifically, the algorithm runs in polynomial time.

• If there exists a quantum algorithm that (ϵ, δ)-learns C in time 2O(n) for some

constants ϵ, δ ∈ (0, 1/2), then we have C-MCSP[poly(n), ω(poly(n)), τ] ∈ BQP

for every τ > 0.

8.4.3 Circuit lower bounds

The classical MCSP is tightly connected to circuit lower bounds. Many results

show that a fast algorithm for MCSP will lead to breakthrough in circuit lower bounds,

which on the other hand indicates that MCSP might be very difficult to solve. In this

section, we “quantize” four results relating MQCSP and quantum circuit lower bounds.

Quantum circuit lower bound via quantum natural proof By Observa-

tion 8.12, we know that MQCSP gives a BQP-quantum natural property. Then,

385

we follow a recent work by Arunachalam et al. [AGG+20] and prove the following

theorem:

Theorem 8.24. If MQCSP ∈ BQP, then BQE ̸⊂ BQC[nk] for any constant k ∈ N+,

where BQE = BQTIME[2O(n)].

Remark 8.5. A key difference between Theorem 8.24 and [AGG+20] is that their

circuit lower bound for BQE is against classical circuits, while ours is against quantum

circuits by proving a diagonalization lemma for quantum circuits.

An ingredient of our proof is a conditional pesudorandom generator against

uniform quantum computation. We first recall the definition of PRG against uniform

quantum circuits given by [AGG+20].

Definition 8.24 (Pesudorandom generator against uniform quantum circuit, [AGG+20]).

A family of functions {Gn}n≥1 is an infinitely often (ℓ,m, s, ϵ)-generator against uni-

form quantum circuits if the following properties holds:

1. Stretch: Gn : {0, 1}ℓ(n) → {0, 1}m(n).

2. Uniformity and efficiency: There is a deterministic algorithm A that when given

1n and x ∈ {0, 1}ℓ(n) runs in time O(2ℓ(n)) and outputs Gn(x).

3. Pseudorandomness: For every deterministic algorithm A such that when given

1m(n) runs in time s(m) and outputs a quantum circuit Cm of size at most s(m)

computing a m-input Boolean function, for infinitely many n ≥ 1,
∣∣∣∣ Pr
x∼{0,1}ℓ(n),Cm

[Cm(Gn(x)) = 1]− Pr
y∼{0,1}m(n),Cm

[Cm(y) = 1]

∣∣∣∣ ≤ ϵ(m).

[AGG+20] constructed the following infinitely often PRG based on the as-

sumption PSPACE ⊈ BQSUBEXP.

Theorem 8.25 (Conditional PRG against uniform quantum computations, [AGG+20]).

Suppose that PSPACE ⊈ BQSUBEXP. Then, for some choice of constants α ≥ 1

386

and λ ∈ (0, 1/5), there is an infinitely often (ℓ,m, s, ε)-generator G = {Gn}n≥1,
where ℓ(n) ≤ nα, m(n) = ⌊2nλ⌋, s(m) = 2n

2λ ≥ poly(m) (for any polynomial), and

ε(m) = 1/m.

Now, we are ready to prove the lower bound for BQE based on the conditional

PRG and a diagonalization theorem for quantum circuits.

Proof of Theorem 8.24. We use a win-win argument to prove the circuit lower bound.

Case 1: Suppose PSPACE ⊆ BQSUBEXP, i.e., for every γ ∈ (0, 1], PSPACE ⊆
BQTIME[2n

γ
]. Then, for a fixed k ∈ N, by a diagonalization lemma for quantum

circuits (Claim 8.76), we know that there exists a language L ∈ PSPACE such that

L /∈ BQC[nk]. However, by the assumption, L ∈ BQE, which implies that BQE ̸⊂
BQC[nk].

Case 2: PSPACE ̸⊆ BQSUBEXP, that is, there exists a language L ∈ PSPACE

and γ > 0 such that L /∈ BQTIME[2n
γ
]. By Theorem 8.25, for some α ≥ 1, λ ∈

(0, 1/5), there exists an infinitely often (ℓ,m, s, ϵ)-PRG G = {Gn}n≥1, where ℓ(n) =

nα, m(n) = ⌊2nλ⌋, s(m) = ⌊2n2λ⌋, ϵ(m) = 1/m.

For each w ∈ {0, 1}nα , we consider Gn(w) as the truth table of Boolean func-

tion fnc(Gn(w)) : {0, 1}d → {0, 1}, where d := log(m(n)) is the input length of the

function. We will show that fnc(Gn(w)) is a hard function for BQC[dO(1)] for most

w ∈ {0, 1}ℓ(n).

Suppose that this is not true, i.e., there exists a k > 0 such that for almost

every n > 0, fnc(Gn(w)) ∈ BQC[d(n)k] for a constant fraction of seeds w ∈ {0, 1}ℓ(n).
Then, consider a quantum circuit CMQCSP

m which takes a m-bit string s and accepts

it if and only if MQCSP(s, 1d
k
) = 1, where s is the truth table and dk is the size

parameter. Since we assume MQCSP ∈ BQP, the quantum circuit CMQCSP
m can be

387

generated by a deterministic algorithm in time poly(m) ≤ s(m)21. This implies that

Pr
w∼{0,1}ℓ(n),CMQCSP

m

[
CMQCSP
m (Gn(w)) = 1

]
≥ δ

for some constant δ ∈ (0, 1). On the other hand, by the pseudorandomness property

of Gn (part 3 in Definition 8.24), for infinitely many n, we have
∣∣∣∣ Pr
w∼{0,1}ℓ(n),CMQCSP

m

[
CMQCSP
m (Gn(w)) = 1

]
− Pr

y∼{0,1}m(n),CMQCSP
m

[
CMQCSP
m (y) = 1

]∣∣∣∣ ≤
1

m
.

(8.2)

However, only o(1)-fraction of random functions have polynomial-size quantum cir-

cuits, i.e.,

Pr
y∼{0,1}m(n),CMQCSP

m

[
CMQCSP
m (y) = 1

]
≤ o(1),

which means Eq. (8.2) cannot hold. Therefore, for infinitely many n, and almost all

w, the function fnc(Gn(w)) /∈ BQC[nk] for every k ∈ N+.

Therefore, we can construct a hard language LG as follows:

• For any n > 0 and every x ∈ {0, 1}n, check if x can be written as (w, y), where

|w| = ℓ(t) and |y| = ⌈logm(t)⌉ for some t ∈ N.

• If not, then LG(x) := 0.

• Otherwise, LG(x) := fnc(Gt(w))(y).

We first show that LG ∈ BQE. By the running time property of Gn (part 2

in Definition 8.24), Gn(w) can be computed in deterministic time O(2ℓ(t)) ≤ O(2n).

Hence, LG ∈ E ⊂ BQE.

Then, we show that LG /∈ BQC[nk] for every k ∈ N+. Fix k > 0. Suppose

there exists a quantum circuit family {Cn}n≥1 that computes LG and Cn has size nk

21For all problems in BQP, there exists a classical Turing machine that can efficiently uniformly
generate the quantum circuits.

388

for every n ≥ 1. However, we already proved that there exists an infinite-size subset

{S ⊂ N} such that for n ∈ S, there exists many “hard seed” wn such that

fnc(Gt(wn)) /∈ BQC[t2αk]. (8.3)

Then, for any n ∈ S and any wn that makes Eq. (8.3) hold, define a new quantum

circuit family {C ⇂wn}n≥1 such that C ⇂wn (y) := C(wn, y), i.e., C ⇂wn computes

the hard function fnc(Gt(wn)). Hence, C ⇂wn must have size larger than t2αk. Since

n = ℓ(t) + logm(t) = tα + tλ ≤ t2α, and the size of Cn should be least the size of its

restriction C ⇂wn , we conclude that Cn has size larger than nk for these infinitely many

n ∈ S. Therefore, the BQE language LG /∈ BQC[nk], which implies BQE ̸⊂ BQC[nk].

Combining Case 1 and 2 completes the proof of the theorem.

Circuit lower bound for BQPQCMA Our second result shows that if MQCSP ∈
BQP, then BQPQCMA cannot be computed by polynomial-size quantum circuits. Our

result follows the seminal work of Kabanets and Cai [KC00], which showed a circuit

lower bound for PNP based on MCSP is easy. More specifically, we consider the

following “hard problem”:

Definition 8.25 (Maximum quantum circuit complexity problem). The input of

this problem is 1n for n ∈ N+. The output is the truth table of a function f :

{0, 1}n → {0, 1} such that for any f ′ : {0, 1}n → {0, 1}, the quantum circuit com-

plexity qCC(f) ≥ qCC(f ′).

We first prove that BPEQCMA can solve the maximum quantum circuit com-

plexity problem, which implies that BPEQCMA contains the hardest Boolean function.

Then, by the standard padding argument, we can show quantum circuit lower bound

for BQPQCMA.

Theorem 8.26. If MQCSP ∈ BQP, then BPEQCMA contains a function with maximum

quantum circuit complexity. Furthermore, BQPQCMA ̸⊂ BQC[nk] for any constant

k > 0.

389

We note that there are two subtle differences between Theorem 8.26 and

[KC00]’s result:

• We need a QCMA oracle while [KC00] used an NP oracle. This is because we

assume that MQCSP ∈ BQP. In order to decide the maximum quantum circuit

complexity, we can non-deterministically guess a truth table and use the BQP

algorithm to verify its quantum circuit complexity. This process can be achieved

by an QCMA oracle.

• Another difference is that we consider the BPE class while [KC00] considered the

E class. This is because our QCMA oracle can only output correct answers with

high probability. Thus, the whole algorithm will be a randomized algorithm.

The formal proof is deferred to Section 8.8.1.

Hardness amplification using MQCSP [KC00] showed that the classical MCSP

can be used for hardness amplification, i.e., given one very hard Boolean function,

there exists an efficient algorithm to find many hard functions via an MCSP oracle.

We show that it also holds for quantum circuits:

Theorem 8.27. Assume MQCSP ∈ BQP. Then, there exists a BQP algorithm that,

given the truth table of an n-variable Boolean function of quantum circuit complexity

2Ω(n), outputs 2Ω(n) Boolean functions on m = Ω(n) variables each, such that all of the

output functions have quantum circuit complexity greater than 2m

(c+1)m
for any c > 0.

In order to prove Theorem 8.27, we first construct a “quantum version” of

the Impagliazzo-Wigderson generator [IW97]. We note that the construction in the

following lemma is stronger than the Definition 8.24, based on the truth table of a

very hard function.

Lemma 8.28 (Quantum Impagliazzo-Wigderson generator). For every ϵ > 0, there

exist c, d ∈ N such that the truth table of a Boolean function f : {0, 1}cn → {0, 1} of

390

quantum circuit complexity 2ϵcn can be transformed in time O(2n) into a pseudoran-

dom generator G : {0, 1}dn → {0, 1}2n running in time O(2n) that can fool quantum

circuits of size 2O(n), i.e., for any p > 0, any quantum circuit C of size at most 2pn,
∣∣∣∣ Pr
x∼{0,1}dn,C

[C(G(x)) = 1]− Pr
y∼{0,1}2n ,C

[C(y) = 1]

∣∣∣∣ ≤ 2−n.

Proof of Theorem 8.27. Let c > 0 and s(n) = 2n

(c+1)n
. Assuming that MQCSP ∈ BQP,

we get a polynomial-size quantum circuit family {Dn} that only accept n-variable

Boolean functions of quantum circuit complexity greater than s(n). By Claim 8.74,

the acceptance probability is close to one.

However, the size of Dn is bounded by a fixed polynomial in the input size, by

Lemma 8.28, the quantum Impagliazzo-Wigderson generator G will fool Dn. That is,

almost all 2n-bit strings output by G will have quantum circuit complexity greater

than s(n). We can then use the MQCSP circuit to decide the quantum circuit com-

plexity of these strings and only output hard functions.

The proof of Lemma 8.28 relies on a quantum-secure direct product generator

and several hardness amplification steps. It is deferred to Section 8.8.3.

Hardness magnification for MQCSP. Hardness magnification refers to a trans-

formation of a weak circuit lower bound (e.g., linear size lower bound) to a stronger

circuit lower bound (e.g., polynomial size lower bound). Note that a magnifica-

tion theorem for a circuit class is highly dependent on the structure of the circuits.

Specifically, it is not immediately clear that every circuit class is magnifiable. Here,

we show that there exists hardness magnification for quantum circuits when it comes

to MQCSP.

Theorem 8.29. If MQCSP
[
2n

1/2
/2n, 2n

1/2
]

is hard for BQC
[
2n+O(n1/2)

]
, then QCMA ̸⊆

BQC[poly(n)].

391

The proof of Theorem 8.29 is via antichecker lemma, which was first given by

[OPS19, CHO+20] for proving hardness magnification for MCSP.

Lemma 8.30 (Antichecker lemma for quantum circuits). Assume QCMA ⊆ BQC[poly].

Then for any λ ∈ (0, 1) there are circuits {C2n}∞n=1 of size 2n+O(nλ) which given the

truth table tt(f) ∈ {0, 1}2n , outputs 2O(nλ) n-bit strings y1, . . . , y2O(nλ) together with

bits f(y1), . . . , f(y2O(nλ)) forming a set of anticheckers for f , i.e. if f is hard for quan-

tum circuits of size 2n
λ then every quantum circuit of size 2n

λ
/2n fails to compute f

on one of the inputs y1, . . . , y2O(nλ).

With Lemma 8.30, we can prove Theorem 8.29 by using a small quantum

circuit to verify the given circuits only on the anticheckers.

Proof of Theorem 8.29. Suppose QCMA ⊆ BQC[poly]. Let tt(f) be the input of

MQCSP[2n
1/2
/2n, 2n

1/2
]. By Lemma 8.30, we can find a set of anticheckers y1, . . . , y2O(n1/2)

by a quantum circuit of size 2n+O(n1/2). Then, we use a QCMA algorithm to de-

cide if there exists a quantum circuit of size 2n
λ
/2n that computes f correctly on

{(y1, f(y1)), . . . , (y2O(nλ) , f(y2O(nλ)))}. By the assumption, it can be done by a 2O(nλ)

size quantum circuit. Then, there are two cases:

• If the QCMA algorithm returns “Yes”, it means that y1, . . . , y2O(n1/2) are not

anticheckers. By Lemma 8.30, f is not hard for 2n
1/2 size quantum circuit.

• If the QCMA algorithm returns “No”, then no 2n
1/2
/2n size quantum circuit can

compute f on y1, . . . , y2O(n1/2) . So, f is hard for 2n
1/2
/2n size quantum circuit.

Hence, MQCSP[2n
1/2
/2n, 2n

1/2
] ∈ BQC[2n+O(n1/2)].

The proof of Lemma 8.30 is deferred to Section 8.8.2.

392

8.4.4 Fine-grained complexity

It is a long-standing open problem to show the hardness of MCSP based

on some fine-grained complexity hypotheses, like the Exponential-Time Hypothesis

(ETH), which was conjectured by Impagliazzo, Paturi, and Zane [IPZ01] and becomes

a widely used assumption in fine-grained complexity area.

Definition 8.26 (Exponential Time Hypothesis (ETH)). There exists δ > 0 such

that 3-SAT with n variables cannot be solved in time 2δn.

Very recently, a breakthrough result by Ilango [Ila20b] proved the ETH-hardness

of MCSP for partial Boolean functions. On the other hand, Quantum fine-grained

complexity was studied very recently by [ACL+20, BPS21, AL20b, GS20]. Motivated

by the fact that currently there is no quantum algorithm for 3-SAT that is signifi-

cantly faster than Grover’s search, we conjecture that 3-SAT with n variables cannot

be solved in 2o(n) quantum time (QETH). And based on QETH, we want show that

MQCSP for partial Boolean function is also hard.

We first formally define QETH and MQCSP for partial functions (MQCSP⋆).

Definition 8.27 (Quantum Exponential Time Hypothesis (QETH)). There exists

δ′ > 0 such that 3-SAT with n variables cannot be solved in time 2δ
′n in quantum.

Definition 8.28 (MQCSP for partial functions (MQCSP⋆)). The input is the truth

table {0, 1, ⋆}2n of a partial function f : {0, 1}n → {0, 1, ⋆} and an integer parameter

s. The goal is to decide whether there exists a quantum circuit C of size at most s

(using single-qubit and 2-qubit gates) that computes f . That is, for all x ∈ {0, 1}n

such that f(x) ̸= ⋆, we have

Pr[C(x) = f(x)] ≥ 2

3
.

Our main result of this section is as follows:

393

Theorem 8.31 (QETH-hardness of MQCSP⋆). MQCSP⋆ cannot be solved in N o(log logN)-

time quantumly on truth tables of length N assuming QETH.

Our reduction reveals the connections between MQCSP⋆, quantum read-once

formula and classical read-once formula. The proof is given in Section 8.9.

Classical reduction for MCSP⋆. We first give a brief overview of the classical

reduction for MCSP⋆ in [Ila20b]. They reduced MCSP⋆ to a fine-grained problem:

2n× 2n Bipartite Permutation Independent Set problem, which is defined as follows:

Definition 8.29 (Bipartite Permutation Independent Set problem). A 2n × 2n bi-

partite permutation independent set problem is defined on a directed graph G with

vertex set [n] × [n] and edge set E. The goal is to decide whether there exists a

permutation π ∈ S2n such that

• π([n]) = [n],

• π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]},

• if ((j, k), (j′, k′)) ∈ E, then either π(j) ̸= k or π(n+ j′) ̸= (n+ k′).

Lokshtanov, Marx, and Saurabh [LMS11] proved that this problem is 2o(n logn)-

hard under ETH, which implies the ETH-hardness of MCSP⋆.

The reduction from 2n×2n bipartite permutation independent set problem to

MCSP⋆ is via the following partial function γ. Consider an instance G = ([n]× [n], E)

of 2n×2n bipartite permutation independent set problem. The reduction outputs the

truth table of a partial Boolean function γ : {0, 1}2n × {0, 1}2n × {0, 1}2n → {0, 1, ⋆}

394

such that

γ(x, y, z) :=

∨
i∈[2n](yi ∧ zi) if x = 02n,∨
i∈[2n] zi if x = 12n,∨
i∈[2n](xi ∨ yi) if z = 12n,

0 if z = 02n,∨
i∈[n] xi if z = 1n0n and y = 02n,∨
i∈{n+1,··· ,2n} xi if z = 0n1n and y = 02n,

1 if ∃((j, k), (j′, k′)) ∈ E s.t. (x, y, z) = (ekek′ , 0
2n, ejej′),

⋆ otherwise.
(8.4)

In particular, the small circuit size of γ implies that G is a “Yes” instance of the

bipartite permutation independent set problem:

Lemma 8.32 ([Ila20b]). Each of the following are equivalent:

1. MCSP⋆(γ, 6n− 1) = 1;

2. γ can be computed by a read-once formula;

3. there exists a π ∈ S2n such that
∨
i∈[2n]((xπ(i) ∨ yi) ∧ zi) computes γ;

4. there exists a π ∈ S2n that satisfies the instance of bipartite permutation inde-

pendent set problem given by G.

Quantum reduction for MQCSP⋆ We follow the proof in [Ila20b] but adapt it to

quantum circuits. More specifically, we want to show that for the partial function γ

defined by Eq. (8.4), MQCSP⋆(γ, 6n− 1) = 1 is equivalent to the case that γ can be

computed by a read-once formula.

The reverse direction is easy:

Claim 8.33. If γ can be computed by a read-once formula, then MQCSP⋆(γ, 6n−1) =
1.

395

Proof. It is easy to see that a read-once formula on 6n input variables has at most

6n − 1 Boolean gates. Hence, it implies that MCSP⋆(γ, 6n − 1) = 1. Then, we have

MQCSP⋆(γ, 6n− 1) = 1 because we can use a quantum circuit with all 2-qubit gates

to simulate a Boolean circuit without increasing the circuit size.

For the forward direction, we consider an intermediate model: read-once quan-

tum formula. The quantum formula was defined by Yao [Yao93] as follows:

Definition 8.30. A quantum formula is a single-output quantum circuit such that

every gate has at most one output that is used as an input to a subsequent one.

If a quantum formula only uses every input qubit at most once, then we say

it is a read-once quantum formula.

We first prove the forward direction for the quantum read-once formula:

Claim 8.34. If MQCSP⋆(γ, 6n − 1) = 1, then γ can be computed by a read-once

quantum formula. Here, we assume that the quantum circuits only use single-qubit

and 2-qubit gates.

Proof. It is easy to verify that γ depends on all of the 6n input variables. Hence, by

a light-cone argument, the topology of the quantum circuit that computes γ using

6n− 1 2-qubit gates must be a full binary tree with 6n leaves. Hence, that circuit is

a read-once quantum formula.

Cosentino, Kothari, and Paetznick [CKP13] proved that any read-once quan-

tum formula can be “dequantized” to the classical read-once quantum formula:

Theorem 8.35 ([CKP13]). If a language is accepted by a bounded-error read-once

quantum formula over single-qubit and 2-qubit gates, then it is also accepted by an

exact read-once classical formula with the same size, using NOT and all 2-bit Boolean

gates.

396

Hence, we can apply Theorem 8.35 to dequantize Claim 8.34:

Claim 8.36. If MQCSP⋆(γ, 6n− 1) = 1, then γ can be computed by a classical read-

once formula with 6n− 1 2-bit gates. In particular, all the NOT gates can be pushed

to the leaf level and the high level gates are {AND,OR,XOR}.

Proof. By Theorem 8.35, there is a read-once classical formula that computes γ using

6n−1 2-bit logical gates. We can enumerate all of the 2-bit Boolean function and check

that they can be expressed by one of AND,OR,XOR gate with some NOT gates on

the input wire. Then, by De Morgan’s laws, we can push the NOT gate to the bottom

level. Note that these transformations will preserve the read-once property.

The next claim shows that NOT and XOR gates do not help computing γ:

Claim 8.37. The classical read-once formula computing γ only uses AND and OR

gates.

Proof. The proof is similar to the proof of Claim 13 in [Ila20b].

We first note that the XOR gate is not monotone. Then, by setting x = 02n, we

have γ(02n, y, z) =
∨
i∈[2n](yi∧zi), which is a monotone function in y and z. Hence, the

XOR gates in the formula cannot depend on the all the y and z variables. Similarly,

by setting z = 12n, we have γ(x, y, 12n) =
∨
i∈[2n](xi∨ yi), which is monotone in x and

y. It implies that the XOR gates cannot depend on all the x variables. Hence, the

formula will not use the XOR gate.

For the NOT gate, since the function is monotone in the positive input variables

after some restrictions, and the formula is read-once, the NOT gate will also not be

used.

By Claim 8.33, 8.36 and 8.37, we get that MQCSP⋆(γ, 6n−1) = 1 is equivalent

to the case that γ can be computed by a read-once formula using AND and OR gates.

This statement corresponds to showing that (1) ⇔ (2) in Lemma 8.32 for MCSP⋆.

Then, by (2) ⇔ (4) in Lemma 8.32, we prove the following reduction for MQCSP⋆:

397

Lemma 8.38. MQCSP⋆(γ, 6n− 1) = 1 is equivalent to the existence of π ∈ S2n that

satisfies the instance of bipartite permutation independent set problem given by G.

The remaining thing is to prove the quantum hardness of the 2n×2n Bipartite

Permutation Independent Set problem. We follow the quantum fine-grained reduction

framework by [ACL+20] and show the following QETH-hardness result. The proof is

given in Section 8.9.

Lemma 8.39. Assuming QETH, there is no 2o(n logn)-time quantum algorithm that

solves 2n× 2n Bipartite Permutation Independent Set problem.

Now, we can prove the QETH-hardness of MQCSP⋆:

Proof of Theorem 8.31. By Lemma 8.38, MQCSP⋆ can be reduced to 2n×2n Bipartite

Permutation Independent Set problem and the hardness follows from Lemma 8.39.

8.5 MCSP for Quantum Objects

In this section, we generalize the problem to considering circuit complexities

of quantum objects, including unitaries and quantum states. In particular, we study

their hardness, related reductions, and their implications to other subjects in quantum

computer science. We start by defining the two problems.

Definition 8.31 (UMCSPα,β). Let n, s, t ∈ N and t ≤ s. Let α, β ∈ (0, 1]. Let

U ∈ C2n×2n be a unitary. UMCSP is a promise problem defined as follows.

• Inputs: the unitary matrix U , the size parameter s in unary representation,

and the ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and

operating on at most n+ t qubits such that for all |ψ⟩ ∈ C2n ,

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≥ α, (8.5)

398

• No instance: for every quantum circuit C using at most s gates and operating

on at most n+ t qubits, there exists some |ψ⟩ ∈ C2n such that

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≤ β. (8.6)

With the promise that the input must be either a yes instance or a no instance, the

problem is to decide whether the input is a yes instance or not.

Remark 8.6. Since the input to UMCSP is a unitary matrix U and each entry is a

complex number, we cannot fully describe U and hence need to specify a precision

parameter. Moreover, the precision issue is subtle in the search-to-decision reduction.

For a gate set G, we denote ℓG ∈ N as the maximum number of bits used to encode

an entry of a gate. Note that if a circuit uses s gates from G, then each entry in the

resulting unitary can be written down with at most s · ℓG bits. Thus, by the triangle

inequality for the distance between unitaries, it suffices to use s·ℓG bits to encode each

entry of the input unitary. Also, note that when α−β < 2−s·ℓG , UMCSPα,β becomes a

non-promise problem since effectively the gap between Yes and No instances does not

matter. In the definition of UMCSP, we hide the introduction of precision parameter

for simplicity. Note that from the above reasoning and the fact that the input unitary

is 2n× 2n, it would not affect the complexity of the problem even one chooses the bit

complexity to be 2O(n), which is more than enough for most interesting situations.

Definition 8.32 (SMCSPα,β). Let n, s, t ∈ N, where t ≤ s. Let α, β ∈ (0, 1]. Let

|ϕ⟩ ∈ C2n be a quantum state. SMCSP is a promise problem defined as follows.

• Inputs: size parameters s and n in unary, access to arbitrary many copies of

|ψ⟩, and the ancilla parameter t.

• Yes instance: there exists a quantum circuit C using at most s gates and

operating on at most n+ t qubits such that

∥(⟨ϕ| ⊗ In+t−1)C|0n+t⟩∥2 ≥ α,

399

• No instance: for every quantum circuit C using at most s gates and operating

on at most n+ t qubits,

∥(⟨ϕ| ⊗ In+t−1)C|0n+t⟩∥2 ≤ β.

With the promise that the input must be either a yes instance or a no instance, the

problem is to decide whether the input is a yes instance or not.

Remark 8.7. Similarly, the precision of the input parameters α, β of SMCSP has to

depend on the bit complexity of the gate set. See Remark 8.6 for more discussion.

Remark 8.8. For the thresholds α, β, it is worth noting that a quantum circuit that

outputs a mixed state can always have nonzero inner product with an arbitrary state.

Therefore, we cannot set β to be arbitrarily small; otherwise, there will not be any U

or |ϕ⟩ satisfying the no instance.

For SMCSP, we focus on the version where the inputs are multiple quantum

states. The input format is quite different from UMCSP and MQCSP; instead of hav-

ing the full classical description, SMCSP is given access to many copies of the quantum

state. Hence, we say an algorithm for SMCSP is efficient if it runs in time poly(n, t, s),

i.e., an efficient algorithm can use at most poly(n, t, s) copies of |ψ⟩. We choose this

input format because in the quantum setting, we generally cannot have the classical

description of the quantum state. For instance, in shadow tomography[Aar18], quan-

tum gravity[BFV20], and quantum pseudorandom states[JLS18], the problem is given

many copies of a quantum state, identify some properties of the state. Furthermore,

although this problem seems to be much harder than having the full description or a

succinct description (e.g, a circuit that generates the state) of the state, we will see

that this problem has a QCMA protocol. 22

22Since SMCSP takes quantum inputs, the problem is not in QCMA under the standard definition.
However, problems with quantum inputs in quantum computing is natural, so, it is also reasonable
to study the complexity classes that allow quantum inputs.

400

Remark 8.9. On the other hand, the hardness results including the problem is in

QCMA (Theorem 8.46), the search-to-decision reduction (Theorem 8.50), and the

approximate self-reduction (Theorem 8.52) all hold for the version where the input is

a classical description for the state.

Before proving the main theorems in this section, we introduce some notations

and the swap test. Swap test [BCWdW01] is a quantum subroutine for testing whether

two pure quantum states are close to each other.

Notation. We write a ≈ϵ b for a, b ∈ R to mean ∥a− b∥ ≤ ϵ.

Notation. We write |φ⟩ ≈ϵ |ϕ⟩ to mean ∥|φ⟩ − |ϕ⟩∥ ≤ ϵ.

Lemma 8.40 (Correctness of Swap Test). For any two states |ϕ⟩, |ψ⟩, consider the

following state

(H⊗ I)(c-SWAP)(H⊗ I)|0⟩|ϕ⟩|ψ⟩

Measuring the first qubit gives outcome 1 with probability 1
2
− 1

2
|⟨ϕ|ψ⟩|2.

Claim 8.41. Let |ϕ⟩, |ψ⟩ ∈ C2n be two quantum states such that |ϕ⟩ ≈ϵ |ϕ⟩. Then,

for any |ψ′⟩ which is a state on at most n qubits,

∥(⟨ψ′| ⊗ I)|ϕ⟩∥ − ϵ ≤ ∥(⟨ψ′| ⊗ I)|ψ⟩∥ ≤ ∥(⟨ψ′| ⊗ I)|ϕ⟩∥+ ϵ.

Proof. Without loss of generality, we can write |ψ⟩ = |ϕ⟩+|ϵ⟩, where ∥|ϵ⟩∥ ≤ ϵ. Then,

∥(⟨ψ′| ⊗ I)|ψ⟩∥ = ∥(⟨ψ′| ⊗ I)|ϕ⟩ + (⟨ψ′| ⊗ I)|ϵ⟩∥. By using triangular inequality, we

obtain the following two inequalities:

∥(⟨ψ′| ⊗ I)|ψ⟩∥ ≤ ∥(⟨ψ′| ⊗ I)|ϕ⟩∥+ ∥(⟨ψ′| ⊗ I)|ϵ⟩∥, and

∥(⟨ψ′| ⊗ I)|ψ⟩∥ ≥ ∥(⟨ψ′| ⊗ I)|ϕ⟩∥ − ∥(⟨ψ′| ⊗ I)|ϵ⟩∥.

Since ∥|ϵ⟩∥ ≤ ϵ, ∥(⟨ψ′| ⊗ I)|ϵ⟩∥ ≤ ϵ. This completes the proof.

Theorem 8.42. UMCSPα,β where β ≤ 1 − poly(1/2n) and α > 1 − 2−2n−20(1 − β)4

(for example, α = 1− exp(−2n), β = 1− poly(1/2n)) is in QCMA.

401

To design the verifier (that verifies a quantum circuit C really implements U

as we want), what we will do is the following checking:

1. Standard basis check: check whether Eq. (8.5) is satisfied on standard basis

states.

2. Coherency check: Check Eq. (8.5) on superposition states in the form of |a⟩+|b⟩.
This step has two goals: (1) checking whether the operation does behave similar

to a unitary (instead of, for example, a collapsing measurement). (2) the unitary

does not introduce different phases on different basis states.

Proof. Our checking algorithm follows the two steps above. The certificate is the

circuit that implements the unitary such that Eq. (8.5) is satisfied. The following

algorithm verifies it (assuming the promise):

1. (Standard basis check) For each i ∈ [2n], evaluate (U † ⊗ It)C(|i⟩ ⊗ |0t⟩) for

poly1(2
n) times. Store the output state (which requires only polynomial mem-

ory); denote the j-th sample on input i as |φji ⟩. Measure each of the states and

check whether the output for |φji ⟩ is i. If not, mark it as a negative sample.

If for any i, the ratio of negative samples is ≥ 2−2n−18(1− β)4, reject.

2. (Coherency check) Do the following for each i, j ∈ [2n], i ̸= j for poly2(2n) times:

Apply (U †⊗It)C on 1√
2
(|i⟩+|j⟩)⊗|0t⟩. Project the output system on 1√

2
(|i⟩+|j⟩).

If the projection does not succeed, consider it as a negative sample.

If for any of i, the ratio of negative samples is ≥ 2−2n−18(1− β)4, reject.

We will show, when poly1, poly2 are all chosen to be some sufficiently big polynomials,

this test can be used as the QCMA-verifier we need.

First, if a circuit satisfies Eq. (8.5), we can prove the verifier succeeds with

probability 1− 2−O(poly(2n)).

402

1. First, in the standard basis check, by Eq. (8.5), the expected ratio of negative

sample is at most 1− α ≤ 1
4
· threshold (threshold := 2−2n−18(1− β)4). By the

Chernoff bound we have, ∀a ∈ [2n],

Pr[negative ratio ≥ threshold]

= Pr[negative samples ≥ threshold · poly1(2n)]

≤ 2−O(E[negative samples]) (Chernoff bound)

≤ 2−O(poly1(2
n)·2−2n−20(1−β)4) (threshold · poly1(2n) ≥ 4 · E[negative samples])

which is 2−O(poly(2n)) when poly1 is taken to be big enough. (Since 1 − β =

poly(1/2n))

Summing this failure probability for all a ∈ [2n] altogether we know with prob-

ability is at most

2n · 2−O(poly(2n)) = 2−O(poly(2n)),

which means it could not pass the first step.

2. For the coherency check we can apply Eq. (8.5) directly again and know for each

a, b, the expected error ratio is ≤ 1−α ≤ 1
4
· threshold. (Similarly threshold :=

2−2n−18(1− β)4). Thus by the Chernoff bound and similar arguments

∀a, b ∈ [2n], Pr[error ratio ≥ threshold] ≤ 2−O(poly2(2
n)·2−2n−20(1−β)4)

which is 2−O(poly(2n)) when poly2 is taken to be big enough. (Since 1 − β =

poly(1/2n))

Thus summing this failure probability for all a, b ∈ [2n] we know this step fails

with probability at most

2n · 2n · 2−O(poly(2n)) = 2−O(poly(2n)).

Thus we get the completeness.

403

Then we prove a circuit that satisfies Eq. (8.6) will be rejected with probability

1− 2−O(poly(2n)). To prove that, we need to understand how the coherency check help

us control the form of the states. We will prove the following lemmas step by step.

First, we show the success of coherency check implies the ancilla states have

to be close to each other:

Lemma 8.43. Suppose for some a, b ∈ [2n], a ̸= b, the following equations hold:

∥(⟨a| ⊗ It)(U † ⊗ It)C(|a⟩ ⊗ |0t⟩)∥2 ≥ 1− δ,

∥(⟨b| ⊗ It)(U † ⊗ It)C(|b⟩ ⊗ |0t⟩)∥2 ≥ 1− δ,
∥∥∥∥
(⟨a|+ ⟨b|√

2
⊗ It

)
(U † ⊗ I)C

(|a⟩+ |b⟩√
2
⊗ |0t⟩

)∥∥∥∥
2

≥ 1− δ. (8.7)

Define the ancilla states |χa⟩, |χb⟩ via

(U † ⊗ It)C(|a⟩ ⊗ |0t⟩) ≈√δ |a⟩ ⊗ |χa⟩ (8.8)

(U † ⊗ It)C(|b⟩ ⊗ |0t⟩) ≈√δ |b⟩ ⊗ |χb⟩ (8.9)

where the right hand sides are the states from projecting (U † ⊗ It)C(|a⟩ ⊗ |0t⟩), and

projecting (U † ⊗ It)C(|b⟩ ⊗ |0t⟩) on to |a⟩, |b⟩ respectively.

Then we have

|χa⟩ ≈4δ1/4 |χb⟩ (8.10)

Proof. We can evaluate the left hand side of Eq. (8.7) and get
∥∥∥∥

1√
2
((⟨a|+ ⟨b|)⊗ It)((U † ⊗ I)C)

1√
2
((|a⟩+ |b⟩)⊗ |0t⟩)

∥∥∥∥

≈√2δ
1

2
∥((⟨a|+ ⟨b|)⊗ It)(|a⟩ ⊗ |χa⟩+ |b⟩ ⊗ |χb⟩)∥ (By Eqs. (8.8),(8.9))

=
1

2
∥|χa⟩+ |χb⟩∥

=

√
1− 1

4
∥|χa⟩ − |χb⟩∥2

404

Substitute Eq. (8.7), we know
√

1− 1

4
∥|χa⟩ − |χb⟩∥2 ≥

√
1− δ −

√
2δ,

∥|χa⟩ − |χb⟩∥ ≤ 2

√
2
√

2δ(1− δ)− δ ≤ 4δ1/4.

The lemma is then proved.

Furthermore, we can show, when Eq. (8.10) holds for all pairs (a, b), the op-

eration (U † ⊗ I)C is indeed close to identity:

Lemma 8.44. Suppose for all a, b ∈ [2n], a ̸= b, Eqs. (8.8),(8.9),(8.10) holds. Then

for all |ψ⟩ ∈ C2n,

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≥ 1− 10 · 2n/2δ1/4

Proof. Decompose |ψ⟩ =∑i∈[2n] ci|ei⟩. Take |aux⟩ = |χ0⟩. Then

(U † ⊗ It)C(|ψ⟩ ⊗ |0t⟩) =
∑

i∈[2n]

ci(U
† ⊗ It)C(|ei⟩ ⊗ |0t⟩)

≈∑
i ci
√
δ

∑

i∈[2n]

ci|ei⟩ ⊗ |χi⟩ (By Eqs. (8.8),(8.9))

≈∑
i 4ciδ

1/4

∑

i∈[2n]

ci|ei⟩ ⊗ |aux⟩ (By Eq. (8.10))

= |ψ⟩ ⊗ |aux⟩,

which implies

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≥ (1− 5δ1/4
∑

i

ci)
2

≥ (1− 5 · 2n/2δ1/4)2

≥ 1− 10 · 2n/2δ1/4.

And the proof is completed.

Then we prove a circuit that satisfies Eq. (8.6) will be rejected with probability

1− 2−O(poly(2n)).

405

1. After the standard basis check, C has to satisfy the following property, otherwise

the verifier will reject with probability 1− 2−O(poly(2n)):

∀a ∈ [2n], ∥(⟨a| ⊗ It)(U † ⊗ It)C(|a⟩ ⊗ |0t⟩)∥2 ≥ 1− 2−2n(
1

11
(1− β))4 (8.11)

That’s because otherwise the standard basis test for some a ∈ [2n] will have an

expected negative ratio ≥ 2−2n(1
11
(1− β))4 ≥ 4 · threshold (recall threshold :=

2−2n−18(1− β)4).

A more detailed calculation is as follows.

Pr[negative ratio < threshold] = Pr[negative samples < threshold · poly1(2n)]

≤ exp(−O(E[negative samples]))

≤ exp
(
−O(poly1(2n) · 2−2n((1− β)/11)4)

)
,

where the second step follows from the Chernoff bound, and the last step follows

from

threshold · poly1(2n) <
1

4
E[negative samples].

Thus

Pr[negative ratio ≥ threshold] ≥ 1− 2−O(poly1(2
n)·2−2n((1−β)/11)4)

2. After the coherency check, C has to satisfy the following property, otherwise the

verifier will reject with probability 1− 2−O(poly(2n)): for all a, b ∈ [2n], a ̸= b,

∥ 1√
2
((⟨a|+ ⟨b|)⊗ It)(U † ⊗ I)C(

1√
2
(|a⟩+ |b⟩)⊗ |0t⟩)∥2 ≥ 1− 2−2n(

1

11
(1− β))4

(8.12)

The calculation is similar as the first step.

3. And from Eqs. (8.11) and (8.12), Lemma 8.44 implies that for all |ψ⟩ ∈ C2n ,

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≥ 1− 10 · 2n/2(2−2n(1
11

(1− β))4)1/4 > β.

However, by the promise this is not possible to be in the no instance.

406

This completes the proof.

Claim 8.45. UMCSPα,β is in NP when only linear ancilla qubits are allowed and

1−α < 2−2n−20(1−β)4 and 1−β ≥ poly(1/2n) (for example, 1−α = exp(−2n), 1−β =

poly(1/2n)). However, UMCSPα,β is not trivially in NP in general.

Proof. The certificate is the circuit implementation C that achieves Eq. (8.5). Now

since the circuit only operates on a polynomial-dimension system, the unitary trans-

formation of the whole circuit can be computed and written down using only a

polynomial-time classical computer.

The subtlety is to verify whether the unitary computed here satisfies Eq. (8.5).

We can prove it following the same way as the proof of Theorem 8.42. Here the quan-

tum space is always polynomially bounded and a classical polynomial time verifier

can simulate the protocol in the proof of Theorem 8.42 classically. (One note is the

quantum output samples there can be lazy-sampled.) This completes the proof.

Next, we showed that SMCSP has a QCMA protocol. Note that since SMCSP

is given access to quantum states, it is even not a promise problem under the standard

definition. Therefore, we can only say there is a QCMA protocol for this problem.

Theorem 8.46. SMCSPα,β with gap |α− β| ≥ poly(s) has a QCMA protocol.

Proof. We use the swap test to check whether the given states and the state generated

from the certificate circuit are close. The verifier’s algorithm is as follows:

Algorithm 32 The efficient verifier for SMCSP.
Input: s, t ∈ N, poly(s) copies of |ψ⟩, and quantum circuit C.
1: Generate poly(s) |ϕ⟩ = C|0⟩.
2: Apply swap test to |ψ⟩ and |ϕ⟩.
3: return “Yes” if there are at least a+b

2
trials outputs 0.

4: return “No”, otherwise.

407

Given s, t ∈ N and poly(s) copies of |ψ⟩, we first consider the case where there

exists a circuit C such that ∥(⟨ψ| ⊗ It)C|0n+t⟩∥2 ≥ α. Let C be the certificate. Then,

by applying the swap test to |ψ⟩ and C|0⟩, the probability that we get 0 (which means

identical) is 1
2
+ |⟨ψ|C|0⟩|2

2
, which is at least 1+α

2
in this case. We denote the probability

of outputs 0 at the i-th trial as Xi. Then, By the Chernoff inequality,

Pr

[
ℓ∑

i=1

Xi ≥ (
1

2
+
α + β

4
)ℓ

]
≤ exp

(
−(α− β)2ℓ

16

)
.

Since |α− β| ≥ 1
poly(s)

, the success probability of Algorithm 32 in this case is at least

2/3 by having ℓ = poly(s) trials. Similarly, we can prove the case when there exists

no circuit C such that ∥(⟨ψ| ⊗ It)C|0n+t⟩∥2 > β. This completes the proof.

Given Theorem 8.46, we can also obtain the following result when given clas-

sical descriptions of quantum states.

Corollary 8.47. SMCSP with classical descriptions of quantum states as inputs is

in QCMA.

The subtlety is that the verifier needs to construct the state |ψ⟩ given the

classical description of |ψ⟩. If the verifier can do this efficiently (in time poly(2n)),

then the rest of the analysis follows the proof for Theorem 8.46. We leave the proof

to Appendix 8.10.

For the ease of notation, we will simply denote UMCSPα,β and SMCSPα,β as

UMCSP and SMCSP and will specify α and β when it is necessary in the rest of the

section.

8.5.1 Reductions for UMCSP and SMCSP

In this section, we will show search-to-decision reductions for UMCSP and

SMCSP. To prove the above results, it is easier for us to consider UMCSP and SMCSP

as problems for computing the circuit complexity of given unitaries and states.

408

We first give formal definitions of approximating functions, unitaries, and

states and the corresponding quantum circuit complexities.

Definition 8.33 (Approximating f with precision δ). We say that a quantum circuit

C that approximates a function f : Zn → Zm with precision δ if for all x ∈ Zn, there

exists ϵ′ ≤ ϵ such that

Cf,δ|x⟩|0t⟩ =
√
1− ϵ′|f(x)⟩|ψf(x)⟩+

√
ϵ′|ϕx⟩. (8.13)

Definition 8.34 (Approximating U with precision δ). Let U be as a 2n× 2n unitary.

We define CU,ϵ as the circuit that approximates U with precision δ such that for all

|ψ⟩ ∈ C2n there exists δ′ ≤ δ

CU,δ|ψ⟩|0t⟩ =
√
1− δ′(U |ψ⟩)⊗ |ψ′⟩+

√
δ′|ϕ′⟩.

Here, the additional t qubits for CU,δ are ancilla qubits.

Definition 8.35 (Approximating |ψ⟩ with precision δ). Let |ψ⟩ ∈ C2n be a quantum

state. We define C|ψ⟩,ϵ as the circuit that approximates |ψ⟩ with precision δ

C|ψ⟩,δ|0n+t⟩ =
√
1− δ′|ψ⟩|ψ′⟩+

√
δ′|ϕ′⟩

Here, δ′ ≤ δ and the additional t qubits are ancilla qubits.

We use CC(·, ϵ) to denote the quantum circuit complexity of the minimum

quantum circuit that approximates the given Boolean functions, states, or unitaries

with precision ϵ.

Remark 8.10 (Upper bounds on CC(·, ϵ)). For any universal gate set, any unitary U

in C2n×2n can be ϵ-approximated by a circuit with size at most Õ(n222n log 1
ϵ
) [NC11].

The same upper bound also holds for states. The existence of 2O(n) upper bounds

implies that CC(·, ϵ) can be computed efficiently given efficient algorithms for SMCSP

and UMCSP.

409

8.5.1.1 Search-to-decision reductions

In the following, we prove search-to-decision reductions for UMCSP and SMCSP.

The main intuition for these reductions is that quantum circuits are reversible, which

gives us the ability to do some “rewinding tricks”. We define the search versions of

UMCSP and SMCSP as follows:

Definition 8.36 (SearchUMCSPϵ). Let n, t ∈ N. Let U ∈ C2n×2n be a unitary matrix

and ϵ ∈ (0, 1). Let s be the smallest integer such that there exists a quantum circuit

C of size s that uses at most t ancilla bits and for all |ψ⟩ ∈ C2n ,

∥(⟨ψ| ⊗ It)(U † ⊗ It)C|ψ, 0t⟩∥2 ≥ 1− ϵ.

Given U , t, and ϵ, the problem is to output a circuit C′ of size at most s that uses at

most t ancilla bits and for all |ψ⟩ ∈ C2n , ∥(⟨ψ| ⊗ It)(U †⊗ It)C′|ψ, 0t⟩∥2 ≥ 1− ϵ− 2−cn

for every constant c > 0.

Definition 8.37 (SearchSMCSPϵ,s). Let n, s, t ∈ N and ϵ ∈ (0, 1). Let |ψ⟩ ∈ C2n be

a quantum state with the promise that there exists a circuit C of size at most s and

t ancilla bits such that

∥(⟨ψ| ⊗ In+t−1)C|0n+t⟩∥2 ≥ 1− ϵ.

Given (n, s, t) in unary, ϵ, and access to arbitrary many copies of |ψ⟩, the problem is to

find a circuit C′ of size at most s and t ancilla bits such that ∥(⟨ψ|⊗In+t−1)C′|0n+t⟩∥2 ≥
1− ϵ− 2−cn for every constant c > 0.

Remark 8.11. In Definition 8.37, we have included the upper bound 1s (the unary

representation) as part of the inputs. This mainly follows from the fact that we

are considering problems with copies of quantum states. One may expect that we

can find s by using binary search with an efficient algorithm for SMCSP. However,

efficient algorithms for SMCSP with s = 2n can run in time poly(2n), and efficient

algorithms for SearchSMCSP without 1s as part of the inputs need to run in time

410

poly(n). Hence, this prevents us from finding s efficiently (in time poly(n)) with an

efficient algorithm for SMCSP (in time poly(s)). On the other hand, if we consider

the case where SMCSP and SearchSMCSP have the classical description of the state

(instead of copies of the quantum state) as part of the inputs, then there is no need

to have 1s in the inputs of SearchSMCSP since we can find s via binary search with

efficient algorithms for SMCSP.

In the following, we show search-to-decision reductions for UMCSP and SMCSP

when t = 0 (i.e., no ancilla qubits)23.

Theorem 8.48. There exists a search-to-decision reduction for UMCSP for t = 0

(i.e., no ancilla qubits). In particular, if there is a time T (n) algorithm for UMCSPα,β

where α > 1− 2−c1n and α− β ≥ 2−c2n for every constants c1, c2 > 0, then there is a

time poly(T (n), 2n) algorithm for SearchUMCSPϵ where ϵ ≥ 2−c3n for every constant

c3 > 0 and t = 0.

Remark 8.12. Here we require the gap α − β in the decision UMCSP oracle to be at

least poly(2−n) because our QCMA upper bound for UMCSP (see Theorem 8.42) only

works in this regime.

Proof. Let us first state the reduction in the form of an algorithm with oracle queries

to UMCSP as follows.

23In general, search-to-decision reductions for SMCSP and UMCSP mean that SearchSMCSP re-
duces to SMCSP and SearchUMCSP reduces to UMCSP for any n, s, t ∈ N.

411

Algorithm 33 Search-to-decision reduction for UMCSP.
Input: ϵ ∈ (0, 1), U ∈ C2n×2n , and a constant c3 > 0.
1: Let U0 = U , ∆ = 2−2c3n, ϵ0 = ϵ , and ϵi = ϵ0 + i ·∆ for all i ∈ N.
2: Use the oracle UMCSP1−ϵ0,1−ϵ0−∆ to binary-search s, the minimum circuit size of
U .

3: Set i = 1.
4: while i < s do
5: for all gates hi in G on all n qubits do
6: if UMCSP1−ϵi,1−ϵi−∆(Ui−1h

†
i , s− i) = Yes then

7: Set gi = hi.
8: Let Ui = g†iUi−1.
9: Set i = i+ 1.

10: Break.
11: end if
12: end for
13: end while
14: return g1, . . . , gs.

We inductively prove the following claim.

Claim 8.49. For every 0 < i < s, at the i-th iteration in line 5, we know that there

exists a circuit C of size at most s− i+ 1 such that min|ψ⟩ |⟨ψ|U †i−1C|ψ⟩|2 ≥ 1− ϵi.

Proof. For the base case we consider i = 1 and note that after line 2 in Algorithm 33,

we know that there exists a circuit C of size at most s such that min|ψ⟩ |⟨ψ|U †0C|ψ⟩|2 ≥
1− ϵ−∆ = 1− ϵ1. This proves the base case.

Now, suppose the induction statement holds for some i, we first claim that the

algorithm must go into the if-loop in line 6. Note that by induction hypothesis there

exists a circuit C of size at most s−i+1 such that min|ψ⟩ |⟨ψ|U †i−1C|ψ⟩|2 ≥ 1−ϵi. Let gi
be the last gate in C, we know that min|ψ⟩ |⟨ψ|(U †i−1gi)(g†iC)|ψ⟩∥2 ≥ 1− ϵi and g†iC is a

circuit of size at most s−i+1−1 = s−i. This shows that the algorithm will go into the

if-loop in line 6 in the i-th iteration. Next, after the algorithm goes into line 6 in the

i-th iteration, by the correctness of UMCSP1−ϵi,1−ϵi−∆, we know that there is a circuit

412

C′ (= Cg†i) of size at most s− i such that min|ψ⟩ |⟨ψ|U †i C′|ψ⟩|2 ≥ 1− ϵi−∆ = 1− ϵi+1.

This completes the induction step and hence proves Claim 8.49.

Finally, with the same argument in the proof of Claim 8.49, we know that

min
|ψ⟩
|⟨ψ|U †g1 · · · gs|ψ⟩|2 ≥ 1− ϵs = 1− ϵ− s · 2−2c3n ≥ 1− ϵ− 2−c3n

as desired. Also, notice that the algorithm only queries the UMCSP oracle at most 2n

times and hence the running time is poly(T (n), 2n) where T (n) is the running time of

the UMCSP oracle.

Theorem 8.50. There exists a search-to-decision reduction for SMCSP for t = 0.

In particular, if there is a time T (n) algorithm for SMCSPα,β where α > 1 − 2−c1n

and α − β ≥ 2−c2n for every constants c1, c2 > 0, then there is a time poly(T (n), s)

quantum algorithm for SearchSMCSPϵ,s where ϵ ≥ 2−c3n for every constant c3 > 0 and

t = 0.

Proof. The proof is similar to the proof for Theorem 8.48. We describe the reduction

as follows:

Algorithm 34 Search-to-decision reduction for SMCSP.
Input: s ∈ N, ϵ ∈ (0, 1), access to copies of |ψ⟩, and a constant c3 > 0.
1: Let |ψ0⟩ = |ψ⟩, ∆ = 2−2c3n, ϵ0 = ϵ, and ϵi = ϵ0 + i ·∆ for all i ∈ N.
2: Use the oracle SMCSP1−ϵ0,1−ϵ−∆ to binary-search s∗ ≤ s, the minimum circuit

size of |ψ⟩.
3: Set i = 1
4: while i < s∗ do
5: for all gates hi in G on all n+ t qubits do
6: if SMCSP1−ϵi,1−ϵi−∆(|ψi⟩, s∗ − i) = Yes then
7: Set gi = hi.
8: Let |ψi⟩ = g†i |ψi−1⟩.
9: Set i = i+ 1.

10: Break.
11: end if
12: end for
13: end while
14: return g1, . . . , gs∗ .

413

The analysis is similar to the proof of Theorem 8.48. Notice that given access

to the quantum state |ψ⟩, we can uncompute the gates using a quantum computer.

Therefore, the search-to-decision reduction still holds.

Regarding SMCSP and SearchSMCSP which have the classical description of

|ψ⟩ as part of the inputs (instead of copies |ψ⟩), we can also obtain the search-to-

decision reduction following the same framework. The only difference is that the

algorithm uncomputes the gates from the states by matrix-vector multiplication in-

stead of applying the inverse of the gates on the states. The runtime of the matrix-

vector multiplication is poly(2n). Note that, as we have mentioned in Remark 8.11,

SearchSMCSP in this case does not need to have the upper bound s in the inputs.

Corollary 8.51. There exists a search-to-decision reduction for SMCSP, where the

search and the decision problems are given the classical descriptions of the states in

inputs.

It is worth noting that Algorithm 34 and Algorithm 33 do not directly work

when considering quantum circuits that are allowed to use ancilla qubits (i.e., t >

0). This follows from the fact that, based on definitions of UMCSP and SMCSP, a

quantum circuit C that implements the target unitary or state can apply an arbitrary

operator on the ancilla qubits, i.e., C†(U ⊗ I) ̸= I. In this case, we do not know

the unitary of C or the state of C|0⟩, and thus we cannot run Algorithm 34 and

Algorithm 33.

8.5.1.2 Self-reduction for SMCSP

In this section, we show that SMCSP is approximately self-reducible. In other

words, one can approximate the circuit complexity of an n-qubit state by computing

the circuit complexity of an (n− 1)-qubit state.

414

Theorem 8.52. Let Aδ be an efficient algorithm for computing CC(|ϕ⟩, δ) for any

(n− 1)-qubit state |ϕ⟩. Let |ψ⟩ be any n-qubit state. Given (n, s) in unary, ϵ ∈ (0, 1),

and access to copies of |ψ⟩, CC(|ψ⟩, ϵ) can be approximated efficiently using Aδ.

Recall that CC(·, ϵ) denotes the quantum circuit complexity of the minimum

quantum circuit that approximates the given states with precision ϵ.

Proof. We first fix the gate set to be CNOT and all single-qubit rotations and prove

the theorem under this particular gate set. Then, we generalize the theorem to all

gate sets by the Solovay-Kitaev Theorem in Theorem B.1.

Let |ψ⟩ ∈ C2n be an arbitrary n-qubit quantum state. Without loss of gener-

ality, we can represent |ψ⟩ as

c0|0⟩|ψ0⟩+ c1|1⟩|ψ1⟩,

where c0, c1 ∈ C and |c0|2+ |c1|2 = 1. |1⟩ and |0⟩ are single-qubit states, and |ψ0⟩ and

|ψ1⟩ are states on n − 1 qubits and are not orthogonal in general. Our goal is show

upper and lower bounds for CC(|ψ⟩, ϵ) from CC(|ψ0⟩, δ) and CC(|ψ1⟩, δ).

To prove the upper and the lower bounds, we first estimate |c0|2 and |c1|2

to precision ϵ/4 by using quantum amplitude estimation. We denote the estimated

values as |c′0|2 and |c′1|2 and consider the following two cases.

1. |c′0|2 or |c′1|2 < ϵ/2; and

2. |c′0|2, |c′1|2 ≥ ϵ/2.

Upper bound In case that |c′0|2 (or |c′1|2) is less than ϵ
2
, |c1|2 (or |c0|2) must be

greater than 1 − 3ϵ
4
, which implies that the square of the inner product of |ψ⟩ and

|1⟩|ψ1⟩ (or |0⟩|ψ0⟩) is at least 1− 3ϵ
4
. Therefore,

CC(|ψ⟩, ϵ) ≤ CC(|ψ1⟩, ϵ/4) or CC(|ψ0⟩, ϵ/4).

415

In case that both |c′0|2 and |c′1|2 are at least ϵ
2
, Let C0 = C|ψ0⟩,ϵ and C1 = C|ψ1⟩,ϵ.

Then, there exists C∗ that approximates |ψ⟩ with precision ϵ as follows:

|0n⟩ R⊗In−1−−−−→ c0|0⟩|0n−1⟩+ c1|1⟩|0n−1⟩
control−C1−−−−−−→ c0|0⟩|0n−1⟩+ c1|1⟩C1|0n−1⟩
X⊗In−1−−−−−→ c0|1⟩|0n−1⟩+ c1|0⟩C1|0n−1⟩
control−C0−−−−−−→ c0|1⟩C0|0n−1⟩+ c1|0⟩C1|0n−1⟩
X⊗In−1−−−−−→ c0|0⟩C0|0n−1⟩+ c1|1⟩C1|0n−1⟩

Here R is a single-qubit rotation gate that rotates |0⟩ to c0|0⟩ + c1|1⟩. Since

our gate set includes all single-qubit rotations, the cost of R is just 1. For control−C0

and control− C1, we can think of it as every gate in Ci is controlled by an additional

qubit, i.e., R becomes control − R and CNOT becomes Toffoli gate. By the compo-

sition methods in [NC11], we can implement these control gates with only constant

multiplicative overhead. Hence, |C∗| ≤ k · (|C0| + |C1|) + 3 for some constant k, and

we can conclude that

CC(|ψ⟩, ϵ) ≤ k · (CC(|ψ0⟩, ϵ) + CC(|ψ1⟩, ϵ)) + 3.

Lower bound Let C be the minimum quantum circuit that approximates |ψ⟩ with

precision ϵ.

When |c′0|2 and |c′1|2 are both at least ϵ/2, |c0|2 and |c1|2 are at least ϵ/4 where

|c′0|2 is the estimated value of |c0|2. Intuitively, we can obtain |ψ0⟩ or |ψ1⟩ by parallelly

applying C on O(1
ϵ
)-many |0n⟩ states and measuring the first qubits of all the outputs

states in the computational basis. By deferring all these measurements toward the

end of the computation, we obtain

CC(|ψi⟩, ϵ′) ≤ k∗(CC(|ψ⟩, ϵ) + h)

416

for i = 0, 1, h = O(1), and k∗ = O(1/ϵ). Here ϵ ≤ ϵ′ ≤ (1− ϵ
4
)k

∗
+ ϵ. The additional

constant cost h is from the overhead of deferring measurements.

When |c′0|2 or |c′0|2 is at least 1 − ϵ/2, the circuit for |ψ⟩ is already a good

approximation for |ψ1⟩ following the same reason for proving the upper bound in the

same case. This implies that

CC(|ψi⟩, 4ϵ) ≤ CC(|ψ⟩, ϵ).

The reduction The algorithm is as follows:

1. Estimating |c0| and |c1| with precision ϵ/4.

2. Approximate CC(|ψ⟩, ϵ) according to |c′0| and |c′1|.

• When |c′0|2 or |c′1|2 ≤ ϵ
2
, compute CC(|ψi⟩, ϵ/4) and CC(|ψi⟩, 4ϵ) for i =

0, 1. Then,

CC(|ψi⟩, 4ϵ) ≤ CC(|ψ⟩, ϵ) ≤ CC(|ψi⟩, ϵ/4).

• When |c′0|2, |c′1|2 ≥ ϵ/2, compute CC(|ψi⟩, ϵ′) and CC(|ψi⟩, ϵ) for i = 0, 1.

Then,

1

k∗
·max
i=0,1

(CC(|ψi⟩, ϵ′))− h ≤ CC(|ψ⟩, ϵ) ≤ k · (CC(|ψ0⟩, ϵ) + CC(|ψ1⟩, ϵ)) + 3

For the running time of the reduction, we can estimate |c0|2 and |c1|2 with

precision ϵ/4 in time poly(1/ϵ) using quantum amplitude estimation. In case that

|c′0|2 (or |c′1|2) is less than ϵ
2
, we only need to compute CC(|ψ1⟩, ϵ/4) by having many

enough copies of |ψ1⟩, which can be efficiently obtained by measuring |ψ⟩. In case

that both |c′0|2 and |c′1|2 are at least ϵ
2
, |c0| and |c1| must be at least ϵ

4
. Then, we

can still obtain sufficiently many copies of |ψ0⟩ and |ψ1⟩ in time poly(1
ϵ
) to compute

CC(ψ0, ϵ) and CC(ψ1, ϵ).

417

Finally, we generalize the results above to arbitrary universal gate set by ap-

plying the Solovay-Kitaev Theorem. This gives upper bounds multiplicative overhead

polylog CC(|ψi⟩,δ)
ϵ

and lower bounds multiplicative overhead polylog−1 CC(|ψi⟩,δ)
ϵ

, where

the choices of i and δ depend on the cases.

Remark 8.13. Theorem 8.52 also holds when the problem is given the classical descrip-

tion of the quantum state. When considering the version with classical descriptions

of states, the reduction becomes even simpler since c0 and c1 can be easily computed

from the input.

8.5.1.3 Reducing MQCSP to UMCSP

In the following, we present a reduction from MQCSP to UMCSP. We first

introduce a unitary that trivially encode a given Boolean function.

Definition 8.38 (Trivial unitary encoding of Boolean functions (Uf)). Let f : Zn →
Zm. We define Uf as a 2n+m × 2n+m unitary such that for all x ∈ Zn

Uf |x⟩|0⟩ = |x⟩|f(x)⟩

Obviously, given the truth table of a function f : {0, 1}n → {0, 1}m, one can

compute Uf in time poly(2n). Then, one might expect that the circuit complexity of

f is equal to of Uf (in Definition 8.38). However, this is not the case in general since

there are many unitaries that can compute f without the form of Uf . In the following

lemma, we show that one can give both upper and lower bounds for CC(f) by the

quantities CC(Uf , ϵ) and CC(Uf , 2ϵ)

Lemma 8.53.

CC(Uf , 2ϵ)

2
−m ≤ CC(f, ϵ) ≤ CC(Uf , ϵ)

418

Proof. It is easy to see that given tt(f), one can compute Uf in time 2O(n+m) which

is polynomial in |T (f)| = 2n+m.

We first consider the case where CC(f) and CC(Uf) can be computed with

probability 1. We can prove the first inequality as follows:

|x⟩|0⟩ Cf−→e−iθx|f(x)⟩|ψx⟩ (8.14)
copy−−→e−iθx|f(x)⟩|f(x)⟩|ψx⟩
C
†
f−→|f(x)⟩|x⟩|0⟩,

where e−iθ are the global coefficient that Cf might have for each θx. C†f (copy)Cf

perfectly computes Uf on all x ∈ {0, 1}n without any global coefficient. This implies

that for all |ψ⟩ ∈ C2n , C†f (copy)Cf computes Uf |ψ⟩ perfectly. The cost for applying

this circuit is 2CC(f)+m. Therefore, we can conclude that CC(Uf) ≤ 2CC(f)+m.

The second inequality is true since a circuit for implementing Uf is also a circuit

for f by definition. Note that the global phase in Eq. (8.14) can be absorbed into

the second register; however, we write it down here to help explain why C†f (copy)Cf
implements Uf not just only on the computational basis, but on all the states.

In the following, we consider the case where we allow Uf and f to be computed

with probability at least some thresholds.

|x⟩|0⟩ Cf,ϵ−−→
√
1− ϵ|f(x)⟩|ψf(x)⟩+

√
ϵ(
∑

y ̸=f(x)

cy|y⟩|ϕ′x,y⟩)

Copy−−−→
√
1− ϵ|f(x)⟩|f(x)⟩|ψf(x)⟩+

√
ϵ(
∑

y ̸=f(x)

cy|y⟩|y⟩|ϕ′x,y⟩)

= |f(x)⟩(
√
1− ϵ|f(x)⟩|ψf(x)⟩+

√
ϵ(
∑

y ̸=f(x)

cy|y⟩|ϕ′x,y⟩))

+
√
ϵ(
∑

y ̸=f(x)

cy|y⟩|y⟩|ϕ′x,y⟩ −
∑

y ̸=f(x)

cy|f(x)⟩|y⟩|ϕ′x,y⟩)

C
†
f,ϵ−−→ |f(x)⟩|x⟩|0⟩+ |ψ′x⟩. (8.15)

419

Since ⟨f(x), x, 0|ψ′x⟩ = −ϵ and ⟨ψ′x|ψ′x⟩ = 2ϵ, we have that

|ψ′x⟩ = −ϵ|f(x), x, 0⟩+
√
2ϵ− ϵ2|ψ′′x⟩.

Therefore, we can rewrite Eq. (8.15) as

(1− ϵ)|f(x), x, 0⟩+
√
2ϵ− ϵ2|ψ′′x⟩,

which implies that the circuit C†f,ϵ(Copy)Cf,ϵ can compute Uf with probability (1 −
ϵ)2 < 1 − 2ϵ, i.e., CC(Uf , 2ϵ) ≤ 2CC(f, ϵ) +m. CC(f, ϵ) ≤ CC(Uf , ϵ) is also trivial

by the definition.

We describe an algorithm to approximate CC(f) given an oracle to UMCSP.

Algorithm 35 A reduction from MQCSP to UMCSP

Input: Given tt(f) for f : {0, 1}n → {0, 1}m
1: Construct Uf .
2: Use UMCSP oracle to compute s = CC(Uf).
3: return (s

2
−m, s).

Theorem 8.54. MQCSP[s/2− 1, s] ≤ UMCSP.

Proof. By Lemma 8.53, CC(f, ϵ) is between CC(Uf ,2ϵ)

2
− 1 and CC(Uf , ϵ) when f is

a Boolean function. To compute CC(Uf , ϵ), we can use the oracle for UMCSP1−ϵ,β,

where β ≤ 1 − ϵ − 1
poly

. For CC(Uf , 2ϵ), we use the oracle for UMCSP1−2ϵ,β′ , where

β′ ≤ 1− 2ϵ− 1
poly

. This completes the proof.

Remark 8.14. One may expect that we can use Algorithm 35 and NP-hardness result

about multiMCSP to prove NP-hardness of UMCSP. However, since the reduction

for the multioutput MCSP generates functions with exponential-size output string, it

make the first inequality in Lemma 8.53 fail. Therefore, whether UMCSP is NP-hard

or not is still open.

420

8.5.2 Applications of SMCSP and UMCSP

In this part, we give applications of UMCSP and SMCSP to other fields in

computer science and physics. For SMCSP, we focus on the version with multiple

quantum states as inputs.

8.5.2.1 Applications of UMCSP

A question Aaronson raised in [Aar16] is whether there exists an efficient

quantum process that generates a family of unitaries that are indistinguishable from

random unitaries given the full description of the unitary. Obviously, if we can solve

UMCSP efficiently, we can distinguish truly random unitaries from unitaries generated

from efficient quantum process.

Theorem 8.55. If UMCSP has efficient (quantum) algorithms, then there is no ef-

ficient quantum process that generates a family of unitaries indistinguishable from

random unitaries given the full description of the unitary.

Besides, some results about MQCSP in Section 8.4 also hold for UMCSP by

Theorem 8.54 and Algorithm 35. In the following, we list some results that trivially

holds.

Corollary 8.56. If UMCSP ∈ BQP, then there is no qOWF.

Corollary 8.57. If there exists a quantum-secure iO, then UMCSP ∈ BQP implies

NP ⊆ coRQP.

Corollary 8.58. Assume UMCSP ∈ BQP. Then, there exists a BQP algorithm that,

given the truth-table of an n-variable Boolean function of quantum circuit complexity

2Ω(n), output 2Ω(n) Boolean functions on m = Ω(n) variables each, such that all of the

output functions have quantum circuit complexity greater than 2m

(c+2)m
for any c > 0.

Corollary 8.56, Corollary 8.57 and Corollary 8.58 hold since we use the MQCSP

oracle as a distinguisher to distinguish functions whose sizes have a large gap, i.e.,

421

functions with quantum circuit complexity poly(n) from functions with quantum cir-

cuit complexity 2Ω(n). As the UMCSP oracle can solve MQCSP[s
2
− 1, s], the existence

of efficient algorithms for UMCSP also implies the same results.

Corollary 8.59. If UMCSP ∈ BQP, then BQE ̸⊂ BQC[nk] for all constant k ∈ N.

Corollary 8.59 holds because for the gap version of MQCSP with a constant

gap, it gives a promise BQP-natural property, which is defined in [AGG+20]. Sup-

pose we have an efficient quantum algorithm for solving MQCSP[2ϵn/2 − 1, 2ϵn] for

small constant ϵ, then it will reject any function with quantum circuit complexity

less than 2ϵn/2 and will accept another large subset of functions with quantum cir-

cuit complexity larger than 2ϵn. Then, we can use the technique in [AGG+20] to

construct the hard language L from the quantum PRG (Theorem 8.25) and promise

quantum natural property. The remaining proof of Theorem 8.24 will work after this

adaptation.

8.5.2.2 Pseudorandom states

An efficient algorithm for SMCSP gives an efficient distinguisher for separating

states with large circuit complexity from states with small circuit complexity given

many copies of the state. Obviously, this gives us a way to distinguish random states

from states that are generated from some efficient process.

Definition 8.39 (Pseudorandom states (PRS) ([JLS18])). Let κ be the security pa-

rameter. Let K be the key space and H be the state space both parameterized by

κ. A family of quantum states {|ψk⟩}k∈K ⊂ H is pseudorandom if the following

properties hold.

1. Efficiency: There is a quantum polynomial-time algorithm G that given k ∈ K,

can generate |ψk⟩.

422

2. Indistinguishability: For all quantum polynomial-time algorithm A and any

m = poly(κ)

|Pr
k
[A(|ψk⟩) = 1]− Pr

|ψ⟩←µ
[A(|ψ⟩) = 1]| ≤ negl(κ),

where µ is the Haar measure on H.

Theorem 8.60. If SMCSP ∈ BQP, then there is no PRS and qOWF.

Proof. Let |ψ⟩ be the state and A be the algorithm to distinguish whether |ψ⟩ is

a truely random state or from a particular efficient algorithm. In the definition of

PRS, A knows the algorithm for constructing the PRS (but it does not know the

key.) Therefore, A also knows the circuit complexity s for generating the PRS |ψ⟩.
Suppose |ψ⟩ is an n-qubit PRS generated by a quantum circuit with size s, by solving

SMCSP with size parameter s and poly(s) copies of |ψ⟩, the adversary can distinguish

|ψ⟩ from a Haar random state with high probability since a Haar random state has

complexity exponential in n.

Finally, by [JLS18], there exist PRS assuming the existence of qOWF. Since

we can break any PRS scheme by solving SMCSP, we can also invert any qOWF by

solving SMCSP.

8.5.2.3 Estimating the wormhole volume

Integrating general relativity and quantum mechanics into a comprehensive

theorem for quantum gravity is one of the most challenging physics problems. The

AdS/CFT correspondence plays an important role in this line of research. The

AdS/CFT correspondence conjectures the duality between the Anti-de Sitter space

(i.e., the bulk) and a conformal field theory (i.e., the boundary). In particular, it

conjectures the dictionary maps from wormholes and operators in the bulk to quan-

tum states and operators on the boundary. One fascinating puzzle in Ads/CFT

423

correspondence is about the volume of the wormhole. The volume of the wormhole

grows steadily with time; what is the quantity of the corresponding quantum state

on the boundary that has this feature? Susskind proposed the Complexity=Volume

Conjecture [Sus16]. It states that the wormhole volume equals the quantum circuit

complexity of the corresponding quantum state times some constant c. In the follow-

ing, we give a brief description of the Complexity=Volume Conjecture and related

backgrounds. One can see [Sus16, BFV20] for detailed discussions.

AdS/CFT Correspondence AdS/CFT correspondence conjectures a dual map

Φ between wormholes (AdS side) and quantum systems (CFT side). The setting

we consider here is wormholes with two-sided blackholes. Under this setting, the

CFT side is divided into left and right systems denoted by Hamiltonians HL and

HR, where the left and right CFT systems are on n qubits (compatible with the

entropy of the wormhole 2n). We denote the whole system (with both left and right

systems) as H = HL +HR. An early model of AdS/CFT goes under the ER=EPR

slogan: the wormhole (Einstein-Rosen Bridge) is dual to maximally entangled (EPR)

pair. The corresponding state is usually called the thermal field double (TFD) state

|TFD⟩ [MS13]

|TFD⟩ = 1√
2n

∑

i

e−Ei/β|i⟩L|i⟩R, (8.16)

where |i⟩L and |i⟩R are energy eigenstates of HL and HR.

The quantum state after time-t evolution is

|TFD(t)⟩ = e−iHt|TFD⟩.

Recall the dual map Φ between a wormhole (AdS side) and a quantum system (CFT

side), one can represent the wormhole after time t as Φ(e−iHt|TFD⟩) (and view

Φ(|TFD⟩) as the wormhole at time 0).

The statement of Complexity=Volume Conjecture can be stated as follows:

424

Conjecture 8.61 (Complexity=Volume Conjecture [Sus16]). Consider a wormhole

and its corresponding CFT system H, for some suitable ϵ, c, and 0 ≤ t ≤ O(2n),

CCϵ(|TFD⟩, |TFD(t)⟩) = c · V olume(Φ(e−iHt|TFD⟩)),

where CCϵ(|TFD⟩, |TFD(t)⟩) is the circuit complexity for constructing |TFD(t)⟩
from |TFD⟩ with at most ϵ error.

The SMCSP oracle gives a way to identify the quantum circuit complexity of

the given state. This implies that if the dictionary map between the wormhole and

the quantum state is efficient, one can estimate the wormhole volume in two ways. 1)

Apply the dictionary map to transfer the wormhole to the corresponding state and

then apply the SMCSP oracle for the circuit complexity, which gives the wormhole

volume. 2) As it is hard to imagine mapping wormholes to states, one can view the

SMCSP oracle as a POVM and then uses the dictionary map to transfer the POVM

to the corresponding operators in the bulk to measure the volume. This gives the

following lemma.

Theorem 8.62. Assuming the Volume=Complexity Conjecture, if the dictionary map

can be computed in quantum polynomial time and SMCSP ∈ BQP, then one can

estimate the wormhole volume in quantum polynomial time when the volume is at

most polynomially large.

Here, we require the volume is at most polynomially large. This follows from

the fact that we need a upper bound polynomial in n for doing binary search to find

the circuit complexity with an efficient SMCSP algorithm. If the upper bound is

2O(n), the running time of the SMCSP algorithm can be poly(2n). Therefore a quan-

tum polynomial-time algorithm for SMCSP in this case would not imply a quantum

polynomial-time algorithm for estimating the wormhole’s volume.

Besides, recall that the wormhole is initially described by |TFD⟩. So, we also

need to modify the definition of SMCSP to allow such an initial state.

425

Bouland et al. in [BFV20] used this correspondence in a reverse way. In

particular, they showed that if the dictionary map and simulating the state in the

bulk are efficient (i.e., the quantum Extended Church-Turing thesis holds for quantum

gravity), then one can efficiently distinguish certain PRS from Haar random state by

mapping the state to the wormhole in the bulk and do the simulation in the bulk

to estimate the volume. Following this idea, we can also conclude that if there is a

quantum polynomial time algorithm for estimating the wormhole’s volume, then one

can compute the circuit complexity of the corresponding quantum state efficiently

assuming the the Volume=Complexity Conjecture and that the dictionary map is

efficient24.

8.5.2.4 Succinct state tomography

In the following, we show that solving SMCSP can help to have a succinct

answer to state tomography for states which are generated from a polynomial-size

circuit without any measurement.

Definition 8.40 (Succinct state tomography). Let |ψ⟩ be an n-qubit quantum state

that is generated from a quantum circuit C of size s without using measurement and

ancilla qubits. Given poly(n) copies of |ψ⟩ and an upper bound s′ where s ≤ s′ ≤
poly(n), the problem is to output a succinct description (e.g., C) of |ψ⟩.

Theorem 8.63. Succinct state tomography in Def. 8.40 reduces to SMCSP.

Proof. Obviously, succinct state tomography reduces to the search version of SMCSP.

By the search-to-decision reduction in Theorem 8.50, we can solve succinct state

tomography by solving SMCSP.

24Note that this does not give an efficient algorithm for solving SMCSP in general since it can
only solve SMCSP for CFT states.

426

8.6 Proof for the Hardness of MQCSP

Theorem 8.14. MQCSP ∈ QCMA.

Proof. The certificate is still the classical description of a quantum circuit C that has

size at most s and operates on at most n+ t qubits. The verifier first implements C.

Then, the verifier repeats evaluating C|x, 0t⟩ and measuring the first qubit ℓ = poly(2n)

times. We denote the measurement outcomes of the ℓ trials as binary random variables

X1, . . . , Xℓ which are all independent. Finally, the verifier checks if for all x ∈ {0, 1}n,
there are at least α+β

2
of the outcomes are consistent with f(x).

For the yes instance, we have the promise that ∥(⟨f(x)|⊗In+t−1)C|x, 0t⟩∥2 ≥ α

for all x ∈ {0, 1}n. Let X =
∑n

i=1Xi. By using the second statement of Chernoff

inequality, we have that Pr[X ≤ (α+β)ℓ
2

] ≤ exp
(
− (α+β)2ℓ

8α

)
. By setting ℓ = poly(2n),

we obtain Pr[X ≤ (α+β)ℓ
2

] ≤ e− poly(2n). This implies that Pr[X ≥ (α+β)ℓ
2

for all x ∈
{0, 1}n] ≥ 1 − e− poly(2n). For the no instance, we can do the similar analysis using

Chernoff bound and show that there exists x ∈ {0, 1}n such that Pr[X ≥ (α+β)ℓ
2

] is

negligible.

Theorem 8.15. SZK ⊆ BPPMQCSP

Proof of Theorem 8.15. Let (n,C0, C1) be a PIID instance, where C0, C1 : {0, 1}m →
{0, 1}m′ of size nk. For b = 0, 1 and x ∈ {0, 1}m, we let fb(x) = Cb(x). Then, similar

to the proof for Theorem 8.20, the idea is using fb to construct a pseudorandom

generator Ĝ and break Ĝ by applying the MQCSP oracle. Specifically, the algorithm

is as follows:

427

Algorithm 36 A PPT algorithm A for PIID with MQCSP oracle

Input: C0, C1 of size nk and m-qubit input.
1: Pick x uniformly randomly from {0, 1}m.
2: Compute f0(x).
3: Use f0(x) to generate a pseudorandom string Gf0(x)(r) as in Lemma 8.18.
4: Use Gf0(x)(r) to generate the truth table tt(g) = Ĝ(r) as in Lemma 8.19.
5: Apply the inverting algorithm AMQCSP

inv with access to function f1 in Theorem 8.20
to invert f1 for x′. Note that the function used in the inverting algorithm is f1
instead of f0.

6: return “Yes” if C0(x) = C1(x
′); “No” if C0(x) ̸= C1(x

′).

In Algorithm 36, we do not explicitly describe the inverting algorithms Ainv.

However, based on Theorem 8.20, such algorithms must exist.

Then, when (C0, C1) is a no instance, i.e., Prx∈{0,1}m [∃y ∈ Im(C0) such that C1(x) =

y] ≤ 1
2n

, the probability that there exists x′ such that C1(x
′) = C0(x) over x is at

most 1/2n. In this case, Algorithm 36 outputs “Yes” with probability at most 1/2n.

When (C0, C1) is a yes instance, C0 and C1 has statistical distance 1/2n over

x ∈ {0, 1}m. Then, the success probability of the algorithm A in Algorithm 36 is

Pr[A(C0, C1) = “Yes”] = Pr
x
[f1(A

MQCSP
inv (f1, f0(x))) = f0(x)]

=
∑

y∈{0,1}m′

Pr
x
[f0(x) = y] Pr

x
[f1(A

MQCSP
inv (f1, y)) = y|y]

Note that if we compute f1(x) (instead of f0(x)) at step 2 in Algorithm 36, then the

success probability of A is

Pr
x
[f1(A

MQCSP
inv (f1, f1(x))) = f1(x)] =

∑

y∈{0,1}m′

Pr
x
[f1(x) = y] Pr

x
[f1(A

MQCSP
inv (f1, y)) = y|f1(x) = y]

≥ 1/ poly(n).

The last inequality follows from Theorem 8.20. The MQCSP oracle can break Ĝ due

to the fact that the construction of Ĝ is a small classical circuit and thus also a small

quantum circuit. Therefore, we can use the MQCSP oracle to distinguish it from a

truely random string.

428

The difference between these two probabilities above is

Pr
x
[f1(A

MQCSP
inv (f1, f0(x))) = f0(x)]− Pr

x
[f1(A

MQCSP
inv (f1, f1(x))) = f1(x)]

=
∑

y

Pr
x
[f1(A

MQCSP
inv (f1, y)) = y|f1(x) = y](Pr

x
[f0(x) = y]− Pr

x
[f1(x) = y])

≤
∑

y

(Pr
x
[f0(x) = y]− Pr

x
[f1(x) = y]) ≤ 1

2n
.

The last inequality follows from the definition of statistical distance. Therefore, Al-

gorithm 36 succeeds with probability at least 1/ poly(n) − 2−n for a “Yes” instance.

Finally, we can amplify the success probability for the yes instance to 2/3 by repeti-

tion. Thus, PIID ∈ BPPMQCSP.

8.7 Learning Theory

In this section, we provide the details of Section 8.4.2 on the connection be-

tween learning theory and MQCSP.

8.7.1 PAC learning

Let us recall the definition of PAC learning.

Definition 8.22 (PAC learning over the uniform distribution with membership

queries). Let C be a circuit class and let ϵ, δ > 0. We say an algorithm (ϵ, δ)-PAC-

learns C over the uniform distribution with membership queries if the following hold.

For every n ∈ N and n-variate f ∈ C, given membership query access to f , the algo-

rithm outputs a circuits C such that with probability at least 1− δ over its internal

randomness, we have Prx∈{0,1}n [f(x) ̸= C(x)] < ϵ. The running time of the learning

algorithm is measured as a function of n, 1/ϵ, 1/δ and, size(f).

The following theorem shows that efficient PAC-learning for BQP/poly is equiv-

alent to efficient algorithms for MQCSP. Here, BQP/poly is defined as
⋃
s≤poly(n) BQC(s)

429

Theorem 8.22 (Equivalence of efficient PAC learning for BQP/poly and efficient

randomized algorithm for MQCSP).

• If MQCSP ∈ BPP, then there is a randomized algorithm that (1/ poly(n), δ)-PAC

learns f ∈ BQP/poly under the uniform distribution with membership queries

for every δ > 0. Specifically, the algorithm runs in quasi-polynomial time.

• If there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly

under the uniform distribution with membership queries for some δ > 0 in

2O(n) time, then we have MQCSP[poly(n), ω(poly(n)), poly(n), τ] ∈ BQP and

MQCSP[poly(n), ω(poly(n)), O(n), τ] ∈ BPP for every τ > 0.

Proof.

• The key ingredient to show MQCSP ∈ BPP implies efficient PAC learning for

BQP/poly is the “learning from a natural property” framework by [CIKK16].

First, note that BQP/poly is a circuit class that contains P/poly and hence

can implement both the Nisan Wigderson generator and the Direct Product

+ Goldreich-Levin amplification. Second, MQCSP ∈ BPP implies there is a

BPP-natural property against BQP/poly. Finally, by Theorem 5.1 of [CIKK16],

there is a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly

under the uniform distribution with membership queries for every δ > 0 in

quasipolynomial time.

• LetALG be a randomized algorithm that (1/ poly(n), δ)-PAC learns f ∈ BQP/poly

under the uniform distribution with membership queries for some δ > 0. We de-

sign the following randomized algorithm for MQCSP[poly(n), ω(poly(n)), t(n), τ]

where t(n) is the number of ancilla bits that will be determined later. For every

τ > 0, let ϵ = τ/2.

430

Algorithm 37 A quantum algorithm for MQCSP[poly(n), ω(poly(n)), t(n), τ]

Input: The truth table T of a n-variate Boolean function f .
1: for i = 1, . . . , 10⌈log 1/δ⌉ do
2: Run ALG and supply the membership query with the truth table T . Let Ci

be the output of ALG.
3: Uniformly and independently sample x1, . . . , xℓ ∈ {0, 1}n where ℓ =
⌈100 log(1/δ)/ϵ2⌉.

4: if |{j ∈ [ℓ] : Ci(xj) ̸= f(xj)}| < ϵ
10
· ℓ then

5: Break and output “Yes”.
6: end if
7: end for
8: Output “No”.

Let us analyze the correctness of the above algorithm. First, if f is an Yes

instance, i.e., there exists a polynomial size quantum circuit C that computes

f , then due to the correctness of ALG, PrCi
[|{x ∈ {0, 1}n : Ci(x) ̸= f(x)}| <

2n/ poly(n)] > δ for each i. Namely, with probability at least 9/10, there exists

an i ∈ [10⌈log 1/δ⌉] such that |{x ∈ {0, 1}n : Ci(x) ̸= f(x)}| < 2n/ poly(n). For

this specific i, by Chernoff bound, with probability at least 9/10 the algorithm

will go to line 5 and output “Yes”. That is, the above algorithm accepts an Yes

instance with probability at least 2/3 as desired.

Next, if f is a No instance, i.e., for every polynomial size quantum circuit C, we

have |{x ∈ {0, 1}n : C(x) ̸= f(x)}| ≥ τ · 2n > ϵ · 2n. For each i ∈ [10⌈log 1/δ⌉],
Ci is a polynomial size circuit and hence by Chernoff bound, the algorithm goes

to line 5 with probability at most 2−Ω(ϵ2ℓ). Due to the choice of ℓ, we know that

the algorithm will output “No” with probability at least 2/3. That is, the above

algorithm rejects an No instance with probability at least 2/3 as desired.

Finally, the running time of the algorithm is poly(Time(ALG), 1/δ, 1/ϵ, n,m)

where the dependency on poly(n,m) is for calculating Ci(xj) using the quan-

tumness. Note that this running time is poly(2n) and hence we conclude that

MQCSP[poly(n), ω(poly(n)), t(n)] ∈ BQP.

431

When the number of ancilla bits is O(n), note that we can calculate Ci(xj) in

poly(2n) time and hence MQCSP[poly(n), ω(poly(n)), t(n)] ∈ BPP

8.7.2 Quantum learning

As it could be the case that MQCSP might have non-trivial quantum algorithm,

it is also of interest to study the connection to quantum learning.

Definition 8.23 (Quantum learning). Let C be a circuit class of boolean functions

and let ϵ, δ > 0. We say a quantum algorithm (ϵ, δ)-learns C if the following hold. For

every n ∈ N and n-variate f ∈ C, given quantum oracle access to f , the algorithm

outputs a polynomial-size quantum circuit U such that with probability at least 1−δ,
we have Ex∈{0,1}n [|(⟨f(x)| ⊗ I)U |x, 0m⟩|2] > 1 − ϵ. The running time of the learning

algorithm is measured as a function of n, 1/ϵ, 1/δ and, size(f).

It turns out that efficient quantum learning for a circuit class C is equivalent

to efficient quantum algorithm for its corresponding MCSP, i.e., C-MCSP.

Theorem 8.23 (Equivalence of efficient quantum learning and efficient quantum

algorithm for C-MCSP). Let C be a circuit class.

• If C-MCSP ∈ BQP, then there exists a quantum algorithm that (1/ poly(n), δ)-

learns C for every δ > 0. Specifically, the algorithm runs in polynomial time.

• If there exists a quantum algorithm that (ϵ, δ)-learns C in time 2O(n) for some

constants ϵ, δ ∈ (0, 1/2), then we have C-MCSP[poly(n), ω(poly(n)), τ] ∈ BQP

for every τ > 0.

Proof.

• The key idea is to quantize the “learning from a natural property” frame-

work [CIKK16]. Let us start with three important lemmas from [AGG+20].

432

Lemma 8.64 (Corollary of Lemma 4.3 and Lemma 4.4 in [AGG+20]). Let

L, sD : N → N be constructive functions and γ ∈ (0, 1) with 1 ≤ L(n) ≤ 2n

for every n ∈ N. There exists an algorithm ANW on input 1n and 1L outputs

code(CNW) for a quantum circuit CNW in time S(n) = poly(n, L(n), sD(n))

with the following properties. In the following, we abbreviate L = L(n) and

sD = sD(n).

There exists a constant c > 0 and an oracle function NWO : {0, 1}m → {h :

{0, 1}logL → {0, 1}} where m = cn2 and size(NWO(z)) = poly(n, size(O)) for

all z ∈ {0, 1}m. Let g : {0, 1}n → {0, 1}. Suppose there is a quantum circuit D

of size at most sD with
∣∣∣∣ Pr
z∈{0,1}m,D

[D(NW g(z)) = 1]− Pr
y∈{0,1}L

[D(y) = 1]

∣∣∣∣ ≥ γ .

Then CNW on input code(D) and with oracle access to g, outputs code(C) for a

quantum circuit C of size O(L2 · sD). With probability Ω(γ/L2) over the output

measurement of CNW , we have

Pr
x∈{0,1}n,C

[C(x) = g(x)] ≥ 1

2
+

γ

2L
.

Lemma 8.65 (Lemma 4.5 in [AGG+20]). Let k, s : N → N be constructive

functions and γ > 0. There exists an algorithm AGL such that on input 1n and

1k(n) outputs a circuit CGL of size poly(n, k(n), s(n)) in time poly(n, k(n), s(n))

with the following properties. In the following, we abbreviate k = k(n) and

s = s(n).

Let f : {0, 1}kn → {0, 1}k. Suppose there is a quantum circuit C of size at most

s satisfying

E
x∈{0,1}kn

E
r∈{0,1}k

[|(⟨f(x) · r| ⊗ I)C|x, r, 0m⟩|2] ≥ 1

2
+ γ .

Then CGL on input code(C) outputs code(GO) for a quantum oracle circuit GO

of size O(kn) such that

E
x,GC

[|(⟨f(x)| ⊗ I)GC |x, 0k+m+1⟩|2] ≥ γ3

2
.

433

Lemma 8.66 (Theorem in 4.28 [AGG+20]). Let k, s : N → N be construc-

tive functions and ϵ, δ ∈ (0, 1). There exists a constant c ≥ 1 and an algo-

rithm AIJKW such that on input 1n and 1k(n) outputs a circuit CIJKW of size

poly(n, k(n), s(n), log 1/δ, 1/ϵ) in time poly(n, k(n), s(n), log 1/δ, 1/ϵ) with the

following properties. In the following, we abbreviate k = k(n) and s = s(n).

Let g : {0, 1}n → {0, 1}. Suppose k is an even integer with

k ≥ c · 1
δ

[
log

1

δ
+ log

1

ϵ

]
,

and suppose G is a quantum circuit of size at most s defined over Sn,k := {S ⊂
{0, 1}n : |S| = k} with k output bits with

E
B∼Sn,k,G

[G(B) = gk(B)] ≥ ϵ .

Then CIJKW on input code(G) outputs code(C) for a quantum circuit C of size

poly(n, k, s, log(1/δ), 1/ϵ) such that

E
x∼{0,1}n,C

[C(x) = g(x)] ≥ 1− δ .

Now, we are ready to describe our quantum learning algorithm for C.

Algorithm 38 A quantum learning algorithm for C

Input: 1n, quantum oracle access to n-variate f ∈ C, and parameters δ ∈ (0, 1).
1: Let L = poly(n), ϵ = 1/ poly(n), and k = ⌈c · 1

δ
(log 1

δ
+ log 1

ϵ
)⌉.

2: CNW ← ANW (1kn+k); CGL ← AGL(1
n, 1k); CIJKW ← AIJKW (1n, 1k).

3: Let code(D) be the description of a quantum circuit solving C-MCSP with truth
table size L.

4: Use the oracle access to f to build an oracle access to NW g where g :
{0, 1}kn × {0, 1}k → {0, 1} with g(x1, . . . , xk, r1, . . . , rk) = ⊕ki=1(ri · f(xi)) for
every x1, . . . , xk ∈ {0, 1}n and r1, . . . , rk ∈ {0, 1}.

5: code(C̃)← Cg
NW (code(D))

6: code(GO)← CGL(code(C̃)).
7: C ← CIJKW (code(GC̃)).
8: Output C.

434

Let us analyze the correctness and running time of Algorithm 38 simultane-

ously. Let f : {0, 1}n → {0, 1} ∈ C be the function we want to learn. Let g :

{0, 1}kn×{0, 1}k → {0, 1} be g(x1, . . . , xk, r1, . . . , rk) = ⊕ki=1(ri ·f(xi)) for every

x1, . . . , xk ∈ {0, 1}n and r1, . . . , rk ∈ {0, 1}. Observe that if size(f) = poly(n),

then size(NW g) = poly(n) = poly(logL).

Next, if C-MCSP ∈ BQP, then there exists a quantum algorithm D running in

time poly(L) with
∣∣∣∣ Pr
z∈{0,1}m,D

[D(NW g(z)) = 1]− Pr
y∈{0,1}L

[D(y) = 1]

∣∣∣∣ ≥
1

3
.

By Lemma 8.64, Cg
NW (code(D)) outputs the description of a quantum circuit

C of size O(L2 · size(D)) = poly(n) in time poly(L, size(D)) such that with

probability Ω(1/L2),

Pr
x1,...,xr∈{0,1}n
r1,...,rk∈{0,1},C

[C(x1, . . . , xk, r1, . . . , rk) = g(x1, . . . , xk, r1, . . . , rk)] ≥
1

2
+

1

6L
.

Next, by Lemma 8.65, CGL(code(C)) outputs the description of an oracle quan-

tum circuit GO of size O(kn · size(C)) = poly(n) in time poly(n, k) such that

E
x1,...,xk,GC

[
|(⟨fk(x1, . . . , xk)| ⊗ I)GC |x, 0k+m+1⟩|2

]
≥ Ω

(
1

L3

)
=

1

poly(n)
.

Finally, by Lemma 8.66, CIKJW (code(G)) outputs the description of a quantum

circuit C of size poly(n, k, size(G), log(1/δ), 1/ϵ) = poly(n, 1/δ, 1/ϵ) = poly(n) in

time poly(n) such that

E
x∼{0,1}n,C

[C(x) = g(x)] ≥ 1− δ .

We conclude that there is a polynomial time (1/3, δ)-quantum learning algo-

rithm for C.

• Let ALG be a (ϵ, δ)-quantum learning algorithm for C for some ϵ, δ ∈ (0, 1/2).

We design the following quantum algorithm for C-MCSP[poly(n), ω(poly(n)), τ].

For every τ > 0, let ϵ = τ/4 and ϵ′ = τ/2.

435

Algorithm 39 A quantum algorithm for C-MCSP[poly(n), ω(poly(n)), τ]

Input: The truth table T of a n-variate Boolean function f .
1: for i = 1, . . . , 10⌈log 1/δ⌉ do
2: Run ALG and supply quantum oracle access to f using the truth table T . Let
Ci be the output of ALG. Let Ui be the unitary corresponding to Ci.

3: Uniformly and independently sample x1, . . . , xℓ ∈ {0, 1}n where ℓ =
⌈100 log(1/δ)/ϵ2⌉.

4: if
∑

j∈[ℓ] |(⟨f(xj)| ⊗ I)Ui|x, 0m⟩|2 ≥ (1− ϵ+ϵ′

2
) · ℓ then

5: Break and output “Yes”.
6: end if
7: end for
8: Output “No”.

Let us analyze the correctness of the above algorithm. First, if f is an Yes

instance, i.e., there exists a polynomial size circuit C (from the circuit class C)

that computes f , then due to the correctness of ALG, PrCi
[Ex∈{0,1}n [|(⟨f(x)| ⊗

I)Ui|x, 0m⟩|2] > 1 − ϵ] > δ for each i. Namely, with probability at least 9/10,

there exists an i ∈ [10⌈log 1/δ⌉] such that Ex∈{0,1}n [|{x ∈ {0, 1}n : |(⟨f(x)| ⊗
I)Ui|x, 0m⟩|2}|] ≥ 1− ϵ. For this specific i, by Chernoff bound, with probability

at least 9/10 the algorithm will go to line 5 and output “Yes”. That is, the above

algorithm accepts an Yes instance with probability at least 2/3 as desired.

Next, if f is an No instance, i.e., for every polynomial size circuit C (from the

circuit class C), at least τ fraction of x ∈ {0, 1}n has |(⟨f(x)| ⊗ I)Ui|x, 0m⟩|2 ≤
1/2. Hence, by the choice of ϵ′, we have Ex∈{0,1}n [|(⟨f(x)| ⊗ I)Ui|x, 0m⟩|2] <
(1− ϵ′). For each i ∈ [10⌈log 1/δ⌉], Ci is a polynomial size circuit and hence by

Chernoff bound, the algorithm goes to line 5 with probability at most 2−Ω(ϵ2m).

Due to the choice of m, we know that the algorithm will output “No” with

probability at least 2/3. That is, the above algorithm rejects an No instance

with probability at least 2/3 as desired.

Finally, the running time of the algorithm is poly(Time(ALG), 1/δ, 1/ϵ, n,m)

where the dependency on poly(n,m) is for calculating Ci(xj) using the quan-

436

tumness. Note that this running time is polynomial in the size of the truth

table and hence we conclude that C-MQCSP[poly(n), ω(poly(n)), τ] ∈ BQP.

8.8 Proofs in Section 8.4.3

In this section, we provide some missing proofs in Section 8.4.3.

8.8.1 Proof for Theorem 8.26

The goal of this section is to prove Theorem 8.26.

Theorem 8.26. If MQCSP ∈ BQP, then BPEQCMA contains a function with maximum

quantum circuit complexity. Furthermore, BQPQCMA ̸⊂ BQC[nk] for any constant

k > 0.

Proof. We follow the proof of a classical result in [KC00, Theorem 10].

We first determine the maximum quantum circuit complexity for all Boolean

functions using an MQCSP oracle. For each s = 2O(n), 2O(n) − 1, · · · , decide if there

exists a function fs such that qCC(fs) ≥ s. The first s we meet such that fs exists is

the maximum quantum circuit complexity. It can be achieved by a QCMA algorithm

with input 1s, by the assumption MQCSP ∈ BQP. Hence, in classical 2O(n) time with

query access to a QCMA oracle, we can find the maximum quantum circuit complexity

s⋆ with high probability.

Then, we can construct the truth table by guessing bit-by-bit. We start from

the empty truth table T = ∅. We first try to choose the first bit T1 = 0 and decide if

T can be extended to a truth table with quantum circuit complexity s⋆, which can be

done by a QCMA oracle query. If the answer is “No”, we set T1 = 1. Then, we iterate

over all bits of T . It is easy to see that in O(2n) time we can construct T with high

probability.

437

Therefore, we get a BPEQCMA algorithm for the maximum quantum circuit

complexity problem, which immediately gives a BPEQCMA algorithm for computing

such hard functions. By Claim 8.74, this function has quantum circuit complexity

at least Ω(2n/n). Hence, by a padding argument for quantum circuits, we obtain a

polynomial lower bound for BQPQCMA.

8.8.2 Proof of Quantum Antichecker Lemma

The goal of this section is to prove Lemma 8.30.

Lemma 8.30 (Antichecker lemma for quantum circuits). Assume QCMA ⊆ BQC[poly].

Then for any λ ∈ (0, 1) there are circuits {C2n}∞n=1 of size 2n+O(nλ) which given the

truth table tt(f) ∈ {0, 1}2n , outputs 2O(nλ) n-bit strings y1, . . . , y2O(nλ) together with

bits f(y1), . . . , f(y2O(nλ)) forming a set of anticheckers for f , i.e. if f is hard for quan-

tum circuits of size 2n
λ then every quantum circuit of size 2n

λ
/2n fails to compute f

on one of the inputs y1, . . . , y2O(nλ).

Proof. The proof follows [CHO+20].

Let λ ∈ (0, 1) and f be a Boolean function with n input bits that is hard for

2n
λ-size quantum circuits.

For i ≥ 0 and s ∈ [0, 1], define the predicate:

Pf (y1, . . . , yi)[s] = 1 ⇐⇒

≤ s fraction of all quantum circuits of size 2n
λ

/2n compute f correctly on y1, . . . , yi.

We also define the function:

Rf (y1, . . . , yi) := #
{

quantum circuits of size 2n
λ

/2n compute f correctly on y1, . . . , yi
}
.

Then, we construct y1, . . . , y2O(nλ) iteratively. It is easy to see that Pf (·)[1] = 1.

Suppose we already have y1, . . . , yi−1 such that Pf (y1, . . . , yi−1)[(1 − 1/4n)i−1] = 1

438

holds. We want to find yi such that Pf (y1, . . . , yi)[(1−1/4n)i] = 1. We will construct

a formula F of size 2O(nλ) such that if Rf (y1, . . . , yi−1) ≥ 2n2, then

Pf (y1, . . . , yi−1)
[
(1− 1/4n)i−1

]
= 1

⇒ ∃yi F (y1, . . . , yi, f(y1), . . . , f(yi)) = 1

⇒ Pf (y1, . . . , yi)
[
(1− 1/4n)i

]
= 1.

We first show how to find yi given this formula F . The idea is to use Valiant-

Vazirani Isolation Lemma. Let r be uniformly chosen from {2, n + 1} and let h :

{0, 1}n → {0, 1}r be uniformly chosen from a pairwise independent hash family Hn,r.

Consider the following predicate

F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) :=

F (y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) ∧ h(z) = 0r.

The quantum circuit size of F r,h is 2O(nλ).

By the Isolation Lemma, for fixed y1, . . . , yi−1, with probability at least 1/8n,

there is a unique z such that

F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)) = 1.

If we sample 2O(nλ) many tuples of (r, h), then the probability that none of

those (r, h) will lead to unique solution of F r,h is less than 2−2
O(nλ)/8n ≤ 2−2

O(nλ)

by choosing proper constant. On the other hand, the total number of all possible

y1, . . . , yi−1, f(y1), . . . , f(yi−1) is at most 22
O(nλ) . It means that there exists a set R

of 2O(nλ) tuples of (r, h) such that for any y1, . . . , yi−1, f(y1), . . . , f(yi−1), there exists

an (r, h) ∈ R that makes F r,h have unique solution. Note that R can be hard-wired

into the circuit Cn. Hence, the j-th bit of the antichecker yi can be computed by the

following formula of size 2n+O(nλ):
∨

z∈{0,1}n
zj ∧ F r,h(y1, . . . , yi−1, z, f(y1), . . . , f(yi−1), f(z)). (8.17)

439

Then, we need to select an (r, h) from R that gives the unique yi. This task is in

QCMA, and by assumption, QCMA ⊆ BQC[poly]. So, we just need to apply a 2O(nλ)-

size quantum circuit. Once we have yi, f(yi) can be obtained from tt(f) via an

Address function, which can be implemented by a circuit of size 2n+O(logn).

By repeating this process, we can get y1, . . . , y2O(nλ) and f(y1), . . . , f(y2O(nλ))

by a 2n+O(nλ) circuit. Then, we need to check Rf (y1, . . . , y2O(nλ)) ≥ 2n2. Deciding

whetherRf (y1, . . . , yi) ≥ 2n2 is in QCMA ⊆ BQC[poly] with input (y1, . . . , yi, f(y1), . . . , f(yi), 12
O(nλ)

)

since the witness is 2n2 quantum circuits each of size 2nλ
/2n, which can be represented

by a 2O(nλ) binary string. The witness can be checked by simulating the quantum cir-

cuits. Therefore, there exists a 2O(nλ) quantum circuit for it. When Rf (y1, . . . , yi) ≤
2n2, the 2n2 circuits of size 2n

λ
/2n can be generated by an QCMAcoQCMA algorithm.

And since QCMA ⊆ BQC[poly], by uncomputing the garbage, we can show that

QCMAcoQCMA ⊆ BQC[poly] and this step can be done by a 2O(nλ) quantum circuit.

For each circuit, by exhaustively searching, we can find an n-bit string that witness

the error. The circuit size of this step is 2n+O(nλ).

In order to construct F , we use a result in [OPS19] (Lemma 23) showing that

if Pf (y1, . . . , yi−1)[(1− 1/4n)i−1] = 1 and Rf (y1, . . . , yi−1) ≥ 2n2, then

∃yi Pf (y1, . . . , yi)
[
(1− 1/4n)i−1(1− 1/2n)

]
= 1. (8.18)

The proof is by a standard counting argument, and by examining the proof, we find

that it also holds for quantum circuits.

By Eq. (8.18), we know that there exists a yi such that ≤ (1 − 1/4n)i−1(1 −
1/2n) < (1 − 1/4n)i fraction of circuits of size 2n

λ
/2n that can compute f on

y1, . . . , yi. The remaining task is to find a witness (which is F) that can certify

Pf (y1, . . . , yi) [(1− 1/4n)i] = 1. We can use an approximate counting with linear

hash functions to construct F . More specifically, by [Jeř09], the witness is a set of

matrices A1, . . . , A2O(nλ) defining an injective map from the Cartesian power of the

set of all circuits of size 2n
λ
/2n that compute f on y1, . . . , yi to the same Cartesian

440

power of (1 − 1/4n)i fraction of the set of all circuits of size 2n
λ
/2n. The existence

of these matrices can be decided by an QCMAcoQCMA algorithm, which can also be

decided by a 2O(nλ) quantum circuit, by our assumption.

8.8.3 Quantum Impagliazzo-Wigderson generator

The goal of this section is to prove Lemma 8.28.

Lemma 8.28 (Quantum Impagliazzo-Wigderson generator). For every ϵ > 0, there

exist c, d ∈ N such that the truth table of a Boolean function f : {0, 1}cn → {0, 1} of

quantum circuit complexity 2ϵcn can be transformed in time O(2n) into a pseudoran-

dom generator G : {0, 1}dn → {0, 1}2n running in time O(2n) that can fool quantum

circuits of size 2O(n), i.e., for any p > 0, any quantum circuit C of size at most 2pn,
∣∣∣∣ Pr
x∼{0,1}dn,C

[C(G(x)) = 1]− Pr
y∼{0,1}2n ,C

[C(y) = 1]

∣∣∣∣ ≤ 2−n.

Before giving the proof, we first recall some necessary definitions and lemmas

in the previous work.

Lemma 8.67 (A variant of Lemma 4.29 in [AGG+20]). Let L : {0, 1}∗ → {0, 1} be a

language that is randomly reducible to the language L′. For every n, suppose we have

the description of a quantum circuit U such that

E
x∈{0,1}n

[
∥ΠL′(x)U |x, 0q⟩∥2

]
≥ 1− 1

nk
,

for some k ≥ 2b+ a.

There is a O(|U | · poly(n))-size quantum circuit Ũ that satisfies

∥Π̃xŨ |0, x, 0q
∗⟩∥2 ≥ 1− 2−2n+1 for every x ∈ {0, 1}n,

where Π̃x = |L(x)⟩⟨L(x)| ⊗ |x⟩⟨x| ⊗ |0q∗⟩⟨0q∗| and q∗ = poly(n).

Definition 8.41 (Expander walks). Let G be a graph with vertex set {0, 1}n and

degree 16. Let the expander walk generator EW : {0, 1}n× [16]k → {0, 1}nk such that

EW(v, d) := (v1, . . . , vk), where v1 = v and vi+1 is the di-th neighbor of vi in G.

441

Definition 8.42 (Nearly disjoint subsets). Let Σ = {S1, . . . , Sk} be a family of

subsets of [m] of size n. We say Σ is γ-disjoint if |Si ∩ Sj| ≤ γn for any i ̸= j.

For r ∈ {0, 1}m, S ⊆ [m], let r|S be the restriction of r to S. Then, for a

γ-disjoint Σ, NDΣ : {0, 1}m → {0, 1}nk is defined by NDΣ(r) := r|S1 , . . . , r|Sk
.

Definition 8.43 (M -restrictable). We say Gn : {0, 1}m → {0, 1}nk is M -restrictible

if there exists a polynomial-time computable function h : [n] × {0, 1}n × {0, 1}m →
{0, 1}m such that

• For any i ∈ [n], x ∼ {0, 1}n, α ∼ {0, 1}m, h(i, x, α) is uniformly distributed.

• For any i, x, α, let G(h(i, x, α)) := x1, . . . , xk. Then, we have xi = x.

• For any i, j ̸= i, for any α, there exists a set S ⊆ {0, 1}n, |S| ≤M such that for

any x, xj ∈ S.

Definition 8.44 ((k′, q, δ)-hitting). We say Gn : {0, 1}m → {0, 1}nk is (k′, q, δ)-

hitting if for any sets H1, . . . , Hk ⊆ {0, 1}n, |Hi| ≥ δ2n, we have

Pr[|{i : xi ∈ Hi}| < k′] < q.

Proof of Lemma 8.28. We follow the proof in [IW97]. We first assume that there

exists a function f0 : {0, 1}n → {0, 1} such that the quantum circuit complexity of

f0 is 2Ω(n). We may assume that f0 ∈ BQE. Then, encoding the truth table of f0 by

a locally list-decodable code, we obtain a function f1 : {0, 1}O(n) → {0, 1} such that

f1 ∈ BQE, and for any quantum circuit B1 of size less than 2Ω(n),

E
x∼{0,1}O(n),B1

[B1(x) = f1(x)] := E
x∼{0,1}O(n),B1

[∥Πf1(x)B1|x, 0⟩∥] ≤ 1− n−O(1).

The properties of f1 can be proved by Lemma 8.67.

Then, by Lemma 8.66 with k = poly(n), ϵ = O(1), δ = 1
poly(n)

, we have a

function f2 = f⊗k1 : {0, 1}kn → {0, 1}k such that for any quantum circuit B2 of size

442

less than 2Ω(n),

E
x∈{0,1}nk,B2

[B2(x) = f2(x)] ≤ O(1).

We can apply the quantum Goldreich-Levin Theorem (Lemma 8.65) to f2 and

get a function f3 : {0, 1}n → {0, 1} (scaling the input size) such that for any quantum

circuit B3 of size less than 2Ω(n),

E
x∈{0,1}n,B3

[B3(x) = f2(x)] ≤
2

3
.

The remaining thing is to “quantize” the direct-product generator defined by

[IW97] using f3. More specifically, we say G is a (s, s′, ϵ, δ) quantum direct-product

generator if G : {0, 1}m → {0, 1}nk such that for every Boolean function g that is δ-

hard for any quantum circuit of size s, we have g⊗◦G is ϵ-hard for any quantum circuit

of size s′. The main result of [IW97] is the construction of (2Ω(n), 2Ω(n), 2−Ω(n), 1
3
)

direct-product generator. We first briefly describe the construction and then show

that it also works for quantum circuits.

The direct-product generator in [IW97] is constructed from the expander ran-

dom walks (Definition 8.41) and nearly disjoint subsets (Definition 8.42). They de-

fined the direct-product generator XG(r, r′, v, d) := EW(v, d)⊕NDΣ(r′), where Σ ⊆ [m]

is selected by r such that |r| = O(n), |r′| = m = O(n), |v| = n, |d| = O(n). They

proved that XG is 2Ω(n)-restrictible and (O(n), 2−Ω(n), 1/3)-hitting. It’s easy to see

that the restrictible and hitting properties are pure combinatorial and circuit inde-

pendent, which means that they also hold for quantum circuits. Then, they proved

that these combinatorial properties imply XG is also a direct product generator. This

step, however, need to be reproved for quantum circuits.

Claim 8.68. Let s > 0, G(r) : {0, 1}m → {0, 1}nk be a (ρk, q, δ)-hitting, M-

restrictible pseudo-random generator, where q > 2−ρk/3, s > 2Mnk. Then, G is a

(s,Ω(sq2n−O(1)), O(q), δ)-quantum direct product generator.

443

Proof. Let ϵ = (4δ/ρ+ 1)q. Suppose there is a quantum circuit C such that

E
x∼{0,1}m,C

[
C(x) = g⊗k ◦G(x)

]
≥ ϵ.

Then, we construct a quantum circuit F of size O(|C| + kMn) such that for

any H ⊆ {0, 1}n, |H| ≥ δ2n,

E
y∼H,F

[F(y) = g(y)] ≥ 1

2
+
q

2
.

We use the same construction as [IW97]. Let i ∼ [k], α0 ∼ {0, 1}m. Let x1, . . . , xk
be the output of G(h(i, x, α0)). For each j ̸= i, we non-uniformly construct a table

of g(xj) for any xj that is a possible output of G(h(i, x, α0)) for different x. Since

G is M -restrictible, each table has at most M values. Then, on input y ∈ {0, 1}n,
the circuit F simulates C on h(i, y, α0) and let c1, . . . , ck be the output. Then, for

y1, . . . , yk := G(h(i, y, α)), F counts the number of indices j ̸= i such that ci ̸= g(yi)

using the tables. Let t be the number. Then, with probability 2−t, F outputs ci;

otherwise, F outputs a random bit.

For analysis of quantum circuits, as in [AGG+20], we first consider C being an

inherently probabilistic circuit. For any H ⊆ {0, 1}n, let y ∼ H uniformly at random.

Then, for any y1, . . . , yk ∈ ({0, 1}n)k,

Pr
y∼H

[y1, . . . , yk generated by F] =
u

δk
· Pr
r∼{0,1}m

[y1, . . . , yk generated by G(r)]. (8.19)

where u is the number of yi ∈ H. Since Er,C[C(r) = g⊗k(G(r))] ≥ ϵ, for a random

r, the probability that u ≥ ρk and C(r) = g⊗k(G(r)) is at least ϵ− q, by the hitting

property of G. Hence, the probability that u ≥ ρk and C succeeds for y1, . . . , yk
generated by F on a random x ∈ H is (ϵ − q) · ρ/δ = 4q, since each (y1, . . . , yk) has

at least ρ/δ of its probability under G(r) by Eq. (8.19). Then, we can compute the

expected success probability of F on y ∈ H given u ≥ ρk by Theorem 3.2 in [IW97],

which is

E
y∼H

[F(y) = g(y) | u ≥ ρk] ≥ 1

2
+ q.

444

Since u ≥ ρk has probability at least 1 − q, the overall success probability is at

least (1 + q)/2. Finally, by Lemma 2.7 in [AGG+20], we can change the inherently

probabilistic circuit by a quantum circuit and the result still holds.

Hence, F has expected probability (1+ q)/2 on 1− δ fraction of inputs. Then,

we can take O(n/q2) copies and take the majority of them, which gives a circuit of

size O((|C|+kM)n/q2) ≤ s if |C| = Ω(sq2n−O(1)), and has success probability at least

1− δ. The Claim is then proved.

By Claim 8.68, we know that XG : {0, 1}O(n) → {0, 1}n2 is a (2Ω(n), 2Ω(n), 2−Ω(n), 1/3)-

quantum direct product generator.

Finally, feeding the output of XG to the quantum Nisan-Wigderson genera-

tor (Lemma 8.64) CNW gives the desired quantum pseudo-random generator, which

completes the proof of the lemma.

8.9 Quantum Fine-Grained Hardness Based on QETH

In this section, we will show that 2n× 2n bipartite permutation independent

set problem is hard under QETH.

Lemma 8.39. Assuming QETH, there is no 2o(n logn)-time quantum algorithm that

solves 2n× 2n Bipartite Permutation Independent Set problem.

More specifically, We “quantize” the fine-grained reduction in [LMS11]. The

reduction chain is as follows:

3-SAT ≤FG 3-Coloring ≤FG n× n Clique ≤FG n× n Permutation Clique

≤FG n× n Permutation Independent Set

≤FG 2n× 2n Bipartite Permutation Independent Set

We first define some intermediate fine-grained problems.

445

Definition 8.45 (n × n Clique problem). Given a graph on the vertex set [n] × [n],

decide if there exists i1, . . . , in ∈ [n] such that the subgraph on (1, i1), . . . , (n, in) forms

an n-clique.

Definition 8.46 (n×n Permutation Clique/Independent Set problem). Given a graph

on the vertex set [n]× [n], decide if there exists a permutation π ∈ Sn such that the

subgraph on (1, π(1)), . . . , (n, π(n)) forms an n-clique/independent set.

The following claims shows that the aforementioned reductions work for quan-

tum lower bounds.

Claim 8.69. Under QETH, there is no 2o(n)-time quantum algorithm for 3-Coloring,

where n is the number of vertices in the input graph.

Proof. By the NP-complete proof of 3-Coloring, we know that a 3-CNF formula with

n variables and m clauses can be reduced to a 3-Coloring instance in time O(n+m).

Hence, a 2o(n)-time quantum algorithm for 3-Coloring implies a 2o(n)-time quantum

algorithm for 3-SAT, which implies that QETH fails.

Claim 8.70. If n×n Clique can be solved in 2o(n logn) time quantumly, then 3-Coloring

can be solved in 2o(n) time quantumly.

Proof. We use the reduction given by [LMS11]. Let G be an instance of 3-Coloring

with n vertices. The reduction can produce a graph H with vertices [k] × [k] such

that n ≤ k log3 k − k. Then, G is 3-colorable if and only if H is a “Yes” instance of

k × k Clique. The reduction takes poly(k)-time classically.

Hence, if there exists a quantum algorithm for k × k Clique in time 2o(k log k),

then it gives a quantum algorithm for 3-Coloring that runs in time 2o(n).

Claim 8.71. If n × n Permutation Clique/Independent Set can be solved in 2o(n logn)

time quantumly, then n× n Clique can also be solved in 2o(n logn) time quantumly.

446

Proof. By [LMS11], there is a reduction from n×n Clique to n×n Permutation Clique

that takes 2O(n log logn) = 2o(n logn) time classically. Hence, the reduction also works

for quantum 2o(n logn)-time lower bound.

Note that n×n Permutation Clique and n×n Permutation Independent Set are

equivalent problem, since we can reduce them by taking the complement graph.

Claim 8.72. If 2n×2n Bipartite Permutation Independent Set can be solved in 2o(n logn)

quantumly, then n × n Permutation Independent Set can be solved in 2o(n logn) time

quantumly.

Proof. By [LMS11], the classical reduction takes time O(n2). Hence, it also works for

quantum algorithms.

Finally, we can prove the QETH-hardness of 2n × 2n bipartite permutation

independent set problem:

Proof of Lemma 8.39. It follows from Claim 8.69, 8.70, 8.71 and 8.72.

8.10 Proofs for Corollary 8.47

Corollary 8.47. SMCSP with classical descriptions of quantum states as inputs is

in QCMA.

Lemma 8.73. Given v = [v0, . . . , v2n−1] for vi ∈ C for i = 0, . . . , 2n − 1, there

exists a quantum circuit such that the state |v⟩ can be computed in time poly(2n) with

⟨i|v⟩ = vi.

Proof. We show that one can use single-qubit rotations to construct |v⟩.

We first prepare |0n+1⟩. Then, we do a single-qubit rotation on the first qubit

such that

|0n+1⟩ →
√∑2n−1−1

i=0 |vi|2∑2n−1
i=0 |vi|2

|0⟩|0n⟩+
√∑2n−1

i=2n−1 |vi|2∑2n−1
i=0 |vi|2

|1⟩|0n⟩.

447

Then, let the first qubit be the control qubit and apply the controlled rotation

to rotate the second qubit to be
√√√√
∑2n−2−1

i=0 |vi|2∑2n−1−1
i=0 |vi|2

|0⟩+

√√√√
∑2n−1−1

i=2n−2 |vi|2∑2n−1−1
i=0 |vi|2

|1⟩, if the first qubit is |0⟩,
√∑2n−1+2n−2−1

i=2n−1 |vi|2∑2n−1
i=2n−1 |vi|2

|0⟩+
√∑2n−1

i=2n−1+2n−2 |vi|2∑2n−1
i=2n−1 |vi|2

|1⟩, if the first qubit is |1⟩.

By doing these controlled rotations in sequence, we can obtain ||v|⟩ where

⟨v|i⟩ = |vi| for all i. Let vj = e−iθj |vj| without loss of generality. Then, condition on

j, we do the following rotation on the (n+ 1)-th qubit:

|0⟩ → e−iθj |0⟩

for all j. This gives |v⟩.

Finally, we use at most 2O(n) (control) rotations. By Remark 8.10, each con-

trolled rotation can be implemented with at most 2O(n) overhead. Hence, the verifier

can construct |v⟩ in time poly(2n).

Proof of Corollary 8.47. Following Lemma 8.73, we can make poly(n, s, t) copies of

the state in polynomial time. Then, following the proof for Theorem 8.46, the problem

is in QCMA.

8.11 Quantum Circuit Class

In this section, we will show some properties of the quantum circuit QC(s,G).

Note that G considered in this chapter are universal gate set with constant fan-in.

So, the results here are also for constant fan-in universal gate sets.

448

Claim 8.74. For n ∈ N, there exists a constant c such that a random Boolean function

f : {0, 1}n → {0, 1} has quantum circuit complexity greater 2n

(c+1)n
with probability at

least 1− 2
2n

c+1 .

Proof. For any s-gate and (n+ t)-qubit quantum circuit (where n+ t ≤ s), there are

at most
(
n+ qs+ t

q

)s
|G|s ≤ 2cs log s

possible circuits for some constant c large enough, where G is the quantum gate set,

and q is the maximum number of qubits for any gate in G can operate on. Let

s = 2n

(c+1)n
. Then the number of circuits of size s is at most 2cs log s < 2

c
c+1
·2n .

There are 22
n Boolean functions from {0, 1}n to {0, 1}. Suppose we pick one

function uniformly randomly, then for every fixed quantum circuit C and input x ∈
{0, 1}n, the probability that ∥(⟨f(x)| ⊗ In+t−1)C|x, 0t⟩∥ ≥ 1

2
is 1

2
. Therefore, the

probability that a fixed quantum circuit can compute f(x) for all x ∈ {0, 1}n is at

most 1
22n

. By using union bound, the probability that there exists C of size 2n

(c+1)n

that can compute f is at most 2
c

c+1 ·2n

22n
= 2

2n

c+1 .

Claim 8.75. For s = poly(n) and G a gate set that contains only constant fan-in

gates, BQC(s,G) is in DSPACE(O(s2))/O(s2).

Proof. The proof follows from the idea of showing BQP ⊂ PSPACE. Let L ∈
BQC(s,G) and {Cn} be the quantum circuit family in QC(s,G) that can solve L.

Then, we show that there is a O(s2)-space TM T with O(s log s)-bit advice that can

simulates Cn.

Let Cn be the advice to T . We first calculate the number of bits needed to

represent s-gate circuit. For each gate, we need O(log s) to specify its wires and 2a

register to record the corresponding unitary, where a is the maximum fan-in of gates

in G. Note that a unitary U may has entries that cannot be written down in bounded

bits. Therefore, we let the precision to every entry in U be ϵ = 1
c2s

for some constant

449

c large enough, which requires number of bits log 1
ϵ
= O(s). The total number of bits

required for each gate is O(s). and thus the number bits for the circuit is O(s2).

Now, suppose Cn = UsUs−1 · · ·U1. For any x ∈ {0, 1}n the probability that Cn
accepts is

∑

y∈A

|⟨y|UsUs−1 · · ·U1|x⟩|2,

where A := {y : y has the first bit as 1}. Then, the TM T computes each branch

one-by-one. for any y ∈ A

⟨y|UsUs−1 · · ·U1|x⟩ =
∑

z1,...,zs−1∈{0,1}

⟨y|Us|zs−1⟩⟨zs−1|Us−1|zs−2⟩⟨zs−2| · · · |z1⟩⟨z1|U1|x⟩.

(8.20)

Note that Ui is a constant-dimensional unitary and x and zj’s are vectors with exactly

one non-zero entry. So, computing ⟨zj|Uj|zj−1⟩ only requires O(s) (since the entries

in U takes O(s) space for the precision). Then, since we can also compute ⟨zj|Uj|zj−1⟩
one by one, the space required for each branch in Eq. (8.20) is just O(s). Therefore,

the space we need is at most O(s2) (including the space for the advice).

Note that our calculation in Eq. (8.20) will have error since our precision to

each entry in the unitary is ϵ = 1
c2s

. Let ŨsŨs−1 · · · Ũ1 be what we really compute.

Then,

∑

y∈A

|⟨y|UsUs−1 · · ·U1|x⟩|2 −
∑

y∈A

|⟨y|ŨsŨs−1 · · · Ũ1|x⟩|2 ≤ O(2s+nϵ).

By setting ϵ = 1
c2s

for some constant c large enough, T can solve L with probability

at least 2/3 by having an amplified version of Cn at first (e.g., parallel repetition).

Claim 8.76 (Diagonalization for quantum circuits). For every k ∈ N+, there exists

a language Lk ∈ PSPACE but Lk /∈ BQC[nk] for sufficiently large n.

450

Proof. By Claim 8.75, we know that BQC[nk] is contained in DSPACE[n2k]/n2k. By a

nonuniform almost everywhere hierarchy for space complexity (Lemma 11 in [OS16]),

we know that DSPACE[n3k] ̸⊂ DSPACE[n2k]/n2k for sufficiently large n. Hence, we

can find a language Lk /∈ BQC[nk].

Claim 8.77 (BQC size hierarchy). For n > 0, let s(n) = o(2
n

n
). Then, there exists

a Boolean function f in BQC[s(n)]\BQC[s(n) − O(n)], i.e., f can be computed by

an s(n)-size quantum circuit but not computed by any (s(n) − O(n))-size quantum

circuit.

Proof. The proof is very similar to the argument for classical circuits. By Claim 8.74,

we can find a function g that requires quantum circuit of size 2n/cn for some c > 1.

Suppose there are t inputs x1, . . . , xt such that g(xi) = 1 for i ∈ [t]. Then, we

construct a series of functions gi for i = 0, 1, · · · , t such that gi(x) = 1 if and only if

x ∈ {x1, . . . , xi}. It’s easy to see that the following properties are satisfied:

• g0 ∈ BQC[0] and gt ∈ BQC[2n/cn].

• For 0 ≤ i < t, the difference of the quantum circuits size of gi and gi+1 is at

most O(n). It follows since gi and gi+1 are only different at xi.

Hence, there exists an i > 0 such that the quantum circuit size of gi is at most s(n)

but lager than s(n)−O(n), since s(n) = o(2n/cn).

8.12 MQCSP and prBQP

In this section, we consider the MQCSP in the oracle setting and show some

circuit lower bounds for BQP/1 (BQP with one classical bit advice) and promise-BQP

in the relativized world. Our results are quantum versions of the [IKV18]’s results.

Theorem 8.78. For any k ∈ N, BQPMQCSP
/1 ̸⊆ BQC[nk].

451

Proof. It is well-known that exists a PSPACE-complete language L that is downward

self-reducible and self-correctable [TV07]. Since PSPACE ⊆ BQEXP, there exists a

d ∈ N such that L ∈ BQC[2n
d
]. Let qCC(L, n) denote the size of the minimum

quantum circuit for deciding L with input length n. Then, we have qCC(L, n) =

O(2n
d
).

Case 1: PSPACE ⊆ BQC[poly] Since L is PSPACE-complete, we have qCC(L, n) =

O(nk) for some k ∈ N. Then, by Lemma 8.79, L(x) can be computed in BQPMQCSP.

Hence, PSPACE ⊆ BQPMQCSP. By a diagonalization argument for quantum circuits

(Claim 8.76), we have PSPACE ̸⊆ BQC[nk] for any k ∈ N. Thus, BQPMQCSP ̸⊆
BQC[nk].

Case 2: PSPACE ̸⊆ BQC[poly] In this case, L /∈ BQC[poly]. Suppose BQPMQCSP/1 ⊆
BQC[nk] for some k ∈ N. Similar to the proof in [IKV18], we define a padding lan-

guage L′k := {1mx} satisfying the following conditions: (1) m is a power of 2; (2)

0 < r := |x| ≤ m; (3) x ∈ L; (4) qCC(L, r) ≤ m2k. We claim that L′k ∈ BQPMQCSP/1.

Let y = 1mx be the input of L′k. Conditions (1), (2) are easy to check. The advice

bit can be used to determine whether condition (4) holds. If it does not hold, then

we reject the string. Otherwise, we know that qCC(L, |x|) ≤ m2k. By Lemma 8.79,

L(|x|) can be computed in poly(|x|,m2k)-quantum time given an MQCSP oracle, which

checks condition (3). Therefore, we conclude that L′k ∈ BQPMQCSP/1. By our assump-

tion, L′k ∈ BQC[nk]. Then, it implies that L ∈ BQC[n2k], which follows from Lemma

15 in [IKV18]25. We get a contradiction. Hence, BQPMQCSP/1 ⊆ BQC[nk].

Combining Case 1 and 2 completes the proof of the theorem.

We need the following lemma giving an efficient MQCSP-oracle quantum al-

gorithm to compute a downward-reducible and self-correctable language.

25The proof of this lemma can be found in [San09]. It is straightforward to verify that this lemma
holds for both classical and quantum circuits.

452

Lemma 8.79. Let L be a downward self-reducible and self-correctable language.

Then, there is a quantum algorithm with access to an MQCSP oracle, such that given

x and t computes L(x) with high probability in poly(|x|, t)-quantum time, provided

that t ≥ qCC(L, |x|).

Proof. By Lemma 8.80, we have a PAC learner A for BQC. We can use the same

strategy as in the proof of Lemma 35 in [IKV18] to compute L(x). More specifically,

• Step 1: construct a circuit C̃1 = C1 for L|1.

• Step 2: for i = 2 . . . n

– Step 2.1: run AMQCSP with probability parameter δ = i−3 and accuracy

parameter ϵ = i−1 to learn a circuit C̃i of size t for L|i. For the membership

query to L|i, by the downward-reducibility of L, it can be computed via

the circuit Ci.

– Step 2.2: apply the self-correction algorithm for L to C̃ and obtain the

circuit Ci.

• Step 3: output Cn(x).

The following lemma is a direct extension of Theorem 8.22.

Lemma 8.80 (PAC learning MQCSP-oracle quantum circuit). BQC is PAC learnable

under the uniform distribution, using membership query and MQCSP queries with

hypothesis being MQCSP-oracle circuits.

Formally, there exists a randomized algorithm that makes oracle queries to

MQCSP such that, given s ∈ N, oracle access to a function f ∈ BQC[s], and ϵ > 0,

it outputs an MQCSP-oracle quantum circuit C such that Pr[C[x] ̸= f(x)] ≤ ϵ in

poly(n, s, ϵ−1)-time.

453

Theorem 8.78 has the following consequence:

Corollary 8.81. For any k ∈ N, prBQPMQCSP ̸⊆ BQC[nk].

Proof. Fix k ∈ N. Suppose L ∈ BQPMQCSP
/1 and L /∈ BQC[nk]. Let C be the

quantum oracle circuit that takes one-bit advice to compute L. We can construct

a language L′ ∈ prBQPMQCSP as follows: for an input string (x, b) with |b| = 1, if

x ∈ L and C accepts x with advice b, then (x, b) is in the YES case of L′. If x /∈ L
and C rejects x with advice b, then (x, b) is in the NO case of L′. Then, if L′ can

be computed by a nk-size quantum circuit, L can also be computed by a nk-size

quantum circuit, which contradicts our assumption. Hence, by Theorem 8.78, we get

that prBQPMQCSP ̸⊆ BQC[nk].

454

Results Informal Theorem Index
(Formal Theorem Index)

MQCSP
(Def. 8.9)

MQCSP ∈ QCMA Theorem 8.1 (Theorem 8.14)
MQCSP ∈ BQP ⇒ No qOWF Theorem 8.1 (Theorem 8.20)

SZK ≤ MQCSP Theorem 8.1 (Theorem 8.15)
multiMQCSP is NP-hard under a natural gate set Theorem 8.1 (Theorem 8.16)

iO+MQCSP ∈ BQP ⇒ NP ⊆ coRQP Theorem 8.1 (Theorem 8.21)
PAC learning for BQP/poly ⇔ MQCSP ∈ BPP Theorem 8.2 (Theorem 8.22)

BQP learning ⇔ MQCSP ∈ BQP Theorem 8.3 (Theorem 8.23)
MQCSP ∈ BQP⇒ BQE ̸⊂ BQC[nk], ∀k ∈ N+ Theorem 8.4 (Theorem 8.26)

MQCSP ∈ BQP⇒ BQPQCMA ̸⊂ BQC[nk], ∀k ∈ N+ Theorem 8.4 (Theorem 8.29)
MQCSP ∈ BQP ⇒ Hardness amplification Theorem 8.5 (Theorem 8.27)

Hardness magnification for MQCSP Theorem 8.6 (Theorem 8.29)
QETH⇒ quantum hardness of MQCSP⋆ Theorem 8.7 (Theorem 8.31)

BQPMQCSP
/1, prBQP

MQCSP ̸⊂ BQC[nk], ∀k ∈ N+ (Theorem 8.78, Corollary 8.81)

UMCSP
(Def. 8.31)

UMCSP ∈ QCMA Theorem 8.8 (Theorem 8.42)
Search-to-decision reduction for UMCSP Theorem 8.9 (Theorem 8.48)

gap-MQCSP ≤ UMCSP Theorem 8.9 (Theorem 8.54)
UMCSP ∈ BQP

⇒ No pseudorandom unitaries and no qOWF (Theorem 8.55, Corollary 8.56)

iO+ UMCSP ∈ BQP ⇒ NP ⊆ coRQP (Corollary 8.57)
UMCSP ∈ BQP ⇒ Hardness amplification for BQP (Corollary 8.58)

UMCSP ∈ BQP ⇒ BQE ̸⊂ BQP[nk], ∀k ∈ N (Corollary 8.59)

SMCSP
(Def. 8.32)

SMCSP can be verified via QCMA Theorem 8.8 (Theorem 8.46)
Search-to-decision reduction for SMCSP Theorem 8.9 (Theorem 8.50)

Self-reduction for SMCSP Theorem 8.9 (Theorem 8.52)
SMCSP ∈ BQP

⇒ No pseudorandom states and no qOWF Theorem 8.10 (Theorem 8.60)

Assume conjectures from physics
SMCSP ⇒ Estimating wormhole’s volume Theorem 8.10 (Theorem 8.62)

Succinct state tomography ≤ SMCSP Theorem 8.10 (Theorem 8.63)

Table 8.1: Summary of our results. A result with color Blue is a direct extension
from its classical analog. A result with color Yellow requires additional techniques.
A result with color Red is unique in the quantum setting.

455

Part II

Optimization

456

Chapter 9: Faster Classical Semi-Definite
Programming Solver

9.1 Introduction

Semidefinite programming (SDP) optimizes a linear objective function over

the intersection of the positive semidefinite (PSD) cone with an affine space. SDP

is of great interest both in theory and in practice. Many problems in operations

research, machine learning, and theoretical computer science can be modeled or ap-

proximated as semidefinite programming problems. In machine learning, SDP has

applications in adversarial machine learning [RSL18], learning structured distribu-

tion [CLM20], sparse PCA [AW08, dEGJL07], robust learning [DKK+16, DHL19,

JLT20]. In theoretical computer science, SDP has been used in approximation al-

gorithms for max-cut [GW94], coloring 3-colorable graphs [KMS94], and sparsest

cut [ARV09], quantum complexity theory [JJUW11], robust learning and estimation

[CG18, CDG19, CDGW19], graph sparsification [LS17], algorithmic discrepancy and

rounding [BDG16, BG17, Ban19], sum of squares optimization [BS16, FKP19], ter-

minal embeddings [CN21], and matrix discrepancy [HRS21].

SDP is formally defined as follows:

Definition 9.1 (Semidefinite programming). Given symmetric1 matrices C,A1, · · · , Am ∈
Rn×n and a vector b ∈ Rm, the goal is to solve the following optimization problem:

max
X∈Rn×n

⟨C,X⟩ subject to ⟨Ai, X⟩ = bi, ∀i ∈ [m], X ⪰ 0, (9.1)

where ⟨A,B⟩ :=∑i,j Ai,jBi,j is the matrix inner product.

1We can without loss of generality assume that C,A1, · · · , Am are symmetric. Given any A ∈
Rn×n, we have

∑
i,j AijXij =

∑
i,j AijXji =

∑
i,j(A

⊤)ijXij since X is symmetric, so we can replace
A with (A+A⊤)/2.

457

The input size of an SDP instance ismn2, since there arem constraint matrices

each of size n × n. The well-known linear programming (LP) is a simpler case than

SDP, where X ⪰ 0 and C,A1, · · · , Am are restricted to be n × n diagonal matrices.

The input size of an LP instance is thus mn.

Over the last many decades, there are three different lines of high accuracy

SDP solvers (with logarithmic accuracy dependence in the running time). The first

line of work is using the cutting plane method, such as [Sho77, YN76, Kha80, KTE88,

NN89, Vai89a, BV02, KM03, LSW15, JLSW20]. This line of work uses m iterations,

and each iteration uses some SDP-based oracle call. The second line of work is using

interior point method (IPM) and log barrier function such as [NN92, JKL+20]. The

third line of work is using interior point method and hybrid barrier function such as

[NN94, Ans00].

Recently, a line of work uses robust analysis and dynamic maintenance to

speedup the running time of linear programming [CLS19, Bra20, BLSS20, JSWZ21,

Bra21]. One major reason made solving SDP much more harder than solving linear

programming is: in LP the slack variable is a vector(can be viewed as a diagonal

matrix), and in SDP the slack variable is a positive definite matrix. Due to that reason,

the gradient/Hessian computation requires some complicated and heavy calculations

based on the Kronecker product of matrices, while LP only needs the basic matrix-

matrix product [Vai89b, CLS19, JSWZ21]. Therefore, handling the errors in each

iteration and maintaining the slack matrices are way more harder in SDP. Thus, we

want to ask the following question:

Can we efficiently solve SDP without computing exact gradient, Hessian, and

Newton steps?

In this chapter, we will answer the above question by introducing new frame-

work for both IPM analysis and variable maintenance. For IPM analysis, we build

a robust IPM framework for arbitrary barrier functions that supports errors in com-

puting gradient, Hessian, and Newton steps. For variable maintenance, we provide a

458

general amortization method that gives improved guarantees on reducing the compu-

tational complexity by lazily updating the Hessian matrices.

For solving SDP using IPM with log barrier, the current best algorithm (due

to Jiang, Kathuria, Lee, Padmanabhan and Song [JKL+20]) runs in O(
√
n(mn2 +

mω + nω)) time. Since the input size of SDP is mn2, ideally we would want an SDP

algorithm that runs in O(mn2+mω+nω) time, which is roughly the running time to

solve linear systems2. The current best algorithms are still at least a
√
n factor away

from the optimal.

Inspired by the result [CLS19] which solves LP in the current matrix multipli-

cation time, a natural and fundamental question for SDP is

Can we solve SDP in the current matrix multiplication time?

More formally, for the above formulation of SDP (Definition 9.1), is that possible to

solve it in mn2 +mω + nω time? In this chapter, we give a positive answer to this

question by using our new techniques. For the tall dense SDP where m = Ω(n2), our

algorithm runs in mω+m2+1/4 time, which matches the current matrix multiplication

time. The tall dense SDP finds many applications and is one of the two predominant

cases in [JKL+20]3. This is the first result that shows SDP can be solved as fast as

solving linear systems.

Finally, we also show that our techniques and framework are quite versatile and

can be used to directly speedup the SDP solver via the hybrid barrier [NN89, Ans00].

Our results. We present the simplified version of our main result in the following

theorem. The formal version can be found in Theorem 9.18.

2We note that a recent breakthrough result by Peng and Vempala [PV21] showed that a sparse
linear system can be solved faster than matrix multiplication. However, their algorithm essentially
rely on the sparsity of the problems. And it is still widely believed that general linear system requires
matrix multiplication time.

3See Table 1.2 in [JKL+20] and Section 9.6.

459

Theorem 9.1 (Main result, informal version of Theorem 9.18). For ϵ-accuracy, there

is a classical algorithm that solves a general SDP instance with variable size n × n
and m constraints in time4 O∗((

√
n(m2 + n4) +mω + n2ω) log(1/ϵ)), where ω is the

exponent of matrix multiplication.

In particular, for m = Ω(n2), our algorithm takes matrix multiplication time

mω for current ω ≈ 2.373.

Remark 9.1. For any m ≥ n2−0.5/ω ≈ n1.79 with current ω ≈ 2.37286 [Wil12, LG14,

AW21], our algorithm runs faster than [JKL+20].

Theorem 9.1 and [JKL+20] are focusing on the log barrier method for solving

SDP. However, the area of speeding up the hybrid barrier-based SDP solver is quite

blank. We also improve the state-of-the-art implementation of the hybrid barrier-

based SDP solver [NN89, Ans00] in all parameter regimes. See Section 9.5 and The-

orem 9.4 for more details.

Roadmap. In Section 9.2, we review the previous approaches for solving SDP and

discuss their bottlenecks. In Section 9.3, we introduce our robust framework for

IPM. In Section 9.4, we show our main techniques and sketch the proof of our main

result (Theorem 9.1). In Section 9.5, we overview the approach of applying our

robust framework to speedup the hybrid barrier-based SDP solver. Related works

are provided in Section 9.6. We define our notations and include several useful tools

in Section 9.7. In Section 9.8, we give the formal version of our algorithm and the

main theorem, where the proof is given Section 9.9 and 9.10. Our general robust

IPM framework is displayed in Section 9.11. Our fast implementation of the hybrid

barrier-based SDP solver can be found in Section 9.12.

4We use O∗(·) to hide no(1) and logO(1)(mn/ϵ) factors, and Õ(·) to hide logO(1)(mn/ϵ) factors.

460

9.2 An Overview of Previous Techniques

Under strong duality, the primal formulation of the SDP in Eq. (9.1) is equiv-

alent to the following dual formulation:

Definition 9.2 (Dual problem). Given symmetric matrices C,A1, . . . , Am ∈ Rn×n

and bi ∈ R for all i ∈ [m], the goal is to solve the following convex optimization

problem:

min
y∈Rm

b⊤y subject to S =
m∑

i=1

yiAi − C, S ⪰ 0. (9.2)

Interior point methods (IPM) solve the above problem by (approximately)

following a central path in the feasible region {y ∈ Rm : S =
∑m

i=1 yiAi − C ⪰ 0}.
As a rich subclass of IPM, barrier methods [NN92, Ans00] define a point on the

central path as the solution to the following optimization problem parametrized by

η > 0 : miny∈Rm fη(y) where

fη(y) := η · ⟨b, y⟩+ ϕ(y) (9.3)

is the augmented objective function and ϕ : Rm → R is a barrier function5 that

restricts y to the feasible region since ϕ(y) increases to infinity when y approaches the

boundary of the feasible region. Barrier methods usually start with an initial feasible

y for a small η, and increase η in each iteration until y is close to the optimal solution

of the SDP. In short-step barrier methods with log barrier, ηnew = (1 + 1/
√
n)η. It

takes a Newton step −H(y)−1g(y, η) in each iteration to keep y in the proximity of

the central path. Here g(y, η) and H(y) are the gradient and the Hessian of fη(y).

5The choice of the barrier function leads to different numbers of iterations. Nesterov and
Nemirovski [NN92] utilize the log barrier function ϕlog(y) = − log det(S) which guarantees
convergence in Õ(

√
n) iterations. Anstreicher [Ans00] uses the Hybrid barrier ϕhybrid(y) =

225(n/m)1/2 · (ϕvol(y) + ϕlog(y) · (m− 1)/(n− 1)) where ϕvol(y) is the volumetric barrier ϕvol(y) =
1
2 log det(∇2ϕlog(y)). Hybrid barrier guarantees convergence in Õ((mn)1/4) iterations.

461

Techniques and bottlenecks of existing algorithms

Fast solvers of SDP include the cutting plane method and interior point

method. The fastest known algorithms for SDP based on the cutting plane method

[LSW15, JLSW20] have m iterations and run in O∗(m(mn2 + nω +m2)) time. The

fastest known algorithm for SDP based on the interior point method [JKL+20] has
√
n iterations and runs in O∗(

√
n(mn2 + nω + mω)) time. In most applications of

SDP where m ≥ n, interior point method of [JKL+20] runs faster. In the following

we briefly discuss the techniques and bottlenecks of interior point methods.

Central path. Interior point method updates the dual variable y by Newton step

−H(y)−1g(y, η) to keep it in the proximity of central path. This proximity is mea-

sured by the potential function ∥H(y)−1g(y, η)∥H(y).6 In classical interior point lit-

erature, this potential function is well controlled by taking exact Newton step (see

e.g. [Ren01]). [JKL+20] relaxes this guarantee and allows PSD approximation to the

Hessian matrix H(y). However, their convergence also relies on exact computation of

slack matrix S and gradient g. This leads to a mn2.5 term in their running time.

Amortization techniques. [JKL+20] keeps a PSD approximation H̃ of the Hes-

sianH and updates H̃ by a low rank matrix in each iteration. The running time of this

low rank update is then controlled by a delicate amortization technique. This tech-

nique also appears in linear programming [CLS19] and empirical risk minimization

[LSZ19]. [JKL+20] brings this technique to SDP, and costs n0.5mω time in computing

the inverse of Hessian matrix. When m becomes larger, this term dominates the

complexity and becomes undesirable.

462

Algorithm 40 The general robust barrier method framework for SDP.

1: procedure GeneralRobustSDP(A ∈ Rm×n2 , b ∈ Rm, C ∈ Rn×n)
2: Choose η and T
3: Find initial feasible dual vector y ∈ Rm ▷ Condition 0 in Lemma 9.2
4: for t = 1→ T do do ▷ Iterations of approximate barrier method
5: ηnew ← η · (1 + ϵN

20
√
θ
)

6: S̃ ← ApproxSlack()
7: H̃ ← ApproxHessian() ▷ Condition 1 in Lemma 9.2
8: g̃ ← ApproxGradient() ▷ Condition 2 in Lemma 9.2
9: δ̃y ← ApproxDelta() ▷ Condition 3 in Lemma 9.2

10: ynew ← y + δy
11: y ← ynew ▷ Update variables
12: end for
13: end procedure

9.3 The Robust SDP Framework

In section 9.3, we introduce our robust SDP framework. This framework

works for general barrier functions and finds applications in both Algorithm 42 and

Algorithm 45-46. We consider self-concordant barrier function ϕ with complexity θ

(Definition 9.8)7. For the regularized objective fη in Eq. (9.3), we define the gradient

g : Rm × R→ Rm as

g(y, η) = η · b−∇ϕ(y).

Interior point method takes Newton step (∇2ϕ(y))−1g(y, η) and guarantees

the variables in the proximity of the central path by bounding the potential function

Φ(z, y, η) = ∥g(y, η)∥(∇2ϕ(z))−1 . In practical implementations, there are perturbations

in the Newton step due to errors in slack matrix S, gradient g(y, η), Hessian matrix

∇2ϕ(y) and Newton step (∇2ϕ(y))−1 ·g(y, η). Many fast algorithms maintain approx-

imations to these quantities to reduce the running time. We propose a more general

6For symmetric PSD matrix A, let ∥x∥A =
√
x⊤Ax denote matrix norm of x.

7The barrier function being “self-concordant” is a key assumption in the interior-point method
[Nes88a, Nes88b, NN89, Ren01]. It is also useful in many optimization tasks [Hil14, Nar16, LLV20].

463

robust framework (compared with [Ren01, JKL+20]) which captures all these errors.

We show that as long as these errors are bounded by constants in the local norm8,

the potential function stays bounded, which guarantees the closeness to central path.

Therefore this analysis is currently the most robust possible. The main component

of our robust analysis is the following one step error control.

Lemma 9.2 (One step error control of the robust framework, informal version of

Lemma 9.40). Let the potential function of IPM defined by

Ψ(z, y, η) := ∥g(y, η)∥(∇2ϕ(z))−1 .

Given any parameters αS ∈ [1, 1 + 10−4], cH ∈ [10−1, 1], ϵg, ϵδ ∈ [0, 10−4], and ϵN ∈
(0, 10−1), η > 0. Suppose that there is

• Condition 0. a feasible dual solution y ∈ Rm satisfies Φ(y, y, η) ≤ ϵN ,

• Condition 1. a symmetric matrix H̃ ∈ Sn×n>0 satisfies cH · ∇2ϕ(y) ⪯ H̃ ⪯
∇2ϕ(y),

• Condition 2. a vector g̃ ∈ Rm satisfies ∥g̃ − g(y, ηnew)∥(∇2ϕ(y))−1 ≤ ϵg ·
∥g(y, ηnew)∥(∇2ϕ(y))−1,

• Condition 3. a vector δ̃y ∈ Rm satisfies ∥δ̃y− H̃−1g̃∥∇2ϕ(y) ≤ ϵδ · ∥H̃−1g̃∥∇2ϕ(y).

Then ηnew = η(1 + ϵN
20
√
θ
) and ynew = y − δ̃y satisfy

Ψ(ynew, ynew, ηnew) ≤ ϵN .

This result suggests that as long as we find an initial dual variable y in the

proximity of central path, i.e. Φ(y, y, η) ≤ ϵN , Lemma 9.2 will guarantee that the

invariant Φ(y, y, η) ≤ ϵN holds throughout Algorithm 40, even when there exist errors

in the slack matrices, Hessian, gradient and Newton steps. As shown in Section 9.11,

8See condition 0-3 in Lemma 9.2 for details.

464

the duality gap is upper bounded by θ · Φ(y, y, η)/η. In at most O(
√
θ · log(θ/ϵ))

iterations, η will become greater than θ · Φ(y, y, η)/ϵ. Therefore Algorithm 40 finds

ϵ-optimal solution within O(
√
θ · log(θ/ϵ)) iterations.

We note that [Ans00] and [Ren01] only consider Condition 0 and requires the

cH = 1, ϵg = ϵδ = 0 in Condition 1, 2, and 3. [JKL+20] considered Condition 0

and Condition 1 in Lemma 9.2 and requires the ϵg = ϵδ = 0 in Condition 2 and

3. Moreover, the Condition 1 in [JKL+20] requires cH to be very close to 1, and

we relax this condition to support any constant in [10−1, 1]. In addition, our frame-

work also relaxes the computation of gradient and Newton direction to allow some

approximations, which makes it possible to apply more algorithmic techniques in the

interior-point method. More details are provided in Section 9.11.2.

9.4 Our Techniques

In this section, we introduce our main techniques, and provide a self-contained

proof sketch of our main result Theorem 9.1. We tackle the two bottlenecks of mω

cost per iteration in [JKL+20] by proposing two different techniques:

Bottleneck 1: Instead of inverting the Hessian matrix from scratch in each

iteration, we make use of the already-computed Hessian inverse of the previous iter-

ation. We prove that using low-rank updates, the change to the inverse of Hessian

matrices (computed using Kronecker product) is low-rank, and thus we can use Wood-

bury identity to efficiently update the Hessian inverse. In Section 9.4.1 we introduce

the low-rank update to the Hessian, and in Section 9.4.2 we describe how to compute

the Hessian inverse efficiently using Woodbury identity and fast matrix rectangular

multiplication.

Bottleneck 2: We propose a better amortization scheme for PSD matrices

that improves upon the previous mω amortized cost. We give a proof sketch of our

amortized analysis in Section 9.4.3.

465

Algorithm 41 An implementation of GeneralRobustSDP (Informal version of
Alg. 42).

1: procedure SolveSDP(A ∈ Rm×n2 , b ∈ Rm, C ∈ Rn×n)
2: for t = 1→ T do ▷ T = Õ(

√
n)

3: ηnew ← η · (1 + 1/
√
n)

4: gηnew(y)j ← ηnew · bj − tr[S−1 · Aj], ∀j ∈ m ▷ Gradient computation
5: δy ← −H̃−1 · gηnew(y) ▷ Compute Newton step
6: ynew ← y + δy ▷ Update dual variables
7: Snew ←∑

i∈[m](y
new)iAi − C ▷ Compute slack matrix

8: Compute V1, V2 ∈ Rn×rt such that S̃new = S̃ + V1 · V ⊤2 ▷ Step 1 of
Sec. 9.4.1

9: Compute V3, V4 ∈ Rn×rt such that (S̃new)−1 = (S̃)−1 + V3 · V ⊤4 ▷ Step 2 of
Sec. 9.4.1

10: Compute AY1,AY2 ∈ Rm×nrt such that H̃new = H̃ + (AY1) · (AY2)⊤ ▷ Step
3 of Sec. 9.4.1

11: (H̃new)−1 ← H̃−1 + low-rank update ▷ Sec. 9.4.2
12: y ← ynew, S ← Snew, S̃ ← S̃new, H̃−1 ← (H̃new)−1 ▷ Update variables
13: end for
14: end procedure

9.4.1 Low rank update of Hessian

Low-rank approximation of Kronecker product itself is an interesting problem

and has been studied in [SWZ19]. In this section, we describe how the low-rank

update of the slack matrix leads to a low-rank update of the Hessian matrix that

involves Kronecker product.

The Hessian matrix is defined as H = A·(S−1⊗S−1)·A⊤. We take the following

three steps to construct the low-rank update of H.

Step 1: low-rank update of the slack matrix. We use an approximate slack

matrix that yields a low-rank update. In the t-th iteration of Algorithm 41, we use

S̃ to denote the current approximate slack matrix, and Snew to denote the new exact

slack matrix. We will use S̃ and Snew to find the new approximate slack matrix S̃new.

Define Z = (Snew)−1/2S̃(Snew)−1/2− I which captures the changes of the slack

466

matrix. We compute the spectral decomposition: Z = U ·diag(λ) ·U⊤. We show that
n∑

i=1

λ2i = ∥S−1/2SnewS−1/2 − I∥F = O(1),

which implies that only a few eigenvalues of Z are significant, say e.g. λ1, . . . , λrt . We

only keep these eigenvalues and set the rest to be zero. In this way we get a low-rank

approximation of Z: Z̃ = U · diag(λ̃) · U⊤ where λ̃ = [λ1, · · · , λrt , 0, . . . , 0]⊤. Now we

can use Z̃ to update the approximate slack matrix by a low-rank matrix:

S̃new = S̃ + (Snew)1/2 · Z̃ · (Snew)1/2 = S̃ + V1 · V ⊤2 ,

where V1 and V2 both have size n × rt. Since Z̃ is a good approximation of Z, S̃new

is a PSD approximation of Snew, which guarantees that y still lies in the proximity of

the central path.

Step 2: low-rank update of inverse of slack. Using Woodbury identity, we can

show that

(S̃new)−1 = (S̃ + V1 · V ⊤2)−1 = S̃−1 + V3V
⊤
4 ,

where V3 = −S̃−1V1(I + V ⊤2 S̃
−1V1)

−1 and V4 = S̃−1V2 both have size n × rt. Thus,

this means (S̃new)−1 − S̃−1 has a rank rt decomposition.

Step 3: low-rank update of Hessian. Using the linearity and the mixed product

property (Part 2 of Fact 9.10) of Kronecker product, we can find a low-rank update

to (S̃new)−1⊗ (S̃new)−1. More precisely, we can rewrite (S̃new)−1⊗ (S̃new)−1 as follows:

(S̃new)−1 ⊗ (S̃new)−1 = (S̃−1 + V3V
⊤
4)⊗ (S̃−1 + V3V

⊤
4) = S̃−1 ⊗ S̃−1 + Sdiff .

The term Sdiff is the difference that we want to compute, we can show

Sdiff = S̃−1 ⊗ (V3V
⊤
4) + (V3V

⊤
4)⊗ S̃−1 + (V3V

⊤
4)⊗ (V3V

⊤
4)

= (S̃−1/2 ⊗ V3) · (S̃−1/2 ⊗ V ⊤4) + (V3 ⊗ S̃−1/2) · (V ⊤4 ⊗ S̃−1/2) + (V3 ⊗ V3) · (V ⊤4 ⊗ V ⊤4)

= Y1 · Y ⊤2
467

where Y1 and Y2 both have size n2×nrt. In this way we get a low-rank update to the

Hessian:

H̃new = A · ((S̃new)−1 ⊗ (S̃new)−1) · A⊤ = H̃ + (AY1) · (AY2)⊤.

9.4.2 Computing Hessian inverse efficiently

In this section we show how to compute the Hessian inverse efficiently.

Using Woodbury identity again, we have a low rank update to H̃−1:

(H̃new)−1 =
(
H̃ + (AY1) · (AY2)⊤

)−1
= H̃−1 − H̃−1 · AY1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 A⊤ · H̃−1

The second term in the above equation has rank nr. Thus (H̃new)−1 − H̃−1 has a

rank nr decomposition. To compute (H̃new)−1 in each iteration, we first compute

AY1,AY2 ∈ Rm×nrt and multiply it with H̃−1 ∈ Rm×m to get H̃−1 · AY1, H̃−1 · AY2 ∈
Rm×nrt . Then we compute I+(Y ⊤2 A⊤)·(AY1) ∈ Rnrt×nrt and find its inverse (I+Y ⊤2 A⊤·
AY1)

−1 ∈ Rnrt×nrt . Finally, we multiply H̃−1 ·AY1, H̃−1 ·AY2 ∈ Rm×nrt and (I+Y ⊤2 A⊤ ·
AY1)

−1 ∈ Rnrt×nrt together to obtain (H̃)−1AY1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 A⊤(H̃)−1 ∈
Rm×m, as desired. Using fast matrix multiplication in each aforementioned step, the

total computation cost is bounded by

O(Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω). (9.4)

9.4.3 General amortization method

As mentioned in the previous sections, our algorithm relies on the maintenance

of the slack matrix and the inverse of the Hessian matrix via low-rank updates. In

each iteration, the time to update S̃ and H̃ to S̃new and H̃new is proportional to

the magnitude of low-rank change in S̃, namely rt = rank(S̃new − S̃). To deal with

rt, we propose a general amortization method which extends the analysis of several

previous work [CLS19, LSZ19, JKL+20]. We first prove a tool to characterize intrinsic

properties of the low-rank updates, which may be of independent interest.

468

Theorem 9.3 (Informal version of Theorem 9.29). Given a sequence of approxi-

mate slack matrices S̃(1), S̃(2), . . . , S̃(T) ∈ Rn×n generated by Algorithm 42, let rt =

rank(S̃(t+1) − S̃(t)) denotes the rank of update on S̃(t). Then for any non-increasing

vector g ∈ Rn
+, we have

T∑

t=1

rt · grt ≤ Õ(T · ∥g∥2).

Next, we show a proof sketch of Theorem 9.3.

Proof. For any matrix Z, let |λ(Z)|[i] denotes its i-th largest absolute eigenvalue.

We use the following potential function Φg(Z) :=
∑n

i=1 gi · |λ(Z)|[i]. Further, for

convenient, we define Φg(S1, S2) := Φg(S
−1/2
1 S2S

−1/2
1 − I). Our proof consists of the

following two parts (Lemma 9.31 and Lemma 9.32):

• The change of the exact slack matrix increases the potential by a small amount,

specifically Φg(S
new, S̃)− Φg(S, S̃) ≤ ∥g∥2.

• The change of the approximate slack matrix decreases the potential proportion-

ally to the update rank, specifically Φg(S
new, S̃new)− Φg(S

new, S̃) ≤ −rt · grt .

In each iteration, the change of potential is composed of the changes of the exact and

the approximate slack matrices:

Φg(S
new, S̃new)− Φg(S, S̃) = Φg(S

new, S̃)− Φg(S, S̃) + Φg(S
new, S̃new)− Φg(S

new, S̃).

Note that Φg(S, S̃) = 0 holds in the beginning of our algorithm and Φg(S, S̃) ≥
0 holds throughout the algorithm, combining the observations above we have T ·∥g∥2−
∑T

t=1 rt · grt ≥ 0 as desired.

Amortized analysis. Next we show how to use Theorem 9.3 to prove that our

algorithm has an amortized cost of mω−1/4 +m2 cost per iteration when m = Ω(n2).

Note that in this case there are
√
n = m1/4 iterations.

469

When m = Ω(n2), the dominating term in our cost per iteration (see Eq. (9.4))

is Tmat(m,m, nrt). We use fast rectangular matrix multiplication to upper bound this

term by

Tmat(m,m, nrt) ≤ m2 +m2−α(ω−2)
1−α · nω−2

1−α · r
ω−2
1−α

t .

We define a non-increasing sequence g ∈ Rn as gi = i
ω−2
1−α
−1. This g is tailored for

the above equation, and its ℓ2 norm is bounded by ∥g∥2 ≤ n
(ω−2)
1−α

−1/2. Then using

Theorem 9.3 we have

T∑

t=1

r
ω−2
1−α

t =
T∑

t=1

rt · r
ω−2
1−α
−1

t =
T∑

t=1

rt · grt ≤ T · n
(ω−2)
1−α

−1/2.

Combining this and the previous equation, and since we assume m = Ω(n2), we have

T∑

t=1

Tmat(m,m, nrt) ≤ T · (m2 +m2−α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2) = T · (m2 +mω−1/4).

Since T = Õ(m1/4), we proved the desired computational complexity in Theorem 9.1.

9.5 Solving SDP With Hybrid Barrier

Volumetric barrier was first proposed by Vaidya [Vai89a] for the polyhedral,

and was generalized to the spectrahedra {y ∈ Rm : y1A1 + · · · + ymAm ⪰ 0} by

Nesterov and Nemirovski [NN94]. They showed that the volumetric barrier ϕvol can

make the interior point method converge in
√
mn1/4 iterations, while the log barrier

ϕlog need
√
n iterations. By combining the volumetric barrier and the log barrier, they

also showed that the hybrid barrier achieves (mn)1/4 iterations. Anstreicher [Ans00]

gave a much simplified proof of this result.

We show that the hybrid barrier also fits into our robust IPM framework. And

we can apply our newly developed low-rank update and amortization techniques in

the log barrier case to efficiently implement the SDP solver based on hybrid barrier.

The informal version of our result is stated in below.

470

Theorem 9.4 (Informal version of Theorem 9.58). There is an SDP algorithm based

on hybrid barrier which takes (mn)1/4 log(1/ϵ) iterations with cost-per-iteration O∗ (m2nω +m4).

In particular, our algorithm improves [Ans00] in nearly all parameter regimes.

For example, if m = n2, our new algorithm takes n8.75 time while [Ans00] takes n10.75

time. If m = n, our new algorithm takes nω+2.5 time, while [Ans00] takes n6.5 time.

The hybrid barrier function is as follows:

ϕ(y) := 225

√
n

m
·
(
ϕvol(y) +

m− 1

n− 1
· ϕlog(y)

)
,

where ϕvol(y) =
1
2
log det(∇2ϕlog(y)). According to our general IPM framework (Al-

gorithm 40), we need to efficiently compute the gradient and Hessian of ϕ(y). Recall

from [Ans00] that the gradient of the volumetric barrier is:

(∇ϕvol(y))i = −tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤] ∀i ∈ [m].

And the Hessian can be written as ∇2ϕvol(y) = 2Q(S)+R(S)−2T (S), where for any

i, j ∈ [m],

Q(S)i,j = tr[H(S)−1A(S−1AiS
−1AjS

−1 ⊗S S−1)A⊤],

R(S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1AjS−1)A⊤], (9.5)

T (S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1)A⊤H(S)−1A(S−1AjS

−1 ⊗S S−1)A⊤].

Here, ⊗S is the symmetric Kronecker product9.

A straight-forward implementation of the hybrid barrier-based SDP algorithm

can first compute the matrices S−1Ai and S−1AiS
−1Aj for all i ∈ {1, 2, · · · ,m}

for all j ∈ {1, 2, · · · ,m} in time O(m2nω). The gradient ∇ϕ(y) and the Hes-

sian of ϕlog(y) can be computed by taking traces of these matrices. To compute

∇ϕvol(y), Q(S), R(S), T (S), we observe that each entry of these matrices can be writ-

ten as the inner-product between H(S)−1 and some matrices formed in terms of

9X ⊗S Y := 1
2 (X ⊗ Y + Y ⊗X).

471

tr[S−1AiS
−1AjS

−1Ak] and tr[S−1AiS
−1AjS

−1AkS
−1Al] for i, j, k, l ∈ [m]. Hence, we

can spendO(m4n2)-time computing these traces and then get∇ϕvol(y), Q(S), R(S), T (S)

in O(mω+2)-time. After obtaining the gradient and Hessian of the hybrid barrier

function, we finish the implementation of IPM SDP solver by computing the Newton

direction δy = −(∇2ϕ(y))−1(ηb−∇ϕ(y)). (More details are given in Section E.3).

To speedup the straight forward implementation, we observe two bottleneck

steps in each iteration:

1. Computing the traces tr[S−1AiS
−1AjS

−1AkS
−1Al] for i, j, k, l ∈ [m].

2. Computing the matrices Q(S), R(S), T (S).

To handle the first issue, we use the low-rank update and amortization tech-

niques introduced in the previous section to approximate the change of the slack

matrix S by a low-rank matrix. One challenge for the volumetric barrier is that its

Hessian (Eq. (9.5)) is much more complicated than the log barrier’s Hessian H(S).

For H(S), if we replace S with its approximation S̃, then H(S̃) will be a PSD approx-

imation of H(S). However, this may not hold for the volumetric barrier’s Hessian

if we simply replace all the S in ∇2ϕ(y) by its approximation S̃. We can resolve

this challenge by carefully choosing the approximation place: if we approximate the

second S in the trace, i.e., tr[S−1AiS̃
−1AjS

−1AkS
−1Al], then the resulting matrix

will be a PSD approximation of ∇2ϕ(y). In other words, the Condition 1 in our ro-

bust IPM framework (Lemma 9.2) is satisfied. Notice that in each iteration, we only

need to maintain the change of tr[S−1AiS̃−1AjS−1AkS−1Al], which by the low-rank

guarantee, can be written as

tr[AlS
−1Ai · V3V ⊤4 · AjS−1AkS−1],

where V3, V4 ∈ Rn×rt . Then, we can first compute the matrices

{
AlS

−1AiV3 ∈ Rn×rt
}
i,l∈[m]

and
{
V ⊤4 AjS

−1AkS
−1 ∈ Rrt×n

}
j,k∈[m]

.

472

It takesm2·Tmat(n, n, rt)-time. And we can compute all the traces tr[S−1AiS̃−1AjS−1AkS−1Al]

simultaneously in Tmat(m
2, nrt,m

2) by batching them together and using fast matrix

multiplication on a m2-by-nrt matrix and a nrt-by-m2 matrix. A similar amortized

analysis in the log barrier case can also be applied here to get the amortized cost-

per-iteration for the low-rank update. One difference is that the potential function

Φg(Z) (defined in Section 9.4.3) changes more drastically in the hybrid barrier case.

And we can only get
∑T

t=1 rt · grt ≤ O(T · (n/m)1/4 · ∥g∥2 · log n).

For the second issue, we note that computing the T (S) matrix is the most

time-consuming step, which need mω+2-time. In [Ans00], it is proved that 1
3
Q(S) ⪯

∇2ϕvol(y) ⪯ Q(S). With this PSD approximation, our robust IPM framework en-

ables us to use Q(S) as a “proxy Hessian” of the volumetric barrier. That is, in

each iteration, we only compute Q(S) and ignore R(S) and T (S). And computing

Q(S) only takes O(m4)-time, which improves the mω+2 term in the straight forward

implementation.

Combining them together, we obtain the running time in Theorem 9.4. More

details are provided in Section 9.12.

Lee-Sidford barrier for SDP? In LP, the hybrid barrier was improved by Lee and

Sidford [LS19] to achieve O∗(
√

min{m,n}) iterations. For SDP, we hope to design a

barrier function with O∗(
√
m) iterations. However, the Lee-Sidford barrier function

does not have a direct correspondence in SDP due to the following reasons. First,

[LS19] defined the barrier function in the dual space of LP which is a polyhedron,

while for SDP, the dual space is a spectrahedron. Thus, the geometric intuition of the

Lee-Sidford barrier (John’s ellipsoid) may not be helpful to design the corresponding

barrier for SDP. Second, efficient implementation of Lee-Sidford barrier involves a

primal-dual central path method [BLSS20]. However, the cost of following primal-

dual central path in SDP is prohibitive since this involves solving Lyapunov equations

in Rn×n. Third, the Lewis weights play an important role in the Lee-Sidford barrier.

473

Notice that in LP, the volumetric barrier can be considered as reweighing the con-

straints in the log barrier based on the leverage score, and the Lee-Sidford barrier uses

Lewis weights for reweighing to improve the volumetric barrier. However, in SDP,

we have observed that the leverage score vector becomes the leverage score matrix.

Thus, we may need some matrix version of Lewis weights to define the Lee-Sidford

barrier for SDP. Section E.4 studies several properties of the leverage score matrix

and give an algorithm to efficiently maintain this matrix in each iteration of the IPM,

which might be the first step towards improving the SDP hybrid barrier.

9.6 Related Work

Other SDP solvers. The interior point method is a second-order algorithm. Second-

order algorithms usually have logarithmic dependence on the error parameter 1/ϵ.

First-order algorithms do not need to use second-order information, but they usually

have polynomial dependence on 1/ϵ. There is a long list of work focusing on first-order

algorithms [AK07, JY11, ALO16, GH16, AZL17, CDST19, LP20a, YTF+19, JLL+20].

Solving SDPs has also attracted attention in the parallel setting [JY11, JY12, ALO16,

JLL+20].

Cutting plane method. Cutting plane method is a class of optimization algo-

rithms that iteratively queries a separation oracle to cut the feasible set that contains

the optimal solution. There has been a long line of work to obtain fast cutting

plane methods [Sho77, YN76, Kha80, KTE88, NN89, Vai89a, AV95, BV02, LSW15,

JLSW20].

Low-rank approximation Low-rank approximation is a well-studied topic in nu-

merical linear algebra [Sar06, CW13, BWZ16, SWZ17, SWZ19]. Many different set-

tings of that problem have been studied. In this chapter, we are dealing with Kro-

necker product type low rank approximation.

474

Applications of SDP. As described by [JKL+20], m = Ω(n2) is an essential case

of using SDP to solve many practical combinatorial optimization problems. Here we

provide a list of examples, e.g., the sparsest cut [ARV09], the c-balanced graph sep-

aration problem [FHL08] and the minimum uncut [ACMM05] can be solved by SDP

with m = Ω(n3). The optimal experiment design [VBW98], Haplotype frequencies

estimation [HH06] and embedding of finite metric spaces into ℓ2 [LLR95] need to solve

SDPs with m = Ω(n2).

475

9.7 Preliminary
9.7.1 Notations

Basic matrix notations. For a square matrix X, we use tr[X] to denote the trace

of X.

We use ∥ · ∥2 and ∥ · ∥F to denote the spectral norm and Frobenious norm

of a matrix. Let us use ∥ · ∥1 to represent the Schatten-1 norm of a matrix, i.e.,

∥A∥1 = tr[(A∗A)1/2].

We say a symmetric matrix A ∈ Rn×n is positive semi-definite (PSD, denoted

as A ⪰ 0) if for any vector x ∈ Rn, x⊤Ax ≥ 0. We say a symmetric matrix A ∈ Rn×n

is positive definite (PD, denoted as A ≻ 0) if for any vector x ∈ Rn, x⊤Ax > 0.

We define Sn×n≻0 to be the set of all n-by-n symmetric positive definite matrices.

Let us define Sn×n⪰0 to be the set of all n-by-n symmetric positive semi-definite

matrices.

For a matrix A ∈ Rm×n, we use λ(A) ∈ Rn to denote the eigenvalues of A.

For any vector v ∈ Rn, we use v[i] to denote the i-th largest entry of v.

For a matrix A ∈ Rm×n, and subsets S1 ⊆ [m], S2 ⊆ [n], we define AS1,S2 ∈
R|S1|×|S2| to be the submatrix of A that only has rows in S1 and columns in S2. We

also define AS1,: ∈ R|S1|×n to be the submatrix of A that only has rows in S1, and

A:,S2 ∈ Rm×|S2| to be the submatrix of A that only has columns in S2.

For two symmetric matrices A,B ∈ Rn×n, we say A ⪯ B (or equivalently,

B ⪰ A), if B − A is a PSD matrix.

Fact 9.5 (Spectral norm implies Loewner order). Let A,B ∈ Rn×n be two symmetric

PSD matrices. Then, for any ϵ ∈ (0, 1),
∥∥A−1/2BA−1/2 − I

∥∥
2
≤ ϵ

implies

(1− ϵ)A ⪯ B ⪯ (1 + ϵ)A.

476

Fact 9.6 (Trace property of matrix Loewner order). Given symmetric PSD matrices

A,B ∈ Rn. Suppose (1 + ϵ)−1 · A ⪯ Ã ⪯ (1 + ϵ) · A, then

(1 + ϵ)−1 · tr[AB] ≤ tr[ÃB] ≤ (1 + ϵ) · tr[AB].

Proof. Consider the spectral decomposition of B: B =
∑n

i=1 λiviv
⊤
i where λi ≥ 0.

Then

tr[ÃB] = tr[Ã · (
n∑

i=1

λiviv
⊤
i)]

=
n∑

i=1

λiv
⊤
i Ãvi

≤ (1 + ϵ) · (
n∑

i=1

λiv
⊤
i Avi)

= tr[AB].

Similarly, tr[ÃB] ≥ (1 + ϵ)−1 · tr[AB].

Matrix related operations For two matrices A,B ∈ Rm×n, we define the matrix

inner product ⟨A,B⟩ := tr[A⊤B].

We use vec[] to denote matrix vectorization: for a matrix A ∈ Rm×n, vec[A] ∈
Rmn is defined to be vec[A](j−1)·n+i = Ai,j for any i ∈ [m] and j ∈ [n], i.e.,

vec[A] =

A:,1
...

A:,n

 ∈ Rmn.

We use ⊗ to denote matrix Kronecker product: for matrices A ∈ Rm×n and

B ∈ Rp×q, A ⊗ B ∈ Rpm×qn is defined to be (A ⊗ B)p(i−1)+s,q(j−1)+t = Ai,j · Bs,t for

any i ∈ [m], j ∈ [n], s ∈ [p], [t] ∈ [q], i.e.,

A⊗B =

A1,1 ·B A1,2 ·B . . . A1,n ·B
A2,1 ·B A2,2 ·B · · · A2,n ·B

...
...

Am,1 ·B Am,2 ·B . . . Am,n ·B

 ∈ Rpm×qn.

477

Definition 9.3 (Stacking matrices). Let A1, A2, · · · , Am ∈ Rn×n be m symmetric

matrices. We use A ∈ Rm×n2 to denote the matrix that is constructed by stacking

the m vectorizations vec[A1], · · · , vec[Am] ∈ Rn2 as rows of A, i.e.,

A :=

vec[A1]

⊤

...
vec[Am]

⊤

 ∈ Rm×n2

.

Fact 9.7. For any ϵ1, ϵ2 ∈ (0, 1/10). Let D ∈ Rn×n be a diagonal matrix with non-

negative entries and such that ∥D2 − I∥F ≤ ϵ1. Let X ∈ Rn×n be a matrix that has

bounded norm, e.g., ∥X∥2 ≤ ϵ2. Then

∥DXD −X∥F ≤ 3 · ϵ1 · ϵ2.

Proof. Denote D = diag(σ1, . . . , σn). We have

∥DXD −X∥F ≤ ∥(D − I)X(D − I) + (D − I)X +X(D − I)∥F
≤ ∥(D − I)X(D − I)∥F + 2 · ∥(D − I)X∥F
≤ 3 · ∥(D − I)X∥F
≤ 3 ·

(
tr[(D − I)2X2]

)1/2

≤ 3 ·
(
ϵ22 · tr[(D − I)2]

)1/2

= 3 · ϵ2 ·
(

n∑

i=1

(σi − 1)2

)1/2

≤ 3 · ϵ2 ·
(

n∑

i=1

(σ2
i − 1)2

)1/2

≤ 3 · ϵ2 · ϵ1

where the second step uses triangle inequality, the third step uses −I ⪯ D − I ⪯ I,

the fifth step uses ∥X∥2 ≤ ϵ2, the penultimate step uses σi ≥ 0, and the last step uses

∥D2 − I∥F ≤ ϵ1.

478

9.7.2 Tools: Woodbury identity

We state a common fact on matrix inverse update in [Woo49, Woo50].

Fact 9.8 (Woodbury matrix identity). Given two integers n and k. Let n ≥ k. For

square matrix A ∈ Rn×n, tall matrix B ∈ Rn×k, square matrix C ∈ Rk×k, fat matrix

D ∈ Rk×n,

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1.

9.7.3 Tools: Properties of matrix operations

Fact 9.9 (Matrix inner product). For two matrices A,B ∈ Rm×n, we have ⟨A,B⟩ =
tr[A⊤B] = vec[A]⊤vec[B].

Fact 9.10 (Basic properties of Kronecker product). The Kronecker product ⊗ satisfies

the following properties.

1. For matrices A ∈ Ra×n and B ∈ Rb×m, we have (A⊗B)⊤ = A⊤⊗B⊤ ∈ Rnm×ab.

2. For matrices A ∈ Ra×n, B ∈ Rb×m, C ∈ Rn×c, D ∈ Rm×d, we have (A ⊗ B) ·
(C ⊗D) = (AC ⊗BD) ∈ Rab×cd.

Fact 9.11 (Spectral properties of Kronecker product). The Kronecker product satis-

fies the following spectral properties.

1. For matrices A,B, if A and B are PSD matrices, then A⊗B is also PSD.

2. For two PSD matrices A and B ∈ Rn×n, if A ⪯ B, then A⊗ A ⪯ B ⊗B.

The following result is often used in SDP-related calculations.

Fact 9.12 (Kronecker product and vector multiplication). Given A ∈ Rm×n, B ∈
Rn×k, C ∈ Rk×l, D ∈ Rl×m, we have

479

1. vec[ABC] = (C⊤ ⊗ A) · vec[B].

Note that ABC ∈ Rm×l, C⊤ ⊗ A ∈ Rml×nk, and vec[B] ∈ Rnk.

2. tr[ABCD] = vec[D]⊤ · (C⊤ ⊗ A) · vec[B].

Note that ABCD ∈ Rm×m, vec[D] ∈ Rml, C⊤⊗A ∈ Rml×nk, and vec[B] ∈ Rnk.

We state a standard fact for Kronecker product.

Fact 9.13 (Positive Semidefinite property of Kronecker product). Let m,n denote two

positive integers. Given a matrix A ∈ Rm×n2, let S, S̃ ∈ Rn×n be two PSD matrices.

Define

H := A · (S−1 ⊗ S−1) · A⊤ ∈ Rm×m, and H̃ := A · (S̃−1 ⊗ S̃−1) · A⊤ ∈ Rm×m.

Then, for any accuracy parameter α ≥ 1, if S̃ is an α-PSD approximation of S, i.e.,

α−1S ⪯ S̃ ⪯ αS, then

α−2H ⪯ H̃ ⪯ α2H.

Proof. Given any vector v ∈ Rm, we can write v⊤Hv and v⊤H̃v in the following way:

v⊤Hv =
m∑

i=1

m∑

j=1

vivjHi,j =
m∑

i=1

m∑

j=1

vivjtr[S
−1AiS

−1Aj]

= tr
[
S−1/2

(∑

i∈[m]

viAi

)
S−1

(∑

i∈[m]

viAi

)
S−1/2

]

=

∥∥∥∥∥∥
vec
[
S−1/2

(∑

i∈[m]

viAi

)
S−1/2

]
∥∥∥∥∥∥

2

2

=

∥∥∥∥∥
(
S−1/2 ⊗ S−1/2

)
vec
[m∑

i=1

viAi

]∥∥∥∥∥

2

2

, (9.6)

where the last line follows from Fact 9.12. Similarly,

v⊤H̃v =

∥∥∥∥∥
(
S̃−1/2 ⊗ S̃−1/2

)
vec
[m∑

i=1

viAi

]∥∥∥∥∥

2

2

. (9.7)

480

Since the right hand side of Eq. (9.6) and Eq. (9.7) are non-negative for any v ∈ Rm,

both H and H̃ are PSD matrices.

Since α−1S ⪯ S̃ ⪯ αS, we have

α−1S−1 ⪯ S̃−1 ⪯ αS−1.

By Fact 9.11, it further implies that

α−2S−1 ⊗ S−1 ⪯ S̃−1 ⊗ S̃−1 ⪯ α2S−1 ⊗ S−1.

Let b := vec[
∑m

i=1 viAi]
⊤. We have

∥∥∥
(
S̃−1/2 ⊗ S̃−1/2

)
b
∥∥∥
2

2
= b⊤(S̃−1/2 ⊗ S̃−1/2) · (S̃−1/2 ⊗ S̃−1/2)b

= b⊤(S̃−1 · S̃−1)b

≤ α2 · b⊤(S−1 ⊗ S−1)b

= α2 ·
∥∥∥
(
S−1/2 ⊗ S−1/2

)
b
∥∥∥
2

2
. (9.8)

And
∥∥∥
(
S̃−1/2 ⊗ S̃−1/2

)
b
∥∥∥
2

2
≥ α−2 ·

∥∥∥
(
S−1/2 ⊗ S−1/2

)
b
∥∥∥
2

2
. (9.9)

Combining Eqs. (9.6)-(9.9), we come to

α−2 · v⊤Hv ≤ v⊤H̃v ≤ α2 · v⊤Hv.

Since v can be arbitrarily chosen from Rm, we complete the proof.

We state another fact for Kronecker product in below:

Fact 9.14 (Kronecker product with equivalence for matrix norm). Given a constraint

matrix A ∈ Rm×n2 and vector b ∈ Rm. Let η > 0 denote a parameter. Let g(y, η) ∈ Rm

be defined as

g(y, η)i = ηbi − tr[S−1Ai] ∀i ∈ [m].

481

Let X ∈ Rn×n denote a matrix that

⟨X,Ai⟩ = ηbi ∀i ∈ [m].

Let H := A(S−1 ⊗ S−1)A⊤. If matrix S is a PSD matrix, then we have

g(y, η)⊤H−1g(y, η) = v⊤B⊤(BB⊤)−1Bv,

where v := vec[S1/2XS1/2 − I] ∈ Rn2 and B ∈ Rm×n2 is a matrix that i-th row is

Bi = vec[S−1/2AiS
−1/2] ∈ Rn2

Proof. We start with re-writing g(y, η) ∈ Rm as follows: for each i ∈ [m]

g(y, η)i = biη − tr[S−1Ai]

= tr[XAi]− tr[S−1Ai]

= tr[(X − S−1)Ai]

= tr[S1/2(X − S−1)S1/2 · S−1/2AiS−1/2]

= tr[(S1/2XS1/2 − I) ·Bi].

Thus, using the definition of v, we have

g(y, η) = Bv.

Our next step is to rewrite H as follows: for each i, j ∈ [m]× [m]

Hi,j = tr[AiS
−1AjS

−1]

= tr[S−1/2AiS
−1/2 · S−1/2AjS−1/2]

= tr[Bi ·Bj]

which implies that H = BB⊤.

Thus, combine all the above computations, we have

g(y, η)⊤H−1g(y, η) = v⊤B⊤(BB⊤)−1Bv.

Therefore, we complete the proof.

482

9.7.4 Tools: Fast matrix multiplication

We use Tmat(a, b, c) to denote the time of multiplying an a× b matrix with an-

other b×c matrix. Fast matrix multiplication [Cop82, Wil12, LG14, GU18, CGLZ20,

AW21] is a fundamental tool in theoretical computer science.

For k ∈ R+, we define ω(k) ∈ R+ to be the value such that ∀n ∈ N+,

Tmat(n, n, n
k) = O(nω(k)).

For convenience we define three special values of ω(k). We define ω to be the

fast matrix multiplication exponent, i.e., ω := ω(1). We define α ∈ R+ to be the dual

exponent of matrix multiplication, i.e., ω(α) = 2. We define β := ω(2).

The following fact can be found in Lemma 3.6 of [JKL+20], also see [BCS97].

Fact 9.15 (Convexity of ω(k)). The function ω(k) is convex.

The following fact can be found in Lemma A.5 of [CLS19].

Fact 9.16 (Fast rectangular matrix multiplication). For any two integers r ≤ n, the

time of multiplying an n× n matrix with another n× r

Tmat(n, n, r) ≤ n2 + r
ω−2
1−α · n2−α(ω−2)

(1−α) .

The following fact can be found in Lemma A.4 of [CLS19].

Fact 9.17 (Relation of ω and α). ω−2
1−α − 1 ≤ 0; that is, ω + α ≤ 3.

9.8 Our Algorithm and Result

We state our main result of Algorithm 42 as follows:

Theorem 9.18 (Main result for Algorithm 42). Given symmetric matrices C,A1, · · · , Am ∈
Rn×n, and a vector b ∈ Rm. Define matrix A ∈ Rm×n2 by stacking the m vectors

483

vec[A1], · · · , vec[Am] ∈ Rn2 as rows. Consider the following SDP instance:

max
X∈Rn×n

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, ∀i ∈ [m],

X ⪰ 0,

There is a SDP algorithm (Algorithm 42) that runs in time

O∗
((√

n(m2 + n4) +mω + n2ω
)
· log(1/ϵ)

)
.

and outputs a PSD matrix X ∈ Rn×n that satisfies

⟨C,X⟩ ≥ ⟨C,X∗⟩ − ϵ · ∥C∥2 ·R and
m∑

i=1

|⟨Ai, X⟩ − bi| ≤ 4nϵ ·
(
R

m∑

i=1

∥Ai∥1 + ∥b∥1
)
,

(9.10)

where X∗ is an optimal solution of the SDP instance, and ∥Ai∥1 is the Schatten

1-norm of matrix Ai.

Proof. The correctness (Eq. (9.10)) follows from Theorem 9.20. The running time

follows from Theorem 9.24.

Remark 9.2. For current matrix multiplication time ω ≈ 2.373 ([LG14]), the running

time of our algorithm can be written as

O(max{n2ω,mω} · log(1/ϵ)).

Therefore, when m ≥ n2−0.5/ω ≈ n1.79, we have max{n2ω,mω} ≤ √n ·mω and thus

our algorithm is better than [JKL+20]. For the regimes when m is smaller, we can

apply Algorithm 45-46 in Section 9.12 or Algorithm 1 in [JKL+20].

Corollary 9.19 (Tall SDPs). When m = Ω(n2), we can solve SDP in O(mω ·log(1/ϵ))
time for current ω ≈ 2.373.

484

Proof. When m = Ω(n2), the running time of Theorem 9.18 is

O
(
(m2 · √n+mω + n4.5 + n2ω) · log(1/ϵ)

)
= O((m2 · √n+mω) · log(1/ϵ)).

For current ω ≈ 2.373 , m2 · √n = m2.25 < mω.

Note that the running time of [JKL+20] is O(
√
n · (nω + mω + mn2)) =

O(mω+0.25) when m = Ω(n2).

9.9 Correctness

In this section we prove the correctness of our SDP solver Algorithm 42. In

Section 9.9.1 we prove that S̃ ∈ Rn×n updated by Algorithm 43 is a PSD approxima-

tion to the true slack matrix S ∈ Rn×n. In Section 9.9.2 we prove that the algorithm

maintains G = H̃−1 ∈ Rm×m, and H̃ is a PSD approximation to the true Hessian

matrix H ∈ Rm×m.

Theorem 9.20 (Correctness of Algorithm 42). Consider an SDP instance as in

Definition 9.1 with no redundant constraints. Let us assume that the feasible region

is bounded, i.e., any feasible solution X ∈ Rn×n
⪰0 satisfies ∥X∥2 ≤ R. Then for any

error parameter 0 < ϵ ≤ 0.01 and Newton step size ϵN satisfying
√
ϵ < ϵN ≤ 0.1,

Algorithm 42 outputs, in T = 40ϵ−1N
√
n log(n/ϵ) iterations, a PSD matrix X ∈ Rn×n

⪰0

that satisfies

⟨C,X⟩ ≥ ⟨C,X∗⟩ − ϵ · ∥C∥2 ·R, and∑m
i=1 |⟨Ai, X⟩ − bi| ≤ 4nϵ ·

(
R
∑m

i=1 ∥Ai∥1 + ∥b∥1
)
,

(9.11)

where X∗ is any optimal solution to the SDP instance, and ∥Ai∥1 is the Schatten

1-norm of matrix Ai.

Furthermore, in each iteration of Algorithm 42, the following invariant holds

for αH = 1 + 10−5:

∥S−1/2SnewS−1/2 − I∥F ≤ αH · ϵN . (9.12)

485

Algorithm 42 Our SDP solver with log barrier.

1: procedure SolveSDP(m,n,C, {Ai}mi=1, A ∈ Rm×n2 , b ∈ Rm)
2: ▷ Initialization
3: Construct A ∈ Rm×n2 by stacking m vectors vec[A1], vec[A2], · · · , vec[Am] ∈

Rn2

4: η ← 1
n+2

, T ← 40
ϵN

√
n log(n

δ
)

5: Find initial feasible dual vector y ∈ Rm according to Lemma E.1
6: S ←∑

i∈[m] yi · Ai − C, S̃ ← S ▷ S, S̃ ∈ Rn×n

7: G← (A · (S̃−1 ⊗ S̃−1) · A⊤)−1 ▷ G ∈ Rm×m

8: ▷ Maintain G = H̃−1 where H̃ := A · (S̃−1 ⊗ S̃−1) · A⊤
9: for t = 1→ T do ▷ Iterations of approximate barrier method

10: ηnew ← η · (1 + ϵN
20
√
n
)

11: for j = 1, · · · ,m do
12: gηnew(y)j ← ηnew · bj − tr[S−1 · Aj] ▷ Gradient computation,

gηnew(y) ∈ Rm

13: end for
14: δy ← −G · gηnew(y) ▷ Update on y ∈ Rm

15: ynew ← y + δy
16: Snew ←∑

i∈[m](y
new)i · Ai − C

17: V1, V2 ← LowRankSlackUpdate(Snew, S̃) ▷ V1, V2 ∈ Rn×rt .
Algorithm 43.

18: S̃new ← S̃ + V1V
⊤
2 ▷ Approximate slack computation.

19: V3 ← −S̃−1V1(I + V ⊤2 S̃
−1V1)

−1 ▷ V3 ∈ Rn×rt

20: V4 ← S̃−1V2 ▷ V4 ∈ Rn×rt

21: Y1 ← [(S̃−1/2 ⊗ V3), (V3 ⊗ S̃−1/2), (V3 ⊗ V ⊤3)] ▷ Y1 ∈ Rn2×(2nrt+r2t)

22: Y2 ← [(S̃−1/2 ⊗ V4), (V4 ⊗ S̃−1/2), (V4 ⊗ V ⊤4)] ▷ Y2 ∈ Rn2×(2nrt+r2t)

23: Gnew ← G−G · AY1 · (I + Y ⊤2 A⊤AY1)
−1 · Y ⊤2 A⊤ ·G ▷ Gnew ∈ Rm×m

24: ▷ Hessian inverse computation using Woodbury identity.
25: y ← ynew

26: S ← Snew

27: S̃ ← S̃new

28: G← Gnew ▷ Update variables
29: end for
30: end procedure

Proof. Combining Lemma 9.21 and Lemma 9.22 we have that α−1S S ⪯ S̃ ⪯ αSS for

αS = 1 + 10−5. Therefore condition 1’ in Lemma 9.40 is satisfied by Fact 9.13 and

condition 2 & 3 holds trivially. Notice θϕlog = n. Then directly applying Theorem 9.46

486

Algorithm 43 Low Rank Slack Update

1: procedure LowRankSlackUpdate(Snew, S̃)
2: ▷ Snew, S̃ ∈ Sn×n≥0 are positive definite matrices
3: ϵS ← 10−5 ▷ Spectral approximation constant
4: Zmid ← (Snew)−1/2 · S̃ · (Snew)−1/2 − I
5: Compute spectral decomposition Zmid = U · diag(λ) · U⊤
6: ▷ λ = [λ1, · · · , λn]⊤ ∈ Rn are the eigenvalues of Zmid, and U ∈ Rn×n is

orthogonal
7: Let π : [n]→ [n] be a sorting permutation such that |λπ(i)| ≥ |λπ(i+1)|
8: if |λπ(1)| ≤ ϵS then
9: S̃new ← S̃

10: else
11: r ← 1
12: while r ≤ n/2 and (|λπ(2r)| > ϵS or |λπ(2r)| > (1− 1/ log n)|λπ(r)|) do
13: r ← r + 1
14: end while

15: (λnew)π(i) ←
{
0, if i = 1, 2, · · · , 2r;
λπ(i), otherwise.

16: L← supp(λnew − λ) ▷ |L| = 2r
17: V1 ← ((Snew)1/2 · U · diag(λnew − λ))∗,L ▷ V1 ∈ Rn×2r

18: V2 ← ((Snew)1/2 · U)∗,L ▷ V2 ∈ Rn×2r

19: ▷ V1 · V ⊤2 = (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2

20: end if
21: return S̃new

22: end procedure

completes the proof.

9.9.1 Approximate slack maintenance

The following lemma gives a closed-form formula for the updated S̃new in each

iteration.

Lemma 9.21 (Closed-form formula of slack update). In each iteration of Algo-

487

rithm 42, the update of the slack variable S̃new (on Line 18) satisfies

S̃new = S̃ + (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2,

where S̃ is the slack variable in previous iteration, and U, λ, λnew are defined in Algo-

rithm 43.

Moreover, it implies that S̃new is a symmetric matrix in each iteration.

Proof. From Line 17 and 18 of Algorithm 43 we have V1·V ⊤2 = (Snew)1/2·U ·diag(λnew−
λ) · U⊤ · (Snew)1/2. Therefore

S̃new = S̃ + V1 · V ⊤2 = S̃ + (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2.

In the first iteration, we have S̃ = S which is a symmetric matrix.

By the definition of V1, V2, we know that V1 · V ⊤2 is symmetric. Hence, Snew is

also symmetric in each iteration.

The following lemma proves that we always have S̃ ≈ S throughout the algo-

rithm.

Lemma 9.22 (Approximate Slack). In each iteration of Algorithm 42, the approxi-

mate slack variable S̃ satisfies that α−1S S ⪯ S̃ ⪯ αSS, where αS = 1 + 10−5.

Proof. Notice that

S̃new = S̃ + (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2

=
(
Snew + (Snew)1/2Zmid(Snew)1/2

)
+ (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2

= Snew + (Snew)1/2 · U · diag(λnew) · U⊤ · (Snew)1/2,

where the first step comes from Lemma 9.21, the second step comes from definition

Zmid = (Snew)−1/2 · S̃ · (Snew)−1/2 − I (Line 4 of Algorithm 43), and the final step

comes from Zmid = U · diag(λ1, · · · , λn) · U⊤ (Line 5 of Algorithm 43).

488

By Line 15 of Algorithm 43 we have (λnew)i ≤ ϵS for all i ∈ [n], so
∥∥∥(Snew)−1/2 · S̃new · (Snew)−1/2 − I

∥∥∥
2
=
∥∥U · diag(λnew) · U⊤

∥∥
2
≤ ϵS.

This implies that for αS = 1 + ϵS, by Fact 9.5, in each iteration of Algorithm 42 the

slack variable S̃ satisfies α−1S S ⪯ S̃ ⪯ αSS.

9.9.2 Approximate Hessian inverse maintenance

The following lemma shows that the maintained matrix G equals to the inverse

of approximate Hessian.

Lemma 9.23 (Close-form formula for Hessian inverse). In each iteration of Algo-

rithm 42, we have G = H̃−1 ∈ Rm×m, where H̃ := A · (S̃−1 ⊗ S̃−1) · A⊤ ∈ Rm×m.

Proof. We prove this lemma by induction.

In the beginning of the algorithm, the initialization of G (Line 7 of Algo-

rithm 42) satisfies the formula G = H̃−1.

Assume the induction hypothesis that G = H̃−1 in the beginning of each

iteration, next we will prove that Gnew = (H̃new)−1. Note that Gnew is updated on

Line 23 of Algorithm 42. And H̃new := A · ((S̃new)−1 ⊗ (S̃new)−1) · A⊤ ∈ Rm×m, where

S̃new is updated on Line 18 of Algorithm 42.

We first compute (S̃new)−1 ∈ Rn×n:

(S̃new)−1 = (S̃ + V1V
⊤
2)−1

= S̃−1 − S̃−1V1 · (I + V ⊤2 S̃
−1V1)

−1 · V ⊤2 S̃−1

= S̃−1 + V3 · V ⊤4 , (9.13)

where the reason of the first step is S̃new = S̃ + V1V
⊤
2 (Line 18 of Algorithm 42),

the second step follows from Woodbury identity (Fact 9.8), and the third step follows

from V3 = −S̃−1V1(I + V ⊤2 S̃
−1V1)

−1 ∈ Rn×rt and V4 = S̃−1V2 ∈ Rn×rt (Line 19 and

20 of Algorithm 42).

489

We then compute a close-form formula of (S̃new)−1 ⊗ (S̃new)−1 ∈ Rn2×n2 :

(S̃new)−1 ⊗ (S̃new)−1

= (S̃−1 + V3V
⊤
4)⊗ (S̃−1 + V3V

⊤
4)

= S̃−1 ⊗ S̃−1 + S̃−1 ⊗ (V3V
⊤
4) + (V3V

⊤
4)⊗ S̃−1 + (V3V

⊤
4)⊗ (V3V

⊤
4)

= S̃−1 ⊗ S̃−1 + (S̃−1/2 ⊗ V3) · (S̃−1/2 ⊗ V ⊤4) + (V3 ⊗ S̃−1/2) · (V ⊤4 ⊗ S̃−1/2)

+ (V3 ⊗ V3) · (V ⊤4 ⊗ V ⊤4)

= S̃−1 ⊗ S̃−1 + Y1Y
⊤
2 , (9.14)

where the first step follows from Eq. (9.13), the second step follows from linearity of

Kronecker product, the third step follows from mixed product property of Kronecker

product (Part 2 of Fact 9.10), the fourth step follows from Y1 = [(S̃−1/2 ⊗ V3), (V3 ⊗
S̃−1/2), (V3 ⊗ V ⊤3)] ∈ Rn2×(2nrt+r2t) and Y2 = [(S̃−1/2 ⊗ V4), (V4 ⊗ S̃−1/2), (V4 ⊗ V ⊤4)] ∈
Rn2×(2nrt+r2t) (Line 21 and 22 of Algorithm 42), and the transpose of Kronecker prod-

uct (Part 1 of Fact 9.10).

Thus we can compute (H̃new)−1 ∈ Rm×m as follows:

(H̃new)−1 =
(
A ·
(
(S̃new)−1 ⊗ (S̃new)−1

)
· A⊤

)−1

=
(
A · (S̃−1 ⊗ S̃−1) · A⊤ + A · Y1Y ⊤2 · A⊤

)−1

= G−G · AY1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 A⊤ ·G

= Gnew, (9.15)

where the first step follows from the definition of H̃new, the second step follows from

Eq. (9.14), the third step follows from Woodbury identity (Fact 9.8) and the induction

hypothesis that G = H̃−1 = (A · (S̃−1⊗ S̃−1) ·A⊤)−1 ∈ Rm×m, the fourth step follows

from the definition of Gnew on Line 23 of Algorithm 42.

The proof is then completed.

490

9.10 Time Analysis

In this section we analyze the running time of Algorithm 42. We first present

the main theorem.

Theorem 9.24 (Running time of Algorithm 42). Algorithm 42 runs in time

O∗
(
(m2 · √n+mω + n4.5 + n2ω) · log(1/ϵ)

)
.

Specifically, when m ≥ n2 the total running time is

O∗
(
(mω +m2 · √n) · log(1/ϵ)

)
.

Proof. The running time of Algorithm 42 consists of two parts:

1. Initialization. O(Tmat(m,n
2, n2) + mω) ≤ O∗(n2ω + mω) time from

Lemma 9.25.

2. Cost of T iterations.

T∑

t=1

(
Tmat(m,n

2, nrt) + Tmat(m,m, nrt) + (nrt)
ω +m2 +mn2

)

≤ T ·O(m2 + n4 + n2ω−1/2 +m2−α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2)

= O∗
(
(m2 · √n+ n4.5 + n2ω +m2−α(ω−2)

1−α · n
2(ω−2)
1−α) · log(1/ϵ)

)

≤ O∗
(
(m2 · √n+ n4.5 + n2ω +mω) · log(1/ϵ)

)

where the first step follows from Lemma 9.26, the second step follows from Lemma 9.33

and mn2 ≤ O(m2 + n4), the third step follows from T = O(
√
n log(1/ϵ)), the fourth

step follows from the inequalities in two cases:

m2−α(ω−2)
1−α · n

2(ω−2)
1−α ≤

{
(n2)2−

α(ω−2)
1−α · n

2(ω−2)
1−α = n2ω when m ≤ n2,

m2−α(ω−2)
1−α · (m1/2)

2(ω−2)
1−α = mω when m > n2.

Adding the costs of these two parts completes the proof.

This section is organized as follows:

491

• Section 9.10.1 provides the analysis of initialization cost (Lemma 9.25).

• Section 9.10.2 studies the cost per iteration of our algorithm (Lemma 9.26).

• Section 9.10.3 present the property of low rank update (Theorem 9.29).

• Section 9.10.4 use the tools of Section 9.10.3 to bound the amortized cost of our

algorithm (Lemma 9.33).

Sec. Statement Time Comment
9.10.1 Lem 9.25 Tmat(m,n

2, n2) +mω Initialization
9.10.2 Lem 9.26 Tmat(m,n

2, nrt) + Tmat(m,m, nrt) + (nrt)
ω +m2 +mn2 Cost per iteration

9.10.4 Lem 9.33 m2 + n4 + n2ω−1/2 +m2−α(ω−2)
1−α · n

2(ω−2)
1−α Amortized cost

Table 9.1: Summary of Section 9.10.

9.10.1 Initialization cost

The goal of this section is to prove Lemma 9.25.

Lemma 9.25 (Initialization cost). Initialization of Algorithm 42 (Line 3 to 7) takes

time

O(Tmat(m,n
2, n2) +mω).

Proof. We compute the cost of each line during initialization.

• Line 3 of Algorithm 42. Constructing A ∈ Rm×n2 by stacking vectors takes

O(mn2) time.

• Line 6 of Algorithm 42. Computing S =
∑

i∈[m] yi · Ai − C takes O(mn2)

time.

• Line 7 of Algorithm 42. This step computes G = (A ·(S̃−1⊗S̃−1) ·A⊤)−1. We

first compute S̃−1 ⊗ S̃−1 ∈ Rn2×n2 , which takes O(n4) time. We then compute

A · (S̃−1 ⊗ S̃−1) · A⊤, which takes O(Tmat(m,n
2, n2) + Tmat(m,n

2,m)) time.

492

Finally computing the inverse takes O(mω) time. Since n4 ≤ Tmat(m,n
2, n2) and

Tmat(m,n
2,m) ≤ Tmat(m,n

2, n2) +mω, this step takes O(Tmat(m,n
2, n2) +mω)

time in total,

Combining the cost of these three steps, and since mn2 ≤ Tmat(m,n
2, n2), we have

the total cost as presented in the lemma statement.

9.10.2 Cost per iteration

The goal of this section is to prove Lemma 9.26.

Lemma 9.26 (Cost per iteration). For t ∈ [T], let rt be the rank of the update in the

t-th iteration of Algorithm 42. The t-th iteration takes time

O(Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω +m2 +mn2).

Proof. We compute the cost of each line of Algorithm 42 in the t-th iteration.

Line 12 of Algorithm 42: gradient computation, O(mn2) time.

This step computes gηnew(y)j ← ηnew · bj − tr[S−1 · Aj].

Computing one tr[S−1 ·Aj] takes n2 time, and computing all traces for j ∈ [m]

takes mn2 time.

Line 14 of Algorithm 42: δy computation, O(m2) time.

This step computes δy ← −(H̃new)−1 · gηnew(y).

Computing the matrix vector multiplication of H̃(y)−1 ∈ Rm×m with gηnew(y) ∈
Rm takes O(m2) time.

Line 16 of Algorithm 42: Snew computation, O(mn2) time.

This step computes Snew ←∑
i∈[m](y

new)iAi − C.

Brute-forcely adding all (ynew)iAi ∈ Rn×n takes mn2 time.

Line 17-18 of Algorithm 42: S̃new computation, O(nω) time.

493

Line 17 makes a call to procedure LowRankSlackUpdate, and this takes

O(ω) time by Lemma 9.27.

Line 18 computes S̃new ← S̃ + V1V
⊤
2 , which takes O(Tmat(n, rt, n)) ≤ O(nω)

time.

Line 19-23 of Algorithm 42: Hessian inverse computation, O(Tmat(m,n
2, nrt)+

Tmat(m,m, nrt) + (nrt)
ω) time.

Computing V3, V4 ∈ Rn×rt on Line 19 and 20 takes O(nω) time.

Computing Y1, Y2 ∈ Rn2×(2nrt+r2t) on Line 21 and 22 takes the same time as

the output size: O(n3 · rt).

We compute Gnew ← G−G ·AY1 · (I + Y ⊤2 A⊤AY1)
−1 · Y ⊤2 A⊤ ·G on Line 23 in

the following order:

1. Compute AY1,AY2 ∈ Rm×(2nrt+r2t) in O(Tmat(m,n
2, nrt)) time since A ∈ Rm×n2

and Y1, Y2 ∈ Rn2×(2nrt+r2t).

2. Compute I + (Y ⊤2 A⊤) · (AY1) ∈ R(2nrt+r2t)×(2nrt+r2t) in O(Tmat(nrt,m, nrt)) time.

Then compute the inverse (I+Y ⊤2 A⊤ ·AY1)−1 ∈ R(2nrt+r2t)×(2nrt+r2t) in O((nrt)ω)

time.

3. Compute G · AY1 ∈ Rm×(2nrt+r2t) in O(Tmat(m,m, nrt)) time since G ∈ Rm×m

and AY1 ∈ Rm×(2nrt+r2t).

4. Finally computeGAY1·(I+Y ⊤2 A⊤·AY1)−1·Y ⊤2 A⊤G ∈ Rm×m inO(Tmat(m,nrt,m))

time.

Thus in total computing Gnew takes O(Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω)

time.

Combined. Combining the time of the four steps on Line 12, 23, 14, and 16

494

of Algorithm 42, it is easy to see that the t-th iteration takes time

Time per iteration

= Line 12 + Line 14 + Line 16 + Line 17-18 + Line 19-23

= O(mn2)︸ ︷︷ ︸
Line 12

+O(m2)︸ ︷︷ ︸
Line 14

+O(mn2)︸ ︷︷ ︸
Line 16

+ O(nω)︸ ︷︷ ︸
Line 17-18

+Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω

︸ ︷︷ ︸
Line 19-23

= O
(
Tmat(m,n

2, nrt) + Tmat(m,m, nrt) + (nrt)
ω +m2 +mn2

)
.

Thus, we complete the proof.

Lemma 9.27 (Cost of LowRankSlackUpdate (Algorithm 43)). A call to proce-

dure LowRankSlackUpdate (Algorithm 43) takes O(nω) time.

Proof. In procedure LowRankSlackUpdate, the most time-consuming step is to

compute the spectral decomposition of Zmid ∈ Rn×n, and this takes O(nω) time.

9.10.3 Property of low rank update

The goal of this section is to prove Theorem 9.29.

We first make the following definitions.

Definition 9.4 (Potential function). Let g ∈ Rn
+ be a non-increasing vector. For any

matrix Z ∈ Rn×n, let |λ(Z)|[i] to denote the i-th largest absolute eigenvalue of Z. We

define a potential function Φg : Rn×n → R+,

Φg(Z) :=
n∑

i=1

gi · |λ(Z)|[i].

In the t-th iteration of Algorithm 42, let S, S̃ ∈ Rn×n be the slack matrix and

the approximate slack matrix in the beginning of the iteration, and let Snew, S̃new be

the updated matrices. We define the following matrices to capture their differences.

495

Definition 9.5 (Difference matrices). Define the following matrices Z,Zmid, Znew ∈
Rn×n:

Z := S−1/2 · S̃ · S−1/2 − I,

Zmid := (Snew)−1/2 · S̃ · (Snew)−1/2 − I,

Znew := (Snew)−1/2 · S̃new · (Snew)−1/2 − I.

Assumption 9.28 (Closeness of Snew and S̃ from S). We make the following two

assumptions about S, S̃, Snew ∈ Rn×n:

1. ∥S−1/2 · Snew · S−1/2 − I∥F ≤ 0.02,

2. ∥S−1/2 · S̃ · S−1/2 − I∥2 ≤ 0.01.

Next we present the main theorem of this section.

Theorem 9.29 (General amortized guarantee). Let T denote the total number of

iterations in Algorithm 42. Let rt denote the rank of the update matrices V1, V2 ∈
Rn×rt generated by Algorithm 43 in the t-th iteration. The ranks rt’s satisfy the

following condition: for any vector g ∈ Rn
+ which is non-increasing, we have

T∑

t=1

rt · grt ≤ O(T · ∥g∥2 · log n).

Proof. Part 1 of Assumption 9.28 is proved in Theorem 9.20, and Part 2 of Assump-

tion 9.28 is proved in Lemma 9.22. Thus we can use Lemma 9.31.

Combining Lemma 9.31 and Lemma 9.32, we have

Φg(Z
new)− Φg(Z) = (Φg(Z

mid)− Φg(Z))− (Φg(Z
mid)− Φg(Z

new))

≤ ∥g∥2 −
ϵS

10 log n
· rt · grt .

496

With an abuse of notation, we denote the matrix Z in the t-th iteration as Z(t). Since

in the beginning Φg(Z
(0)) = 0 and Φg(Z

(T)) ≥ 0, we have

0 ≤ Φg(Z
(T))− Φg(Z

(0))

≤
T∑

t=1

(Φg(Z
(t))− Φg(Z

(t−1)))

≤ T · ∥g∥2 −
ϵS

10 log n
·

T∑

t=1

rt · grt .

This completes the proof.

9.10.3.1 S move

Lemma 9.30 (Eigenvalue change). Let matrices Z,Zmid ∈ Rn×n be defined as in

Definition 9.5. Under Assumption 9.28, we have
n∑

i=1

(λ(Z)[i] − λ(Zmid)[i])
2 ≤ 10−3,

where λ(Z)[i] denotes the i-th largest eigenvalue of Z.

Proof. We notice

∥S1/2(Snew)−1S1/2 − I∥2F = ∥ν−1 − 1n∥22

where {νi}i∈[n] are the eigenvalues of S−1/2SnewS−1/2. By Assumption 9.28, we have

max
i∈[n]
|vi − 1| ≤ 0.02,

which implies that mini∈[n] vi ≥ 0.98.

Assumption 9.28 also gives

∥ν − 1n∥22 ≤ 0.0004.

Then, we have

∥ν−1 − 1n∥22 ≤ 5× 10−4. (9.16)

497

Define F := (Snew)−1/2S1/2 and F = UDV ⊤ be its SVD decomposition. Let

Z ′ := V ⊤ZV . Notice that

Zmid = FZF⊤ + FF⊤ − I.

Combining with Eq. (9.16),
n∑

i=1

(λ(Znew)[i] − λ(FZF⊤)[i])2 ≤ ∥Zmid − FZF⊤∥2F

= ∥FF⊤ − I∥2F
= ∥ν−1 − 1n∥22
≤ 5× 10−4.

Since ∥D2 − I∥2F = ∥FF⊤ − I∥2F ≤ 5 · 10−4 and ∥Z ′∥2 = ∥Z∥2 ≤ 0.01, Fact 9.7 gives
n∑

i=1

(λ(Z)[i] − λ(FZF⊤)[i])2 =
n∑

i=1

(λ(Z)[i] − λ(DZ ′D)[i])
2

≤ ∥DZ ′D − Z ′∥2F
≤ 10−5.

Combining the above inequalities, we have
n∑

i=1

(λ(Z)[i] − λ(Zmid)[i])
2 ≤ 10−3.

The following lemma upper bounds the increase in potential when S changes

to Snew.

Lemma 9.31 (S move). Consider the t-th iteration. Let matrices Z,Zmid ∈ Rn×n

be defined as in Definition 9.5. Let g ∈ Rn
+ be a non-increasing vector, and let

Φg : Rn×n → R+ be defined as in Definition 9.4.

Under Assumption 9.28, we have

Φg(Z
mid)− Φg(Z) ≤ ∥g∥2.

498

Proof. Let π : [n]→ [n] be a sorting permutation such that |λ(Zmid)π(1)| ≥ |λ(Zmid)π(2)| ≥
· · · ≥ |λ(Zmid)π(n)|, i.e., |λ(Zmid)π(i)| = |λ(Zmid)|[i]. Then we have

Φg(Z
mid) =

n∑

i=1

gi · |λ(Zmid)π(i)|

≤
n∑

i=1

gi · |λ(Z)π(i)|+
n∑

i=1

gi · |λ(Zmid)π(i) − λ(Z)π(i)|

≤
∑

i∈[n]

gi · |λ(Z)|[i] +
∑

i∈[n]

gi · |λ(Zmid)π(i) − λ(Z)π(i)|

≤
∑

i∈[n]

gi · |λ(Z)|[i] +
(∑

i∈[n]

g2i

)1/2
·
(∑

i∈[n]

|λ(Zmid)π(i) − λ(Z)π(i)|2
)1/2

≤ Φg(Z) + ∥g∥2

where the first step follows from the definition of Φg (Definition 9.4) and π, the

second step follows from triangle inequality, the third step follows from g ∈ Rn
+ is

non-increasing and |λ(Z)|[i] is the i-th largest absolute eigenvalue of Z, the fourth

step follows from Cauchy-Schwarz inequality, the last step follows from definition of

Φg and Lemma 9.30.

Thus we have Φg(Z
mid)− Φg(Z) ≤ ∥g∥2.

9.10.3.2 S̃ move

The following lemma lower bounds the decrease in potential when S̃ is updated

to S̃new.

Lemma 9.32 (S̃ move). Consider the t-th iteration. Let matrices Zmid, Znew ∈ Rn×n

be defined as in Definition 9.5. Let g ∈ Rn
+ be a non-increasing vector, and let

Φg : Rn×n → R+ be defined as in Definition 9.4.

Let rt denote the rank of the update matrices V1, V2 ∈ Rn×rt generated by

Algorithm 43 in the t-th iteration. We have

Φg(Z
mid)− Φg(Z

new) ≥ ϵS
10 log n

· rt · grt .

499

Proof. Note that rt = 2r, where r is the variable of Algorithm 43. We define λ ∈ Rn

and U ∈ Rn×n (Line 5), π : [n] → [n] (Line 7) and λnew ∈ Rn (Line 15) to be the

same as Algorithm 43. We extend the definition and let λπ(i) = 0 for i > n. We have

Znew = (Snew)−1/2 · S̃new · (Snew)−1/2 − I

= (Snew)−1/2 ·
(
S̃ + (Snew)1/2 · U · diag(λnew − λ) · U⊤ · (Snew)1/2

)
· (Snew)−1/2 − I

= Zmid + U · diag(λnew − λ) · U⊤

= U · diag(λnew) · U⊤

where the first step follows from definition of Znew (Definition 9.5), the second step

follows from closed-form formula of S̃new (Lemma 9.21), the third step follows from

definition of Zmid (Definition 9.5), the fourth step follows from Zmid = U ·diag(λ) ·U⊤

(Line 5 of Algorithm 43).

Thus from the definition of Φg (Definition 9.4), we have

Φg(Z
mid) =

n∑

i=1

gi · |λπ(i)|, Φg(Z
new) =

n∑

i=1

gi · |λπ(2r+i)|. (9.17)

We consider two different cases of the outcome of the while-loop on Line 12 of

Algorithm 43.

Case 1. No i ≤ n/2 satisfies both |λπ(2i)| ≤ ϵS and |λπ(2i)| ≤ (1 −
1/ log n)|λπ(i)|.

In this case, the while-loop exits with r = n/2, and hence rt = 2r = n. Thus

using Eq. (9.17) we have Φg(Z
new) = 0. We consider two sub-cases.

• Case 1(a). For all i ∈ [n], |λπ(i)| > ϵS.

500

In this case we have

Φg(Z
mid)− Φg(Z

new) =
n∑

i=1

gi · |λπ(i)| − 0

≥ n · gn · ϵS
= ϵS · rt · grt .

• Case 1(b). There exists a minimum i∗ ≤ n/2 such that |λπ(2i)| ≤ ϵS for

all i ≥ i∗.

The condition of Case 1 and Case 1(b) means that for all i ≥ i∗, we must have

|λπ(2i)| > (1 − 1/ log n)|λπ(i)|. And since i∗ is the minimum index such that

|λπ(2i∗)| ≤ ϵS, we have |λπ(i∗)| > ϵS. Thus we have

|λπ(n)| > (1− 1/ log n)|λπ(n/2)| > · · · > (1− 1/ log n)log(n/i
∗)|λπ(i∗)| ≥

1

e
· |λπ(i∗)| ≥

ϵS
e
.

So we have

Φg(Z
mid)− Φg(Z

new) =
n∑

i=1

gi · |λπ(i)| − 0

≥ n · gn · |λπ(n)|

=
ϵS
e
· rt · grt .

Case 2. There exists a minimum r ≤ n/2 such that both |λπ(2r)| ≤ ϵS

and |λπ(2r)| ≤ (1− 1/ log n)|λπ(r)| are satisfied.

This r is the outcome of the while-loop in Algorithm 43. Next we prove

|λπ(r)| ≥ ϵS
e
.

Let i∗ ≤ n/2 be the minimum index such that |λπ(2i)| ≤ ϵS for all i ≥ i∗.

Note that this implies |λπ(i∗)| > ϵS. We have r ≥ i∗ since |λπ(2r)| ≤ ϵS and i∗ is the

minimum such index. Hence |λπ(2i)| > (1− 1/ log n)|λπ(i)| for all i ∈ [i∗, r).

If r/2 ≤ i∗, we have |λπ(r)| = |λπ(2(r/2))| ≥ ϵS. If r/2 ≥ i∗, we have

|λπ(r)| > (1− 1/ log n)|λπ(r/2)| > · · · > (1− 1/ log n)log(r/i
∗)|λπ(i∗)| ≥

1

e
· |λπ(i∗)| ≥

ϵS
e
.

501

Thus we have |λπ(r)| ≥ ϵS
e

in either cases.

We have

1. ∀i ≤ r, |λπ(i)| ≥ |λπ(r)| ≥
ϵS
e
, 2. ∀i ≥ 2r, |λπ(i)| ≤ |λπ(2r)| ≤ (1− 1/ log n)|λπ(r)|.

(9.18)

Thus we can bound the potential decrease as follows:

Φg(Z
mid)− Φg(Z

new) ≥
r∑

i=1

gi · (|λπ(i)| − |λπ(i+2r)|)

≥
r∑

i=1

gi · (|λπ(r)| − |λπ(2r)|)

≥
r∑

i=1

gi ·
1

log n
|λπ(r)|

≥ rt · grt ·
ϵS

2e log n
,

where the first step follows from Eq. (9.17), the second step follows from |λπ(i)| is

decreasing, the third follows from Part 2 of Eq. (9.18), the fourth step follows from

Part 1 of Eq. (9.18), rt = 2r, and that g is non-increasing.

9.10.4 Amortized analysis

The goal of this section is to prove Lemma 9.33 using Lemma 9.34.

Lemma 9.33 (Amortization of Hessian computation). Let T denote the total number

of iterations in Algorithm 42. For t ∈ [T], the cost of Hessian computation in the t-th

iteration can be amortized as follows:

T∑

t=1

(Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω)

≤ T ·O∗(m2 + n4 + n2ω−1/2 +m2−α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2).

Proof. We have (nrt)
ω ≤ Tmat(n

2, n2, nrt), and Tmat(m,n
2, nrt) ≤ Tmat(m,m, nrt) +

502

Tmat(n
2, n2, nrt), thus we can bound the cost of hessian computation as

Tmat(m,n
2, nrt) + Tmat(m,m, nrt) + (nrt)

ω ≤ Tmat(m,m, nrt) + Tmat(n
2, n2, nrt).

(9.19)

From Theorem 9.29 we know that for any vector g ∈ Rn
+ which is non-

increasing, we have
∑T

t=1 rt · grt ≤ O(T · ∥g∥2 · log n), so we can use Lemma 9.34:

T∑

t=1

Tmat(m,m, nrt) ≤ O∗(m2 +m2−α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2) when m ≥ n2,

T∑

t=1

Tmat(n
2, n2, nrt) ≤ O∗(n4 + n4− 2α(ω−2)

1−α · n
2(ω−2)
1−α

−1/2) = O∗(n4 + n2ω−1/2).

Combining these two inequalities and Eq. (9.19) completes the proof.

Lemma 9.34 (Helpful lemma for amortization of Hessian computation). Let T denote

the total number of iterations. Let rt ∈ [n] be the rank for the t-th iteration for

t ∈ [T]. Assume rt satisfies the following condition: for any vector g ∈ Rn
+ which is

non-increasing, we have

T∑

t=1

rt · grt ≤ O(T · ∥g∥2).

If the cost in the t-th iteration is O(Tmat(d, d, nrt)) where d = Ω(n2) is an

integer, then the amortized cost per iteration is

O∗
(
d2 + d2−

α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2).

Proof. Let ω be the matrix multiplication exponent, let α be the dual matrix mul-

tiplication exponent, and let β = ω(2) (see Section 9.7.4 for more details). Since

d ≥ n2 ≥ nrt, we have

Tmat(d, d, nrt) ≤ d2 + (nrt)
ω−2
1−α · d2−

α(ω−2)
1−α

= d2 + d2−
α(ω−2)
1−α · nω−2

1−α · r
ω−2
1−α

t , (9.20)

503

where we use Fact 9.16 in the first step.

Define g ∈ Rn
+ such that ∀r ∈ [n], gr = r

ω−2
1−α
−1. We observe that g is a non-

increasing vector because ω−2
1−α − 1 ≤ 0 (Fact 9.17). Then using the condition in the

lemma statement, we have

T∑

t=1

r
ω−2
1−α

t =
T∑

t=1

rt · grt

≤ T · ∥g∥2
≤ T ·

(∫ n

x=1

x
2(ω−2)
1−α

−2dx
)1/2

= T ·O(n
(ω−2)
1−α

−1/2), (9.21)

where the first step follows from the definition that gr = r
ω−2
1−α
−1, ∀r ∈ [n], the

second step follows from the assumption
∑T

t=1 rt · grt ≤ T · ∥g∥2 in the lemma state-

ment, the third step follows from upper bounding the ℓ2 norm ∥g∥22 =
∑n

r=1 g
2
r =

∑n
r=1 r

2(ω−2)
1−α

−2 ≤
∫ n
x=1

x
2(ω−2)
1−α

−2 and the last step follows from computing the integral
∫ n
x=1

x
2(ω−2)
1−α

−2 = c · x
2(ω−2)
1−α

−1∣∣n
1
= O(n

2(ω−2)
1−α

−1) where c := 1/(2(ω−2)
1−α − 1).

Thus we have

T∑

t=1

Tmat(d, d, nrt) ≤
T∑

t=1

(
d2 + d2−

α(ω−2)
1−α · nω−2

1−α · r
ω−2
1−α

t

)

= T · d2 + d2−
α(ω−2)
1−α · nω−2

1−α ·
T∑

t=1

r
ω−2
1−α

t

≤ T · d2 + d2−
α(ω−2)
1−α · nω−2

1−α · T ·O(n
(ω−2)
1−α

−1/2)

= T ·O(d2 + d2−
α(ω−2)
1−α · n

2(ω−2)
1−α

−1/2).

where the first step follows from Eq. (9.20), the second step follows from moving

summation inside, the third step follows from Eq. (9.21), and the last step follows

from adding the terms together.

Thus, we complete the proof.

504

9.11 The Robust Interior Point Method Framework For SDP

One of the contributions in this chapter is a more robust interior point method

framework that allows errors in the Hessian matrices, the gradient vectors, and the

Newton steps. We will first introduce the necessary backgrounds and definitions in

Section 9.11.1. Then we will perform the one step error analysis based on Newton

decrements in Section 9.11.2. We also list the corresponding error analysis in previous

framework for comparison. In Section 9.11.3-9.11.5, we prove several supporting

Lemmata that are used in the proof of Section 9.11.2. In Section 9.11.6, we include

several classical results that bound the duality gap by the Newton decrements and

provide the proofs. Finally, we state the main result in Section 9.11.7.

9.11.1 Definitions

We start with some definitions.

Definition 9.6. Let C ∈ Rn×n. Let A ∈ Rm×n2 denote the matrix where the i-th

row matrix Ai ∈ Rn×n. Consider a barrier function ϕ : Rm 7→ R defined on the dual

space {y ∈ Rm :
∑m

i=1 yiAi − C ⪰ 0}.

We define function S : Rm → Rn×n such that

S(y) =
m∑

i=1

yi · Ai − C.

We define function ∇2ϕ : Rm → Rm×m that maps the dual variable to the Hessian

matrix of barrier function ϕ. Notice ∇2ϕ = ∇2fη for the regularized objective fη(y)

in Eq. (9.3), since fη adds ϕ with a linear function of y. In particular, for logarithmic

barrier:

∇2ϕ(y) = A · (S(y)−1 ⊗ S(y)−1) · A⊤.

We abuse the notation of ∇2ϕ and also write ∇2ϕ : Rn×n → Rm×m as a function of

the slack matrix. In particular, for logarithmic barrier:

∇2ϕ(S) = A · (S−1 ⊗ S−1) · A⊤.

505

We define g : Rm×R→ Rm that maps the dual variable y and the learning rate η to

the gradient of the regularized objective fη(y) in Eq. (9.3), i.e. g(y, η) = η ·b−∇ϕ(y).
In particular, for logarithmic barrier:

g(y, η) = η · b− A · vec(S(y)−1).

We abuse the notation of g and also write g(S, η) as a function of slack variable S

and learning rate η. For example, in logarithmic barrier g(S, η) is given by

g(S, η) = η · b− A · vec(S−1).

We define function n : Rm × R → Rm as the Newton step taken at y with learning

rate η:

n(y, η) = (∇2ϕ(y))−1 · g(y, η).

Definition 9.7 (Local norm). We will frequently use local inner product defined

w.r.t. function ϕ as follow: for u, v ∈ Rn, ⟨u, v⟩x := ⟨u,∇2ϕ(x)v⟩. It induces a local

norm defined by ∥u∥x := ⟨u, u⟩x = ⟨u,∇2ϕ(x)u⟩. It also induces an operator norm

for matrices defined by ∥A∥x := supz
∥Az∥x
∥z∥x .

In the Hilbert space equipped with local norm ⟨·, ·⟩x, the gradient at z is

denoted by ∇ϕx(z) and satisfies ∇ϕx(z) = (∇2ϕ(x))−1∇ϕ(z). The Hessian at z is

denoted by ∇2ϕx(z) and satisfies ∇2ϕx(z) = (∇2ϕ(x))−1∇2ϕ(z). Similarly, gx(z, η) =

(∇2ϕ(x))−1g(z, η).

Definition 9.8 (Self-concordant functional and barrier). Given a function with do-

main Df . Let Bx(y, r) denote the open ball of radius r centered at y, where radius

is measured with respect to the local norm ∥ · ∥x = ∥ · ∥∇2f(x) defined w.r.t. f . The

functional f is called self-concordant if for all x ∈ Df we have Bx(x, 1) ⊂ Df , and if

whenever y ∈ Bx(x, 1) the following holds for all v ̸= 0

1− ∥y − x∥x ≤
∥v∥y
∥v∥x

≤ 1

1− ∥y − x∥x
.

506

A self-concordant functional f is called a self-concordant barrier or barrier

functional if

θf := sup
x∈Df

∥∇fx(x)∥2x <∞.

θf is referred to as the complexity of self-concordant barrier f .

Remark 9.3. The complexity of logarithmic barrier ϕlog(y) = − log det(S(y)) is n

([NN94]). The complexity of Hybrid barrier 225(n/m)1/2·(ϕvol(y) + ϕlog(y) · (m− 1)/(n− 1))

is
√
mn ([Ans00]). For any barrier function ϕ with complexity θ, since fη adds ϕ with

a linear function, fη is also a self-concordant function with complexity θ.

We will use the following properties of self-concordance functions, from [Ren01].

Theorem 9.35 (Self-concordant function, [Ren01]). Given a self-concordant function

f : Df → R. For any two points a, b ∈ Df , if ∥a− b∥∇2f(a) ≤ 1/4, then we have

∥(∇2f(a))−1∇2f(b)∥∇2f(a), ∥(∇2f(b))−1∇2f(a)∥∇2f(a) ≤
1

(1− ∥b− a∥∇2f(a))2
.

(9.22)

Further,

∥I − (∇2f(a))−1∇2f(b)∥∇2f(a), ∥I − (∇2f(b))−1∇2f(a)∥∇2f(a) ≤
1

(1− ∥b− a∥∇2f(a))2
− 1.

(9.23)

Theorem 9.36 (Proposition 2.2.8 in [Ren01]). Given a self-concordant function f :

Df → R. Define n(a) := −(∇2f(a))−1∇f(a). If ∥n(a)∥∇2f(a) ≤ 1/4 then f has a

minimizer z and

∥z − anew∥∇2f(a) ≤
3∥n(a)∥∇2f(a)

(1− ∥n(a)∥∇2f(x))3

where anew = a+ n(a) and

∥z − a∥∇2f(a) ≤ ∥n(a)∥∇2f(a) +
3∥n(a)∥∇2f(a)

(1− ∥n(a)∥∇2f(a))3
.

507

Theorem 9.37 (Theorem 2.3.4 in [Ren01]). Assume f is a self-concordance barrier

with domain Df . Let θf denote its complexity. If x, y ∈ Df then

⟨∇f(x), y − x⟩ ≤ θf .

9.11.2 One step error analysis

Classical interior point literature controls the deviation from the central path

in each step by bounding the Newton decrements, given by the potential function

∥g(y, η)∥(∇2ϕ(y))−1 . When the exact Newton step is taken, this is achieved by the

following result.

Lemma 9.38 ([Ren01] exact framework). Given ϵN ∈ (0, 10−2), η > 0, and ηnew =

η(1 + ϵN
20
√
θ
). Suppose that ϕ is a self-concordant barrier with complexity θ ≥ 1 and

there is

• Condition 0. a feasible solution y ∈ Rm satisfies ∥g(y, η)∥(∇2ϕ(y))−1 ≤ ϵN ,

Then ynew = y − (∇2ϕ(y))−1g(y, ηnew) satisfies

∥g(ynew, ηnew)∥(∇2ϕ(ynew))−1 ≤ ϵN .

Further, [JKL+20] relaxes the exact H to a PSD approximation version. This

framework allows errors in the Hessian matrices.

Lemma 9.39 ([JKL+20] semi-robust framework). Given parameters ϵN ∈ (0, 10−2),

η > 0, αH ∈ [1, 1+10−4], and ηnew = η(1+ ϵN
20
√
θ
). Suppose that ϕ is a self-concordant

barrier with complexity θ ≥ 1 and there is

• Condition 0. a feasible solution y ∈ Rm satisfies

∥g(y, η)∥(∇2ϕ(y))−1 ≤ ϵN ,

508

• Condition 1. a symmetric matrix H̃ ∈ Sn×n>0 has

α−1H ∇2ϕ(y) ⪯ H̃ ⪯ αH∇2ϕ(y).

Then ynew = y − H̃−1g(y, ηnew) satisfies

∥g(ynew, ηnew)∥(∇2ϕ(ynew))−1 ≤ ϵN .

We propose a more general framework in the following Lemma and we believe

it will be useful in the future optimization tasks for semi-definite programming. This

framework allows errors in the Hessian matrices, the gradient vectors, and the Newton

steps. Also notice that this framework allows even more errors in the Hessian matrices.

In Lemma 9.39, αH · H̃ must satisfy α−2H · ∇2ϕ ⪯ αH · H̃ ⪯ ∇2ϕ while α−2H should be

close to 1 as α−2H ∈ [0.99, 1]. In Lemma 9.40, cH can set to smaller constants that are

close to 0 as cH ∈ [10−1, 1]. This fact is important to the efficient implementation of

hybrid barrier in Section 9.12.

Lemma 9.40 (Our robust Newton step). Given any parameters ϵg, ϵδ ∈ [0, 10−4], cH ∈
[10−1, 1], 0 < ϵN ≤ 10−2, η > 0, and ηnew = η(1 + ϵN

20
√
θ
). Suppose that ϕ is a self-

concordant barrier with complexity θ ≥ 1. Consider the following conditions.

• Condition 0. a feasible dual solution y ∈ Rm satisfies ∥g(y, η)∥(∇2ϕ(y))−1 ≤ ϵN ,

• Condition 1. a symmetric matrix H̃ ∈ Sn×n>0 has

cH · ∇2ϕ(y) ⪯ H̃ ⪯ ∇2ϕ(y).

• Condition 2. a vector g̃ ∈ Rm satisfies

∥g̃ − g(y, ηnew)∥(∇2ϕ(y))−1 ≤ ϵg · ∥g(y, ηnew)∥(∇2ϕ(y))−1 .

• Condition 3. a vector δ̃(y) ∈ Rm satisfies

∥δ̃(y)− (−H̃−1g̃)∥∇2ϕ(y) ≤ ϵδ · ∥H̃−1g̃∥∇2ϕ(y).

509

Suppose Condition 0,1,2,3 hold. Then ynew = y + δ̃(y) satisfies

∥g(ynew, ηnew)∥(∇2ϕ(ynew))−1 ≤ ϵN .

Furthermore, Condition 1 can also be replaced by the following

• Condition 1’. a symmetric matrix H̃ ∈ Sn×n>0 satisfies

α−1H · ∇2ϕ(y) ⪯ H̃ ⪯ αH · ∇2ϕ(y),

where αH ∈ [1, 1 + 10−4].

Remark 9.4. Notice that the error parameters ϵN , ϵg, ϵδ, αH , cH do not depend on the

dimension nor the number of iterations. The constants 10−4, 10−2, 1/10 are chosen

only for simplicity. In general, if one needs smaller ϵN , then one should inflict smaller

errors in ϵg, ϵδ, αH , cH .

Proof. First consider the case when Condition 0, 1’, 2, 3 hold. Condition 1 is a

slightly different condition than Condition 1’. Then, we explain how to modify the

proof from condition 1’ to condition 1.

By triangle inequality of local norm we have

∥δ̃(y)− (−n(y, ηnew))∥y
≤ ∥δ̃(y)− (−H̃−1g̃)∥y + ∥(H̃−1 − (∇2ϕ(y))−1)g̃∥y + ∥(∇2ϕ(y))−1g̃ − n(y, ηnew)∥y.

(9.24)

For the second term, Condition 1 and 2 give

∥(H̃−1 − (∇2ϕ(y))−1)g̃∥2y = g̃⊤(H̃−1 − (∇2ϕ(S))−1)∇2ϕ(S)(H̃−1 − (∇2ϕ(S))−1)g̃

= g̃⊤(H̃−1∇2ϕ(S)H̃−1 − 2H̃−1 + (∇2ϕ(S))−1)g̃

≤ (α2
H − 2α−1H + 1) · g̃⊤(∇2ϕ(S))−1g̃

= (α2
H − 2α−1H + 1) · ∥g̃∥2(∇2ϕ(y))−1

≤ (α2
H − 2α−1H + 1) · (1 + ϵg)

2 · ∥g(y, ηnew)∥2(∇2ϕ(y))−1

≤ 0.001 · ∥n(y, ηnew)∥2y.

510

For the first term, Condition 1, 2, 3 give

∥δ̃(y)− (−H̃−1g̃)∥y ≤ ϵδ · ∥H̃−1g̃∥y
≤ ϵδ · αH · ∥(∇2ϕ(S))−1g̃∥y
= ϵδ · αH · ∥g̃∥(∇2ϕ(y))−1

≤ ϵδ · αH · (1 + ϵg) · ∥g(y, ηnew)∥(∇2ϕ(y))−1

≤ 0.001 · ∥n(y, ηnew)∥y.

For the third term, Condition 2 gives

∥(∇2ϕ(y))−1g̃ − n(y, ηnew)∥y = ∥(∇2ϕ(y))−1g̃ − (∇2ϕ(y))−1g(y, ηnew)∥y
≤ ϵg · ∥(∇2ϕ(y))−1g(y, ηnew)∥y
≤ 0.001 · ∥n(y, ηnew)∥y.

Combining the above bounds, we have

∥δ̃(y)− (−n(y, ηnew))∥y ≤ 0.1 · ∥n(y, ηnew)∥y. (9.25)

Combing with Lemma 9.41 and Eq. (9.25),

∥δ̃(y)∥y ≤ 1.1 · ∥n(y, ηnew)∥y ≤ 2ϵN , and ∥δ̃(y)− (−n(y, ηnew))∥y ≤ 0.3 · ϵN (9.26)

Using Lemma 9.42, we have

∥n(ynew, ηnew)∥ynew ≤ 2 · (∥δ̃(y)∥2y + ∥δ̃(y)− n(y, ηnew)∥y)

≤ 2 · (4 · ϵ2N + 0.3 · ϵN)

≤ ϵN

where the second step follows from Eq. (9.26) and the last step follows from choice

of ϵN .

511

Next, we consider the case when Condition 0, 1, 2, 3 hold. By triangle in-

equality of local norm we still have

∥δ̃(y)− (−n(y, ηnew))∥y
≤ ∥δ̃(y)− (−H̃−1g̃)∥y + ∥(H̃−1 − (∇2ϕ(y))−1)g̃∥y + ∥(∇2ϕ(y))−1g̃ − n(y, ηnew)∥y.

For the second term,

∥(H̃−1 − (∇2ϕ(S))−1)g̃∥y = ∥(I −∇2ϕ(S)H̃−1)g̃∥(∇2ϕ(S))−1

≤ ∥I −∇2ϕ(S)H̃−1∥(∇2ϕ(S))−1 · ∥g̃∥(∇2ϕ(S))−1

= max
v∈Rm

⟨v, ((∇2ϕ(S))−1 − H̃−1)v⟩
⟨v, (∇2ϕ(S))−1v⟩ · ∥g̃∥(∇2ϕ(S))−1

≤ (1− cH) · ∥g̃∥(∇2ϕ(S))−1

≤ (1− cH) · (1 + ϵg) · ∥n(y, ηnew)∥y

where the second step comes from Hölder’s inequality, the third step comes from the

definition of matrix norm, the penultimate step comes from 0 ⪯ (∇2ϕ(S))−1− H̃−1 ⪯
(1− cH) · (∇2ϕ(S))−1, and the final step comes from Condition 2.

For the first term,

∥δ̃(y)− (−H̃−1g̃)∥y ≤ ϵδ · ∥H̃−1g̃∥y
≤ ϵδ · ∥(∇2ϕ(S))−1g̃∥y
= ϵδ · ∥g̃∥(∇2ϕ(y))−1

≤ ϵδ · (1 + ϵg) · ∥g(y, ηnew)∥(∇2ϕ(y))−1

≤ 0.001 · ∥n(y, ηnew)∥y

where we use Condition 3 in the first step, we use H̃−1 ⪯ (∇2ϕ(S))−1 in the second

step, the penultimate step uses condition 2, and the final step uses the choice of ϵδ, ϵg.

For the third term, Condition 2 gives

∥(∇2ϕ(y))−1g̃ − n(y, ηnew)∥y = ∥(∇2ϕ(y))−1g̃ − (∇2ϕ(y))−1g(y, ηnew)∥y
≤ ϵg · ∥(∇2ϕ(y))−1g(y, ηnew)∥y
≤ 0.001 · ∥n(y, ηnew)∥y.

512

Thus we can replace the Eq. (9.25) by

∥δ̃(y)− (−n(y, ηnew))∥y ≤ (0.01 + 1.004 · (1− cH)) · ∥n(y, ηnew)∥y
≤ 0.92 · ∥n(y, ηnew)∥y. (9.27)

Combining with Lemma 9.41 and Eq. (9.27), we have

∥δ̃(y)∥y ≤ 2ϵN ≤ 0.02.

Using the above inequality and Lemma 9.42, we have

∥n(ynew, ηnew)∥ynew ≤ 0.98−2 · (∥δ̃(y)∥2y + ∥δ̃(y)− n(y, ηnew)∥y)

≤ 0.98−2 · (4ϵ2N + 0.92ϵN)

≤ ϵN .

Thus, we complete the proof.

9.11.3 η move

Lemma 9.41 (η move). Let ϵN ∈ (0, 10−2), ∥n(y, η)∥y ≤ ϵN and ηnew = η(1 + ϵN
20
√
θ
).

Suppose ϕ is a self-concordant barrier with complexity θ ≥ 1. We have

∥n(y, ηnew)∥y ≤ (1 + ϵN/20)∥n(y, η)∥y + ϵN/20 ≤ 1.06ϵN .

Proof. Denote the Newton step by n(y, η) := (∇2ϕ(y))−1g(y, η), thus

n(y, η) = (∇2ϕ(y))−1(ηb− g(y)) = ηby − (∇2ϕ(y))−1g(y) = ηby − gy(y)

(here g(y) is the gradient of barrier function).

We also have

n(y, ηnew) = ηnewby − gy(y)

513

Combining the above two equations, we have

(n(y, ηnew) + gy(y))η = (n(y, η) + gy(y)) · ηnew

which implies that

n(y, ηnew) =
ηnew

η
(n(y, η) + gy(y))− gy(y)

=
ηnew

η
n(y, η) + (

ηnew

η
− 1)gy(y)

Since the complexity value of barrier functional ϕ is θ,

∥n(y, ηnew)∥y =
∥∥∥η

new

η
n(y, η) + (

ηnew

η
− 1)gy(y)

∥∥∥
y

≤ ηnew

η
∥n(y, η)∥y +

∣∣η
new

η
− 1
∣∣√θ

≤ ηnew

η
ϵN +

∣∣η
new

η
− 1
∣∣√θ

≤ (1 +
ϵN

20
√
θ
) · ϵN +

ϵN
20

≤ 1.06 · ϵN ,

where the second step follows from triangle inequality and ∥gy(y)∥y ≤
√
θ, we use

∥n(y, η)∥y ≤ ϵN in the third step (see Lemma statement), we use definition of ηnew in

the forth step (see Lemma statement), and we use both θ ≥ 1 and ϵN ∈ (0, 10−2) in

the last step.

9.11.4 y move

Lemma 9.42 (y move). Let ynew = y + δ(y) and ∥δ(y)∥y ≤ 1/4. Suppose ϕ is a

self-concordant barrier with complexity θ ≥ 1. We have

∥n(ynew, ηnew)∥ynew ≤
(∥δ(y)∥y
1− ∥δ(y)∥y

)2

+
∥δ(y)− (−n(y, ηnew))∥y

1− ∥δ(y)∥y
Further, we have

∥n(ynew, ηnew)∥ynew ≤ 2 · (∥δ(y)∥2y + ∥δ(y)− (−n(y, ηnew))∥y).

514

Proof. We compute the improvement by approximate Newton step. First notice that

∥n(ynew, ηnew)∥2ynew = ∥∇2ϕ(y)y(y
new)−1gy(y

new, ηnew)∥2ynew
=
〈
∇2ϕ(ynew)∇2ϕy(y

new)−1gy(y
new, ηnew),∇2ϕy(y

new)−1gy(y
new, ηnew)

〉

=
〈
∇2ϕ(y)gy(y

new, ηnew),∇2ϕy(y
new)−1gy(y

new, ηnew)
〉

=
〈
gy(y

new, ηnew),∇2ϕy(y
new)−1gy(y

new, ηnew)
〉
y

≤ ∥(∇2ϕy(y
new))−1∥2y · ∥gy(ynew, ηnew)∥2y. (9.28)

where we use definition of operator norm in the final step.

By Eq. (9.22) (in Theorem 9.35),

∥(∇2ϕy(y
new))−1∥y ≤

1

(1− ∥ynew − y∥y)2
=

1

(1− ∥δ(y)∥y)2
. (9.29)

By Lemma 9.43, we have

gy(y
new, ηnew) = gy(y, η

new) +

∫ 1

0

∇2ϕy(y + t(ynew − y))(ynew − y)dt

= n(y, ηnew) +

∫ 1

0

∇2ϕy(y + t(ynew − y))(ynew − y)dt

= (n(y, ηnew) + (ynew − y)) +
∫ 1

0

(∇2ϕy(y + t(ynew − y))− I)(ynew − y)dt

We can upper bound the first term under local norm as follow:

∥n(y, ηnew) + (ynew − y)∥y = ∥ − n(y, ηnew)− δ(y)∥y. (9.30)

We can upper bound the second term under local norm as follow:
∥∥∥
∫ 1

0

(
∇2ϕy(y + t(ynew − y))− I

)
(ynew − y)dt

∥∥∥
y

≤ ∥ynew − y∥y
∫ 1

0

∥∇2ϕy(y + t(ynew − y))− I∥ydt

≤ ∥ynew − y∥y
∫ 1

0

(
1

(1− t∥ynew − y∥y)2
− 1

)
dt

=
∥ynew − y∥2y

1− ∥ynew − y∥y

=
∥δ(y)∥2y

1− ∥δ(y)∥y
(9.31)

515

where the first step comes from triangle inequality of local norm, the second step

comes from Eq. (9.23) (property of self-concordance function, Theorem 9.35), we use

simple integration in the third step comes, finally we use ynew = y + δ(y) in the final

step.

Plugging Eq. (9.29), Eq. (9.30), and Eq. (9.31) into Eq. (9.28), we have

∥n(ynew, ηnew)∥ynew ≤
1

1− ∥δ(y)∥ · ∥gy(y
new, ηnew)∥y

≤ 1

1− ∥δ(y)∥ ·
(∥δ(y)∥2y
1− ∥δ(y)∥y

+ ∥δ(y)− (−n(y, ηnew))∥y
)

≤
(∥δ(y)∥y
1− ∥δ(y)∥y

)2

+
∥δ(y)− (−n(y, ηnew))∥y

1− ∥δ(y)∥y
.

This completes the proof.

9.11.5 Integral under local norm

Lemma 9.43. Let H = g′ and x, y ∈ Df . It holds that

(∇2ϕ(x))−1(g(y)− g(x)) =

∫ 1

0

(∇2ϕ(x))−1∇2ϕ(x+ t(y − x))(y − x)dt

Proof. It is sufficient to show

g(y)− g(x) =

∫ 1

0

∇2ϕ(x+ t(y − x))(y − x)dt

By definition of the integral, it is sufficient to prove that for all w

⟨g(y)− g(x), w⟩ =
∫ 1

0

⟨∇2ϕ(x+ t(y − x))(y − x), w⟩dt.

Fix arbitrary w and consider the functional

ψ(t) := ⟨g(x+ t(y − x)), w⟩.

The basic Calculus gives

ψ(1)− ψ(0) =
∫ 1

0

ψ′(t)dt

516

which by definition of ψ is equivalent to

⟨g(y)− g(x), w⟩ =
∫ 1

0

⟨∇2ϕ(x+ t(y − x))(y − x), w⟩dt.

9.11.6 Approximate dual optimality

We make use of the following lemma that bounds the duality gap by η and

the Newton decrement.

Lemma 9.44 (Approximate optimality). Suppose 0 < ϵN ≤ 10−2. Let η ≥ 1 denote

a parameter. Let y ∈ Rm be dual feasible solution. Assume

g(y, η)⊤(∇2ϕ(y))−1g(y, η) ≤ ϵ2N .

Assume that y∗ is an optimal solution to the Eq. (9.2). Suppose ϕ is a self-concordant

barrier with complexity θ ≥ 1. Then we have

⟨b, y⟩ ≤ ⟨b, y∗⟩+ θ

η
· (1 + 2ϵN).

Proof. Let y(η) denote the optimal solution to the following optimization problem:

min
y∈Rm

η · ⟨b, y⟩+ ϕ(y)

where ϕ(y) = − log detS(y) is the log barrier. Then due to optimality condition,

ηb+ g(y(η)) = 0. Therefore

⟨b, y(η)⟩ − ⟨b, y∗⟩ = 1

η
⟨g(y(η)), y∗ − y(η))⟩ ≤ θ

η
(9.32)

where the last step comes from Theorem 9.37.

Furthermore, we have

⟨b, y⟩ − ⟨b, y(η)⟩ = 1

η
⟨g(y(η)), y(η)− y⟩

≤ 1

η
∥g(y(η))∥(∇2ϕ(y(η)))−1 · ∥y − y(η)∥∇2ϕ(y(η))

≤ θ

η
· ∥y − y(η)∥∇2ϕ(y(η)) (9.33)

517

where the last step used the complexity value of barrier is θ. For ∥y− y(η)∥∇2ϕ(y), we

have

∥y − y(η)∥2∇2ϕ(y(η)) ≤ ∥y − y(η)∥2∇2ϕ(y) · sup
v

∥v∥2∇2ϕ(y(η))

∥v∥2∇2ϕ(y)

= ∥y − y(η)∥2∇2ϕ(y) · ∥(∇2ϕ(y))−1∇2ϕ(y(η))∥∇2ϕ(y)

≤ ∥y − y(η)∥2∇2ϕ(y) · (1− ∥y − y(η)∥2∇2ϕ(y))
−2 (9.34)

where the second step comes from the definition of operator norm and the third step

comes from Theorem 9.35. By Theorem 9.36,

∥y − y(η)∥∇2ϕ(y) ≤ ∥n(y, η)∥∇2ϕ(y) +
2∥n(y, η)∥2∇2ϕ(y)(

1− ∥n(y, η)∥∇2ϕ(y)

)3 ≤ 1.2 · ϵN ,

thus back to Eq. (9.34), we have ∥y − y(η)∥∇2ϕ(y(η)) ≤ 2ϵN . Therefore in Eq. (9.33),

we obtain

⟨b, y⟩ − ⟨b, y(η)⟩ ≤ θ

η
· 2ϵN . (9.35)

Combining Eq. (9.35) and Eq. (9.32), we complete the proof.

Theorem 9.45 (Robust barrier method). Consider a semidefinite program in Eq. (9.2).

Suppose in each iteration, the S̃, H̃, g̃, δ̃ are computed in Line 7, Line 8, Line 9,

Line 10 of Algorithm 44 such that Condition 1 or 1’ & Condition 2 & Condition 3

in Lemma 9.40 hold. Suppose ϕ is a self-concordant barrier with complexity θ ≥ 1.

Assume y∗ is an optimal solution to the dual formulation Eq. (9.2). Then given a

feasible initial solution that satisfies the invariant g(y, η)⊤(∇2ϕ(y))−1g(y, η) ≤ ϵ2N , for

any error parameter 0 < ϵ ≤ 0.01 and Newton step size ϵN satisfying
√
ϵ < ϵN ≤ 0.01,

Algorithm 44 outputs, in T = 40ϵ−1N
√
θ log(θ/ϵ) iterations, a vector y ∈ Rm s.t.

b⊤y ≤ b⊤y∗ + ϵ2. (9.36)

Further, for logarithmic barrier ϕlog, in each iteration of Algorithm 44, the following

invariant holds:

∥S−1/2SnewS−1/2 − I∥F ≤ 1.03 · ϵN . (9.37)

518

Proof. Since the invariant g(y, η)⊤(∇2ϕ(y))−1g(y, η) ≤ ϵ2N holds at initialization, by

Lemma 9.40 it then holds at any iteration. After T = 40ϵ−1N
√
θ log(θ/ϵ) iterations,

the step size becomes η = (1 + ϵN
20
√
θ
)T/(θ + 2) ≥ 2θ/ϵ2. By Lemma 9.44, we have

⟨b, y⟩ ≤ ⟨b, y∗⟩+ θ

η
· (1 + 2ϵN) ≤ ⟨b, y∗⟩+ ϵ2.

This completes the proof of Eq. (9.36).

Finally we prove Eq. (9.37) for the log-barrier ϕlog. It gives

LHS in Eq. (9.37) = tr
[(
S−1/2(Snew − S)S−1/2

)2]

= tr

S−1(

∑

i∈[m]

δ̃y,iAi)S
−1(
∑

i∈[m]

δ̃y,iAi)

=
∑

i∈[m]

∑

j∈[m]

δ̃y,iδ̃y,jtr[S
−1AiS

−1Aj]

= δ̃⊤y ∇2ϕ(y)δ̃y

= ∥δ̃y∥2∇2ϕ(y)

where the second step comes from Snew − S =
∑

i∈[m] δ̃y,iAi. It suffices to bound

∥δ̃y∥∇2ϕ(y). In fact we have

∥δ̃y∥∇2ϕ(y) ≤ ∥n(y, ηnew)∥∇2ϕ(y) + ∥δ̃y − (−n(y, ηnew))∥∇2ϕ(y)

≤ 1.01∥n(y, ηnew)∥∇2ϕ(y)

≤ 1.01 ·
(
(1 + ϵN/20)∥n(y, η)∥∇2ϕ(y) + ϵ/20

)

≤ 1.03 · ϵN

where we use triangle inequality in the first step, we use Eq. (9.25) in the second step,

we use Lemma 9.41 in the third step and the last step comes from choice of ϵN . This

completes the proof of Eq. (9.37).

9.11.7 Our main result

Theorem 9.46 (Robust central path). Consider an SDP instance defined in Defini-

tion 9.1 with no redundant constraints. Assume that the feasible region is bounded,

519

Algorithm 44 Our robust barrier method for SDP.

1: procedure SolveSDP(m,n,C, {Ai}mi=1, A ∈ Rm×n2 , b ∈ Rm)
2: ▷ Initialization
3: η ← 1

θ+2
, T ← 40

ϵN

√
θ log(θ

ϵ
)

4: Find initial feasible dual y ∈ Rm according to Lemma E.1 ▷ Condition 0 in
Lemma 9.40

5: for t = 1→ T do do ▷ Iterations of approximate barrier method
6: ηnew ← η · (1 + ϵN

20
√
θ
)

7: S̃ ← ApproxSlack()
8: H̃ ← ApproxHessian() ▷ Condition 1 in Lemma 9.40
9: g̃ ← ApproxGradient() ▷ Condition 2 in Lemma 9.40

10: δ̃(y)← ApproxDelta() ▷ Condition 3 in Lemma 9.40
11: ynew ← y + δ(y)
12: y ← ynew ▷ We update variables
13: end for
14: return an approximate solution to the original problem ▷ Lemma E.1
15: end procedure

i.e., ∥X∥2 ≤ R. Suppose in each iteration, the S̃, H̃, g̃, δ̃ are computed in Line 7,

Line 8, Line 9, Line 10 of Algorithm 44 that satisfy Condition 1 or 1’ & Condi-

tion 2 & Condition 3 in Lemma 9.40. Suppose ϕ is a self-concordant barrier with

complexity θ ≥ 1. Assume X∗ is an optimal solution to the semidefinite program in

Definition 9.1. Then for any error parameter 0 < ϵ ≤ 0.01 and Newton step size ϵN
satisfying

√
ϵ < ϵN ≤ 0.01, Algorithm 44 outputs, in T = 40ϵ−1N

√
θ log(θ/ϵ) iterations,

a positive semidefinite matrix X ∈ Rn×n
≥0 s.t.

⟨C,X⟩ ≥ ⟨C,X∗⟩ − ϵ · ∥C∥2 ·R, and∑m
i=1

∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ ≤ 4nϵ ·

(
R
∑m

i=1 ∥Ai∥1 + ∥b∥1
)
,

(9.38)

Furthermore, for logarithmic barrier ϕlog, in each iteration of Algorithm 44, the fol-

lowing invariant holds:

∥S−1/2SnewS−1/2 − I∥F ≤ 1.03 · ϵN . (9.39)

Proof. First, we use Lemma E.1 to rewrite the semidefinite programming and obtain

an initial feasible solution near the dual central path with η = 1/(θ + 2). Thus, the

520

induction hypothesis

g(y, η)⊤(∇2ϕ(y))−1g(y, η) ≤ ϵ2N

holds at the initial of algorithm.

Say y is the modified semidefinite programming’s dual solution. Theorem 9.45

shows that y has duality gap ≤ ϵ2.

Finally, we use Lemma E.1, to get an approximate solution to the original

semidefinite programming satisfying Eq. (9.38).

9.12 Hybrid Barrier-Based SDP Solver

The hybrid barrier [NN89, Ans00] is another useful barrier function to solve

SDP and converges within a smaller number of iteration when m ≤ n. However, it is

hard to be implemented efficiently due to the complex form of Hessian matrices. In

this section, we give an efficient algorithm for solving SDP using the hybrid barrier

in [Ans00] that improves the naive implementation in all parameter regimes10.

In Section 9.12.1, we review some basic facts on the hybrid barrier for SDP.

In Section 9.12.2, we give the formal version of the algorithm and time complex-

ity result. In Section 9.12.3, we show how to low-rank approximate the change of

Q(S). In Section 9.12.4, we prove that the slack variable S changes slowly in each

iteration. Section 9.12.5 contains the amortized analysis for our hybrid barrier SDP

solver. Combining them together, we prove the main theorem (Theorem 9.58) in

Section 9.12.6.

10We also improves our straightforward algorithm in most parameter regimes. See Remark E.1
for the different implementations of [Ans00].

521

9.12.1 Basic facts on the hybrid barrier

The barrier function is defined as follows:

ϕ(y) := 225

√
n

m
·
(
ϕvol(y) +

m− 1

n− 1
· ϕlog(y)

)
,

with

ϕvol(y) := 0.5 log det(H(y)),

ϕlog(y) := − log det(S(y)),

Note H(y) and S(y) are defined in Definition 9.6.

According to our robust IPM framework, for every iteration, we have to calcu-

late/estimate the gradient and Hessian of ϕvol(y), whose closed-forms are computed

in [Ans00]. More specifically,

(∇ϕvol(y))i = −tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤] ∀i ∈ [m],

and

∇2ϕvol(y) = 2Q(S) +R(S)− 2T (S),

where for any i, j ∈ [m],

Q(S)i,j = tr[H(S)−1A(S−1AiS
−1AjS

−1 ⊗S S−1)A⊤],

R(S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1AjS−1)A⊤],

T (S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1)A⊤H(S)−1A(S−1AjS

−1 ⊗S S−1)A⊤].

The following fact in [Ans00] shows that Q(S) is a good PSD approximation

of the Hessian ∇2ϕvol(y).

Fact 9.47 ([Ans00]). For S ≻ 0,

1

n
H(S) ⪯ Q(S) ⪯ ∇2ϕvol(y) ⪯ 3Q(S).

522

We also need the following lower bound on the quadratic form of hybrid bar-

rier’s Hessian.

Fact 9.48 ([Ans00]). Let S ≻ 0. For any ξ ∈ Rm, we have

ξ⊤
(
Q(S) +

m− 1

n− 1
·H(S)

)
ξ ≥ 2

√
m

1 +
√
n
·
∥∥∥∥∥S
−1/2

(
m∑

i=1

ξiAi

)
S−1/2

∥∥∥∥∥

2

2

.

9.12.2 Efficient implementation via robust SDP framework

Lemma 9.49. In Algorithm 45, the (amortized) cost/time for every iteration is

O∗
((n

m

) 1
4 · (n2m+mωn1/4) +m2nω +m4 +m2 · nω− 1

2 ·
(n
m

) 1
4

)
.

Proof. Consider iteration t. In Line 16-21 of Algorithm 45, we update Snew, S̃new ∈
Rn×n in O(mn2 + nω) time.

In Line 16-17 in Algorithm 46, we can first compute S−1AiS−1Aj ∈ Rn×n and

S−1Ai ∈ Rn×n for all i, j ∈ [m], in O(m2nω) time. Notice

(∇ϕvol(y))i = − tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤]

=
m∑

k=1

m∑

l=1

−H(S)−1k,l · tr[AkS−1AlS−1AiS−1].

Then it takes O(m3n2) to find tr[AkS
−1AlS

−1AiS
−1] for all i, k, l ∈ [m] and subse-

quently O(m3)-time to compute ∇ϕvol(y). Hence, the cost of Line 16-17 in Algo-

rithm 46 is O(m2nω +m3n2 +m3).

For Line 24-25 of Algorithm 46, we first compute

Ai, S
−1AjV3, AiV3, , V

⊤
4 AiS

−1AjS
−1, S−1AiV3, V

⊤
4 Aj, V

⊤
4 AiV3

for every i ∈ {1, · · · ,m}, for every j ∈ {1, · · · ,m}, in O(m2 · Tmat(n, n, rt)) time.

Notice

H̃i,j = tr[S̃−1AiS̃
−1Aj]

= Hi,j + tr[S−1AiV3V
⊤
4 Aj] + tr[S−1AjV3V

⊤
4 Ai] + tr[V3V

⊤
4 AiV3V

⊤
4 Aj].

523

Algorithm 45 Hybrid Barrier SDP solver.
1: members
2: S, S̃ ∈ Rn×n ▷ Slack variables
3: y ∈ Rm ▷ Dual variable
4: H,Q ∈ Rm×m ▷ Parts of the Hessian matrices
5: η ∈ R ▷ Learning rate
6: A ∈ Rm×n2

▷ Batched constraint matrix
7: G ∈ Rm×m ▷ The inverse of the Hessian matrix
8: end members

9: procedure HybridBarrier((m,n,C, {Ai}mi=1, b ∈ Rm))
10: Initialize(m,n,C, {Ai}mi=1, b ∈ Rm) ▷ Algorithm 46
11: for t = 1→ T do ▷ Iterations of approximate barrier method
12: ηnew ← η ·

(
1 + ϵN

20(mn)1/4

)

13: gηnew(y)← HybridGradient(ηnew, b, C, {Ai}mi=1)
14: δy ← −G · gηnew(y) ▷ Update on y ∈ Rm

15: ynew ← y + δy
16: Snew ←∑

i∈[m](y
new)i · Ai − C

17: V1, V2 ← LowRankSlackUpdate(Snew, S̃) ▷ V1, V2 ∈ Rn×rt .
Algorithm 43

18: S̃new ← S̃ + V1V
⊤
2 ▷ Approximate slack computation

19: V3 ← −S̃−1V1(I + V ⊤2 S̃
−1V1)

−1 ▷ V3 ∈ Rn×rt

20: V4 ← S̃−1V2 ▷ V4 ∈ Rn×rt

21: y ← ynew, S ← Snew, S̃ ← S̃new, η ← ηnew ▷ Update variables
22: (Q̃, H̃, Gnew)← HybridHessian(V3, V4) ▷ Gnew ∈ Rm×m

23: ▷ Hessian inverse computation using Woodbury identity
24: Q← Q̃, H ← H̃, G← Gnew ▷ Update matrices
25: end for
26: return an approximate solution to the original problem ▷ Lemma E.1
27: end procedure

Hence, it takes Tmat(m,nrt,m) to compute tr[S−1AiV3V
⊤
4 Aj], tr[V3V

⊤
4 AiV3V

⊤
4 Aj] for

all i, j ∈ [m] (by batching them together and using fast matrix multiplication on a

m-by-nrt matrix and a nrt-by-m matrix) and subsequently O(m2)-time to compute

524

Algorithm 46 Hybrid Barrier SDP solver, continued.

1: procedure Intialize((m,n,C, {Ai}mi=1, A ∈ Rm×n2 , b ∈ Rm))
2: Construct A ∈ Rm×n2 by stacking m vectors vec[A1], vec[A2], · · · , vec[Am] ∈

Rn2

3: η ← 1
(mn)1/2+2

, T ← 40
ϵN
(mn)1/4 log(mn

ϵ
)

4: Find initial feasible dual vector y ∈ Rm according to Lemma E.1
5: S ←∑

i∈[m] yi · Ai − C, S̃ ← S ▷ S, S̃ ∈ Rn×n

6: H(S)← A(S−1 ⊗ S−1)A⊤
7: for i = 1, · · · ,m do
8: Q(S)i,j ← tr[H−1A(S−1AiS

−1AjS
−1 ⊗S S−1)A⊤]

9: R(S)i,j ← tr[H−1A(S−1AiS
−1 ⊗S S−1AjS−1)A⊤]

10: O(S)i,j ← tr[H−1A(S−1AiS
−1 ⊗S S−1)A⊤H−1A(S−1AjS−1 ⊗S S−1)A⊤]

11: end for
12: G←

(
225 ·√ n

m
·
(
2Q(S) +R(S)− 2O(S) + m−1

n−1 ·H(S)
))−1

▷ G ∈ Rm×m

13: end procedure
14: procedure HybridGradient((m,n,C, {Ai}mi=1, b ∈ Rm))
15: for i = 1, · · · ,m do
16: ∇ϕlog(y)i ← −tr[S−1 · Aj] ▷ Gradient of ϕlog

17: ∇ϕvol(y)i ← −tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤] ▷ Gradient of ϕvol

18: end for
19: gηnew(y)← ηnewb− 225

√
n
m
·
(
∇ϕvol(y) +

m−1
n−1 · ∇ϕlog(y)

)

20: return gηnew(y)
21: end procedure
22: procedure HybridHessian((V3, V4))
23: for i, j = 1, · · · ,m do
24: H̃i,j ← Hi,j + tr[S−1AiV3V

⊤
4 Aj] + tr[S−1AjV3V

⊤
4 Ai] + tr[V3V

⊤
4 AiV3V

⊤
4 Aj]

25: Q̃i,j ← Qi,j + tr[H−1A(S−1AiV3V
⊤
4 AjS

−1 ⊗S S−1)A⊤]
26: end for
27: Gnew ←

(
225 · 1.001 ·√ n

m
·
(
3 · Q̃+ m−1

n−1 · H̃
))−1

∈ Rm×m ▷ G ∈ Rm×m

28: return (Q̃, H̃, Gnew)
29: end procedure

Q̃. So the cost of Line 24 is Tmat(m,nrt,m)+m2. For Q̃, notice that for any i, j ∈ [m],

Q̃i,j = tr[H(S)−1A(S−1AiS̃
−1AjS

−1 ⊗S S−1)A⊤]

= Qi,j +
m∑

k=1

m∑

l=1

−H(S)−1k,l ·
1

2

(
tr[AkS

−1AlV3V
⊤
4 AiS

−1AjS
−1]

+tr[AkS
−1AiV3V

⊤
4 AjS

−1AℓS
−1]
)
.

525

Then it takes Tmat(m
2, nrt,m

2) to compute tr[AkS−1AlV3V ⊤4 AiS−1AjS−1] for all i, j, k, l ∈
[m] (by batching them together and using fast matrix multiplication on a m2-by-nrt
matrix and a nrt-by-m2 matrix) and subsequently O(m4)-time to compute Q̃. Hence

the cost of Line 25 is Tmat(m
2, nrt,m

2) +m4.

In total, Line 24-25 of Algorithm 46 takes

Tmat(m
2, nrt,m

2) +m2nω +m3n2 +m4 +m2 · Tmat(n, n, rt).

Summing up, the total cost in iteration t is therefore given by

Tmat(m
2, nrt,m

2) +m2nω +m3n2 +m4 +m2 · Tmat(n, n, rt).

Using Theorem 9.53 with Lemma 9.51, and Fact 9.16,

T∑

t=1

Tmat(n, n, rt) ≤
T∑

t=1

O∗
(
n2 + r

ω−2
1−α

t · n2−α(ω−2)
1−α

)

≤ O∗
(
T · n2 + T · nω−2

1−α
−1/2 · n2−α(ω−2)

1−α · (n/m)
1
4

)

≤ O∗
(
T · (n2 + nω−1/2 · (n/m)

1
4)
)
.

Using Corollary 9.57,

T∑

t=1

Tmat(m
2, nrt,m

2) ≤ O∗
(
T · (n/m)1/4 · (n2m+mωn1/4)

)
.

Now, let us compute the (amortized) cost per iteration

O∗
((n

m

) 1
4 · (n2m+mωn1/4) +m2nω +m4 +m2 ·

(
n2 + nω−

1
2 ·
(n
m

) 1
4

))

= O∗
((n

m

) 1
4 · (n2m+mωn1/4) +m2nω +m4 +m2 · nω− 1

2 ·
(n
m

) 1
4

)
.

526

9.12.3 Approximation to Q

The following lemma shows that Q̃ in our algorithm is a good PSD approxi-

mation of Q(S).

Lemma 9.50. Let Q̃ ∈ Rm×m be given by

Q̃i,j = tr[H(S)−1A(S−1AiS̃
−1AjS

−1 ⊗S S−1)A⊤].

Then suppose (1+ ϵS)
−1S ⪯ S̃ ⪯ (1+ ϵS)S for ϵS ∈ (0, 0.001), we have (1+ ϵS)

−3Q ⪯
Q̃ ⪯ (1 + ϵS)

3Q where Q := Q(S).

Proof. Fix v ∈ Rm. We have

v⊤Q̃v =
m∑

i=1

m∑

j=1

vivjtr[H(S)−1A(S−1AiS̃
−1AjS

−1 ⊗S S−1)A⊤]

= tr

[
A⊤H(S)−1A ·

(
S−1(

m∑

i=1

viAi)S̃
−1(

m∑

j=1

vjAj)S
−1 ⊗S S−1

)]

=
1

2
· (tr[A⊤H−1A · (S−1BS̃−1BS−1 ⊗ S−1)] + tr[A⊤H−1A · (S ⊗ S−1BS̃−1BS−1)])

where we abbreviate B =
∑m

i=1 viAi and H = H(S).

For tr[A⊤H−1A · (S−1BS̃−1BS−1 ⊗ S−1)], we have

tr[A⊤H−1A · (S−1BS̃−1BS−1 ⊗ S−1)]

= tr[(S−1BS̃−1/2 ⊗ I)⊤A⊤H−1A(S−1BS̃−1/2 ⊗ I)(I ⊗ S−1)]

≤ (1 + ϵS) · tr[(S−1BS̃−1/2 ⊗ I)⊤A⊤H−1A(S−1BS̃−1/2 ⊗ I)(I ⊗ S̃−1)]

= (1 + ϵS) · tr[(S−1B ⊗ I)⊤A⊤H−1A(S−1B ⊗ I)(S̃−1 ⊗ S̃−1)]

≤ (1 + ϵS)
3 · tr[(S−1B ⊗ I)⊤A⊤H−1A(S−1B ⊗ I)(S−1 ⊗ S−1)]

= (1 + ϵS)
3 · tr[A⊤H−1A · (S−1BS−1BS−1 ⊗ S−1)],

where we use Fact 9.10 in first step; we use I ⊗S−1 ⪯ (1+ ϵ) · (I ⊗ S̃−1) and Fact 9.6

in second step; the third step comes from Fact 9.10; the fourth step comes from

Fact 9.11; the last step comes from Fact 9.10.

527

Similarly, for tr[A⊤H−1A · (S−1 ⊗ S−1BS̃−1BS−1)], we have

tr[A⊤H−1A · (S−1 ⊗ S−1BS̃−1BS−1)]

= tr[(S−1/2 ⊗ S−1B)⊤A⊤H−1A(S−1/2 ⊗ S−1B)(I ⊗ S̃−1)]

≤ (1 + ϵS) · tr[(S−1/2 ⊗ S−1B)⊤A⊤H−1A(S−1/2 ⊗ S−1B)(I ⊗ S−1)]

= (1 + ϵS) · tr[A⊤H−1A · (S−1 ⊗ S−1BS−1BS−1)],

where we use Fact 9.10 in the first step; we use I ⊗ S−1 ⪯ (1 + ϵ) · (I ⊗ S̃−1) and

Fact 9.6 in second step; the third step comes from Fact 9.10.

Summing up,

v⊤Q̃v ≤ (1 + ϵS)
3 · tr[A⊤H−1A · (S−1BS−1BS−1 ⊗ S−1)]

+ (1 + ϵS) · tr[A⊤H−1A · (S−1 ⊗ S−1BS−1BS−1)]

≤ (1 + ϵS)
3 · tr[A⊤H−1A · (S−1BS−1BS−1 ⊗S S−1)]

= (1 + ϵS)
3 · v⊤Qv.

Similarly, v⊤Q̃v ≥ (1+ ϵS)
−3 · v⊤Qv. Therefore, (1+ ϵS)

−3Q ⪯ Q̃ ⪯ (1+ ϵS)
3Q, since

v can be arbitrarily chosen.

9.12.4 S move in hybrid barrier

Lemma 9.51 (S move in hybrid barrier). Consider Algorithm 45-46, in each itera-

tion, the following invariant holds:

∥S−1/2SnewS−1/2 − I∥F ≤ 1.03 · ϵN · (n/m)1/2, (9.40)

∥S−1/2SnewS−1/2 − I∥22 ≤ 0.002 · ϵN .

Proof. We note that the robust framework and all corresponding results in Section 9.3

528

directly applies to hybrid barrier with θ = (mn)1/2. We have

∥S−1/2SnewS−1/2 − I∥2F = tr
[(
S−1/2(Snew − S)S−1/2

)2]

= tr

S−1

(∑

i∈[m]

δ̃y,iAi
)
S−1

(∑

i∈[m]

δ̃y,iAi
)

=
∑

i∈[m]

∑

j∈[m]

δ̃y,iδ̃y,jtr[S
−1AiS

−1Aj]

= δ̃⊤y H(y)δ̃y

= ∥δ̃y∥2H(y)

where the second step comes from Snew − S =
∑m

i=1 δ̃y,iAi and the rest follows from

algebra. It suffices to bound ∥δ̃y∥H(y).

Since ϕ(y) =
√

n
m
·
(
ϕvol(y) +

m−1
n−1 · ϕlog(y)

)
, we have

∇2ϕ(y) = (n/m)1/2∇2ϕvol(y) + (m/n)1/2H(y).

By Fact 9.47, we have

Q(S) ⪰ 1

n
H(y).

And we also have

∇2ϕ(y) ⪰ (n/m)1/2Q(S) + (m/n)1/2H(y)

⪰
(
(n/m)1/2 · n−1 + (m/n)1/2

)
H(y)

⪰ O((m/n)1/2)H(y).

Thus,

∥δ̃y∥2H(y) ≤ (n/m)1/2 · ∥δ̃y∥2∇2ϕ(y).

For ∥δ̃y∥2∇2ϕ(y), we have

∥δ̃y∥2∇2ϕ(y) ≤ ∥n(y, ηnew)∥∇2ϕ(y) + ∥δ̃y − (−n(y, ηnew))∥∇2ϕ(y)

≤ 1.01∥n(y, ηnew)∥∇2ϕ(y)

≤ 1.01 ·
(
(1 + ϵN/20)∥n(y, η)∥∇2ϕ(y) + ϵ/20

)

≤ 1.03 · ϵN

529

where the first step comes from triangle inequality, the second step comes from

Eq. (9.25), the third step comes from Lemma 9.41 and the last step comes from

choice of ϵN . Hence,

∥δ̃y∥2H(y) ≤ 1.03 · ϵN · (n/m)1/2,

that is,

∥S−1/2SnewS−1/2 − I∥F ≤ 1.03 · ϵN · (n/m)1/2.

Moreover, by Fact 9.48, we have

∥δ̃y∥2∇2ϕ(y) ≥ 225(n/m)1/2 · 2
√
m

1 +
√
n
·
∥∥∥∥∥S
−1/2

(
m∑

i=1

δ̃y,iAi

)
S−1/2

∥∥∥∥∥

2

2

= O(1) · ∥S−1/2SnewS−1/2 − I∥22.

Hence, we have

∥S−1/2SnewS−1/2 − I∥22 ≤ 0.002 · ϵN .

This completes the proof of Eq. (9.40).

9.12.5 Property of low rank update for the hybrid barrier

Assumption 9.52 (Closeness of Snew and S̃ from S). We make the following two

assumptions about S, S̃, Snew ∈ Rn×n:

1. ∥S−1/2 · Snew · S−1/2 − I∥F ≤ 0.02(n/m)1/2,

2. ∥S−1/2 · Snew · S−1/2 − I∥2 ≤ 0.005,

3. ∥S−1/2 · S̃ · S−1/2 − I∥2 ≤ 0.01.

Theorem 9.53 (General amortized guarantee for the hybrid barrier). Let T denote

the total number of iterations in Algorithm 45-46. Let rt denote the rank of the update

matrices V1, V2 ∈ Rn×rt generated by Algorithm 43 in the t-th iteration. Suppose

530

Assumption 9.52 hold. The ranks rt’s satisfy the following condition: for any vector

g ∈ Rn
+ which is non-increasing, we have

T∑

t=1

rt · grt ≤ O(T · (n/m)1/4 · ∥g∥2 · log n). (9.41)

The proof of Theorem 9.53 relies on the following three lemmas:

Lemma 9.54 (Variant of Lemma 9.30). Let matrices Z,Zmid ∈ Rn×n be defined as

in Definition 9.5. Under Assumption 9.52, we have

n∑

i=1

(λ(Z)[i] − λ(Zmid)[i])
2 ≤ 10−3(n/m)1/2,

where λ(Z)[i] denotes the i-th largest eigenvalue of Z.

Proof sketch. The proof is very similar to Lemma 9.30 except the upper bound of the

following quantity:

∥S1/2(Snew)−1S1/2 − I∥2F =
n∑

i=1

(ν−1i − 1)2,

where {νi}i∈[n] are the eigenvalues of S−1/2SnewS−1/2. Then, by Assumption 9.52 part

2, we have

max
i∈[n]
|vi − 1| ≤ 0.005,

which implies that vi ≥ 0.995 for all i ∈ [n]. By Assumption 9.52,

n∑

i=1

(vi − 1)2 ≤ 0.02(n/m)1/2.

Then, it follows that

n∑

i=1

(ν−1i − 1)2 ≤ 5× 10−4 · (n/m)1/2.

The remaining part does not change.

531

Lemma 9.55 (S move). Consider the t-th iteration. Let matrices Z,Zmid ∈ Rn×n

be defined as in Definition 9.5. Let g ∈ Rn
+ be a non-increasing vector, and let

Φg : Rn×n → R+ be defined as in Definition 9.4.

Under Assumption 9.52, we have

Φg(Z
mid)− Φg(Z) ≤ ∥g∥2 · (n/m)1/4.

Proof sketch. The proof is basically the same as Lemma 9.31. We can upper bound

the LHS as follows:

Φg(Z
mid)− Φg(Z) ≤ ∥g∥2 ·

(n∑

i=1

|λ(Zmid)π(i) − λ(Z)π(i)|2
)1/2

≤ ∥g∥2 · (n/m)1/4,

where the last step follows from Lemma 9.54.

Lemma 9.56 (S̃ move). Consider the t-th iteration. Let matrices Zmid, Znew ∈ Rn×n

be defined as in Definition 9.5. Let g ∈ Rn
+ be a non-increasing vector, and let

Φg : Rn×n → R+ be defined as in Definition 9.4.

Let rt denote the rank of the update matrices V1, V2 ∈ Rn×rt generated by

Algorithm 43 in the t-th iteration. We have

Φg(Z
mid)− Φg(Z

new) ≥ ϵS
10 log n

· rt · grt .

The proof is exactly the same as Lemma 9.32. Now, we are ready to prove

Theorem 9.53.

Proof of Theorem 9.53. Combining Lemma 9.55 and Lemma 9.56, we have

Φg(Z
new)− Φg(Z) = (Φg(Z

mid)− Φg(Z))− (Φg(Z
mid)− Φg(Z

new))

≤ (n/m)1/4 · ∥g∥2 −
ϵS

10 log n
· rt · grt .

532

With an abuse of notation, we denote the matrix Z in the t-th iteration as Z(t). Since

in the beginning Φg(Z
(0)) = 0 and Φg(Z

(T)) ≥ 0, we have

0 ≤ Φg(Z
(T))− Φg(Z

(0))

≤
T∑

t=1

(Φg(Z
(t))− Φg(Z

(t−1)))

≤ T · (n/m)1/4 · ∥g∥2 −
ϵS

10 log n
·

T∑

t=1

rt · grt .

This completes the proof.

Corollary 9.57. Given a sequence r1, . . . , rT ∈ [0, n] that satisfies Eq. (9.41). We

have
T∑

t=1

Tmat(m
2, nrt,m

2) ≤ O∗
(
T · (n/m)1/4 · (n2m+mωn1/4)

)
.

Proof. Let at = logn(rt) and b = logn(m
2). Then

Tmat(m
2, nrt,m

2) = Tmat(n
b, n1+at , nb) = O∗(nb·ω((1+at)/b)).

For each i ∈ {0, 1, . . . , log n)}, define

Ti = {t ∈ [T] : 2i ≤ rt ≤ 2i+1}.

Let gr = r−1/2, Theorem 9.53 indicates
logn∑

i=1

|Ti| · 2i/2 ≤
T∑

t=1

r
1/2
t ≤ O((n/m)1/4 · T · log1.5 n).

This implies |Ti| ≤ O((n/m)1/4 · T · log1.5(n)/2i/2. It thus follows that
T∑

t=1

Tmat(m
2, nrt,m

2) ≤ O∗

(
T∑

t=1

nb·ω((1+at)/b)

)

= O∗

(
logn∑

i=1

∑

t∈Ti

nb·ω((1+at)/b)

)

≤ O∗
(
max
i∈logn

max
t∈Ti

(n/m)1/4 · T
2i/2

· nb·ω((1+at)/b)
)

≤ O∗
(
(n/m)1/4 · T · max

at∈[0,1]
n−at/2+b·ω((1+at)/b)

)
.

533

Since ω(·) is a convex function (Fact 9.15),

max
at∈[0,1]

−at/2 + b · ω((1 + at)/b) ≤ max
a∈{0,1}

−a/2 + b · ω((1 + a)/b)

≤ max{b+ 2, bω + 0.25}.

Combining the above inequalities, we have

T∑

t=1

Tmat(m
2, nrt,m

2) ≤ O∗
(
(n/m)1/4 · T · nmax{b+2,bω+0.25})

≤ O∗
(
T · (n/m)1/4 · (n2m+mωn1/4)

)
.

This completes the proof.

9.12.6 Our result

Theorem 9.58 (Main result for Algorithm 45 - 46). Given symmetric matrices

C,A1, · · · , Am ∈ Rn×n, and a vector b ∈ Rm. Define matrix A ∈ Rm×n2 by stack-

ing the m vectors vec[A1], · · · , vec[Am] ∈ Rn2 as rows. Consider the following SDP

instance:

max
X∈Rn×n

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, ∀i ∈ [m],

X ⪰ 0,

Let X∗ be an optimal solution of the SDP instance. There is a SDP algorithm (Al-

gorithm 45-46) that runs in time

O∗
(
(mn)1/4 ·

(
m2nω +m4

)
· log(1/ϵ)

)

and outputs a PSD matrix X ∈ Rn×n s.t.

⟨C,X⟩ ≥ ⟨C,X∗⟩ − ϵ · ∥C∥2 ·R and
m∑

i=1

|⟨Ai, X⟩ − bi| ≤ 4nϵ ·
(
R

m∑

i=1

∥Ai∥1 + ∥b∥1
)
,

534

Remark 9.5. We improve the running time of [Ans00]

O∗((mn)1/4 · (m3nω +m4n2 +mω+2) · log(1/ϵ)))

for all parameters regime.

In particular, ifm = n, the total cost of Algorithm 45-46 can be upper bounded

by nω+2.5. This improves the n6.5 total cost [Ans00].

If m = n2, this cost can be upper bounded by n8.75. This improves the n10.75

total cost of [Ans00].

Proof. We first compute the running time. From Lemma 9.49, the amortized cost per

iteration is upper bounded by

O∗
((n

m

) 1
4 · (n2m+mωn1/4) +m2nω +m4 +m2 · nω− 1

2 ·
(n
m

) 1
4

)
.

Since T = O
(
(mn)1/4 · log(mn/ϵ)

)
, the Algorithm 45-46 run in time

O∗
((
n

5
2m+m2+ 1

4nω+
1
4 +m4+ 1

4n
1
4 +mωn

3
4

)
· log(1/ϵ)

)
.

Under current matrix multiplication exponent ω ≈ 2.373 and 0 ≤ m ≤ n2, this

simplifies to

O∗
((
m2+ 1

4nω+
1
4 +m4+ 1

4n
1
4

)
· log(1/ϵ)

)

= O∗
(
(mn)1/4 ·

(
m2nω +m4

)
· log(1/ϵ)

)

Now we prove the correctness of Algorithm 45-46. We invoke the robust frame-

work. From Fact 9.47 and Lemma 9.50, ϵg = ϵδ = 0, and cH = 1/3 · 1.0001−3.
Therefore directly applying Theorem 9.46 for θ = (mn)1/4 completes the proof.

535

Chapter 10: High-Accuracy Quantum SDP Solver

10.1 Introduction

In this previous chapter (Chapter 9), we introduced a robust interior-point

method (IPM) framework that supports approximating the gradient, Hessian, and

Newton step in each IPM iteration. Based on this framework, we improve the running

time of the state-of-the-art second-order SDP algorithm (due to [JKL+20]). As the

quantum era is coming, it is natural to ask if we can use quantum computers to

solve SDPs faster. In this chapter, we will use our robust IPM framework to obtain a

quantum SDP algorithm that is faster than the currently best classical algorithm. And

more importantly, it is the first quantum algorithm that can output high-accuracy

solutions.

We first recall the definition of semi-definite programming (SDP) here:

Definition 10.1 (Semidefinite programming). Suppose there are m + 1 symmetric

matrices C ∈ Rn×n and A1, · · · , Am ∈ Rn×n and a vector b ∈ Rm, the goal is to solve

the following optimization problem:

max
X∈Rn×n

⟨C,X⟩ subject to ⟨Ai, X⟩ = bi, ∀i ∈ [m], X ⪰ 0,

where ⟨A,B⟩ denote the inner product bween the matrix A and matrix B.

From the above formulation, the input size of an SDP instance is mn2. The

reason is, we have m constraint matrices and each matrix has size n× n. The linear

programming (LP) is a simpler case than SDP, where X ⪰ 0 and C,A1, · · · , Am
are restricted to be n × n diagonal matrices. Since [Dan47], there is a long line

of work [Dan47, Kha80, Kar84, Ren88, Vai89b, LS14, LS15, CLS19, LSZ19, Bra20,

BLSS20, SY21, JSWZ21, Ye20, DLY21] about speeding up the time complexity of

linear programming. Semi-definite programming can be viewed as a more general

536

optimization problem compared to linear programming. Semi-definite programming is

a more challenging problem due to a variety of complications arising from generalizing

vectors to PSD matrices. After a long line of research ([Sho77, YN76, Kha80, KTE88,

NN89, Vai89a, NN92, NN94, Ans00, KM03, LSW15, JLSW20, JKL+20, HJS+22])1,

the state-of-the-art classical semi-definite programming algorithms are

• Jiang, Kathuria, Lee, Padmanabhan and Song [JKL+20]’s algorithm

– It runs in O(
√
n(mn2 +mω + nω)) time2, for m = Ω(n).

• Huang, Jiang, Song, Tao and Zhang [HJS+22]’s algorithm (Chapter 9)

– It runs in O(mω +m2+1/4) time, for m = Ω(n2).

Inspired by the quantum linear algebra results such as recommendation system

[KP17, Tan19, CGL+20], linear regression [GST22, CCH+22], principal component

analysis [Tan21], non-convex optimization [SYZ21], in this chapter, we study the

quantum algorithm for the semi-definite programming.

It is well-known that second-order optimization method usually achieves log(1/ϵ)

dependence in running time, while the first-order optimization method has to pay

1/ϵ.3 In the quantum setting, for many linear algebra and optimization tasks (e.g.,

solving linear systems), there exist efficient algorithms taking log(1/ϵ) time and out-

putting a quantum state encoding the solution. However, extracting classical infor-

mation from the quantum state usually needs to pay a poly(1/ϵ) factor. Therefore,

even implementing second-order algorithm in quantum, it is unclear how to obtain

log(1/ϵ) dependence in final running time. Thus, one fundamental question is

1For a more detailed summary, we refer the readers to Table 1.1 and 1.2 in [JKL+20], and Table
1 in [HJS+22].

2ω ≈ 2.372 is the fast matrix multiplication exponent [AW21].
3For example, see [AK07, GH16, AZL17, CDST19, LP20a, YTF+19, JY11, ALO16].

537

Is there a quantum SDP algorithm that has a logarithmic dependence on ϵ while

simultaneously improving the m,n-dependence of the best classical solvers?

In this chapter, we propose a new approach to answering this question. More

specifically, for the m = Ω(n2) case, we design a quantum SDP solver running in time

mω/2+1/4 · poly(κ, log(1/ϵ)) and outputting a classical solution, which is faster than

the existing classical SDP algorithms. Although the time complexity dependence

in m,n of our algorithm is worse than the quantum second-order SDP algorithm

[KP20b, KPS21], our algorithm has better error dependence than all the existing

quantum SDP algorithms on the well-conditioned instances. We also overcome the

infeasibility issue in previous quantum algorithms.

We state an informal version of the main result as follows and delay the formal

version into Theorem 10.17.

Theorem 10.1 (Our result). For any semidefinite programming with m constraints

and variable size n× n, for any accuracy parameter ϵ, there is a quantum algorithm

that outputs a classical solution in time (mn1.5 + n3) · poly(κ, log(mn/ϵ)), where κ

includes the condition numbers of the intermediate matrices.

Note that almost all the previous quantum SDP algorithms also depend on

these parameters. We also note that a large family of SDP instances exists with

κ = O(1). On these instances, our algorithm only pays log(1/ϵ) in the running time,

while the previous quantum algorithms still need to pay 1/ϵ.

10.2 Quantum Barrier with Existing Algorithms

The existing quantum SDP solving algorithms can be classified into two kinds:

quantum first-order methods [BS17, AGGW17, BKL+19, AG19] based on the Arora-

Kale framework [AK07], and quantum second-order method [KP20b, ANTZ21, KPS21]

based on the primal-dual central path framework. Although these quantum algo-

538

rithms have achieved quantum speedup over the classical SDP solvers in time com-

plexity with respect to the parameters m and n, there are still some limitations in

the existing quantum SDP solving algorithms, which we discuss below.

Error dependence: polynomial or logarithmic in ϵ? The approximation error

ϵ is an essential parameter for SDP solving algorithms. For the quantum first-order

algorithms, they are based on the classical first-order method, which requires Ω(1/ϵ)

iterations [Bub15, CDHS19]. And these quantum algorithms cannot reduce the num-

ber of iterations. And this barrier also exists in quantum due to the Ω(
√
m/ϵ) lower

bound by [AG19]. For the quantum second-order algorithm [KP20b], they achieved

log(1/ϵ) in their running time, which is indeed the advantage of the classical second-

order method over the first-order method. However, the output of their algorithm is

only guaranteed to be close to the feasible region, and the running time depends poly-

nomially on the inverse of distance to the feasible region. Hence, the error dependence

of their algorithm is hard to specify4.

Linear-algebra computation: classical or quantum? In the classical interior-

point methods, each iteration employs several linear-algebra computations. Some of

them, like inverting a matrix or matrix-vector multiplication, can be sped up via

quantum linear-algebra techniques, e.g., the linear combination of unitaries (LCU)

or the quantum singular value transformation (QSVT). However, there remain some

operations that may not be computed in this way, e.g., flattening a matrix as a

vector or stacking vectors as a matrix. Therefore, previous quantum algorithms

[KP20b, ANTZ21, KPS21] use the state tomography to transform quantum data to

classical data, incurring a 1/ϵ factor to achieve an ϵ error. Even worse, although quan-

tum algorithms can solve the Newton system in poly-logarithmic time, the classical

solution obtained by tomography is only an inexact solution of the linear system. This

4See page 9 in [AGGW17] for more discussions.

539

will significantly affect the convergence of the IPM iterations, and the previous quan-

tum second-order methods [KP20b, ANTZ21, KPS21] only output approximately-

feasible SDP solution.

Nontrivial symmetrization. For the feasible primal-dual central path method,

the matrices X and S are required to be symmetric; otherwise, the convergence

analysis cannot go through. Direct application of Newton’s method into the central

path leads to the following linear system:

dS ·X + S · dX = νI − SX (complementary slackness)
⟨dX,Ai⟩ = 0 ∀i ∈ [m] (primal feasibility)
dS ∈ span{A1, . . . , Am} (dual feasibility)

. (10.1)

However, this system, in general, yields nonsymmetric directions in the primal vari-

able dX (see discussions on page 2 in [MT00]). Hence, for the classical algorithms, in

addition to solving the Newton linear system (Eq. (10.1)), some nontrivial procedures

should be applied to symmetrize the solution dX. (See Section 2 in [AHO98] and Sec-

tion 1 in [MT00] and Section 4.5.1 in [BTN01] for more details.)5 However, [KP20b]

does not adopt these procedures.6 Moreover, since the tomography algorithm they

used can only output some ℓ2-approximations of the matrices dS and dX, it will make

both X and S nonsymmetric.

10.3 Related Work

Table 10.1 summarizes the existing quantum SDP solvers. The quantum first-

order method algorithms [BS17, AGGW17, BKL+19, AG19] is built on the Arora-

5Notice that in Linear Programming X and S are both diagonal matrices, thus the solution
of Eq.(10.1) is directly feasible. The standard primal-dual central path method can be applied
([CLS19]).

6In their followup work [KPS21], they use a correct symmetrization in their quantum second-order
cone optimization algorithm.

540

Kale framework [AK07] for SDP-solving via Multiplicative Weights Update (MWU)

algorithm. The main observation is that the matrix

ρ :=
exp(−∑m

i=1 yiAi)

tr[exp(−∑m
i=1 yiAi)]

used in the multiplicative weights update is indeed a quantum Gibbs state, and hence

a quantum Gibbs sampler can give speedup in n. The remaining part of the Arora-

Kale framework is to find the violated constraints and update the dual solution y.

Hence, they used some Grover-like techniques to achieve further quantum speedup in

m. The quantum second-order method algorithm by Kerenidis and Prakash [KP20b]

is based on the primal-dual central path framework, which requires solving a Newton

linear system in each iteration. [KP20b] used the quantum linear system solver of

[GSLW19] to solve the Newton linear system in quantum and applied the tomography

in [KP17] to obtain the classical solution.

For comparison, classical second-order SDP solvers are summarized in Ta-

ble 10.2.

10.4 Technical Overview

To obtain a truly second-order quantum algorithm for solving SDP (Theo-

rem 10.1), we overcome the barriers stated in Section 10.2 via a block encoding-based

interior point method combined with our robust framework. In the following sub-

sections, we will first describe our quantum algorithm and then demonstrate how it

bypasses each barrier.

We define several notations related to the number of iterations of our algo-

rithm.

Definition 10.2. We choose η as follows: η := 1
n+2

. We choose T as follows T :=

40
ϵN

√
n log(n

ϵ
), where ϵN ∈ (0, 10−1) is a constant.

541

References Method Input Model Output Time Complexity

[BS17] 1st. order Sparse oracle
Feasible sol.

√
mns2ϵ−32

[AGGW17] 1st. order Sparse oracle
√
mns2ϵ−8

[BKL+19] 1st. order
Sparse oracle

Decide feasibility

√
ms2ϵ−10 +

√
ns2ϵ−12

Quantum state
√
mϵ−Ω(1)

[AG19] 1st. order

Sparse oracle

Feasible sol.

√
msϵ−4 +

√
nsϵ−5

Quantum state
√
mϵ−4 + ϵ−7.5

QRAM
√
mϵ−4 +

√
nϵ−5

[KP20b, KPS21] 2nd. order QRAM Infeasible sol. n2.5µξ−2 log(1/ϵ) (m = n2)
[ANTZ21] 2nd. order QRAM Feasible sol. n3.5ϵ−1 + n4 (m = n2)
Ours (Thm. 10.1) 2nd. order QRAM Feasible sol. n3.5 log(1/ϵ) (m = n2)

Table 10.1: Quantum algorithms for solving SDP. ϵ is the additive error of the output
solution. s is the row-sparsity of the input matrices. ξ is the approximation feasibility.
The sparse input oracle supports querying the i-th nonzero entry in the j-th row of
an input matrix in superposition. The quantum state model splits each input matrix
Ai as a difference of PSD matrices (quantum states) and we can access to the density
matrix of the state. The QRAM model assumes that the input matrices are stored in
some data structures in QRAM that support efficient quantum access to the matrix.
Infeasible sol. means the algorithm only outputs a solution that can approximately
satisfy the SDP constraints.

10.4.1 Block encoding-based interior point method

The framework of our quantum algorithm is the same as the classical algo-

rithm in [HJS+22]. We notice that the most time-consuming steps involve matrix

computations. Therefore, it is very natural to apply the recent block encoding and

quantum linear algebra framework to speed up the interior point method.

10.4.1.1 A brief overview of quantum linear algebra

We provide the definition of the block encoding of a matrix.

Definition 10.3 (Block encoding, informal). Let A be a matrix. We say a unitary

matrix U is a block encoding of A if top-left block of UA is close to A up to some

542

References Method Time Complexity
[Sho77, YN76, Kha80] CPM n8

[KTE88, NN89] CPM n9

[Vai89a] CPM n6.746

[NN92] IPM n6.5

[NN94, Ans00] IPM n10.75

[KM03] CPM n6.746

[LSW15] CPM n6

[JLSW20] CPM n6

[JKL+20] IPM n5.246

[HJS+22] IPM n4.746

Table 10.2: Classical algorithms for solving SDPs. Total running times are calculated
for the regime m = n2, where n is the size of matrices, and m is the number of
constraints. CPM denotes the cutting plane method, and IPM denotes the interior
point method. The running times shown in the table hide no(1), mo(1) and poly log(1/ϵ)
factors, where ϵ is the accuracy parameter. In this table, we use the current best
known upper bound of ω ≈ 2.373. This gives n4.476 = n2ω = mω.

Algorithm 47 Here, we briefly state an informal version of our algorithm. We put
more details in later Algorithm 49. The input A has size m× n2. The input vector b
has length m. And the input matrix C has size n by n.
1: procedure QSolveSDP(A, b, C)
2: ▷ The input A, C, b are stored in QRAM
3: Choose η and T according to Definition 10.2.
4: Find y and store in QRAM
5: for t = 1→ T do
6: ηnew ← η · (1 + ϵN

20
√
n
)

7: Compute S̃−1 using QSVT and ℓ2-tomography ▷ Step 1. of Sec. 10.4.1
8: Compute |gη⟩ and estimate the norm ∥gη∥2 ▷ Step 2. of Sec. 10.4.1
9: Compute δ̃y using quantum linear system solver and tomography ▷ Step

3. of Sec. 10.4.1
10: ynew ← y + δ̃y
11: end for
12: end procedure

scaling, i.e.,

UA ≈
[
A/α ·
· ·

]

543

Via block encoding, we can transform a classical matrix to a quantum operator,

which enables us to obtain exponential speedup in many linear algebra tasks by the

quantum singular value transformation technique [GSLW19].

Suppose we can efficiently implement the exact block encoding of a matrix

A, and we can also efficiently prepare the vector state |x⟩. Then, for matrix-vector

multiplication, the state |Ax⟩ = 1
∥Ax∥2

∑n
i=1(Ax)i|i⟩ can be ϵ-approximated in time

Õ(log(1/ϵ)).7 For linear system solving, the state |A−1x⟩ can also be ϵ-approximated

in time Õ(log(1/ϵ)) [CGJ19]. In addition, their norms ∥Ax∥2 and ∥A−1x∥2 could be

approximated with ϵ-multiplicative error. And it takes Õ(1/ϵ) time.

Input model Our algorithm uses the QRAM (Quantum Random Access Memory)

model, which is a common input model for many quantum algorithms (e.g., [KP17,

AG19, KP20b]). More specifically, a QRAM stores the classical data and supports

querying in superposition. And each update operation for size S QRAM data will

take Õ(S) time. Furthermore, it has been shown that a QRAM can be extended a

quantum data structure for storing matrices such that the exact block encoding can

be prepared Õ(1) time. For the SDP inputs A, C, we assume that they are already

loaded into the QRAM such that their block encodings can be efficiently implemented.

10.4.1.2 Main steps of one iteration

We will show how to use the block encoding and quantum linear algebra tools

to implement [HJS+22] general robust barrier method for SDP and achieve quantum

speedup.

7For simplicity, we hide the dependence of κ(A) and µ(A), which is related to the singular values
of A.

544

Step 1: implement ApproxSlackInverse The slack matrix S is defined by

S(y) :=
m∑

i=1

yiAi − C,

where the length-m vector y is the dual solution outputted by the previous iteration

and we assume that it is stored in QRAM. Since we assume quantum access to Ai, C

and y, by the linear combination of block-encodings, we can efficiently prepare the

block-encoding of S. Then, for each i ∈ [n], by the quantum linear system solver, we

can prepare |S−1ei⟩ = |(S−1)i⟩ and also estimate the norm ∥(S−1)i∥2 by ∥(S−1)i∥2.
Then, we apply the ℓ2-tomography procedure in [vACGN22] to obtain a classical

vector vi ∈ Rn that is close to |(S−1)i⟩. Hence, by defining (S̃−1)i := ∥(S−1)i∥2 · vi, it

holds that ∥(S̃−1)i − (S−1)i∥2 ≤ ϵS∥(S−1)i∥2. We repeat this procedure for all i ∈ [n]

and obtain a classical matrix S̃−1 ∈ Rn×n such that ∥S̃−1 − S−1∥F ≤ ϵS∥S−1∥F . To

make S̃ symmetric, we further let S̃−1 ← 1
2
(S̃−1 + (S̃−1)⊤). The running time of this

step is

TS = Õ(n2.5ϵ−1S),

which is an improvement over the classical running time O(mn2 + nω) for constant

ϵS.

Step 2: implement ApproxGradient The gradient vector g is defined as

gη := ηb− A · vec(S−1).

where vec(·) means vectorizing an n-by-n matrix into an n2-length vector, and A ∈
Rm×n2 . Note that the gradient is only used to compute δy := −H−1gη in Step 3.

Thus, it suffices to to prepare the state |gη⟩ and estimate its norm ∥gη∥2. Using

QRAM, we can efficiently implement the block-encoding for A′ =
[
A b

]
. Since we

compute S̃−1 in the classical form in Step 1, we can also efficiently prepare the state

545

|s′⟩ for s′ =
[
−vec(S̃−1)

η

]
. By quantum linear algebra, we can prepare a state |g̃η(S̃)⟩

that is ϵg-close to |gη(S̃)⟩ in time

Tg,1 = Õ(µ(A)κ(A)) ≃ Õ(
√
m),

where gη(S̃) = η · b− A · vec(S̃−1). And we obtain an estimate ∥gη(S̃)∥2 of ∥gη(S̃)∥2
within relative error ϵg in time

Tg,2 = Õ(µ(A)κ(A)ϵ′−1g) ≃ Õ(
√
mϵ′−1g).

Furthermore, if we define g̃η(S̃) := ∥gη(S̃)∥2 · |g̃η(S̃)⟩, then we can prove that

∥g̃η(S̃)− gη∥2 ≲ O(ϵg + ϵ′g + ϵS)∥gη∥2,

where we use the error guarantee of S̃−1.

Step 3: implement ApproxDelta In this step, we will compute δy := −H−1·gη,
whereH = A·(S−1⊗S−1)·A⊤. Since A and S̃−1 are stored in QRAM, using the product

and Kronecker product of block-encodings [GSLW19, CVB20], we can implement the

block-encoding of H̃ = A·(S̃−1⊗S̃−1)·A⊤. In order to reduce the block-encoding factor

of H̃, we first implement the block-encoding of S̃−1/2⊗ S̃−1/2, by classically compute

S̃−1/2 = (S̃−1)1/2. Then, we implement the block-encoding of W = A ·(S̃−1/2⊗ S̃−1/2).
Since H̃ = WW⊤, the block-encoding of H̃ can be efficiently implemented. In Step 2,

|g̃η(S̃)⟩ are prepared. Then, we can apply the quantum linear system solver to obtain

the state close to |H̃−1g̃η(S̃)⟩ and also estimate the norm ∥H̃−1g̃η(S̃)∥2. Then, we

apply the tomography to obtain the classical form of H̃−1g̃η(S̃). Let δ̃y denote the

classical vector we compute in this step. We can show that

∥δ̃y − (−H̃−1g̃η(S̃))∥2 ≤ ϵδ∥H̃−1g̃η(S̃))∥2

in time

Tδ = Õ(mµ(A)ϵ−1δ +mµ(S)ϵ−1δ) ≃ Õ(mnϵ−1δ),

where we use the fact that µ(A) ≤
√
m+ n2 = O(n) (see Theorem 10.6).

546

Running time per iteration Putting three steps together, we get that the total

running time per iteration of our algorithm is

Titer = TS + Tg,2 + Tδ ≃ Õ(n2.5ϵ−1S +
√
mϵ−1g +mnϵ−1δ).

10.4.2 Overcoming the quantum barriers

In this part, we discuss how our quantum algorithm bypasses each barrier in

Section 10.2.

Error dependence barrier We first note that by the analysis of our robust

interior-point framework (Theorem 10.12), the number of iterations will be Õ(
√
n log(1/ϵ))

as long as the Newton step size satisfies g⊤η H−1gη ≤ ϵ2N for some constant ϵN in each

iteration. As shown in Section 10.4.1.2, the running time per iteration is depends

linearly on ϵ−1S , ϵ−1g , ϵ−1δ . Fortunately, by the recently proposed robust framework

(Lemma 10.11), constant accuracies8 are enough:

Lemma 10.2 (Quantum time cost per iteration, informal). We can take some prop-

erly chosen ϵS, ϵg, ϵδ such that Condition 0-4 in the robust IPM framework (Lemma 10.11)

are satisfied in each iteration, and the runtime per iteration is Õ(m1.5 + n2.5).

Therefore, the total running time of our quantum SDP solving algorithm is

Õ(
√
n(mn+ n2.5) log(1/ϵ)).

It depends only logarithmically on the approximation error, which is a truly second-

order algorithm.

Quantum/classical data transformation barrier We can output the classical

solution by running tomography in intermediate steps. For time-consuming steps,

8They actually depend on the condition number of the matrices. See Section 10.7.4 for details.

547

we use the QSVT to speed up. And for the steps that are hard to be implemented

in the QSVT (e.g., vectorizing S̃−1), we directly compute them classically with low-

accuracy tomography procedure. In this way, the robust IPM framework can tolerate

the “quantum-inherent” error, and our quantum algorithm can still output feasible,

high-accuracy SDP solution.

Symmetrization barrier We bypass the barrier by solving SDP in the dual space

instead of the primal space, where we only care about the symmetrization of S̃, the

approximation of the slack matrix S. It is easy to make S̃ symmetric by averaging S̃

and S̃⊤. This is because the definition of S guarantees that the true S is symmetric.

Hence, the classical interior point method does not have this problem, and our sym-

metrization will only make the approximation error smaller. However, we note that

this symmetrization trick cannot directly apply to [KP20b]’s algorithm. Because they

solved SDP also in the primal space and the true solution dX of the newton linear

system may not be symmetric, which means averaging d̃X and (d̃X)⊤ could result in

some error that is hard to control. A possible way may be to quantize the classical

symmetrization procedures given in [AHO98].

10.5 Preliminary

We define several basic notations here. We say tr[·] is the trace of a matrix.

We use ∥ · ∥2 to denote spectral/operator norm of a matrix. Let ∥ · ∥F be the

Frobenious norm of a matrix. We use ∥ · ∥1 to represent Schatten 1-norm of matrix.

For a symmetric matrix X ∈ Rn×n, we say it is positive semi-definite (PSD,

denoted as X ⪰ 0) if for any vector u ∈ Rn, u⊤Xu ≥ 0. Similarly, we define positive

definite via ≻ and > 0 notations.

We say λ(B) are the eigenvalues of B.

We use x[i] to denote the i-th largest entry of vector x.

548

We use vec[] to denote matrix vectorization.

Let ⊗ denote the Kronecker product.

The A ∈ Rm×n2 is a matrix where i-th row is vec[Ai], for all i ∈ [m].

Let Tmat(x, y, z) denote the time of multiplying an x× y matrix with another

y × z matrix.

For r ∈ R+, let ω(r) ∈ R+ denote the value that for all positive integer m,

Tmat(m,m,m
r) = O(mω(r)).

Definition 10.1 is the primal form of SDP. The dual form of SDP is defined in

Definition 9.2. For convenience, we recall it here:

Definition 10.4 (The dual formulation of SDP). Suppose we are given a symmetric

matrix C ∈ Rn×n. There are also m constraints matrices A1, . . . , Am, and each of

them has size n by n. Suppose we are also given a length-m vector b. Our goal is to

solve this problem:

min
y∈Rm

⟨b, y⟩

s.t. S =
m∑

i=1

yiAi − C, (10.2)

S ⪰ 0.

We state two tools from previous work.

Theorem 10.3 ([Wed73, MZ10]). Let A ∈ Rm×n and B = A + E. Let A† and B†

denote the pseudo-inverse of A and B, respectively. Then

∥B† − A†∥ ≤
√
2max{∥A†∥22, ∥B†∥22} · ∥E∥.

Theorem 10.4 ([Wed73, MZ10]). Let A ∈ Rm×n and B = A+ E. Then

∥B† − A†∥F ≤ µmax{∥A†∥22, ∥B†∥22} · ∥E∥F .

where µ = 1 if rank(A) = n = m and µ =
√
2 otherwise.

549

10.5.1 Quantum linear algebra toolbox

We introduce the basics of quantum computing in Appendix B. In this section,

we introduce a powerful tool in quantum algorithm design—quantum linear algebra,

which stores classical information in quantum states and exponentially speeds up

some fundamental linear algebra computations.

10.5.1.1 Storing data in QRAM

Quantum random access memory (QRAM) is a commonly-used model in quan-

tum computing that assumes the quantum computer can access classical data in su-

perposition.

Definition 10.5 (Quantum random access memory (QRAM), [GLM08]). A quantum

random access memory is a device that stores indexed data (i, xi) for i ∈ N and

xi ∈ R (with some bit precision). It allows to query in the form |i⟩|0⟩ 7→ |i⟩|xi⟩. Each

read/write/update operation has Õ(1) cost.

Furthermore, there are some ways to store classical vectors and matrices in

QRAM using some quantum data structures developed in [KP17], such that for any

vector or any row of a matrix, the vector state

|v⟩ := 1

∥v∥2

n−1∑

i=0

vi|i⟩

can be prepared in polylog(n) time. In addition, for a matrix A, its row norm state
∑n

i=0 ∥Ai∥2|i⟩ can also be prepared in polylog(n) time.

We now introduce a commonly used matrix parameter in quantum linear al-

gebra:

Definition 10.6 (Matrix parameter for QRAM). For a matrix A ∈ Rn×m, for p ∈
[0, 1], let s1(A) := maxi∈[n]

∑
j∈[m] |Ai,j|. Then, we define a parameter µ(A) as follows:

µ(A) := ∥A∥−1 ·min {∥A∥F , s1(A)} .

550

10.5.1.2 Retrieving data from quantum to classical

In order to transform a quantum vector state |v⟩ to a classical vector, we need

to apply the state tomography procedure [KP20b, KLP19, vACGN22]. We state a

version with an ℓ2-approximation guarantee.

Theorem 10.5 (Vector state tomography with ℓ2 guarantee, [vACGN22, Theorem

23]). Given access to a unitary U such that U |0⟩ = |x⟩ = ∑n−1
i=0 xi|i⟩ for some x ∈

Rn, there is a tomography algorithm that outputs a vector x̃ ∈ Rd with probability

1− 1/poly(d) using Õ(d/ϵ) conditional applications of U and its inverse and Õ(d/ϵ)

additional quantum gates such that ∥x− x̃∥2 ≤ ϵ.

10.5.1.3 Linear algebra operations with block encodings

Block encoding is a way to efficiently transform a classical matrix to a quantum

operator that enables quantum computers to speedup several linear algebra compu-

tations.

The definition of block encoding is as follows:

Definition 10.7 (Block encoding). Let A ∈ C2w×2w be a matrix. We say a unitary

matrix U ∈ C2(w+a)×2(w+a) is a (α, a, ϵ)block encoding of A if

∥A− α(⟨0|a ⊗ I)U(|0⟩a ⊗ I)∥ ≤ ϵ,

i.e.,

UA ≈
[
A/α ·
· ·

]
.

Kerenidis and Prakash [KP17, KP20a] showed that for a matrix stored in a

quantum data structure, its block encoding can be efficiently implemented.

Theorem 10.6 (Block encoding construction from QRAM, [KP17, KP20a]). Given

quantum access to a matrix A ∈ Rn×n, a (µ(A), O(log(n)), 0)-block encoding of A can

551

be implemented in Õ(1) time, where µ(A) is defined in Definition 10.6, and a naïve

bound is

µ(A) ≤
√

rank(A) ≤ √n.

We state a tool from previous work [GSLW19].

Theorem 10.7 (Product of block encoded matrices, Lemma 53 in [GSLW19]). We

use UA to represent an (α, a, ϵA)-block encoding of a matrix A which can be constructed

in time TA, and UB be a (β, b, ϵB)-block encoding of a matrix that can be constructed

in time TB.

Then, we can implement an (αβ, a + b, αϵB + βϵA)-block encoding of AB in

time O(TA + TB).

Lemma 10.8 (Product of preamplified block-matrices [LC19]). Let A ∈ Rm×n and

B ∈ Rn×k such that ∥A∥ ≤ 1, ∥B∥ ≤ 1. If α ≥ 1 and U is an (α, a, δ)-block-encoding

of A that can be implemented in time TU ; β ≥ 1 and V is a (β, b, ϵ)-block-encoding of

B that can be implemented in time TV , then there is a (2, a+b+2,
√
2(δ+ϵ+γ))-block-

encoding of AB that can be implemented in time O((α(TU +a)+β(TV +b)) log(1/γ)).

We state a tool from previous work [CVB20].

Theorem 10.9 (Kronecker product of block encoded matrices, Lemma 1 in [CVB20]).

We use UA to represent an (α, a, ϵA)-block encoding of a matrix A which can be con-

structed in time TA, and UB be a (β, b, ϵB)-block encoding of a matrix that can be

constructed in time TB.

Then, we can implement an (αβ, a + b, αϵB + βϵA + ϵAϵB)-block encoding of

A⊗B in time O(TA + TB + log(n)).

Theorem 10.10 (Quantum linear system solver, [CGJ19, GSLW19]). Let A ∈ Rn×n

be a matrix with non-zero eigenvalues in the interval [−1,−1/κ] ∪ [1/κ, 1]. Given an

implementation of an (µ,O(log n), δ) block encoding for A in time TU and a procedure

for preparing state |b⟩ in time Tb,

552

1. If δ ≤ ϵ
κ2poly log(κ/ϵ)

then a state ϵ-close to |A−1b⟩ can be generated in time

(TUκµ+ Tbκ) · poly log(κµ/ϵ).

2. If δ ≤ ϵ
2κ

then a state ϵ-close to |Ab⟩ can be generated in time

(TUκµ+ Tbκ) · poly log(κµ/ϵ).

3. For ϵ > 0 and δ as in parts 1 and 2 and A ∈ {A,A−1}, an estimate Λ such that

Λ ∈ (1± ϵ)∥Ab∥ with probability (1− δ) can be generated in time

(TU + Tb)(κµ/ϵ) · poly log(κµ/ϵ).

10.6 Revisit of Robust Newton Step

In this chapter, one of our contributions is that we provide a more robust

version of the potential function that considers the perturbation of gradients.

Classical interior point literature [Ren01] controls the potential function when

the exact Newton step is taken. [JKL+20] introduces small errors in the frame-

work. Recently, [HJS+22] provides the most general framework, which is introduced

in Chapter 9. We slightly modify it to adapt the error analysis in quantum computing.

Lemma 10.11 (Robust IPM iteration, a restatement of Lemma 9.40). Let c0 = 10−4.

Given any parameters

• αS ∈ [1, 1 + c0],

• αH ∈ [1, 1 + c0],

• ϵg ∈ [0, c0],

• ϵδ ∈ [0, c0],

• ϵN ∈ [0, c0],

553

• η > 0.

We assume

• Condition 0. A dimension-m vector y ∈ Rm (feasible dual solution) satisfies

∥g(y, η)∥H(y)−1 := g(y, η)⊤H(y)−1g(y, η) ≤ ϵN .

• Condition 1. A n× n symmetric (positive definite) matrix S̃ satisfies

α−1S · S(y) ⪯ S̃ ⪯ αS · S(y).

• Condition 2. A n× n symmetric (positive definite) matrix H̃ satisfies

α−1H ·H(S̃) ⪯ H̃ ⪯ αH ·H(S̃).

• Condition 3. A dimension-m vector g̃ satisfies

∥g̃ − g(y, ηnew)∥H(y)−1 ≤ ϵg · ∥g(y, ηnew)∥H(y)−1 .

• Condition 4. A dimension-m vector δ̃y satisfies

∥δ̃y − (−H̃−1g̃)∥H(y) ≤ ϵδ · ∥H̃−1g̃∥H(y).

Then following the update rule of η and y: ηnew = η · (1 + ϵN
20
√
n
) and ynew = y + δ̃y,

we have ynew and ηnew satisfy the following:

∥g(ynew, ηnew)∥H(ynew)−1 ≤ ϵN .

Remark 10.1. Condition 3 and 4 can be derived by the following ℓ2 guarantees:

• ∥g̃ − g(y, ηnew)∥2 ≤ ϵg · ∥g(y, ηnew)∥2/κ(H(y)),

• ∥δ̃y − (−H̃−1g̃)∥2 ≤ ϵδ · ∥H̃−1g̃∥2/κ(H(y)).

554

Based on the robust IPM framework, we can conclude the following conver-

gence result for the barrier method, which is proved in Chapter 9. We restate the

theorem below.

Theorem 10.12 (Robust barrier method, a restatement of Theorem 9.46). Consider

a semidefinite program in Eq (9.2). Suppose in each iteration, the S̃, H̃, g̃, δ̃ computed

in Line 6, Line 8, Line 7, Line 9 of Algorithm 48 satisfies Condition 1, 2, 3, 4 in

Lemma 10.11.

Let y denote a dimension-m vector (can be viewed as a feasible initial solution).

Suppose that y satisfies the invariant g(y, η)⊤H(y)−1g(y, η) ≤ ϵ2N , for any error pa-

rameter 0 < ϵ ≤ 0.01 and Newton step size ϵN satisfying
√
ϵ < ϵN ≤ 0.1, Algorithm 48

outputs, in T = 40ϵ−1N
√
n log(n/ϵ) iterations, a vector y ∈ Rm that satisfies

⟨b, y⟩ ≤ ⟨b, y∗⟩+ ϵ2. (10.3)

where y∗ is an optimal solution to the dual formulation (9.2).

Further, consider the Algorithm 48, we have

∥S−1/2SnewS−1/2 − I∥F ≤ 1.1 · ϵN (10.4)

holds for each iteration.

10.7 Quantum Second-Order SDP Solver

We propose a fast quantum second-order SDP solver in this section. The

detailed algorithm is given in Algorithm 49. We follow the framework of the robust

interior-point method (Algorihtm 48). In Section 10.7.1, we show the quantum imple-

mentation of the procedure ApproxSlack that directly computes the slack matrix

inverse. In Section 10.7.2, we show how to implement the procedure ApproxGra-

dient that computes the gradient in quantum. In Section 10.7.3, we show how to

555

Algorithm 48 A restatement of the framework (Algorithm 44).

1: procedure SDPFrameWork({Ai}mi=1, b, C,m, n) ▷ Let C ∈ Rn×n.
Let A1, A2, · · · , Am denote a list of m matrices where each matrix has size n× n.
Let b denote a length-m vector. Let A denote a matrix that has size m× n2.

2: Choose η and T according to Definition 10.2
3: Find y ∈ Rm according to Lemma E.1 ▷ Condition 0 in Lemma 10.11
4: for t = 1→ T do
5: ηnew ← η · (1 + ϵN

20
√
n
)

6: S̃ ← Approximate Slack ▷ Condition 1 in Lemma 10.11
7: H̃ ← Approximate Hessian ▷ Condition 2 in Lemma 10.11
8: g̃ ← Approximate Gradient ▷ Condition 3 in Lemma 10.11
9: δ̃y ← Approximate Delta ▷ Condition 4 in Lemma 10.11

10: ynew ← y + δy
11: y ← ynew

12: end for
13: Return a solution via Lemma E.1
14: end procedure

implement the procedure ApproxDelta that computes the Newton step in quan-

tum. Then, in Section 10.7.4, we combine them together and show that the robustness

conditions are satisfied, which gives the running time and correctness guarantees of

Algorithm 49.

10.7.1 Slack matrix

The goal of this section is to prove the following lemma, which shows how

to efficiently compute the slack matrix inverse S−1 using quantum singular value

transformation (QSVT). We will show in Section 10.7.4 that the error guarantee in

the Frobenius norm suffices for our robust IPM framework.

Lemma 10.13 (Quantum speedup for computing the slack matrix inverse S−1). Let

S ∈ Rn×n be defined as S =
∑m

i=1 yiAi − C. Let ϵS ∈ (0, 1/10) denote an accuracy

parameter. For the ApproxSlack procedure (Line 8), there is an algorithm that

556

runs in time

Õ(n2µ(S)κ(S)ϵ−1S)

and outputs a classical symmetric matrix S̃−1 ∈ Rn×n such that

∥S̃−1 − S−1∥F ≤ ϵS · ∥S−1∥F .

Proof. Using QRAM, we can construct PL, PR, a (1+∥y∥1, logm, 0)-state-preparation

pair for
[
y
−1

]
∈ Rm+1. Since A1, . . . , Am and C are stored in QRAM, we can im-

plement US, which is a (O(µ), O(log n), 0)-block encoding for S =
∑m

i=1 yiAi − C,

where µ := ∥y∥1 · max{maxi∈[n] µ(Ai), µ(C)}. Then, for each basis state |ei⟩, we

compute S−1|ei⟩ using Theorem 10.10. More specifically, we can prepare a state

|(S̃−1)i⟩ that is ϵ1-close to |(S−1)i⟩ in time Õ(µ · κ(S)). And we can estimate the

norm Ni ∈ (1± ϵ2)∥S−1|ei⟩∥2 in time Õ(µ · κ(S) · ϵ−12). Finally, by Theorem 10.5, it

takes Õ(n ·µκ(S) ·ϵ−13)-time to get a classical vector vi such that ∥vi−|(S̃−1)i⟩∥2 ≤ ϵ3.

Define (S̃−1)i := Ni · vi ∈ Rn.

We have

∥(S̃−1)i − (S−1)i∥2 = ∥Ni · vi − (S−1)i∥2
≤ ∥(S−1)i∥2 · ∥(1± ϵ2)vi − |(S−1)i⟩∥2
≤ ∥(S−1)i∥2 · (∥(1± ϵ2)vi − |(S̃−1)i⟩∥2 + ∥|(S̃−1)i⟩ − |(S−1)i⟩∥2)

≤ ∥(S−1)i∥2 · (∥(1± ϵ2)vi − |(S̃−1)i⟩∥2 + ϵ1)

≤ ∥(S−1)i∥2 · (∥vi − |(S̃−1)i⟩∥2 + ϵ1 + ϵ2∥vi∥2)

≤ ∥(S−1)i∥2 · (ϵ1 + ϵ3 + ϵ2∥vi∥2)

≤ ∥(S−1)i∥2 · (ϵ1 + ϵ3 + ϵ2(∥|(S̃−1)i⟩∥2 + ∥|(S̃−1)i⟩ − vi∥2))

≤ ∥(S−1)i∥2 · (ϵ1 + ϵ3 + ϵ2(1 + ϵ3))

≤ O(ϵ1 + ϵ2 + ϵ3) · ∥(S−1)i∥2.

By taking ϵ1 = ϵ2 = ϵ3 = O(ϵS), we get that (S̃−1)i can be computed in Õ(nµ(S)κ(S)ϵ−1S)-

time such that ∥(S̃−1)i − (S−1)i∥2 ≤ ϵS∥(S−1)i∥2. We apply this procedure for all

557

i ∈ [n]. Then, we obtain S̃−1 ∈ Rn×n such that

∥S̃−1 − S−1∥F ≤ ϵS∥S−1∥F

in Õ(n2µ(S)κ(S)ϵ−1S)-time. Since we know that S and S−1 are symmetric matrices, we

can easily symmetrize S̃−1 by (S̃−1+(S̃−1)⊤)/2 without increasing the approximation

error.

10.7.2 Gradient

The goal of this section is to prove the following lemma, which computes a

quantum state that encodes the gradient gη. We will use the quantum state and the

estimated norm to quantumly compute the Newton step later. Furthermore, we also

bound the approximation error between the true gradient gη,S and the vector encoded

in the quantum state, which will be useful in the latter error analysis.

Lemma 10.14 (Computing the gradient state |gη⟩ and norm ∥gη∥). Let gη ∈ Rm

be defined as gη = η · b − A · vec(S̃−1) := A′ · s′ ∈ Rm, where A′ :=
[
A b

]
and

s′ :=

[
−vec(S̃−1)

η

]
. Then, a quantum state |g̃η⟩ can be prepared in time Tg =

Õ(µ(A)κ(A)) that is ϵg-close to the state |gη⟩. Moreover, ∥gη∥2 can be estimated

with ϵ′g-multiplicative error in time Tg,norm = Õ(µ(A)κ(A)ϵ′−1g).

Let gη,S = η · b− A · vec(S−1). Then, we have

∥g̃η − gη,S∥2 ≤ O(ϵg + ϵ′g + ϵS · κ(A))∥gη,S∥2.

Proof. Since A and b are stored in QRAM, we can form the block-encoding of A.

Moreover, by Lemma 10.13, S̃−1 are obtained in the classical form such that ∥S̃−1 −
S−1∥F ≤ ϵS∥S−1∥F . We can prepare the state |s′⟩. By Theorem 10.10 (part 2),

|g̃η⟩ can be prepared in time Õ(µ(A′)κ(A′)) = Õ(µ(A)κ(A)) that is ϵg-close to |gη⟩.
Furthermore, by Theorem 10.10 (part 3), the norm ∥gη∥2 can be estimated within

relative error ϵ′g in time Õ(µ(A)κ(A)ϵ′−1g). We analyze the approximation error below.

558

Let g̃η := Ng · |g̃η⟩, where Ng ∈ (1± ϵ′g)∥gη∥2 and ∥|g̃η⟩ − |gη⟩∥ ≤ ϵg. Then, we

have

∥g̃η − gη∥2 = ∥Ng · |g̃η⟩ − ∥gη∥2 · |gη⟩∥2
≤ ∥Ng · |g̃η⟩ −Ng · |gη⟩∥2 + ∥Ng · |gη⟩ − ∥gη∥2 · |gη⟩∥2
≤ ϵgNg + ∥Ng · |gη⟩ − ∥gη∥2 · |gη⟩∥2
= ϵgNg + |Ng − ∥gη∥2|

≤ (ϵg(1 + ϵ′g) + ϵ′g)∥gη∥2
= O(ϵg + ϵ′g)∥gη∥2, (10.5)

where the second step follows from triangle inequality, the third step follows from the

definition of ϵg, the fourth step follows from ∥|gη⟩∥2 = 1, the fifth step follows from

the definition of ϵ′g, and the last step is straightforward.

Define gη,S = η · b− A · vec(S−1). We have

∥gη − gη,S∥2 = ∥A · (vec(S̃−1)− vec(S−1))∥2
≤ ∥A∥ · ∥vec(S̃−1)− vec(S−1)∥2
= ∥A∥ · ∥S̃−1 − S−1∥F
≤ ∥A∥ · ϵS∥S−1∥F ,

where the second step follows from the definition of the spectral norm, and the third

step follows from Lemma 10.13.

Hence, we get that

∥gη − gη,S∥2
∥gη,S∥2

≤ ϵS∥A∥ · ∥S−1∥F
∥η · b− A · vec(S−1)∥2

= O(ϵS) ·
∥A∥ · ∥S̃−1∥
∥A · vec(S−1)∥2

≤ O(ϵS) · κ(A) ·
∥S−1∥F
∥S−1∥F

= O(ϵS · κ(A)), (10.6)

559

where the second step follows from the fact that ∥b∥2 can be re-scaled to be n−O(1)

so that ∥ηb∥2 ≪ ∥A · vec(S−1)∥2, the third step follows from ∥A · vec(S−1)∥2 ≥
σmin(A)∥vec(S−1)∥2 = σmin(A)∥S−1∥F , and the third step is straightforward.

Therefore,

∥g̃η − gη,S∥2 ≤ ∥g̃η − gη∥2 + ∥gη − gη,S∥2
= O(ϵg + ϵ′g)∥gη∥2 +O(ϵS · κ(A))∥gη,S∥2
≤ O((ϵg + ϵ′g)(1 + ϵS · κ(A)) + ϵS · κ(A))∥gη,S∥2
= O(ϵg + ϵ′g + ϵS · κ(A))∥gη,S∥2.

where the first step follows from triangle inequality, the second step follows from

Eqs. (10.5) and (10.6), the third step follows from Eq. (10.6) again, and the last step

follows directly.

10.7.3 Update the changes of the dual

The goal of this section is to prove the following lemma that computes a

classical vector that is close to the Newton step δy, based on QSVT and tomography.

We also give an ℓ2-relative error guarantee.

Lemma 10.15 (Quantum speedup for computing the update δy). For the Approx-

Delta procedure (Line 23), there is an algorithm that outputs a classical vector

δ̃y ∈ Rm such that

∥δ̃y − (−H̃−1g̃ηnew)∥2 ≤ O(ϵδ + ϵn + ϵ′δ) · ∥H̃−1g̃ηnew∥2

in time

Õ
((

(mϵ−1n + ϵ′δ)∥H̃∥+ ϵ′−1g

)
µ(A)κ(A)κ(H̃) + (mϵ−1n + ϵ′−1δ)∥H̃∥µ(S̃−1)κ(S̃)κ(H̃)

)
,

where H̃ = A(S̃−1 ⊗ S̃−1)A⊤.

560

Proof. We have access to S̃−1 in QRAM. Then, we can compute (S̃−1)1/2 classically

and construct a unitary US̃−1/2 , which is a (µ(S̃−1/2), O(log n), 0)-block encoding of

(S̃−1)1/2.

By Theorem 10.9, U1 implements a (µ(S̃−1), O(log n), 0)-block encoding of

S̃−1/2 ⊗ S̃−1/2 in time T1 = Õ(1).

Then, by Lemma 10.8, U2 implements a (O(∥A∥∥S̃−1∥), O(log n), δ2)-block en-

coding of A(S̃−1/2 ⊗ S̃−1/2) in time

T2 = Õδ2

(
µ(A)/∥A∥ · (TA + log n) + µ(S̃−1)/∥S̃−1∥ · (T1 + log n)

)

= Õn,δ2

(
µ(A)/∥A∥+ µ(S̃−1)/∥S̃−1∥

)
.

Since

H̃ = (A(S̃−1/2 ⊗ S̃−1/2)) · (A(S̃−1/2 ⊗ S̃−1/2))⊤,

UH implements a (O(∥H̃∥), O(log n), O(δ2))-block encoding of H̃ in time

TH = Õn,δ2

(
∥A∥∥S̃−1∥/∥A(S̃−1/2 ⊗ S̃−1/2)∥ · T2

)

= Õn,δ2

((
µ(A)∥S̃−1∥+ µ(S̃−1)∥A∥

)
∥H̃∥−1/2

)
.

Then, we can prepare a quantum state |δ̃y⟩ that is ϵδ-close to |H̃−1g̃η⟩ in time

Tδ = Õ
(
κ(H̃)(TH∥H̃∥+ Tg)

)

= Õ
(
κ(H̃)

(
(µ(A)∥S̃−1∥+ µ(S̃−1)∥A∥)∥H̃∥−1/2 · ∥H̃∥+ µ(A)κ(A)

))

= Õ
(
κ(H̃)

(
(µ(A)∥S̃−1∥+ µ(S̃−1)∥A∥)∥H̃∥1/2 + µ(A)κ(A)

))
.

And the norm ∥H̃−1|g̃η⟩∥2 can be estimated with ϵ′δ-multiplicative error in time

Tδ,norm = Õ(Tδ · ϵ′−1δ).

Finally, by the tomography procedure, we can obtain a classical vector δ̃y,1 ∈
Rm such that ∥|δ̃y⟩ − δ̃y,1∥2 ≤ ϵn in time Tδ,tomo = Õ(Tδ · mϵ−1n). And we let δ̃y :=

Nδ ·Ng · δ̃y,1, where Nδ ∈ (1± ϵ′δ)∥H̃−1|g̃η⟩∥2 and Ng ∈ (1 + ϵ′g)∥gη∥2.

561

We have

∥H̃−1g̃η − δ̃y∥2 = ∥H̃−1g̃η −Nδ ·Ng · δ̃y,1∥2
= ∥g̃η∥2 · ∥H̃−1|g̃η⟩ −Nδ · δ̃y,1∥2
= ∥g̃η∥2 · ∥H̃−1|g̃η⟩∥2 · ∥|H̃−1g̃η⟩ − (1± ϵ′δ)δ̃y,1∥2
= ∥H̃−1gη∥2 · (∥|H̃−1gη⟩ − δ̃y,1∥2 + ϵ′δ∥δ̃y,1∥2)

= ∥H̃−1g̃η∥2 · (∥|H̃−1g̃η⟩ − δ̃y,1∥2 +O(ϵ′δ))

= ∥H̃−1g̃η∥2 · (∥|H̃−1g̃η⟩ − |δ̃y⟩∥2 + ∥|δ̃y⟩ − δ̃y,1∥2 +O(ϵ′δ))

= ∥H̃−1g̃η∥2 ·O(ϵδ + ϵn + ϵ′δ),

where the first step follows from the definition of δ̃y, the second step follows from

∥g̃η∥2 = Ng, the third step follows from Nδ ∈ (1 ± ϵ′δ)∥H̃−1|g̃η⟩∥2, the forth step

follows from triangle inequality, the fifth step follows from ∥δ̃y,1∥2 = O(1), the sixth

step follows from triangle inequality, and the last step follows from the approximation

guarantees of ∥|H̃−1g̃η⟩ − |δ̃g⟩∥2 ≤ ϵδ and ∥|δ̃y⟩ − δ̃y,1∥2 ≤ ϵn.

The total time complexity of getting δ̃y is:

T = Tδ,tomo + Tδ,norm + Tg,norm

= Õ((mϵ−1n + ϵ′−1δ)Tδ + ϵ′−1g µ(A)κ(A))

= Õ
(
(mϵ−1n + ϵ′−1δ)κ(H̃)(µ(A)∥S̃−1∥+ µ(S̃−1)∥A∥)∥H̃∥1/2 + ϵ′−1g κ(H̃)µ(A)κ(A)

)

= Õ
((

(mϵ−1n + ϵ′δ)∥H̃∥+ ϵ′−1g

)
µ(A)κ(A)κ(H̃) + (mϵ−1n + ϵ′−1δ)∥H̃∥µ(S̃−1)κ(S̃)κ(H̃)

)
.

10.7.4 Combine

In this section, we wrap up the three components and show the cost-per-

iteration of our quantum SDP solver in the following lemma. By our error analysis of

each component, we can prove that the robustness conditions are satisfied by proper

choices of parameters. Then, the main theorem (Theorem 10.17) follows immediately.

562

Lemma 10.16 (Quantum SDP solver cost per iteration). Let t ∈ [T]. The t-th

iteration of Algorithm 49 takes

Õ((mµ(A) + n2µ(S)) · κ(A)κ(S)κ(H)3)

time such that Cond. 0. to Cond. 4. in Lemma 10.11 are satisfied.

Proof. For Cond. 0., if t = 1, then a feasible solution y can be found in the

initialization step (Line 5). For t > 1, we will prove by induction. Suppose it is

satisfied by the y computed in the (t− 1)-th iteration.

For Cond. 1., let S̃−1 be the matrix computed by ApproxSlack, and let

S := mat(A⊤y)− C. By Lemma 10.13, the algorithm takes

TS = Õ(n2µ(S)κ(S)ϵ−1S) (10.7)

time such that

∥S̃−1 − S−1∥F ≤ ϵS · ∥S−1∥F .

By Fact 9.5, we get that (1− ϵS)S−1 ⪯ S̃−1 ⪯ (1 + ϵS)S
−1. Hence, α−1S S−1 ⪯ S̃−1 ⪯

αSS
−1 holds for some αS ∈ (1, 1 + 10−4), as long as ϵS is a small enough constant.

For Cond. 2., since we compute S̃−1 and store it in QRAM, we may assume

that there is no error in this step, i.e., H̃ = H(S̃). Hence, this condition is satisfied

by taking αH = 1.

For Cond. 3., let g̃ηnew := Ng ·|g̃ηnew⟩ produced by Lemma 10.14. It guarantees

that

∥g̃ηnew − gηnew∥2 ≤ O(ϵg + ϵ′g + ϵS · κ(A))∥gηnew∥2.

By the first part of Remark 10.1, if we have

∥g̃ηnew − gηnew∥2 ≤ τg∥gηnew∥2/κ(H).

563

for some τg ∈ (0, 10−4), then Cond. 3. will be satisfied, i.e.,

∥g̃ηnew − gηnew∥H−1 ≤ τg∥gηnew∥H−1 .

Hence, we can take

ϵg = ϵ′g = O(κ(H)−1) and ϵS = O(κ(A)−1κ(H)−1). (10.8)

For Cond. 4., let δ̃y be the vector computed by ApproxDelta. By Lemma 10.15,

it takes

Tδ = Õ
((

(mϵ−1n + ϵ′δ)∥H̃∥+ ϵ′−1g

)
µ(A)κ(A)κ(H̃) + (mϵ−1n + ϵ′−1δ)∥H̃∥µ(S̃−1)κ(S̃)κ(H̃)

)

(10.9)

time such that

∥δ̃y − (−H̃−1g̃ηnew)∥2 ≤ O(ϵδ + ϵn + ϵ′δ) · ∥H̃−1g̃ηnew∥2.

By the second part of Remark 10.1, if we have

∥δ̃y − (−H̃−1g̃ηnew)∥2 ≤ τδ∥H̃−1g̃ηnew∥2/κ(H)

for some τδ ∈ (0, 10−4), then Cond. 4. will be satisfied, i.e.,

∥δ̃y − (−H̃−1g̃ηnew)∥H ≤ τδ · ∥H̃−1g̃ηnew∥H .

Hence, we can take

ϵδ = ϵn = ϵ′δ = O(κ(H)−1). (10.10)

Then, Eq. (10.9) can be simplified as follows:

Tδ = Õ(m(µ(A)κ(A) + µ(S̃−1)κ(S̃)) · ∥H∥κ(H)2)

= Õ(m(µ(A)κ(A) + µ(S)κ(S)) · ∥H∥κ(H)2). (10.11)

Then, by Lemma 10.11, for ynew computed in Line 32, we have

∥g(ynew, ηnew)∥H(ynew)−1 ≤ ϵN ,

564

which means ynew satisfies the Cond. 0. in the (t+ 1)-th iteration.

Therefore, for all t ∈ [T], Cond. 0. to Cond. 4. in Lemma 10.11 are

satisfied.

For the running time per iteration, by Eqs. (10.7) and (10.11):

Titer := TS + Tδ

= Õ(n2µ(S)κ(S)κ(A)κ(H)) + Õ(m(µ(A)κ(A) + µ(S−1)κ(S)) · ∥H∥κ(H)2)

≤ Õ((mµ(A) + n2µ(S)) · κ(A)κ(S)κ(H)3).

Theorem 10.17 (Quantum second-order SDP solver). Suppose the input matrices

{Ai}mi=1, C and vector b are stored in QRAM. Let T := O(
√
n log(1/ϵ)). Then, the

quantum second-order SDP solver (Algorithm 49) runs T iterations with

Õ((mµ(A) + n2µ(S)) · κ(A)κ(S)κ(H)3)

time per iteration and outputs a classical vector y ∈ Rm such that with probability at

least 1− 1/poly(n),

⟨b, y⟩ ≤ ⟨b, y∗⟩+ ϵ, and
n∑

i=1

yiAi − C ⪰ −ϵI,

In the above formula, we use y∗ to represent an optimal dual solution.

Furthermore, the algorithm can also output a PSD matrix X ∈ Rn×n
≥0 in the

same running time that satisfies

⟨C,X⟩ ≥ ⟨C,X∗⟩ − ϵ · ∥C∥2 ·R and
m∑

i=1

∣∣∣⟨Ai, X̂⟩ − bi
∣∣∣ ≤ 4nϵ ·

(
R

m∑

i=1

∥Ai∥1 + ∥b∥1
)
.

(10.12)

In the above formula, we use X∗ to represent an optimal solution to the semi-definite

program in Definition 10.1.

565

Proof. Note that the running time per iteration follows from Lemma 10.16. And the

number of iterations to achieve the stated error guarantee is by Theorem 10.12.

For the primal solution, by Lemma E.2, we can find X using y classically in

time O(nω), which is less than the SDP solver’s running time.

Remark 10.2. Plugging-in the general upper bounds for µ(A) ≤ n and µ(S) ≤ √n
(see Theorem 10.6), we get that the total time complexity of Algorithm 49 is

Õ
(√

n(mn+ n2.5)poly(κ, log(1/ϵ))
)
.

10.8 Well-Conditioned SDP Instances

Here we list some SDP cases in high dimensions where the condition number

of Hessian does not depend on 1/ϵ.

Case 1: A simple case is where the central path is nearly isotropic and thus the

condition number of Hessian is close to 1, e.g.

max
y∈Rm

y1 + · · ·+ ym subject to yi ≤ 0 ∀i ∈ [m].

Case 2: Another SDP example is as follows:

max
X∈Rn×n

⟨C,X⟩ subject to ⟨Ai, X⟩ = bi, ∀i ∈ [m], X ⪰ 0,

where n = m = 3 and

C =

0 0 0
0 0 0
0 0 −1

 , A1 =

−1 0 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 −1 0
0 0 0

 , A3 =

0 −1 0
−1 0 0
0 0 0

 , b =

−1
−1
0

 .

The dual problem is given by

min
y∈Rm

b⊤y subject to S =
m∑

i=1

yiAi − C, S ⪰ 0.

566

The central path can be found by solving the following penalized objective function

min
y∈Rm

η · b⊤y − log det(S)

which yields

y =

−η−1
−η−1
0

 , S =

η−1 0 0
0 η−1 0
0 0 1

 .

Therefore the Hessian is given by

H =

η2 0 0
0 η2 0
0 0 2η2

and the condition number is κ(H) = 2. Notice that the primal and dual solutions are

X =

1 0 0
0 1 0
0 0 0

 , y =

0
0
0

 , S =

0 0 0
0 0 0
0 0 1

 ,

thus the strict complementary holds. In addition, another intermediate-matrix related

term in the running time ∥A⊤y∥22∥S−1∥2 = 2 in this example. Notice also the strict

complementarity holds. Therefore, our algorithm will have log(1/ϵ) dependence in the

total running time in this example. In brief, the “good cases” (where our quantum

algorithm’s running time depends on log(1/ϵ)) for SDP are much more non-trivial

than those for LP.

We also note that in all previous quantum interior-point method papers ([KP20b,

CMD20, KPS21, ANTZ21]), their running times also depend on the condition num-

ber of the linear system that appears in each iteration. In addition, their running

times explicitly depend on poly(1/ϵ) as well. Thus, even in the well-conditioned

cases, their running times still depend on poly(1/ϵ). And within the quantum lin-

ear algebra framework, almost all matrix-related algorithms depend on the condition

number of the matrix. Hence, it seems that the dependence on the condition number

is unavoidable for the current techniques in quantum computing.

567

Algorithm 49 Quantum SDP Solver. Let A1, · · · , Am denote a list of n×n matrices.
The input A has size m×n2. The input vector b has length m. And the input matrix
C has size n by n.
1: procedure SolveSDPinQuantum({Ai}mi=1, b, C,m, n)
2: ▷ The input A, b, C are stored in QRAM.
3: ▷ Initialization
4: Choose η and T as Definition 10.2.
5: Find initial feasible y and store in QRAM ▷ Lemma E.1, O(m+ n)-time
6: Update QRAM for the modified SDP instance ▷ Õ(m+ n)-time
7: for t = 1→ T do
8: ▷ ApproxSlack, Lemma 10.13
9: US ← the block-encoding for S =

∑m
i=1 yiAi − C

10: for i = 1→ n do ▷ Õ(n2.5)-time in total
11: |(S̃−1)i⟩ ← apply quantum linear system solver with US and |ei⟩
12: vi ← apply ℓ2-tomography on the state |(S̃−1)i⟩ ▷ Õ(n1.5)-time
13: Ni ← estimate the norm ∥(S−1)i∥2 ▷ Õ(n0.5)-time
14: (S̃−1)i ← Ni · vi ▷ O(n)-time
15: end for
16: S̃−1 ← 1

2
(S̃−1 + (S̃−1)⊤) and store it in QRAM ▷ O(n2)-time

17: ηnew ← η · (1 + ϵN
20
√
n
)

18: ▷ ApproxGradient, Lemma 10.14
19: UA′ ← the block-encoding of

[
A b

]

20: |s′⟩← the vector state for
[
−vec(S̃−1) η

]⊤

21: |g̃ηnew⟩ ← apply UA′ to |s′⟩
22: Ng ← estimate the norm ∥A′s′∥2 ▷ Õ(n2)-time
23: ▷ ApproxDelta, Lemma 10.15
24: S̃−1/2 ← classically compute

√
S̃−1 and store in QRAM ▷ O(nω)-time

25: U1 ← the block-encoding of S̃−1/2 ⊗ S̃−1/2
26: U2 ← the block-encoding of W = A(S̃−1/2 ⊗ S̃−1/2) using UA and U1

27: UH ← the block-encoding of H̃ = WW⊤ using U2

28: |H̃−1|g̃ηnew⟩⟩ ← apply quantum linear system solver with UH and |g̃ηnew⟩
29: vδ ← apply ℓ2-tomography on the state |H̃−1|g̃ηnew⟩⟩ ▷ Õ(mn)-time
30: Nδ ← estimate the norm ∥H̃−1|g̃ηnew⟩∥2 ▷ Õ(n)-time
31: δ̃y ← −Nδ ·Ng · vδ ▷ O(m)-time
32: ynew ← y + δ̃y and store in QRAM ▷ O(m)-time
33: end for
34: end procedure

568

Chapter 11: A Unified Approach to Fourier
Set-Query

11.1 Introduction

The fast Fourier transform (FFT) [CT65] is a fundamental tool in engineering,

signal processing, mathematics, and theoretical computer science, with profound ap-

plications in theory and practice. Over the years, many variations of FFT have been

studied and developed, depending on the underlying domain and time-invariance

properties of the signal [OWN+97, Osg02, Opp11]. In this chapter, we study the

sparse Fourier transform (SFT), where the signal is either discrete or continuous in

time domain, but k-sparse in the frequency domain, i.e., x̂ is a discrete set of size k:

x(t) =
k∑

j=1

vje
2πi⟨fj ,t⟩.

Band-limited (i.e., Fourier-sparse) signals arise in many real-world datasets and appli-

cations, from image compression and analysis [Wat94], to compressed sensing [Don06]

and (deep) learning with frequency-invariant kernels [MMM21]; for a broader expo-

sition of SFT and its applications, we refer the reader to the survey [GIIS14].

A prototypical problem in this setting is band-limited signal interpolation

[CKPS16] and the related1 Fourier Set-Query problem [Pri11], which ask how to

reconstruct (a subset of) the signal from few (ideally ∼ k) noisy samples of x(t) in a

time domain [0, T]d. In this model, the algorithm has access to samples x(t) + g(t),

where the signal-to-noise ratio is guaranteed to be above a certain constant threshold

(e.g., ∥x∥T ≳ ∥g∥T , where ∥x∥2T := T−d
∫
[0,T]d

|x(t)|2dt is the energy of the signal).

1The Fourier interpolation literature typically focuses on frequency estimation followed by mag-
nitude estimation. The magnitude estimation can be formulated as a Set-Query problem, where we
are given a set of locations and we only try to recover the Fourier coefficients x̂ at the given loca-
tions. In our setup, frequencies are assumed to lie on a lattice, hence the problems are essentially
equivalent, see Section 11.3.

569

In general, sparse-recovery problems have two computational aspects: the sample

complexity, i.e., the number of (noisy) samples required by the algorithm, and the re-

construction time (decoding the signal from the measurements). This problem has a

long history in signal-processing and TCS [CT65, Rey89, ASSN08, Voe11, HIKP12a,

IK14, IKP14, Bub15, Kap16, Kap17, NSW19, JLS23]. A fundamental fact, pointed

out in [Moi15], is that when the frequency gap is small (η := mini ̸=j∈[k] |fi−fj| < 1/T),

exact recovery of the signal is informational-theoretically impossible. Complement-

ing this negative result, [PS15] gave a k · polylog(k, FT/δ)-time δ-error reconstruc-

tion algorithm for one-dimensional signals where F is the band-limit, assuming the

time domain satisfies T > Ω(log2(k/δ)/η), and that the frequency gap η is known.

Later, [JLS23] generalizes the [PS15] from one-dimensional space to high dimensional

space. [CKPS16] strengthened this result [PS15] by showing that even if the fre-

quency gap is unknown, approximate reconstruction of one-dimensional signals in

poly(k, log(FT))-samples and time is possible, in the sense that the output signal

is close to the original signal in the time domain albeit with worse sparsity in the

frequency domain2. Subsequent works [CP19b, CP19a, LLM21] have improved this

result, both in sample-complexity and decoding time. Recently, [LLM21] improved

the sparsity of the output signal from poly(k) to kpoly log(k), settling for a somewhat

weaker notion of approximation3 than that of [CKPS16].

In the discrete setting, [Pri11] defined and studied the Set Query problem in the

standard compressed-sensing model [Don06], where the design of the sensing matrix is

unrestricted. [Kap17] defined and studied the Set Query problem in Fourier domain,

where the sensing matrix is applied to the Fourier transform of x (i.e., measurements

are Sx̂ = S · FFT · x). As such, Fourier Set Query is a more challenging problem

than the former one. The current best discrete Fourier set query algorithm in 1D is

due to Kapralov [Kap17], who gave an algorithm with near-linear sample complexity

2More precisely, the error guarantee is ∥y(t)− x∗(t)∥T ≤ O(∥g(t)∥T + δ∥x∗(t)∥T), where x∗(t) is
the original signal, y(t) is the reconstructed signal, and g(t) is the noise distribution.

3∥y(t)− x∗(t)∥(1−c)T ≤ poly(log(k/cδ)) · ∥g(t)∥T + δ∥x∗∥T .

570

(O(k/ε)) and decoding time Õ(ε−1k log2.001 n logR∗), where n is the length of signal

and R∗ is (roughly) the ℓ∞ norm of the signal in the time domain.

Unfortunately, much less was known in higher dimensions – The “curse of di-

mensionality” of the Filter function [Kap17] drastically deteriorates the sample com-

plexity, which grows exponentially with the dimension, hence filter-based algorithms

(a-la [Kap17]) are near-optimal only for small d. Indeed, this drawback was one of

the principal motivations of this chapter.

Given the abundance of largely incomparable results and the diversity of tech-

niques mentioned above, one might wonder whether there is a systematic, unified

approach for analyzing band-limited signal reconstruction. We propose such an ap-

proach, which decouples the band-limited signal interpolation problem into two sub-

problems:

1. Frequency Estimation: Find L net-frequencies {f ′i}i∈[L] such that each fi

is close to some f ′j for j ∈ [L].

2. Signal Estimation: Based on the net-frequencies, approximate the original

signal.

We note that almost all the previous works [PS15, CKPS16, JLS23] fall into this

way, yet differ in the techniques used to solve these two sub-problems. Our starting

point is the observation that the assumption of an η-frequency gap of the signal is

roughly equivalent to assuming that the frequencies lie on the grid η ·Zd. It is natural

to generalize this assumption by considering the case where signal frequencies lie

on a d-dimensional lattice L = Λ(B), where B is a basis of L and is given. We

interchangeably call this problem lattice Fourier interpolation, or semi-continuous

signal reconstruction, as lattice frequencies can be viewed as interpolating between

discrete and continuous domains. Solving this problem is our key tool en route to

faster sparse recovery, but it is also interesting in its own right.

571

In this chapter, we focus on the second sub-problem, that is, given the result

of frequency estimation for a semi-continuous signal, how to efficiently reconstruct

the coefficients. It can be formulated as a semi-continuous Fourier set-query problem,

where the queried frequency set L (a set of lattice points) is obtained from Frequency

Estimation, and our goal is to recover the coefficients of these frequencies. The gener-

ality of our framework allows us to apply it to the discrete Fourier Set-Query problem

as well, where the goal is to (approximately) compute DFT only on a subset S ⊂ [n]

of k coordinates. (See Remark 11.2 for more detailed discussions of the relationship

between semi-continuous signal estimation and discrete Fourier set-query.)

11.1.1 Our results

Semi-continuous signal estimation Our first main result shows that for semi-

continuous signals (whose frequencies lie on a lattice), Signal Estimation can be effi-

ciently reduced to Frequency Estimation:

Theorem 11.1 (1D Semi-continuous Signal Estimation, informal version of Theo-

rems 11.57 and 11.60). Let Λ(B) ⊂ R denote the lattice Λ(B) = {z ∈ R|z = cη, c ∈
Z}, and suppose x∗(t) =

∑k
j=1 vje

2πifjt with fj ∈ Λ(B). Given observations of the

form x(t) = x∗(t) + g(t) for t ∈ [0, T] for arbitrary noise distribution g(t), let L be

the result of Frequency Estimation for x(t) such that for each fi, there is an f ′i ∈ L
with |fi − f ′i | ≤ D/T . Then given the set L as input, we can obtain:

• A Sample-optimal algorithm: There is an algorithm that takes O(k̃) samples

and outputs a k̃-sparse signal y(t) in O(k̃ω+1)-time4, such that ∥y − x∗∥2T ≤
O(∥g∥2T) holds with high probability, where k̃ := O(|L|(1 + D/(Tη))) is the

output sparsity.

• A High-accuracy algorithm: For any ε ∈ (0, 1), there is an algorithm that

takes Õ(ε−1k̃) samples and outputs a k̃-sparse signal y(t) in O(ε−1k̃ω)-time such

4ω ≈ 2.373 is the fast matrix-multiplication exponent [AW21].

572

that ∥y − x∗∥2T ≤ (1 + ε)∥g∥2T holds with high probability.

Remark 11.1. We note that the semi-continuous signal estimation is similar to a

sub-problem studied in [PS15, JLS23]. However, they cannot achieve a (1 + ε)-

approximation using the HashtoBin techniques [HIKP12a]. We also note that our

algorithms can be easily adapted to high-dimensional signal estimation (see Sec-

tion 11.10).

Discrete Fourier set query Our next result provides an efficient, high-accuracy

algorithm for the discrete Fourier Set Query problem in any dimension.

Theorem 11.2 (Discrete Fourier Set Query, informal version of Theorems 11.73).

For any d ≥ 1, let n = pd for some p ∈ N+. Given a vector x ∈ (Cp)⊗d, for k ≥ 1,

any S ⊆ [n], |S| = k, there exists an algorithm that takes O(ε−1k) samples from x,

runs in O(ε−1kω+1 + ε−1kω−1d) time, and outputs a vector x′ ∈ Cn such that

∥(x′ − x̂)S∥22 ≤ ε∥x̂[n]\S∥22

holds with probability at least 0.9. Note that x̂ is the d-dimensional discrete Fourier

transform of x, x̂f =
∑

t∈[p]d xte
−2πi⟨f,t⟩/p, f ∈ [p]d.

Remark 11.2. Discrete Fourier set query can be viewed as a special case of semi-

continuous signal estimation, where the queried frequencies (supported on S) lie on

the integer lattice Zd. And the remaining part of the signal with frequencies outside

of S (i.e., x̂[n]\S) corresponds to the noise g in the semi-continuous signal estimation

problem. One difference between these two problems is that for semi-continuous

signal estimation, we assume the signal has a continuous time domain [0, T], while

for discrete Fourier set query, the signal has a discrete time domain [p]d.

Remark 11.3. In one-dimension (d = 1), the runtime of our set query algorithm can

be simplified to O(ε−1kω+1). And prior to this chapter, the only known result for

ℓ2/ℓ2 Fourier set query (due to [Kap17]) achieves the same sample complexity but

573

runs in time O(ε−1k log2.001 n logR∗). Here, R∗ is an upper bound on the ∥ · ∥∞ norm

of the vector, typically assumed to be poly(n). We emphasize that our approach

immediately yields a poly(k)-time algorithm, independent of log(n) and R∗, and thus

generalizes to arbitrary dimension (see next result). This, however, comes at a price

of a slower dependence on k, as opposed to the linear dependence of [Kap17].

In high dimensions (d > 1), the decoding time of [Kap17] scales as logd(n) due

to the curse of dimensionality of the Filter function used5, while our algorithm scales

linearly with d.

11.2 Technical Overview

The following section contains a streamlined technical overview of the main

ideas and techniques required to prove our results in Section 11.1.1. Section 11.2.1

develops a unified framework for a wide range of Fourier set query-type problems.

Section 11.2.2 focuses on implementing the framework for semi-continuous signals

estimation and proving Theorem 11.1. Section 11.2.3 focuses on implementing the

framework for discrete Fourier set query and proving Theorem 11.2.

11.2.1 A general framework for Fourier set query-type problems

Many Fourier-related problems can be expressed as set query problems in

different domains. For example, the sparse Fourier transformation only cares about

the Fourier coefficients of a small set of frequencies, which is essentially equivalent

to a set query problem in the frequency domain. Another example is recovering the

actual Fourier coefficients given its support (set of non-zero frequencies). We propose

a general framework for efficiently solving such Fourier set-query problems.

To this end, consider the following general form of the problem: Given a signal

x(t) (either continuous or discrete), we wish to recover the Fourier coefficients x̂ only

5See [NSW19] for more detailed discussions about the time complexity in high dimensions.

574

at the coordinates of a predetermined set S. The observed signal x(t) can be accessed

only through samples, either noiseless or noisy; In the latter case, one is only allowed

to access x(t) + g(t) for an arbitrary function g(t).

A natural approach to such problem is to use linear regression – Notice that

the observed signal x(t) can be decomposed into xS(t)+ (xS(t)+ g(t)), where xS(t) is

a portion of the noiseless signal x(t) with frequencies in S, and xS(t) is the remaining

part such that (xS + g)(t) together can be treated as noise. In this terminology,

recovering x̂S is equivalent to solving a linear regression problem in the subspace

spanned by the Fourier basis functions with frequencies in S. Implementing this

approach, however, has two substantial challenges:

1. Sample complexity: How should one select the sample points {t1, . . . , ts} in

the time domain to solve the linear regression? Recall we wish to use as few

samples as possible.

2. Estimation accuracy: How can one guarantee that the solution of the linear

regression will not be corrupted by the noise? In other words, how can one

ensure the recovered signal is close to the relevant projection xS(t) of the true

signal?

To resolve these two issues, our framework consists of the following four steps,

and we note that this framework can be applied to both continuous and discrete

signals.

Step 1: Prove an energy bound for the signal The energy bound is an impor-

tant property of Fourier signals, as it characterizes how far the maximum magnitude

of a signal in a family F can deviate from its energy ∥x∥2T := 1
|T |

∫
T
|x(t)|2dt, in a

given time duration, i.e.,

R := sup
x∈F

supt |x(t)|2
∥x∥2T

,

575

This quantity is of particular interest to us because it captures what is the smallest

size of a subset W ⊂ T such that the signal’s energy on W , ∥x∥2W = 1
|W |
∑

t∈W |x(t)|2,
is close to its energy ∥x∥T on T , which is a necessary condition for estimation ac-

curacy if we take W as the sample set to solve the regression. As such, the energy

bound is closely related to the sample complexity of the problem. In [BE06, Kós08,

CKPS16, CP19b], energy bounds for one-dimensional continuous Fourier-sparse sig-

nals are proved. An appealing property of these energy bounds is that they only

depend on the signal’s Fourier-sparsity, but not on the time-interval length nor on

the frequency band-limit. The first step of our framework therefore entails proving

energy bounds for high-dimensional discrete and continuous band-limited signals.

Step 2: Oblivious sketching A straightforward approach for choosing the sample

points for the linear regression is to uniformly6 sample points in the time domain. Let

S0 denote the set of i.i.d uniform samples. An obvious question is how many samples

are sufficient to guarantee that S0 is a good sketch for the signal, i.e., ∥xS∥S0 ≈ ∥xS∥T
will hold with high probability? We show that, while this upper bound may be quite

large (poly(k)), it can be determined in an oblivious fashion: we can upper-bound the

number of random samples as a function of only the Fourier sparsity, independent

of the actual signal x(t) (!) In this sense, the oblivious sketching step acts as a

“preconditioner" for our regression problem – It shrinks the continuous universe to

a discrete set of size independent of n and T , which in turn allows to apply (more

expensive) data-dependent sketching (Step 3) in poly(k)-time. This is where we use

the energy bounds proved in Step 1, along with an ε-net constructed for various kinds

of Fourier-sparse signals.

6In the one-dimensional case, it is possible to design a more clever nonuniform oblivious distri-
bution that achieves near-linear sample complexity [CP19a]. However, in d ≥ 2 dimensions, the best
known construction is a uniform oblivious sketch with polynomially many samples, more on this in
Section 11.2.2.

576

Step 3: Sketch distillation An obvious shortcoming of Step 2 is that S0 is too

large. For example, if we uniformly sample a continuous k-Fourier-sparse signal, we

need poly(k) many samples. This is an artifact of the worst-case nature of the energy

bound, which holds for any signal in the family F. We resolve this issue by a method

called “sketch distillation” to sub-sample a linear-sized subset S1 from S0, in a data-

dependent fashion, such that S1 is still a good sketch of xS. More specifically, suppose

the frequencies of xS are given. We can use a well-balanced sampling procedure defined

by [CP19a] to sample a set of s = O(k) points such that the i-th point ti is sampled

from a distribution Di supported by S0, and a coefficient vector α ∈ Rs. Then, this

sub-sampler satisfies the following properties:

• For the weights wi := αi
1/|T |
Di(ti)

for i ∈ [s], we have ∥x∥S1,w ≈ ∥x∥T for all signals

x ∈ F, where ∥x∥S1,w :=
∑

t∈S1
wt · |x(t)|2 and F is the signal family spanned

by the frequencies in S.

• The sum of coefficients αi is small and each distributionDi is not “ill-conditioned”7.

On the one hand, the first property guarantees that the sketch distillation

outputs a sample set S1 of linear size and ∥xS∥S1,w ≈ ∥xS∥T . On the other hand, the

sketch distillation process is robust to noise. An easy information-theoretic argument

shows that the estimation error must be proportional to the energy of the noise, i.e.,

∥xS + g∥T . However, after the sketch distillation the weighted energy of the noise

∥xS + g∥S1,w could be amplified (i.e., ∥xS + g∥S1,w ≫ ∥xS + g∥T), resulting in a large

estimation error. Fortunately, the second property ensures that it will not happen

and in expectation ∥xS + g∥S1,w ≲ ∥xS + g∥T .

Step 4: Weighted linear regression The last step is to solve a (weighted) linear

regression with the noisy samples {x̃(ti)}i∈[s] and weight w ∈ Rs
>0. For simplicity,

7Formal definition is in Definition 11.10.

577

Figure 11.1: An illustration of sketching the set query signals. The green curve is the
queried signal xS, the green curve is the signal with remaining frequencies xS, and the
blue curve is the noise g. Suppose S1 = {t1, . . . , t5} are the sampling points. Then,
we need to guarantee that ∥xS∥S1,w ≈ ∥xS∥T as well as ∥xS + g∥S1,w ≲ ∥xS + g∥T .

take the one-dimensional continuous k-Fourier-sparse signal as an example. Suppose

the set-query frequencies of xS are S = {f1, . . . , fk}. Then, we consider the following

weighted linear regression:

min
v′∈Ck

∥∥√w ◦ (Av′ − b)
∥∥
2
, (11.1)

where
√
w := (

√
w1, . . . ,

√
ws), the coefficients matrix A ∈ Cs×k and the target vector

b ∈ Cs are defined as follows:

Ai,j := exp(2πifjti) ∀(i, j) ∈ [s]× [k], and

bi := x̃(ti) ∀i ∈ [s].

Let v′ denote an optimal solution of Eq. (11.1). Then, we output a signal y(t) :=
∑k

i=1 v
′
i exp(2πifit).

Using the error analysis in sketch distillation (Step 3), we can upper-bound

the estimation error by ∥y − xS∥T ≲ ∥xS + g∥T .

578

11.2.2 Our techniques for signal estimation algorithms

In this section, we show how to instantiate the framework and get Signal

Estimation algorithms in the semi-continuous setting (Theorem 11.1).

We first note that given the output of Frequency Estimation algorithm, a set

L such that all the true frequencies are close to L, the Signal Estimation problem

can be formulated as a Fourier set-query problem. The idea is that by the guarantee

of L and the semi-continuous assumption, there will not be too many lattice points

that are close to L, and we can efficiently find all of them. Let’s denote this set of

candidate frequencies by S̃ of size k̃. Then, Signal Estimation problem is reduced

to a set-query for x̂∗S̃. In Section 11.2.2.1, we discuss how to apply our set-query

framework to obtain sample-optimal and high-accuracy algorithms for 1-D signals

and how to generalize to higher dimensions. In Section 11.2.2.2, we show how to

implement Sketch Distillation very efficiently by speeding up the randomized spectral

sparsification, which may be of independent interest.

11.2.2.1 Sample-optimal and high-accuracy algorithms

Based on the aforementioned reduction, we briefly show the instantiation of

our framework for the Signal Estimation problem. For convenience, suppose k̃ = O(k)

throughout this part.

Sample-optimal signal estimation For one-dimensional k-Fourier-sparse signals,

[Kós08] proved that the energy bound is O(k2), which implies that the uniform sketch-

ing for the signal needs at least Ω(k3 log k) samples. Although the sketch size can be

reduced to O(k) via Sketch Distillation, the algorithm has to first sample Õ(k3) points

in [0, T], which already takes O(k3)-time. It is possible to improve this straightfor-

ward approach using weighted oblivious sketching [CP19a], namely, we sample a set

S0 of points in [0, T] from a carefully-chosen non-uniform distribution D, and assign

each point a weight (this works only in 1D, see last section). Using the following

579

distribution constructed by [CP19a]:

D(t) :=

{
c/(1− |t/T |), for |t| ≤ T (1− 1/k)

c · k, for |t| ∈ [T (1− 1/k), T]

we only need to take |S0| = O(k log k) samples to guarantee that ∥x∗∥S0,w0 ≈ ∥x∗∥T
holds with high probability. In this way, oblivious sketching in Step 2 will not be

a time-consuming step. In Step 3, the sketch S0 will be distilled to a subset S1 of

size O(k). Finally, in Step 4, we sample the signal at the points in S1 and solve

the weighted linear regression to recover a k-sparse signal y(t). This gives us a

linear-sample reduction from Frequency Estimation to Signal Estimation with O(1)-

estimation error with high probability.

High-accuracy signal estimation For one-dimensional semi-continuous signals,

we also discover a “sample-accuracy trade-off”. If we can use nearly-linear (i.e., Õ(k))

samples, then we can skip Step 3 and directly use (S0, w0) to solve the linear regression

in Step 4.

The advantage of this approach is, the sampling procedure for (S0, w0) is well-

balanced, and a sharper error analysis shows that we can achieve much smaller errors.

The main observation is that the noise can be decomposed into g∥ ∈ F and g⊥

orthogonal to F. Since we will solve a linear regression (in Step 4) in the space

F, the contribution of g∥ to the final estimation error will not blow-up. For the

orthogonal part, we find an orthonormal basis {u1, . . . , uk} for F and look at the

weighted projection ⟨g⊥, ui⟩S1,w :=
∑

t∈S1
wtui(t)g

⊥(t), whose magnitude indicates

how much the noise is amplified due to sketching in each direction. The well-balanced

sampling procedure gives that the total magnitudes
∑k

i=1 |⟨g⊥, ui⟩S1,w|2 ≤ ε · ∥g⊥∥2T
holds with high probability, which will imply an ε · ∥xS+g∥2T -estimation error for any

small ε.

Then, in step 4, we can also decompose the final estimation error ∥y−x∗∥2T into

the two parts: one contributed by g∥ with energy ∥g∥∥2T , and another contributed by

580

(F , ∥ · ∥T)

g⊥(t)

y(t)− x∗(t)

x∗(t)
y(t)

x∗(t) + g⊥(t)

yS0,w0(t)

(a) The function space with norm ∥ · ∥T

(F , ∥ · ∥S0,w0
)

g⊥(t)

y(t)

yS0,w0
(t)

x∗(t) + g⊥(t)

x∗(t)

(b) The function space with norm ∥ · ∥S0,w0

(F , ∥ · ∥S1,w)y(t)

x∗(t) + g⊥(t)

yS0,w0
(t)

(c) The function space with norm ∥ · ∥S1,w

Figure 11.2: The composition of two WBSPs may not be a WBSP. In (a), the central
point is the ground-truth signal x∗(t), and the yellow vector y(t) is the final output
of the composited WBSPs. Our goal is to bound the estimation error ∥y(t)−x∗(t)∥T .
Let yS0,w0(t) ∈ F be the optimal approximation of the observing signal in the basis
(S0, w0), which is obtained by Step 2 of the framework. In (b), we show that by the
property of the first WBSP, the estimation error ∥yS0,w0(t)− x∗(t)∥T can be bounded
by the projection of g⊥ in the space (F, ∥ · ∥S0,w0), which is about ε∥g⊥(t)∥T . In (c),
the space is reduced to (F, ∥ · ∥S1,w1) by Step 3 of the framework, and the estimation
error ∥yS0,w0 − y∥S1,w1 is bounded by the projection of (x∗(t) + g⊥ − yS0,w0), which is
about ε∥x∗(t) + g⊥− yS0,w0(t)∥S0,w0 . However, these two error bounds ε∥g⊥(t)∥T and
ε∥x∗(t) + g⊥ − yS0,w0(t)∥S0,w0 could not imply any bound on ∥y(t)− x∗(t)∥T .

g⊥ with energy at most (1 + ε)∥g⊥∥2T . Combining the two parts together, we achieve

a a high-accuracy guarantee:

∥y − x∗∥2T ≤ (1 + ε)∥g∥2T .

We remark that this error analysis does not work for the sample-optimal algorithm.

Roughly speaking, the weighted sketch (S1, w) in the sample-optimal algorithm is

581

generated by a two-step sampling procedure: one in the oblivious sketching (Step 2)

and another in the sketch distillation (Step 3). Even if both of them are well-balanced,

when they are composited together and considered as a single sampling procedure,

they may not be well-balanced.

High-dimensional signal estimation For high dimensional signals, we prove a

kO(d)-energy bound for k-Fourier-sparse signals in d-dimensions in Section 11.5.2,

where we also provide a nearly-matching lower bound. We view it as a new generic

tool in Fourier analysis and are quite a tour-de-force. Thus, we basically follow the

4-step framework. One tricky thing in high-dimension is, how to bound the output

signal’s sparsity, which is equivalent to the number of d-dimensional lattice points

close to a fixed set L. We further reduce it to a clean math problem about lattices:

let Λ(B) be a lattice in Rd. For r > 0, how many lattice points can be within an r-

radius ball, i.e., supx∈Rd |Λ(B)∩Bd(x, r)|. We upper-bound this quantity via different

approaches, which might be of independent interest. More details are deferred to the

appendix.

11.2.2.2 Speed up randomized spectral sparsification

In Section 11.2.2.1, we do not discuss how to implement a well-balanced sam-

pling procedure. [CP19a] proved that Randomized BSS algorithm in [BSS12, LS15]

yields a well-balanced sampling procedure. However, this algorithm is slow when the

sampling domain S0 is very large. One contribution of this work is to improve the

time and space costs of the randomized BSS algorithm.

We observe that the bottleneck of each iteration in the original Randomized

BSS algorithm is to sample a point t ∈ S0 from the distribution Dj defined by

Dj(t) = v(t)⊤Ejv(t), where v(t) is a k-dimensional vector and Ej is a k-by-k positive

semi-definite matrix determined by the potential function value at the j-th itera-

tion. Suppose Ej and {v(t)}t∈S0 have already been computed. A naive approach to

582

sampling from Dj is to compute the probability Dj(t) for each t ∈ S0, which takes

O(nk2)-time per iteration, where n = |S0| is the size of the sampling domain. To

improve the algorithm, we consider a more general data structure problem—Online

Quadratic-Form Sampling. In this problem, we are given n vectors v1, . . . , vn ∈ Rk.

In each query, the input is a positive semi-definite matrix A ∈ Rk×k and we need

to sample an i ∈ [n] with probability proportional to v⊤i Avi. (See Problem 11.36 for

formal definition). The naive space and query time for generating a sample is O(nk2).

We design two data structures with substantially faster time-space tradeoff:

Theorem 11.3 (Online Quadratic-Form Sampling, informal version of Theorems 11.37

and 11.40). The Online Quadratic-Form Sampling problem admits the following two

data structures:

• Data Structure 1: O(nk2) preprocessing time of the vectors {vi}i∈[n] , O(k2 log n)
query-time for generating a sample, and O(nk2)-space.

• Data Structure 2: O(nkω−1) preprocessing time, O(k2 log(n/k) + kω) query-

time for generating a sample, and O(nk)-space.

The main idea is to construct a range search tree for {1, 2, . . . , n}, and for a

node corresponding to range [l, r], stores the matrix
∑r

i=l viv
⊤
i . Subsequently, for each

query matrix A, we traverse the root-to-leaf path in the tree (which corresponds to an

element in [n]), and output this element as a sample. The rule for descendin the tree

resembles a form of rejection sampling: At a node with range [l, r], we know that its

left child has range [l,m] and right child has right [m+ 1, r], where m = ⌊(l + r)/2⌋.
Then, we decide whether move to the left or the right subtree by tossing a coin with

probability:

pleft :=
⟨∑m

i=l viv
⊤
i , A⟩

⟨∑r
i=l viv

⊤
i , A⟩

, and pright := 1− pleft,

where ⟨∑r
i=l viv

⊤
i , A⟩ :=

∑r
i=l v

⊤
i Avi is the trace-product of matrices. Therefore, the

probability pleft equals to the conditional probability Pri∼DA
[i ∈ [l,m] | i ∈ [l, r]].

583

By the chain rule of conditional probability, we get that the output distribution of

this procedure is exactly equal to DA. This data structure can be built in O(nk2)

and each query only takes O(k2 log n)-time. To store the matrices in each node, this

data structure uses O(nk2)-space. We can further improve the space complexity to

O(nk) by trading-off the preprocessing time and the query time. By plugging-in this

data structure to the Randomized BSS algorithm, we can improve the time and space

complexity by a factor of k when n is large.

Figure 11.3: An example of the outer-product range tree with n = 4. For a query
matrix A, the sampling probability of the red path is ⟨

∑2
i=1 viv

⊤
i ,A⟩

⟨
∑4

i=1 viv
⊤
i ⟩
· ⟨v2v⊤2 ,A⟩
⟨
∑2

i=1 viv
⊤
i ,A⟩

=

v⊤2 Av2∑4
i=1 v

⊤
i Avi

.

11.2.3 Our techniques for discrete Fourier set query

For simplicity, we consider one-dimensional discrete Fourier signal x(t), which

is a length-n vector such that x(t) =
∑n

j=1 x̂je
2πijt/n for any t ∈ [n]. And the set

query problem asks to recover x̂S, for a given k-subset S ⊂ [n]. Let xS be the part of

signal with frequencies in S, i.e., xS(t) =
∑

f∈S x̂fe
2πift/n, which is a k-Fourier-sparse

signal.

The high-level idea of obtaining Theorem 11.2 is as follows. We prove that the

energy bound for discrete k-sparse signal is k, which implies that uniformly sample

a set S0 ⊂ [n] of O(k log k) points can form a good sketch of the signal xS. Then,

by Sketch Distillation, we can find a subset S1 ⊂ S0 of linear size together with a

584

weight vector w such that ∥xS∥S1,w ≈ ∥xS∥2/n. Finally, we can recover x̂S by solving

a weighted linear regression on the samples {x(t)}t∈S1 . By a direct error analysis, it is

easy to see that this algorithm can achieve O(1)-estimation error. In the followings,

we will show that it can perform much better.

Composition of well-balanced samplers The key step to proving a (1 + ε)-

error guarantee is to show that the final weighted sketch (S1, w) can be generated

by a well-balanced sampling procedure. In general, compositing two well-balanced

sampling procedures may not be well-balanced. More specifically, we can show that

the composition sampler satisfies the first property of a well-balance, that is, the

output set and weight can well-approximate the energy of every function in the family

F. However, the second property about the sum of composition sampler’s coefficients

and the condition number of the composition sampling distribution may not hold.

For the above discrete set query algorithm, it is a very special case of compo-

sition in the sense that the first sampler sample each element from the same, simplest

distribution—uniform distribution over [n]. Then, we can prove that in the composi-

tion sampler, each sample is equivalent to directly sampled from uniform distribution.

Furthermore, for discrete Fourier-sparse signal, we also have a tight energy bound of

R = k. Using these results, we can show that the composition sampler in our algo-

rithm is well-balanced! Then, we are able to apply our sharper error analysis and get

that

∥ŷS − x̂S∥2 ≤ ε · ∥x̂S∥22

holds with high probability. Therefore, we obtain a linear-sample and high-accuracy

algorithm for discrete Fourier set query.

Remark 11.4. This result is a fundamental departure from [CP19a] since they assumed

that the noise has a zero-mean (i.e., E[g(t)] = 0), which makes the WBSPs composi-

tion much easier. However, we do not have such an assumption. A natural fix is to

585

ensure the orthogonality of the noise g(t) to our basis functions {exp(−2πifit/n)}.
Unfortunately, this only holds for the first WBSP, but not for the second one (since

sampling from the weighted output of the first WBSP can break the orthogonality).

Our main novelty is to directly find an equivalent sampling procedure to the

combination of two WBSPs (just for the analysis). Then, using the special properties

of DFT, we prove that the composition also works in our setting (see Section 11.11.2

Lemma 11.76 for more details). We believe this technique will be useful for other

set-query or active learning problems.

Algorithm 50 Discrete One-Dimensional Signal Set-Query Algorithm (Informal)
1: procedure SetQuery(x, n, k, S, ε) ▷ Theorem 11.2
2: {f1, f2, · · · , fk} ← S

/*Step 2: Oblivious Sketching*/
3: S0 ← O(ε−2k log(k)) i.i.d. samples from Uniform([n])

/*Step 3: Sketch Distillation*/
4: Let F = {∑j∈[k] vj exp(2πifjt/n) | vj ∈ C}.
5: {t1, t2, · · · , ts}, w ← RandBSS+(k,F,Uniform(S0), (ε/4)

2) ▷ Algorithm 52
/*Step 4: Weighted linear regression*/

6: Ai,j ← exp(2πifjti/n) for each (i, j) ∈ [s]× [k]
7: bi ← x(ti) for each i ∈ [s] ▷ Observe the signal at time ti
8: v′ ← argmin

v′∈Ck

∥√w ◦ (Av′ − b)∥2
9: return v′

10: end procedure

Organization

The remainder of the chapter is organized as follows. In Sections 11.3 we

formally define and study the “semi-continuous” Fourier interpolation and set query

problems over lattices. And in Section 11.4, we provide some preliminaries on Fourier

transformation, lattices, etc.

Then, we focus on developing Fourier set query algorithms based on our 4-step

framework (Section 11.2.1). We first build some technical components in Sections 11.5

586

- 11.8. Section 11.5 is for Step 1, where we prove energy bounds and concentration

properties for high-dimensional Fourier-sparse signals and discrete Fourier-sparse sig-

nals. Section 11.6 is for Step 2, where we describe fast oblivious sketching methods and

we use them as “preconditioners” for continuous and discrete Fourier-sparse signals in

one and higher dimensions. Sections 11.7 and 11.8 are for Step 3. More specifically, in

Sections 11.7, we design a data structure for improving the time/space complexity of

the Randomized BSS algorithm (Theorem 11.3). Using this data structure, in Section

11.8 we describe the sketch distillation technique for different kinds of Fourier-sparse

signals and analyze its robustness to noise. Finally, these components are wrapped up

in Sections 11.9 - 11.11. Section 11.9 shows sample-optimal and high-accuracy signal

estimation algorithms for one-dimensional semi-continuous signals (Theorem 11.1).

Section 11.10 generalizes to high-dimensional signals using lattice theory. Section

11.11 gives a discrete Fourier set query algorithm (Theorem 11.2).

Section 11.12 discusses a special case of the Signal Estimation problem where

the observation has no noise. We present a straightforward algorithm for one-dimensional

Fourier sparse signals. Section 11.13 proves that any signal can be approximated by

a semi-continuous signal with the same sparsity and polynomially-small frequency

gap8, which implies a Fourier interpolation algorithm with optimal output-sparsity

with a different error guarantee.

8We also show an approximation with O(1)-frequency gap but slightly worse sparsity.

587

Notations. For any positive integer n, we use [n] to denote {1, 2, · · · , n}. We use

i to denote
√
−1. For a complex number z ∈ C where z = a + ib and a, b ∈ R. We

use z to denote the complex conjugate of z, i.e., z = a − ib. Then it is obvious that

|z|2 = z ·z = a2+b2. We use f ≲ g to denote that there exists a constant C such that

f ≤ Cg, and f ≂ g to denote f ≲ g ≲ f . We use Õ(f) to denote f logO(1)(f). We say

x(t) is a k-Fourier-sparse when x(t) =
∑k

j=1 vj exp(2πifjt). We use x̂(f) to denote

the Fourier transform of x(t). More specifically, x̂(f) =
∫∞
−∞ x(t) exp(−2πift)dt. We

define our discrete norm as ∥g(t)∥2W = 1
|W |
∑

t∈W |g(t)|2 for function g. We define our

weighted discrete norm as ∥g(t)∥2S,w =
∑

t∈S wt|g(t)|2 for function g. We define the

continuous T -norm as ∥g(t)∥2T = 1
T

∫ T
0
|g(t)|2dt for function g.

In general, we assume x∗(t) is our ground truth and is a k-Fourier-sparse signal.

We can observe function x(t) = x∗(t) + g(t) for g(t) being a noise function. We can

observe x(t) in duration [0, T]. The ground truth x∗(t) has frequencies in [−F, F].

11.3 Definitions of Semi-Continuous Fourier Set Query and
Interpolation

In this section, we give the formal definitions of the problems studied in this

chapter. In Section 11.3.1, we define the Fourier set query for discrete and continuous

signals. In Section 11.3.2, we define the Fourier interpolation problem and its two

sub-problems: frequency estimation and signal estimation.

11.3.1 Formal definitions of Fourier set query

The discrete Fourier set query problem is defined as follows:

Definition 11.1 (Discrete Fourier set query problem). Let x ∈ Cn and x̂ be its

discrete Fourier transformation. Let ε > 0. Given a set S ⊆ [n] and query access to

x, the goal is to use a few queries to compute a vector x′ with support supp(x′) ⊆ S

588

such that

∥(x′ − x̂)S∥22 ≤ ε · ∥x̂[n]\S∥22.

We also define the continuous Fourier set query problem as follows:

Definition 11.2 (Continuous Fourier set query problem). For d ≥ 1, let x∗(t) be a

signal in time duration [0, T]d. Let x̂∗(f) denote the continuous Fourier transforma-

tion of x∗(t). Let ε > 0. Given a set S ⊆ Rd of frequencies such that supp(x̂∗) ⊆ S,

and observations of the form x(t) = x∗(t) + g(t), where g(t) denotes the noise. The

goal is to output a Fourier-sparse signal x′(t) with support supp(x̂′) ⊆ S such that

∥x′ − x∗∥2T ≤ (1 + ε) · ∥g∥2T .

11.3.2 Formal definitions of semi-continuous Fourier interpolation

In this section, we provide the following formal definition of the semi-continuous

Fourier interpolation problem, where we assume that the frequencies of the signal are

contained in a lattice.

Problem 11.4 (Semi-continuous Fourier interpolation problem). Given a basis B of

m known vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B), ∀i ∈ [k], |fi| ≤ F . Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩,

and let g(t) denote the noise. Given observations of the form x(t) = x∗(t) + g(t),

t ∈ [0, T]d. Let η = mini ̸=j ∥fj − fi∥∞. There are three goals:

1. The first goal is to design an algorithm that output f1, f2, · · · , fk exactly given

query access to the signal x(t) for t ∈ [0, T]d.

2. The second goal is to design an algorithm that output a set L of frequencies

such that, for each fi, there is f ′i ∈ L, ∥fi − f ′i∥2 ≤ D/T .

589

3. The third goal is to design an algorithm that output y(t) =
∑k̃

j=1 v
′
j ·e2πif

′
jt such

that
∫
[0,T]d

|y(t)− x(t)|2dt ≲
∫
[0,T]d

|g(t)|2dt.

Then, we extract two sub-problems from Problem 11.4: Frequency Estimation

and Signal Estimation. We give their definitions below.

We first define the d-dimensional frequency estimation under the semi-continuous

as follows. In this problem, we want to recover each frequencies in a small range.

Problem 11.5 (Frequency estimation). Given a basis B ofm known vectors b1, b2, · · · bm ∈
Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩, and let g(t) denote

the noise. Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T]d. Let

η = mini ̸=j ∥fj − fi∥∞.

The goal is to design an algorithm that output a set L of frequencies such

that, for each fi, there is f ′i ∈ L, ∥fi − f ′i∥2 ≤ D/T .

We remark that the recovered frequencies in L are not necessary to be in Λ(B),

and D is a parameter that can depend on k.

Next, we define the d-dimensional Signal Estimation under the semi-continuous

setting as follows. In this problem, we want to recover a signal that can approximate

the ground-truth signal in the time domain.

Problem 11.6 (Signal Estimation problem). Given a basis B of m known vectors

b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

590

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) :=
∑k

j=1 vje
2πi⟨fj ,t⟩, and let g(t) denote

the noise. Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T]d. Let

η = mini ̸=j ∥fj − fi∥∞.

The goal is to design an algorithm that outputs y(t) =
∑k̃

j=1 v
′
j · e2πif

′
jt such

that ∫

[0,T]d
|y(t)− x(t)|2dt ≲

∫

[0,T]d
|g(t)|2dt.

Note that outputting y(t) =
∑k̃

j=1 v
′
j · e2πif

′
jt means outputting {v′j, f ′j}j∈[k̃].

Remark 11.5. We note that given the solution of Frequency Estimation (Problem 11.5),

Signal Estimation (Problem 11.6) can be formulated as a Fourier set query problem

(Problem 11.2). More specifically, by Frequency Estimation, we will find a set that

contains all frequencies of the ground truth signal x∗(t). Then, we only need to re-

cover the coefficients with frequencies in this set, which is equivalent to a set query

problem.

11.4 Preliminaries

This section is organized as follows. In Section 11.4.1, we provide some tech-

nical tools in probability theory and linear algebra. In Section 11.4.2, we review the

Fourier transformation for different types of signals. In Section 11.4.3, we show some

facts about Lattices. And in Section 11.4.4, we discuss the importance sampling

method.

11.4.1 Tools and inequalities

Definition 11.3 (ε-net). Let T be a metric space with distance measure d. Consider

a subset K ⊂ T and let ε > 0. A subset N ⊆ K is called an ε-net of K if every point

in K is within distance ε of some point of N, i.e.

∀x ∈ K, ∃y ∈ N s.t. d(x, y) ≤ ε.

591

Fact 11.7 (Fast matrix multiplication). We use Tmat(a, b, c) to denote the time of

multiplying an a× b matrix with another b× c matrix.

We use ω to denote the exponent of matrix multiplication, i.e., Tmat(n, n, n) =

nω. Currently ω ≈ 2.373 [Wil12, LG14, AW21].

Fact 11.8 (Weighted linear regression). Given a matrix A ∈ Cn×d, a vector b ∈ Cn

and a weight vector w ∈ Rn
>0, it takes O(ndω−1) time to output an x′ such that

x′ = argmin
x
∥
√
W (Ax− b)∥2 = (A∗WA)−1A∗Wb.

where
√
W := diag(

√
w1, . . . ,

√
wn) ∈ Rn×n, and ω ≈ 2.373 is the exponent of matrix

multiplication [Wil12, LG14, AW21].

Fact 11.9. For any x ∈ (0, 1), we have cos(x) ≤ exp(−x2/2).

11.4.2 Basics of Fourier transformation

The definition of high dimensional Fourier transform is as follows:

x̂(f) =

∫

(−∞,∞)d
x(t) exp(−2πi⟨f, t⟩)dt, where f ∈ Rd,

and the definition of high dimensional inverse Fourier transform is as follows:

x(t) =

∫

(−∞,∞)d
x̂(f) exp(2πi⟨f, t⟩)df, where t ∈ Rd.

Note that when we replace d = 1 in the definition of high dimensional Fourier

transform and inverse Fourier transform above, we get the definition of one-dimensional

Fourier transform and inverse Fourier transform.

The definition of discrete Fourier transform is as follows:

x̂f =
n∑

t=1

xt exp(−2πift/n), where f ∈ [n],

and the definition of discrete inverse Fourier transform is as follows:

xt =
1

n

n∑

f=1

x̂f exp(2πift/n), where t ∈ [n].

592

A continuous k-Fourier sparse signal x(t) : Rd → C can be represented as

follows:

x(t) =
k∑

j=1

vj exp(2πi⟨fj, t⟩), vj ∈ C, fj ∈ Rd, ∀j ∈ [k].

Thus, x̂(f) is:

x̂(f) =
k∑

j=1

vjδ(t− fj).

A discrete k-Fourier sparse signal x ∈ Cn can be represented as follows:

xt =
∑

j∈S

vj exp(2πijt/n), S ⊆ [n], |S| = k, vj ∈ C,∀j ∈ S.

So, x̂f is:

x̂f =

{
vj , j ∈ S
0 , o.w.

11.4.3 Facts about lattices

Definition 11.4 (Lattice). A lattice L in Rd is defined as follows:

L :=
{ k∑

i=1

λibi : λ1, . . . , λk ∈ Z
}
,

where b1, . . . , bk ∈ Rd are linearly independent vectors. And we denote the matrix

B :=
[
b1 · · · bk

]
∈ Rn×k as the basis of the lattice L.

Definition 11.5 (Fundamental parallelepiped). For a lattice L with basis B, its

fundamental parallelepiped is defined to be:

P(B) := {Bx | x ∈ [0, 1)d}.

Fact 11.10. For any lattice with basis B, we have

vol(P(B)) =
√

det(B⊤B).

In particular, if B is full-rank, vol(P(B)) = | det(B)|.

593

Lemma 11.11 (The number of lattice points within a ball9). Let L be any lattice

with basis B such that the spectral norm ∥B∥ ≤ ℓ. Then, the number of lattice points

inside a ball centered at 0 with radius R is upper bounded by:

|L ∩Bd(0, R)| ≤ (1 +

√
kℓ

R
)k · vol(Bk(0, R))

vol(P(B))
.

Proof. We first show that for two different lattice points x, y ∈ L ∩ Bd(0, R), the

translations of P at x and at y are disjoint, i.e., (x+ P) ∩ (y + P) = ∅.

Suppose (x+ P) ∩ (y + P) ̸= ∅ for some x, y ∈ L ∩Bd(0, R). Then, we have

x+
k∑

i=1

λibi = y +
k∑

i=1

τibi,

where λi, τi ∈ [0, 1). It gives

x− y =
k∑

i=1

(τi − λi)bi.

Note that x− y ∈ L, which means

k∑

i=1

(τi − λi)bi =
k∑

i=1

cibi,

where c1, . . . , ck ∈ Z. Since τi − λi ∈ (−1, 1), we get that ci = 0 for all i ∈ [k]. Thus,

x = y.

Then, for any point y ∈ x+ P, where x ∈ L ∩Bd(0, R), we have

∥y∥2 = ∥x+ z∥2 ≤ ∥x∥2 + ∥z∥2 ≤ R +
√
kℓ, (11.2)

where z ∈ P and the last step follows from x ∈ Bd(0, R) and ∥z∥2 = ∥Bλ∥2 ≤
∥B∥∥λ∥2 ≤

√
kℓ, for some λ ∈ [0, 1)k.

9We thank Thomas Rothvoss for providing the proof of this bound.

594

Then, we have

|L ∩Bd(0, R)| ≤
∑

x∈L∩B(0,R)

vol(x+ P)

vol(P(B))

≤ vol(Bk(0, R +
√
kℓ))

vol(P(B))

≤ (1 +

√
kℓ

R
)k · vol(Bk(0, R))

vol(P(B))
,

where the second step follows from the disjointness of translations and the bound on

the total width (Eq. (11.2)).

The lemma is then proved.

We define the shortest vector problem (SVP) as follows:

Definition 11.6 (SVP). Let L denote a Lattice. We define SVP(L),

SVP(L) := min{∥x∥2 | x ∈ L\{0}}.

Given a basis of L, the goal is to compute SVP(L).

In fact, compute SVP (or even approximations of SVP) is an NP-hard problem.

The following theorem shows a well-known lower bound for the shortest vector length.

Theorem 11.12 (Theorem 1.10 in [Rot16], a lower bound on shortest vector). Let L

denote a lattice with basis B. Let (b∗1, · · · , b∗n) be its Gram-Schmit orthogonalization.

Then

SVP(L) ≥ min
i∈[n]
∥b∗i ∥2

Fact 11.13. The Gram–Schmidt process takes a finite, linearly independent set of

vectors S = {v1, · · · , vk} for k ≤ n, runs O(nk2) time, and generates an orthogonal

set S ′ = {u1, · · · , uk} that spans the same k-dimensional subspace of Rn as S.

595

11.4.4 Facts about importance sampling

Important sampling try to estimate a statistic value in one distribution by tak-

ing samples in another distribution. In particular, [CP19a] considered the importance

sampling for estimating the norm of functions in a linear family F.

In this followings, we first provide some basic definitions about linear function

family.

Definition 11.7 (Condition number of sampling distribution). Let G be any domain

and F is a linear function family from G to C. Let D be an arbitrary distribution

over G. Then the condition number of D with respect to F is defined as follows:

KD := sup
t∈G

sup
f∈F

|f(t)|2
∥f∥2D

,

where

∥f∥2D :=

∫

G

D(t) · |f(t)|2dt.

Definition 11.8 (Orthonormal basis for linear function family). Let G be any do-

main. Given a linear function family F from G to C, and a probability distribution

D over G. We say {v1, . . . , vd} form an orthonormal basis of F with respect to D, if

they satisfy the following properties:

• for any i, j ∈ [d],
∫
G
D(t)vi(t)vj(t)dt = 1i=j, and

• for any f ∈ F, f ∈ span{v1, . . . , vd}.

Fact 11.14. Let {v1, . . . , vk} be an orthonormal basis of F with respect to D. For

any function f ∈ F, let α(f) denote the coefficients under the basis {v1, . . . , vd}, i.e.,

h =
∑d

i=1 α(h)i · vi. Then,

∥α(h)∥2 = ∥h∥D.

For an unknown function f ∈ F, the goal of importance sampling is to estimate

∥f∥D, given samples from another distributionD′. The following definition introduces

596

the importance sampling procedure and condition number of the importance sampling

distribution.

Definition 11.9 (Definition 3.1 of [CP19a]). For any unknown distribution D′ over

the domain G and any function f ∈ F, let f (D′)(t) :=
√

D(t)
D′(t)
· f(t) be the importance

sampling function for some known distribution D such that

E
t∼D′

[
|f (D′)(t)|2

]
= E

t∼D′

[
D(t)

D′(t)
|f(t)|2

]
= E

t∼D

[
|f(t)|2

]
.

Then, we can use samples from D′ to estimate ∥f (D′)∥D′ , which gives an estimate of

∥f∥D.

When the family F and D is clear, we use KIS,D′ to denote the condition

number of importance sampling from D′:

KIS,D′ = sup
t

{
sup
f∈F

{ |f (D′)(t)|2
∥fD′∥2D′

}}
= sup

t

{
D(t)

D′(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D

}}
. (11.3)

From Definition 11.9, we know that the efficiency of importance sampling

depends on how many samples we need to estimate ∥fD′∥D′ . The following lemma

provide a criteria for judging whether a set of samples gives a good estimation for the

norm of function.

Lemma 11.15 (Lemma 4.2 in [CP19a]). For any ε ∈ (0, 1), let S = {t1, . . . , ts} and

the weight vector w ∈ Rs
>0. Define a matrix A ∈ Rs×d be the s× d matrix defined as

Ai,j =
√
wi · vj(ti), where {v1, . . . , vd} is an orthonormal basis for F. Then

∥h∥2S,w :=
s∑

j=1

wj · |h(xj)|2 ∈ [1± ε] · ∥h∥2D for every h ∈ F

if and only if the eigenvalues of A∗A are in [1− ε, 1 + ε].

The following lemma shows that the sample complexity depends on the con-

dition number KIS,D′ :

597

Lemma 11.16 (Lemma 6.6 in [CP19a]). Let D′ be an arbitrary distribution over G

and let KIS,D′ be the condition number of importance sampling from D′ (defined by

Eq. (11.3)). There exists an absolute constant C such that for any ε ∈ (0, 1) and

δ ∈ (0, 1), let S = {t1, . . . , ts} be a set of i.i.d. samples from the distribution D′ and

let w be the weight vector defined by wj =
D(tj)

s·D′(tj)
for each j ∈ [s]. Then, as long as

s ≥ C

ε2
·KIS,D′ log

d

δ
,

the s× d matrix Ai,j =
√
wi · vj(ti) satisfies

∥A∗A− I∥2 ≤ ε with probability at least 1− δ.

11.5 Energy Bounds for Fourier Signals

The energy bound shows that the maximum value of a Fourier sparse signal

in a certain interval can be bounded by its energy on the interval. One interesting

fact is that the approximation ratio in the energy bound is only relate to the sparsity

k, and have no relationship with time duration T and band-limit F . An application

of energy bound is preserving the norm, that is what is the least size of set S, such

that ∥f∥S = ∥f∥T , for any function f in a certain function family. The relationship

between energy bound and norm preserving can be build by Chernoff bound.

[BE06, Kós08, CKPS16, CP19b] proved energy bounds for sparse Fourier signal

under one-dimensional continuous Fourier transform. We further generalize these

results to discrete Fourier sparse signal under discrete Fourier transform and high-

dimensional Fourier sparse signal under continuous Fourier transform.

This section is organized as follows:

• Section 11.5.1 reviews previous results for one-dimensional continuous Fourier-

sparse signals.

• Section 11.5.2 proves a new energy bound for high dimensional Fourier-sparse

signals, and also gives a nearly matching lower bound.

598

• Section 11.5.3 proves energy bound for discrete Fourier-sparse signals.

• Section 11.5.4 builds the connection between energy bound and the concentra-

tion property.

11.5.1 Energy bound for one-dimensional signals

In this section, we review the energy bound proved in prior work [BE06, Kós08,

CKPS16, CP19b].

[Kós08] proved the following energy bound:

Theorem 11.17 ([Kós08, CKPS16]). Define a family of F -band-limit, k-sparse Fourier

signals:

F :=
{
x(t) =

k∑

j=1

vj · e2πifjt
∣∣∣ fj ∈ R ∩ [−F, F]

}

Then, for any t ∈ (−1, 1),

sup
x∈F

|x(t)|2
∥x∥2D

≲ k2.

[BE06] also proved a time-dependent energy bound for one-dimensional signal:

Theorem 11.18 ([BE06, CP19a]). Define a family of F -band-limit, k-sparse Fourier

signals:

F :=
{
x(t) =

k∑

j=1

vj · e2πifjt
∣∣∣ fj ∈ R ∩ [−F, F]

}

Then, for any t ∈ (−1, 1),

sup
x∈F

|x(t)|2
∥x∥2D

≲
k

1− |t| .

599

11.5.2 Energy bound for high-dimensional signals

The goal of this section is to prove Theorem 11.19, which gives an energy

bound for d-dimensional Fourier signal. It can be viewed as a d-dimensional version

of [CKPS16, Lemma 5.1]. We also prove a lower bound in Lemma 11.21.

Theorem 11.19 (Energy bound in d-dimensional). For any d-dimensional k-Fourier-

sparse signal x(t) : Rd → C and any duration T , we have

max
t∈[0,T]d

|x(t)|2 ≤ kO(d)∥x∥2T ,

where ∥x∥2T = 1
T d

∫
[0,T]d

|x(t)|2dt.

Proof. Without loss of generality, we fix T = 1. Then ∥x∥2T =
∫
[0,1]d
|x(t)|dt. Because

∥x∥2T is the average over the interval [0, T]d, if the maximizer t∗ = argmaxt∈[0,T]d |x(t)|2

is not 0d or T = 1, we can scale the two intervals [0d, t∗] and [t∗, T d] to [0, 1] and prove

the desired property separately. Hence we assume that |x(0)|2 = maxt∈[0,T] |x(t)|2 in

the proof.

In the next a few paragraphs, we show how to use Lemma 11.20 to prove

Theorem 11.19.

We use 0d to denote a length-d vector with 0 everywhere. Due to Lemma 11.20,

we can choose t0 = 0d such that ∀τ ∈ Rd
>0 there exist C1, · · · , Cm ∈ C, and

x(0d) =
∑

j∈[m]

Cj · x(j · τ).

By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0d)|2 ≤ m
∑

j∈[m]

|Cj|2|x(j · τ)|2

600

Then, we obtain

|x(0d)|2 = md

∫

[0,1/m]d
|x(0d)|2dτ

≲ md ·
∫

[0,1/m]d

(
m

m∑

j=1

|x(j · τ)|2
)
dτ

= md+1 ·
m∑

j=1

∫

[0,1/m]d
|x(j · τ)|2dτ

= md+1 ·
m∑

j=1

1

jd

∫

[0,j/m]d
|x(τ)|2dτ

≤ md+1 ·
m∑

j=1

1

jd

∫

[0,1]d
|x(τ)|2dτ

≲ md+1 logm · ∥x∥2T
≤ kO(d)∥x∥2T , (11.4)

where the third step follows by moving m outside of the integral and swapping the

integration and the summation, the fourth step follows by replacing jτ by τ , the fifth

step follows by j/m ≤ 1, the sixth step follows by
∑m

j=1 1/j
d ≤∑m

j=1 1/j = O(logm)

and the definition of ∥x∥2T , and the last step follows from Lemma 11.20 that m =

poly(k).

Thus, we have the desired bound.

The following lemma shows that each point of the signal can be expressed as

a linear combination of about k2 equally spaced signal points.

Lemma 11.20 (d-dimensional signal interpolation). For any k and d, there exists

m = O(k2 log k) such that for any d-dimensional k-Fourier-sparse signal x(t), any

t0 ∈ Rd
≥0 and τ ∈ Rd

>0, there always exist C1, C2, · · · , Cm ∈ C such that the following

properties hold,

Property I |Cj| ≤ 11 for all j ∈ [m],

Property II x(t0) =
∑

j∈[m]

Cj · x(t0 + j · τ).

601

Proof. Consider a specific signal x(t) :=
∑k

i=1 vie
2πif⊤i t for t ∈ Rd, where fi ∈ Rd are

given. We fix t0 ∈ Rd and τ ∈ Rd, and then rewrite x(t0 + j · τ) as a polynomial of

bi := vi · e2πif⊤i t0 and zi := e2πif
⊤
i τ for each i ∈ [k].

x(t0 + j · τ) =
k∑

i=1

vie
2πif⊤i (t0+jτ)

=
k∑

i=1

vie
2πif⊤i t0e2πif

⊤
i jτ

=
k∑

i=1

bi · zji .

where the last step follows from the definition of bi and zi.

Given k and z1, · · · , zk, let P (z) =
∑m

j=0 cjz
j be the degree m-polynomial in

[CKPS16, Lemma 5.4].

m∑

j=0

cjx(t0 + jτ) =
m∑

j=0

cj

k∑

i=1

bi · zji

=
k∑

i=1

bi

m∑

j=0

cj · zji

=
k∑

i=1

biP (zi)

= 0,

where the last step follows by Property I of P (z) in [CKPS16, Lemma 5.4].

By Property II and III in [CKPS16, Lemma 5.4], we have x(t0) = −
∑m

j=1 cjx(t0+

jτ).

The energy bound in Theorem 11.19 for d-dimensional signals is nearly optimal

due to a kΩ(d) lower bound as follows.10

10The proof is due to Liu Yang.

602

Lemma 11.21. Given d ≥ 1, δ ∈ (0, 0.1), k ∈ Z such that k ≥ O(d1+δ). Then, there

is a d-dimensional k-Fourier-sparse signal x(t) : Rd → C and a duration T such that,

max
t∈[0,T]d

|x(t)|2 ≥ kΩ(δd)∥x(t)∥2T .

Proof. We consider the following construction of x(t):

x(t) := 2−k(1 + e2πi⟨f0,t⟩)k,

where f0 = 1/(100dT) ∈ Rd.

It is easy to see that x is a k-Fourier sparse signal, and

|x(t)|2 = 2−2k|1 + e2πi⟨f0,t⟩|2k

= 2−2k
(
(1 + e2πi⟨f0,t⟩)(1 + e−2πi⟨f0,t⟩)

)k

= 2−2k
(
2 + e2πi⟨f0,t⟩ + e−2πi⟨f0,t⟩

)k

= 2−2k · 2k(1 + cos(2π⟨f0, t⟩))k

=
(1 + cos(2π⟨f0, t⟩)

2

)k

= cos(π⟨f0, t⟩)2k,

where the first step follows from the definition, the second step follows from |z|2 = zz,

the third step is straightforward, the fourth step follows from eia + e−ia = 2 cos(a),

the fifth step is straightforward, the last step follows from (cos(a)+1)/2 = cos(a/2)2.

Then, we know that

max
t∈[0,T]d

|x(t)|2 = |x(0)|2 = 1. (11.5)

It remains to upper bound

∥x(t)∥2T = T−d
∫

[0,T]d
|x(t)|2dt = T−d

∫

[0,T]d
cos(π⟨f0, t⟩)2kdt.

603

Let r be a parameter. We have
∫

[0,T]d
cos(π⟨f0, t⟩)2kdt =

∫

Wd(r)

cos(π⟨f0, t⟩)2kdt+
∫

[0,T]\Wd(r)

cos(π⟨f0, t⟩)2kdt

≤
∫

Wd(r)

1 · dt+ T d · max
t∈[0,T]\Wd(r)

cos(π⟨f0, t⟩)2k,

where Wd(r) := {t ∈ [0, T]d | t1 + · · ·+ td ≤ r}.

We first bound the second term:

cos(π⟨f0, t⟩)2k ≤ exp
(
− π2k⟨f0, t⟩2

)
≤ exp(−Ω(kr2/(dT)2)),

where the first step follows from Fact 11.9, and the second step follows from the

definition of f0 and t /∈ Wd(r). Hence,

T d · max
t∈[0,T]\Wd(r)

cos(π⟨f0, t⟩)2k ≤ T d · exp(−Ω(kr2/(dT)2)). (11.6)

Next, we bound the first term, which is equal to the volume of Wd(r). Note

that Wd(r) is contained in the following simplex:

Pd(r) := {t ∈ Rd
+ | t1 + · · ·+ td ≤ r}.

Thus, we have

Vol(Wd(r)) ≤ Vol(Pd(r)) ≤ rd · Vol(Pd(1))

≤ rd/d!

= O(r/d)d, (11.7)

where the first step is straightforward, the second step follows from the scaling of

the volume, the third step follows from a well-known fact on the volume of a d-

dimensional simplex Pd(1) = 1/d! (see e.g. [Ste66]), and the last step follows from

Stirling’s approximation.

Combining Eqs. (11.6) and (11.7) together, we get that

T−d∥x(t)∥2T ≤ O(
r

dT
)d + exp(−Ω(kr2/(dT)2)).

604

By taking r = Tdk−δ/6, we have

O(
r

dT
)d = O(k−δ/6)d = k−Ω(δd),

and

exp(−Ω(kr2/(dT)2)) = exp(−Ω(k1−δ/3))

= exp(−Ω(d(1+δ)(1−δ/3)))

≤ exp(−Ω(δd log k))

= k−Ω(d),

where the first step is straightforward, the second step follows from k = O(d1+δ), and

the last step follows from δ ∈ (0, 1).

Therefore, we have

T−d∥x(t)∥2T ≤ k−Ω(d) = k−Ω(d) · max
t∈[0,T]d

|x(t)|2,

where the last step follows from Eq. (11.5).

The lemma is then proved.

11.5.3 Energy bound for discrete Fourier signals

Recall the definition of one-dimensional discrete sparse Fourier signal: for

t ∈ {0, 1, . . . , n− 1},

xt =
1

n

k∑

i=1

x̂fi exp

(
2πi

n
fit

)
, fi ∈ [n] (11.8)

More generally, for d ≥ 1, the d-dimensional discrete sparse Fourier signal can be

defined as follows. Let n = pd where both p and d are positive integers. Recall the

definition of high-dimensional discrete sparse Fourier signal (see e.g. [NSW19]):

xt =
1

n

k∑

i=1

x̂fi exp

(
2πi

p
⟨fi, t⟩

)
∀t ∈ [p]d, (11.9)

605

where each fi ∈ [p]d.

In this section, we prove the following discrete Fourier signals energy bound

that works for any dimension:

Theorem 11.22 (Discrete d-dimensional Fourier energy bound). For d ≥ 1 and any

discrete d-dimensional k-sparse Fourier signal {xi}i∈[n], we have

∥x∥2∞ ≤ k · ∥x∥
2
2

n

Proof.

∥x∥2∞ ≤
1

n2
∥x̂∥21 ≤

k

n2
∥x̂∥22 =

k

n
∥x∥22,

where the first step follows from Claim 11.23, the second step follows from Cauchy-

Schwarz inequality, and the last step follows from Theorem 11.24.

Claim 11.23. For any d ≥ 1 and any discrete d-dimensional Fourier signal x,

∥x∥∞ ≤
1

n
∥x̂∥1.

Proof. By triangle inequality,

|x(t)| ≤ 1

n

∣∣∣∣∣
k∑

i=1

x̂i exp

(
2πi

p
⟨fi, t⟩

)∣∣∣∣∣ ≤
1

n

k∑

i=1

|x̂i| =
1

n
∥x̂∥1.

Theorem 11.24 (Parseval’s theorem). For any d ≥ 1 and any discrete d-dimensional

Fourier signal (Eq. (11.9)),

∥x∥22 =
1

n
∥x̂∥22.

11.5.4 Energy bounds imply concentrations

By using Chernoff bound, we prove the following lemma to show the perfor-

mance of uniformly sampling.

606

11.5.4.1 Continuous case

Lemma 11.25. Let d ∈ Z+. Let R be a parameter. Given any function x(t) : Rd → C

with max
t∈[0,T]d

|x(t)|2 ≤ R∥x(t)∥2T . Let S denote a set of points chosen uniformly at

random from [0, T]d. We have that

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T]
∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ exp(−Ω(ε2|S|/R)),

where ∥x(t)∥2T = 1
T d

∫
[0,T]d

|x(t)|2dt.

Proof. Let M denote max
t∈[0,T]d

|x(t)|2. Replacing Xi by |x(ti)|2
M

and n by |S| in Lemma

A.2, we obtain that

Pr[|X − µ| > εµ] ≤ 2 exp(−ε
2

3
µ)

The above equation implies

Pr

[∣∣∣∣∣
∑

i∈S

|x(ti)|2
M

− |S|∥x(t)∥
2
T

M

∣∣∣∣∣ > ε|S|∥x(t)∥
2
T

M

]
≤ 2 exp(−ε

2

3
µ)

Multiplying M on the both sides

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T

∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ 2 exp(−ε

2

3
µ)

Applying bound on µ

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S

|x(ti)|2 − ∥x(t)∥2T

∣∣∣∣∣ ≥ ε∥x(t)∥2T

]
≤ 2 exp(−ε

2

3
|S|∥x(t)∥

2
T

M
)

which is less than 2 exp(− ε2

3
|S|/R), thus completes the proof.

11.5.4.2 Discrete case

Lemma 11.26. Let R be a parameter. Given any function x ∈ Cn with ∥x∥2∞ ≤
R∥x∥22/n. Let S denote a set of points chosen uniformly at random from [n]. We

have that

Pr

[∣∣∣∣∣
1

|S|
∑

t∈S

|xt|2 − n−1∥x∥22]
∣∣∣∣∣ ≥ εn−1∥x∥22

]
≤ exp(−Ω(ε2|S|/R)).

607

Proof. Let M denote max
t∈[n]
|xt|2. Replacing Xi by |xt|

2

M
and n by |S| in Lemma A.2, we

obtain that

Pr[|X − µ| > εµ] ≤ 2 exp(−ε
2

3
µ)

The above equation implies that

Pr

[∣∣∣∣∣
∑

t∈S

|xt|2
M
− |S|∥x∥

2
2

nM

∣∣∣∣∣ > ε|S|∥x∥
2
2

nM

]
≤ 2 exp(−ε

2

3
µ)

Multiplying the normalization factor on both sides,

Pr

[∣∣∣∣∣
1

|S|
∑

t∈S

|xt|2 − n−1∥x∥22

∣∣∣∣∣ ≥ εn−1∥x∥22

]
≤ 2 exp(−ε

2

3
µ)

Applying bound on µ

Pr

[∣∣∣∣∣
1

|S|
∑

t∈S

|xt|2 − n−1∥x∥22

∣∣∣∣∣ ≥ εn−1∥x∥22

]
≤ 2 exp(−ε

2

3
|S|∥x∥

2
2

nM
)

which is less than 2 exp(− ε2

3
|S|/R), thus completes the proof.

11.6 Oblivious Sketching Fourier Sparse Signals

In this section, we show an intermediate step in the reduction from Frequency

estimation to Signal estimation: constructing a small sketching subset S of the time

domain obliviously (without making any query to the signal), so that the signal dis-

cretized by S has norm close to the original continuous signal. More formally, we

define the oblivious sketching Fourier signal problem as follows:

Problem 11.27 (Oblivious sketching Fourier sparse signal problem). Suppose f1, f2, · · · , fk ∈
Rd, and v1, . . . , vk ∈ C. Define the continuous signal x(t) =

∑k
j=1 vje

2πi⟨fj ,t⟩. Let

η = mini ̸=j ∥fj − fi∥∞.

Let ε ∈ (0, 0.1) denote the accuracy parameter. Find a set S = {t1, . . . , ts} ⊆
[0, T]d of size s such that

(1− ε)∥x∥T ≤ ∥x∥S ≤ (1 + ε)∥x∥T ,

608

where

∥x∥2T :=
1

T d

∫

[0,T]d
|x(t)|2dt, and ∥x∥2S :=

1

|S|
∑

i∈[s]

|x(ti)|2.

In Section 11.6.1, we show how to sketch one-dimensional signals with nearly-

optimal weighted sketching. Then, we show how to sketch high dimensional signals

in Section 11.6.2, and discrete signals in Section 11.6.3.

11.6.1 Weighted oblivious sketching one-dimensional signals

For one-dimensional signals, the most natural approach to oblivious sketching

is to uniformly sample some points in the time domain. However, by a standard

concentration argument, we know that the sample complexity is poly(k), which is

not time-efficient for our task. In this section, we show a more efficient sketching

method for one-dimensional Fourier sparse signals by assigning different weights to

each sample point. More precisely, let S = {t1, . . . , ts} ⊆ [0, T] be a discrete sketching

set and let w ∈ Rs
≥0 be the weight vector. We define the weighted sketching norm of

the signal as follows:

∥x∥S,w :=
∑

i∈[s]

wi · |x(ti)|2.

And the goal of weighted oblivious sketching is to find a small set S and a weight

vector w such that ∥x∥S,w ≈ ∥x∥T .

In the following lemma, we give a sketch for any one-dimensional Fourier sparse

signal with nearly-optimal size:

Lemma 11.28 (Nearly-optimal weighted sketch for one-dimensional signals). For

k ∈ N+, define a probability distribution D(t) as follows:

D(t) :=

{
c/(1− |t/T |), for |t| ≤ T (1− 1/k)

c · k, for |t| ∈ [T (1− 1/k), T]
(11.10)

where c = Θ(T−1 log−1(k)) is a normalization factor such that
∫ T
−T D(t)dt = 1.

609

For any f1, · · · , fk ∈ [−F, F] and v1, · · · , vk ∈ C, let the continuous signal

x(t) =
∑k

j=1 vj exp(2πifjt). For any ε, ρ ∈ (0, 1), let SD = {t1, · · · , ts} be a set of

i.i.d. samples from D(t) of size s ≥ O(ε−2k log(k) log(1/ρ)). Let the weight vector

w ∈ Rs be defined by wi := 2/(TsD(ti)) for i ∈ [s]. Then with probability at least

1− ρ, we have

(1− ε)∥x∥T ≤ ∥x∥SD,w ≤ (1 + ε)∥x∥T ,

where ∥x∥2T := 1
2T

∫ T
−T |x(t)|2dt.

Proof. For the convenient, in the proof, we use time duration [−T, T]. Let F be

defined as:

F :=

{
x(t) =

k∑

j=1

vj · e2πifjt|fj ∈ R ∩ [−F, F], vj ∈ C

}

Let {v1(t), v2(t), · · · , vk(t)} be an orthonormal basis for F with respect to the distri-

bution D, i.e.,
∫ T

0

D(t) · vi(t)vj(t)dt = 1i=j, ∀i, j ∈ [k].

We first prove that the distribution D is well-defined. By the condition that
∫ T
−T D(t)dt = 1, we have

2

∫ T (1−1/(k))

0

c

(1− |t/T |)dt+ 2

∫ T

T (1−1/(k))
c · k2kdt = 1,

which implies that

c−1 = 2

∫ T (1−1/k)

0

1

(1− |t/T |)dt+ 2

∫ T

T (1−1/k)
k2dt

= 2T log k + 2T

= Θ(T log(k)).

Thus, we get that c = Θ(T−1 log−1(k)).

610

To show that sampling from distribution D give a good weighted sketch, we

will use some technical tools in Section 11.4.4. Applying Lemma 11.16 with D′ = D,

D = Uniform([−T, T]), d = k, δ = ρ, we have that, with probability at least 1 − ρ,
the matrix A ∈ Cs×k defined by Ai,j :=

√
wi · vj(xi) satisfying

∥A∗A− I∥2 ≤ ε,

as long as s ≥ C
ε2
·KIS,D′ log k

ρ
. Then, by Lemma 11.15, it implies that for every x ∈ F,

(1− ε)∥x∥2T ≤ ∥x∥2SD,w
≤ (1 + ε)∥x∥2T .

It remains to bound the size of SD; or equivalently, we need to upper-bound

the condition number of the importance sampling of D′ (see Definition 11.9):

KIS,D′ := sup
t
{D(t)

D′(t)
· sup
f∈F
{|f(t)|

2

∥f∥2D
}}

= sup
t
{ 1

2TD(t)
· sup
f∈F
{|f(x)|

2

∥f∥2D
}}

≤ sup
t
{ 1

2TD(t)
·min{ k

1− |t/T | , k
2}}

≤ max{(1− |t/T |)
2cT

k

1− |t/T | ,
1

2cTk
k2}

=
k

2cT

= O(k log k),

where the first step follows from the definition, the second step follows from D(t) =

Uniform([−T, T])(t) = 1
2T

, the third step follows from Theorem 11.17 and Theorem

11.18, and the remaining steps follow from direct calculations. Thus, we get that

|SD| ≥ Ω
(
ε−2k log(k) log(1/ρ)

)
.

The lemma is then proved.

611

11.6.2 Oblivious sketching high-dimensional signals

For high-dimensional noiseless signals, we can still use uniformly random sam-

ples in [0, T]d to sketch the continuous signal.

Lemma 11.29 (Oblivious sketching high-dimensional signal). Let d > 0 be the di-

mension of the signal. For any ε ∈ (0, 1), let Sd be a set of i.i.d. samples cho-

sen uniformly at random over [0, T]d of size |Sd| ≥ ε−2kO(d) log(1/(ρε)). Let V :=

{exp(2πi⟨fi, t⟩) | i ∈ [k]}. Then with probability at least 1 − ρ, for all x ∈ span{V },
we have

(1− ε)∥x∥T ≤ ∥x∥Sd
≤ (1 + ε)∥x∥T .

Proof. Define the set of normalized k-sparse signals Q := {u ∈ span{V } | ∥u∥T = 1}.
Without loss of generality, consider a signal u ∈ Q.

Let P1 be an ε0-net for Q constructed by Lemma 11.32.

Let m = O(d log1/ε0(k)). We recursively define ũi, wi, ui, αi for {0, 1, 2, · · · ,m}
as follows:

• Initially, let ũ0 := u.

• For i = 0, 1, 2, · · · ,m, define

wi := argmin
w∈P1

∥w − ũi∥T ,

ui+1 := ũi − wi, αi+1 := ∥ui+1∥T ,

ũi+1 := ui+1/αi+1 if αi+1 ̸= 0.

Eventually, we have

u = w0 + α1 · w1 + α1α2 · w2 + · · ·+ (
m∏

j=1

αj) · (wm + um+1),

where each |αi| ≤ ε0 and each wi ∈ P1 for i ∈ [m].

612

Because ũi ∈ Q, wi ∈ P1, P1 is a ε0-net, minw∈P1∥w − ũi∥T ≤ ε0.

∥um+1∥T = ∥ũm − wm∥ = min∥w − ũm∥T ≤ ε0 ≤ 1

where the first step follows from the definition of um+1, the second step follows from

wi = argmin
w∈P1

∥w − ũi∥T .

Then we show by induction that ui ∈ span{V } for all i ∈ [m + 1]. First, we

have ũ0 = u ∈ Q, which implies ũ0 ∈ span{V }. Suppose that ũi ∈ span{V }, and

consider ũi+1. By definition, wi ∈ P1 ⊂ span{V }. Since ui+1 = ũi − wi ∈ span{V }
and ũi+1 = ui+1/αi, we have ũi+1 ∈ span{V }. Hence, by induction, we get that

ũi ∈ span{V } for all i ∈ [m+ 1].

Note that for any u ∈ span{V }, u is a k-Fourier-sparse signal with frequencies

in the set {fi | i ∈ [k]}. Hence, by Theorem 11.19, we have ∥um+1∥Sd
≤ kO(d)·∥um+1∥T .

Therefore, we can lower bound ∥u∥Sd
as follows:

∥u∥Sd
= ∥w0 + α1w1 + α1α2w2 + · · ·+ (

m∏

j=1

αj)(wm + um+1)∥Sd

≥ ∥w0∥Sd
− ∥α1w1∥Sd

− ∥α1α2w2∥Sd
− · · · − ∥

m∏

j=1

αjwm∥Sd
− ∥

m∏

j=1

αjum+1∥Sd

≥ (1− ε0)− ε0(1 + ε0)− ε20(1 + ε0)− · · · − εm0 (1 + ε0)− εm0 ∥um+1∥Sd

≥ 1− ε0 −
(1 + ε0)ε0
1− ε0

− εm0 · kO(d)

≥ 1− 3ε0.

where the second step follows from triangle inequality, the third step follows from

Claim 11.30, and wi ∈ P1 ⊂ Q, so ∥wi∥T = 1 , and the last step follows from direct

computations.

Similarly, we have ∥u∥Sd
≤ 1 + 3ε0. Let ε0 = ε/10, we have that, 1 − ε ≤

∥u∥Sd
≤ 1 + ε. The lemma is then proved.

613

Claim 11.30 (Handling high-dimensional net points). For any ε ∈ (0, 1), let Pd be

an ε-net for Q constructed by Lemma 11.32. For any failure probability ρ ∈ (0, 0.1),

and a set Sd of i.i.d. samples chosen uniformly at random over [0, T]d of size |Sd| ≥
ε−2kO(d) log(1/(ρε)), then with probability at least 1− ρ, for all x ∈ Pd, we have

(1− ε)∥x∥T ≤ ∥x∥Sd
≤ (1 + ε)∥x∥T .

Proof. By the energy bound for high-dimensional signal (Theorem 11.19), we have

R := sup
x∈Q

sup
t∈[0,T]d

|x(t)|2 = kO(d).

Then, From Lemma 11.25 and Theorem 11.19, for each x ∈ Pd,

Pr[∥x∥Sd
/∈ [(1− ε)∥x∥T , (1 + ε)∥x∥T]] ≤ exp(−Ω(|Sd|ε

2

kO(d)
))

≤ exp(−2k log(k/(ρε)))

≤ ρ(0.01ε2/k2)k.

where the first step follows form Lemma 11.25, the second step follows from the lower

bound on W .

From the union bound, ∥x∥Sd
∈ [(1− ε)∥x∥T , (1+ ε)∥x∥T] for any x ∈ Pd with

probability at least 1− ρ(0.01ε2/k2)k · |Pd| ≥ 1− ρ.

11.6.3 Oblivious sketching discrete signals

In this section, we show that discrete Fourier sparse signals can also be sketched

in the offline. The following lemma works for discrete signals in any dimension.

Lemma 11.31 (Oblivious sketching discrete signal). For d ≥ 1, let n = pd for some

positive integer p. Let k ∈ N+ and f1, . . . , fk ∈ [p]d. Define

V :=
{
(e2πi⟨fi,t⟩/p)t∈[p]d | ∀i ∈ [k]

}
⊆ C[p]d

614

be the basis of discrete Fourier sparse signals. For any ε, ρ ∈ (0, 1), let S be a set of

i.i.d. samples chosen uniformly at random over [n] of size |S| ≥ O(ε−2k log(k/ρ)).

Then, with probability at least 1− ρ, it holds that for all u ∈ span{V },

(1− ε)∥u∥22 ≤ n∥u∥2S ≤ (1 + ε)∥u∥22,

where ∥u∥2S =
∑

i∈S |ui|2/|S|.

Proof. To show that sampling from distribution D = Uniform([n]) give a good sketch,

we will use some technical tools in Section 11.4.4.11 Applying Lemma 11.16 with

D′ = D, d = k, δ = ρ, wi = 1/s we have that, with probability at least 1 − ρ, the

matrix A ∈ Cs×k defined by Ai,j :=
√
wi · vj(xi) satisfying

∥A∗A− I∥2 ≤ ε,

as long as s ≥ C
ε2
·KIS,D′ log k

ρ
. Then, by Lemma 11.15, it implies that for every x ∈ F,

(1− ε)∥x∥22 ≤ n∥x∥2S ≤ (1 + ε)∥x∥22.

It remains to bound the size of S. By Theorem 11.22,

KIS,D := sup
t∈D
{sup
f∈F
{|f(t)|

2

∥f∥2D
}} = k.

Thus, we get that

|S| ≥ Ω
(
ε−2k log(k/ρ)

)
.

The lemma is then proved.

11A more straightforward approach is by ε-net (Lemma 11.33), as we did in previous sections.
However, it requires O(k2) samples.

615

11.6.4 ε-net for sparse Fourier signals

In this section, we construct ε-nets for high-dimensional sparse Fourier con-

tinuous and discrete signals.

Lemma 11.32 (ε-net construction for continuous signals). Given k ∈ Z+ unknown

frequencies f1, f2, . . . , fk ∈ [−F, F]d. Let V :=
{
e2πi⟨fi,t⟩ | i ∈ [k]

}
be a family of

Fourier basis. Let Q := {u ∈ span{V } | ∥u∥2T = 1} be the set of all signals in [0, T]d

with frequency f1, . . . , fk, where ∥x∥2T = 1
T d

∫
[0,T]d

|x(t)|2dt.

Then, there exists an ε-net Pd ⊂ Q such that

1. ∀u ∈ Q, ∃w ∈ Pd, ∥u− w∥T ≤ ε.

2. |Pd| ≤
(
5k
ε

)2k
.

Proof. We first construct an ε
k
-net for the unit disk in C, i.e., {z ∈ C | |z| ≤ 1}. Let

P′ denote

P′ :=

{
ε

2k
j1 + i

ε

2k
j2 | j1, j2 ∈ Z, |j1| ≤

2k

ε
, |j2| ≤

2k

ε

}
.

Notice that |ε/(2k)j1| ≤ ε/(2k) ·2k/ε = 1; and similarly, |ε/(2k)j2| ≤ 1. Thus,

for any a ∈ C, |a| ≤ 1, there is a b ∈ P′ such that

|a− b| ≤ ε/(2k) + ε/(2k) ≤ ε/k.

Moreover,

|P′| ≤ (2 · 2k/ε+ 1) · (2 · 2k/ε+ 1) =

(
4
k

ε
+ 1

)2

.

Hence, we conclude that,

• P′ is an ε
k
-net in the unit circle of C.

• P′ has size at most (4k
ε
+ 1)2.

616

Then, we use P′ to construct an ε-net for Q. Since the dimension of Q is at

most k, we take an orthonormal basis w1, · · · , wk ∈ Q such that,
∫

[0,T]d
wi(t)wj(t)dt = 1i=j.

And we define

P′′ := {
k∑

i=1

αiwi | ∀i ∈ [k], αi ∈ P′}.

First, for any u ∈ Q, we have

u =
k∑

i=1

vi exp(2πi⟨fi, t⟩) =
k∑

i=1

α′iwi,

which implies that |α′i| ≤ 1 for all i ∈ [k]. So, for any a ∈ Q, there is a b ∈ P′′ such

that ∥a − b∥T ≤ k · ε/k = ε. Moreover, |P′′| ≤ ((4k
ε
+ 1)2)k ≤ (5k

ε
)2k. Therefore, we

conclude that P′′ is an ε-net for Q and |P′′| ≤
(
5k
ε

)2k.

Then we define

Pd := {v ∈ Q | ∀u ∈ P′′, v = argminv∈Q{∥v − u∥T}}.

therefore we have that, for any a ∈ Q, there is a b ∈ P′′ such that ∥a − b∥T ≤ ε,

because there is a c ∈ Pd, such that ∥c − b∥T = mind∈Q∥d − b∥T ≤ ∥a − b∥T ≤ ε.

Then, ∥c− a∥T ≤ ∥c− b∥T + ∥b− a∥T ≤ 2ε.

Lemma 11.33 (ε-net construction for discrete signals). Let n, k ∈ Z+, ε ∈ (0, 1), n ≥
k. Given unknown frequencies f1, f2, · · · , fk ∈ [n]. Let V :=

{
(e2πifi1/n, · · · , e2πifin/n) | i ∈ [k]

}
⊆

Cn. Let Qdis := {u ∈ span{V } | ∥u∥22 = 1}. There exists an ε-net Pdis ⊂ span{V }
such that

1. ∀u ∈ Q,∃w ∈ Pdis, ∥u− w∥22 ≤ ε2.

2. |Pdis| ≤
(
5k
ε

)2k
.

617

Proof. Let P′ be the ε
k
-net for the unit disk in C, i.e., {z ∈ C | |z| ≤ 1}:

P′ =

{
ε

2k
j1 + i

ε

2k
j2 | j1, j2 ∈ Z, |j1| ≤

2k

ε
, |j2| ≤

2k

ε

}
.

Then, we use P′ to construct an ε-net for Qdis. Since the dimension of Qdis is

at most k, we take an orthonormal basis w1, · · · , wk ∈ Qdis such that,

n∑

t=1

wi,twj,t = 1i=j.

And we take

Pdis := {
k∑

i=1

αiwi | ∀i ∈ [k], αi ∈ P′}.

Then, for any u(t) =
∑k

i=1 vi exp(2πifi, t/n) =
∑k

i=1 α
′
iwi ∈ Qdis, |α′i| ≤ 1. So, for

any a ∈ Qdis, there is a b ∈ Pdis such that ∥a − b∥22 ≤ k · ε2/k2 ≤ ε. Moreover,

|Pdis| ≤ ((4k
ε
+ 1)2)k ≤ (5k

ε
)2k. Therefore, we conclude that Pdis is an ε-net for Q and

|Pdis| ≤
(
5k
ε

)2k.

11.7 Fast Implementation of Well-Balanced Sampling Proce-
dure

Well-balanced sampling procedure was first defined in [CP19a] to study the

active linear regression problem. Our signal estimation algorithm will call it as a sub-

procedure. In this section, we give a fast implementation of well-balanced sampling

procedure based on the Randomized BSS algorithm [BSS12, LS15].

First, we restate the definition of well-balanced sampling procedure in [CP19a].

Definition 11.10 (Well-balanced sampling procedure (WBSP), [CP19a]). Given a

linear family F and underlying distribution D, let P be a random sampling procedure

that terminates in m iterations (m is not necessarily fixed) and provides a coefficient

αi and a distribution Di to sample xi ∼ Di in every iteration i ∈ [m].

We say P is an ε-WBSP if it satisfies the following two properties:

618

1. With probability 0.9, for weight wi = αi · D(xi)
Di(xi)

of each i ∈ [m],

m∑

i=1

wi · |h(xi)|2 ∈
[
1− 10

√
ε, 1 + 10

√
ε
]
· ∥h∥2D ∀h ∈ F.

2. The coefficients always have
∑m

i=1 αi ≤ 5
4

and αi ·KIS,Di
≤ ε

2
for all i ∈ [m].

This definition describes a general sampling procedure that uses a few samples

to represent the whole continuous signal, and the sampling procedure should satisfy

two properties: one guarantees that the norm of any function in a function family is

preserved, and another guarantees that the norm of noise is also preserved.

In Section 11.7.1, we review some results in [CP19a] and show that WBSP can

be implemented via randomized spectral sparsification. In Section 11.7.2, we design

a data structure and improve the time efficiency of the WBSP. In Section 11.7.3,

we discover a tradeoff between the preprocessing cost and the query cost, which can

improve the space complexity.

11.7.1 Randomized BSS implies a WBSP

In this section, we review the result of [CP19a], which shows that the Ran-

domized BSS algorithm [BSS12, LS15] implies a well-balanced sampling procedure.

Lemma 11.34 (Lemma 5.1 in [CP19a]). Let G be any domain. Given any dimension

d linear function family F of function f : G→ C,

F = {f(t) =
d∑

j=1

vjuj(t)|vj ∈ C},

where uj : G → C. Given any distribution D over G, and any ε > 0, there exists

an efficient procedure (Algorithm 51) that runs in O(ε−1d3|G| + ε−1dω+1) time and

outputs a set S ⊆ G and weight w such that

• |S| = O(d/ε), w ∈ R|S|,

619

• the procedure is an ε-WBSP,

holds with probability 1− 1
200

.

Algorithm 51 A well-balanced sampling procedure based on Randomized BSS (see
[CP19a])
1: procedure RandBSS(d,F, D, ε)
2: Find an orthonormal basis v1, . . . , vd of F under D
3: Set γ ← √ε/3 and mid← 4d/γ

1/(1−γ)−1/(1+γ)
4: j ← 0, B0 ← 0
5: l0 ← −2d/γ, u0 ← 2d/γ
6: while uj+1 − lj+1 < 8d/γ do
7: Φj ← tr[(ujI −Bj)

−1] + tr[(Bj − ljI)−1] ▷ The potential function at
iteration j.

8: Set the coefficient αj ← γ
Φj
· 1

mid

9: Set v(x)←
(
v1(x), . . . , vd(x)

)

10: for x ∈ supp(D) do
11: Set the distribution

Dj(x)← D(x) ·
(
v(x)⊤(ujI −Bj)

−1v(x) + v(x)⊤(Bj − ljI)−1v(x)
)
/Φj

12: end for
13: Sample xj ∼ Dj and set a scale sj ← γ

Φj
· D(xj)

Dj(xj)

14: Bj+1 ← Bj + sj · v(xj)v(xj)⊤
15: uj+1 ← uj +

γ
Φj(1−γ) , lj+1 ← lj +

γ
Φj(1+γ)

16: j ← j + 1
17: end while
18: m← j
19: Assign the weight wj ← sj/mid for each xj
20: return {x1, x2, · · · , xm}, w
21: end procedure

11.7.2 Fast implementation of WBSP

In this section, we give a fast implementation of Algorithm 51:

Theorem 11.35 (Fast implementation of WBSP). Let G be any domain. Given any

620

dimension d linear function family F of function f : G→ C,

F = {f(t) =
d∑

j=1

vjuj(t)|vj ∈ C},

where uj : G → C. Given any distribution D over G, and any ε > 0, there exists

an efficient procedure (Algorithm 52) that runs in O(d2|G|+ ε−1d3 log |G|+ ε−1dω+1)

time and outputs a set S ⊆ G and weight w ∈ R|S| such that the following properties

hold with probability at least 0.995:

• |S| = O(d/ε),

• the procedure is an ε-WBSP.

Our algorithm is based on a data structure for solving the online quadratic-

form sampling problem defined as follows:

Problem 11.36 (Online Quadratic-Form Sampling Problem). Given n vectors v1, . . . , vn ∈
Rd and n coefficients α1, . . . , αn, for any PSD matrix A ∈ Rd×d, output a sample

i ∈ [n] from the following distribution DA:

Pr
DA

[i] :=
αi · v⊤i Avi∑n
j=1 αj · v⊤j Avj

∀i ∈ [n]. (11.11)

Theorem 11.37. There is a data structure (Algorithm 53) that uses O(nd2) spaces

for the Online Quadratic-Form Sampling Problem with the following procedures:

• Init(n, d, {v1, . . . , vn} ⊂ Rd, {α1, . . . , αn} ⊂ R): the data structure preprocesses

in time O(nd2).

• Query(A ∈ Rd×d): Given a PSD matrix A, the Query operation samples

i ∈ [n] exactly from the probability distribution DA defined in Problem 11.36 in

O(d2 log n)-time.

621

Algorithm 52 Our fast implementation of well-balanced sampling procedure
1: procedure RandBSS+(d,F, D, ε) ▷ Theorem 11.35
2: /*Preprocessing*/
3: Find an orthonormal basis v1, . . . , vd of F under D
4: γ ← √ε/3 and mid← 4d/γ

1/(1−γ)−1/(1+γ)
5: j ← 0, B0 ← 0
6: l0 ← −2d/γ, u0 ← 2d/γ
7: δ ← 1/poly(d)
8: ▷ Let v(x) =

(
v1(x), . . . , vd(x)

)
∈ Rd

9: DS.Init(|D|, d, {v(x1), · · · , v(x|D|)} ⊂ Rd, {D(x1), . . . , D(x|D|)} ⊂ R) ▷
Algorithm 53

10: /*Iterative step*/
11: while uj+1 − lj+1 < 8d/γ do
12: Φj ← tr[(ujI −Bj)

−1] + tr[(Bj − ljI)−1] ▷ The potential function at
iteration j.

13: αj ← γ
Φj
· 1

mid

14: Ej ← (ujI −Bj)
−1 + (Bj − ljI)−1

15: q ← DS.Query(Ej/Φj) ▷ q ∈ [|D|], Algorithm 53
16: xj ← xq and set a scale sj ← γ

v(xj)⊤Ejv(xj)

17: Bj+1 ← Bj + sj · v(xj)v(xj)⊤
18: uj+1 ← uj +

γ
Φj(1−γ) , lj+1 ← lj +

γ
Φj(1+γ)

19: j ← j + 1
20: end while
21: m← j
22: Assign the weight wj ← sj/mid for each xj
23: return {x1, x2, · · · , xm}, w
24: end procedure

Proof. The pseudo-code of the algorithm is given as Algorithm 53. The idea is to

build a binary tree such that each node has an interval in [l, . . . , r] ⊂ [1, . . . , n] and

stores a matrix
∑r

i=l αi · viv⊤i . For each internal node with interval [l, . . . , r], its

left child node has interval [l, . . . , ⌊(l + r)/2⌋], and its right child node has interval

[⌊(l + r)/2⌋+ 1, . . . , r].

We first prove the correctness. Suppose the output of Query is i ∈ [n]. We

compute its probability. Let u0 = root, u1, . . . , ut be the path from the root of the

622

tree to the leaf with id = i. Then, we have

Pr[ut] =
t∏

j=1

Pr[uj|uj−1] =
t∏

j=1

∑rj
k=lj

αk · v⊤k Avk∑rj−1

k=lj−1
αk · v⊤k Avk

=
αi · v⊤i Avi∑n
k=1 αk · v⊤k Avk

,

where [lj, . . . , rj] is the range of the node uj, the first step follows from the conditional

probability, the second step follows from Line 7 in Algorithm 53, and the last step

follows from the telescoping products. Hence, we get that

Pr[Query(A) = i] = Pr
DA

[i] ∀i ∈ [n].

Hence, the sampling distribution is the same as the Online Quadratic-Form Sampling

Problem’s distribution.

For the running time, in the preprocessing stage, we build the binary tree

recursively. It is easy to see that the number of nodes in the tree is O(n) and the depth

isO(log n). For a leaf node, we takeO(d2)-time to compute the matrix αi·viv⊤i ∈ Rd×d.

For an internal node, we take O(d2)-time to add up the matrices of its left and right

children. Thus, the total preprocessing time is O(nd2).

In the query stage, we walk along a path from the root to a leaf, which has

O(log n) steps. In each step, we compute the inner product between A and the current

node’s matrix, which takes O(d2)-time. And we compute the inner product between

A and its left child node’s matrix, which also takes O(d2)-time. Then, we toss a coin

and decide which subtree to move. Hence, each query takes O(d2 log n)-time.

The theorem is then proved.

Lemma 11.38 (Running time of Procedure RandBSS+ in Algorithm 52). Algorithm

52 runs in

• O(|D|d2)-time for preprocessing,

• O(d2 log(|D|) + dω)-time per iteration, and

623

Algorithm 53 Quadratic-form sampling data structure
1: structure Node
2: V ∈ Rd×d

3: left, right ▷ Point to the left/right child in the tree
4: end structure
5: data structure DS
6: members
7: n ∈ N ▷ The number of vectors
8: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors
9: α1, . . . , αn ∈ R ▷ Coefficients

10: root: Node ▷ The root of the tree
11: end members
12: procedure BuildTree(l, r) ▷ [l, . . . , r] is the range of the current node
13: p← new Node
14: if l = r then ▷ Leaf node
15: p.V ← αl · vlv⊤l ▷ It takes O(d2)-time
16: else ▷ Internal node
17: mid← ⌊(l + r)/2⌋
18: p.left← BuildTree(l,mid)
19: p.right← BuildTree(mid+ 1, r)
20: p.V ← (p.left).V + (p.right).V ▷ It takes O(d2)-time
21: end if
22: return p
23: end procedure
24: procedure Init(n, d, {vi}i∈[n] ⊆ Rd, {αi}i∈[n] ⊆ R)
25: vi ← vi, αi ← αi for i ∈ [n]
26: root← BuildTree(1, n)
27: end procedure

• O(ε−1d) iterations.

Thus, the total running time is,

O(|D|d2 + ε−1d · (d2 log |D|+ dω)).

Proof. In each call of the Procedure RandBSS+ in Algorithm 52,

• Finding orthonormal basis takes O(|D|d2).

624

Algorithm 54 Quadratic-form sampling data structure, Continue

1: procedure Query(A ∈ Rd×d)
2: p← root, l← 1, r ← n
3: s← 0
4: while l ̸= r do ▷ There are O(log n) iterations
5: w ← ⟨p.V, A⟩ ▷ It takes O(d2)-time
6: wℓ ← ⟨(p.left).V, A⟩
7: Sample c from Bernoulli(wℓ/w)
8: if c = 0 then
9: p← p.left, r ← ⌊(l + r)/2⌋

10: else
11: p← p.right, l← ⌊(l + r)/2⌋+ 1
12: end if
13: end while
14: return l
15: end procedure
16: end data structure

• In the line 9, it runs O(|D|d2) times.

• The while loop repeat O(ε−1d) times.

– Line 14 is computing (ujI − Bj) ∈ Cd×d, (ujI − Bj)
−1. This part takes

O(dω) time12.

– Note that line 15 of Procedure RandBSS+ in Algorithm 52 runsO(d2 log |D|)
times.

So, the time complexity of Procedure RandBSS+ in Algorithm 52 is

O(|D|d2 + ε−1d · (d2 log |D|+ dω)).

12Note that this step seems to be very difficult to speed up via the Sherman-Morrison formula
since uj changes in each iteration and the update is of high rank.

625

Lemma 11.39 (Correctness of Procedure RandBSS+ in Algorithm 52). Given any

dimension d linear space F, any distribution D over the domain of F, and any ε > 0,

RandBSS+(d,F, D, ε) is an ε-WBSP that terminates in O(d/ε) rounds with proba-

bility 1− 1/200.

Proof. We first claim that, for each j ∈ [m], xj has the same distribution as Dj, where

Dj(x) = D(x) · (v(x)⊤Ejv(x))/Φj ∀x ∈ D

Notice that sampling from distributionDj can be reformulated as an Online Quadratic-

Form Sampling Problem: the vectors are {v(x)}x∈D , the coefficients are {D(x)}x∈D,

and the query matrix is E ′j := Ej/Φj. Then, we have Dj = DE′
j

defined in Prob-

lem 11.36. Hence, by Theorem 11.37, we can use the data structure (Algorithm 53)

to efficiently sample from Dj.

Therefore, the sample xj in each iteration is generated from the same distri-

bution as the original randomized BSS algorithm (Algorithm 51). Then, the WBSP

guarantee and the number of iterations immediately follow from the proof of [CP19a,

Lemma 5.1].

The proof of the lemma is then completed.

Proof of Theorem 11.35. The running time of the algorithm follows from Lemma 11.38,

and the correctness follows from Lemma 11.39.

11.7.3 Trade-off between preprocessing and query

In this section, we consider the preprocessing and query trade-off in the data

structure for quadratic form sampling problem. In the following theorem, we give a

new data structure that takes less time in preprocessing and more time for each query

than Theorem 11.37, and the space complexity is also reduced from O(nd2) to O(nd).

626

Theorem 11.40. There is a data structure (Algorithms 55 and 56) that uses O(nd)

spaces for the Online Quadratic-Form Sampling Problem with the following proce-

dures:

• Init(n, d, {v1, . . . , vn} ⊂ Rd, {α1, . . . , αn} ⊂ R): the data structure preprocesses

in time O(ndω−1).

• Query(A ∈ Rd×d): Given a PSD matrix A, the Query operation samples

i ∈ [n] exactly from the probability distribution DA defined in Problem 11.36 in

O(d2 log(n/d) + dω)-time.

Proof. The time and space complexities follow from Lemma 11.41. And the correct-

ness follows from Lemma 11.42.

Lemma 11.41 (Time and space complexities of Algorithms 55 and 56). The Init

procedure takes O(ndω−1)-time. The Query procedure takes O(d2 log(n/d)+dω)-time.

The data structure uses O(nd)-space.

Proof. We prove the space and time complexities of the data structure as follows:

Space complexity: Let m = n/d. It is easy to see that there are O(m) nodes in

the data structure. And each node has two d-by-d matrices. Hence, the total space

used by the data structure is O(n/d) ·O(d2) = O(nd).

Time complexity: In the preprocessing stage, the time-consuming step is the

call of BuildTree. There are O(m) internal nodes and O(m) leaf nodes. Each

internal node takes O(d2)-time to construct the matrix V1 (Line 22). For each leaf

node, it takes O(d2)-time to form the matrix V2 (Line 15). And it takes O(dω)-time

to compute the matrix V1 (Line 16). Hence, the total running time of BuildTree

is O(mdω) = O(ndω−1).

627

In the query stage, the While loop in the Query procedure (Line 17) is the

same as in Algorithm 53. Since there are O(m) nodes in the tree, it takes O(d2 logm)-

time. Then, in the BlockSampling procedure, it takes O(dω)-time to compute the

matrix U (Line 9), and it takes O(d)-time to sample an index from the distribution

Dl (Line 11). Hence, the total running time for each query is O(d2 logm + dω) =

O(d2 log(n/d) + dω).

The proof of the lemma is then completed.

Lemma 11.42 (Correctness of Algorithm 56). The distribution of the output of the

Query(A) is DA defined by Eq. (11.11).

Proof. For simplicity, we assume that all the coefficients αi = 1.

Let u0 = root, u1, . . . , ut be the path in the While loop (Line 17) from the root

of the tree to the leaf with index l ∈ [m]. By the construction of leaf node, we have

V1 = V2V
⊤
2 =

[
v(l−1)d+1 · · · vld

]

v⊤(l−1)d+1

...
v⊤ld

 =

ld∑

i=(l−1)d+1

viv
⊤
i ,

which is the same as the V -matrix in Algorithm 53. Hence, similar to the proof of

Theorem 11.37, we have

Pr[ut] =
t∏

j=1

Pr[uj|uj−1] =
∑ld

i=(l−1)d+1 v
⊤
i Avi∑n

i=1 v
⊤
i Avi

.

where {(l− 1)d+ 1, . . . , ld} is the range of the node ut and {1, . . . , n} is the range of

u0.

Then, consider the BlockSampling procedure. Let {v1, . . . , vd} be the vec-

tors in the input block. At Line 9, we have

U = V ⊤2 AV2 =

v⊤1
...
v⊤d

A

[
v1 · · · vd

]
.

628

For i ∈ [d], the i-th element in the diagonal of U is

Ui,i = v⊤i Avi.

Hence,

Pr[BlockSampling = i] =
v⊤i Avi∑d
j=1 v

⊤
j Avj

.

Therefore, for any k ∈ [n], if k = (l−1)d+r for some l, r ∈ N, then the sample

probability is

Pr[Query(A) = k] = Pr[BlockSampling = k | ut = Block l] · Pr[ut = Block l]

=
v⊤k Avk∑ld

i=(l−1)d+1 v
⊤
i Avi

·
∑ld

i=(l−1)d+1 v
⊤
i Avi∑n

i=1 v
⊤
i Avi

=
v⊤k Avk∑n
i=1 v

⊤
i Avi

= DA(k).

The lemma is then proved.

As a corollary, we get a WBSP using less space:

Corollary 11.43 (Space efficient implementation of WBSP). By plugging-in the

new data structure (Algorithms 55 and 56) to FasterRandSamplingBSS (Algo-

rithm 52), we get an algorithm taking O(|D|d2 + γ−2d · (d2 log |D| + dω))-time and

using O(|D|d)-space.

Proof. In the preprocessing stage of FasterRandSamplingBSS, we take O(|D|d2)-
time for Gram-Schmidt process andO(|D|dω−1)-time for initializing the data structure

(Algorithm 55).

The number of iterations is γ−2d. In each iteration, the matrix Ej can be

computed in O(dω)-time. And querying the data structure takes O(d2 log(|D|/d) +
dω)-time.

629

Hence, the total running time is

O
(
|D|d2 + |D|dω−1 + γ−2d(d2 log(|D|/d) + dω)

)
= O

(
|D|d2 + γ−2dω+1 + γ−2d2 log |D|

)
.

For the space complexity, the data structure uses O(|D|d)-space. The algo-

rithm uses O(d2) extra space in preprocessing and each iteration. Hence, the total

space complexity is O(|D|d).

11.8 Sketch Distillation for Fourier Sparse Signals

In Section 11.6, we show an oblivious approach for sketching Fourier sparse

signals. However, there are two issues of using this sketching method in Signal es-

timation: 1. The sketch size too large. 2. The noise in the observed signal could

have much larger energy on the sketching set than its average energy. To resolve

these two issues, in this section, we propose a method called sketch distillation to

post-process the sketch obtained in Section 11.6 that can reduce the sketch size to

O(k) and prevent the energy of noise being amplified too much. However, we need

some extra information about the signal x∗(t): we assume that the frequencies of the

noiseless signal x(t) are known. But the sketch distillation process can still be done

partially oblivious, i.e., we do not need to access/sample the signal.

In Section 11.8.1, we show our distillation algorithms for one-dimensional sig-

nals. Then, we generalize the sketch distillation for high-dimensional signals in Sec-

tion 11.8.2 and for discrete signals in Section 11.8.3.

11.8.1 Sketch distillation for one-dimensional signals

In this section, we show how to distill the sketch produced by Lemma 11.28

from O(k log k)-size to O(k)-size, using an ε-well-balanced sampling procedure devel-

oped in Section 11.7.

Lemma 11.44 (Fast distillation for one-dimensional signal). Given f1, f2, · · · , fk ∈
R. Let x∗(t) =

∑k
j=1 vj exp(2πifjt). Let η = mini ̸=j |fj − fi|. For any accuracy

630

parameter ε ∈ (0, 0.1), there is an algorithm FastDistill1D (Algorithm 57) that

runs in O(ε−2kω+1)-time and outputs a set S ⊂ [−T, T] of size s = O(k/ε2) and a

weight vector w ∈ Rs
≥0 such that,

(1− ε)∥x∗(t)∥T ≤ ∥x∗(t)∥S,w ≤ (1 + ε)∥x∗(t)∥T

holds with probability 0.99.

Furthermore, for any noise signal g(t), the following holds with high probability:

∥g∥2S,w ≲ ∥g∥2T ,

where ∥x∥2T := 1
2T

∫ T
−T |x(t)|2dt.

Proof. For the convenient, in the proof, we use time duration [−T, T]. Let D(t) be

defined as follows:

D(t) =

{
c/(1− |t/T |), for |t| ≤ T (1− 1/k)

c · k, for |t| ∈ [T (1− 1/k), T]

where c = O(T−1 log−1(k)) a fixed value such that
∫ T
−T D(t)dt = 1.

First, we randomly pick up a set S0 = {t1, · · · , ts0} of s0 = O(ε−20 k log(k) log(1/ρ0))

i.i.d. samples from D(t), and let w′i := 2/(Ts0D(ti)) for i ∈ [s0] be the weight vector,

where ε0, ρ0 are parameters to be chosen later.

By Lemma 11.28, we know that (S0, w
′) gives a good weighted sketch of the

signal that can preserve the norm with high probability. More specifically, with

probability 1− ρ0,

(1− ε0)∥x∗(t)∥2T ≤ ∥x∗(t)∥2S0,w′ ≤ (1 + ε0)∥x∗(t)∥2T . (11.12)

Then, we will select s = O(k/ε21) elements from S0 and output the correspond-

ing weights w1, w2, · · · , ws by applying RandBSS+ with the following parameter:

replacing d by k, ε by ε21, and D by D(ti) = w′i/
∑

j∈[s0]w
′
j for i ∈ [s0].

631

By Theorem 11.35 and the property of WBSP (Definition 11.10), we obtain

that with probability 0.995,

(1− ε1)∥x∗(t)∥2S0,w′ ≤ ∥x∗(t)∥2S,w ≤ (1 + ε1)∥x∗(t)∥2S0,w′ .

Combining with Eq. (11.12), we conclude that

∥x∗∥2S,w ∈ [1− ε1, 1 + ε1] · ∥x∗∥2S0,w′

∈ [(1− ε0)(1− ε1), (1 + ε0)(1 + ε1)] · ∥x∗∥2T
∈ [1− ε, 1 + ε] · ∥x∗∥2T ,

where the second step follows from Eq. (11.12) and the last stpe follows by taking

ε0 = ε1 = ε/4.

The overall success probability follows by taking union bound over the two

steps and taking ρ0 = 0.001. The running time of Algorithm 57 follows from Claim 11.45.

And the furthermore part follows from Claim 11.46.

The proof of the lemma is then completed.

Claim 11.45 (Running time of Procedure FastDistill1D in Algorithm 57). Pro-

cedure FastDistill1D in Algorithm 57 runs in

O(ε−2kω+1)

time.

Proof. First, it is easy to see that Procedure WeightedSketch takesO(ε−2k log(k))-

time.

By Theorem 11.35 with |D| = O(ε−2k log(k)), d = k, we have that the running

time of Procedure RandBSS+ is

O
(
k2 · ε−2k log(k) + ε−2k3 log

(
ε−2k log(k)

)
+ ε−2kω+1

)

= O
(
ε−2kω+1

)
.

632

Hence, the total running time of Algorithm 57 is O (ε−2kω+1).

Claim 11.46 (Preserve the energy of noise). Let (S,w) be the outputs of Algorithm 57.

Then, we have that

∥g(t)∥2S,w ≲ ∥g(t)∥2T ,

holds with probability 0.99.

Proof. For the convenient, in the proof, we use time duration [−T, T]. Algorithm 57

has two stages of sampling.

In the first stage, Procedure WeightedSketch samples a set S0 = {t′1, . . . , t′s0}
of i.i.d. samples from the distribution D, and a weight vector w′. Then, we have

E
[
∥g(t)∥2S0,w′

]
= E

[s0∑

i=1

w′i|g(t′i)|2
]

=

s0∑

i=1

Et′i∼D[w
′
i|g(t′i)|2]

=

s0∑

i=1

Et′i∼D
[2

Ts0D(t′i)
|g(t′i)|2

]

=

s0∑

i=1

Et′i∼Uniform([−T,T])[s
−1
0 |g(t′i)|2]

= Et∼Uniform([−T,T])[|g(t)|2]

= ∥g(t)∥2T

where the first step follows from the definition of the norm, the third step follows from

the definition of wi, the forth step follows from Et∼D0(t)[
D1(t)
D0(t)

f(t)] = Et∼D1(t) f(t).

In the second stage, let P denote the Procedure RandBSS+. With high

probability, P is a ε-WBSP (Definition 11.10). By the Definition 11.10, each sample

ti ∼ Di(t) and wi = αi · D
′(ti)

Di(ti)
in every iteration i ∈ [s], where

∑s
i=1 αi ≤ 5/4 and

633

D′(t) =
w′

t∑
t′∈S0

w′
t′
. As a result,

EP [∥g(t)∥2S,w] = EP
[s∑

i=1

wi|g(ti)|2
]

=
s∑

i=1

Eti∼Di(ti)[wi|g(ti)|2]

=
s∑

i=1

Eti∼Di(ti)

[
αi ·

D′(ti)

Di(ti)
|g(ti)|2

]

=
s∑

i=1

Eti∼D′(ti)[αi|g(ti)|2]

≤ sup
P
{

s∑

i=1

αi}Et∼D′(t)[|g(t)|2]

= sup
P
{

s∑

i=1

αi}∥g(t)∥2S0,w′ · (
∑

t′∈S0

w′t′)
−1

≲ ρ−1 · ∥g(t)∥2S0,w′ .

where the first step follows from the definition of the norm, the third step follows

from wi = αi · D
′(ti)

Di(ti)
, the forth step follows from Et∼D0(t)

D1(t)
D0(t)

f(t) = Et∼D1(t) f(t), the

sixth step follows from D′(t) =
w′

t∑
t′∈S0

w′
t′

and the definition of the norm, the last step

follows from
∑s

i=1 αi ≤ 5/4 and (
∑

t′∈S0
w′t′)

−1 = O(ρ−1) with probability at least

1− ρ/2.

Hence, combining the two stages together, we have

E
[
EP [∥g(t)∥2S,w]

]
≲ ρ−1 · E

[
∥g(t)∥2S0,w′

]
= ρ−1 · ∥g∥2T .

And by Markov inequality and union bound, we have

Pr
[
∥g(t)∥2S,w ≲ ρ−2∥g(t)∥2T

]
≤ 1− ρ.

11.8.1.1 Sharper bound for the energy of orthogonal part of noise

In this section, we give a sharper analysis for the energy of g⊥ on the sketch,

which is the orthogonal projection of g to the space F. More specifically, we can

634

decompose an arbitrary function g into g∥+g⊥, where g∥ ∈ F and
∫
[0,T]

h(t)g⊥(t)dt = 0

for all h ∈ F. The motivation of considering g⊥ is that g∥ is also a Fourier sparse

signal and its energy will not be amplified in the Signal Estimation problem. And

the nontrivial part is to avoid the blowup of the energy of g⊥, which is shown in the

following lemma:

Lemma 11.47 (Preserving the orthogonal energy). Let F be an m-dimensional linear

function family with an orthonormal basis {v1, . . . , vm} with respect to a distribution

D. Let P be the ε-WBSP that generate a sample set S = {t1, . . . , ts} and coefficients

α ∈ Rs
>0, where each ti is sampled from distribution Di for i ∈ [s]. Define the weight

vector w ∈ Rs be such that wi := αi
D(ti)
Di(ti)

for i ∈ [s].

For any noise function g(t) that is orthogonal to F with respect to D, the

following property holds with probability 0.99:

m∑

i=1

|⟨g, vi⟩S,w|2 ≲ ε∥g∥2D,

where ⟨g, v⟩S,w :=
∑s

j=1wjv(tj)g(tj).

Remark 11.6. We note that this lemma works for both continuous and discrete signals.

Remark 11.7. |⟨g, vi⟩S,w|2 corresponds to the energy of g on the sketch points in S.

On the other hand, if we consider the energy on the whole time domain, we have

⟨g, vi⟩ = 0 for all i ∈ [m]. The above lemma indicates that this part of energy could

be amplified by at most O(ε), as long as the sketch comes from a WBSP.

635

Proof. We can upper-bound the expectation of
∑m

i=1 |⟨g, vi⟩S,w|2 as follows:

E
[m∑

i=1

|⟨g, vi⟩S,w|2
]
= ED1,...,Ds

[
∥w∥21

m∑

i=1

∣∣Et∼D′ [vj(t)g(t)]
∣∣2
]

= ED1,...,Ds

[m∑

i=1

∣∣
s∑

j=1

wjvi(tj)g(tj)]
∣∣2
]

=
m∑

i=1

ED1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]

=
m∑

i=1

ED1,...,Ds

[s∑

j=1

w2
j |vi(tj)|2|g(tj)|2

]

=
s∑

j=1

EDj

[m∑

i=1

wj|vi(tj)|2 · wj|g(tj)|2
]

≤
s∑

j=1

sup
t∈Dj

{
wj

m∑

i=1

|vi(t)|2
}
· EDj

[wj|g(tj)|2],

where the first step follows from Fact 11.48, the second step follows from the definition

of D′, the third follows from the linearity of expectation, the forth step follows from

Fact 11.49, the last step follows by pulling out the maximum value of wj
∑k

i=1 |vi(t)|2

from the expectation.

Next, we consider the first term:

sup
t∈Dj

{
wj

m∑

i=1

|vi(t)|2
}
= sup

t∈Dj

{
αj
D(t)

Dj(t)

m∑

i=1

|vi(t)|2
}

= αj sup
t∈Dj

{ D(t)

Dj(t)
sup
h∈F

{ |h(t)|2
∥h∥2D

}}

= αjKIS,Dj
.

where the first step follows from the definition of wj, the second step follows from

Fact 11.50 that sup
h∈F
{ |h(tj)|2∥h∥2D

} =∑k
i=1 |vi(tj)|2, the last step follows from the definition

of KIS,Dj
(Eq. (11.3)).

Then, we bound the last term:

EDj
[wj|g(tj)|2] = E

tj∼Dj

[
αj
D(tj)

Dj(tj)
|g(tj)|2

]
= αj E

tj∼D
[|g(tj)|2] = αj∥g∥2D.

636

Combining the two terms together, we have

E
[m∑

i=1

|⟨g, vi⟩S,w|2
]
≤

s∑

j=1

(αjKIS,Dj
· αj∥g∥2D)

≤
(s∑

j=1

αj

)
·max
j∈[s]
{αjKIS,Dj

} · ∥g∥2D

≤ ε∥g∥2D.

where the last step follows from P being a ε-WBSP (Definition 11.10), which implies

that
∑s

j=1 αj =
5
4

and αjKIS,Dj
≤ ε/2 for all j ∈ [s].

Finally, by Markov’s inequality, we have that
m∑

i=1

|⟨g, vi⟩S,w|2 ≲ ε∥g∥2D

holds with probability 0.99.

Fact 11.48.
m∑

i=1

|⟨g, vi⟩S,w|2 = ∥w∥21 ·
m∑

i=1

∣∣∣Et∼D′ [vi(t)g(t)]
∣∣∣
2

,

where D′ is a distribution defined by D′(ti) := wi

∥w∥1 for i ∈ [s].

Proof. We have:
m∑

i=1

|⟨g, vi⟩S,w|2 =
m∑

i=1

∣∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣∣
2

=
m∑

i=1

∣∣∣
s∑

j=1

wjvi(tj)g(tj)∑s
j′=1wj′

∣∣∣
2

·
(s∑

j′=1

wj′
)2

=
(s∑

j′=1

wj′
)2
·
m∑

i=1

∣∣∣Et∼D′ [vi(t)g(t)]
∣∣∣
2

.

Fact 11.49. For any i ∈ [m], we have

ED1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]
= ED1,...,Ds

[m∑

j=1

w2
j |vi(tj)|2|g(tj)|2

]
.

637

Proof. We first show that for any i ∈ [m] and j ∈ [s],

E
tj∼Dj

[wjvi(tj)g(tj)] = E
tj∼Dj

[αj
D(tj)

Dj(tj)
vi(tj)g(tj)]

= αj E
tj∼D

[vi(tj)g(tj)]

= 0. (11.13)

where the first step follows from the definition of wi, the third step follows from g(t)

is orthonormal with vi(t) for any i ∈ [k].

Then, we can expand LHS as follows:

ED1,...,Ds

[∣∣
s∑

j=1

wjvi(tj)g(tj)
∣∣2
]

= ED1,...,Ds

[(s∑

j=1

wjvi(tj)g(tj)
)∗(s∑

j=1

wjvi(tj)g(tj)
)]

= ED1,...,Ds

[s∑

j,j′=1

wjwj′vi(tj)g(tj)vi(tj′)g(tj′)
]

=
s∑

j,j′=1

ED1,...,Ds [wjwj′vi(tj)g(tj)vi(tj′)g(tj′)]

=
s∑

j=1

E[w2
j |vi(tj)|2|g(tj)|2] +

∑

1≤j<j′≤s

2ℜED1,...,Dj
[wjwj′vi(tj)g(tj)vi(tj′)g(tj′)]

= RHS +
∑

1≤j<j′≤s

2ℜED1,...,Dj

[
wjvi(tj)g(tj)EDj+1,...,Dj′

[wj′vi(tj′)g(tj′)]
]

= RHS +
∑

1≤j<j′≤s

2ℜED1,...,Dj
[wjvi(tj)g(tj) · 0]

= RHS,

where the third step follows from the linearity of expectation, the fifth step follows

from tj only depends on t1, . . . , tj−1, and the sixth step follows from Eq. (11.13).

Fact 11.50. Let {v1, . . . , vk} be an orthonormal basis of F with respect to the distri-

bution D. Then, we have

sup
h∈F

{ |h(t)|2
∥h∥2D

}
=

k∑

i=1

|vi(t)|2

638

Proof. Then,

sup
h∈F

{ |h(t)|2
∥h∥2D

}
= sup

a∈Ck

{ |∑k
i=1 aivi(t)|2
∥a∥22

}

= sup
a∈Ck:∥a∥2=1

∣∣∣
k∑

i=1

aivi(t)
∣∣∣
2

=
k∑

i=1

|vi(t)|2,

where the first step follows from each h ∈ F can be expanded as h =
∑k

i=1 aivi

and ∥h(t)∥2D = ∥a∥22 (Fact 11.14), the second step follows from the Cauchy-Schwartz

inequality and taking a = v(t)
∥v(t)∥2 .

11.8.2 Sketch distillation for high-dimensional signals

The goal of this section is to prove Lemma 11.51, which can reduce the sketch

size of Lemma 11.29 for high-dimensional signals.

Lemma 11.51 (Distillation for high-dimensional signal). Given f1, f2, · · · , fk ∈ Rd.

Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩ for t ∈ [0, T]d. Let η = mini ̸=j ∥fj − fi∥∞. For any

accuracy parameter ε ∈ (0, 1), there is an algorithm DistillHD (Algorithm 58) that

runs in Õ(ε−2kO(d))-time and outputs a set S ⊂ [0, T]d of size s = O(k/ε2) and a

weight vector w ∈ Rs
≥0 such that

(1− ε)∥x∗∥T ≤ ∥x∗∥S,w ≤ (1 + ε)∥x∗∥T

holds with probability 0.99.

Furthermore, for any noise function g(t), with high probability, it holds that

∥g∥S,w ≲ ∥g∥T .

Proof. First, we randomly and uniformly sample a set S0 of s0 = O(ε−20 kO(d) log(1/(ρ0ε0)))

real number in [0, T]d, where ε0, ρ0 are parameters to be chosen later.

639

By Lemma 11.29, we know that those points are good sketch of the high-

dimensional signal and can preserve the norm with a large probability. More precisely,

with probability 1− ρ0,

(1− ε0)∥x∗∥2T ≤ ∥x∗∥2S0
≤ (1 + ε0)∥x∗∥2T . (11.14)

Then, we will select s = O(k) real number from S0 and output s correspond-

ing weight w1, w2, · · · , ws by applying the Procedure RandBSS+ with setting the

following parameter: replacing d by k, ε by ε21, D by Uniform(S0), and F by

F =
{
f(t) =

k∑

j=1

vj exp(2πi⟨fj, t⟩)
∣∣ vj ∈ C

}
.

Then, by Theorem 11.35 and the property of WBSP (Definition 11.10), we obtain

that with probability 0.995,

(1− ε1)∥x∗∥2S0
≤ ∥x∗∥2S,w ≤ (1 + ε1)∥x∗∥2S0

.

Combining with Eq. (11.14), we conclude that

∥x∗∥2S,w ∈ [1− ε1, 1 + ε1] · ∥x∗∥2S0

∈ [(1− ε0)(1− ε1), (1 + ε0)(1 + ε1)] · ∥x∗∥2T
∈ [1− ε, 1 + ε] · ∥x∗∥2T ,

where the second step follows from Eq. (11.14), and the last step follows from ε0 =

ε1 = ε/4.

The running time of Algorithm 58 follows from Claim 11.52 and the suc-

cess probability follows from setting ρ0 = 0.001. The furthermore part follows from

Claim 11.53.

The lemma is then proved.

640

Claim 11.52 (Running time of Procedure DistillHD in Algorithm 58). Procedure

DistillHD in Algorithm 58 runs in time

O
(
ε−2kO(d) log(1/ε)

)
.

Proof. The first step of sampling S0 takes O(ε−2kO(d) log(1/ε))-time.

Then, by Theorem 11.35 with |D| = O(ε−2kO(d) log(1/ε)), d = k, we have that

the running time of RandBSS+ is

O
(
k2 · ε−2kO(d) log(1/ε) + ε−2k3 log

(
ε−2kO(d) log(1/ε)

)
+ ε−2kω+1

)

= O
(
ε−2kO(d) log3(k) log(1/ε)

)
.

Hence, the total running time of Algorithm 58 is O
(
ε−2kO(d) log3(k) log(1/ε)

)
.

Claim 11.53 (Preserve the energy of noise (high Dimension)). Let (S,w) be the

outputs of Algorithm 58. Then, for any function g(t),

∥g(t)∥2S,w ≲ ρ−2∥g(t)∥2T ,

holds with probability 1− ρ.

Proof. Let P denote the Procedure ImportantSampling(k, ε, ρ, F, T,B). Because

P is a ε-well-balanced sampling procedure (Definition 11.10). By the Definition 11.10,

we have that ti ∼ Di(t) and wi = αi · D(ti)
Di(ti)

in every iteration i ∈ [s], where
∑s

i=1 αi ≤
5/4, D(t) = Uniform(S0).

641

As a result,

EP [∥g(t)∥2S,w] = EP [
s∑

i=1

wi|g(ti)|2]

=
s∑

i=1

Eti∼Di(ti)[wi|g(ti)|2]

=
s∑

i=1

Eti∼Di(ti)[αi ·
D(ti)

Di(ti)
|g(ti)|2]

=
s∑

i=1

Eti∼D(ti)[αi|g(ti)|2]

≤ sup
P
{

s∑

i=1

αi}Et∼D(t)[|g(t)|2]

= sup
P
{

s∑

i=1

αi}∥g(t)∥2S0

≤ 2∥g(t)∥2S0
.

where the first step follows from the definition of the norm, the third step follows

from wi = αi · D(ti)
Di(ti)

, the forth step follows from Et∼D0(t)
D1(t)
D0(t)

f(t) = Et∼D1(t) f(t), the

sixth step follows from D(t) = Uniform(S0) and the definition of the norm, the last

step follows from
∑s

i=1 αi ≤ 5/4.

Moreover,

ES0 [∥g(t)∥2S0
] = Et∼Uniform([0,T]) |g(t)|2

= ∥g(t)∥2T

So, by Markov’s inequality,

Pr[∥g(t)∥2S,w ≤ ∥g(t)∥2S0
/ε0] ≥ 1− ε0/2,

and

Pr[∥g(t)∥2S0
≤ ∥g(t)∥2T/ε1] ≥ 1− ε1.

642

Then, with probability at least (1− ε0/2)(1− ε1) holds,

∥g(t)∥2S,w ≤ ∥g(t)∥2S0
/ε0 ≤ ∥g(t)∥2T/(ε0ε1).

Set ε0 = ρ/10, ε1 = ρ/10, we have that,

∥g(t)∥2S,w ≲ ∥g(t)∥2T/ρ2,

holds with probability 1− ρ.

11.8.3 Sketch distillation for discrete signals

The goal of this section is to prove Lemma 11.54, which can reduce the sketch

size of Lemma 11.31 for discrete signals in any dimension.

Lemma 11.54 (Distillation for discrete signal). For any d ≥ 1, let n = pd for some

positive integer p. Let x∗ ∈ C[p]d, such that supp(x̂∗) ⊂ [p]d and |supp(x̂∗)| = k. For

any accuracy parameter ε ∈ (0, 0.1), there is an algorithm (Algorithm 59) that runs

in O(ε−2kω+1)-time and outputs a set S ⊂ [n] of size s = O(k/ε2) and a weight vector

w ∈ Rs
≥0 such that,

(1− ε)∥x∗∥2 ≤ n∥x∗∥S,w ≤ (1 + ε)∥x∗∥2

holds with probability 0.99.

Proof. For the convenient, in the proof, we use x to denote the x∗.

First, we randomly pick up a set S0 = {t1, · · · , ts0} of s0 = O(ε−2k log(k/ρ))

i.i.d. samples from Uniform([n]), where ε0, ρ0 are parameters to be chosen later.

By Lemma 11.31, with probability 1− ρ0,

(1− ε0)∥x∥22 ≤ n∥x∥2S0
≤ (1 + ε0)∥x∥22. (11.15)

643

Then, we will select s = O(k/ε21) elements from S0 and output the correspond-

ing weights w1, w2, · · · , ws by applying Procedure RandBSS+ with the following

parameter: replacing d by k, ε by ε21, and D by Uniform(S0).

By Theorem 11.35 and Definition 11.10, we obtain that with probability 0.995,

(1− ε1)∥x∥2S,w ≤ ∥x∥2S0
≤ (1 + ε1)∥x∥2S,w.

Combining with Eq. (11.15), we conclude that

∥x∥2S,w ∈ [1− ε1, 1 + ε1] · ∥x∥2S0

∈ [(1− ε0)(1− ε1), (1 + ε0)(1 + ε1)] · ∥x∥22/n

∈ [1− ε, 1 + ε] · ∥x∥22/n,

where the second step follows from Eq. (11.15), and the last step follows by taking

ε0 = ε1 = ε/4.

By taking ρ = 0.001, we get that the overall success probability is at least

0.99.

Regarding the running time, if d = 1, we run Procedure DistillDisc in Al-

gorithm 59, whose runtime follows from Claim 11.55. And if d > 1, we run Procedure

DistillDiscHD in Algorithm 59, whose runtime follows from Claim 11.56.

The lemma is then proved.

Claim 11.55 (Running time of Procedure DistillDisc in Algorithm 59). Procedure

DistillDisc in Algorithm 59 runs in

O
(
ε−2kω+1

)

time.

Proof. The first step of sampling S0 takes O(ε−2k log(k))-time.

644

Then, by Theorem 11.35 with |D| = O(ε−2k log(k)), d = k, we have that the

running time of RandBSS+ is

O
(
k2 · ε−2k log(k) + ε−2k3 log

(
ε−2k log(k)

)
+ ε−2kω+1

)

= O
(
ε−2kω+1

)
.

Hence, the total running time is O (ε−2kω+1).

Claim 11.56 (Running time of Procedure DistillDiscHD in Algorithm 59). Pro-

cedure DistillDiscHD in Algorithm 59 runs in

O
(
ε−2kω+1 + ε−2dkω−1 log k

)

time.

Proof. The first step of sampling S0 takes O(ε−2k log(k)d)-time.

Then, we need to implement the function family

F = {f(t) =
k∑

j=1

vj exp(2πi⟨fj, t⟩/p)|vj ∈ C}.

Naively, for each f ∈ F, it takes O(d)-time per evaluation. We observe that in

the distribution sent to RandBSS+ is Uniform(S0), which is discrete with support

size s0 = |S0|. And in Procedure RandBSS+, we only need to find an orthonormal

basis for F with respect to this distribution, which is equivalent to orthogonalize the

columns of the matrix defined at Line 11. To compute the matrix F, we need to

multiply an s0-by-d matrix with a d-by-k matrix. By fast matrix multiplication, by

Fact 11.7, it takes

Tmat(k, d, s0) =

{
O(ε−2kω log k) if d ≤ k,

O(ε−2dkω−1 log k) if d > k.

645

For Procedure RandBSS+, by Theorem 11.35 with |D| = O(ε−2k log(k)),

d = k, we have that the running time of RandBSS+ is

O
(
k2 · ε−2k log(k) + ε−2k3 log

(
ε−2k log(k)

)
+ ε−2kω+1

)

= O
(
ε−2kω+1

)
.

Hence, the total running time of the procedure is

O
(
ε−2dk log(k) + ε−2kω+1 + Tmat(k, d, s0)

)
= O

(
ε−2kω+1 + ε−2dkω−1 log k

)
.

11.9 One-Dimensional Signal Estimation

In this section, we apply the tools developed in previous sections to show

two efficient reductions from Frequency Estimation to Signal Estimation for one-

dimensional semi-continuous Fourier signals. The first reduction in Section 11.9.1 is

optimal in sample complexity, which takes linear number of samples from the signal

but only achieves constant accuracy. The section reduction in Section 11.9.2 takes

nearly-linear number of samples but can achieve very high-accuracy (i.e., (1 + ε)-

estimation error).

11.9.1 Sample-optimal reduction

The main theorem of this section is Theorem 11.57. The optimal sample

complexity is achieved via the sketch distillation in Lemma 11.44.

Theorem 11.57 (Sample-optimal algorithm for one-dimensional Signal Estimation).

For η ∈ R, let Λ(B) ⊂ R denote the lattice Λ(B) = {cη | c ∈ Z}. Suppose that

f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vj exp(2πifjt), and let g(t) denote the noise.

Given observations of the form x(t) = x∗(t)+g(t), t ∈ [0, T]. Let η = mini ̸=j |fj−fi|.

Given D, η ∈ R+. Suppose that there is an algorithm FreqEst that

646

• takes Sfreq samples,

• runs in Tfreq-time, and

• outputs a set L of frequencies such that with probability 0.99, the following

condition holds:

∀i ∈ [k], ∃f ′i ∈ L s.t. |fi − f ′i | ≤
D

T
.

Then, there is an algorithm (Algorithm 60) such that

• takes O(k̃ + Sfreq) samples

• runs O(k̃ω+1 + Tfreq) time,

• outputs y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′jt) with k̃ = O(|L|(1 + D/(Tη))) such that

with probability at least 0.9, we have

∥y(t)− x(t)∥2T ≲ ∥g(t)∥2T .

Proof. First, we recover the frequencies by utilizing the algorithm FreqEst. Let L

be the set of frequencies output by the algorithm FreqEst(x, k,D, T, F,B).

We define L̃ as follows:

L̃ :=
{
f̃ ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f̃ | < D/T

}
.

We use k̃ to denote the size of set L̃. And we use f̃1, f̃2, · · · , f̃k̃ to denote the frequen-

cies in the set L̃. It is easy to see that

k̃ ≤ |L|(1 +D/(Tη)).

Next, we focus on recovering magnitude v′ ∈ Ck̃. First we run Procedure

FastDistill1D in Algorithm 57 and obtain a set S = {t1, t2, · · · , ts} ⊂ [0, T] of size

s = O(k̃) and a weight vector w ∈ Rs
>0. Then, we sample the signal at t1, . . . , ts and

647

let x(t1), . . . , x(ts) be the samples. Consider the following weighted linear regression

problem:

min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥
2
, (11.16)

where
√
w := (

√
w1, . . . ,

√
ws), and the coefficients matrix A ∈ Cs×k̃ and the target

vector b ∈ Cs are defined as follows:

A :=

exp(2πif̃1t1) exp(2πif̃2t1) · · · exp(2πif̃k̃t1)

exp(2πif̃1t2) exp(2πif̃2t2) · · · exp(2πif̃k̃t2)
...

...
exp(2πif̃1ts) exp(2πif̃2ts) · · · exp(2πif̃k̃ts)

 and b :=

x(t1)
x(t2)

...
x(ts)

Then, we output a signal

y(t) =
k̃∑

j=1

v′j · exp(2πif̃jt),

where v′ is an optimal solution of Eq. (11.16).

The running time follows from Lemma 11.58. And the estimation error guar-

antee ∥y(t)− x(t)∥T ≲ ∥g(t)∥T follows from Lemma 11.59.

The theorem is then proved.

Lemma 11.58 (Running time of Algorithm 60). Algorithm 60 takes O(k̃ω+1)-time,

giving the output of Procedure FreqEst.

Proof. At Line 5, we run Procedure FastDistill1D, which takes O(k̃ω+1)-time by

Lemma 11.44.

At Line 8, we solve the weighted linear regression, which takes

O(sk̃ω−1) = O(k̃ω)

time by Fact 11.8.

Thus, the total running time is O(k̃ω+1).

648

Lemma 11.59 (Estimation error of Algorithm 60). Let y(t) be the output signal of

Algorithm 60. With high probability, we have

∥y(t)− x(t)∥T ≲ ∥g(t)∥T .

Proof. We have

∥y(t)− x(t)∥T ≤ ∥y(t)− x∗(t)∥T + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x∗(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥x∗(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥T + ∥g(t)∥T
≲ ∥g(t)∥T , (11.17)

where the first step follows from triangle inequality, the second step follows from

Lemma 11.44 with 0.99 probability, the third step follows from triangle inequality,

the forth step follows from y(t) is the optimal solution of the linear system, the fifth

step follows from Claim 11.46, the sixth step follows from Lemma 11.44, and the last

step follows from the definition of g(t).

11.9.2 High-accuracy reduction

In this section, we prove Theorem 11.60, which achieves (1 + ε)-estimation

error by a sharper bound on the energy of noise in Lemma 11.47.

Theorem 11.60 (High-accuracy algorithm for one-dimensional Signal Estimation).

For η ∈ R, let Λ(B) ⊂ R denote the lattice Λ(B) = {cη | c ∈ Z}. Suppose that

f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vj exp(2πifjt), and let g(t) denote the noise.

Given observations of the form x(t) = x∗(t)+g(t), t ∈ [0, T]. Let η = mini ̸=j |fj−fi|.

Given D, η ∈ R+. Suppose that there is an algorithm FreqEst that

649

• takes Sfreq samples,

• runs in Tfreq-time, and

• outputs a set L of frequencies such that, for each fi, there exists an f ′i ∈ L with

|fi − f ′i | ≤ D/T , holds with probability 0.99.

Then, there is an algorithm (Algorithm 61) such that

• takes O(ε−1k̃ log(k̃) + S) samples,

• runs O(ε−1k̃ω log(k̃) + T) time,

• outputs y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′jt) with k̃ = O(|L|(1 + D/(Tη))) such that

with probability at least 0.9, we have

∥y(t)− x∗(t)∥2T ≤ (1 + ε)∥g(t)∥2T .

Remark 11.8. For simplicity, we state the constant failure probability. It is straight-

forward to get failure probability ρ by blowing up a log(1/ρ) factor in both samples

and running time.

Proof. Let L be the set of frequencies output by the Frequency Estimation algorithm

FreqEst. We have the guarantee that with probability 0.99, for each true frequency

fi, there exists an f ′i ∈ L with |fi− f ′i | ≤ D/T . Conditioning on this event, we define

a set L̃ as follows:

L̃ := {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}.

Since we assume that {f1, . . . , fk} ⊂ Λ(B), we have {f1, . . . , fk} ⊂ L̃. We use k̃ to

denote the size of set L̃, and we denote the frequencies in L̃ by f̃1, f̃2, · · · , f̃k̃.

Next, we need to recover magnitude v′ ∈ Ck̃.

We first run Procedure WeightedSketch in Algorithm 57 and obtain a set

S = {t1, t2, · · · , ts} ⊂ [0, T] of size s = O(ε−2k̃ log(k̃)) and a weight vector w ∈

650

Rs
>0. Then, we sample the signal at t1, . . . , ts and let x(t1), . . . , x(ts) be the samples.

Consider the following weighted linear regression problem:

min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥
2
, (11.18)

where
√
w := (

√
w1, . . . ,

√
ws), and the coefficients matrix A ∈ Cs×k̃ and the target

vector b ∈ Cs are defined as follows:

A :=

exp(2πif̃1t1) exp(2πif̃2t1) · · · exp(2πif̃k̃t1)

exp(2πif̃1t2) exp(2πif̃2t2) · · · exp(2πif̃k̃t2)
...

...
exp(2πif̃1ts) exp(2πif̃2ts) · · · exp(2πif̃k̃ts)

 and b :=

x(t1)
x(t2)

...
x(ts)

Note that if v′ corresponds to the true coefficients v, then we have ∥√w◦(Av′−b)∥2 =
∥√w ◦ g(S)∥2 = ∥g∥S,w. Let v′ be the exact solution of the weighted linear regression

in Eq. (11.18), i.e.,

v′ := arg min
v′∈Ck̃

∥∥√w ◦ (Av′ − b)
∥∥ .

And we define the output signal to be:

y(t) :=
k̃∑

j=1

v′j · exp(2πif ′jt).

The estimation error guarantee ∥y(t)− x∗(t)∥T ≤ (1 + ε)∥g(t)∥T follows from

Lemma 11.62. The running time follows from Lemma 11.61.

The theorem is then proved.

Lemma 11.61 (Running time of Algorithm 61). Algorithm 61 takes O(ε−1k̃ω log(k̃))-

time, giving the output of Procedure FreqEst.

Proof. At Line 7, the regression solver takes

O(sk̃ω−1) = O(ε−1k̃ log(k̃) · k̃ω−1) = O(ε−1k̃ω log(k̃))

time. The remaining part of Algorithm 61 takes at most O(s)-time.

651

Lemma 11.62 (Estimation error of Algorithm 61). Let y(t) be the output signal of

Algorithm 61. With high probability, we have

∥y(t)− x∗(t)∥T ≤ (1 + ε)∥g(t)∥T .

Proof. Let F be the family of signals with frequencies in L̃:

F =
{
h(t) =

k̃∑

j=1

vj · e2πif̃jt
∣∣ ∀vj ∈ C, j ∈ [k̃]

}
.

Suppose the dimension of F is m ≤ k. Let {u1, u2, · · · , um} be an orthonormal basis

of F, i.e.,

1

T

∫

[0,T]

ui(t)uj(t)dt = 1i=j, ∀i, j ∈ [m],

On the other hand, since ui ∈ F, we can also expand these basis vectors in the Fourier

basis. Let V ∈ Cm×k̃ be an linear transformation13 such that

ui =
k̃∑

j=1

Vi,j · exp(2πif̃jt) ∀i ∈ [m].

Then, we have

exp(2πif̃1t)

...
exp(2πif̃k̃t)

 = V + ·

u1
...
um

 ,

where V + ∈ Ck̃×m is the pseudoinverse of V ; or equivalently, the i-th row of V +

contains the coefficients of expanding exp(2πif̃it) under {u1, . . . , um}. Define a linear

operator α : F → Cm such that for any h(t) =
∑k̃

j=1 vj exp(2πifjt),

α(h) := V + · v,

which gives the coefficients of h under the basis {u1, · · · , uk̃}.

13When m < k̃, V is not unique, and we take any one of such linear transformation.

652

Define an s-by-m matrix B as follows:

B := A · V ⊤ =

u1(t1) u2(t1) · · · um(t1)
u1(t2) u2(t2) · · · um(t2)

...
...

u1(ts) u2(ts) · · · um(ts)

 .

B = AV . It is easy to see that Im(B) = Im(A). Thus, solving Eq. (11.18) is

equivalent to solving:

min
z∈Cm
∥√w ◦ (Bz − b)∥2. (11.19)

Since y(t) is an solution of Eq. (11.18), we also know that α(y) is an solution of

Eq. (11.19).

For convenience, we define some notations. Let
√
W := diag(

√
w) and define

Bw :=
√
W ·B,

Xw :=
√
W ·

[
x(t1) x(t2) · · · x(ts)

]⊤

X∗w :=
√
W ·

[
x∗(t1) x∗(t2) · · · x∗(ts)

]⊤

By Fact 11.8, we know that the solution of the weighted linear regression Eq. (11.19)

has the following closed form:

α(y) = (B∗WB)−1B∗Wb = (B∗wBw)
−1B∗wXw. (11.20)

Then, consider the noise in the signal. Since g is an arbitrary noise, let g∥ be the

projection of g(x) to F and g⊥ = g − g∥ be the orthogonal part to F such that

g∥(t) ∈ F, and
∫

[0,T]

g∥(t)g⊥(t)dt = 0.

Similarly, we also define

gw :=
√
W ·

[
g(t1) g(t2) · · · g(ts)

]⊤

g∥w :=
√
W ·

[
g∥(t1) g∥(t2) · · · , g∥(ts)

]⊤
,

g⊥w :=
√
W ·

[
g⊥(t1) g⊥(t2) · · · , g⊥(ts)

]⊤
.

653

By Claim 11.63, the error can be decomposed into two terms:

∥y(t)− x∗(t)∥T ≤
∥∥(B∗wBw)

−1B∗w · g⊥w
∥∥
2
+
∥∥(B∗wBw)

−1B∗w · g∥w
∥∥
2
.

By Claim 11.65, we have

∥∥(B∗wBw)
−1B∗w · g⊥w

∥∥2
2
≲ ε

∥∥g⊥(t)
∥∥2
T
.

And by Claim 11.68, we have

∥∥(B∗wBw)
−1B∗w · g∥w

∥∥2
2
=
∥∥g∥
∥∥2
T
.

Combining them together (and re-scaling ε be an constant factor), we have that

∥y(t)− x∗(t)∥T ≤ ∥g∥∥T +
√
ε∥g⊥∥T .

Since ∥g∥∥2T + ∥g⊥∥2T = ∥g∥2T , by Cauchy–Schwarz inequality, we have that

(∥g∥∥T +
√
ε∥g⊥∥T)2 ≤ (∥g∥∥2T + ∥g⊥∥2T) · (1 + ε) = (1 + ε) · ∥g∥2T .

That is,

∥y(t)− x∗(t)∥2T ≤ (1 + ε)∥g(t)∥2T .

Claim 11.63 (Error decomposition).

∥y(t)− x∗(t)∥T ≤
∥∥(B∗wBw)

−1B∗w · g⊥w
∥∥
2
+
∥∥(B∗wBw)

−1B∗w · g∥w
∥∥
2
.

Proof. Since y, x∗ ∈ F and {u1, . . . , uk̃} is an orthonormal basis, we have ∥y−x∗∥T =

∥α(y) − α(x∗)∥2. Furthermore, by Eq. (11.20), we have α(y) = (B∗wBw)
−1B∗w · Xw.

And by Fact 11.64, since x∗ ∈ F, we have α(x∗) = (B∗wBw)
−1B∗w ·X∗w.

654

Thus, we have

∥α(y)− α(x∗)∥2 = ∥(B∗wBw)
−1B∗w · (Xw −X∗w)∥2

= ∥(B∗wBw)
−1B∗w · gw∥2

= ∥(B∗wBw)
−1B∗w · (g⊥w + g∥w)∥2

≤ ∥(B∗wBw)
−1B∗w · g⊥w∥2 + ∥(B∗wBw)

−1B∗w · g∥w∥2

where the second step follows from the definition of gw, the forth step follows from

gw = g∥ + g⊥, and the last step follows from triangle inequality.

Hence, we get that ∥y(t) − x∗(t)∥T ≤ ∥(B∗wBw)
−1B∗w · g⊥w∥2 + ∥(B∗wBw)

−1B∗w ·
g
∥
w∥2.

Fact 11.64. For any h ∈ F,

α(h) = (B∗wBw)
−1B∗w · hw,

where hw =
√
W
[
h(t1) · · · h(ts)

]⊤.

Proof. Suppose h(t) =
∑k̃

j=1 vj exp(2πif̃jt). We have

Bwα(h) =
√
WB · α(h)

=
√
WB · (V +v)

= hw,

where the second step follows from V + is a change of coordinates.

Hence, by the Moore-Penrose inverse, we have

α(h) = B†whw = (B∗wBw)
−1B∗whw.

Claim 11.65 (Bound the first term). The following holds with high probability:

∥∥(B∗wBw)
−1B∗w · g⊥w

∥∥2
2
≲ ε

∥∥g⊥(t)
∥∥2
T
.

655

Proof. By Lemma 11.28, with high probability, we have

(1− ε)∥x∥T ≤ ∥x∥S,w ≤ (1 + ε)∥x∥T ,

where (S,w) is the output of Procedure WeightedSketch. Conditioned on this

event, by Lemma 11.15,

λ(B∗wBw) ∈ [1− ε, 1 + ε],

since Bw is the same as the matrix A in the lemma.

Hence,

∥(B∗wBw)
−1B∗w · g⊥w∥22 ≤ λmax((B

∗
wBw)

−1)2 · ∥B∗w · g⊥w∥22
≤ (1− ε)−2∥B∗w · g⊥w∥22
≲ ε∥g⊥(t)∥2T

where the second step follows from λmax((B
∗
wBw)

−1) ≤ (1 − ε)−1, and the third step

follows from Lemma 11.47 and Corollary 11.67.

Lemma 11.66 (Lemma 6.2 of [CP19a]). There exists a universal constant C1 such

that given any distribution D′ with the same support of D and any ε > 0, the random

sampling procedure with m = C1(KD′ log d + ε−1KD′) i.i.d. random samples from D′

and coefficients α1 = · · · = αm = 1/m is an ε-well-balanced sampling procedure.

Corollary 11.67. Procedure WeightedSketch in Algorithm 57 is a ε-WBSP (Def-

inition 11.10).

Claim 11.68 (Bound the second term).
∥∥(B∗wBw)

−1B∗w · g∥w
∥∥2
2
=
∥∥g∥
∥∥2
T
.

Proof.

∥(B∗wBw)
−1B∗w · g∥w∥22 = ∥α(g∥)∥22 =∥g∥∥2T ,

where the first step follows from Fact 11.64 and g∥ ∈ F, the second step follows from

the definition of α.

656

11.10 High-dimensional Signal Estimation

In this section, we show a sample-optimal reduction from Frequency Esti-

mation to Signal Estimation for high-dimensional signals in Section 11.10.1, which

generalize Theorem 11.57. The key difference is that in high dimensions, we need to

upper-bound the number of lattice points within a d-dimensional sphere, which turns

out to be related to the output signal’s Fourier sparsity, and the results are given in

Section 11.10.2.

11.10.1 Sample-optimal reduction

Theorem 11.69 (Sample-optimal algorithm for high dimension Signal Estimation).

Given a basis B of m known vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the

lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩ and let g(t) denote

the noise. Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T]d. Let

η = mini ̸=j ∥fj − fi∥∞.

Given D, η ∈ R+. Suppose that there is an algorithm FreqEst that

• takes Sfreq samples,

• runs in Tfreq-time,

• outputs a set L of frequencies such that with probability 0.99, the following

condition holds:

∀i ∈ [k], ∃f ′i ∈ L s.t. ∥fi − f ′i∥2 ≤
D

T
.

Then, there is an algorithm that

657

• takes O(k̃ + Sfreq) samples

• runs in O(k̃O(d) + Tfreq) time,

• output y(t) =
∑k̃

j=1 v
′
j · exp(2πi⟨f ′j, t⟩) with k̃ ≤ |L| · (D/T +

√
m∥B∥)m · πm/2

(m/2)!
·

1
| det(B)| such that with probability 0.9, we have

∫

[0,T]d
|y(t)− x(t)|2dt ≲

∫

[0,T]d
|g(t)|2dt.

Proof. The algorithm is almost the same as Algorithm 60. First, we recover the

frequencies by calling Procedure FreqEst(x, k, d, T, F,B). Let L be the set of fre-

quencies output by the algorithm.

We define L̃ as follows:

L̃ := {f ∈ Λ(B) | ∃f ′ ∈ L, ∥f ′ − f∥2 < D/T}.

We use k̃ to denote the size of set L̃. We use f ′1, f ′2, · · · , f ′k̃ to denote the frequencies

in the set L̃. By applying Lemma 11.70, we have that

k̃ ≤ |L| · (D/T +
√
m∥B∥)m · πm/2

(m/2)!
· 1

| det(B)| .

Next, we focus on recovering magnitude v′ ∈ Ck̃. We run Procedure DistillHD

in Algorithm 58 and obtain a set S = {t1, t2, · · · , ts} of s = O(k̃) samples in the du-

ration [0, T]d, and a weight vector w ∈ Rs.

Then, we consider the following weighted linear regression problem

min
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2,

where A ∈ Cs×k̃ and b ∈ Cs are defined as follows:

A :=

exp(2πi⟨f̃1, t1⟩) · · · exp(2πi⟨f̃k̃, t1⟩)

...
exp(2πi⟨f̃1, ts⟩) · · · exp(2πi⟨f̃k̃, ts⟩)

 and b :=

x(t1)

...
x(ts)

658

Let v′ be an optimal solution of the regression and we output the signal

y(t) :=
k̃∑

j=1

v′j · exp(2πi⟨f ′j, t⟩).

Finally, we prove that ∥y(t) − x(t)∥T ≲ ∥g(t)∥T , holds with a large constant

probability.

∥y(t)− x(t)∥T ≤ ∥y(t)− x∗(t)∥T + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x∗(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥y(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≤ (1 + ε)∥x∗(t)− x(t)∥S,w + (1 + ε)∥g(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥S,w + ∥g(t)∥T
≲ ∥x∗(t)− x(t)∥T + ∥g(t)∥T
≲ ∥g(t)∥T , (11.21)

where the first step follows from triangle inequality, the second step follows from

Lemma 11.51 with 0.99 probability, the third step follows from triangle inequality,

the forth step follows from y(t) is the optimal solution of the linear system, the fifth

step follows from Claim 11.53, the sixth step follows from Lemma 11.51, and the last

step follows from the definition of g(t).

The running time of the reduction follows from Lemma 11.51.

11.10.2 Bounding the sparsity

In this section, we show that the Fourier sparsity of the output signal can be

bounded by the number of lattice points within a sphere. The intuition is that for each

frequency f ′ outputted by Procedure FreqEst, there could be |Bd(f
′, D/T)∩Λ(B)|

many candidates of true frequencies, where Bd(x, r) denotes the d-dimensional sphere

centered at x with radius r. In Lemma 11.70, we upper-bound the sparsity for the

case when D/T is larger than λ1(Λ(B)), the shortest vector length of the lattice.

659

When D/T is small, we show in Lemma 11.71 that Procedure FreqEst finds all

true frequencies.

Lemma 11.70 (Bounding sparsity for large D/T). Given a basis B of m known

vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}
,

and let

k̃ := |{f ∈ Λ(B) | ∃f ′ ∈ L, ∥f ′ − f∥2 < D/T}|

be the output sparsity. Then, we have

• (Spectral bound, which is better when D/T < O(∥B∥))

k̃ ≤ |L| · (1 + 2D/(Tσmin(B)))m.

• (Volume bound, which is better when D/T > O(∥B∥))

k̃ ≤ |L| · (D/T +
√
m∥B∥)m · πm/2

(m/2)!
· 1

| det(B)| .

Proof. Spectral bound: Let c =
[
c1 c2 · · · cm

]⊤ ∈ Zm. Then z = Bc ∈ Λ(B),

and

∥z∥2 = ∥Bc∥2 ≥ σmin(B) · ∥c∥2

Then we have that,

k̃ = |{f ∈ Λ(B) | ∃f ′ ∈ L, ∥f ′ − f∥2 < D/T}|

≤ |L| · |{z ∈ Λ(B) | ∥z∥2 < D/T}|

≤ |L| · |{c ∈ Zm | ∥c∥2 ≤ D/(Tσmin(B))}|

≤ |L| · |{c ∈ Zm | ∥c∥∞ ≤ D/(Tσmin(B))}|

≤ |L| · (1 + 2D/(TσminB))m.

where the first step follows from f ′ − f ∈ Λ(B), the second step follows from if

∥c∥2 ≥ D/(Tσmin), then ∥z∥2 ≥ D/T , the third step follows from ∥c∥∞ ≤ ∥c∥2, and

the last step follows from c is a bounded integer vector.

660

Volume bound: Using Lemma 11.11, we have

k̃ ≤ |L| · (1 +
√
m∥B∥
D/T

)m · vol(Bm(0, D/T))

vol(P(B))
. (11.22)

We can upper bound volume of a ball as follows:

vol(Bm(0, D/T)) ≤
πm/2

(m/2)!
· (D/T)m. (11.23)

Combining the above two equations, we have

LHS ≤ |L| · (1 +
√
m∥B∥
D/T

)m · πm/2

(m/2)!
· (D/T)m · 1

vol(P(B))

≤ |L| · (D/T +
√
m∥B∥)m · πm/2

(m/2)!
· 1

| det(B)| ,

where the first step follows from Eq. (11.22) and Eq. (11.23).

Lemma 11.71 (Bounding sparsity for tiny D/T). Given a basis B of m known

vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

and let

k̃ := |{f ∈ Λ(B) | ∃f ′ ∈ L, ∥f ′ − f∥2 < D/T}|

be the output sparsity. If D/T ≤ λ1(Λ(B))14, then we have

k̃ ≤ |L|.

Proof. Since the radius D/T is at most the shortest vector length of the lattice Λ(B),

for each f ′ ∈ L, the sphere Bd(f
′, D/T) contains at most one lattice point.

14When m is small, we can solve the shortest vector problem (SVP) exactly to decide the sparsity.
Otherwise, we can check D/T < mini ∥b∗i ∥2 by Theorem 11.12.

661

11.10.3 High-accuracy reduction

Theorem 11.72 (High-dimensional Signal Estimation algorithm). Given a basis B

of m known vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩ and let g(t) denote

the noise. Given observations of the form x(t) = x∗(t) + g(t), t ∈ [0, T]d. Let

η = mini ̸=j ∥fj − fi∥∞.

Given D, η ∈ R+. Suppose that there is an algorithm FreqEst that

• takes Sfreq samples,

• runs in Tfreq-time,

• outputs a set L of frequencies such that with probability 0.99, the following

condition holds:

∀i ∈ [k], ∃f ′i ∈ L s.t. ∥fi − f ′i∥2 ≤
D

T
.

Then, there is an algorithm that

• takes O(ε−1k̃O(d) + Sfreq) samples

• runs in O(ε−1k̃O(d) + Tfreq) time,

• output y(t) =
∑k̃

j=1 v
′
j · exp(2πi⟨f ′j, t⟩) with k̃ ≤ |L| · (D/T +

√
m∥B∥)m · πm/2

(m/2)!
·

1
| det(B)| such that with probability 0.9, we have

∫

[0,T]d
|y(t)− x(t)|2dt ≤ (1 +O(ε))

∫

[0,T]d
|g(t)|2dt.

Remark 11.9. The difference between Theorem 11.72 and Theorem 11.69 is one is

achieving (1 + ε) error and the other is achieving O(1) error.

Proof. We can prove this theorem by using Theorem 11.5.2. The proof is similar as

Theorem 11.60.

662

11.11 Discrete Fourier Set Query in One Dimension

In this section, we study the Fourier set-query problem, where we only care

about the Fourier coefficients of a discrete signal in a given set of frequencies. We

apply our framework and achieve optimal sample complexity and high-accuracy. In

Section 11.11.1, we show our main result on discrete Fourier set query. A key step to

prove this result is a WBSP Composition Lemma in Section 11.11.2, which might be

of independent interest.

11.11.1 Sample-optimal set query algorithm

In this section, we show our discrete Fourier set query result in the following

theorem, which works for discrete signals in any dimension.

Theorem 11.73 (Discrete Fourier Set Query). For any d ≥ 1, let n = pd where both

p and d are positive integers. Given a vector x ∈ C[p]d, for 1 ≤ k ≤ n, any S ⊆ [n],

|S| = k, there exists an algorithm (Algorithm 62) that takes O(ε−1k) samples, runs

in O(ε−1kω+1 + ε−1dkω−1 log k) time, and outputs a vector x′ ∈ C[p]d such that

∥(x̂′ − x̂)S∥22 ≤ ε∥x̂S∥22

holds with probability at least 0.9.

In particular, for d = 1, the runtime of Algorithm 62 is O(ε−1kω+1).

Proof. Let {f1, f2, · · · , fk} ⊆ [p]d denote S. If d = 1, we run Procedure DistillDisc

in Algorithm 59, and if d > 1, we run Procedure DistillDiscHD in Algorithm 59.

Then, we obtain a set L = {t1, t2, · · · , ts} ⊆ [p]d of s = O(ε−1k) samples together

with a weight vector w ∈ Rs.

Then, we consider the following weighted linear regression problem:

min
v′∈Ck
∥√w ◦ (Av′ − b)∥2. (11.24)

663

where A ∈ Cs×k and b ∈ Cs are defined as follows:

A :=

exp(2πif1t1/n) · · · exp(2πifkt1/n)

...
exp(2πif1ts/n) · · · exp(2πifkts/n)

 and b :=

x(t1)

...
x(ts)

Let v′ be an optimal solution of Eq. (11.24). And we output a vector

x̂′fi = v′i ∀i ∈ [k].

The running time follows from Lemma 11.74, and the estimation error guar-

antee follows from Lemma 11.75.

The proof of the theorem is then completed.

Lemma 11.74 (Running time of Algorithm 62). The time complexity of Algorithm 62

is as follows:

• Procedure SetQuery runs in O(ε−1kω+1)-time.

• Procedrue SetQueryHD runs in O(ε−1kω+1 + ε−1dkω−1 log k)-time.

Proof. We first show the time complexity of Procedure DistillDisc. At Line 3,

Procedure DistillDisc takes O(ε−1kω+1)-time by Lemma 11.54.

At Line 6, by Fact 11.8, it takes O(ε−1k · kω−1) = O(ε−1kω)-time.

Thus, the total running time is O(ε−1kω+1).

Then, we show the time complexity of Procedure DistillDiscHD. At Line 11,

Procedure DistillDiscHD takes O(ε−1kω+1+ε−1dkω−1 log k)-time by Lemma 11.54.

At Line 14, by Fact 11.7, it takes the time Tmat(k, d, s). We know that s ≥ k.

We can consider two cases.

• In case 1, d ≤ k, we can just simply bound the time by Tmat(k, k, s) = O(kω ·
(s/k)) = O(kω−1s) = O(ε−1kω). (In this regime, this part running time is

dominated by Line 11)

664

• In case 2, d ≥ k, we can just bound the time by Tmat(k, d, s) = O(kω · (d/k) ·
(s/k)) = dskω−2 = O(ε−1dkω−1)

At Line 17, by Fact 11.8, it takes O(ε−1k · kω−1) = O(ε−1kω)-time.

Thus, the total running time is O(ε−1kω+1 + ε−1dkω−1 log k).

Lemma 11.75 (Estimation error of Algorithm 62). Let x̂′ be the output of Algo-

rithm 62 (with d = 1 or d > 1). Then, with high probability,

∥(x̂′ − x̂)S∥22 ≲ ∥x̂S∥22.

Proof. Let D := Uniform([p]d). Recall that n = pd. Let F be the family of length-n

discrete signals with frequencies in S:

F =
{ k∑

j=1

vje
2πi⟨fj ,t⟩/p

∣∣ vj ∈ C
}

Then, it is well-known that {vj(t) = exp(2πi⟨fj, t⟩/p)}j∈[k] forms an orthonormal

basis for F with respect to the distribution D, i.e.,

Et∼D[vi(t)vj(t)] = 1i=j ∀i, j ∈ [k].

Now, we define some notations. Let α : F → Ck be a linear operator such that

for any h(t) =
∑k

j=1 aj exp(2πi⟨fj, t⟩/p),

α(h) :=
[
a1 a2 · · · ak

]⊤
.

Suppose the true discrete signal x(t) =
∑n

j=1 vj exp(2πi⟨j, t⟩/p). Define

xS(t) :=
∑

f∈S

vf exp(2πi⟨f, t⟩/p),

xS(t) :=
∑

f∈S

vf exp(2πi⟨f, t⟩/p).

665

Let
√
W ∈ Rs×s denote the diagonal matrix diag(

√
w1, . . . ,

√
ws). Define

Aw :=
√
W · A,

Xw :=
√
W ·

[
x(t1) · · · x(ts)

]⊤
,

XS
w :=

√
W ·

[
xS(t1) · · · xS(ts)

]⊤
,

XS
w :=

√
W ·

[
xS(t1) · · · xS(ts)

]⊤
.

Notice that for any h =
∑k

i=1 ai exp(2πi⟨fi, t⟩/p) ∈ F,

Awα(h) =
√
W ·

exp(2πif1t1/n) · · · exp(2πifkt1/n)

...
exp(2πif1ts/n) · · · exp(2πifkts/n)

a1
...
ak

 =

√
w1h(t1)

...√
wsh(ts)

 .

Thus, by Moore-Penrose inverse, we have

α(h) = (A∗wAw)
−1A∗w ·

√
w1h(t1)

...√
wsh(ts)

 . (11.25)

Let x′(t) :=
∑k

j=1 x̂
′
fj
exp(2πi⟨fj, t⟩/p) be the output signal in the time domain.

Then we claim that

∥x′ − xS∥2D = ∥α(x′)− α(xS)∥22
= ∥(A∗wAw)−1A∗w · (Xw −XS

w)∥22
= ∥(A∗wAw)−1A∗w ·XS

w∥22
≤ λmax((A

∗
wAw)

−1)2 · ∥A∗w ·XS
w∥22

≤ ∥A∗w ·XS
w∥22,

where the first step follows from the definition of α, the second step follows from

α(x′) = v′ being the optimal solution of Eq. (11.24) and Eq. (11.25) for xS, the third

step follows from x = xS + xS, the fifth step follows from Lemma 11.15 and Lemma

11.54 and holds with high probability.

666

Notice that xS is orthogonal to F. And by Lemma 11.76, we know that (L,w)

is generated by an ε-WBSP. Hence, by Lemma 11.47, we have

∥x′ − xS∥2D ≤ ∥A∗w ·XS
w∥22 ≲ ε∥xS∥2D.

By Parseval’s theorem (Theorem 11.24), we conclude that

∥x̂′ − x̂S∥22 ≤ ε∥x̂S∥22

holds with high probability.

11.11.2 Composition of two WBSPs

In this section, we prove the following key lemma on the composition of two

WBSPs for discrete signals.

Lemma 11.76 (WBSP Composition Lemma). Let m0,m1, n ∈ Z+, m1 ≤ m0 ≤ n.

Let {f1, · · · , fk} ⊆ [n]. Let F be the family of discrete k-sparse signals in t ∈ [n]:

F =
{
v0 +

k∑

j=1

vj · exp(2πifjt/n) | ∀vj ∈ C, j = {0, . . . , k}
}

Define the following two WBSPs for F:

• Let P1 be an ε-WBSP generating m1 samples, with input distribution D1, coef-

ficients α1, and output distributions D1,i for i ∈ [m1].

• Let P2 be an ε-WBSP generating m2 samples, with input distribution D2, coef-

ficients α2, and output distributions D2,i for i ∈ [m2].

We can composite P1 and P2 by taking D2(xi) :=
w1,i∑

j∈[m1]
w1,j

for i ∈ [m1]. Let P1 ◦ P2

denote the composition of P1, P2.

Then, if P1 satisfies D1,i = D1 = Uniform([n]), then P1 ◦ P2 is an O(ε)-

WBSP generating m2 samples, with input distribution D1, coefficients w2, and output

distributions D1 for all i ∈ [m2].

667

Proof. Let S1 = {x1, . . . , xm1} denote the set sampled by P1 and S2 = {x′1, . . . , x′m2
}

denote the set sampled by P2. Then, we have S2 ⊂ S1. In the followings, we show

that P1 ◦ P2 satisfies all the stated properties.

Input distribution and the first WBSP property. We first show that P1 ◦ P2

satisfies the first property of WBSP in Definition 11.10 with respect to distribution

D1, that is,

∥f∥S2,w2 ∈ [1−O(√ε), 1 +O(
√
ε)]∥f∥2D1

∀f ∈ F.

By definition of ε-WBSP (Definition 11.10), we have for any f ∈ F,

∥f∥2S1,w1
∈ [1−√ε, 1 +√ε] · ∥f∥2D1

, and (11.26)

∥f∥2S2,w2
∈ [1−√ε, 1 +√ε] · ∥f∥2D2

.

By the definition of D2, we have ∥f∥2D2
= ∥f∥2S1,w1

(assuming ∥w1∥1 = 1 without loss

of generality). Thus, we get that

∥f∥2S2,w2
∈ [1−√ε, 1 +√ε]∥f∥2S1,w1

∈ [1−√ε, 1 +√ε] · [1−√ε, 1 +√ε]∥f∥2D1

∈ [1− 3
√
ε, 1 + 3

√
ε]∥f∥2D1

. (11.27)

Coefficients. Then, consider the equivalent coefficients α3 of P1 ◦ P2. Let D3,i be

the output distribution of the i-th sample x′i produced by P1 ◦ P2. By Fact 11.77,

D3,i(x
′
i) =

m1∑

j=1

D2,i(xj) ·D1,j(x
′
i) = D1(x

′
i),

where the second step follows from the assumption that D1,j = D1 for all j ∈ [m1].

Thus, we have D3,i = D1 for all i ∈ [m2]. Since its weight vector is w2 and input

distribution is D1, by definition, we have for i ∈ [m2],

α3,i = w2,i ·
D3,i(x

′
i)

D1(x′i)
= w2,i.

Thus, the coefficients of P1 ◦ P2 is w2.

668

The second WBSP property. We first bound
∑m2

i=1 α3,i. Since α3 = w2, we just

need to bound
∑m2

i=1w2,i. Let f1 :=
[
1 1 · · · 1

]⊤ ∈ Cn. Then, it is easy to see that

f1 ∈ F with v0 = 1 and vi = 0 for i ∈ [k]. By Eq. (11.27), we have

∥f1∥2S2,w2
=

m2∑

i=1

w2,i

∈ [1−√ε, 1 +√ε] · ∥f1∥2D1

= [1−√ε, 1 +√ε],

where the last step follows from ∥f1∥2D1
=
∑n

i=1D1(i) = 1. Hence,
m2∑

i=1

α3,i =

m2∑

i=1

w2,i ≤ 1 +
√
ε ≤ 5

4
.

We also need to show that α3,iKIS,D3,i
= O(ε) for all i ∈ [m2]. By definition,

we have

KIS,D3,i
= sup

t

{
D1(t)

D3,i(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D1

}}

= sup
t

sup
f∈F

{ |f(t)|2
∥f∥2D1

}

≤ k, (11.28)

where the second step follows from D3,i = D1 and the last step follows from the

energy bound (Theorem 11.22) and the assumption that D1 = Uniform([n]).

Since P2 is an ε-WBPS, we have

KIS,D2,i
= sup

t

{
D2(t)

D2,i(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D2

}}

= sup
t

{
D2(t)

D2,i(t)
· sup
f∈F

{ |f(t)|2
∥f∥2S1,w1

}}

≥ (1 +
√
ε)−1 · sup

t

{
D2(t)

D2,i(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D1

}}
,

where the second step follows from ∥f∥D2 = ∥f∥S1,w1 , the third step follows from

Eq. (11.26). And for all i ∈ [m2],

α2,iKIS,D2,i
= O(ε),

669

which implies that

α2,i · sup
t

{
D2(t)

D2,i(t)
· sup
f∈F

{ |f(t)|2
∥f∥2D1

}}
= O(ε).

Since D1 is uniform, we know that {exp(2πifjt)}j∈[k] form an orthonormal basis with

respect to D1. Thus, by Fact 11.50, for any t ∈ [n],

sup
f∈F
{|f(t)|

2

∥f∥2D′
} =

k∑

j=1

| exp(2πifjt)|2 = k.

Hence, we get that

α2,i · sup
t

{
D2(t)

D2,i(t)

}
= O(ε/k)

Therefore,

α3,iKIS,D3,i
≤ w2,i · k

= α2,i ·
D2(xi)

D2,i(xi)
· k

≤ α2,i · sup
t

{
D2(t)

D2,i(t)

}
· k

= O(ε/k) · k

= O(ε).

where the first step follows from α3 = w2 and Eq. (11.28), the second step follows

from the definition of w2,i.

Thus, we prove that P1 ◦ P2 is an O(ε)-WBSP with input distribution D1,

output distributions D1, coefficients w2.

Fact 11.77 (Double-sampling distribution). For i ∈ [n], let Di be a distribution over

the domain G. Suppose we first sample xi from Di for each i ∈ [n]. Let w1, · · · , wn ∈
R+ such that

∑n
i=1wi = 1. Conditioned on the samples {x1, . . . , xn}, let D′ be a

distribution over these samples such that D′(xi) = wi. Then, we sample an x′ from

D′.

670

Then, the distribution of x′ is D′′, where

D′′(x) =
n∑

i=1

wiDi(x) ∀x ∈ G.

Proof. Notice that the second sampling process is equivalent to sample an index

i ∈ [n]. Hence, for any a ∈ G,

Pr[x′ = a] =
n∑

j=1

Pr[i = j] · Pr
Dj

[xj = a | i = j]

=
n∑

j=1

wj · Pr
Dj

[xj = a]

=
n∑

j=1

wjDj(a)

= D′′(a).

where the first step follows from law of total probability, and the second step follows

from sampling xj from Dj is independent to sampling the index i from D′.

11.12 High Dimensional Reduction Under Noiseless Assump-
tion

This section is organized as follows:

• Section 11.12.1 shows that Fourier basis is linear independent.

• Section 11.12.2 shows that, there is straightforward algorithm for signal estima-

tion under noiseless setting.

11.12.1 Fourier basis is linear independent on randomly sampled points

Lemma 11.78. Given a basis B of m known vectors b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd

denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

671

Suppose that f1, f2, · · · , fk ∈ Λ(B). Randomly samples a vector o ∼ N(0, Id). Let

t = k−1 · (T/2 + o ·min(maxj∈[k]|⟨fj, o⟩|−1, k−1T)). Let ti := (i− 1) · t for i ∈ [k].

Let vj = (exp(2πi⟨fj, t1⟩), exp(2πi⟨fj, t2⟩), · · · , exp(2πi⟨fj, tk⟩)) for j ∈ [k].

We have that v1, v2, · · · , vk are linear independent with probability 1.

Proof. We have that

uj :=

e2πi⟨f1,0·t⟩

e2πi⟨f1,1·t⟩

...
e2πi⟨f1,(k−1)·t⟩

 =

1
e2πi⟨f1,t⟩

...
(e2πi⟨f1,t⟩)k−1

 =

1
w1
...

wk−11

 ,

where w1 := e2πi⟨f1,t⟩. Similarly, we can define wj := e2πi⟨fj ,t⟩. And we have

| | |
u1 u2 · · · uk
| | |

 =

1 1 · · · 1
w1 w2 · · · wk
w2

1 w2
2 · · · w2

k
...

...
wk−11 wk−12 · · · wk−1k

,

which is a Vandermonde matrix. Hence, they are linearly independent as long as

w1, . . . , wk are distinct. Or equivalently,

⟨f1, t⟩ mod 2π, · · · , ⟨fk, t⟩ mod 2π

are distinct.

Next, we will show that w1, . . . , wk are distinct with probability 1. We first

show that:

⟨fi, t⟩ ≤ ⟨fi, o⟩/maxj∈[k]|⟨fj, o⟩| ∈ [−1, 1] ⊂ [−π, π].

Then, ⟨fi, t⟩ = ⟨fj, t⟩ mod 2π is equivalent to ⟨fi, t⟩ = ⟨fj, t⟩, and is equivalent

to ⟨fi − fj, t⟩ = 0, and is equivalent to ⟨fi − fj, o⟩ = 0. However, ⟨fi − fj, o⟩ follows

from N(0, ∥fi − fj∥22). By our assumption, ∥fi − fj∥22 ̸= 0. Thus,

Pr
t∼N(0,Id)

[⟨fi − fj, t⟩ = 0] = 0.

672

Therefore, by union bound,

Pr
t∼N(0,Id)

[∃i ̸= j ∈ [k] : ⟨fi − fj, t⟩ = 0] = 0.

11.12.2 Reduction

Lemma 11.79 (High Dimension Noiseless). Given a basis B of m known vectors

b1, b2, · · · bm ∈ Rd, let Λ(B) ⊂ Rd denote the lattice

Λ(B) =
{
z ∈ Rd : z =

m∑

i=1

cibi, ci ∈ Z,∀i ∈ [m]
}

Suppose that f1, f2, · · · , fk ∈ Λ(B). Let x∗(t) =
∑k

j=1 vje
2πi⟨fj ,t⟩. Given x∗(t) is

observable for t ∈ [0, T]d. Let η = mini ̸=j ∥fj − fi∥∞.

Given D, η ∈ R+. Suppose that there is an algorithm FrequencyEstimation(x∗, k, ρ, d, F, T,B)

that

• takes S(k, ρ, d, F, T, η) samples,

• runs T(k, ρ, d, F, T, η) time,

• output a set L of frequencies such that, for each fi, there is f ′i ∈ L, |fi − f ′i | ≤
D/T , holds with probability 1− ρ.

Let C = |L| · (D/T +
√
m∥B∥)m · πm/2

(m/2)!
· 1
|det(B)| . If C ≤ d, then, there is an

algorithm (SignalEstimation(x, k, d, F, T,B)) that

• takes O(k̃ + S(k, d, F, T, η)) samples,

• runs O(k̃ω + k̃2d+ T(k, d, F, T, η)) time,

• output y(t) =
∑k̃

j=1 v
′
j · exp(2πi⟨f ′j, t⟩) such that

– k̃ ≤ C,

673

– y(t) = x(t), holds with probability (1− ρ)2.

Proof. First, we recover the frequencies by utilizing the algorithm FrequencyEstimation(x, k, d, T, F,B).

Let L be the set of frequencies output by the algorithm FrequencyEstimation(x, k, d, T, F,B).

We define L̃ as follows:

L̃ := {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}.

We use k̃ to denote the size of set L̃. We use f ′1, f ′2, · · · , f ′k̃ to denote the frequencies

in the set L̃.

By applying Lemma 11.70, we have that

k̃ = |L̃| ≤ |L| · (D/T +
√
m∥B∥)m · πm/2

(m/2)!
· 1

| det(B)| .

Next, we focus on recovering magnitude v′ ∈ Ck̃. Let ρ1 := ρ. First, we ran-

domly samples a vector o ∼ N(0, Id). Let t = k−1·(T/2+o·min(maxj∈[k]|⟨fj, o⟩|−1, ρ1T)).
Let ti := (i− 1) · t for i ∈ [k]. We have that |o ·min(maxj∈[k]|⟨fj, o⟩|−1, ρ1T)| ≤ oρ1T .

Then with probability 1− ρ1, |o| ≤ 1/(2ρ1), then ti ∈ [0, T]d,∀i ∈ [k].

Consider the matrix A ∈ Ck̃×k̃, where the (i, j)-th entry in A is Ai,j =

exp(2πi⟨f ′j, ti⟩) for each i ∈ [k̃] and j ∈ [k̃]. Let b = (x∗(t1), x
∗(t2), · · · , x∗(tk̃))⊤ ∈ Ck̃.

Then, if the following linear system solvable, then we solve the following linear

system:

Av′ = b. (11.29)

We output y(t) =
∑k̃

j=1 v
′
j · exp(2πi⟨f ′j, t⟩), and we have that y(t) = x∗(t).

Finally, by Lemma 11.78, we have that Eq. (11.29) is solvable with a large

probability.

674

11.13 Semi-continuous Approximation

In this section, we justify the usefulness of the semi-continuous setting by

showing that for any k-Fourier-sparse, it can be approximated by a k-Fourier-sparse

semi-continuous signal. This section is organized as follows:

• In Sections 11.13.1 and 11.13.2, we give some technical tools on the Gaussian

multiplier.

• In Section 11.13.3, we prove the main result of this section (Theorem 11.86),

which is incomparable to the existence result in [CKPS16].

• In Section 11.13.4, we give a fast optimal-sparsity Fourier interpolation algo-

rithm with a different error guarantee.

• In Section 11.13.5, we also show that the frequency gap of the approximation can

be increased to Θ(1/T) if we slightly blow up the sparsity of the approximation

signal (Corollary 11.90).

11.13.1 Properties related to Gaussians

Definition 11.11 (Gaussian Multiplier). For parameters µ, σ, we define

Mµ,σ2(x) = e−
(x−µ)2

2σ2

i.e. it is a Gaussian scaled so that its maximum value is 1.

We stat a standard result for Gaussian multiplier (see [LLM21] for example).

Lemma 11.80. Let 0 < ε < 0.1 be a parameter. Let c be a real number such that

0 < c ≤ (log(1/ε))−1/2. Let M be defined as in Definition 11.11. Define

f(x) :=
∞∑

j=−∞

c√
2π
Mcjσ,σ2(x) .

675

Then

1− ε10 ≤ f(x) ≤ 1 + ε10

for all x. Furthermore, let α ≤ 1 be a parameter and c = α(log(1/ε))−1/2. Then

1− ε10/α2 ≤ f(x) ≤ 1 + ε10/α
2

for all x.

Proof. Without loss of generality σ = 1. Now the function f is c-periodic and even,

so we may consider its Fourier expansion

f(x) = a0 + 2
∞∑

j=1

aj cos(2jπx/c)

= a0 + 2a1 cos

(
2πx

c

)
+ 2a2 cos

(
4πx

c

)
+ . . .

and we will now compute the Fourier coefficients. First note that

a0 =
1

c

∫ c

0

f(x)dx

=
1√
2π

∞∑

j=−∞

∫ cj

c(j+1)

M0,1(x)dx

= 1.

where the second step follows from the definition of f .

676

Next, for any j ≥ 1,

aj =
1

c

∫ c

0

f(x) cos

(
2πjx

c

)
dx

=
1

c

∫ c

0

∞∑

j=−∞

c√
2π
Mcj,1(x) cos

(
2πjx

c

)
dx

=
1√
2π

∞∑

l=−∞

∫ cl

c(l+1)

M0,1(x) cos

(
2πjx

c

)
dx

=
1√
2π

∞∑

l=−∞

∫ cl

c(l+1)

exp(−x
2

2
) cos

(
2πjx

c

)
dx

=
1√
2π

∫ ∞

−∞

1

2

(
exp(
−x2
2

+
2πijx

c
) + exp(

−x2
2
− 2πijx

c
)

)
dx

= exp(−2π2j2

c2
) .

where the second step follows from the definition of f . The fourth step follows from

the definition of M .

Then we can claim that

|f(x)− 1| ≤ 2
∞∑

j=1

exp(−2π2j2

c2
)

≤ 2
∞∑

j=1

exp(−15j/c2)

=
2 exp(−15/c2)

1− exp(−15/c2)

≤ 2ε15/α
2

1− ε15
≤ ε10/α

2

≤ ε10

where the first step follows from a0 = 1, the forth step follows from α ≤ 1 and

c = α(log(1/ε))−1/2, the fifth step follows from ε ∈ (0, 0.1),

Claim 11.81. Let ε ∈ (0, 0.01) be a parameter. Let ε0 = 2ε, c = 0.01/
√
log(1/ε),

677

K = ⌈1+0.5ε
cε2
⌉. Let M : R→ R be defined as in Definition 11.11. Define f : R→ R

f(x) =
K∑

j=−K

c√
2π
Mµj ,σ2(x), where µj = cjε2l, σ2 = ε4l2 .

Then the following properties is satisfied

• Part 1. f(x) ∈ [0, 1 + ε0], for all x

• Part 2. f(x) ∈ [1− ε0, 1 + ε0], for all x ∈ [−l, l]

• Part 3. f(x) ∈ [0, ε0], for all |x| ≥ (1 + ε)l

Proof. Using Lemma 11.80 with setting the following parameter choice σ = ε2l, c =

0.01(log(1/ε))−1/2, we define

f0(x) =
∞∑

j=−∞

c√
2π
Mµj ,σ2 .

we can get that 1− ε ≤ f0(x) ≤ 1 + ε.

We will then upper bound the perturbation between f and f0. Firstly, we will

provide a upper bound for M when x/(ε2l)− cj ≥ 10

c√
2π
Mµj ,σ2(x) =

c√
2π

exp(−(x− cjε2l)2/(2ε4l2))

=
c√
2π

exp(−(x/(ε2l)− cj)2/2)

≤ exp(−|x/(ε2l)− cj|) (11.30)

where the first step follows from the definition of M , the third step follows from

x/(ε2l)− cj ≥ 10.

Next we will claim that
∞∑

j=0

exp(−cj) = 1

1− exp(−c)

≤ 2

c

≤ 200

ε
(11.31)

678

where the first step follows from c > 0 and the sum of geometric sequence, the second

step follows from 1 − exp(−x) > x/2 when x < 0.1, the third step follows from

c ≥ 0.01ε.

Because of the symmetry of M , We will also claim that

Mµ,σ2(x) =M−µ,σ2(−x) (11.32)

Part 1.

Because Mµ,σ = exp(−(x−µ)2/σ2) ≥ 0, we can obtain that f(x) ≥ 0. Besides,

we will claim that

f(x) ≤ f0(x)

≤ 1 + ε

≤ ε0

where the first step follows from Mµ,σ ≥ 0.

Part 2.

Firstly, we upper bound f when x ∈ [−l, l]. To bound
∑∞

j=K+1
c√
2π
Mµj ,σ2(x),

we obtain

cj − x/(ε2l) ≥ cj − 1/(ε2)

≥ c(K + 1)− 1/ε2

≥ 0.5/ε

≥ 10 (11.33)

where the first step follows from x ∈ [−l, l], the second step follows from j ≥ K + 1,

the third step follows from K + 1 ≥ (1 + 0.5ε)/(cε2).

679

Then we can upper bound

∞∑

j=K+1

c√
2π
Mµj ,σ2(x) ≤

∞∑

j=K+1

exp(x/(ε2l)− cj)

≤ 200

ε
exp(x/(ε2l)− c(K + 1))

≤ 200

ε
exp(−0.5/ε)

≤ 0.1ε (11.34)

where the first step follows from Eq. (11.30) and Eq. (11.33), the second step follows

from Eq. (11.31), the third step follows from Eq. (11.33), the last step follows from

ε ∈ (0, 0.01).

We conclude

|f(x)− 1| =
∣∣∣f0(x)− 1−

∞∑

j=K+1

c√
2π
Mµj ,σ2(x)−

−K−1∑

j=−∞

c√
2π
Mµj ,σ2(x)

∣∣∣

≤ |f0(x)− 1|+
∣∣∣
∞∑

j=K+1

c√
2π
Mµj ,σ2(x)

∣∣∣+
∣∣∣
−K−1∑

j=−∞

c√
2π
Mµj ,σ2(x)

∣∣∣

≤ ε+ 0.1ε+ 0.1ε

≤ ε0

where the first step follows from the definition of f and f0, the second step follows

from the triangle inequality, the third step follows from |f0(x) − 1| ≤ ε, Eq.(11.34)

and Eq. (11.32).

Part 3.

Secondly, we will provide the upper bound for f when |x| > (1+ ε)l. Without

loss of generality, we can only consider x > (1+ ε)l because of Eq. (11.32). To bound

680

∑K
j=−K

c√
2π
Mµj ,σ2(x). We obtain

x/(ε2l)− cj ≥ x/(ε2l)− cK

≥ (1 + ε)/ε2 − cK

≥ 0.25/ε

≥ 10 (11.35)

where the first step follows from j ≤ K, the second step follows from x > (1 + ε)l,

the third step follows from K ≤ (1 + 0.5ε)/(cε2) + 1 and c ≤ 0.01 ≤ 0.25/ε.

Then we can upper bound

K∑

j=−K

c√
2π
Mµj ,σ2(x) ≤

K∑

j=−K

exp(cj − x/(ε2l))

≤ 200

ε
exp(cK − x/(ε2l))

≤ 200

ε
exp(−0.25/ε)

≤ ε

≤ ε0 (11.36)

where the first step follows from Eq. (11.30) and Eq. (11.35), the second step follows

from Eq. (11.31), the third step follows from Eq. (11.35), the fourth step follows from

ε ∈ (0, 0.01).

Lemma 11.82. Given c ∈ R, γ, l, σ ∈ R+, µ ∈ R. Let M : R → R be defined as in

Definition 11.11. For |a− b| ≤ γ, We have that

|Mµ,σ2(a) exp(cia)−Mµ,σ2(b) exp(cib)| ≤ (σ−1 + |c|)γ.

681

Proof. We have that

|Mµ,σ2(b)−Mµ,σ2(a)|

= | exp(−(b− µ)2/(2σ2))− exp(−(a− µ)2/(2σ2))|

= |b− a||(ξ − µ) exp(−(ξ − µ)2/(2σ2))/(σ2)|

≤ γ/σ (11.37)

where the first step follows from the definition of M , the second step defines ξ ∈
[a, b] and follows from Lagrange’s Mean Value Theorem, the last step follows from

|x exp(−x2/2)| ≤ 1. We have that

|Mµ,σ2(a) exp(cia)−Mµ,σ2(b) exp(cib)|

≤ |Mµ,σ2(a) exp(cia)−Mµ,σ2(b) exp(cia)|+ |Mµ,σ2(b) exp(cia)−Mµ,σ2(b) exp(cib)|

≤ |Mµ,σ2(a)−Mµ,σ2(b)|+Mµ,σ2(b) · |exp(cia)− exp(cib)|

≤ γ

σ
+Mµ,σ2(b) · |c(a− b)|

≤ γ

σ
+ |c|γ

≤ (
1

σ
+ |c|)γ

where the first follows from triangle inequality, the second follows from | exp(iθ)| = 1,

the third step follows from Eq. (11.37) and that arc length is greater than chord

length, the fourth step follows from M ≤ 1 and the assume in the statement.

11.13.2 Continuous Fourier transform

11.13.2.1 Bounding the tails

The goal of this section is to prove Lemma 11.83,

Lemma 11.83. Let µ ∈ R, α ∈ Z+, σ, F, F0, ε1 ∈ R+. Let σ ∈ (0, 1), ε1 ∈ (0, 0.1),

F > 1. Let M : R → R be defined as in Definition 11.11. Let x : R → C be a

682

function. Let supp(x̂) ⊆ [−F, F]. If

F0 > σ−1 · log1/2(4F/ε1) + F,

then we have that,
∣∣∣
∫ ∞

−∞
(M̂µ,σ2(f) ∗ x̂(f))αdf −

∫ F0

−F0

(M̂µ,σ2(f) ∗ x̂(f))αdf
∣∣∣ ≤ ∥x̂∥α∞ε1/Fα.

Proof. First, we will calculate M̂ . Then, we provide a bound on the tail of M̂ . Finally,

we conclude our proof.

We can claim that

M̂µ,σ2(f) =
√
2πσ2 · exp(−2πiµf) ·M0,1/(4π2σ2).

Taking the | · | on both sides of the above equation, we get

|M̂µ,σ2(f)| =
√
2πσ2 · |M0,1/(4π2σ2)|

We start with

∫ ∞

F0−F
|M̂µ,σ2(f)|αdf =

√
2πσ2 ·

∫ ∞

F0−F
|M0,1/(4π2σ2)|αdf

=
√
2πσ2 ·

∫ ∞

F0−F
exp(−2απ2σ2f 2)df

=
1√
απ
·
∫ ∞
√
2απσ(F0−F)

exp(−ξ2)dξ

≤ 1√
απ
·
∫ ∞
√
2απσ(F0−F)

exp(−
√
2απσ(F0 − F)ξ)dξ

=
1√
απ
· 1√

2απσ(F0 − F)
exp(−2απ2σ2(F0 − F)2)

≤ ε1/(4F)
2α. (11.38)

where the second step follows definition of M , the third step follows from ξ =
√
2απσf , the forth step follows from ξ ≤

√
2απσ(F0 − F), the last step follows

from lower bound on F0 in the Lemma statement.

683

Finally, we can bound LHS in the statement as follows

∣∣∣
∫ ∞

−∞
(M̂µ,σ2(f) ∗ x̂(f))αdf −

∫ F0

−F0

(M̂µ,σ2(f) ∗ x̂(f))αdf
∣∣∣

=
∣∣∣
∫ F0

−∞
(M̂µ,σ2(f) ∗ x̂(f))αdf +

∫ ∞

F0

(M̂µ,σ2(f) ∗ x̂(f))αdf
∣∣∣

=
∣∣∣
∫ F0

−∞
(

∫ F

−F
M̂µ,σ2(f − ξ) · x̂(ξ)dξ)αdf +

∫ ∞

F0

(

∫ F

−F
M̂µ,σ2(f − ξ) · x̂(ξ)dξ)αdf

∣∣∣

≤
∣∣∣
∫ ∞

F0

(

∫ F

−F
M̂µ,σ2(f − ξ) · x̂(ξ)dξ)αdf

∣∣∣+
∣∣∣
∫ −F0

−∞
(

∫ F

−F
M̂µ,σ2(f − ξ) · x̂(ξ)dξ)αdf

∣∣∣

≤
∫ ∞

F0

(

∫ F

−F
|M̂µ,σ2(f − ξ) · x̂(ξ)|dξ)αdf +

∫ −F0

−∞
(

∫ F

−F
|M̂µ,σ2(f − ξ) · x̂(ξ)|dξ)αdf

= ∥x̂∥α∞ · (
∫ ∞

F0

(

∫ F

−F
|M̂µ,σ2(f − ξ)|dξ)αdf +

∫ −F0

−∞
(

∫ F

−F
|M̂µ,σ2(f − ξ)|dξ)αdf)

(11.39)

where the third step follows from triangle inequality, the fourth step follows from

triangle inequality.

For the second term in the above Eq. (11.39)
∫ ∞

F0

(

∫ F

−F
|M̂µ,σ2(f − ξ)|dξ)αdf ≤

∫ ∞

F0

(

∫ F

−F
|M̂µ,σ2(f − F)|dξ)αdf

=

∫ ∞

F0

|2FM̂µ,σ2(f − F)|αdf

= (2F)α ·
∫ ∞

F0

|M̂µ,σ2(f − F)|αdf

= (2F)α ·
∫ ∞

F0−F
|M̂µ,σ2(ξ)|αdξ

≤ (2F)α · ε1/(4F)2α

≤ ε1/(2F
α) (11.40)

where the first step follows from what M̂µ,σ2(f − ξ) ≤ M̂µ,σ2(f − F) because f − ξ ≥
f − F ≥ F0 − F > 0, the forth step follows from f − F = ξ, second last step follows

from Eq. (11.38).

684

Similarly, we have that
∫ −F0

−∞
(

∫ F

−F
|M̂µ,σ2(f − ξ)|dξ)αdf ≤ ε1/2. (11.41)

Combining Eq. (11.39), (11.40) and (11.41) completes the proof.

11.13.2.2 Bounding the convolution

The goal of this section is to prove Lemma 11.84.

Lemma 11.84. Given µ′, F, σ′, γ ∈ R+. Let M : R → R be defined as in Definition

11.11. Let x : R → C be a function. For simplicity, let M = Mµ′,σ′2. We have that

for ∀f ∈ R,

|M̂ ∗ x̂(f)−
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(ξ)dξ · M̂(f) ∗ δ(f − µ)| ≤ (σ′2 + σ′|µ′|)γ2 · ∥x̂∥1.

Proof. We will separate M̂ ∗ x̂(f) into M̂(f) ∗ (x̂(f) · rectγ/2(f − µ)) where µ ∈ γZ.

This decomposes x̂ into different intervals. Then, we get a bound for each interval.

We can rewrite M̂µ′,σ′2(f) in the following sense,

M̂µ′,σ′2(f) =
√
2πσ′2 · exp(−2π2σ′2f 2) · exp(−2πiµ′f)

=
√
2πσ′2 ·M0,1/(4π2σ′2)(f) · exp(−2πiµ′f)

where the second step follows from the definition of M .

First, we consider the first term in the LHS of our statement

M̂(f) ∗ (x̂(f) · rectγ/2(f − µ)) = M̂(f) ∗
(∫ µ+γ/2

µ−γ/2
x̂(ξ)δ(f − ξ)dξ

)

=

∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f) ∗ δ(f − ξ)dξ

=

∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f − ξ)dξ (11.42)

685

where the first step follows from definition of rect function, the last step follows from

M̂(f) ∗ δ(f − ξ) = M̂(f − ξ).

Now, we consider the second term in the LHS of our statement
∫ µ+γ/2

µ−γ/2
x̂(ξ)dξ · M̂(f) ∗ δ(f − µ) =

∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f) ∗ δ(f − µ)dξ

=

∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f − µ)dξ. (11.43)

where the last step follows from M̂(f) ∗ δ(f − µ) = M̂(f − µ).

By Lemma 11.82 (with γ = γ/2, σ = 1/(2πσ′), µ = 0, c = −2πµ′), we have

that

|M̂(f − ξ)− M̂(f − µ)|

=
√
2πσ′2|M0,1/(4π2σ′2)(f − ξ) exp(−2πiµ′(f − ξ))−M0,1/(4π2σ′2)(f − µ) exp(−2πiµ′(f − µ))|

≤
√
2πσ′2(2πσ′ + 2π|µ′|)γ

≲ (σ′2 + σ′|µ′|)γ (11.44)

where the first step from the calculation of M̂ , the second step follows from Lemma

11.82.

Thus, we can claim that ∀f ∈ R,

|M̂(f) ∗ (x̂(f) · rectγ/2(f − µ))−
∫ µ+γ/2

µ−γ/2
x̂(f)df · M̂(f) ∗ δ(f − µ)|

= |
∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f − ξ)dξ −

∫ µ+γ/2

µ−γ/2
x̂(ξ) · M̂(f − µ)dξ|

= |
∫ µ+γ/2

µ−γ/2
x̂(ξ) · (M̂(f − ξ)− M̂(f − µ))dξ|

≤
∫ µ+γ/2

µ−γ/2
|x̂(ξ)| · |M̂(f − ξ)− M̂(f − µ)|dξ

≤ max
ξ∈[µ−γ/2,µ+γ/2]

{|M̂(f − ξ)− M̂(f − µ)|} ·
∫ µ+γ/2

µ−γ/2
|x̂(ξ)|dξ

≲ (σ′2 + σ′|µ′|)γ ·
∫ µ+γ/2

µ−γ/2
|x̂(ξ)|dξ. (11.45)

686

where the first step follows from from Eq. (11.42), Eq. (11.43), the third step follows

from triangle inequality, and the last step follows from Eq. (11.44).

As a result, we have that for f

|M̂ ∗ x̂(f)−
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(ξ)dξ · M̂(f) ∗ δ(f − µ)|

≤ |
∑

µ∈Zγ

M̂(f) ∗ (x̂(f) · rectγ/2(f − µ))−
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(ξ)dξ · M̂(f) ∗ δ(f − µ)|

≤
∑

µ∈Zγ

|M̂(f) ∗ (x̂(f) · rectγ/2(f − µ))−
∫ µ+γ/2

µ−γ/2
x̂(f)df · M̂(f) ∗ δ(f − µ)|

≲ (σ′2 + σ′|µ′|)γ ·
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
|x̂(ξ)|dξ

≤ (σ′2 + σ′|µ′|)γ · ∥x̂∥1

where the first step follows from
∑

µ∈Zγ rectγ/2(f − µ) = 1, the second step follows

from triangle inequality, the third step follows from Eq. (11.45), the last step follows

from the definition of ℓ1 norm.

Thus we complete proof.

Choice of parameters The following lemma shows how to take the parameters in

this section.

Lemma 11.85. Let ε0, ε, F, c0, σ′, T, F0, K, ε1 ∈ R+ such that

• ε0 = 0.01

• ε1 ≤ ε2/T

• σ′ =
√
2ε20T

• c0 = 0.01/
√
log(1/ε0)

687

• K = ⌈1+0.5ε0
c0ε20

⌉ ≤ 2/(c0ε
2
0)

• F0 = σ′−1 · log1/2(4F/ε1) + F

We have that

• Part 1. c0K ≲ 1

• Part 2. F0 ≲ (1/T) · log1/2(FT/ε) + F

Proof. We will prove them separately.

Part 1.

We can show

c0K = c0⌈
1 + 0.5ε0
c0ε20

⌉ ≤ 2c0
c0ε20

≲ 1.

where the first step follows from the definition of K, the third step follows from the

definition of ε0.

Part 2.

We have that

F0 = σ′
−1 · log1/2(4F/ε1) + F

≲ 1/(ε20T) · log1/2(F/ε1) + F

≲ 1/T · log1/2(F/ε1) + F

≲ 1/T · log1/2(FT/ε2) + F

≲ 1/T · log1/2(FT/ε) + F

where the second step follows from the definition of σ′, the third step follows from

the definition of ε0, the fourth step follows from the definition of ε1 ≥ ε2/T .

688

11.13.3 Semi-continuouse approximation of Fourier-sparse signals

The main theorem of this section is stated and proved below.

Theorem 11.86 (Sparse Signal is Semi-continuous). Given γ, ε ∈ (0, 0.1), F, T ∈ R+.

Let x : R → C be a function that such that x is k-Fourier-sparse and supp(x̂) ⊆
[−F, F]. Let γ > 0 and ε1 > 0. Then there is an algorithm output a k′-Fourier-sparse

signal (k′ ≤ k),

x′(t) =
k′∑

i=1

vi exp(2πifit)

such that

∥x′ − x∥2T ≲ (F0T
3γ2 + ε1/(F

2T)) · ∥x̂∥21

where γ = min
i ̸=j
|fi−fj|, fi ∈ [−F, F], fi ∈ γZ, ∀i ∈ [k′] and F0 = Ω(T−1 log1/2(F/ε1)+

F).

Further, if ε1 ≤ ε2/T and γ ≤ ε/
√
F0T 3, then we have

∥x′ − x∥2T ≲ ε2∥x̂∥21

Proof. First, we will introduce our choice for x′. Then, we bound |M̂j ∗ x̂− M̂j ∗ x̂′|.
Finally, show the relationship between |M̂j ∗ x̂−M̂j ∗ x̂′| and the LHS in our statement

by utilizing M to bridge the integral calculated in the time domain ∥x′−x∥T and the

integral calculated in the frequency domain ∥x̂∥1.

Let x′ be chosen as

x′(t) =
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(f)df · exp(2πiµt).

Then,

∥x̂′∥1 =
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(f)df =

∫ ∞

−∞
x̂(f)df = ∥x̂∥1. (11.46)

689

Let c0, ε0 ∈ R+,K ∈ Z+ such that ε0 = 0.01 ∈ (0, 0.1), c0 = 0.01/
√

log(1/ε0), K =

⌈1+0.5ε0
c0ε20

⌉ ≤ 2/(c0ε
2
0).

For simplicity, let Mj(t) =Mµ′j ,σ
′2(t) =Mc0jε20T,2ε

4
0T

2(t), then

M̂j(f) =
√
2πσ′2 exp(−2π2σ′2f 2) exp(−2πiµ′jf).

and

µ′j ≤ c0Kε
2
0T

≤ c0(
2

c0ε20
)ε20T

= 2T.

where the second step follows from upper bound on K.

We have that

x̂′(f) =
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(f)df · δ(f − µ).

So, we can convolute M̂ at the both sides and get

M̂j(f) ∗ x̂′(f) =
∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(f)df · M̂j(f) ∗ δ(f − µ). (11.47)

By Lemma 11.84, we have that for ∀f ∈ R,

|M̂j ∗ x̂− M̂j ∗ x̂′|

=
∣∣∣M̂j ∗ x̂−

∑

µ∈Zγ

∫ µ+γ/2

µ−γ/2
x̂(f)df(M̂j(f) ∗ δ(f − µ))

∣∣∣

≤ (σ′2 + σ′|µ′j|)γ · ∥x̂∥1
≲ T 2γ · ∥x̂∥1. (11.48)

where the first step follows from Eq. (11.47), the second step follows from Lemma

11.84, the third step follows the choice of µ′j and σ and that ε0 is a constant.

690

Let F0 be defined as

F0 > σ′
−1 · log1/2(4F/ε1) + F.

Next, we can bound |x′(t)− x(t)|2,
∫ ∞

−∞
M2

j (t) · |x′(t)− x(t)|2dt =
∫ ∞

−∞
|M̂j ∗ x̂′(f)− M̂j ∗ x̂(f)|2df

≤
∫ F0

−F0

|M̂j ∗ x̂′(f)− M̂j ∗ x̂(f)|2df + ε1∥x̂′(f)− x̂(f)∥2∞

≤
∫ F0

−F0

|M̂j ∗ x̂′(f)− M̂j ∗ x̂(f)|2df + 4ε1∥x̂∥2∞
≲ 2F0T

4γ2 · ∥x̂∥21 + 4ε1∥x̂∥2∞
≲ (F0T

4γ2 + ε1/F
2) · ∥x̂∥21︸ ︷︷ ︸

err

(11.49)

where the second step follows from Lemma 11.83, the third step follows from ∥x̂′(f)−
x̂(f)∥2∞ ≤ (∥x̂′(f)∥∞ + ∥x̂(f)∥∞)2 = (2∥x̂(f)∥∞)2 = 4∥x̂∥2∞ due to Eq. (11.46), the

forth step follows from Eq. (11.48), the fifth step follows from ∥x̂∥∞ ≤ ∥x̂∥1.

Then we can upper bound the LHS
∫ T
0
|x′(t)− x(t)|2dt as follows:

∫ T

0

|x′(t)− x(t)|2dt

=

∫ T

0

rectT (t)|x′(t)− x(t)|2dt

≤
∫ T

0

K∑

j=−K

(
c0

(1− 2ε0)
√
2π

)M2
j (t) · |x′(t)− x(t)|2dt

≤
∫ T

0

K∑

j=−K

c0M
2
j (t) · |x′(t)− x(t)|2dt

≤ c0 ·
K∑

j=−K

∫ ∞

−∞
M2

j (t) · |x′(t)− x(t)|2dt

≲ c0K · err

≲ err

691

where the second step follows from Claim 11.81 and M2
j (t) =Mc0jε20T,ε

4
0T

2(t), the third

step follows from ε0 = 0.01, the forth step follows from relaxing integral range, the

fifth step follows from Eq. (11.49), the last step follows from c0K ≲ 1 due to Lemma

11.85.

11.13.4 Fast optimal-sparsity Fourier sparse recovery

Corollary 11.87 (Our result). For any F > 0, T > 0, ε > 0. Let x∗(t) =
∑k

j=1 vj exp(2πifjt)

with |fj| ≤ F for j ∈ [k]. For observation x(t) = x∗(t)+g(t), there exists an algorithm

that takes

m = O(ε−1k2 log3(k) log(FT/(δρ)))

random samples t1, . . . , tm ∈ [0, T], runs in (ε−1FT)O(k) time, and outputs y(t) =
∑k

j=1 ṽj exp(2πif̃jt) such that

∥y(t)− x∗(t)∥T ≤ (1 + ε)∥g(t)∥T + δ∥x̂∗(f)∥1,

holds with probability 1− ρ.

Proof. Let Nf = O(δ

T
√
FT log(1/δ)

) · Z ∩ [−F, F] denote a net of frequencies. Because

δ

T
√
F0T

≳
δ

T
√
log1/2(F/ε1) + FT

≥ δ

T
√
log1/2(FT/δ2) + FT

≥ δ

T
√
log(FT) + log(1/δ) + FT

≥ δ

T
√
FT log(1/δ)

where the first step follows from F0 = Ω(T−1 log1/2(F/ε1)+F), the second step follows

from setting ε1 = δ2/T .

692

By Theorem 11.86, for any signal x∗(t) =
∑k

j=1 vj exp(2πifjt), there exists a

k-Fourier-sparse signal x̃(t) =
∑k

j=1 v
′
j exp(2πif

′
jt) such that,

∥x∗(t)− x̃(t)∥T ≤ δ∥x̂∗(f)∥1

and f ′1, · · · , f ′k ⊆ Nf .

Because we have that

∥y(t)− x∗(t)∥T ≤ ∥y(t)− x̃(t)∥T + ∥x̃(t)− x∗(t)∥T
≤ ∥y(t)− x̃(t)∥T + δ∥x̂∗(f)∥1.

Let S be the set of i.i.d samples from D(t) of size O(ε−1k log3(k) log(1/ρ0)),

w be the corresponding weight in Algorithm 63 Procedure SparseFT line 3. By

Lemma 11.28, we have that, for any F, with probability at least 1− ρ0,

(1−√ε)∥x∥T ≤ ∥x∥S,w ≤ (1 +
√
ε)∥x∥T .

In total, we enumerate (δ−1FT)O(k) function family F in Algorithm 63 Procedure

SparseFT line 6. By taking ρ0 = ρ(δ(FT)−1)O(k), we have that the total success

probability is at least

(1− ρ0)(δ
−1FT)O(k) ≥ 1− (δ−1FT)O(k) · ρ0 ≥ 1− ρ

Thus, by Lemma 11.66, with probability at least 1 − ρ, sampling S and w forms a

ε-WBSP for every F.

Finally, we bound ∥y(t)− x̃(t)∥T as follows,

∥y(t)− x̃(t)∥T ≤ (1 +O(ε))∥x(t)− x̃(t)∥T
≤ (1 +O(ε))(∥x(t)− x∗(t)∥T + ∥x∗(t)− x̃(t)∥T)

≤ (1 +O(ε))(∥g(t)∥T + δ∥x̂∗(f)∥1)

where the first step follows from the proof of Theorem 11.60.

693

Combine the results above we have that

∥y(t)− x∗(t)∥T ≤ ∥y(t)− x̃(t)∥T + δ∥x̂∗(f)∥1
≤ (1 +O(ε))∥g(t)∥T +O(δ)∥x̂∗(f)∥1.

Note that our sample complexity is |S| = O(ε−1k log3(k) log(1/ρ0)) = O(ε−1k2 log3(k) log(FT/(δρ))).

Lemma 11.88 (Running time of Lemma 11.87). Procedure SparseFT in Algorithm

63 runs in O((δ−1FT)O(k) log(1/ρ)) times.

Proof. In each call of the Procedure SparseFT in Algorithm 63,

• In the for loop, it repeats the line 8 for (δ−1log0.5(1/δ)(FT)1.5)k times.

• Note that each 8 of Procedure SparseFT in Algorithm 63 is solving linear

regression. This part takes O(ε−1kω+1 log3(k) log(FT/(δρ))) time.

So, the time complexity of Procedure SparseFT in Algorithm 63 is

O((δ−1log0.5(1/δ)(FT)1.5)k) ·O(ε−1kω+1 log3(k) log(FT/(δρ))) = O((ε−1FT)O(k) log(1/ρ)).

11.13.5 Semi-continuous approximation with a constant frequency gap

In this section, we show that the semi-continuous approximation result in

previous section can be further improved in terms of the frequency gap.

We first consider the one-sparse case in the following lemma.

694

Lemma 11.89. Let 0 < δ < 0.1 be a parameter. Let x∗ = v∗ exp(2πif ∗t) be a

function such that f ∗ ∈ [−c/T, c/T]. Then, there exists k > log(1/δ), F ≲ k/T ,

f1, . . . , fk ∈ c/TZ ∩ [−F, F], and v1, . . . , vk ∈ C and for the function

x̃(t) =
k∑

j=1

vj exp(2πifjt)

we have that

∥x∗ − x̃∥T ≲ δ|v∗|

Proof. Note that x∗(t) can be written as

x∗(t) =

∫ F

−F
x̂∗(f) exp(2πift)df.

Now consider the Taylor expansion of

exp(2πift) =
∞∑

j=0

(2πift)j

j!

Note that since f ∈ [−F, F], t ∈ [0, T], FT ≲ k, we have

∞∑

j=k+1

|(2πift)
j

j!
| ≤

∞∑

j=k+1

|(2eπift)
j

jj
|

≤
∞∑

j=k+1

1

exp(j)

≤ 1

exp(k)
· 1

1− 1/e

≲ δ1 (11.50)

where the first step follows from Stirling’s formula n! ≥
√
2πnn+0.5 exp(−n), the

second step follows from 2e2πf ≥ j, the last step follows from k ≥ log(1/δ1).

In particular, if we define the approximator of exponential function

gf (x) =
k∑

j=0

(2πift)j

j!

695

then over the interval t ∈ [0, T], f ∈ [−F, F], FT ≲ k,

| exp(2πift)− gf (t)| = |
∞∑

j=k+1

(2πift)j

j!
|

≤
∞∑

j=k+1

|(2πift)
j

j!
|

≤ δ1. (11.51)

where the first step follows from the definition of gf (x), the second step follows from

the triangle inequality, the last step follows from Eq. (11.50).

Next, let Vk(f) = (1, f, · · · , fk). For f ∗ ∈ [−c/T, c/T], we can write the vector

Vk(f
∗) = w1Vk(f1) + · · ·+ wkVk(fk)

for some real numbers (depending on f ∗) w1, . . . , wk, because Vk(f1), · · · ,Vk(fk) is

linear independence. Thus,

gf∗(t) = w1gf1(t) + · · ·+ wkgfk(t) (11.52)

for the same weights. Now note that by (11.51), for all t ∈ [0, T],

|x∗(t)− v∗gf∗(t)| = |v∗(gf∗(t)− exp(2πif ∗t))|

≤ |v∗|δ1.

Then, because gf (t) can be expressed by gfj(t), j ∈ [k], we have that

|x∗(t)−
k∑

j=0

v∗gfj(t)wj| = |x∗(t)− v∗gf∗(t)|

which is follows from Eq. (11.52).

Note that

k∑

j=1

|wj| ≤ C1

696

So by Eq. (11.51), we will transform the approximator of exponential function

back to exponential function. For ∀t ∈ [0, T],

|
k∑

j=1

(gfj(t)− exp(2πifjt))(v
∗wj)| ≤ C1|v∗|δ1

Therefore, we can conclude that for ∀t ∈ [0, T]

|x∗(t)−
k∑

j=1

(v∗wj) exp(2πifjt)| ≤ C1|v∗|δ1

and setting

h(x) =
k∑

j=1

(v∗wj) exp(2πifjt)

immediately leads to the desired conclusion.

Lemma 11.89 immediately gives the following corollary by taking linear sum-

mation over k frequencies.

Corollary 11.90. Let 0 < δ < 0.1 be a parameter. Let x∗ be any k-Fourier-sparse

signal. Then, there exists k̃ ≲ k log(k/δ), universal constant c ∈ (0, 1), f1, · · · , fk ∈
c/TZ, and v1, . . . , vk ∈ C and for the function

x̃(t) =
k̃∑

j=1

vj exp(2πifjt)

we have that

∥x∗ − x̃∥T ≲ δ∥x̂∗(f)∥1

697

Algorithm 55 Quadratic-form sampling with preprocessing-query trade-off: Prepro-
cessing
1: structure Node
2: V1, V2 ∈ Rd×d

3: left, right ▷ Point to the left/right child in the tree
4: end structure
5: data structure DS+ ▷ Theorem 11.40
6: members
7: n ∈ N ▷ The number of vectors
8: m ∈ N ▷ The number of blocks
9: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors

10: root: Node ▷ The root of the tree
11: end members
12: procedure BuildTree(l, r) ▷ [l, . . . , r] is the range of the current node
13: p← new Node
14: if l = r then ▷ Leaf node
15: p.V2 ←

[
v(l−1)d+1 · · · vld

]

16: p.V1 ← (p.V2) · (p.V2)⊤ ▷ It takes O(dω)-time
17: ▷ p.mat1 =

∑ld
i=(l−1)d+1 viv

⊤
i

18: else ▷ Internal node
19: mid← ⌊(l + r)/2⌋
20: p.left← BuildTree(l,mid)
21: p.right← BuildTree(mid+ 1, r)
22: p.V1 ← (p.left).V1 + (p.right).V1 ▷ It takes O(d2)-time
23: end if
24: return p
25: end procedure
26: procedure Init(n, d, {vi}i∈[n] ⊆ Rd, {αi}i∈[n] ⊆ R)
27: vi ← vi ·

√
αi for i ∈ [n]

28: m← n/d ▷ We assume that n is divisible by d
29: Group {vi}i∈[n] into m blocks B1, . . . , Bm ▷ Bi = {v(i−1)d+1, . . . , vid} for

i ∈ [m]
30: root← BuildTree(1,m)
31: end procedure
32: end data structure

698

Algorithm 56 Quadratic-form sampling with preprocessing-query trade-off: Query
1: data structure DS+ ▷ Theorem 11.40
2: members
3: n ∈ N ▷ The number of vectors
4: m ∈ N ▷ The number of blocks
5: v1, . . . , vn ∈ Rd ▷ d-dimensional vectors
6: root: Node ▷ The root of the tree
7: end members
8: procedure BlockSampling(p, l ∈ N, A ∈ Rd×d)▷ p is a leaf node with index l
9: U ← (p.V2)

⊤ · A · (p.V2) ▷ It takes O(dω)-time
10: Define a distribution Dl over [d] such that Dl(i) ∝ Ui,i
11: Sample i ∈ [d] from Dl ▷ It takes O(d)-time
12: return (l − 1)d+ i
13: end procedure
14: procedure Query(A ∈ Rd×d)
15: p← root, l← 1, r ← m
16: s← 0
17: while l ̸= r do ▷ There are O(logm) iterations
18: w ← ⟨p.V1, A⟩ ▷ It takes O(d2)-time
19: wℓ ← ⟨(p.left).V1, A⟩
20: Sample c from Bernoulli(wℓ/w)
21: if c = 0 then
22: p← p.left, r ← ⌊(l + r)/2⌋
23: else
24: p← p.right, l← ⌊(l + r)/2⌋+ 1
25: end if
26: end while
27: return BlockSampling(p, l, A)
28: end procedure
29: end data structure

699

Algorithm 57 Fast distillation for one-dimensional signal
1: procedure WeightedSketch(k, ε, T,B) ▷ Lemma 11.28
2: c← O(T−1 log−1(k))
3: D(t) is defined as follows:

D(t)←
{
c/((1− |t/T |) log k), if |t| ≤ T (1− 1/k),

c · k, if |t| ∈ [T (1− 1/k), T].

4: S0 ← O(ε−2k log(k)) i.i.d. samples from D
5: for t ∈ S0 do
6: wt ← 2

T ·|S0|·D(t)

7: end for
8: Set a new distribution D′(t)← wt/

∑
t′∈S0

wt′ for all t ∈ S0

9: return D′

10: end procedure
11: procedure FastDistill1D(k, ε, F = {f1, . . . , fk}, T) ▷ Lemma 11.44
12: Distribution D′ ←WeightedSketch(k, ε, T,B)
13: Set the function family F as follows:

F :=
{
f(t) =

k∑

j=1

vj exp(2πifjt)
∣∣∣ vj ∈ C

}
.

14: s, {t1, t2, · · · , ts}, w ← RandBSS+(k,F, D′, (ε/4)2) ▷ s = O(k/ε2),
Algorithm 52

15: return {t1, t2, · · · , ts} and w
16: end procedure

Algorithm 58 Distillation for high-dimensional signal.
1: procedure DistillHD(k, ε, d, F = {f1, . . . , fk}, T) ▷ Lemma 11.51
2: S0 ← O(ε−2kO(d) log(1/ε)) i.i.d. samples from Uniform([0, T]d)
3: Set the function family F as follows:

F =
{
f(t) =

k∑

j=1

vj exp(2πi⟨fj, t⟩)
∣∣ vj ∈ C

}
.

4: s, {t1, t2, · · · , ts}, w ← RandBSS+(k,F,Uniform(S0), (ε/4)
2) ▷ s = O(k/ε2),

Algorithm 52
5: return {t1, t2, · · · , ts} and w
6: end procedure

700

Algorithm 59 Distillation for discrete signal.
1: procedure DistillDisc(k, ε, F = {f1, · · · , fk}, n) ▷ Lemma 11.54

(one-dimension)
2: S0 ← O(ε−2k log(k)) i.i.d. samples from Uniform([n])
3: Set the function family F as follows:

F = {f(t) =
k∑

j=1

vj exp(2πifjt/n)|vj ∈ C}.

4: s, {t1, t2, · · · , ts}, w ← RandBSS+(k,F,Uniform(S0), (ε/4)
2) ▷ s = O(k/ε2),

Algorithm 52
5: return {t1, t2, · · · , ts} and w
6: end procedure
7: procedure DistillDiscHD(k, ε, F = {f1, · · · , fk}, p, d) ▷ Lemma 11.54

(high-dimension)
8: S0 ← O(ε−2k log(k)) i.i.d. samples from Uniform([p]d)

9: A←

t′1
⊤

...
t′s0
⊤

 ∈ Rs0×d, B ←

[
f1 · · · fk

]
∈ Rd×k

10: C ← A ·B ∈ Rs0×k

11: Fij ← exp(2πiCij) for each (i, j) ∈ [s0]× [k]
12: s, {t1, t2, · · · , ts}, w ← RandBSS+(k,F,Uniform(S0), (ε/4)

2) ▷ s = O(k/ε2),
Algorithm 52

13: return {t1, t2, · · · , ts} and w
14: end procedure

701

Algorithm 60 Signal estimation algorithm for one-dimensional signals (sample op-
timal version)
1: procedure SignalEstimationFast(x, k, F, T,B) ▷ Theorem 11.57
2: ε← 0.01
3: L← FreqEst(x, k,D, F, T,B)
4: {f ′1, f ′2, · · · , f ′k̃} ← {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}
5: s, {t1, t2, · · · , ts}, w ← FastDistill1D(k̃,

√
ε, {f ′i}i∈[k̃], T,B) ▷ k̃, w ∈ Rk̃,

Algorithm 57
6: Ai,j ← exp(2πif ′jti), A ∈ Cs×k̃

7: b← (x(t1), x(t2), · · · , x(ts))⊤
8: Solving the following weighted linear regression ▷ Fact 11.8

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

9: return y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′jt).

10: end procedure

Algorithm 61 Signal estimation algorithm for one-dimensional signals (high-
accuracy version)
1: procedure SignalEstimationAcc(x, ε, k, F, T,B) ▷ Theorem 11.60
2: L← FreqEst(x, k,D, F, T,B)
3: {f ′1, f ′2, · · · , f ′k̃} ← {f ∈ Λ(B) | ∃f ′ ∈ L, |f ′ − f | < D/T}
4: s, {t1, t2, · · · , ts}, w ←WeightedSketch(k̃,

√
ε, T,B) ▷ k̃, w ∈ Rk̃,

Algorithm 57
5: Ai,j ← exp(2πif ′jti), A ∈ Cs×k̃

6: b← (x(t1), x(t2), · · · , x(ts))⊤
7: Solving the following weighted linear regression ▷ Fact 11.8

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

8: return y(t) =
∑k̃

j=1 v
′
j · exp(2πif ′jt).

9: end procedure

702

Algorithm 62 Discrete signal set-query algorithm.
1: procedure SetQuery(x, n, k, S, ε) ▷ Theorem 11.73 (one-dimension)
2: {f1, f2, · · · , fk} ← S
3: s, {t1, t2, · · · , ts}, w ← DistillDisc(k,

√
ε, F, n) ▷ Algorithm 59

4: Ai,j ← exp(2πifjti/n), A ∈ Cs×k

5: b← (x(t1), x(t2), · · · , x(ts))⊤
6: Solving the following weighted linear regression ▷ Fact 11.8

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

7: return x̂′ such that x̂′fj = v′j for j ∈ [k]
8: end procedure
9: procedure SetQueryHD(x, n, k, S, ε) ▷ Theorem 11.73 (high-dimension)

10: {f1, f2, · · · , fk} ← S
11: s, {t1, t2, · · · , ts}, w ← DistillDiscHD(k,

√
ε, F, n) ▷ Algorithm 59

12: Fbatch = [f1, f2, · · · , fk] ∈ [p]d×k

13: Tbatch = [t1, t2, · · · , ts] ∈ [p]d×s

14: U = F⊤batchTbatch ∈ Zk×s ▷ Fact 11.7
15: Ai,j ← exp(2πiUj,i/p), A ∈ Cs×k

16: b← (x(t1), x(t2), · · · , x(ts))⊤
17: Solving the following weighted linear regression ▷ Fact 11.8

v′ ← argmin
v′∈Ck̃

∥√w ◦ (Av′ − b)∥2.

18: return x̂′ such that x̂′fj = v′j for j ∈ [k]
19: end procedure

703

Algorithm 63 Recover k-sparse FT
1: procedure SparseFT(x, k, F, T, ε, δ, ρ) ▷ Corollary 11.87
2: m← O(ε−1k2 log3(k) log(FT/(δρ)))
3: S,w ←WeightedSketch(m, k, T) ▷ Algorithm 57
4: We observe the signal x(t) for each t ∈ S
5: Nf ← O(ε

T
√
FT log(1/ε)

) · Z ∩ [−F, F]
6: for {f ′1, . . . , f ′k} ∈

(
Nf

[k]

)
do

7: Let F = span{exp(2πif ′1t), · · · , exp(2πif ′kt)}
8: h(t)← argminh∈F∥h(t)− x(t)∥S,w
9: if ∥h(t)− x(t)∥S,w ≤ ∥f̃(t)− x(t)∥S,w then

10: f̃(t)← h(t)
11: end if
12: end for
13: return f̃(t)
14: end procedure

704

Chapter 12: Quartic Samples Suffice for Fourier
Interpolation

12.1 Introduction

Fourier transforms are the backbone of signal processing and engineering, with

profound implications to nearly every field of scientific computing and technology.

This is primarily due to the discovery of the well-known Fast Fourier Transform

(FFT) algorithm [CT65], which is ubiquitous in engineering applications, from im-

age and audio processing to fast integer multiplication and optimization. The clas-

sic FFT algorithm of [CT65] computes the Discrete Fourier Transform (DFT) of a

length-n vector x, where both the time and frequency domains are assumed to be

discrete. This algorithm takes O(n) samples in the time domain, and constructs

x̂ = DFT(x) in O(n log(n)) time. The discrete setting of DFT limits its applicability

in two main aspects: The first one is that many real-world signals are continuous

(analog) by nature; Secondly, many real-world applications (such as image process-

ing) involve signals which are sparse in the frequency domain (i.e., ∥x̂∥0 = k ≪ n)

[ITU92, Wat94, Rab02]. This feature underlies the compressed sensing paradigm

[CRT06], which leverages sparsity to obtain sublinear algorithms for signal recon-

struction, with time and sample complexity depending only on the sparsity k. Un-

fortunately, the continuous case cannot simply be reduced to the discrete case via

standard discretization (i.e., using a sliding-window function), as it “smears out" the

frequencies and blows up the sparsity, which motivates a more direct approach for

the continuous problem [PS15].

The study of Fourier-sparse signals dates back to the work of Prony in 1795

[dP95], who studied the problem of exact recovery of the “ground-truth" signal x

in the vanilla noiseless setting. By contrast, the realistic setting of reconstruction

from noisy-samples [PS15] is a different ballgame, and exact recovery is generally

705

impossible [Moi15]. In the Fourier Interpolation problem, the ground-truth signal

x∗(t) =
k∑

j=1

vje
2πifjt, vj ∈ C, fj ∈ [−F, F] ∀j ∈ [k],

is a k-Fourier-sparse signal with bandlimit F . Given noisy access to the ground truth

x(t) = x∗(t) + g(t) in limited time duration t ∈ [0, T] (which means that we need

to recover x∗(t) by taking samples from x(t)), the goal is to reconstruct a k̃-Fourier-

sparse signal y(t) (i.e., y(t) =
∑k̃

j=1 ṽje
2πif̃jt for some ṽj ∈ C, f̃j ∈ [−F, F] for all

j ∈ [k̃]) such that

∥y(t)− x∗(t)∥2T ≤ c(∥g∥2T + δ∥x∗(t)∥2T)

holds for some c = O(1), where the T -norm of any function f : R→ C is defined as

∥f(t)∥2T :=
1

T

∫ T

0

|f(t)|2dt.

We note that it is not necessary for y(t)’s frequencies and magnitudes (f̃j, ṽj) being

close to the ground-truth signal x∗(t)’s frequencies and magnitudes (fj′ , vj′).

Prior to this work, the state-of-the-art algorithm for the Fourier interpolation

problem was given by [CKPS16], which achieves Õ(k51) sample complexity, Õ(k10ω+40)

running time, Õ(k10) output sparsity, and c ≥ 2000 approximation ratio. For cali-

bration, we note that o(k4) sample complexity for Fourier interpolation is not known

to be achievable even with exponential decoding time. In this chapter, we focus on

improving the efficiency of [CKPS16]’s algorithm across all aspects: (i) runtime, (ii)

sample complexity, and (iii) output-sparsity. Our main result is:

Theorem 12.1 (Main Theorem). Let x(t) = x∗(t) + g(t), where x∗(t) is k-Fourier-

sparse signal with frequencies in [−F, F]. Given samples of x(t) over [0, T], there is

an algorithm that uses

k4 log(FT) · poly log(k, 1/δ, 1/ρ)

706

References Samples Time Output Sparsity
[CKPS16] Õ(k51) Õ(k10ω+40) Õ(k10)

[CP19a] Õ(k4) exp(k3) k

Ours (Theorem 12.1) Õ(k4) Õ(k4ω) Õ(k4)

Table 12.1: Summary of the results. All the algorithms obtain O(1) approximation
ratio. We use ω to denote the exponent of matrix multiplication, currently ω ≈ 2.373
[Wil12, AW21].

samples, runs in

k4ω log(FT) · poly log(k, 1/δ, 1/ρ)

time, and outputs a k4 ·poly log(k/δ)-Fourier-sparse signal y(t) s.t with probability at

least 1− ρ,

∥y(t)− x∗(t)∥T ≲ ∥g(t)∥T + δ∥x∗(t)∥T .

12.1.1 Related works

Sparse Fourier transform in the discrete setting The Fourier transform x̂ ∈
CN is a vector of length N . The goal of a sparse DFT algorithm is, given a bunch of

samples xi in the time domain and the sparsity parameter k, to output a k-Fourier-

sparse signal x′ with the ℓ2/ℓ2-guarantee

∥x̂′ − x̂∥2 ≲ min
k-sparse z

∥z − x̂∥2.

There are two different lines of work solving the above problem. One line [GMS05,

HIKP12a, HIKP12b, IKP14, IK14, Kap16, Kap17] is carefully choosing samples (via

hash function) and obtaining sublinear sample complexity and running time. The

other line [CT06, RV08, Bou14, HR17, NSW19] is taking random samples (via RIP

property [CT06] or others) and paying sublinear sample complexity but nearly linear

running time.

707

Sparse Fourier transform in the continuous setting [PS15] defined the sparse

Fourier transform in the continuous setting. It shows that as long as the sample

duration T is large enough compared to the frequency gap η, then there is a sublinear

time algorithm that recovers all the frequencies up to certain precision and further

reconstructs the signal. [JLS23] improves and generalize several results in [PS15]. In

particular, [PS15] only works for one-dimensional continuous Fourier transform, and

[JLS23] generalizes it to d-dimensional Fourier transform. In order to convert the

tone estimation guarantee to signal estimation guarantees, [PS15] provides a positive

result which shows T = O(log2(k)/η) is sufficient, and [Moi15] shows a lower bound

result where T = Ω(1/η). [Son19] asked an open question about whether this gap

can be closed. [JLS23] made positive progress on that problem by providing a new

upper bound which is T = O(log(k)/η).

From the negative side, [Moi15] shows that in order to show tone estimation1,

we have to pay a lower bound in sample duration T . In [PS15], it shows that once

we have tone estimation, we can obtain a signal estimation guarantee. Since [PS15]

and [Moi15], there is an interesting question about whether we can reconstruct the

signal without having a tone estimation guarantee, which is defined as the Fourier

interpolation problem. [CKPS16] shows a positive answer to this problem. They

provide a polynomial time algorithm to solve this problem. However, both sample

complexity and running time in [CKPS16] have a huge polynomial factor in k. The

major goal of our work is to significantly improve those polynomial factors.

12.2 Technical Overview
12.2.1 High-level approach

The high-level approach of Fourier Interpolation (also Fourier Signal recon-

struction) has two steps: frequency estimation and signal estimation (also called sig-

1Tone refers to a (frequency, coefficient) pair in [PS15]. E.g., (fi, vi) is a tone of the signal
x(t) =

∑k
i=1 vie

2πifit. And tone estimation means estimating each (fi, vi) precisely.

708

nal recovery or Fourier set query). This work mainly contributes to the first frequency

estimation step.

Filters and HashToBins The core technique in Fourier sparse recovery and

interpolation algorithms is filtering. There are two kinds of filters we are using. The

first filter function applied to the signal is H(t) (Figure 12.1a), which is the bounded

band limit approximation of the rectangular window function rectT (t). Intuitively,

since the time duration is restricted to [0, T], we should view the ground truth signal

as x∗(t) · rectT (t). However, handling r̂ectT (f) is not easy due to its unbounded

support in the frequency domain. Therefore, we use H(t) instead, which truncates

the frequency domain of rectT (t) and makes the analysis much easier.

Another kind of filters we use is G(j)
σ,b(t) (Figure 12.1b), which “isolates” the

signal through the procedure HashToBins and extracts the one-cluster signal in

the j-th bin. More specifically, HashToBins divides the frequency domain into

B = O(k) bins. We can show that with high probability over the randomized hashing

function, each bin contains a single cluster of frequencies. Hence, in the following

frequency estimation step, we can just focus on recovering the frequency of a one-

cluster filtered signal in each bin j ∈ [B]:

zj(t) = (x ·H)(t) ∗G(j)
σ,b(t).

Frequency Estimation This step is the main focus on this chapter. To estimate

the frequencies, our algorithm has two levels. The first level generates significant

samples of the local-test signal :

dz(t) = z(t)e2πif
∗β − z(t+ β),

where z(t) = zj(t) is the filtered signal in the j-th bin and β is a perturbation param-

eter. A time point α ∈ [0, T] is defined to be significant with respect to the target

frequency f ∗ if |dz(α)| is small. In this case, z(α+β)/z(α) is a good approximation of

709

t
T0

H(t)

(a) Time domain filter H(t).

1
σ ·

j
B + b 1

σ · (1 +
j
B) + b

1
σB

1
σ · (2 +

j
B) + b

Ĝ
(j)
σ,b

f

(b) Frequency domain filter Ĝ(j)
σ,b(f) for the j-th bin.

Figure 12.1: Time and frequency domain filters.

e2πif
∗β,which further implies the target frequency f ∗. The second level is a searching

algorithm that iteratively estimates the target frequency f ∗. In each iteration, it calls

the significant sample generation algorithm and uses the significant sample to narrow

the possible range of the target frequency until reaching the desired accuracy. Based

on the two-level strategy, we design an efficient, high-accuracy frequency estimation

algorithm, improving the time complexity, sample complexity, and the estimation er-

ror of the frequency estimation algorithms in previous works [CKPS16, CP19b]. The

theorem is stated as follows.

Theorem 12.2 (Frequency estimation, Informal version of Theorem 12.61). There

exists an algorithm takes O(k2 log(1/δ) log(FT)) samples, runs in O(k2 log(1/δ) log2(FT))

time, returns a set L of O(k) frequencies such that with probability 1 − ρ0, for any

“important frequency” f , there exists an f̃ ∈ L satisfying

|f − f̃ | ≲ ∆,

where ∆ = k · |supp(Ĥ)|, where Ĥ is the Fourier transform of H.

710

Signal Estimation In signal estimation, a set of estimated frequencies of y(t) has

been found, and it remains to interpolate the signal under these frequencies. This is

often done via set-query techniques [Pri11]. This step is not the focus of this chapter,

and more discussions can be found in [CKPS16, SSWZ22]. 2

12.2.2 Our techniques for frequency estimation

In the frequency estimation part, there are two central questions that need to

be answered:

1. Which frequencies or hashing bins are worth recovering?

2. How to recover a key frequency in a bin?

Our answer to these questions substantially deviates from previous works, as we

discuss below.

Answer to the first question: For the first question, [CKPS16]’s answer is the

heavy-cluster condition, which is defined as follows:

[f ∗ −∆, f ∗ +∆] is heavy if
∫ f∗+∆

f∗−∆
|Ĥ · x∗(f)|2df ≥ T ·N2/k, (12.1)

where N2 := ∥g∥2T + δ∥x∗∥2T represents the noisy-level of x(t). However, only consid-

ering the energy of the ground-truth signal is not enough3. Indeed, their algorithm

only works for “recoverable" clusters, which are defined as:

[f ∗ −∆, f ∗ +∆] is recoverable if
∫ f∗+∆

f∗−∆
|Ĥ · x(f)|2df ≥ T ·N2/k.

2We stress that this chapter is self-contained and we provide all the technical details of signal
estimation in Section 12.16.

3For example, consider the ground-truth signal x∗(t) = ve2πif
∗t + ve2πi(f

∗+10∆)t and the noise
g(t) = −ve2πif∗t. Even if f∗±∆ is a heavy cluster, it is impossible to recover f∗ from the observation
x(t) = x∗(t) + g(t), since x̂(f) is zero around f∗.

711

The gap between heavy clusters and recoverable clusters is a bottleneck for improving

the approximation ratio of the Fourier interpolation algorithms in [CKPS16] to an

arbitrarily small constant. This gap also introduces many other technical difficulties

in designing more efficient frequency estimation algorithms.

t
T0

(y ·H)(t) ∗G(j1)
σ,b (t)

(x ·H)(t) ∗G(j1)
σ,b (t)

(x̂∗ ∗ Ĥ)(f) · Ĝ(j1)
σ,b (f)

(ĝ ∗ Ĥ)(f) · Ĝ(j1)
σ,b (f)

f

(a) Low-noise band recovery: high-accuracy frequency estimation is needed.

t
T0

(y ·H)(t) ∗G(j2)
σ,b (t)

(x ·H)(t) ∗G(j2)
σ,b (t)

(x̂∗ ∗ Ĥ)(f) · Ĝ(j2)
σ,b (f)

(ĝ ∗ Ĥ)(f) · Ĝ(j2)
σ,b (f)

f

(b) High-noise band recovery: any frequency estimation output is acceptable.

Figure 12.2: The high SNR band condition. The red curves are the filters. On the
left, the blue curves are the filtered noisy observation signal in the time domain, and
the green curves are corresponding reconstructed signals. On the right, the light
blue regions are the filtered frequencies of the ground-truth signal x∗, and the orange
regions are the filtered frequencies of the noise g. Figure 12.2a shows a high-SNR
case, where we can recover a good approximation of x∗ in this band. Figure 12.2b
shows an extremely low-SNR case, where g has almost the same energy as x∗, and a
trivial signal (y(t) = constant) suffices for the recovery of this band.

To overcome this gap, we introduce a new criterion for the frequency bands

that need to be non-trivially reconstructed, which we call the high signal-to-noise

ratio (SNR) band condition. Formally, we say a hashing bin j ∈ [B] has a high SNR

if the filtered signal z∗j (t) = (x∗ ·H) ∗G(j)
σ,b satisfies:

∥(g ·H) ∗G(j)
σ,b(t)∥2T ≤ c · ∥z∗j (t)∥2T , (12.2)

where c is a universal small constant. Our frequency estimation algorithm focuses

solely on recovering heavy frequencies in high-SNR bins. The intuition behind this

712

condition is as follows: if the noise in a band (i.e., (g ·H)∗G(j)
σ,b(t)) is too large, then we

can simply use an all-zero signal as the reconstruction of the filtered signal. We show

this new condition brings many advantages for designing more efficient frequency

estimation algorithms. In particular, we show that the remaining frequencies in the

low-SNR bins are inconsequential for the reconstruction error, and ignoring them

in the signal estimation can still achieve the approximation guarantee of Fourier

interpolation.4

x̂∗(f) ∗ Ĥ(f)

ĝ(f) ∗ Ĥ(f)

f

Figure 12.3: A case that violates our high SNR band assumption but [CKPS16] tries
to recover. x̂∗(f) ∗ Ĥ(f) (in blue) is the filtered ground-truth signal, and ĝ(f) ∗ Ĥ(f)
(in green) is the filtered noise. This signal does not satisfy the high SNR band
condition since the noise ĝ(f) ∗ Ĥ(f) is too strong. However, the combined signal
(x̂∗(f)+ĝ(f))∗Ĥ(f) still satisfies the recoverable-cluster condition since it has enough
energy in the frequency domain.

Answer to the second question: As we discussed earlier, the key to answering

this question is our novel “significant-samples" generation procedure (which produces

samples α such that |z(α)e2πif∗β − z(α+ β)| is small, where z(t) is the filtered signal

and β is a parameter). This is the content of the following lemma.

4We remark our algorithm never attempts to decide whether a bin satisfies the high-SNR condition
or not, but rather assumes all bins are “good". The low-SNR bins may therefore produce totally
wrong frequency estimates. However, for accurate signal estimation, we only need to guarantee that
all the good frequencies are reconstructed by the frequency estimation algorithm, so even if the
output set contains some wrong frequencies, they can be simply ignored.

713

Lemma 12.3 (Significant Sample Generation, Informal version of Lemma 12.55).

There is a Procedure GenerateSignificantSamples in Algorithm 65 such that

for β ≤ O(1/∆), it takes Õ(k2) samples in x(t) and runs in Õ(k2) time. For each

frequency f ∗ with j := hσ,b(f
∗), if the j-th bin has “high SNR”, and f ∗ is “heavy”, then

the output αj satisfies:

|zj(αj + β)− zj(αj)e2πif
∗β|2 ≤ 0.01|zj(αj)|2,

with a high constant probability, where zj(t) := (x ·H) ∗G(j)
σ,b(t).

We first sketch the proof of Theorem 12.2 using Lemma 12.3. Intuitively, if

z(t) is exactly one-sparse, i.e., z(t) = e2πif
∗t, then we have z(t)e2πif∗β − z(t + β) =

0, and z(t+β)
z(t)

gives the exact value of e2πif∗β. More generally, by the guarantee of

the significant sample, that ratio can well-approximate e2πif∗β, which gives a good

estimate of f ∗β mod 1 in a small constant range:

f ∗ ≈ 1

2πβ

(
arg
(z(α + β)

z(α)

)
+ 2πs

)

for some unknown s ∈ Z. To determine s, we use a search technique to narrow down

the potential range of f ∗ from [−F, F] to [f ∗ − ∆, f ∗ + ∆]. In each iteration, we

divide the region of interest into num = O(1) regions, and repeatedly run the Pro-

cedure GenerateSignificantSamples with several different β and pick up the

heavy-hitter among all possible regions, which can exponentially increase the success

probability of finding the correct interval. Now, we consider the costs of this pro-

cess. The initial frequency range is [−F, F], and in the last iteration, the frequency

range is [f ∗ − Θ(∆), f ∗ + Θ(∆)]. Thus, we can take the number of iterations to be

O(log(F/∆)) ≤ O(log(FT)). In each iteration, we call Procedure GenerateSig-

nificantSamples for O(log log(F/∆)) ≤ O(log log(FT)) times. Note that each run

of Procedure GenerateSignificantSamples can generate significant samples for

all B bins. Therefore, by Lemma 12.3, the total time and sample complexity for

frequency estimation is Õ(k2) ·O(log(FT)) ·O(log log(FT)) = Õ(k2).

Then, we sketch the proof of Lemma 12.3, which contains three parts:

714

Algorithm 64 Frequency Estimation Algorithm, Informal version of Algorithm 66,
67, and 68
1: procedure FrequencyEstimationX(x, (σ, b))
2: for j ← [B] do
3: f̃j ← FrequencyEstimationZ(x,H,G(j)

σ,b) ▷ recover the heavy
frequency of z(j)

4: L← L ∪ {f̃j}
5: end for
6: return L
7: end procedure
8: procedure FrequencyEstimationZ(x,H,G(j)

σ,b)
9: num← O(1) ▷ num-ary search in each iteration

10: D ← O(log(FT
∆
)) ▷ number of iterations

11: left1 ← −F , len1 ← 2F ▷ initial searching interval [left1, left1 + len1]
12: for d ∈ [D] do
13: leftd+1 ← ArySearch(x,H,G(j)

σ,b, leftd, lend, num) ▷ new searching
interval’s left-end

14: lend+1 ← 5 lend
num

▷ new searching interval’s length
15: end for
16: return leftD+1

17: end procedure
18: procedure ArySearch(x,H,G(j)

σ,b, lefti, leni, num)
19: Iq ← [leftd + (q − 1)lend/num, leftd + qlend/num] for q ∈ [num] ▷ candidate

regions
20: vq ← 0 for q ∈ [num] ▷ votes counter
21: R← O(log(log(FT)))
22: for r = 1→ R do
23: Sample β ∼ Uniform([1

2
β̂, β̂]) for β̂ = O(num

lend
) ▷ perturbation

24: z(α + β), z(α)← GenerateSignificantSamples(x,H,G(j)
σ,b) ▷

significant sample
25: S̃ ← 1

2πβ
(arg(z(α+β)

z(α)
) + 2πZ) ▷ all possible frequencies

26: Ĩ ← {q ∈ [num] | Iq ∩ S̃ ̸= ∅} ▷ all possible regions
27: vq ← vq + 1 for q ∈ Ĩ ▷ add votes to these regions
28: end for
29: return leftd + (q − 1)lend/num for any q such that vq + vq+1 + vq+2 ≥ R/2
30: end procedure

715

I. A two-level sampling procedure (see Section 12.2.2.1).

II. Energy estimation and Signal Equivalent Method (see Section 12.2.2.2).

III. Time-domain concentration of filtered signals (see Section 12.2.2.3).

12.2.2.1 Two-level sampling for significant samples generation

We may assume that in frequency domain, the energy of ẑ(f) is concentrated

around f ∗: ∫ f∗+∆

f∗−∆
|ẑ(f)|2df ≥ 0.7

∫ +∞

−∞
|ẑ(f)|2df.

This is a very natural and necessary assumption for the frequency estimation problem.
5 Then we can show that:

∥z(t)e2πif∗β − z(t+ β)∥2T < γ∥z(t)∥2T (12.3)

where γ ∈ (0, 0.001) is a small constant. We show how to find an α such that

|z(α)e2πif∗β − z(α+ β)|2 < γ|z(α)|2. For ease of discussion, we scale the time domain

from [0, T] to [−T, T].

The main idea is to use a two-level sampling procedure, which is motivated by

[CP19b]. In the first level, we take a set S = {t1, . . . , ts} of O(k log(k)) i.i.d. samples

from the following distribution:

Dz(t) =

{
c · (1− |t/T |)−1T−1 if |t| ≤ T (1− 1/k)

c · kT−1 if |t| ∈ [T (1− 1/k), T]
∀t ∈ U, (12.4)

where U = {t0 ∈ R | H(t) > 1 − δ1 ∀t ∈ [t0, t0 + β]}. Then, we assign weights

wi := 1/(2T |S|Dz(ti)) for each sample ti ∈ S.

5For the filtered signals that do not satisfy the frequency domain energy concentration assump-
tion, it basically means that they do not contain enough information to recover f∗, and we can just
ignore those “useless” clusters.

716

In the second level of the sampling procedure, we sub-sample a ti from the set

S as the output according to the following distribution:

DS(ti) =
wi · |z(ti)|2∑
j∈[s]wj · |z(tj)|2

∀i ∈ [s].

Now, we explain why the two-level sampling procedure works. By the energy

estimation method discussed in Section 12.2.2.2, we know that:

∥z(t)∥2T ≈∥z(t)∥2S,w :=
s∑

i=1

wi · |z(ti)|2, and

∥z(t)e2πif∗t − z(t+ β)∥2T ≈∥z(t)e2πif
∗β − z(t+ β)∥2S,w :=

s∑

i=1

wi · |z(ti)e2πif
∗β − z(ti + β)|2.

The second level of the sampling procedure ensures that

Et∼DS

[|z(t)e2πif∗β − z(t+ β)|2
|z(t)|2

]
=

∑s
i=1wi|z(ti)e2πif

∗β − z(ti + β)|2∑s
j=1wj|z(tj)|2

=
∥z(t)e2πif∗β − z(t+ β)∥2S,w

∥z(t)∥2S,w
.

Hence, we get that

Et∼DS

[|z(t)e2πif∗β − z(t+ β)|2
|z(t)|2

]
≈ ∥z(t)e

2πif∗β − z(t+ β)∥2T
∥z(t)∥2T

< γ,

where the last step follows from Eq. (12.3). Then by Markov’s inequality, we get that

the sample α generated by the two-level sampling procedure satisfies |z(α)e2πif∗β −
z(α + β)|2 ≲ γ|z(α)|2 with high probability.

The costs of this two-level sampling procedure are calculated as follows. In

the first level, we takes |S| = Õ(k) samples from z(t), where each sample z(ti) =

((x ·H) ∗ G(j)
σ,b)(ti) can be computed by |supp(G(j)

σ,b(t))| = Õ(k) samples from x(t) in

Õ(k) time. Thus, the total time and sample complexity for the first level sampling

procedure is Õ(k) · Õ(k) = Õ(k2). In the second level, we further select one sample

from the output of the first level, which can be done in Õ(|S|) = Õ(k) times and does

not need any new sample.

717

We further discuss how large β we can choose in the sampling procedure since it

controls the estimation accuracy of f ∗.6 We note that the range of β is determined by

Eq. (12.3), which is an underlying assumption of our sampling procedure. To satisfy

this inequality, we need to guarantee that |e2πif∗β − e2πifβ| ≤ γ for any f ∈ f ∗ ±∆,

which implies that β ≤ O(γ/∆). For comparison, the upper bound of β in [CKPS16]

is only O(γ/(∆
√
∆T)) due to a stronger accuracy requirement there.7

12.2.2.2 Energy estimation and Signal Equivalent Method

In this section, we show that the sampling and reweighing method we use in

the significant sample generation procedure can accurately estimate the energy of z(t)

and z(t)e2πif∗t − z(t+ β) with a sample complexity almost reaching the information-

theoretic limit.

Lemma 12.4 (Informal version of Lemma 12.52 and Lemma 12.53). Suppose f ∗ is

a heavy frequency hashed to the j-th bin which satisfies the high SNR condition. Let

z∗(t) = (x∗ · H) ∗ G(j)
σ,b and z(t) = (x · H) ∗ G(j)

σ,b. Let U ⊆ [0, T] be an interval. Let

S = {t1, . . . , ts} be a set of O(k log(k)) i.i.d. samples from the distribution D defined

by Eq. (12.4) with weights wi = 1/(TsD(ti)). Then, with probability at least 0.8,

∥z(t)∥2S,w ≳ ∥z∗(t)∥2U and ∥z(t)e2πif∗t − z(t+ β)∥2S,w ≲ ∥z∗(t)∥2U ,

where ∥z(t)∥2U = (1/|U |) ·
∫
U
|z(t)|2dt.

To prove Lemma 12.4, we develop a Signal Equivalent Method. Below, we

sketch the proof of the first half of Lemma 12.4 on the energy estimation for z(t).

The second half follows similar ideas.

6By comparing z(t+ β) and z(t), we get an estimate of f∗β within some error ±b, which implies
an estimate of f∗ within an error ±b/β. Hence, larger β gives a higher accuracy of the frequency
estimation.

7[CKPS16] give an ℓ1-norm error guarantee in the frequency domain, i.e.,
∫ f∗+∆

f∗−∆
|e2πif∗β −

e2πifβ |df is small. To obtain an ℓ2-norm guarantee (like Eq. (12.3)), they need to apply Cauchy-
Schwarz inequality, which results in an extra

√
∆T factor in their upper bound of β.

718

(x̂ ∗ Ĥ)(f) · Ĝ(j)
σ,b(f)

f

(a) Signal with non-ideal filter Ĝ(j)
σ,b(f).

(x̂ ∗ Ĥ)(f) · Î(f)

f

(b) Signal with ideal filter Î(f).

Figure 12.4: The Signal Equivalent Method. This figure demonstrates that (x̂∗Ĥ)(f)·
Ĝ

(j)
σ,b(f) (left) can be approximated by (x̂ ∗ Ĥ)(f) · Î(f) (right). Î(f) (red curve on

the right) is the ideal filter that approximate Ĝ(j)
σ,b(f) (red curve on the left).

Energy estimation is also used in prior works [CKPS16, CP19a, CP19b, SSWZ22],

where a key component is the following energy bound for the interested function fam-

ily F:

sup
f∈F

sup
t∈[0,T]

|f(t)|2
∥f(t)∥2T

.

However, this approach is unlikely to work directly for our filtered signal z(t) since

it depends on the randomized hashing function. And under some hashing parameter

(σ, b), there always exists some signal x(t) such that z(t) = (x · H)(t) ∗ G(j)
σ,b(t) is in

ill-condition (e.g., the frequencies are not well-isolated, or large offset events happen).

As a result, bounding |z(t)|2
∥z(t)∥2T

for all z(t) of the form (x ·H)∗G(j)
σ,b(t) by a small number

is not easy. We bypass the issue by proving an energy bound only for those z(t)

under some well-hashed conditions (e.g. frequency is isolated and do not have a large

offset), and showing that such a “refined energy bound” is still sufficient to derive the

sample complexity of our algorithm.

The motivation of the Signal Equivalent Method comes from the special struc-

ture of z(t) = (x ·H)(t) ∗G(j)
σ,b(t) in the frequency domain. Notices that the observed

signal x(t)’s Fourier transform x̂(f) only contains some spikes (assuming small noise).

By convolution with Ĥ(f) (which corresponds to multiplying by H(t) in the time do-

main), (x̂ ∗ Ĥ)(f) fattens the spikes in the frequency domain (and by Parseval’s

719

theorem, the area of the signal in frequency domain equals to its energy). Then,

convolution with G(j)
σ,b(t) “zooms-in” to a narrow band around a single frequency. This

construction of z(t) motivates us to build a new signal z(t) = (x ·H)(t) ∗ I(t), where

I(t) is a filter function such that Î(f) = 1 when G
(j)
σ,b(t) > 1/2, and Î(f) = 0 other-

wise. To analyze the equivalent signal z(t), we improve the analysis of the filter H(t)

in [CP19b] and give a tighter bound on its value in a sub-interval of [0, T]. Then,

we show that the equivalent signal z(t) is almost equivalent to z(t) under some “good

conditions” (i.e., the frequency is isolated and no large offset). We also prove that the

ideal filter has several useful properties that can mush simplify the analysis (e.g., the

function I(t) is randomized, and with high probability, I(t) commutes with H(t)).

By the Signal Equivalent Method, we can first prove an energy bound for the

equivalent signal z(t), which follows from the Fourier-sparse signals’ energy bounds

(see Section 12.5). Then, it remains to show that the equivalent signals’ energy

bound can approximate the original filtered signal z(t)’s energy bound. We find that

the approximation error comes from two sources: the observation noise g(t) and the

approximation error z(t) − z(t). The first part of the error is small due to the high

SNR band condition (Eq. (12.2)). And the second part of the error is mitigated by the

tail-bound for G(j)
σ,b(t) and the heavy-cluster condition (Eq. (12.1)). More specifically,

the HashToBins procedure and the filter G(j)
σ,b(t) can bring some interference noise

from other bins to z(t), which is perfectly eliminated by the ideal filter I(t) in the

equivalent signal z(t). Hence, we need to bound this part of noise when we transfer

back from the equivalent signal to the true filtered signal. The tail bound of G(j)
σ,b(t)

ensures that adding small interference noise with frequencies far away from the center

of the cluster will not drastically affect z(t). However, by this argument, we can only

bound the distance between z(t) and z(t) by ∥x∗(t)∥T , which can be much larger

than ∥z(t)∥T . Hence, we need to use the heavy-cluster assumption to ensure that

∥x∗(t)∥T ≲ ∥z(t)∥T . Using these error-control techniques, we can prove that an

energy bound for z(t) implies an energy bound for z(t).

We give a comparison between ours and previous approaches for proving the

720

f

Ĝ
(j)
σ,b(f) Ĝ

(j)
σ,b(f)

(x̂∗ ∗ Ĥ)(f) (x̂∗ ∗ Ĥ)(f)

(ĝ ∗ Ĥ)(f) (ĝ ∗ Ĥ)(f)(ĝ ∗ Ĥ)(f)

Figure 12.5: An illustration of a filtered noisy signal. Ĝ
(j)
σ,b (the red curve) is the

HashToBins filter for the j-th bin. The noise in the filtered signal comes from two
parts: one is ĝ(f)∗ Ĥ(f) (the green signal), and another is the interference by signals
outside the bin (the blue and green signals in the middle).

energy estimation guarantee. [CKPS16] considers z(t) as a generic signal that satisfies

the time and frequency domains concentration properties8. We exploit “finer” struc-

ture of z(t) and obtain a stronger energy bound and reduce the number of samples

required in norm preserving. [CP19b] also proves a similar property (but only for

(x ·H)(t)). However, they assume that all the frequencies of x∗(t) are contained in a

small interval, making the task much easier. Our filtered signal z(t) does not satisfy

this condition due to the interference noise caused by the HashToBins procedure.

12.2.2.3 Time-domain concentration of filtered signals

The proof of Lemma 12.3 relies on an underlying assumption: the most of the

energy of the filtered signal is contained in the observation window [0, T]. That is,

we need the following lemma:

Lemma 12.5 (Informal version of Lemma 12.29). Let j ∈ [B] be a bin that contains

a heavy frequency. Let z(t) = (x∗ ·H) ∗G(j)
σ,b be the filtered signal. Then, we have

∫ +∞

−∞
|z(t)|2dt ≤ 1.35

∫ T

0

|z(t)|2dt.

A similar concentration property is also proved in [CKPS16], using a very

strict requirement on the H(t) filter that it decays at an exponential rate near the

8It means that most of the energy of z(t) (i.e., ∥z(t)∥2) lies in [0, T] and most of the energy of
ẑ(f) lies in a poly(k)/T length interval in frequency domain.

721

t
T0

· · ·

H(t)

G
(j)
σ,b(t) x∗(t)

Figure 12.6: A bad case that may break the time domain concentration of z(t) = (x ·
H)(t)∗G(j)

σ,b(t) in [0, T] when the filter decay slowly. x∗(t) (in blue) is a k-Fourier-sparse
signal. G(j)

σ,b (in green dashed) is the filter of frequency domain. H(t) (in red) is the
filter in time domain. On the one hand, since x∗(t) is very small in [T/poly(k), T (1−
/poly(k))], and H(t) is very small in [0, T/poly(k)]∪ [T (1− /poly(k)), T], the filtered
signal has very small energy within [0, T]. On the other hand, since the convolution
with G

(j)
σ,b(t) can bring some energy of x∗(t) passing the boundary of [0, T], and the

signal x∗(t) could be very large outside [0, T], (x · H)(t) ∗ G(j)
σ,b(t) may contain very

large energy in R\[0, T]. In this case, ∥z(t)∥2L2
≫ ∥z(t)∥2T .

boundary. More specifically, they require that H(t) is exponentially small not only

outside the time duration [0, T], but also in the shrinking boundary [0, T/poly(k)] ∪
[T −T/poly(k), T]. The additional constraint allows them to show that x(t)’s energy

near the boundary cannot “pass” the H filter, and the energy concentration of z(t)

easily follows. However, it also results in a large support ofH in the frequency domain,

which leads to a large error in the frequency estimation, and further causes large

output sparsity and time/sample complexity of their Fourier interpolation algorithm.

We resolve this issue by changing the filter function to the one defined in

[CP19b], which has much smaller support and thus saves time and sample complex-

ities. However, it is exponentially small outside [0, T], but only polynomially small

near the boundary. To prove Lemma 12.5, we use our Signal Equivalent Method

again. We construct an equivalent signal z(t) = (x∗ ·H) ∗ I(t) = (x∗ ∗ I) ·H(t), where

x∗(t) ∗ I(t) is a Fourier-sparse signal. Then, by some finer analysis on the H(t) filter

(see Lemma 12.24), we can show that most of the energy of x∗(t) ∗ I(t) is preserved

722

in [0, T], i.e.,
∫ +∞

−∞
|z(t)|2dt ≤ 1.1

∫ T

0

|z(t)|2dt.

Finally, by the approximation guarantee of Signal Equivalent Method, we get that

the energy concentration of z(t) implies the energy concentration of z(t).

12.2.3 Our techniques for Fourier interpolation

f∗
f

Ĝ
(j1)
σ1,b1

(f)

(x̂∗ ∗ Ĥ)(f)

(ĝ ∗ Ĥ)(f)

(a) High SNR, where j1 = hσ1,b1(f
∗)

f∗
f

Ĝ
(j2)
σ2,b2

(f)

(x̂∗ ∗ Ĥ)(f)

(ĝ ∗ Ĥ)(f)

(b) Low SNR, where j2 = hσ2,b2(f
∗)

Figure 12.7: The SNR of the same signal changes with different hash functions. In
(a), the noise g ·H is hashed outside the bin and suppressed by G(j1)

σ1,b1
. Thus, this bin

has high SNR. In (b), by a different hash function, the noise is hashed inside the bin
and G

(j2)
σ2,b2

preserves its energy. Thus, the SNR of the bin becomes very low, even if
the signal doesn’t change.

In this section, we discuss how to obtain a Fourier interpolation algorithm

with improved efficiency and output sparsity (Theorem 12.1) based on our frequency

estimation algorithm (Theorem 12.2).

We first remark that simply applying the original framework of Fourier Inter-

polation (e.g., [CKPS16]) and combining with an existing signal estimation algorithm

is still not enough to improve the previous algorithm, since the frequency estimation

algorithm has a low success probability and we cannot apply the success probability

boosting trick in [CKPS16] to increase it to 1 − ρ. More specifically, [CKPS16] first

boosts the success probability of their frequency estimation algorithm by their merge-

stage algorithm (which runs the frequency estimation algorithm for R = log(1/ρ)

723

times, sorts all recovered frequencies, and picks every R/2-th entry of the sorted list),

and then runs the signal estimation algorithm. It does not work here because our high

SNR band condition makes frequency estimation and signal estimation “entangled”.

More specifically, whether a frequency is contained in a high SNR bin (which needs

to be recovered) or not depends on the randomized hash function. However, if the

outputs of multiple runs of the frequency estimation algorithm are mixed together,

it is hard to justify which frequencies are necessary, since different runs use different

hash functions, resulting in different high SNR bins. In other words, if we still use

[CKPS16]’s boosting strategy, we cannot guarantee the final output of the frequency

estimation satisfies the requirement of the signal estimation algorithm.

We propose a new Fourier Interpolation framework that boosts the success

probability after the signal estimation step. That is, in each run of the constant

success probability frequency estimation algorithm, we reconstruct the signal imme-

diately. Let y1, . . . , yRp denote the reconstructed signals of Rp runs. Then, we boost

the total success probability by outputting the signal yj∗ :

j∗ = argmin
j∈[Rp]

median
i∈[Rp]

∥yj(t)− yi(t)∥2T .

By Chernoff bound, there are more than a half of yi’s being good approximations of

the ground-truth signal x∗(t). Using the median trick, we can show that yj∗ satisfies

the recovery guarantee with an exponentially small failure probability.

It remains to estimate the distance ∥yj(t) − yi(t)∥2T between different recon-

structed signals. Naively, it takes O(k̃2)-time since y1, y2 are k̃-Fourier sparse, and

it is enough to obtain the time complexity of our Fourier interpolation algorithm in

Theorem 12.1. We further propose an Õ(k̃ ·k)-time approximation algorithm for esti-

mating a Fourier-sparse signal’s energy, which could be of independent interest. The

main idea is to use ∥yi(t)−yj(t)∥2S,w to approximate ∥yi(t)−yj(t)∥2T , where the sample

set S and weights w are defined by the significant sample generation procedure in

Section 12.2.2.1. We show that if we take |S| = Õ(k̃), we can achieve a constant

724

approximation ratio in Õ(k̃ · k) time. In addition, we prove that even if we use the

approximated distances, the output signal yj∗ still satisfies the recovery guarantee of

Fourier interpolation.

12.3 Organization

In Section 12.4, we define our notations in this chapter. In Section 12.5, we

review several energy bounds for Fourier-sparse signal. In Section 12.6, we define

and show several properties of the frequency domain filters G(j)
σ,b. In Section 12.7, we

review the HashToBins strategy and prove that bad events only happen with small

probability. In Section 12.8, we define and show some properties of the time domain

filter H(t).

Based on the analysis of the filters, in Section 12.9, we study the ideal filter

and develop the Signal Equivalent Method. In Section 12.10, we show that the filtered

signal satisfies some concentration properties in both time and frequency domains.

Based on the Signal Equivalent Method and the concentration properties, in

Section 12.11, we prove an energy bound for filtered Fourier-sparse signals. In Sec-

tion 12.12, we further extend the energy bound for local-test signals. Then, in Section

12.13, we apply the energy bounds and describe how to use samples to empirically

estimate the energy of filtered signals and local-test signals. In Section 12.14, we

introduce our algorithm for generating significant samples. In Section 12.15, we use

the significant samples to do frequency estimation for Fourier sparse signals. Fi-

nally, in Section 12.16, we combine our frequency estimation algorithm with a signal

estimation procedure and boost the success probability of Fourier Interpolation.

Section 12.17 presents a flowchart of the key theorems/lemmas for our Fourier

interpolation algorithm.

725

12.4 Preliminaries

For any positive integer n, we define [n] to be the set {1, 2, · · · , n}. We define

i to be
√
−1. For a complex number z = a+ bi, we define |z| to be the magnitude of

z, i.e., |z| =
√
a2 + b2. For a function f , we use supp(f) to denote the support set of

f . We use f ≲ g to denote that there exists a constant C such that f ≤ C ·g. We use

f ≂ g to denote that f ≲ g ≲ f . For any function f , we use poly(f) to denote fO(1),

and Õ(f) to denote f · poly log(f). For an interval U ⊆ R, we use |U | to denote the

size of the interval, and we use Uniform(U) to denote the uniform distribution over

U .

We use ω to denote the exponent of matrix multiplication, i.e., nω denote the

time of multiplying an n×n matrix with another n×n matrix. Currently ω ≈ 2.373

[Wil12, AW21].

For two functions f and g, we use (f ∗g)(t) =
∫∞
−∞ f(s)g(t−s)ds to denote the

convolution of two functions f and g. And we use f ∗l to denote the l-fold convolution

of f , i.e., f ∗l(t) = f(t) ∗ f(t) ∗ · · · ∗ f(t). For a ∈ R+, we use recta(t) to denote the

box function with support set length a, i.e., recta(t) = 1[−a/2,a/2](t). For a ∈ R, we

use δa(f) to denote δ(f−a), where δ(f) is the Dirichlet function. We use round(x) to

denote rounding x ∈ R to the nearest integer. For x ∈ R, y ∈ R+, we use x (mod y)

to denote the smallest positive z ∈ R+ such that z ∈ x+ yZ.

We say x(t) is k-Fourier-sparse if:

x(t) =
k∑

j=1

vje
2πifjt.

We define x̂(f) to be the Fourier transform of x(t):

x̂(f) =

∫ ∞

−∞
x(t)e−2πiftdt.

We use Fk,F to denote the following family of signals:

Fk,F :=
{
x(t) =

k∑

j=1

vj · e2πifjt
∣∣∣ fj ∈ [−F, F], vj ∈ C ∀j ∈ [k]

}
.

726

Then, we define several norms for signal.

• For any discrete set S ⊆ R, the discrete norm of x with respect to a set S is

defined as

∥x(t)∥2S =
1

|S|
∑

t∈S

|x(t)|2,

and the weighted discrete norm with weights w ∈ RS is defined as

∥x(t)∥2S,w =
∑

t∈S

wt|x(t)|2.

• For any continuous interval U ⊂ R, the continuous U -norm of x is defined as

∥x(t)∥2U =
1

|U |

∫

U

|x(t)|2dt.

• For any T > 0, the continuous T -norm is defined as

∥x(t)∥2T =
1

T

∫ T

0

|x(t)|2dt.

• Let D be a probability distribution over R. The continuous D-norm is defined

as

∥x(t)∥2D =

∫ ∞

−∞
D(t)|x(t)|2dt.

• The L2-norm of x(t) is defined as

∥x(t)∥2L2
=

∫ ∞

−∞
|x(t)|2dt.

Throughout this chapter, we assume that x∗(t) ∈ Fk,F is our ground-truth

signal. And the observation signal is x(t) = x∗(t) + g(t), where g(t) is an arbitrary

noise function. Furthermore, we assume that x(t) can be observed at any point in

[0, T].

727

12.5 Energy Bounds of Fourier Sparse Signals

The energy bound of a function family F is the largest value achieved by a

function f ∈ F normalized by its norm (total energy) ∥f∥T . It connects the extreme

value and the average value of the functions in F, and is very useful in analyzing the

concentration property. In Chapter 11, we have already introduced several energy

bounds for one-dimensional and multi-dimensional signals. For completeness, we

restate some results for one-dimensional Fourier-sparse signals below.

In our setting, we take F = Fk,F to be the set of F -band-limit, k-sparse Fourier

signals. [Kós08] showed an energy bound that only depends on the sparsity k, without

any dependence on the time point t, band-limit F , time duration T , frequency gap

η = mini ̸=j|fi − fj|:

Theorem 12.6 ([Kós08]). For any t ∈ [0, T],

sup
x∈Fk,F

|x(t)|2
∥x∥2T

≲ k2.

The k2 energy bound can be further improved if we only consider the functions’

value at a fixed time point t:

Theorem 12.7 ([CP19a, BE06]). Let D := Uniform([−1, 1]). For any t ∈ (−1, 1),

sup
x∈Fk,F

|x(t)|2
∥x∥2D

≲
k

1− |t| .

12.6 Filter in Frequency Domain

Filtering is one of the most important techniques in sparse Fourier transform

literature. In this section, we introduce the frequency domain filter function Ĝ(j)
σ,b(f),

which is the key to implement the HashToBins strategy. We first review the the

construction given by [CKPS16] with some different parameter settings and show

some known properties (see Section 12.6.1). Then, we prove a new property of the

filter functions: the frequency domain covering property (see Section 12.6.2).

728

12.6.1 Frequency domain filter construction

In this section we review the construction and several basic properties of the

frequency domain filter G(j)
σ,b(t), Ĝ

(j)
σ,b(f).

Definition 12.1 (G-filter’s construction, [CKPS16]). Given B > 1, δ > 0, α > 0.

Let l := Θ(log(k/δ)). Define GB,δ,α(t) and its Fourier transform ĜB,δ,α(f) as follows:

GB,δ,α(t) := b0 · (rect B
(απ)

(t))⋆l · sinc(t π
2B

),

ĜB,δ,α(f) := b0 · (sinc(Bαπf))l ∗ rect π
2B
(f),

where b0 = Θ(B
√
l/α) is the normalization factor such that Ĝ(0) = 1.

Definition 12.2 (Filter for bins). Given B > 1, δ > 0, α > 0, let

Ĝ(f) := ĜB,δ,α(2π(1− α)f)

where GB,δ,α is defined in Definition 12.1. For any σ > 0, b ∈ R and j ∈ [B], define

G
(j)
σ,b(t) :=

1

σ
G(t/σ)e2πit(j/B−σb)/σ,

and its Fourier transformation:

Ĝ
(j)
σ,b(f) =

∑

i∈Z

Ĝ(σf + σb− i− j

B
).

Then, we provide several properties of G and G
(j)
σ,b(t), which is proven by

[CKPS16].

Lemma 12.8 (G-filter’s properties, [CKPS16]). Given B > 1, δ > 0, α > 0, let

G := GB,δ,α(t) be defined in Definition 12.1. Then, G satisfies the following properties:

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α) 2π
2B

.

Property II : Ĝ(f) ∈ [0, 1], if (1− α) 2π
2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂ [
l

2
· −B
πα

,
l

2
· B
πα

].

Property V : max
t
|G(t)| ≲ poly(B, l).

729

Ĝ
(j)
σ,b(f) Ĝ

(j+1)
σ,b (f) Ĝ

(j+2)
σ,b (f)

f

Figure 12.8: Filters with the frequency domain covering property. The red, green, and
blue curves represent the filters Ĝ(j)

σ,b, Ĝ
(j+1)
σ,b , and Ĝ(j+2)

σ,b , respectively. The frequency
domain covering property ensures that for each frequency f ∈ R, there are at least
one but no more than two filters satisfying Ĝ(j)

σ,b(f) ≥ 1− δ.

Lemma 12.9. Let G(j)
σ,b(t) be defined in Definition 12.2. Let offset function

oσ,b(f) = |(σf + σb− j

B
)− 1

2
(mod 1)| − 1

2
.

Then,

Property I : Ĝ
(b)
σ,b(f) ∈ [1− δ/k, 1], if |oσ,b(f)| ≤ (1− α) 2π

2B
.

Property II : Ĝ
(b)
σ,b(f) ∈ [0, 1], if (1− α) 2π

2B
≤ |oσ,b(f)| ≤

2π

2B
.

Property III : Ĝ
(b)
σ,b(f) ∈ [−δ/k, δ/k], if |oσ,b(f)| >

2π

2B
.

Property IV : supp(G
(b)
σ,b(t)) ⊂ [

l

2
· −B
πα

,
l

2
· B
πα

].

Property V : max
t
|G(b)

σ,b(t)| ≲ poly(B, l).

12.6.2 Frequency domain covering

In this section, we show that the filter functions {Ĝ(j)
σ,b}j∈[B] form a proper

cover for the frequency domain. Roughly speaking, for any frequency f ∈ R, we show

that the sum of all filters’ values (squared) at f is very close to one. This property is

very important for our high SNR band assumption.

Lemma 12.10. For any f ∈ R, there exists at least one j ∈ [B] such that

Ĝ
(j)
σ,b(f) ≥ 1− δ

k
.

730

Proof. We first prove that the lemma holds for those f ∗ where there exists a j ∈ [B]

such that

f ∗ ∈ [−b+ j

σB
− 1

2σB
,−b+ j

σB
+

1

2σB
] +

1

σ
Z.

For such f ∗, we have

Ĝ
(j)
σ,b(f

∗) =
∑

i∈Z

Ĝ(σf ∗ + σb− i− j

B
)

≥ Ĝ((σf ∗ + σb− j

B
) mod 1)

≥ 1− δ

k
,

where the first step follows from the definition of Ĝ(j)
σ,b(f

∗), the second step is straight

forward, the third step follows from

σf ∗ + σb− j

B
mod

1

σ
∈ [− 1

2B
,
1

2B
]

and Lemma 12.9 Property I and Definition 12.2.

It remains to show that for an arbitrary f ∈ R, the condition still holds. Let

j := round((σf + σb mod 1) ·B).

We have

j ∈ [(σf + σb mod 1) ·B − 1

2
, (σf + σb mod 1) ·B +

1

2
],

which implies that

j ∈ [(σf + σb) ·B − 1

2
, (σf + σb) ·B +

1

2
] +BZ.

Thus,

f ∈ [−b+ j

σB
− 1

2σB
,−b+ j

σB
+

1

2σB
] +

1

σ
Z.

The lemma is then proved.

731

Lemma 12.11. For any f ∈ R,

B∑

j=1

|Ĝ(j)
σ,b(f)|2 ≂ 1.

Proof. By Lemma 12.10, we have that for any f ∈ R, there exist at least a j0 ∈ [B]

such that

Ĝ
(j0)
σ,b (f) ≥

1

2
. (12.5)

Moreover, we have that

B
δ

k
= O(δ) ≤ 0.01. (12.6)

where the first step follows from B = O(k), the second step follows from δ = o(1) ≤
0.01.

In the followings, we give lower and upper bounds for
∑B

j=1 |Ĝ
(j)
σ,b(f)|2.

Lower bound:

B∑

j=1

|Ĝ(j)
σ,b(f)|2 ≥ |Ĝ

(j0)
σ,b (f)|2 ≳ 1.

where the first step follows from Lemma 12.9 Property I, II, and III, the second step

follows from Eq. (12.5), the third step follows from Eq. (12.6) and δ/k ≤ 1.

Upper bound:

B∑

j=1

(Ĝ
(j)
σ,b(f))

2 ≤ 2 +B(
δ

k
)2 ≲ 1

where the first step follows from the definition of Ĝ(j)
σ,b(f), the second step follows from

Eq. (12.6) and δ/k ≤ 1.

Combining them together, the lemma follows.

732

12.7 Hashing the Frequencies

In this section, we review the HashToBins strategy, which an important

tool for Sparse Fourier Transform [HIKP12a, IKP14, PS15, CKPS16, Kap16, Kap17,

JLS23]. Ideally, the HashToBins procedure randomly splits the frequency domain

into B bins so that each bin contains at most one frequency. Then, the k-sparse

Fourier reconstruction problem is reduced to a much easier one-sparse Fourier recon-

struction problem.

We first describe the hashing strategy(see Section 12.7.1). However, there are

two kinds of bad events such that the HashToBins procedure cannot work as good

as we want: two frequencies are hashed to the same bin, or some frequency lies close

to the boundary of a bin. We show that these bad events only happen with small

probabilities (see Sections 12.7.2 and 12.7.3) .

12.7.1 HashToBins procedure

Here, we introduce the hash function and how to compute the resulting signal

of the HashToBins procedure.

We first give the definition of the hashing function:

Definition 12.3 (Hash function, [CKPS16]). Let πσ,b(f) = σ(f + b) (mod 1) and

hσ,b(f) = round(πσ,b(f) · B) be the hash function that maps frequency f ∈ [−F, F]
into bins {0, · · · , B − 1}.

Intuitively, the j-th bin corresponding to f such that Ĝ(j)
σ,b(f) ≥ 1 − δ/k. In

general, we set B = Θ(k) and σ ∈ [1
B∆
, 2
B∆

] chosen uniformly at random, where

∆ = k · |supp(Ĥ(f))|.

Then, we show how to compute the HashToBins:

Lemma 12.12 (Lemma 6.9 in [CKPS16]). Let zj(t) = x(t) ∗ G(j)
σ,b(t). Let a := t/σ

733

Let u ∈ CB and for j ∈ [B],

uj :=
∑

i∈Z

x(σ(a− j − iB))e−2πiσb(j+iB)G(j + iB).

Then, we have that for all j ∈ [B],

ûj = zj(σa).

Note that when we apply Lemma 12.12, we take x(t) = x(t) · H(t), where

the latter x(t) is the observable signal, the H(t) is the filter of time domain (see

Section 12.8).

12.7.2 Frequency isolation

f

Ĝ
(j)
σ,b(f) Ĝ

(j)
σ,b(f)Ĝ

(j)
σ,b(f)

(x̂∗ ∗ Ĥ)(f)

Figure 12.9: An example of the well-isolation event in the frequency domain. Ĝ
(j)
σ,b

(the red curve) is the filter of frequency domain for the j-th bin and H(t) is the filter
of time domain. x̂∗(f) ∗ Ĥ(f) (the blue curve) is the filtered ground-truth signal.
Under the well-isolation event, there is one small interval that contains most of the
energy. In other words, each bin only contains one-cluster of frequencies.

The goal of this section is to define and analyze the Frequency Isolation event.

Frequency Isolation requires that the energy of the hashed signal in each bin is concen-

trated in a small band in the frequency domain. This condition is roughly equivalent

to say that each bin only contains one cluster of frequencies. This condition is very

useful in proving the concentration of the filtered signal in the frequency domain,

which serves as one of the basic assumptions of our significant sample generation

procedure.

734

We first restate Claim 12.13, which was proved in [CKPS16]. This claim states

that if two frequencies are not close to each other, with a large probability, they are

also not hashed into the same bin.

Claim 12.13 (Collision probability, [CKPS16]). For any ∆0 > 0, let σ be a sample

uniformly at random from [1
4B∆0

, 1
2B∆0

]. Then, we have:

1. If 4∆0 ≤ |f+ − f−| < 2(B − 1)∆0, then Pr[hσ,b(f
+) = hσ,b(f

−)] = 0.

2. If 2(B − 1)∆0 ≤ |f+ − f−|, then Pr[hσ,b(f
+) = hσ,b(f

−)] ≲ 1
B
.

We then recall the formal definition of the well-isolation event:

Definition 12.4 (Well-isolation condition). We say that a frequency f ∗ is well-

isolated under the hashing parameters (σ, b) if, for j = hσ,b(f
∗), the hashed signal

(in frequency domain) ẑ(j)(f) := x̂ ·H(f) · Ĝ(j)
σ,b(f) satisfies

∫

If∗

|ẑ(j)(f)|2df ≲ ε · TN2/k,

over the interval If∗ = (−∞,∞) \ (f ∗ −∆, f ∗ +∆).

The following lemma shows the probability of the Frequency Isolation event

under the randomized hashing functions:

Lemma 12.14 (Lemma 7.19 in [CKPS16]). Let f ∗ be any frequency. Then f ∗ is

well-isolated by hashing parameters (σ, b) with probability ≥ 0.9.

12.7.3 Large offset event

Large offset event is another kind of bad event for the HashToBins procedure,

which happens when a ground-truth frequency is hashed into the changing edge of the

filterG(j)
σ,b. The large offset event breaks the guarantee of our signal equivalent method,

and thus affects the performance of our significant sample generation and frequency

estimation. Fortunately, this bad event only happens with a small probability.

735

We first state a tool for analyzing the hashing procedure, which intuitively

says that the modular of a random sampling from a long interval is almost uniformly

distributed:

Lemma 12.15 ([PS15, CKPS16]). For any T̃ , and 0 ≤ ε̃, δ̃ ≤ T̃ , if we sample σ̃

uniformly at random from [A, 2A], then

2ε̃

T̃
− 2ε̃

A
≤ Pr

[
σ̃ (mod T̃) ∈ [δ̃ − ε̃, δ̃ + ε̃]

]
≤ 2ε̃

T̃
+

4ε̃

A
. (12.7)

Then, we define the large offset event:

Definition 12.5 (Large offset event). Given σ ∈ R+, b ∈ R. Let G(j)
σ,b and δ be defined

as in Definition 12.1. For any k-Fourier-sparse signal x, we say the Large Offset event

happens, if for any f ∈ supp(x̂ ·H) and any j ∈ [B],

Ĝ
(j)
σ,b(f) ∈

[δ
k
, 1− δ

k

]
.

We analyze the probability of large offset event in the following lemma:

Lemma 12.16. Let ∆0 = O(∆), σ̂ = 1/∆0. Given b = O(max{F, 1/σ̂}), suppose

σ ∼ [0.5σ̂, σ̂] uniformly at random. Then, with probability at least 0.99, the Large

Offset event does not happen.

Furthermore, with probability at least 0.99, for any j ∈ [k], for any f ∈ fj +
supp(Ĥ), it holds that Ĝ(j)

σ,b(f) /∈ [δ/k, 1− δ/k].

Proof. Let α be defined as in Definition 12.1. Let IG := {f ∈ R | Ĝ(j)
σ,b(f) ∈ [δ/k, 1−

δ/k]}. Following from Lemma 12.9 Property II, we have that sG := |IG (mod 1/σ)| ≤
10α∆0/B.

Let δf∗(f) be the Dirichlet function at f ∗. For any fj with j ∈ [k], let Ifj :=

supp(Ĥ ∗ δfj). We also define

I ′fj := {f ∈ R | [f − sG, f + sG] ∩ Ifj ̸= ∅}.

736

Since supp(x̂ ·H) = supp(Ĥ ∗ x̂) ⊆ ⋃k
j=1 supp(Ĥ ∗δfj), we know that the Large Offset

event happens if

(k⋃

j=1

Ifj

)
∩ IG ̸= ∅.

Thus, it suffices to bound Pr[(∪kj=1Ifj) ∩ IG ̸= ∅].

First, for any j ∈ [k], we have

|I ′fj | ≤ |Ifj |+ 2sG ≤ ∆/B + 2sG ≤ O(∆/B) (12.8)

where the first step follows from the definition of ∆, the second step follows from

sG ≤ 10α∆0/B and the setting of α.

We have that

Pr
[1

2Bσ
+

j

Bσ
− b (mod 1/σ) ∈ I ′fj (mod 1/σ)

]

= Pr
[1

2B
+
j

B
(mod 1) ∈ σb+ σI ′fj (mod 1)

]

= Pr
[
σb+ σfj (mod 1) ∈ 1

2B
+
j

B
+ σ[−|I ′fj |/2, |I ′fj |/2] (mod 1)

]

≤ Pr
[
σb+ σfj (mod 1) ∈ 1

2B
+
j

B
+ σ̂[−|I ′fj |/2, |I ′fj |/2] (mod 1)

]

≤ σ̂|I ′fj |+
2σ̂|I ′fj |

0.5σ̂b+ 0.5σ̂fj

≤ 2σ̂|I ′fj |

≤ 2σ̂ ·O(∆/B)

≤ O(1/B) (12.9)

where the first steps are straightforward, the second step follows from the center of

I ′fj is fj, the length of the interval I ′fj is |I ′fj |, and a ∈ [c− b, c+ b]⇒ c ∈ [a− b, a+ b],
the third step follows from σ ≤ σ̂, the forth step follows by applying Lemma 12.15

737

with the following parameters setting:

T̃ = 1,

δ̃ =
1

2B
+
j

B
,

ε̃ = σ̂|I ′fj |/2,

A = 0.5σ̂b+ 0.5σ̂fj,

σ̃ = σb+ σfj,

the fifth step follows from 0.5b ≥ F ≥ fj and 0.5bσ̂ ≥ 1, the sixth step follows from

Eq. (12.8), the last step follows from the definition of σ̂.

Similarly, we have that

Pr[− 1

2Bσ
+

j

Bσ
− b (mod 1/σ) ∈ I ′fj (mod 1/σ)] ≤ O(1/B) (12.10)

Note that IG is the edge of filter G(j)
σ,b, under the meaning of module 1/σ,

the center of G(j)
σ,b is j

Bσ
− b, the length of G(j)

σ,b is 1
Bσ

, the length of the edge is sG.

Moreover, Ifj is an interval center at fj and length |supp(Ĥ)|. We can judge whether

two interval have intersect Ifj∩IG ̸= ∅ by moving the length of one interval to another

and judging whether − 1
2Bσ

+ j
Bσ
− b (mod 1/σ), 1

2Bσ
+ j

Bσ
− b (mod 1/σ) (the end

point of IG) contains in I ′fj . By combining Eq. (12.9) and Eq. (12.10), we have that

Pr[Ifj ∩ IG ̸= ∅] ≤ O(1/B) +O(1/B) = O(1/B). (12.11)

Therefore, by a union bound over all j ∈ [k], we get that

Pr[(∪kj=1Ifj) ∩ IG ̸= ∅] ≤
k∑

j=1

Pr[Ifj ∩ IG ̸= ∅] ≤
k∑

j=1

O(1/B) ≤ 0.01,

where the first step is by union bound, the second step follows from Eq. (12.11), and

the last step follows from B = O(k). By the definitions of Ifj and IG, it implies

that with probability at least 0.99, for any j ∈ [k], and any f ∈ fj + supp(Ĥ),

Ĝ
(j)
σ,b(f) /∈ [δ/k, 1− δ/k].

The proof of the lemma is then completed.

738

Lemma 12.17. For x∗(t) be a k-Fourier-sparse signal. For frequency f ∗ ∈ supp(x̂∗),

let j = hσ,b(f
∗) be the bin that f ∗ hashed into. If Large Offset event not happens, then

for f ∈ supp(x̂∗ ∗ Ĥ),

Ĝ
(j)
σ,b(f) ∈ [1− δ/k, 1]

Proof. Since Large Offset event not happens, for f ∈ R,

Ĝ
(j)
σ,b(f) ≥ 1− δ/k or Ĝ(j)

σ,b(f) ≤ δ/k.

Since Large Offset event not happens and j = hσ,b(f
∗), we have that for

f ∈ supp(x̂∗ ∗ Ĥ),

Ĝ
(j)
σ,b(f) ≥ 1− δ/k.

By Lemma 12.9 Property I, II, and III, we have that

Ĝ
(j)
σ,b(f) ∈ [1− δ/k, 1].

12.8 Filter in Time Domain

t
T0 a b

H(t)

Figure 12.10: The filter H(t) of time domain. We use decay region to refer [0, a] and
[b, T]. We use fluctuation region to refer [a, b].

In this section, we discuss the filter H(t) of time domain, which is an analogous

of the ideal filter rectT (t). In the Fourier interpolation problem, we only care about

the time duration [0, T]. Thus, applying the filter rectT (t) to the observation signal

739

x(t) can cut-off the unobservable part and much simplify the analysis. Since rectT (t)

have an infinite band width, for efficient computation, we need to truncate rectT (t)’s

frequency domain to a poly(k)/T -length interval. However, the frequency truncation

loses the high frequency components of the ideal filter rectT (t), and the resulting

filter H(t) is no longer sharp around the boundary of [0, T]. More specifically, H(t) is

exponentially close to 1 within [T/poly(k), T (1−1/poly(k))], and exponentially close

to 0 outside [0, T].

We first provide the construction of H(t) in [CP19b] and review some known

properties (see Section 12.8.1). Then, we discuss the normalization factor of the

filter and provide a polynomial upper bound of it (see Section 12.8.2). This bound

is crucial for our fluctuation bound of the H(t). Next, we bound the fluctuation of

H(t) during a shrinking interval [T/poly(k), T (1−1/poly(k))] and prove that H(t) is

exponentially close to 1 in that range (see Section 12.8.3). Furthermore, we prove that

H(t) preserve the energy of Fourier sparse signal in the duration [0, T] (see Section

12.8.4).

12.8.1 Time domain filter construction

We first introduce an growth rate bound from [CP19b]. This theorem bound

the growth of Fourier sparse signal outside of the duration [0, T] by an exponent

function of base t. This bound in this theorem is high related to the size of the

support set of Ĥ(f).

Theorem 12.18 ([CP19b]). There exists S = O(k2 log k) such that for any |t| > T

and g(t) =
∑k

j=1 vj · e2πifjt, |g(t)|2 ≤ poly(k) · E
x∈[−T,T]

[|g(x)|2] · | t
T
|S.

The definition of the time domain filter H(t) in [CP19b] is given in below.

Intuitively, it uses some powers of sinc(t) to approximate δ0(t) ∗ rect1(t) = rect1(t),

thus one can get finite band-limit and good approximation at the same time.

740

Definition 12.6 (Definition 4.1 in [CP19b]). Given an energy bound R satisfying

|x(t)|2 ≲ R∥x(t)∥2T , ∀t ∈ [0, T] and k-Fourier sparse signal x(t),

the growth rate S a power of two, C ∈ 2Z, and C0 ∈ πZ,we define the filter function:

H1(t) = s0 ·
(
sinc(C0R · t)C logR · sinc

(
C0 · S · t

)C · sinc
(C0 · S

2
· t
)2C · · · sinc

(
C0 · t

)C·S
)
∗ rect1(t),

where s0 ∈ R+ is a parameter to normalize H1(0) = 1. Its Fourier transform is as

follows:

Ĥ1(f) = s0 ·
(
rectC0R(f)

∗C logR ∗ rectC0·S(f)
∗C ∗ rectC0·S

2
(f)∗2C ∗ · · · ∗ rectC0(f)

∗CS
)
· sinc(f/2).

We then state some basic properties of the time domain filter in [CP19b]. The

following lemma bounds the support size of Ĥ1(f):

Lemma 12.19 ([CP19b]). Let C0 = Θ(C). we have that

|supp(Ĥ1(f))| = O(C2R logR + C2S logS).

The following theorem shows some time domain properties of the filter:

Theorem 12.20 (Theorem 4.2 in [CP19b]). Let R, S > 0, let C ∈ 2Z, C0 ∈ πZ,

C0 = Θ(C), and define α = (1
2
+ 1.2

πC0R
). Consider any function x satisfying the

following two conditions:

1. sup
t∈[−1,1]

[
|x(t)|2

]
≤ R · E

t∈[−1,1]

[
|x(t)|2

]
,

2. poly(R) · E
t∈[−1,1]

[
|x(t)|2

]
· |t|S for t /∈ [−1, 1],

Then, we have that the filter function H(t) = H1

(
αt
)

satisfies

• Part 1.
∫ 1

−1 |x(t) ·H
(
t
)
|2dt ≥ 0.9

∫ 1

−1 |x(t)|2dt,

• Part 2.
∫ 1

−1 |x(t) ·H
(
t
)
|2dt ≥ 0.95

∫∞
−∞ |x(t) ·H

(
t
)
|2dt,

741

• Part 3. |H(t)| ≤ 1.01 for any t.

Throughout this chapter, we denote H(t) as the following re-scaling of H1(t):

Definition 12.7. Let α = (1
2
+ 1.2

πC0R
). Let H1(t) be defined as in Definition 12.6.

The filter H(t) is defined as:

H(t) := H1(αt).

and setting R = S = O(k2), R = 2s, where s ∈ Z+, C = O(log(1/δ1)), C ∈ 2Z,

C0 = Θ(C) and C0 ∈ πZ.

12.8.2 Normalization factor of the filter

The goal of this section is to prove Lemma 12.21, an upper-bound for the

normalization factor s0. This lemma will be used later to ensure that the scaling

factor will not break the exponential small fluctuation of Section 12.8.3. We note that

the same result has been proved in [CP19b], and we reprove it below for completeness.

Lemma 12.21 (Lemma 7.2 in [CP19b]). It holds that

s0 ≤ O(CR
√
C logR).

Proof. We first have that,

H1(t) = s0 · (sinc(C0R · t)C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· t
)2i·C

) ∗ rect1(t)

= s0 ·
∫ ∞

−∞
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C · rect1(t− τ)dτ

= s0 ·
∫ t+0.5

t−0.5
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ,

742

where the first step follows from the definition of H1(t), the second step follows from

the definition of the convolution, the third step follows from the definition of rect2(t)

function. Thus,

H1(0) = s0 ·
∫ +0.5

−0.5
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

Let U := (2C0 logR)
−1/2. We have that

∫ +0.5

−0.5
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

≥
∫ + 1

πC0R

− 1
πC0R

sinc(C0R · τ)C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

=
1

πC0R

∫ +1

−1
sinc(

υ

π
)C logR ·

log(S)∏

i=0

sinc
(υ
2iπ

)2i·C
dυ

≥ 1

πC0R

∫ +U

−U
sinc(

υ

π
)C logR ·

log(S)∏

i=0

sinc
(υ
2iπ

)2i·C
dυ

≥ 1

πC0R

∫ +U

−U
(1− υ2

6
)C logR ·

log(S)∏

i=0

(1− υ2

4i6
)2

i·Cdυ

≥ 1

πC0R

∫ +U

−U
(1− C logR · υ

2

6
−

log(S)∑

i=0

C · υ
2

2i6
)dυ

≥ 1

πC0R

∫ +U

−U
(1− C logR · υ

2

3
)dυ

=
1

πC0R
(2U − 2C logR · U

3

9
)

≥ 1

πC0R
√
2C0 logR

, (12.12)

where the first step follows from R = O(k2), C0 = O(log(1/δ1)), 0.5 ≥ 1
πC0R

, second

step follows from changing the variable ν = πCR·τ , the third step follows from U < 1,

the forth step follows from Fact 12.22, the fifth step is follows from (1− a)(1− b) ≥
1− a− b, the sixth step follows from log(R) > 2, the seventh step is straight forward,

the eighth step follows from setting U = (2C0 logR)
−1/2 and C0 = Θ(C).

743

As a result, we have that

s0 ≤ H1(0) · πCR
√

2C logR = πCR
√

2C logR

where the first step follows from Eq. (12.12), the second step follows from H1(0) = 1.

Fact 12.22. For any t ∈ R,

1− (πt)2

3!
≤ sinc(t) ≤ 1.

12.8.3 Fluctuation bound

The idea filter rectT (t) has a constant value 1 in the interval [0, T]. Due to

the frequency domain truncation in H(t), it deviates from rectT (t) with different

magnitudes in different regions. In this section, we prove the Lemma 12.23, which

shows that H(t) is fluctuating near 1 in the “interior” of [0, T] (i.e., [0 + T
poly(k)

, T −
T

poly(k)
]). It serves as an important tool for analyzing the error in our signal equivalent

method.

Lemma 12.23. For filter H1(t) defined in Definition 12.6 with the parameters C =

log(1/δ1), C0 = Θ(C), R = S, and S = 2s (where s ∈ Z+), C0 ∈ πZ, we have that

H1(t) ∈ [1− δ1, 1],∀|t| < 0.5− π

C0R
.

Moreover, H(t) ∈ [1− δ1, 1] for any t ∈ [T
2
− α−1(1

2
− π

C0R
)T
2
, T
2
+ α−1(1

2
− π

C0R
)T
2
].

Proof. The proof consists of two parts: upper bound and lower bound. For the upper

bound, the idea is to compare the value of H(t) with H(0) by analyzing the gradient

of H(t). And the lower bound follows from directly estimating the integral of the

product of sinc functions.

744

Upper bound: We have that H1(0) = 1 by definition. We will show H1(t) ≤ 1 by

proving H1(t) is monotonically decreasing in t.

We have that,

H1(t) = s0 · (sinc(C0R · t)C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· t
)2i·C

) ∗ rect1(t)

= s0 ·
∫ ∞

−∞
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C · rect1(t− τ)dτ

= s0 ·
∫ t+0.5

t−0.5
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ, (12.13)

where the first step follows from the definition of H1(t), the second step follows from

the definition of the convolution, the third step follows from the definition of rect1(t)

function.

Since C logR ∈ 2Z, 2i · C ∈ 2Z, we have that

sinc(C0R · τ)C logR ≥ 0,

and

sinc
(C0 · S

2i
· τ
)2i·C ≥ 0.

Moreover, by setting C0 = πZ, we have that

2 mod
2π

C0

= 0. (12.14)

By Eq. (12.14), we have that

sin
(C0 · S

2i
· (t+ 0.5)

)
= sin

(C0 · S
2i
· (t− 0.5)

)
, ∀i ∈ {0, · · · , log(S)}, and

sin(C0R · (t+ 0.5)) = sin(C0R · (t− 0.5)).

Furthermore, for any t > 0,
(C0 · S

2i
· (t+ 0.5)

)−1 ≤
(C0 · S

2i
· (t− 0.5)

)−1
, ∀i ∈ {0, · · · , log(S)}, and

(C0R · (t+ 0.5))−1 ≤ (C0R · (t− 0.5))−1.

745

Thus,

| sinc
(C0 · S

2i
· (t+ 0.5)

)
| ≤ | sinc

(C0 · S
2i
· (t− 0.5)

)
|, ∀i ∈ {0, · · · , log(S)}, and

| sinc(C0R · (t+ 0.5))| ≤ | sinc(C0R · (t− 0.5))|. (12.15)

Then, we have that

H ′1(t)

s0
= sinc(C0R · (t+ 0.5))C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· (t+ 0.5)

)2i·C

− sinc(C0R · (t− 0.5))C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· (t− 0.5)

)2i·C

< 0,

where the first step is straight forward, the second step follows from Eq. (12.15).

Thus, H1(t) < H1(0) = 1 for any t > 0.

Similarly, we also have that H1(t) < H1(0) = 1 for any t ≤ 0 since H1(t) is

symmetric with respect to t.

746

Lower bound: We have that, for any |t| < 0.5− π
C0R

,

∫ t−0.5

−∞
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

=

∫ ∞

0.5−t
sinc(C0R · τ)C log(R) ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

≤
∫ ∞

0.5−t
sinc(C0R · τ)C log(R)dτ

≤
∫ ∞

0.5−t
(C0R · τ)−C log(R)dτ

≤
∫ ∞

π
C0R

(C0R · τ)−C log(R)dτ

=
1

C0R

∫ ∞

π

υ−C log(R)dυ

=
1

C0R

1

C log(R)− 1
π−C log(R)+1

≲
1

C2
0R log(R)

δ1, (12.16)

where the first step is straight forward, the second step follows from sinc(x) ≤ 1,

the third step is follows from sinc(x) ≤ 1/x, the forth step follows follows from

0.5− t ≥ π
C0R

, the fifth step follows from υ := CRτ , the sixth step is straight forward,

the seventh step follows from log(R) > 1, C ≥ log(1/δ1).

747

Hence, for any t > 0,

H1(t) = s0 ·
∫ t+0.5

t−0.5
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

= H1(0) + s0 ·
∫ t+0.5

1

sinc(C0R · τ)C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

− s0 ·
∫ t−0.5

−1
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

≥ H1(0)− s0 ·
∫ t−0.5

−∞
sinc(C0R · τ)C logR ·

log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C

dτ

≥ H1(0)− s0O(
1

C2
0R log(R)

)δ1

= 1− s0O(
1

C2
0R log(R)

)δ1

≥ 1−O(δ1),

where the first step follows from Eq. (12.13), the second step is straight forward, the

third step follows from

sinc(C0R · τ)C logR ·
log(S)∏

i=0

sinc
(C0 · S

2i
· τ
)2i·C ≥ 0, ∀τ ∈ R

the forth step follows from Eq. (12.16), the fifth step follows from H1(0) = 1, the

sixth step follows from Lemma 12.21.

By re-scaling δ1, we get that H(t) ≥ 1− δ1 for any |t| < 0.5− π
C0R

.

The lemma then follows from the upper and lower bounds.

12.8.4 Energy preserving of the time domain filter

In this section, we show the properties of H(t) that we use in the rest of the

chapter.

748

We first prove Lemma 12.24, which summarizes the results in above sections

and prove the energy preserving property of H(t).

Lemma 12.24. The filter function (H(t), Ĥ(f)) has the following properties:

Property I : |H(t)| ≤ 1.01, ∀t ∈ R

Property II : 1− δ1 ≤ H(t) ≤ 1, ∀|t| < α−1(
1

2
− π

CR
)

Property III : |supp(Ĥ(f))| ≤ O(k2 log2(k) log2(1/δ1))

Property IV :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect2(t))
∣∣2dt < 0.1

∫ +∞

−∞
|x∗(t) · rect2(t)|2dt

Property V :

∫ +∞

−∞
|x∗(t) ·H(t) · rect2(t)|2dt ∈ [0.9, 1.1] ·

∫ +∞

−∞
|x∗(t) · rect2(t)|2dt

Proof. We prove each of the five properties in below.

Property I: By Theorem 12.20 Part 3, we have that

|H(t)| ≤ 1.01.

Property II: By Lemma 12.23, we have that

1− δ1 ≤ H(t) ≤ 1, ∀|t| < α−1(
1

2
− π

CR
).

Property III: By the k-Fourier-sparse signals’ energy bound (Theorem 12.6), we

have that

R = O(k2).

By Theorem 12.18, we have that

S = O(k2 log k).

Then, by Lemma 12.19, we have that

|supp(Ĥ(f))| = C2R logR + C2S logS

= O(log(1/δ1))
2 ·O(k2 log k log(k2 log k))

= O(k2 log2 k log2(1/δ1)).

749

Property IV: We have that
∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt

=

∫ +∞

−∞

∣∣x∗(t) ·H(t)
∣∣2dt−

∫ 1

−1

∣∣x∗(t) ·H(t)
∣∣2dt

≤ 0.06

∫ +1

−1

∣∣x∗(t) ·H(t)
∣∣2dt

≤ 0.1

∫ +1

−1

∣∣x∗(t)
∣∣2dt

= 0.1

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt,

where the first step is straight forward, the second step follows from Theorem 12.20

Part 2, the third step follows from Theorem 12.20 Part 3, the forth step is straight

forward.

Property V: We first prove the upper bound:
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt

=

∫ +1

−1
|x∗(t) ·H(t)|2dt

≤ 1.1

∫ +1

−1
|x∗(t)|2dt

= 1.1

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt,

where the first step is straight forward, the second step follows from Theorem 12.20

Part 3, the third step is straight forward.

750

Then, we prove the lower bound:
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt

=

∫ +1

−1
|x∗(t) ·H(t)|2dt

≥ 0.9 ·
∫ +1

−1
|x∗(t)|2dt

= 0.9 ·
∫ +∞

−∞
|x∗(t) · rect1(t)|2dt

where the first step is straight forward, the second step follows from Theorem 12.20

Part 1, the third step is straight forward.

The following lemma bounds the length of the fluctuation region (where H(t)

is close to 1) in the time domain.

Lemma 12.25. Let ∆ = k|supp(Ĥ(f))|, β = O(1/∆), L = T
2
− α−1(1

2
− π

C0R
)T
2
, R =

T
2
+ α−1(1

2
− π

C0R
)T
2
− β, we have that

T − k2(T + L−R) ≂ T,

and

R− L ≂ T.

Proof. Let U := [L,R]. By Lemma 12.23, we have that for any t0 ∈ U ,

H(t) > 1− δ1,∀t ∈ [t0, t0 + β].

We have that

R− L = |U |

= ((
1

2
+

1.2

πCR
)−1 · (1

2
− π

CR
)− β) · T

≂ T,

751

where the first step follows from the definition of L,R, the second step follows from

Lemma 12.24 Property II, the third step follows from ∆, CR≫ 1.

We have that

T + L−R = T − |U |

= (1− (
1

2
+

1.2

πCR
)−1 · (1

2
− π

CR
)) · T + βT

=
2π + 2.4/π

CR + 2.4/π
· T + βT, (12.17)

where the first step follows from the definition of L,R, the second step follows from

Lemma 12.24 Property II, the third step is straight forward.

Then, we have that

T − k2(T + L−R) = T − k2 · (2π + 2.4/π

CR + 2.4/π
+ β) · T ≂ T,

where the first step follows from Eq. (12.17), the second step follows from C =

O(log(1/δ1)), R = k2, k2β < 1/k.

12.9 Ideal Filter Approximation

As we discussed in previous sections, the filtered signal z(j)(t) = (x·H)∗G(j)
σ,b(t)

is the signal in the j-th bin by the HashToBins procedure. In this section, we consider

an approximation of the frequency domain filter G(j)
σ,b by the ideal filter I(j)σ,b(t) defined

by its Fourier transform:

Î
(j)
σ,b(f) :=

{
1, Ĝ

(j)
σ,b(f) > 1− δ1

0, otherwise
(12.18)

Intuitively, I(j)σ,b is “denoising” the frequency domain filter Ĝ(j)
σ,b in the sense that it

rounds the heavy Fourier coefficients of Ĝ(j)
σ,b to 1 and rounds the remaining Fourier

coefficients to 0. The main purpose of this section is to show that (x ·H) ∗ I(j)σ,b is a

752

good approximation of z(j). For simplicity, we will use I to denote I(j)σ,b when σ, b, j

are clear from context.

We first show a commuting property of the ideal filter (see Section 12.9.1).

Then, we derive the approximation error bound of the ideally filtered signals (see

Section 12.9.2).

12.9.1 Swap the order of filtering

We first prove a good property of the ideal filter that I(j)σ,b “commutes” with the

time domain filter H with high probability over the random hashing function.

Lemma 12.26. Let δ1 be the δ defined in Lemma 12.9.Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2. Let the ideal filter I = I

(j)
σ,b be defined

as in Eq. (12.18).

Then, for any x ∈ Fk,F , with probability 0.9 over the choice of (σ, b), for any

j ∈ [B],

(x ·H) ∗ I(t) = (x ∗ I)(t) ·H(t) ∀t ∈ R.

Proof. By Fourier transformation, we have

(x ·H) ∗ I(t) =
∫ ∞

−∞
(x̂ ∗ Ĥ)(f) · Î(f) · exp(2πift)df.

We will show that (x̂ ∗ Ĥ)(f) · Î(f) = ((x̂ · Î) ∗ Ĥ)(f) with high probability.

On the one hand,

(x̂ ∗ Ĥ)(f) · Î(f) =
k∑

j=1

vj · (δfj ∗ Ĥ)(f) · Î(f)

=
k∑

j=1

vj · Ĥ(f − fj) · Î(f)

=
k∑

j=1

vj · Ĥ(f − fj) · 1f∈supp(Î),

753

where the first step follows from x̂(f) =
∑k

j=1 vj · δfj(f), the second step follows

from the convolution property of Delta function. By Lemma 12.16, we get that

with probability at least 0.9, for any j ∈ [k] and any f ∈ supp(Ĥ) + fj, either

Ĝ
(j)
σ,b < δ1 or Ĝ(j)

σ,b > 1 − δ1. In other words, either fj + supp(Ĥ) ⊆ supp(Î) or

fj+supp(Ĥ)∩supp(Î) = ∅. Since 0 ∈ supp(Ĥ), we get that for any f ∈ fj+supp(Ĥ),

f ∈ supp(Î) ⇐⇒ fj ∈ supp(Î).

Hence, we have

(x̂ ∗ Ĥ)(f) · Î(f) =
∑

j∈[k]:fj∈supp(Î)

vj · Ĥ(f − fj).

On the other hand,

(x̂ · Î) ∗ Ĥ(f) =
∑

j∈[k]:fj∈supp(Î)

vj · δfj ∗ Ĥ(f)

=
∑

j∈[k]:fj∈supp(Î)

vj · Ĥ(f − fj)

= (x̂ ∗ Ĥ)(f) · Î(f).

Therefore,

(x ·H) ∗ I(t) =
∫ ∞

−∞
(x̂ ∗ Ĥ)(f) · Î(f) · exp(2πift)df

=

∫ ∞

−∞
(x̂ · Î) ∗ Ĥ(f) · exp(2πift)df

= (x ∗ I)(t) ·H(t),

where the last step follows from the definition of Fourier transform.

The lemma is then proved.

754

12.9.2 Approximation error bounds

We analyze the approximation error due to replacing Ĝ(j)
σ,b with the ideal filter

I
(j)
σ,b defined by Eq. (12.18). The following lemma gives a point-wise error bound.

Lemma 12.27. Let δ1 be defined as in Lemma 12.9. Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2.

For any x ∈ Fk,F , we have that with probability 0.9, for any j ∈ [B],

|(x ·H) ∗G(j)
σ,b(t)− (x ·H) ∗ I(t)| ≲ δ1

√
T |S| · ∥x(t)∥T ∀t ∈ R.

Proof. Let S := supp(x̂ ∗ Ĥ) be defined as the support set of x̂ ∗ Ĥ. Then |S| ≤ ∆.

We have that

|(x ·H) ∗G(j)
σ,b(t)− (x ·H) ∗ I(t)| (12.19)

= |(x ·H) ∗ (G(j)
σ,b − I)(t)|

=
∣∣∣
∫ ∞

−∞
(x̂ ∗ Ĥ)(f) · (Ĝ(j)

σ,b − Î)(f) · e2πiftdf
∣∣∣

≤
∫ ∞

−∞
|(x̂ ∗ Ĥ)(f) · (Ĝ(j)

σ,b − I)(f)|df

=

∫

S

|(x̂ ∗ Ĥ)(f) · (Ĝ(j)
σ,b − I)(f)|df

≤
∫

S

|(x̂ ∗ Ĥ)(f) · δ1|df

≤ δ1
√
|S| ·

√∫ ∞

−∞
|(x̂ ∗ Ĥ)(f)|2df

= δ1
√
|S| ·

√∫ ∞

−∞
|(x ·H)(t)|2dt

≲ δ1
√
T |S| · ∥(x ·H)(t)∥T

≲ δ1
√
T |S| · ∥x(t)∥T (12.20)

where the first step is straight forward, the second step follows from the definition of

Fourier transform, the third step follows from triangle equality, the forth step follows

755

from the definition of S. For the fifth step, by Lemma 12.16 that with probability

at least 0.9, the Large Offset event does not happen (i.e., for any f ∈ S, either

Ĝ
(j)
σ,b(f) < δ1 or Ĝ(j)

σ,b(f) > 1 − δ1). Then, by Lemma 12.9, we know that −δ1 ≤
Ĝ

(j)
σ,b(f) ≤ 1. Thus, we get that |(Ĝ(j)

σ,b − Î)(f)| ≤ δ1. The sixth step follows from

Cauchy–Schwarz inequality, the seventh step follows from Parseval’s theorem, the

eighth step follows from Lemma 12.24 Property IV and V, the last step follows from

Lemma 12.24 Property V.

The following lemma gives a T -norm bound for the approximation error.

Lemma 12.28. Let δ1 be defined as in Lemma 12.9. Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2.

Then, for any x ∈ Fk,F , with probability 0.9, for any j ∈ [B],
∫ ∞

−∞
|(x ·H) ∗ I(t)− (x ·H) ∗G(j)

σ,b(t)|2dt ≲ δ21T∥x(t)∥2T .

In particular,

∥(x ·H) ∗ I(t)− (x ·H) ∗G(j)
σ,b(t)∥T ≲ δ1∥x(t)∥T .

Proof. Let S := supp(x̂ ∗ Ĥ) be defined as the support set of x̂ ∗ Ĥ.

756

We have that

T∥(x ·H) ∗ I(t)− (x ·H) ∗G(j)
σ,b(t)∥2T

=

∫ T

0

|(x ·H) ∗ I(t)− (x ·H) ∗G(j)
σ,b(t)|2dt

≤
∫ ∞

−∞
|(x ·H) ∗ I(t)− (x ·H) ∗G(j)

σ,b(t)|2dt

≤
∫ ∞

−∞
|(x̂ ∗ Ĥ)(f) · (Î(f)− Ĝ(j)

σ,b(f))|2df

=

∫

S

|(x̂ ∗ Ĥ)(f) · (I(f)− Ĝ(j)
σ,b(f))|2df

≤
∫

S

|(x̂ ∗ Ĥ)(f) · δ1|2df

≤
∫ ∞

−∞
|(x̂ ∗ Ĥ)(f) · δ1|2df

= δ21

∫ ∞

−∞
|(x ·H)(t)|2dt

≲ δ21T∥x(t)∥2T

where the first step follows from the definition of the norm, the second step is straight

forward, the third step follows from Parseval’s theorem, the forth step follows from

the definition of S, the fifth step follows from Lemma 12.16 and Lemma 12.9, the

sixth step is straight forward, the seventh step follows from Parseval’s theorem, the

eighth step follows from Lemma 12.24 Property IV and Property V.

12.10 Concentration Property of the Filtered Signal

Recall that a frequency f ∗ is heavy if it satisfies the following condition:
∫ f∗+∆h

f∗−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k.

In this section, we consider the filtered signal in a hashing bin that contains a heavy

frequency; that is, z(t) = (x∗ · H) ∗ Ĝ(j)
σ,b where j = hσ,b(f

∗) is the index of the bin

757

containing f ∗. We will prove that z(t) form a one-cluster signal around f ∗, which

means that in the frequency domain most energy are concentrated around f ∗, and in

the time domain, most energy are contained in the observation window [0, T]. The

formal definition are given as follows:

Definition 12.8 ((ε,∆)-one-cluster signal). We say that a signal z(t) is an (ε,∆)-

one-cluster signal around f0 if and only if z(t) and ẑ(f) satisfy the following two

properties:

Property I :

∫ f0+∆

f0−∆
|ẑ(f)|2df ≥ (1− ε)

∫ +∞

−∞
|ẑ(f)|2df

Property II :

∫ T

0

|z(t)|2dt ≥ (1− ε)
∫ +∞

−∞
|z(t)|2dt.

We first prove the energy preservation in the time domain:

Lemma 12.29 (Time domain energy preservation). Let ∆h = |supp(Ĥ)|. Let f ∗

satisfy
∫ f∗+∆h

f∗−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k

and ẑ = x̂∗ ·H · Ĝ(j)
σ,b where j = hσ,b(f

∗). Suppose the Large Offset event does not

happen. Then, we have that,
∫ +∞

−∞
|z(t)|2dt ≤ 1.35

∫ T

0

|z(t)|2dt.

Proof. Let I(f) be the ideal filter defined by Eq. (12.18).

We first have

∥z(t)∥L2 = ∥(x∗ ·H)(t) ∗G(j)
σ,b(t)∥L2

≤ ∥(x∗ ·H)(t) ∗ I(t)∥L2 + ∥(x∗ ·H)(t) ∗ (I −G(j)
σ,b)(t)∥L2 ,

where the second step follows from triangle inequality.

Then, we bound the two terms separately.

758

For the first term, by Lemma 12.26, if the Large Offset event does not happen,

we have that

(x∗ ·H) ∗ I(t) = (x∗ ∗ I)(t) ·H(t). (12.21)

It implies that

∥(x∗ ·H)(t) ∗ I(t)∥L2 = ∥(x∗ ∗ I)(t) ·H(t)∥L2

Let y(t) := (x∗ ∗ I)(t). It’s easy to see that y(y) is k-Fourier-sparse. Then, we have
∫ ∞

−∞
|y(t) ·H(t)|2dt

=

∫ T

0

|y(t) ·H(t)|2dt+
∫

[−∞,∞]\[0,T]
|y(t) ·H(t)|2dt

≤
∫ T

0

|y(t) ·H(t)|2dt+ 0.1

∫ T

0

|y(t)|2dt

≤ 1.1

∫ T

0

|y(t)|2dt

≤ 1.3

∫ T

0

|y(t) ·H(t)|2dt, (12.22)

where the first step is straight forward, the second step follows from Lemma 12.24

Property IV, the third step follows from Lemma 12.24 Property V, the forth step

follows from Lemma 12.24 Property V. Hence,

∥(x∗ ·H)(t) ∗ I(t)∥L2 = ∥y(t) ·H(t)∥L2 ≤
√
1.3T · ∥(x∗ ∗ I)(t) ·H(t)∥T .

By Eq. (12.21) again, we can swap the order of I and H and obtain:

∥(x∗ ·H)(t) ∗ I(t)∥L2 ≤
√
1.3T · ∥(x∗ ·H)(t) ∗ I(t)∥T .

For the second term, by Lemma 12.28, we have that

∥(x∗ ·H) ∗ I(t)− (x∗ ·H) ∗G(j)
σ,b(t)∥L2 ≲ δ1

√
T∥x∗(t)∥T . (12.23)

759

Therefore, we get that

∥z(t)∥L2 ≤
√
1.3T · ∥(x∗ ·H)(t) ∗ I(t)∥T +O(δ1

√
T∥x∗(t)∥T)

≤
√
1.3T · ∥(x∗ ·H) ∗G(j)

σ,b(t)∥T +
√
1.3T · ∥(x∗ ·H) ∗ (I −G(j)

σ,b)(t)∥T +O(δ1
√
T∥x∗(t)∥T)

≤
√
1.3T · ∥z(t)∥T +O(δ1

√
T∥x∗(t)∥T),

where the second step follows from triangle inequality, and the last step follows from

Lemma 12.28 again.

We claim that the second term can be bounded by o(1) · ∥z(t)∥T . Indeed, we

have
∫ ∞

−∞
|(x∗ ·H) ∗G(j)

σ,b(t)|2dt

=

∫ ∞

−∞
|(x̂∗ ∗ Ĥ) · Ĝ(j)

σ,b(f)|2df

≥
∫ f∗+∆h

f∗−∆h

|(x̂∗ ∗ Ĥ) · Ĝ(j)
σ,b(f)|2df

≳
∫ f∗+∆h

f∗−∆h

|(x̂∗ ∗ Ĥ)(f)|2df

≳
∫ f∗+∆h

f∗−∆h

|(x̂∗ ∗ Ĥ)(f)|2df

≥ Tδ∥x∗∥2T
k

(12.24)

where the first step follows from Parseval’s theorem, the second step is straightfor-

ward, the third step follows from Lemma 12.16 and Lemma 12.9 Property I, the forth

step follows from our assumption that there exists a heavy frequency f ∗ hashing into

the j-th bin, the fifth step follows from f ∗ satisfying
∫ f∗+∆

f∗−∆
|x̂∗ ·H(f)|2df ≥ TN2/k.

Thus, ∥x∗∥T ≤ O(
√
k/(Tδ))∥z(t)∥L2 and we have

O(δ1
√
T∥x∗∥T) = O

(
δ1

√
k

δ
∥z(t)∥L2

)
≤ O

(√ δ

k

)
∥z(t)∥L2 = o(1) · ∥z(t)∥L2 ,

760

where the second step follows from δ1 ≤ δ/k.

Finally, we have

∥z(t)∥L2 ≤
√
1.3T · ∥z(t)∥T + o(1) · ∥z(t)∥L2 ,

which implies that
∫ +∞

−∞
|z(t)|2dt ≤ 1.35

∫ T

0

|z(t)|2dt.

The lemma is then proved.

We next show the frequency domain energy concentration in the following

lemma. Together with Lemma 12.29, we conclude that z(t) is a one-cluster signal.

Lemma 12.30 (Frequency domain energy concentration). Let x∗ be a k-Fourier-

sparse signal. Let f ∗ ∈ [−F, F] satisfy the following property:
∫ f∗+∆h

f∗−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k. (12.25)

Let σ, b be the parameter of the hashing function. Suppose that Large Offset event not

happened and f ∗ is well-isolated. Let j = hσ,b(f
∗) be the bucket that f ∗ maps to under

the hash such that z = (x∗ ·H) ∗G(j)
σ,b and ẑ = x̂∗ ·H · Ĝ(j)

σ,b. Then, we have
∫ f∗+∆

f∗−∆
|ẑ(f)|2df ≥ 0.7

∫ +∞

−∞
|ẑ(f)|2df.

Furthermore, z(t) is a (0.3,∆)-one-cluster signal around f ∗.

Proof. Define region If∗ = (f ∗−∆, f ∗+∆) with the complement If∗ = (−∞,∞)\If∗ .
We have that

∫

If∗

|ẑ(f)|2df ≥ (1− δ/k)
∫

If∗

|x̂∗ ·H(f)|2df ≥ (1− o(1))TN2/k

761

where the first step follows from Lemma 12.17, the second step follows from Eq. (12.25).

On the other hand, f ∗ is well-isolated. Thus, by the definition of well-isolation

(Definition 12.4), we have that
∫

If∗

|ẑ(f)|2df ≲ ε · TN2/k ≤ 0.1TN2/k.

Combining them together, we get that
∫ f0+∆

f0−∆
|ẑ(f)|2df ≥ 0.7

∫ +∞

−∞
|ẑ(f)|2df

For the furthermore part, Lemma 12.29 implies that
∫ T

0

|z(t)|2dt ≥ (1− 0.3)

∫ +∞

−∞
|z(t)|2dt.

Hence, by Definition 12.8, z(t) is a (0.3,∆)-one-cluster.

12.11 Energy Bound for Filtered Fourier Sparse Signals

In this section, we prove an energy bound for the filtered signals (x ·H) ∗G(j)
σ,b,

which upper bounds the magnitude of any such signal at a point t by its energy in the

time duration [0, T]. We first prove an energy bound for untruncated ideally filtered

signals (see Section 12.11.1). Then, we prove an energy bound for filtered signals (see

Section 12.11.2). In addition, we prove a technical claim (see Section 12.11.3).

12.11.1 Energy bound for untruncated ideally filtered signals

In Section 12.9, we show that the ideally filtered signal (x ·H)∗I(j)σ,b , where I(j)σ,b

defined as Eq. (12.18) is the ideal filter, is close to the true filtered signal. Here, we

further simplify the signal by ignoring the truncation filter H(t), and prove an energy

bound for the signals of the form (x ∗ I(j)σ,b)(t):

Lemma 12.31. Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition

12.2 and the corresponding ideal filter I = I
(b)
σ,b be defined as in Eq. (12.18). Let

D(t) := Uniform([−1, 1]).

762

For any x ∈ Fk,F , we have that with probability 0.6, for any t ∈ (−1, 1)

|(x ∗ I)(t)|2 ≲ min
{ k

1− |t| , k
2
}
· ∥(x ∗ I)(t)∥2D

Proof. Since (̂x ∗ I)(f) = x̂ · Î(f) and x is k-Fourier-sparse, we know that (x ∗ Î)(t)
is also a k-Fourier-sparse signal.

On the one hand, by the k-Fourier-sparse signal’s location-dependent energy

bound (Theorem 12.7), we have

|(x ∗ I)(t)|2 ≲ k

1− |t|∥(x ∗ I)(t)∥
2
D (12.26)

On the other hand, by the location-independent energy bound (Theorem 12.6),

we have that

|(x ∗ I)(t)|2 ≲ k2∥(x ∗ I)(t)∥2D (12.27)

Combine Eq. (12.26) and Eq. (12.27) together, we prove the lemma:

|(x ∗ I)(t)|2 ≲ min
{ k

1− |t| , k
2
}
· ∥(x ∗ I)(t)∥2D.

12.11.2 Energy bound for filtered signals

Based on Lemma 12.31, we can relate the magnitude of the filtered signal with

its own energy plus the original Fourier-sparse signal’s energy.

Lemma 12.32. Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition

12.2 and the corresponding ideal filter I = I
(b)
σ,b be defined as in Eq. (12.18).

For any x ∈ Fk,F , j ∈ [B], and (σ, b) such that Large Offset event does not

happen, let z(t) = (x ·H) ∗G(j)
σ,b(t). It holds that:

|z(t)|2 ≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2T + δ1∥x(t)∥2T ∀t ∈ (−1, 1).

763

Proof. Let S := supp(x̂ ∗ Ĥ) be defined as the support set of x̂ ∗ Ĥ. Then |S| ≤ ∆.

First, by the ideally untruncated filtered signal’s energy bound (Lemma 12.31),

we have

|(x ∗ I)(t) ·H(t)|2 ≲ H2(t) ·min
{ k

1− |2t/T − 1| , k
2
}
· ∥(x ∗ I)(t)∥2T

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥(x ∗ I)(t)∥2T , (12.28)

where the second step follows from H(t) ≲ 1 (Lemma 12.24 Property I, II).

Then, we bound the magnitude of the ideal filtered signal as follows:

|(x ·H) ∗ I(t)|2 = |(x ∗ I)(t) ·H(t)|2

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥(x ∗ I)(t)∥2T

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· (∥(x ·H) ∗G(j)

σ,b(t)∥2T + δ21∥x(t)∥2T)

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥(x ·H) ∗G(j)

σ,b(t)∥2T + δ1∥x(t)∥2T
(12.29)

where the first step follows from Lemma 12.26, the second step follows from Eq. (12.28),

the third step follows from Claim 12.35, the forth step follows from k2δ1 ≤ 1.

Next, we consider the difference between the signals filtered by G
(j)
σ,b(t) and

I(t):

|(x ·H) ∗G(j)
σ,b(t)− (x ·H) ∗ I(t)|2 ≤ δ21T |S| · ∥x(t)∥2T

≤ δ1 · ∥x(t)∥2T (12.30)

where the first step follows from Lemma 12.27, the second step follows from δ1T |S| ≤
1.

764

Finally, we have that

|(x ·H) ∗G(j)
σ,b(t)|2 ≤ 2|(x ·H) ∗ I(t)|2 + 2|(x ·H) ∗G(j)

σ,b(t)− (x ·H) ∗ I(t)|2

≲ |(x ·H) ∗ I(t)|2 + δ1∥x(t)∥2T
≲ min

{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥(x ·H) ∗ Ĝ(j)

σ,b(t)∥2T + δ1∥x(t)∥2T ,

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Eq. (12.30), the third step follows from Eq. (12.29).

The lemma is then proved.

The energy bound in Lemma 12.32 not only depends on ∥z(t)∥T , but also on

∥x(t)∥T . The following lemma show that assuming the filtered signal contains a heavy

frequency, ∥x(t)∥T can be upper bounded by ∥z(t)∥T .

Lemma 12.33. Given k ∈ Z+, F ∈ R+. Let H be defined as in Definition 12.7, G(j)
σ,b

be defined as in Definition 12.2. Let x ∈ Fk,F be any k-Fourier sparse signal. For

j ∈ [B] such that there exists a f ∗ satisfying: j = hσ,b(f
∗) and

∫ f∗+∆h

f∗−∆h

|x̂ ·H(f)|2df ≥ TN2/k, (12.31)

where N2 ≥ δ∥x∥2T and ∆h = |supp(Ĥ)|.

For any (σ, b) that Large Offset event does not happen, we have that

∥(x ·H) ∗G(j)
σ,b(t)∥2T ≳

δ∥x∥2T
k

.

765

Proof. We have that

T∥(x ·H) ∗G(j)
σ,b(t)∥2T =

∫ T

0

|(x ·H) ∗G(j)
σ,b(t)|2dt

≳
∫ ∞

−∞
|(x ·H) ∗G(j)

σ,b(t)|2dt

=

∫ ∞

−∞
|(x̂ ∗ Ĥ) · Ĝ(j)

σ,b(f)|2df

≥
∫ f∗+∆h

f∗−∆h

|(x̂ ∗ Ĥ) · Ĝ(j)
σ,b(f)|2df

≳
∫ f∗+∆h

f∗−∆h

|(x̂ ∗ Ĥ)(f)|2df

≥ Tδ∥x∥2T
k

where the first step follows from the definition of norm, the second step follows

from Lemma 12.30, the third step follows from Parseval’s theorem, the forth step

is straight forward, the fifth step follows from Lemma 12.17, the sixth step follows

from Eq. (12.31).

Lemma 12.32 and Lemma 12.33 implies the following energy bound:

Corollary 12.34 (Energy bound for filtered signals). Given k ∈ N and F ∈ R+. Let

x ∈ Fk,F . Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2

with (σ, b) such that Large Offset event does not happen.

For any j ∈ [B], suppose there exists an f ∗ with j = hσ,b(f
∗) satisfying:

∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∥2T . Then, for z(t) = (x ·H) ∗G(j)
σ,b(t), it holds that:

|z(t)|2 ≲ min
{ k ·H(t) + δ

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2D ∀t ∈ (0, T).

766

Proof. We have that

|z(t)|2 ≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2T + δ1∥x(t)∥2T

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2T + δ2k−1∥x(t)∥2T

≲ min
{ k ·H(t)

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2T + δ∥(x ·H) ∗G(j)

σ,b(t)∥2T

≲ min
{ k ·H(t) + δ

1− |2t/T − 1| , k
2
}
· ∥z(t)∥2T

where the first step follows from Lemma 12.32, the second step follows from δ1 ≤
δ2k−1, the third step follows from Lemma 12.33, the forth step is straight forward.

12.11.3 Technical claim

Claim 12.35. Given k ∈ Z+, F ∈ R+. Let δ1 be defined as the δ of Lemma 12.9.Let

H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2, and I = I

(j)
σ,b

be the ideal filter defined by Eq. (12.18).

Then, for any x ∈ Fk,F and j ∈ [B], with probability 0.6 over (σ, b), we have

that

∥(x ∗ I)(t)∥2T ≲ ∥(x ·H) ∗ Ĝ(j)
σ,b(t)∥2T + δ21∥x(t)∥2T .

Proof. We have that

∥(x ∗ I)(t)∥2T ≲ ∥(x ∗ I)(t) ·H∥2T
= ∥(x ·H) ∗ I(t)∥2T
≤ 2∥(x ·H) ∗G(j)

σ,b(t)∥2T + 2∥(x ·H) ∗G(j)
σ,b(t)− (x ·H) ∗ I(t)∥2T

≲ ∥(x ·H) ∗G(j)
σ,b(t)∥2T + δ21∥x(t)∥2T

where the first step follows from (x ∗ I)(t) is a k-Fourier-sparse signal and Lemma

12.24 Property V, the second step follows from Lemma 12.26 conditioning on Large

767

Offset event not happening, the third step follows from (a+ b)2 ≤ 2a2+2b2, the forth

step follows from Lemma 12.28.

12.12 Local-Test Signal

Recall that the filtered signal in the j-th bin of the HashToBins procedure

can be written as z(t) = (x ·H) ∗G(j)
σ,b(t). The next step of the frequency estimation

algorithm is to extract a significant frequency from z(t) by considering a so-called

local-test signal :

dz(t) := z(t)e2πf0β − z(t+ β), (12.32)

where f0 ∈ supp(x̂∗), and j = hσ,b(f0), where β ∈ R+ is a parameter such that

β ≤ O(1/∆) with ∆ = O(k · |supp(Ĥ)|).

In this section, we will study some properties of dz(t) and its ideal versions

(see Section 12.12.1 and Section 12.12.2) and derive an energy bound for it (See

Section 12.12.3).

12.12.1 Ideal local-test signal

In previous section, we’ve shown that ideal filter I(j)σ,b can be used to approxi-

mate G(j)
σ,b such that the ideally filtered signal is close to the true filtered signal. We

will show that under the ideal filter approximation, the ideal local-test signal is also

close to the true local-test signal. More formally, we define the ideal filtered signal

and the ideal local-test signal as follows:

zI(t) := (x ·H) ∗ I(t),

dI,z(t) := zI(t)e
2πif0β − zI(t+ β), (12.33)

The following lemma bounds the point-wise distance between dz(t) and dI,z(t).

Lemma 12.36. Let δ1 be defined as in Lemma 12.9. Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2 and I = I

(j)
σ,b be the corresponding ideal

filter as in Eq. (12.18).

768

For any x ∈ Fk,F and (σ, b) such that Large Offset event does not happen, for

any j ∈ [B], let z(t) = (x · H) ∗ G(j)
σ,b(t), dz(t) be defined as Eq. (12.32), zI(t) and

dz,I(t) be defined as Eq. (12.33).

Then, we have

|dz(t)− dI,z(t)| ≲ δ1
√
T |S| · ∥x(t)∥T ∀t ∈ R.

Proof.

|dz(t)− dI,z(t)| = |z(t)e2πif0β − zI(t)e2πif0β − (z(t+ β)− zI(t+ β))|

≤ |z(t)e2πif0β − zI(t)e2πif0β|+ |z(t+ β)− zI(t+ β)|

= |z(t)− zI(t)|+ |z(t+ β)− zI(t+ β)|

≲ δ1
√
T |S| · ∥x(t)∥T ,

where the first step follows from the definition of dz(t) and dI,z(t), the second step

follows from triangle inequality, the third step follows from |e2πif0β| = 1, the forth

step follows from Lemma 12.27.

The following lemma bounds the L2-distance between dz(t) and dz,I(t).

Lemma 12.37. Let δ1 be defined as in Lemma 12.9. Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2 and I = I

(j)
σ,b be the corresponding ideal

filter as in Eq. (12.18).

For any x ∈ Fk,F and (σ, b) such that Large Offset event does not happen, for

any j ∈ [B], let z(t) = (x · H) ∗ G(j)
σ,b(t), dz(t) be defined as Eq. (12.32), zI(t) and

dz,I(t) be defined as Eq. (12.33).Then,
∫ ∞

−∞
|dI,z(t)− dz(t)|2dt ≲ δ21T∥x(t)∥2T

769

Proof. We first have that,
∫ ∞

−∞
|zI(t)e2πif0β − z(t)e2πif0β|2dt

=

∫ ∞

−∞
|zI(t)− z(t)|2dt

≤ δ21T∥x(t)∥2T , (12.34)

where the first step follows from |e2πif0β| = 1, the second step follows from Lemma

12.28.

Then, we complete the proof as follows:
∫ ∞

−∞
|dI,z(t)− dz(t)|2dt

=

∫ ∞

−∞
|zI(t)e2πif0β − z(t)e2πif0β − (zI(t+ β)− z(t+ β))|2dt

≤ 2

∫ ∞

−∞
|zI(t)e2πif0β − z(t)e2πif0β|2dt+ 2

∫ ∞

−∞
|zI(t+ β)− z(t+ β)|2dt

≲ δ21T∥x(t)∥2T +

∫ ∞

−∞
|zI(t+ β)− z(t+ β)|2dt

≲ δ21T∥x(t)∥2T

where the first step follows from the definition of dI,z(t) and dz(t), the second step

follows from (a + b)2 ≤ 2a2 + 2b2, the third step follows from Eq. (12.34), the forth

step follows from Lemma 12.28.

12.12.2 Ideal post-truncated local-test signal

It is still difficult to directly study the energy bound for dz,I(t). In this section,

we further simplify the ideally filtered signal by removing the H filter and consider

the untruncted ideally filtered signal (x ∗ I)(t). Then, in the local-test signal, we

perform a post-truncation. More specifically, the untruncated ideally filtered signal

770

and the ideal post-truncated local-test signal are defined as follows:

xI(t) := (x ∗ I)(t),

dI,x(t) := xI(t) ·H(t) · e2πif0β − xI(t+ β) ·H(t+ β). (12.35)

Intuitively, dI,x(t) can be viewed as swapping the order of the I and H filters in dI,z(t).

The following lemma shows that dI,z(t) and dI,x(t) are actually the same!

Lemma 12.38. Let δ1 be defined as in Lemma 12.9. Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2 and I = I

(j)
σ,b be the corresponding ideal

filter as in Eq. (12.18).

For any x ∈ Fk,F , and (σ, b) such that Large Offset event does not happen, let

zI(t) and dz,I(t) be defined as Eq. (12.33), xI(t) and dx,I(t) be defined as Eq. (12.35).

Then, we have

dI,z(t) = dI,x(t) ∀t ∈ R.

Proof. We have that

dI,z(t) = zI(t) · e2πif0β − zI(t+ β)

= xI(t) ·H(t) · e2πif0β − zI(t+ β)

= xI(t) ·H(t) · e2πif0β − xI(t+ β) ·H(t+ β)

= dI,x(t),

where the first step follows from the definition of dI,z(t), the second step follows from

Lemma 12.26, the third step follows from Lemma 12.26, the last step follows from

the definition of dI,x(t).

The structure of dI,x(t) makes it easy to study its magnitude at any “good

point”:

771

Lemma 12.39. Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition

12.2 and I = I
(j)
σ,b be the corresponding ideal filter as in Eq. (12.18). Let U := {t0 ∈

R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}.

For any x ∈ Fk,F , and (σ, b) such that Large Offset event does not happen, let

xI(t), dx,I(t) be defined as Eq. (12.35). Then, we have

|dI,x(t)| ≲
∣∣xI(t) · e2πif0β − xI(t+ β)

∣∣+ δ1k∥xI(t)∥T ∀t ∈ U.

Proof. First, for any t ∈ U ,

|xI(t) ·H(t) · e2πif0β − xI(t) · e2πif0β| = |xI(t) ·H(t)− xI(t)|

= |xI(t)| · |1−H(t)|

≤ δ1|xI(t)|

≲ δ1k∥xI(t)∥T (12.36)

where the first step follows from |e2πif0β| = 1, the second step is straight forward, the

third step follows from H(t) ≤ 1 (Lemma 12.24 Property I, II) and ∀t ∈ U,H(t) >

1− δ1, and the last step follows from Lemma 12.31.

Second, for any t ∈ U ,

|xI(t+ β)− xI(t+ β) ·H(t+ β)| = |xI(t+ β)| · |1−H(t+ β)|

≤ δ1|xI(t+ β)|

≲ δ1k∥xI(t)∥T (12.37)

where the first step is straight forward, the second step follows from H(t) ≤ 1 (Lemma

12.24 Property I, II) and ∀t ∈ U,H(t+β) > 1− δ1, the last step follows from Lemma

12.31.

772

Combining them together, we have that for any t ∈ U ,

|dI,x(t)| = |xI(t) ·H(t) · e2πif0β − xI(t+ β) ·H(t+ β)|

≤ |xI(t) ·H(t) · e2πif0β − xI(t) · e2πif0β|+ |xI(t) · e2πif0β − xI(t+ β)|

+ |xI(t+ β)− xI(t+ β) ·H(t+ β)|

≲ |xI(t) · e2πif0β − xI(t+ β)|+ |xI(t+ β)− xI(t+ β) ·H(t+ β)|+ δ1k∥xI(t)∥T
≲ |xI(t) · e2πif0β − xI(t+ β)|+ δ1k∥xI(t)∥T

where the first step follows from the definition of dI,x(t), the second step follows from

triangle inequality, the third step follows Eq. (12.36), the forth step follows from

Eq. (12.37).

Furthermore, we can show that the ideal post-truncated local-test signal is

close to the ideal local-test signal without truncation on most of “good points”.

Lemma 12.40. Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition

12.2 and I = I
(j)
σ,b be the corresponding ideal filter as in Eq. (12.18). Let U := {t0 ∈

R | H(t) > 1 − δ1,∀t ∈ [t0, t0 + β]}. Let DU(t) := Uniform(U) and DU+β(t) :=

Uniform(U + β).

For any x ∈ Fk,F , and (σ, b) such that Large Offset event does not happen, let

xI(t), dx,I(t) be defined as Eq. (12.35). Then, we have

∥dI,x(t)− (xI(t) · e2πif0β − xI(t+ β))∥DU
≲ δ1∥xI(t)∥T .

773

Proof. First,

∥xI(t) ·H(t) · e2πif0β − xI(t) · e2πif0β∥DU
= ∥xI(t) ·H(t)− xI(t)∥DU

≤ maxt∈U{|1−H(t)|} · ∥xI(t)∥DU

≤ δ1 · ∥xI(t)∥DU

≲ δ1 ·
√

T

|U |∥xI(t)∥T

≲ δ1 · ∥xI(t)∥T (12.38)

where the first step follows from |e2πif0β| = 1, the second step is straight forward, the

third step follows from H(t) ≤ 1 (Lemma 12.24 Property I, II) and ∀t ∈ U,H(t) >

1− δ1, the forth step follows from the definition of the norm

∥x(t)∥2DU
=

1

|U |

∫

U

|x(t)|2dt ≤ 1

|U |

∫

[0,T]

|x(t)|2dt = T

|U |∥x(t)∥
2
T ,

and the last step follows from Lemma 12.31.

Second,

∥xI(t+ β)− xI(t+ β) ·H(t+ β)∥DU
≤ maxt∈U{|1−H(t+ β)|} · ∥xI(t+ β)∥DU

≤ δ1 · ∥xI(t)∥DU+β

≲ δ1 ·
1

|U + β|∥xI(t)∥D1

≲ δ1 · ∥xI(t)∥D1 (12.39)

where the first step is straight forward, the second step follows from H(t) ≤ 1 (Lemma

12.24 Property I, II) and ∀t ∈ U,H(t + β) > 1 − δ1, the third step follows from the

definition of the norm, the forth step follows from |U + β| = |U | ≳ 1.

774

Then, we have that,

∥dI,x(t)− (xI(t) · e2πif0β − xI(t+ β))∥DU

= ∥xI(t) ·H(t) · e2πif0β − xI(t+ β) ·H(t+ β)− (xI(t) · e2πif0β − xI(t+ β))∥DU

≤ ∥xI(t) ·H(t) · e2πif0β − xI(t) · e2πif0β∥DU
+ ∥xI(t+ β) ·H(t+ β)− xI(t+ β)∥DU

≲ δ1 · ∥xI(t)∥D1 + ∥xI(t+ β) ·H(t+ β)− xI(t+ β)∥DU

≲ δ1 · ∥xI(t)∥D1

where the first step follows from the definition of dI,x(t), the second step follows from

triangle inequality, the third step follows from Eq. (12.38), the forth step follows from

Eq. (12.39).

12.12.3 Energy bound for local-test signals

In this section, we prove the following lemma, which gives an energy bound

for local-test signals.

Lemma 12.41 (Energy bound for local-test signals). Let H be defined as in Def-

inition 12.7, G(j)
σ,b be defined as in Definition 12.2. Let U , DU be defined as in

Lemma 12.40.

For any x ∈ Fk,F , and (σ, b) such that Large Offset event does not happen, let

z(t) = (x ·H) ∗G(j)
σ,b(t) and dz(t) be defined as Eq. (12.32). Then, we have

|dz(t)|2 ≲ min
{ k

1− |2t/T − 1| , k
2
}
· ∥dz(t)∥2DU

+ δ1∥x(t)∥2T ∀t ∈ U.

Proof. Let I = I
(j)
σ,b be the corresponding ideal filter as in Eq. (12.18). Let S :=

supp(x̂ ∗ Ĥ) be the support set of x̂ ∗ Ĥ. We have |S| ≤ ∆.

Let zI(t), dz,I(t) be defined as in Lemma 12.36 and xI(t), dI,x(t) be defined as

in Lemma 12.38.

775

Before proving the energy bound for |dz(t)|, we first consider the signal xI(t) ·
e2πif0β − xI(t+ β). By Fourier transformation, we know that its Fourier coefficient of

a frequency f is:

x̂I(f)e
2πif0β − x̂I(f)e2πifβ = x̂(f) · Î(f)e2πif0β − x̂(f) · Î(f)e2πifβ

Thus, xI(t) · e2πif0β − xI(t+ β) is at most k-Fourier-sparse.

Let [L,R] := U . By Fourier-sparse signals’ energy bound (Theorem 12.7 and

Theorem 12.6), we have

|xI(t) · e2πif0β − xI(t+ β)|2 ≲ min
{ k

min{R− t, t− L} , k
2
}
· ∥xI(t) · e2πif0β − xI(t+ β)∥2DU

≲ min{ k

1− |2t/T − 1| , k
2} · ∥xI(t) · e2πif0β − xI(t+ β)∥2DU

(12.40)

where the first step follows from applying Theorem 12.7 with x(t) = x(Tt/2 + T/2)

and applying Theorem 12.6 with T = |U |, x(t) = x(t + L), the second step follows

from [−1 + 0.5/k, 1 − 0.5/k] ⊆ [L,R], which implies that k(min{R − t, t − L})−1 ≲

k(1 − |2t/T − 1|)−1 for any |t| ∈ [L + 1/k,R − 1/k]. Moreover, for any |t| ∈ [L,L +

1/k] ∪ [R− 1/k,R], k2 ≲ k(1− |2t/T − 1|)−1.

The RHS can be upper bounded by:

∥xI(t) · e2πif0β − xI(t+ β)∥2DU
≤ 2∥dI,x(t)∥2DU

+ 2∥dI,x(t)− (xI(t) · e2πif0β − xI(t+ β))∥2DU

≲ ∥dI,x(t)∥2DU
+ δ21∥xI(t)∥2T

= ∥dI,z(t)∥2DU
+ δ21∥xI(t)∥2T

≲ ∥dz(t)∥2DU
+ ∥dI,z(t)− dz(t)∥2DU

+ δ21∥xI(t)∥2T
≲ ∥dz(t)∥2DU

+ ∥dI,z(t)− dz(t)∥2DU
+ δ21∥x(t)∥2T

(12.41)

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Lemma 12.40, the third step follows from Lemma 12.38, the forth step follows from

776

(a+ b)2 ≤ 2a2 + 2b2, the last step follows from Claim 12.42. For the second term, we

have that

∥dI,z(t)− dz(t)∥2DU

≲
1

|U |

∫

U

|dI,z(t)− dz(t)|2dt

≲
1

|U |

∫ ∞

−∞
|dI,z(t)− dz(t)|2dt

≲
1

|U |δ
2
1∥x(t)∥2T

≲ δ21∥x(t)∥2T

where the first step follows from the definition of the norm, second step is straight

forward, the third step follows from Lemma 12.37 with appropriate scaling, the forth

step follows from |U | ≳ 1. Hence,

∥xI(t) · e2πif0β − xI(t+ β)∥2DU
≲ ∥dz(t)∥2DU

+ δ21∥x(t)∥2T . (12.42)

Therefore, we have that

|dI,z(t)|2 = |dI,x(t)|2

≲ (|xI(t) · e2πif0β − xI(t+ β)|+ δ1k∥xI(t)∥T)2

≲ |xI(t) · e2πif0β − xI(t+ β)|2 + δ21k
2∥xI(t)∥2T

≲ |xI(t) · e2πif0β − xI(t+ β)|2 + δ1∥xI(t)∥2T
≲ min{ k

1− |2t/T − 1| , k
2} · ∥xI(t) · e2πif0β − xI(t+ β)∥2DU

+ δ1∥xI(t)∥2T

≲ min{ k

1− |2t/T − 1| , k
2} · ∥xI(t) · e2πif0β − xI(t+ β)∥2DU

+ δ1∥x(t)∥2T

≲ min{ k

1− |2t/T − 1| , k
2} · (∥dz(t)∥2DU

+ δ21∥x(t)∥2T) + δ1∥x(t)∥2T

≲ min{ k

1− |2t/T − 1| , k
2} · ∥dz(t)∥2DU

+ δ1∥x(t)∥2T , (12.43)

where the first step follows from Lemma 12.38, the second step follows from Lemma

12.39, the third step follows from (a + b)2 ≤ 2a2 + 2b2, the forth step follows from

777

δ1k
2 ≤ 1, the fifth step follows from Eq. (12.40), the six step follows from Claim 12.42,

the seventh step follows from Eq. (12.42), the last step follows from δ1k
2 ≲ 1.

Finally, we have

|dz(t)|2 ≤ 2|dz(t)− dI,z(t)|2 + 2|dI,z(t)|2

≤ 2δ21T |S| · ∥x(t)∥2T + 2|dI,z(t)|2

≤ 2δ1 · ∥x(t)∥2T + 2|dI,z(t)|2

≲ δ1 · ∥x(t)∥2T +min{ k

1− |2t/T − 1| , k
2} · ∥dz(t)∥2DU

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Lemma 12.36, the third step follows from δ1T |S| ≤ 1, the forth step follows from

Eq. (12.43).

The lemma is then proved.

Claim 12.42 (Energy Reduction by Ideal Filter). Let H be defined as in Defini-

tion 12.7, G(j)
σ,b be defined as in Definition 12.2 and I = I

(j)
σ,b be the corresponding ideal

filter as in Eq. (12.18).

For any x ∈ Fk,F , for any (σ, b) such that Large Offset event does not happen,

then we have

∥(x ∗ I)(t)∥T ≲ ∥x(t)∥T

778

Proof. Let S = supp(x̂ ∗ Ĥ). We have that

T∥(x ∗ I)(t)∥T ≲ T∥(x ∗ I)(t) ·H(t)∥T

=

∫ T

0

|(x ∗ I)(t) ·H(t)|2dt

≤
∫ ∞

−∞
|(x ∗ I)(t) ·H(t)|2dt

=

∫ ∞

−∞
|(x̂ · Î)(f) ∗ Ĥ(f)|2df

=

∫

S

|(x̂ · Î)(f) ∗ Ĥ(f)|2df

=

∫

S

|x̂(f) ∗ Ĥ(f)|2df

≤
∫ ∞

−∞
|x̂(f) ∗ Ĥ(f)|2df

=

∫ ∞

−∞
|x ·H(t)|2dt

≲
∫ T

0

|x(t)|2dt

= T∥x(t)∥2T

where the first step follows from Lemma 12.24 Property V, the second step follows

from the definition of the norm, the third step is straight forward, the forth step

follows from Parseval’s theorem, the fifth and sixth steps follow from Large Offset

event not happening, the seventh step is straight forward, the eighth step follows

from Parseval’s theorem, the ninth step follows from Lemma 12.24 Property IV and

VI, the last step follows from the definition of the norm.

12.13 Empirical Energy Estimation

The goal of this section is to show how to estimate a signal’s energy using

a few samples. We start with a general sampling and reweighing method (see Sec-

tion 12.13.1). Then, combining with the energy bounds derived in previous section,

779

t
0 T

x∗(t) ∗ Iσ,b(t)
x∗(t)

f

Îσ,b(f)

x̂∗(f)

Figure 12.11: An illustration of the energy reduction by the ideal filter. Iσ,b is the
ideal filter and x∗(t) is a Fourier sparse signal. The energy of x∗(t) in duration [0, T]
is reduced by applying the ideal filter, i.e., ∥x∗ ∗ Iσ,b(t)∥T ≲ ∥x∗(t)∥T .

we obtain sample-efficient energy estimation methods for Fourier-sparse signals and

filtered signals (see Section 12.13.2). We further extend our methods to estimate

the energy of filtered signals and local-test signals within a sub-interval in the time

duration (see Section 12.13.3). Finally, we prove several technical lemmas (see Sec-

tion 12.13.4).

Throughout this section, for the convenience, we use a slightly different nota-

tion for the T -norm:

∥z∥2T :=
1

2T

∫ T

−T
|z(t)|2dt.

This results of using this T -norm is equivalent with the result of the norm taking on

[0, T], since we can always re-scaling the signal and transform the result into the new

T -norm result.

12.13.1 Sampling and reweighing

In this section, we provide a generic sample-efficient method for estimating

the energy of any function using discrete samples with proper weights.

Lemma 12.43. Let k ∈ N+ and D be a probability distribution such that
∫ T
−T D(t)dt =

1. For any ε, ρ ∈ (0, 1) and function z : R → C, let SD = {t1, · · · , ts} be a set of

780

i.i.d. samples from D of size

s ≥
(
maxt∈[−T,T]

|z(t)|2
D(t)

)
·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
.

Let the weight vector w ∈ Rs be defined by wi := 1/(2TsD(ti)) for i ∈ [s].

Then with probability at least 1− ρ, we have

(1− ε)∥z(t)∥2T ≤ ∥z(t)∥2SD,w
≤ (1 + ε)∥z(t)∥2T ,

where ∥z∥2T := 1
2T

∫ T
−T |z(t)|2dt.

Proof. Let M := maxt∈[−T,T]
|z(t)|2
D(t)

. Let zD(t) := 1
M
|z(t)|2
D(t)

. By applying Chernoff bound

(Lemma A.2) for the random variables zD(t1), . . . , zD(ts), we get that,

Pr
ti∼D

[∣∣∣
s∑

i=1

zD(ti)− µ
∣∣∣ ≤ εµ

]
≥ 1− 2 exp(−ε2µ/3), (12.44)

where µ :=
∑s

i=1 Eti∼D[zD(ti)] = s · Et∼D[zD(t)].

We first consider the expectation:

Et∼D[zD(t)] =
∫ T

−T
D(t) · 1

M

|z(t)|2
D(t)

dt

=
1

M

∫ T

−T
|z(t)|2dt

=
2T

M
∥z(t)∥2T

where the first step follows from the definition of expectation, the second step is

straightforward, the third step follows from the definition of the norm. Thus,

µ = s · Et∼D[zD(t)] =
2Ts

M
∥z(t)∥2T . (12.45)

Then, we consider the sum of samples:
s∑

i=1

zD(ti) =
s∑

i=1

1

M

|z(ti)|2
D(ti)

=
s∑

i=1

2wiTs

M
|z(ti)|2

=
2Ts

M
∥z(t)∥2SD,w

(12.46)

781

where the first step follows from the definition of zD, the second step follows from the

definition of wi, the last step follows from the definition of the norm.

Putting Eqs. (12.44) - (12.46) together, we get that with probability at least

1− 2 exp(−ε2µ/3),
∣∣∣2Ts
M
∥z(t)∥2SD,w

− 2Ts

M
∥z(t)∥2T

∣∣∣ ≤ ε · 2Ts
M
∥z(t)∥2T ,

which can be simplified at follows:

|∥z(t)∥2SD,w
− ∥z(t)∥2T | ≤ ε · ∥z(t)∥2T .

Finally, we need the success probability to be at least 1 − ρ, which requires

that:

1− 2 exp
(
− ε2

3

2Ts

M
∥z(t)∥2T

)
= 1− 2 exp

(
− ε2

3

2Ts

·maxt∈[−T,T]{|z(t)|2/D(t)}∥z(t)∥
2
T

)

≥ 1− ρ.

Hence, we need the sample complexity s to be at least

s ≥
(
maxt∈[−T,T]

|z(t)|2
D(t)

)
·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
.

12.13.2 Energy estimation for Fourier-sparse signals and filtered signals

The goal of this section is to apply Lemma 12.43 for Fourier-sparse signals and

filtered signals.

The following lemma defines the sampling distribution:

Lemma 12.44. For k ∈ N+, define a probability distribution D as follows:

D(t) :=

{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k)

c · kT−1, for |t| ∈ [T (1− 1/k), T]
(12.47)

where c = Θ(log(k)−1) is a normalization factor such that
∫ T
−T D(t)dt = 1. Then, D

is well-defined.

782

Proof. We justify that D can be normalized with c = Θ(log(k)−1)). By the condition
∫ T
−T D(t)dt = 1, we have

2

∫ T (1−1/k)

0

c

(1− |t/T |)T dt+ 2

∫ T

T (1−1/k)
c · k
T
dt = 1,

which implies that

c−1 = 2

∫ T (1−1/k)

0

1

(1− |t/T |)T dt+ 2

∫ T

T (1−1/k)

k

T
dt

≂ log(k) + 1

= Θ(log(k)).

Thus, we get that c = Θ(log(k)−1).

The following lemma gives the sampling complexity for estimating the energy

of a Fourier-sparse signal. The main idea is to apply the energy bounds in Section 12.5.

Lemma 12.45 (Energy estimation for Fourier-sparse signals). Let D be the probability

distribution defined as Eq. (12.47). Let x ∈ Fk,F . For any ε, ρ ∈ (0, 1), let SD =

{t1, · · · , ts} be a set of i.i.d. samples from D(t) of size s ≥ O(ε−2k log(k) log(1/ρ)).

Let the weight vector w ∈ Rs be defined by wi := 1/(2TsD(ti)) for i ∈ [s].

Then with probability at least 1− ρ, we have

(1− ε)∥x(t)∥2T ≤ ∥x(t)∥2SD,w
≤ (1 + ε)∥x(t)∥2T .

Proof. By applying Lemma 12.43, we have that the desired result satisfy when

s ≥
(
maxt∈[−T,T]

|x(t)|2
D(t)

)
·O
(log(1/ρ)

ε2T∥x(t)∥2T

)
.

By Fourier-sparse signals’ energy bound (Theorem 12.6 and Theorem 12.7 with

x(t) = x(T · t)), we have that

|x(t)|2 ≲ min
{ k

1− |t/T | , k
2
}
· ∥x(t)∥2T ∀t ∈ [−T, T]. (12.48)

783

Thus,

maxt∈[−T,T]
|x(t)|2
D(t)

≲ maxt∈[−T,T] min
{ k

1− |t/T | , k
2
}
· ∥x(t)∥

2
T

D(t)

≲ maxt∈[−T,T] min
{ k

1− |t/T |
T (1− |t/T |)

c
, k2

T

ck

}
· ∥x(t)∥2T

= kT∥x(t)∥2T/c

≃ k log(k)T∥x(t)∥2T , (12.49)

where the first step follows from Eq. (12.48), the second step follows from the def-

inition of D(t), the third step is straight forward, the forth step follows from c =

Θ(log(k)−1).

Hence, we get that

s ≥ O(k log(k)T∥x(t)∥2T) ·O
(log(1/ρ)

ε2T∥x(t)∥2T

)
= O(ε−2k log(k) log(1/ρ)).

The lemma is then proved.

Using the energy bound for filtered signals, we immediately get the following

lemma.

Lemma 12.46 (Energy estimation for filtered signals). Let D be the probability dis-

tribution defined as Eq. (12.47). Let x ∈ Fk,F . Let H be defined as in Definition 12.7.

Let G(j)
σ,b be defined as in Definition 12.2. Let j ∈ [B] satisfying that there exists an

f ∗ with hσ,b(f ∗) = j such that:
∫ f∗+∆h

f∗−∆h

|x̂ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∥2T . Let z(t) := (x ·H) ∗G(j)
σ,b(t) be the filtered signal.

784

For any ε, ρ ∈ (0, 1), let SD = {t1, · · · , ts} be a set of i.i.d. samples from

D(t) of size s ≥ O(ε−2k log(k) log(1/ρ)). Let the weight vector w ∈ Rs be defined by

wi := 1/(2TsD(ti)) for i ∈ [s].

Then when Large Offset event not happens, with probability at least 1− ρ, we

have

(1− ε)∥z(t)∥2T ≤ ∥z(t)∥2SD,w
≤ (1 + ε)∥z(t)∥2T .

Proof. By applying Lemma 12.43, we have that the desired result requires that

s ≥
(
maxt∈[−T,T]

|z(t)|2
D(t)

)
·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
.

By the filtered signals’ energy bound (Corollary 12.34), we have that

|z(t)|2 ≲ min
{k ·H(t) + δ

1− |t/T | , k
2
}
· ∥z(t)∥2T

≲ min
{ k

1− |t/T | , k
2
}
· ∥z(t)∥2T . (12.50)

where the second step follows from H(t) ≲ 1 (Lemma 12.24 Property I, II). Then, we

get that

maxt∈[−T,T]
|z(t)|2
D(t)

≲ maxt∈[−T,T] min
{ k

1− |t/T | , k
2
}
· ∥z(t)∥2T

≲ maxt∈[−T,T] min
{ k

1− |t/T |
T (1− |t/T |)

c
, k2

T

ck

}
· ∥z(t)∥2T

= kT∥z(t)∥2T/c

≃ k log(k)T∥z(t)∥2T , (12.51)

where the first step follows from Eq. (12.50), the second step follows from the def-

inition of D(t), the third step is straight forward, the forth step follows from c =

Θ(log(k)−1).

As a result,

s ≥ O(k log(k)T∥z(t)∥2T) ·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
= O(ε−2k log(k) log(1/ρ)).

785

The lemma is then proved.

12.13.3 Partial energy estimation for filtered signals and local-test signals

In this section, we consider a variant version of energy estimation problem,

which we are given a sub-interval U ⊆ [−T, T] and we only want to estimate the

energy within this interval.

The following lemma gives the sampling distribution with respect to U .

Lemma 12.47. Let U = [L,R] such that [−T (1− 1/k), T (1− 1/k)] ⊆ U ⊆ [−T, T].
For k ∈ N+, define a probability distribution DU as follows:

DU(t) :=

{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k) ∧ t ∈ U
c · kT−1, for |t| ∈ [T (1− 1/k), T] ∧ t ∈ U (12.52)

where c = Θ(log(k)−1) is a normalization factor such that
∫ T
−T DU(t)dt = 1. Then,

DU is well-defined.

Proof. We compute the normalization factor of DU in below. The condition that
∫ T
−T DU(t)dt = 1 requires that

2

∫ T (1−1/k)

0

c

(1− |t/T |)T dt+

∫ R

T (1−1/k)
c · k
T
dt+

∫ −T (1−1/k)

L

c · k
T
dt = 1,

which implies that

c−1 = 2

∫ T (1−1/k)

0

1

(1− |t/T |)T dt+

∫ R

T (1−1/k)

k

T
dt+

∫ −T (1−1/k)

L

k

T
dt

≂ log(k) + 1

= Θ(log(k)).

where the second step follows from R ≤ T and L ≥ −T .

Thus, we get that c = Θ(log(k)−1).

786

Similar to Lemma 12.46, we have a sample-efficient approach for estimating

the partial energy of a filtered signal.

Lemma 12.48 (Partial energy estimation for filtered signals). Let U = [L,R] be such

that [−T (1−1/k), T (1−1/k)] ⊆ U . For k ∈ N+, let DU be the probability distribution

defined as Eq. (12.52).

Let x ∈ Fk,F . Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in

Definition 12.2 with (σ, b) such that Large Offset event does not happen. For any

j ∈ [B], suppose there exists an f ∗ with j = hσ,b(f
∗) satisfying:

∫ f∗+∆h

f∗−∆h

|x̂ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∥2T . Let z(t) = (x ·H) ∗G(j)
σ,b(t) be the filtered signal.

For any ε, ρ ∈ (0, 1), let SDU
= {t1, · · · , ts} be a set of i.i.d. samples from

DU of size s ≥ O(ε−2k log(k) log(1/ρ)). Let the weight vector w ∈ Rs be defined by

wi := 2/(TsDU(ti)) for i ∈ [s].

Then when Large Offset event not happens, with probability at least 1− ρ, we

have

(1− ε)∥z∥2U ≤ ∥z∥2SDU
,w ≤ (1 + ε)∥z∥2U ,

where ∥z∥2U := 1
R−L ·

∫ R
L
|z(t)|2dt.

Proof. By applying Lemma 12.43, we have that the desired result requires that

s ≥
(
maxt∈U

|z(t)|2
DU(t)

)
·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
.

787

The first term can be upper bounded as follows:

maxt∈U
|z(t)|2
DU(t)

≲ maxt∈U min
{ k

1− |t/T | , k
2
}
· ∥z(t)∥

2
T

DU(t)

≲ maxt∈U min
{ k

1− |t/T |
T (1− |t/T |)

c
, k2

T

ck

}
· ∥z(t)∥2T

= kT∥z(t)∥2T/c

≲ k log(k)T∥z(t)∥2T
≲ k log(k)

R− L
2T − k2(2T + L−R) · T∥z(t)∥

2
U

≤ k log(k) · T∥z(t)∥2U , (12.53)

where the first step follows from Eq. (12.50), the second step follows from the def-

inition of DU(t), the third step is straight forward, the forth step follows from

c = Θ(log(k)−1), the fifth step follows from Lemma 12.51, the sixth step follows

from R− L ≤ 2T − k2(2T + L−R).

Therefore, the sample complexity s should be at least:

s ≥ O(k log(k) · T∥z(t)∥2U) ·O
(log(1/ρ)

ε2T∥z(t)∥2T

)
= O(ε−2k log(k) log(1/ρ)).

The proof of the lemma is then completed.

Recall that in Section 12.12, we study the local-test signal dz(t) = z(t)e2πif0β−
z(t + β). The following lemma gives a way to estimate the partial energy of a local-

test signal. It can be proved by the same strategy with the energy bound in Lemma

12.41.

Lemma 12.49 (Partial energy estimation for local-test signals). Let x ∈ Fk,F . Let

H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2 with (σ, b)

such that Large Offset event does not happen. Let z(t) = (x ·H)∗G(j)
σ,b(t) be the filtered

signal. Let U := {t0 ∈ R | H(t) > 1− δ1,∀t ∈ [t0, t0 + β]}. Let DU be the probability

distribution defined as Eq. (12.52). Let DH(t) := Uniform({t ∈ R | H(t) > 1− δ1}).

788

For any ε, ρ ∈ (0, 1), let SDU
= {t1, · · · , ts} be a set of i.i.d. samples from

DU of size s ≥ O(k log(k) log(1/ρ)). Let the weight vector w ∈ Rs be defined by

wi := 2/(TsDU(ti)) for i ∈ [s].

Let dz(t) = z(t)e2πif0β− z(t+β) be the local-test signal. Then, with probability

at least 1− ρ, we have

∥dz(t)∥2SDU
,w ≤ 2∥dz(t)∥2U +

√
δ1∥x(t)∥T · ∥dz(t)∥U .

Proof. By Lemma 12.43, we have that when

s ≥
(
maxt∈U

|dz(t)|2
DU(t)

)
·O
(log(1/ρ)

ξ2|U | · ∥dz(t)∥2U

)
,

the following result holds with probability at least 1− ρ,

∥dz(t)∥2SDU
,w ∈ (1± ξ)∥dz(t)∥2U , (12.54)

where ξ is a parameter to be chosen later.

By the energy bound for local-test signals (Lemma 12.41), we have that for

any t ∈ U ,

|dz(t)|2 ≲ min
{ k

1− |t/T | , k
2
}
· ∥dz(t)∥2U + δ1∥x(t)∥2T . (12.55)

Then, we get that

maxt∈U
|dz(t)|2
DU(t)

≲ maxt∈U min
{ k

1− |t/T | , k
2
}
· ∥dz(t)∥

2
U + δ1∥x(t)∥2T
DU(t)

≲ maxt∈U min
{ k

1− |t/T |
T (1− |t/T |)

c
, k2

T

ck

}
· (∥dz(t)∥2U + δ1∥x(t)∥2T)

= kTc−1 · (∥dz(t)∥2U + δ1∥x(t)∥2T)

≃ k log(k)T · (∥dz(t)∥2DU
+ δ1∥x(t)∥2D1

), (12.56)

where the first step follows from Eq. (12.55), the second step follows from the def-

inition of DU(t), the third step is straight forward, the forth step follows from

c = Θ(log(k)−1).

789

As a result, the sample complexity is

s ≥ k log(k)T · (∥dz(t)∥2DU
+ δ1∥x(t)∥2D1

) ·O
(log(1/ρ)

ξ2|U | · ∥dz(t)∥2U

)

≃ ξ−2 · k log(k) · (1 + δ1∥x(t)∥2T
∥dz(t)∥2U

) · log(1/ρ)

= k log(k) · log(1/ρ),

where the first step follows from Eq. (12.56), the second step follows from |U | ≳ T ,

the third step follows by taking ξ to be such that

ξ−2(1 +
δ1∥x(t)∥2T
∥dz(t)∥2U

) ≃ 1.

It remains to bound the estimation error. We have that

∥dz(t)∥2SD,w
≤ (1 + ξ)∥dz(t)∥2U

≃
(
1 +

√
1 +

δ1∥x(t)∥2D1

∥dz(t)∥2U

)
∥dz(t)∥2U

≤
(
2 +

√
δ1∥x(t)∥T
∥dz(t)∥U

)
∥dz(t)∥2U

≤ 2∥dz(t)∥2U +
√
δ1∥x(t)∥T · ∥dz(t)∥U

where the first step follows from Eq. (12.54), the second step follows from the setting

of ε, the third step follows from
√
a+ b ≤ √a+

√
b, the forth step is straight forward.

The lemma is then proved.

12.13.4 Technical lemmas

We prove two technical lemmas in this section.

The following lemma bounds the energy of a Fourier-sparse signal within time

duration [L,R] ⊆ [−T, T] by its total energy.

Lemma 12.50 (Partial energy of Fourier-sparse signal). Given k ∈ Z+, F ∈ R+. For

any x ∈ Fk,F , [L,R] ⊆ [−T (1−O(1
k2
)), T (1−O(1

k2
))], we have that,

2T − k2(2T + L−R)
R− L ∥x(t)∥2T ≲

1

R− L

∫ R

L

|x(t)|2dt ≤ 2T

R− L∥x(t)∥
2
T .

790

Proof. For the upper bound, we have that

1

R− L

∫ R

L

|x(t)|2dt ≤ 1

R− L

∫ T

−T
|x(t)|2dt ≤ 2T

R− L∥x(t)∥
2
T ,

where the first step is straight forward, the second step follows from the definition of

the norm.

For the lower bound, we have that
∫ R

L

|x(t)|2dt =
∫ T

−T
|x(t)|2dt−

∫ L

−T
|x(t)|2dt−

∫ T

R

|x(t)|2dt

≥ 2T∥x(t)∥2T − (L+ T) ·maxt∈[−T,L]|x(t)|2 − (T −R) ·maxt∈[R,T]|x(t)|2

≳ 2T∥x(t)∥2T − (L+ T) · k2∥x(t)∥2T − (T −R) · k2∥x(t)∥2T
= (2T − k2(2T + L−R))∥x(t)∥2T ,

where the first step is straight forward, the second step follows from the definition of

the norm, the third step follows from Theorem 12.6, the forth step is straight forward.

By replacing the energy bound for Fourier-sparse signals with the energy bound

for filtered signals (Corollary 12.34), we obtain the following lemma:

Lemma 12.51 (Partial energy of filtered signal). Given k ∈ N and F ∈ R+. Let

x ∈ Fk,F . Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2

with (σ, b) such that Large Offset event does not happen.

For any j ∈ [B], suppose there exists an f ∗ with j = hσ,b(f
∗) satisfying:

∫ f∗+∆h

f∗−∆h

|x̂ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∥2T . Then, for z(t) = (x ·H) ∗G(j)
σ,b(t), we have that

2T − k2(2T + L−R)
R− L ∥z(t)∥2T ≲

1

R− L

∫ R

L

|z(t)|2dt ≤ 2T

R− L∥z(t)∥
2
T .

791

Proof. For the upper bound, we have that

1

R− L

∫ R

L

|z(t)|2dt ≤ 1

R− L

∫ T

−T
|z(t)|2dt ≤ 2T

R− L∥z(t)∥
2
T ,

where the first step is straight forward, the second step follows from the definition of

the norm.

For the lower bound, we have that
∫ R

L

|z(t)|2dt =
∫ T

−T
|z(t)|2dt−

∫ L

−T
|z(t)|2dt−

∫ T

R

|z(t)|2dt

≥ T∥z(t)∥2T − (L+ T) ·maxt∈[0,L]|z(t)|2 − (T −R) ·maxt∈[R,T]|z(t)|2

≳ T∥z(t)∥2T − (L+ T) · k2∥z(t)∥2T − (T −R)k2∥z(t)∥2T
= (2T − k2(2T + L−R))∥z(t)∥2T

where the first step is straight forward, the second step follows from the definition

of the norm, the third step follows from Corollary 12.34, the forth step is straight

forward.

792

12.14 Generate Significant Samples

In this section, we show our significant sample generation procedure for noisy

signals. Recall that we use x∗(t) to denote the ground-truth k-Fourier-sparse signal

and x(t) = x∗(t) + g(t) to denote the observation signal. We first generalize the en-

ergy estimation method in previous section to the noisy signals (see Section 12.14.1).

Then, we give our significant sample generation algorithm for a single bin (see Sec-

tion 12.14.2). Next, we show how to adapt our significant sample generation algorithm

for multiple bins (see Section 12.14.3). In addition, we provide some technical claims

(see Section 12.14.4).

12.14.1 Energy estimation for noisy signals

In this section, we generalize our methods in Section 12.13 to estimate the

(partial) energy of the true observing signals, which contains some noise.

In the following lemma, we show that the energy of the filtered signal z(t) can

be estimated with a few samples, assuming it contains a small fraction of noise.

Lemma 12.52. Let x∗ ∈ Fk,F be the ground-truth signal and x(t) = x∗(t) + g(t) be

the noisy observation signal. Let H be defined as in Definition 12.7, G(j)
σ,b be defined

as in Definition 12.2 with (σ, b) such that Large Offset event does not happen. For

any j ∈ [B], suppose there exists an f0 with j = hσ,b(f0) satisfying:
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∗∥2T . Let z∗(t) := (x∗ · H) ∗ G(j)
σ,b(t) and z(t) = (x · H) ∗ G(j)

σ,b(t). Let

gz(t) := z(t)− z∗(t). Let U = {t0 ∈ R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}. Suppose that

∥gz(t)∥2T ≤ c∥z∗(t)∥2U , where c ∈ (0, 0.001) is a small universal constant.

For s ≥ O(k log(k) log(1/ρ)), let SDU
= {t1, . . . , ts} be a set of i.i.d. samples

from the distribution DU defined as Eq. (12.52). Let the weights wi = 1/(TsDU(ti))

for i ∈ [s].

793

Then, with probability at least 0.85,

∥z(t)∥2SDU
,w ≥ (0.2− 20c) · ∥z∗(t)∥2U

Proof. We consider the expectation of ∥gz(t)∥2SU ,w
first.

E
[s∑

j=1

wi|gz(tj)|2
]
=

s∑

j=1

Etj∼DU
[wi|gz(tj)|2]

=
s∑

j=1

Etj∼DU

[1

TsDU(ti)
|gz(tj)|2

]

≤ Et∼DU

[1

TDU(t)
|gz(t)|2

]

≤
∫

U

1

T
|gz(t)|2dt

≤ 1

T

∫ T

0

|gz(t)|2dt

≤ ∥gz(t)∥2T (12.57)

where the first step is straight forward, the second step follows from the definition

of wi, the third step is straight forward, the forth step follows from the definition of

expectation, the fifth step follows from U ⊆ [0, T], the sixth step follows from the

definition of the norm.

By Eq. (12.57) and Markov inequality, we have that with probability at least

0.9,
s∑

j=1

wi|gz(tj)|2 ≤ 20∥gz(t)∥2T . (12.58)

Then, we have that
s∑

j=1

wi|z(tj)|2 ≥ 0.5
s∑

j=1

wi|z∗(tj)|2 −
s∑

j=1

wi|gz(tj)|2

≥ 0.5
s∑

j=1

wi|z∗(tj)|2 − 20∥gz(t)∥2T

≥ 0.2∥z∗(t)∥2U − 20∥gz(t)∥2T
≥ (0.2− 20c) · ∥z∗(t)∥2U

794

where the first step follows from (a + b)2 ≥ 0.5a2 − b2, the second step follows from

Eq. (12.58), the third step follows from Lemma 12.48, the forth step follows from

∥gz(t)∥2T ≤ c∥z∗(t)∥2U .

The total success probability follows from a union bound: 0.9− ρ > 0.85.

The lemma is then proved.

The following lemma shows how to estimate the energy of a noisy local-test

signal.

Lemma 12.53. Let x∗ ∈ Fk,F be the ground-truth signal and x(t) = x∗(t) + g(t) be

the noisy observation signal. Let H be defined as in Definition 12.7, G(j)
σ,b be defined

as in Definition 12.2 with (σ, b) such that Large Offset event does not happen. For

any j ∈ [B], suppose there exists an f0 with j = hσ,b(f0) satisfying:
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∗∥2T . Let z∗(t) := (x∗ · H) ∗ G(j)
σ,b(t) and z(t) = (x · H) ∗ G(j)

σ,b(t). Let

gz(t) := z(t)− z∗(t). Let U = {t0 ∈ R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}. Suppose that

∥gz(t)∥2T ≤ c∥z∗(t)∥2U , where c ∈ (0, 0.001) is a small universal constant.

For s ≥ O(k log(k) log(1/ρ)), let SDU
= {t1, . . . , ts} be a set of i.i.d. samples

from the distribution DU defined as Eq. (12.52). Let wi = 1/(TsDU(ti)) for i ∈ [s].

Then, with probability at least 0.85,

∥dz(t)∥2SDU
,w ≲ (c+

√
γ2 + δ1) · ∥z∗(t)∥2U ,

Proof. We first consider the expectation of ∥gz(t)e2πif0β − gz(t + β)∥2SDU
,w. We have

795

that

E
[s∑

i=1

wi|gz(ti)e2πif0β − gz(ti + β)|2
]

=
s∑

i=1

Eti∼DU
[wi|gz(ti)e2πif0β − gz(ti + β)|2]

=
s∑

i=1

Eti∼DU

[1

TsDU(ti)
|gz(ti)e2πif0β − gz(ti + β)|2

]

= Et∼DU

[1

TDU(t)
|gz(t)e2πif0β − gz(t+ β)|2

]

=

∫

U

1

T
|gz(t)e2πif0β − gz(t+ β)|2dt

≤ 4

T

∫

U

(|gz(t)|2 + |gz(t+ β)|2)dt

≤ 8

T

∫ T

0

|gz(t)|2dt

≤ 10∥gz(t)∥2T , (12.59)

where the first step is straight forward, the second step follows from the definition

of wi, the third step is straight forward, the forth step follows from the definition of

expectation, the fifth step follows from (a + b)2 ≤ 2a2 + 2b2, the sixth step follows

from U ⊆ [0, T] and U + β ⊆ [0, T], the seventh step follows from the definition of

the norm.

By Eq. (12.59) and Markov inequality, we have that with probability at least

0.9,

s∑

i=1

wi|gz(ti)e2πif0β − gz(ti + β)|2 ≤ 100∥gz(t)∥2T . (12.60)

796

We have that
s∑

i=1

wi|z(ti)e2πif0β − z(ti + β)|2

≤
s∑

i=1

(2wi|z∗(ti)e2πif0β − z∗(ti + β)|2 + 2wi|gz(ti)e2πif0β − gz(ti + β)|2)

≤ 200∥gz(t)∥2T +
s∑

i=1

2wi|z∗(ti)e2πif0β − z∗(ti + β)|2

≤ 200∥gz(t)∥2T + 4∥z∗(t+ β)− e2πif0β · z∗(t)∥2U + 2
√
δ1∥x(t)∥T∥z∗(t+ β)− e2πif0β · z∗(t)∥U

≲ (200c+ 4γ2 + 4δ1)∥z∗(t)∥2U + 2
√
δ1(γ2 + δ1)∥x∗(t)∥T∥z∗(t)∥U

≲ (c+ γ2 + δ1)∥z∗(t)∥2U +

√
δ1(γ2 + δ1)

k

δ
∥z∗(t)∥T∥z∗(t)∥U

≲ ((c+ γ2 + δ1) +

√
δ1(γ2 + δ1)

k

δ

R− L
T − k2(T + L−R))∥z

∗(t)∥2U

≲ (c+
√
γ2 + δ1) · ∥z∗(t)∥2U

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Eq. (12.60), the third step follows from the partial energy estimation for local-test

signal (Lemma 12.49) which holds with probability 1− ρ, the forth step follows from

the ∥gz(t)∥2T ≤ c∥z∗(t)∥2U and Claim 12.59, the fifth step follows from Lemma 12.33,

the sixth step follows from [L,R] := U and Lemma 12.51, the seventh step follows

form R− L ≲ T − k2(T + L−R), δ1δ−1k ≲ 1.

The total success probability follows from a union bound 0.9− ρ > 0.85.

The lemma is then proved.

12.14.2 Significant sample generation for a single bin

Recall that we define a sample t ∈ [0, T] is significant if the magnitude of the

local-test signal at t is small, i.e., |dz(t)| ≤ O(|z(t)|). The following lemma shows

that a significant sample can be efficiently generated, provided that the filtered noisy

signal does not contain too much noise.

797

Lemma 12.54 (Generate Significant samples for filtered noisy signals). Let x∗ ∈ Fk,F

be the ground-truth signal and x(t) = x∗(t)+ g(t) be the noisy observation signal. Let

H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2 with (σ, b)

such that Large Offset event does not happen. For any j ∈ [B], suppose there exists

an f0 with j = hσ,b(f0) satisfying:
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∗∥2T . Let z∗(t) := (x∗ · H) ∗ G(j)
σ,b(t) and z(t) = (x · H) ∗ G(j)

σ,b(t). Let

gz(t) := z(t)− z∗(t). Let U = {t0 ∈ R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}. Suppose that

∥gz(t)∥2T ≤ c∥z∗(t)∥2U , where c ∈ (0, 0.001) is a small universal constant.

Then, there is an algorithm that takes O(k log(k)) samples in z, runs in

O(k log(k)) time, and output an α ∈ U such that with probability at least 0.6,

|z(α + β)− z(α)e2πif0β|2 ≤ O(c+
√
γ2 + δ1)|z(α)|2 ≤ 0.01|z(α)|2.

Proof. The output α is sample in two steps:

1. For s ≥ O(k log(k)), generate s i.i.d. samples SDU
= {t1, . . . , ts} bfrom the

distribution DU defined as Eq. (12.52). Let wi = 1/(TsDU(ti)) for i ∈ [s] be

the weights.

2. Define a probability distribution DS such that

DS(ti) :=
wi|z(ti)|2∑
i∈[s]wi|z(ti)|2

∀i ∈ [s]. (12.61)

And sample α according to DS.

The sample and time complexities of this procedure are straightforward. It remains

to prove that α satisfies the significance requirement stated in the lemma.

By Lemma 12.52, we have that with probability at least 0.85,
s∑

j=1

wi|z(tj)|2 ≥ (0.2− 20c) · ∥z∗(t)∥2U (12.62)

798

By Lemma 12.53, we have that with probability at least 0.85,
s∑

i=1

wi|z(ti)e2πif0β − z(ti + β)|2 ≲ (c+
√
γ2 + δ1) · ∥z∗(t)∥2U (12.63)

Thus, with probability at least 0.7,
∑s

i=1wi|z(ti)e2πif0β − z(ti + β)|2∑s
j=1wi|z(tj)|2

≤ O(c+
√
γ2 + δ1) · ∥z∗(t)∥2U∑s
j=1wi|z(tj)|2

≤ O(c+
√
γ2 + δ1) · ∥z∗(t)∥2U

(0.2− 20c) · ∥z∗(t)∥2U
= O(c+

√
γ2 + δ1) (12.64)

where the first step follows from Eq. (12.63), the second step follows from Eq. (12.62),

the third step is straight forward.

For a random sample α ∼ DS, we bound the following expectation:

Eα∼DS

[|z(α)e2πif0β − z(α + β)|2
|z(α)|2

]

=
s∑

i=1

wi|z(ti)|2∑s
j=1wj|z(tj)|2

· |z(ti)e
2πif0β − z(ti + β)|2
|z(ti)|2

=

∑s
i=1wi|z(ti)e2πif0β − z(ti + β)|2∑s

j=1wj|z(tj)|2

≤ O(c+
√
γ2 + δ1),

where the first step follows from the definition of Dm, the second step is straightfor-

ward, the third step follows from Eq. (12.64).

Thus by Markov inequality, with probability 0.9,

|z(α)e2πif0β − z(α + β)|2
|z(α)|2 ≤ O(c+

√
γ2 + δ1)

0.1
= O(c+

√
γ2 + δ1).

The success probability follows from a union bound. And the second inequality

follows from the range of the parameters c, γ, δ1.

799

12.14.3 Significant sample generation for multiple bins

In this section, we present our significant sample generation procedure that

simultaneously works for all “good bins”.

Algorithm 65 Generate Significant Samples
1: procedure GenerateSignificantSamples(z)
2: B ← O(k)
3: U ← {t0 ∈ R|H(t) > 1− δ1,∀t ∈ [t0, t0 + β]}

4: Dz ←
{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k) ∧ t ∈ U
c · kT−1, for |t| ∈ [T (1− 1/k), T] ∧ t ∈ U

5: S ← O(k log(k)) i.i.d. samples from Dz

6: for ti ∈ S do
7: for j ∈ [B] do
8: a← ti/σ
9: uj ←

∑
i∈Z x ·H(σ(a− j − iB))e−2πiσb(j+iB)G(j + iB) ▷ u ∈ RB

10: uβj ←
∑

i∈Z x ·H(σ(a+ β − j − iB))e−2πiσb(j+iB)G(j + iB) ▷ uβ ∈ RB

11: end for
12: û = FFT(u)
13: ûβ = FFT(uβ)
14: for j ∈ [B] do
15: zj(ti)← ûj
16: zj(ti + β)← ûβj
17: end for
18: end for
19: wi ← Dz(ti),∀ti ∈ S
20: W ←∑

ti∈S wi|zj(ti)|2
21: Zj,1 ← 0, Zj,2 ← 0 ▷ Z ∈ CB×2

22: for j ∈ [B] do
23: DS(ti)← wi|zj(ti)|2/W,∀ti ∈ S
24: Sample ti ∼ DS ▷ α ∈ RB

25: Zj,1 ← zj(ti), Zj,2 ← zj(ti + β)
26: end for
27: return Z
28: end procedure

We first prove the correctness of Algorithm 65.

Lemma 12.55 (Generate significant samples for different bins simultaneously). Let

800

x∗ ∈ Fk,F be the ground-truth signal and x(t) = x∗(t) + g(t) be the noisy observation

signal. Let H be defined as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2

with (σ, b) such that Large Offset event does not happen. Let U = {t0 ∈ R | H(t) >

1− δ1 ∀t ∈ [t0, t0 + β]}.

For j ∈ [B], let z∗j (t) := (x∗ · H) ∗ G(j)
σ,b(t) and zj(t) = (x · H) ∗ G(j)

σ,b(t). Let

gj(t) := zj(t)− z∗j (t). Let

Sg1 :=
{
j ∈ [B] | ∥gj(t)∥2T ≤ c∥z∗j (t)∥2U

}
,

where c ∈ (0, 0.001) is a small universal constant. Let

Sg2 :=

{
j ∈ [B]

∣∣∣∣∣ ∃f0, hσ,b(f0) = j and
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k

}
,

where N2 ≥ δ∥x∗∥2T . Let Sg = Sg1 ∩ Sg2.

There is a Procedure GenerateSignificantSamples (Algorithm 65) that

takes O(k2 log2(k/δ1)) samples in x, runs in O(k2 log3(k/δ1)) time, and for each j ∈
Sg, output αj such that with probability at least 0.6,

|zj(αj + β)− zj(αj)e2πif0β|2 ≤ 0.01|zj(αj)|2 ∀j ∈ Sg.

Proof. For k ∈ N+, define a probability distribution D(t) as follows:

D(t) :=

{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k) ∧ t ∈ U
c · kT−1, for |t| ∈ [T (1− 1/k), T] ∧ t ∈ U

where c = Θ(log(k)−1) is a normalization factor such that
∫ T
−T D(t)dt = 1. For any

ε, ρ ∈ (0, 1), let SD = {t1, · · · , ts} be a set of i.i.d. samples from D(t) of size s ≥
O(k log(k) log(1/ρ)). Let the weight vector w ∈ Rs be defined by wi := 1/(TsD(ti))

for i ∈ [s].

Suppose all the bins can access the same set of time points SD. Then, by

Lemma 12.54, for any j ∈ Sg with probability 0.6, we have that,

|zj(α + β)− zj(α)e2πif0β|2 ≤ 0.01|zj(α)|2.

801

Then, we show that the value of zj(t), j = 1, · · · , B of same set of time points

SD can be compute by accessing a same set of time points in x(t). By Lemma 12.12

with setting a = α/σ, we have that

zj(α) = ûj,

which is computed by the algorithm.

As a result, for each j ∈ Sg,

|zj(αj + β)− zj(αj)e2πif0β|2 ≤ 0.01|zj(αj)|2 ∀j ∈ Sg,

holds with probably 0.6.

We compute the time and sample complexities of Algorithm 65 in the following

two lemmas.

Lemma 12.56 (Running time of Procedure GenerateSignificantSamples in

Algorithm 65). Procedure GenerateSignificantSamples in Algorithm 65 runs

in O(k2 log(k) log(k/δ1)) times.

Proof. In each call of Procedure GenerateSignificantSamples in Algorithm 65,

• In line 5, taking |S| samples runs O(|S|) times.

• In line 6, the for loop repeats |S| times,

– In line 7, the for loops repeats B times and j iterate from 1 to B, in each

loop line 9 and line 10, computing the summation runs in |{j + iB|i ∈
Z ∧ j + iB ∈ supp(G)}| times.

– In line 12 and 13, running Fast Fourier Transform algorithm takesO(B log(B))

time, where B is the length of the vector u and uβ.

– In line 14, the for loop repeats B times, each loop runs in O(1) times.

802

• In line 19, assigning wi runs in |S| times.

• In line 20, computing
∑

ti∈S wi|zj(ti)|2 runs in |S| times.

• In line 22, the for loop repeats B times, each loop runs in O(1) times.

Notice that

∑

j∈[B]

|{j + iB|i ∈ Z ∧ j + iB ∈ supp(G)}| ≤ |supp(G)|.

In the algorithm, we set the parameters:

B = O(k), and |S| = k log(k). (12.65)

Thus,

|supp(G)| = O(lB/α) = k log(k/δ1), (12.66)

where the first step follows from Lemma 12.9 Property IV, the second step follows

from α ≂ 1 and l = Θ(log(k/δ1)).

Therefore, the time complexity in total is

O(O(|S|) + |S| · (|supp(G)|+O(B log(B)) +B ·O(1)) + |S|+ |S|+B ·O(1))

≤ O(|S| · (|supp(G)|+B log(B)))

≤ O(k log(k) · (|supp(G)|+ k log(k)))

≤ O(k log(k) · (k log(k/δ1) + k log(k)))

≤ O(k2 log(k) log(k/δ1)),

where the first step is straightforward, the second step follows from Eq. (12.65), the

third step follows from Eq. (12.66), the forth step is straight forward.

Lemma 12.57 (Sample complexity of Procedure GenerateSignificantSamples

in Algorithm 65). Procedure GenerateSignificantSamples in Algorithm 65 takes

O(k2 log(k) log(k/δ1)) samples.

803

Proof. In each call of Procedure GenerateSignificantSamples in Algorithm 65,

• In line 6, the for loop repeats |S| times,

• In line 7, the for loops repeats B times and j iterate from 1 to B, in each

loop line 9 and line 10, computing the summation takes O(|{σ(a− j − iB)|i ∈
Z ∧ j + iB ∈ supp(G)}|) samples.

Following from the setting in the algorithm, we have that

|S| = k log(k). (12.67)

Thus,

|supp(G)| = O(lB/α) = k log(k/δ1). (12.68)

where the first step follows from Lemma 12.9 Property IV, the second step follows

from α ≂ 1 and l = Θ(log(k/δ1)).

So, the samples complexity of Procedure GenerateSignificantSamples in

Algorithm 65 is

|S| ·
∑

j∈[B]

O(|{σ(a− j − iB) | i ∈ Z ∧ j + iB ∈ supp(G)}|)

≤ O(|S| · |supp(G)|)

≤ O(|S| · k log(k/δ1))

≤ O(k log(k) · k log(k/δ1))

= O(k2 log(k) log(k/δ1))

where the first step is straight forward, the second step follows from Eq. (12.68), the

third step follows from Eq. (12.67), the forth step is straight forward.

804

12.14.4 Technical claims

We prove two technical claims in below about the local-test signals’ energy

reduction.

Claim 12.58 (Energy decay of local-test signals). Let x∗ ∈ Fk,F . For any (σ, b) such

that Large Offset event does not happen and any j ∈ [B], suppose there exists an f0

with j = hσ,b(f0) satisfying: well-isolation conditions and
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k,

where N2 ≥ δ∥x∗∥2T . Let z(t) = (x∗ ·H) ∗G(j)
σ,b(t) be the filtered signal.

For β ≤ γ/∆0 with ∆0 = O(∆), let dz(t) = z(t)e2πif0β − z(t + β) be the

local-test signal. We have that

∥dz(t)∥2T ≲ (γ2 + δ1) · ∥z(t)∥2T .

Proof. Let S := supp(x̂∗ ∗ Ĥ) be the support set of x̂∗ ∗ Ĥ. Let

V := {f ∈ R | Ĝ(j)
σ,b(f) ≥ 1− δ1}.

Note that ∥dz(t)∥2T can be expressed as follows (ignoring the 1
T

factor):

∫ T

0

|z(t+ β)− e2πif0β · z(t)|2dt

≤
∫ ∞

−∞
|z(t+ β)− e2πif0β · z(t)|2dt

=

∫ ∞

−∞
|ẑ(f)e2πifβ − e2πif0β · ẑ(f)|2df

=

∫ ∞

−∞
|ẑ(f)|2 · |e2πifβ − e2πif0β|2df

=

∫

S

|ẑ(f)|2 · |e2πifβ − e2πif0β|2df

=

∫

S∩V
|ẑ(f)|2 · |e2πifβ − e2πif0β|2df +

∫

S\V
|ẑ(f)|2 · |e2πifβ − e2πif0β|2df,

805

where the first step is straight forward, the second step follows from Parseval’s the-

orem, the third step is straight forward, the forth step follows from the assumption

that Large Offset event does not happen, the fifth step is straight forward.

Then, for the first term, we have that
∫

S∩V
|ẑ(f)|2 · |e2πifβ − e2πif0β|2df ≤

∫ f0+∆0

f0−∆0

|ẑ(f)|2 · |e2πifβ − e2πif0β|2df

≲
∫ f0+∆0

f0−∆0

|ẑ(f)|2 · γ2df

≤ γ2 ·
∫ ∞

−∞
|ẑ(f)|2df

≤ γ2 ·
∫ ∞

−∞
|z(t)|2dt

≤ γ2 ·
∫ T

0

|z(t)|2dt (12.69)

where the first step follows from S∩V ⊂ [f0−∆0, f0+∆0] by Claim 12.13, the second

step follows from

|e2πifβ − e2πif0β| ≤ 4πβ|f − f0| ≤ 4πβ∆h0 ≲ γ,

the third step is straight forward, the forth step follows from Parseval’s theorem, the

fifth step follows from Lemma 12.30.

For the second term, we have that
∫

S\V
|ẑ(f)|2 · |e2πifβ − e2πif0β|2df =

∫

S\V
|(x̂∗ ∗ Ĥ)(f)|2 · |Ĝ(j)

σ,b(f)|2 · |e2πifβ − e2πif0β|2df

≤
∫

S\V
|(x̂∗ ∗ Ĥ)(f)|2 · δ21 · |e2πifβ − e2πif0β|2df

≲
∫

S\V
|(x̂∗ ∗ Ĥ)(f)|2 · δ21df

≤
∫ ∞

−∞
|(x̂∗ ∗ Ĥ)(f)|2 · δ21df

= δ21 ·
∫ ∞

−∞
|(x∗ ·H)(t)|2dt

≲ δ21 ·
∫ T

0

|x∗(t)|2dt (12.70)

806

where the first step follows from the definition of z, the second step follows from the

definition of V , the third step follows from |e2πifβ − e2πif0β|2 ≲ 1, the forth step is

straight forward, the fifth step follows from Parseval’s theorem, the sixth step follows

from Lemma 12.24 Property IV and V.

Putting them together, we get that
∫ T

0

|z(t+ β)− e2πif0β · z(t)|2dt ≲ γ2 ·
∫ T

0

|z(t)|2dt+ δ21 ·
∫ T

0

|x(t)|2dt

≲ (γ2 + δ21δ
−1k) ·

∫ T

0

|z(t)|2dt

≲ (γ2 + δ1) ·
∫ T

0

|z(t)|2dt,

where the first step follows from Eq. (12.69) and Eq. (12.70), the second step follows

from Lemma 12.33, the last step follows from δ1δ
−1k ≲ 1.

The proof of the lemma is then completed.

Similar result also holds for the partial energy:

Claim 12.59 (Partial energy decay of local-test signals). Let x∗(t) be a k-Fourier-

sparse signal. Let z(t) := (x∗ · H) ∗ G(j)
σ,b(t) and dz(t) = z(t + β) − e2πif0β · z(t).

Let U = {t0 ∈ R | H(t) > 1 − δ1 ∀t ∈ [t0, t0 + β]} =: [L,R]. For β ≤ γ/∆0 with

∆0 = O(∆), we have that
∫ R

L

|dz(t)|2dt ≲ (γ2 + δ1) ·
∫ R

L

|z(t)|2dt.

Proof. We have that
∫ R

L

|z(t+ β)− e2πif0β · z(t)|2dt ≤
∫ T

0

|z(t+ β)− e2πif0β · z(t)|2dt

≤ (γ2 + δ1)

∫ T

0

|z(t)|2dt

≤ (γ2 + δ1)
T

T − k2(T + L−R)

∫ R

L

|z(t)|2dt

≲ (γ2 + δ1)

∫ R

L

|z(t)|2dt,

807

where the first step is straight forward, the second step follows from Claim 12.58, the

third follows from Lemma 12.51 with time duration changed from [−T, T] to [0, T],

the forth step follows from T − k2(T + L−R) ≳ T .

12.15 Frequency Estimation

We introduce our improved frequency estimation algorithm in this section.

We first show that given significant samples, we are able to estimate a specific target

frequency (see Section 12.15.1). Then, we show to generalize it to simultaneously

estimate frequencies for multiple bins and give our main frequency estimation algo-

rithm (see Section 12.15.2). Next, we prove several technical claims on the votes

distribution in the ArySearch procedure (see Section 12.15.3).

12.15.1 Frequency estimation via significant samples

In this section, we show an algorithm such that for a target frequency f0, it

can use several significant samples to estimate it with high accuracy. The main idea

is as follows: for a significant sample α, since |z(α + β) − z(α)e2πif0β| is very small,

the angle of z(α+β)
z(α)

will be close to 2πf0β. That is,

arg
(z(α + β)

z(α)

)
≊ 2πf0β (mod 2π).

Solving the congruence equation gives that

f0 ≈
1

2πβ

(
arg
(z(α + β)

z(α)

)
+ 2πs

)

for some unknown s ∈ Z.

To find the unknown s, we use the same strategy as in [PS15]: perform a

D-round searching procedure to narrow the possible range of f0. More specifically, at

the beginning, the possible range of f0 (frequency interval) is [−F, F]. And after D

rounds, f0 is located in a frequency interval of length O(∆), resulting in an estimate

with ∆ accuracy.

808

For d ∈ [D], consider the d-th round of searching, where the frequency interval

is:

[leftd, leftd + lend].

We equally partition the frequency interval into num parts and do a num-ary search.

We generate R significant samples, and for each sample α, we enumerate all possible

s and compute

1

2πβ

(
arg
(z(α + β)

z(α)

)
+ 2πs

)
.

Then, we find which part this quantity falls in and add a vote to that part. For

robustness, we also add votes to that part’s left and right neighbors. In the end, the

frequency interval for the next round is the part with more than R/2 votes. It is easy

to see that at most 5 parts can be selected in the new frequency interval. Hence, we

have

lend+1 ≤
lend

num/5
, (12.71)

i.e., the length of the possible range of f0 decays at a constant rate.

More formally, we have the following lemma:

Lemma 12.60 (significant sample to frequency estimation). Suppose that there is an

algorithm GetSignificantSample that

• takes z(t), β as input where β ≤ O(1/∆),

• takes S samples in z(t),

• runs in T time,

• outputs an α such that with probability 0.9,

|z(α + β)− z(α)e2πif0β|2 ≤ 0.0001|z(α)|2.

809

Then, there is an Procedure FrequencyEstimationZ in Algorithm 66 that

• takes O(log(FT) log(log(FT)) log(1/ρ1)S) samples,

• runs in O(log(FT) log(log(FT)) log(1/ρ1)T) times,

• and outputs f̃0 such that with probability at least 1− ρ1,

|f̃0 − f0| ≲ ∆.

Proof. We prove the correctness, time/sample complexity of Algorithm 66 in below.

Correctness: We first compute the value of D, the number of rounds needed for

the searching procedure. Note that the GetSignificantSample procedure requires

that β ≤ O(1/∆). In our algorithm, we take βd = O(num/lend) for the d-th round.

Hence, for the last round d = D, we have that,

O(num/lenD) = O(1/∆) =⇒ lenD ≥ num∆.

Then, by Eq. (12.71) and len1 = F , we get that

D = lognum(
FT

num(T∆)
) ≲ log(FT)/ log(num). (12.72)

Then, we calculate the success probability. For d ∈ [D], by Claim 12.67, with

probability at least 1−O(c+ ρ)R/6, the true part containing f0 and its left and right

neighbor will get R votes in total, and the other far away parts will get at most R/2

votes. In this case, the new frequency interval will contain the true part, and we

consider this round being success. Since the search procedure takes D rounds, by a

union bound, all rounds will succeed with probability at least

1−D ·O(c+ ρ)R/6 ≥ 1− log(FT)

log(num)
·O(c+ ρ)R/6 ≥ 1− ρ1

where the first step follows from Eq. (12.72), the second step follows from

R ≥ O
(log(log(FT)/ρ1)

log(1/(c+ ρ))

)
≥ O

(log(log(FT)/(ρ1 log(num)))

log(1/(c+ ρ))

)
.

810

Therefore, with probability at least 1−ρ, the final frequency interval of length

O(∆) will contain the target frequency f0, which means that the output f̃0 satisfies

|f̃0 − f0| ≲ ∆. And the correctness of the algorithm is proved.

Time complexity: We show that Procedure FrequencyEstimationZ in Algo-

rithm 66 runs in O(log(FT) · log(log(FT)/ρ1)) times.

In each call of the Procedure FrequencyEstimationZ in Algorithm 66,

• The for-loop repeats D times.

• In each loop, line 6 call Procedure ArySearch.

Then, in the d-th call of the Procedure ArySearch,

• In line 12, the for-loop repeats R times.

• In line 13, the Procedure GetSignificantSample is called.

• In line 14, the for-loop repeats βdlend +O(1) times.

• In line 16, the for-loop repeats num times.

Thus, the total time complexity is dominated by:

D ·R · (βdlend +O(1)) · num+D ·R · T.

By the parameter settings in Algorithm 66, we have that

num = O(1),

D = O(log(
FT

∆
)/ log(num)),

R = O(log(
log(FT)

ρ1 log(num)
)),

βd = O(
num

lend
),

811

In particular, we have

D = O(log(
FT

∆
)/ log(num)) ≤ O(log(

FT

∆
)) ≤ O(log(FT)),

where the first step follows from the setting of D, the second step follows from num =

O(1), the third step follows from ∆ = poly(k).

Hence, the total time complexity of Algorithm 66 is

O(D ·R · (βdlend +O(1)) · num) +D ·R · T

= O(D ·R · (O(num) +O(1)) · num) +D ·R · T

= O(D ·R · T)

= O(log(FT) · log(log(FT)/ρ1) · T),

where the first step follows from βd = O(num
lend

), the second step follows from num =

O(1), the third step follows from the choices of D and R.

Sample complexity: Each call of the Procedure GetSignificantSample takes

S samples, and it is called DR times. Thus, the total sample complexity of Algorithm

66 is

DR · S = O(log(FT) · log(log(FT)/ρ1) · S).

The proof of the lemma is completed.

12.15.2 Simultaneously estimate frequencies for different bins

Combining the significant sample generation procedure discussed in Section 12.14

with Algorithm 66, we obtain the frequency estimation algorithm that improves the

algorithms in [PS15] and [CKPS16].

812

Algorithm 66 Frequency Estimation of the Filtered Signal

1: procedure FrequencyEstimationZ(x,H,G(j)
σ,b)

2: num← O(1), D ← O(log(FT
∆
)/ log(num)), R← O(log(log(FT)

ρ1 log(num)
))

3: left1 ← −F , len1 ← 2F
4: for d ∈ [D] do
5: lend ← 5 lend−1

num

6: leftd+1 ← ArySearch(x,H,G(j)
σ,b, F, T,∆, leftd, lend, num)

7: end for
8: return leftD
9: end procedure

10: procedure ArySearch(x,H,G(j)
σ,b, F, T,∆, lefti, leni, num)

11: Let v ∈ Znum
+ and vq ← 0 for q ∈ [num]

12: for r = 1→ R do
13: z(α + β), z(α)← GetSignificantSample(x,H,G(j)

σ,b, r, d)
14: for s ∈ [βleftd − 10, β(leftd + lend) + 10] ∩ Z do
15: f̃ = 1

2πβ
(arg(z(α+β)

z(α)
) + 2πs)

16: for q ∈ [num] do
17: if f̃ ∈ [leftd + (q − 1)lend/num, leftd + qlend/num] then
18: vq ← vq + 1
19: end if
20: end for
21: end for
22: end for
23: for q ∈ [num] do
24: if vq + vq+1 + vq+2 ≥ R/2 then
25: leftd+1 ← leftd + (q − 1)lend/num
26: return leftd+1

27: end if
28: end for
29: return ∅
30: end procedure

Theorem 12.61 (Better frequency estimation algorithm). Let x∗(t) =
k∑
j=1

vje
2πifjt

and x(t) = x∗(t) + g(t) be the observation signal where g(t) is arbitrary noise. Let

∆h := O(|supp(Ĥ)|), ∆ := O(k ·∆h) and N2 := ∥g(t)∥2T+δ∥x∗(t)∥2T . Let H be defined

as in Definition 12.7, G(j)
σ,b be defined as in Definition 12.2 with (σ, b) such that Large

813

Algorithm 67 Pre-computation of the Significant Samples

1: procedure SamplingSignificantSample(x,H,G(j)
σ,b, F, T,∆, num, D,R)

2: len1 ← 2F , L ∈ CD×R×B×2

3: for d ∈ [D] do
4: lend = 5 lend−1

num

5: β̂ ← O(num
lend

)

6: for r ∈ [R] do
7: Sample β ∈ Uniform([1

2
β̂, β̂])

8: Z ← GenerateSignificantSamples(x,H,G) ▷ Z ∈ CB×2, see
Algorithm 65

9: for j ∈ [B] do
10: Ld,r,j,1 ← Zj,1 ▷ Zj,1 = z(j)(α + β)
11: Ld,r,j,2 ← Zj,2 ▷ Zj,2 = z(j)(α)
12: end for
13: end for
14: end for
15: return L

16: end procedure
17: procedure GetSignificantSample(L, d, r, j)
18: return (Ld,r,j,1,Ld,r,j,2)
19: end procedure

814

Algorithm 68 Frequency Estimation
1: procedure FrequencyEstimationX(x)
2: L← SamplingSignificantSample(x)
3: for j ← 1, · · · , B do
4: f̃j ← FrequencyEstimationZ(x,H,G(j)

σ,b) ▷ z(j) = (x ·H) ∗G(j)
σ,b(t)

5: end for
6: L← {f̃1, · · · , f̃B}
7: return L
8: end procedure

Offset event does not happen. Let U = {t0 ∈ R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}.

For j ∈ [B], let z∗j (t) := (x∗ · H) ∗ G(j)
σ,b(t) and zj(t) = (x · H) ∗ G(j)

σ,b(t). Let

gj(t) := zj(t)− z∗j (t). Let

Sg1 = {j ∈ [B] | ∥gj(t)∥2T ≤ c∥z∗j (t)∥2U},

where c ∈ (0, 0.001) is a small universal constant. Let

Sg2 =
{
j ∈ [B]

∣∣∣ ∃f0, hσ,b(f0) = j and
∫ f0+∆h

f0−∆h

|x̂∗ ·H(f)|2df ≥ TN2/k
}
.

Let Sg = Sg1 ∩ Sg2. Let Sf = {fi | ∃j ∈ Sg : hσ,b(fi) = j ∀i ∈ [k]}.

There is a Procedure FrequencyEstimationX in Algorithm 68 such that:

• takes k2 log(1/δ) log(FT) samples,

• runs in k2 log(1/δ) log2(FT) time,

• returns a set L of O(k) frequencies such that with probability 1 − ρ0, for any

f ∈ Sf , there exists an f̃ ∈ L satisfying

|f − f̃ | ≲ ∆.

Proof. We prove the correctness, time complexity, and sample complexity of Algo-

rithm 68 in below.

815

Correctness: By Lemma 12.55, we know that the Procedure GenerateSignif-

icantSamples in Algorithm 65 takes S = O(k2 log2(k/δ1)) samples in x, runs in

T = O(k2 log3(k/δ1)) time, and for each j ∈ Sg, and outputs αj such that for each

j ∈ Sg with probability 0.6,

|zj(αj + β)− zj(αj)e2πif0β|2 ≤ 0.01|zj(αj)|2,

where f0 satisfies ∫ f0+∆

f0−∆
|x̂∗ ·H(f)|2df ≥ TN2/k, (12.73)

and j = hσ,b(f0).

In the line 4, we call the algorithm FrequencyEstimationZ(x,H,G(j)
σ,b). By

Lemma 12.60, FrequencyEstimationZ(x,H,G(j)
σ,b) output f̃ for each fj ∈ Sf such

that with probability at least 1− ρ1

|f̃ − fj| ≲ ∆.

As a result, for all the f ∈ Sf , there is a f̃ ∈ L such that

|f̃ − f | ≲ ∆

holds with probability at least

1−Bρ1 ≥ 1− ρ0.

Time complexity: We show that the Procedure FrequencyEstimationX in

Algorithm 68 runs in

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

time.

In each call of the Procedure FrequencyEstimationX in Algorithm 68,

816

• Line 2 call Procedure SamplingSignificantSample, which runs in

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

time by Lemma 12.62.

• The for-loop repeats B times:

– In each loop, line 4 call Procedure FrequencyEstimationZ, which runs

in

O(log(FT) · log(log(FT)/ρ1))

time by Lemma 12.60.

Thus, the total time complexity is

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)) +B ·O(log(FT) · log(log(FT)/ρ1))

≤ O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)) +O(k) ·O(log(FT) · log(log(FT)/ρ1))

≤ O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)),

where the first step follows from B = O(k), the second step is straight forward.

Sample complexity: We show that the Procedure FrequencyEstimationX in

Algorithm 68 takes

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

samples.

In each call of the Procedure FrequencyEstimationX in Algorithm 68, Line

2 call Procedure SamplingSignificantSample, which takesO(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

samples by Lemma 12.63.

So, the sample complexity of Procedure FrequencyEstimationX in Algo-

rithm 68 is

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)).

817

The following two lemmas shows the time complexity and sample complexity

of the significant sample generation procedure in Algorithm 67.

Lemma 12.62 (Running time of Procedure SamplingSignificantSample in Al-

gorithm 67). Procedure SamplingSignificantSample in Algorithm 67 runs in

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

times.

Proof. In each call of Procedure SamplingSignificantSample in Algorithm 67, in

line 3, the for loop repeats D times, in line 6, the for loops repeats R times,

• In line 8, by Lemma 12.56, each call of Procedure GenerateSignificantSam-

ples takes O(k2 log(k) log(k/δ1)) times.

• In line 9, the for loop repeats B times, each iteration runs in O(1) times.

Following from the setting in the algorithm, we have that

num = O(1),

D = O(log(
FT

∆
)/ log(num)),

R = O(log(
log(FT)

ρ1 log(num)
)),

B = O(k). (12.74)

We have that

D = O(log(
FT

∆
)/ log(num)) ≤ O(log(

FT

∆
)) ≤ O(log(FT)), (12.75)

where the first step follows from the setting of D, the second step follows from num =

O(1), the third step follows from ∆ = poly(k).

818

We also have that

R = O(log(
log(FT)

ρ1 log(num)
)) ≤ O(log(log(FT)/ρ1)), (12.76)

where the first step follows from the setting of R, the second step follows from num =

O(1).

So, the time complexity of Procedure SamplingSignificantSample in Al-

gorithm 67 is

D ·R · (O(k2 log(k) log(k/δ1)) +B ·O(1))

≤ O(log(FT)) ·R · (O(k2 log(k) log(k/δ1)) +B ·O(1))

≤ O(log(FT)) ·O(log(log(FT)/ρ1)) · (O(k2 log(k) log(k/δ1)) +B ·O(1))

≤ O(log(FT)) ·O(log(log(FT)/ρ1)) · (O(k2 log(k) log(k/δ1)) +O(k) ·O(1))

= O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)),

where the first step follows from Eq. (12.75), the second step follows from Eq. (12.76),

the third step follows from Eq. (12.74), the forth step is straightforward.

Lemma 12.63 (Sample complexity of Procedure SamplingSignificantSample in

Algorithm 67). Procedure SamplingSignificantSample in Algorithm 67 takes

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

samples.

Proof. In each call of Procedure SamplingSignificantSample in Algorithm 67,

In line 3, the for loop repeats D times, in line 6, the for loops repeats R times,

• In line 8, by Lemma 12.56, each call of Procedure GenerateSignificantSam-

ples takes O(k2 log(k) log(k/δ1)) samples.

819

Following from the setting in the algorithm, we have that

num = O(1),

D = O(log(
FT

∆
)/ log(num)),

R = O(log(
log(FT)

ρ1 log(num)
)).

We have that

D = O(log(
FT

∆
)/ log(num)) ≤ O(log(

FT

∆
)) ≤ O(log(FT)), (12.77)

where the first step follows from the setting of D, the second step follows from num =

O(1), the third step follows from ∆ = poly(k).

We also have that

R = O(log(
log(FT)

ρ1 log(num)
)) ≤ O(log(log(FT)/ρ1)), (12.78)

where the first step follows from the setting of R, the second step follows from num =

O(1).

So, the sample complexity of Procedure SamplingSignificantSample in

Algorithm 67 is

D ·R ·O(k2 log(k) log(k/δ1))

≤ O(log(FT)) ·R ·O(k2 log(k) log(k/δ1))

≤ O(log(FT)) ·O(log(log(FT)/ρ1)) ·O(k2 log(k) log(k/δ1))

= O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)),

where the first step follows from Eq. (12.77), the second step follows from Eq. (12.78),

the third step is straightforward.

820

12.15.3 Vote distributions in ArySearch

In this section, we prove several claims on the distributions of votes when we

perform the num-ary search on the frequency interval.

We first consider a single voter, i.e., one significant sample. The following

claim shows that, if f0 is in the q-th part, then this part or its left neighbor or its

right neighbor will get at least one vote.

Claim 12.64. For len ∈ R+, num ∈ Z+, q ∈ [1, num], let f0 ∈ [left+ (q − 1) len
num

, left+

q len
num

]. For any β ∈ [c
2
· num

len
, c · num

len
] with constant c ∈ (0, 0.01), for any constant

ε ∈ (0, 0.01 · c2), let α ∈ R such that

|z(α + β)− z(α)e2πif0β|2 ≤ ε|z(α)|2.

Let

Θ =
{ 1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs)

∣∣∣ s ∈ [βleft− 10, β(left+ len) + 10] ∩ Z
}
.

Then, we have that
∣∣∣∣Θ ∩

[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

)∣∣∣∣ = 1.

Proof. We have that
∣∣∣z(α + β)

z(α)
− e2πif0β

∣∣∣ ≤
√
ε.

Since |e2πif0β| = 1 and sin(x) ≈ x for small x, it indicates that
∥∥∥ arg(z(α + β)

z(α)
)− 2πf0β

∥∥∥
⃝

≲
√
ε, (12.79)

where ∥a∥⃝ = min
x∈Z
|a+ 2πx|. Thus, Eq. (12.79) can be rewritten as:

min
x∈Z

∣∣∣ arg(z(α + β)

z(α)
)− 2πf0β + 2πx

∣∣∣ ≲
√
ε. (12.80)

821

Let s0 be defined as

s0 := argmin
x∈Z

arg(
z(α + β)

z(α)
)− 2πf0β + 2πx.

We first show that s0 falls in interval in the definition of Θ. We have that

|2πs0 − 2πf0β| ≤
∣∣∣ arg(z(α + β)

z(α)
)− 2πf0β + 2πs0

∣∣∣+
∣∣∣ arg(z(α + β)

z(α)
)
∣∣∣

≤
∣∣∣ arg(z(α + β)

z(α)
)− 2πf0β + 2πs0

∣∣∣+ 2π

≤ 2π +O(
√
ε) (12.81)

where the first step follows from the triangle inequality, the second step follows from

| arg(z(α+β)
z(α)

)| ≤ 2π, the third step follows from Eq. (12.80).

As a result, s0 has the following upper bound:

s0 ≤ f0β + 1 +O(
√
ε)

≤ β(left+ len) + 1 +O(
√
ε)

≤ β(left+ len) + 2

where the first step follows from Eq. (12.81), the second step follows from f0 ∈
[left+ (q− 1) len

num
, left+ q len

num
] ⊆ [left, left+ len], the third step follows from the setting

of ε.

Also, s0 has the following lower bound:

s0 ≥ f0β − 1−O(√ε)

≥ βleft− 1−O(√ε)

≥ βleft− 2

where the first step follows from Eq. (12.81), the second step follows from f0 ∈
[left, left+ len], the third step follows from the setting of ε.

822

Combining the lower and upper bounds of s0 together, and by the definition

of the set Θ, we know that

1

2πβ

(
arg(

z(α + β)

z(α)
) + 2πs0

)
∈ Θ.

Then, we show that

left+ (q − 2)
len

num
≤ 1

2πβ

(
arg(

z(α + β)

z(α)
) + 2πs0

)
< left+ (q + 1)

len

num
.

Eq. (12.80) also implies that

∣∣∣ 1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0)− f0

∣∣∣ ≤ O(

√
ε

β
). (12.82)

Then, we have the following upper bound:

1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) ≤ f0 +O(

√
ε

β
)

≤ left+ q
len

num
+O(

√
ε

β
)

≤ left+ q
len

num
+O(

2
√
ε

c

len

num
)

≤ left+ (q + 1)
len

num
,

where the first step follows from Eq. (12.82), the second step follows from f0 ∈
[left + (q − 1)len/num, left + qlen/num], the third step follows from β ∈ [cnum

2len
, cnum

len
],

the forth step follows from O(
√
ε/c) ≤ 1.

We also have the following lower bound:

1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) ≥ f0 −O(

√
ε

β
)

≥ left+ (q − 1)
len

num
−O(

√
ε

β
)

≥ left+ (q − 1)
len

num
−O(

√
ε

c

len

num
)

> left+ (q − 2)
len

num
,

823

where the first step follows from Eq. (12.82), the second step follows from f0 ∈
[left + (q − 1)len/num, left + qlen/num], the third step follows from β ∈ [cnum

2len
, cnum

len
],

the forth step follows from O(
√
ε/c) < 1.

Moreover, since

1

β
≥ len

num
,

we have that there is at most 1 element in the intersection
∣∣∣∣Θ ∩

[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

)∣∣∣∣ ≤ 1.

The lemma then follows.

The following claim shows that for those parts far away from the true part

containing f0, they will get no vote.

Claim 12.65. For len ∈ R+, num ∈ Z+, q ∈ [1, num], let f0 ∈ [left+ (q − 1) len
num

, left+

q len
num

]. Let β ∼ Uniform([c
2
· num

len
, c · num

len
]) with constant c ∈ (0, 0.01). For any constant

ε ∈ (0, 0.01 · c2), let α ∈ R such that

|z(α + β)− z(α)e2πif0β|2 ≤ ε|z(α)|2.

Let

Θ =
{ 1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs)

∣∣∣ s ∈ [βleft− 10, β(left+ len) + 10] ∩ Z
}
.

Then, we have that for any q′ ∈ [0, num − 1] such that |q − q′| > 1, with

probability at least 1−O(c),

Θ ∩
[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]
= ∅.

Proof. Let s0 be defined as

s0 := argmin
x∈Z

arg(
z(α + β)

z(α)
)− 2πf0β + 2πx.

824

By Claim 12.64, we have that

1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) ∈

[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

)
. (12.83)

Then, we discuss two cases based on the range of q′.

Case 1: 1 < |q − q′| < 1/(4c).

For the ease of discussion, suppose 1 < q′ − q < 1/(4c). We have that

left+ (q′ − 1)
len

num
≥ left+ (q + 1)

len

num

>
1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0),

where the first step follows from q, q′ ∈ Z, and the second step follows from Eq. (12.83).

Moreover, we also have that

left+ q′
len

num
≤ left+ (q +

1

4c
− 1)

len

num

≤ 1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) + (

1

4c
+ 1)

len

num

<
1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) +

1

β

≤ 1

2πβ
(arg(

z(α + β)

z(α)
) + 2π(s0 + 1)),

where the second step follows from Eq. (12.83), the third step follows from (1
4c

+

1)len/num < 1/β.

Hence, we get that
[
left+(q′−1) len

num
, left+ q′ len

num

]
is contained in the following

interval:
(1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0),

1

2πβ
(arg(

z(α + β)

z(α)
) + 2π(s0 + 1))

)
.

Since s0 and s0 + 1 are two consecutive integers, by the definition of Θ, there is no

element of Θ in this open interval. Hence, we know that in this case,

Θ ∩
[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]
= ∅.

825

Case 2: |q − q′| ≥ 1/(4c).

For the ease of discussion, suppose that q′ − q ≥ 1/(4c). We have that,

c(q′ − q) ≥ 1

4
. (12.84)

Moreover, we have that

arg(
z(α + β)

z(α)
)− 2πβ

(
left+ (q − 1

2
)
len

num

)
(mod 2π) ∈

[
− 3πβlen

num
,
3πβlen

num

]
,

(12.85)

which follows from Eq. (12.83).

We also have that,

β
len

num
≤ c. (12.86)

Then, we have that,

Pr
[
2πβ(left+ (q′ − 1

2
)
len

num
)− arg(

z(α + β)

z(α)
) (mod 2π) ∈ [−πβlen

num
,
πβlen

num
]
]

≤ Pr
[
2πβ(q′ − q) len

num
(mod 2π) ∈ [−4πβlen

num
,
4πβlen

num
]
]

≤ Pr
[
2πβ(q′ − q) len

num
(mod 2π) ∈ [−4πc,+4πc]

]

≤ 4c+
16

q′ − q
≤ 100c (12.87)

where the first step follows from Eq. (12.85), the second step follows from Eq. (12.86),

the third step follows from Lemma 12.15 with the following parameters:

T̃ = 2π,

σ̃ = 2πβ(q′ − q) len

num
,

ε̃ = 4πc,

δ̃ = 0,

A = πc(q′ − q),

826

the forth step follows from Eq. (12.84).

By Eq. (12.87), we have that

Pr
[
∃s0 ∈ Z,

1

2πβ
(arg(

z(α + β)

z(α)
) + 2πs0) ∈

[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]]
≤ 100c

As a result, we know that in this case, with probability at least 1−O(c),

Θ ∩
[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]
= ∅.

Then, we consider R independent voters, i.e., R significant samples α1, . . . , αR.

The following claim shows that the true part and its left and right neighbors will get

at least R votes. Meanwhile, those parts far away from the true part will get at most

R/2 votes with high probability.

Claim 12.66. For For len ∈ R+, num ∈ Z+, q ∈ [1, num], let f0 ∈ [left + (q −
1) len

num
, left+ q len

num
]. Let β ∼ Uniform([c

2
· num

len
, c · num

len
]) with constant c ∈ (0, 0.01). For

any constant ε ∈ (0, 0.01 · c2), Let α1, · · · , αR ∈ R such that for any i ∈ [R],

|z(αi + β)− z(αi)e2πif0β|2 ≤ ε|z(αi)|2.

For any i ∈ [R], let

Θi =
{ 1

2πβ
(arg(

z(αi + β)

z(αi)
) + 2πs)

∣∣∣ s ∈ [βleft− 10, β(left+ len) + 10] ∩ Z
}
.

Then, it holds that:

1.
R∑

i=1

∣∣∣Θi ∩
[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

]∣∣∣ ≥ R.

2. For any |q′ − q| ≥ 3, with probability at least 1−O(c)R/6,
R∑

i=1

∣∣∣Θi ∩
[
left+ (q′ − 2)

len

num
, left+ (q′ + 1)

len

num

]∣∣∣ ≤ R

2
.

827

Proof. Part 1.

By applying Claim 12.64, we have that,
∣∣∣Θi ∩

[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

]∣∣∣ ≥ 1,

which implies that
R∑

i=1

∣∣∣Θi ∩
[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

]∣∣∣ ≥ R.

Part 2. By applying Claim 12.65, we have that, for any |q − q′| > 1, with

probability at most O(c),
∣∣∣Θi ∩

[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]∣∣∣ ≥ 1.

By the setting of our parameter 1
β
≥ len

num
, thus

∣∣∣Θi ∩
[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]∣∣∣ = 1.

Then, for any |q−q′| ≥ 3, by a union bound over q′−1, q′, and q′+1, with probability

at most O(c),

3 ≥
∣∣∣Θi ∩

[
left+ (q′ − 2)

len

num
, left+ (q′ + 1)

len

num

]∣∣∣ ≥ 1.

Then, we have that

Pr
[R∑

i=1

∣∣∣Θi ∩
[
left+ (q′ − 2)

len

num
, left+ (q′ + 1)

len

num

]∣∣∣ ≥ R

2

]

≤
(
R

R/6

)
O(c)R/6

≤ (
eR

R/6
)R/6O(c)R/6

≤ O(c)R/6

where the first step follows from there should be at least 0.5R/3 = R/6 different

i ∈ [R] satisfying |Θi ∩ [left+ (q′ − 2)len/num, left+ (q′ + 1)len/num]| ≥ 1,the second

step follows from
(
n
k

)
≤ (en

k
)k, the third step is straight forward.

The lemma is then proved.

828

Finally, we consider probabilistic voters, that is, for each sample αi, with

probability 1 − ρ, it is significant. The following claim shows the votes distribution

in this case.

Claim 12.67. For len ∈ R+, num ∈ Z+, q ∈ [1, num], let f0 ∈ [left+ (q − 1) len
num

, left+

q len
num

]. Let β ∼ Uniform([c
2
· num

len
, c · num

len
]) with c = Θ(1) ∈ (0, 0.01), ε = Θ(1) ∈

(0, 0.01 · c2), let α1, · · · , αR ∈ R such that for any i ∈ [R] with probability at least

1− ρ,

|z(αi + β)− z(αi)e2πif0β|2 ≤ ε|z(αi)|2.

For any i ∈ [R], let

Θi =
{ 1

2πβ
(arg(

z(αi + β)

z(αi)
) + 2πs)

∣∣∣ s ∈ [βleft− 10, β(left+ len) + 10] ∩ Z
}
.

Then, it holds that

1. With probability at least 1−O(ρ)R/3,
R∑

i=1

∣∣∣Θi ∩
[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

]∣∣∣ ≥ 2R

3
.

2. For any |q′ − q| ≥ 3, with probability at least 1−O(c+ ρ)R/6,

R∑

i=1

∣∣∣Θi ∩
[
left+ (q′ − 2)

len

num
, left+ (q′ + 1)

len

num

]∣∣∣ ≤ R

2
.

Proof. Part 1.

By applying Claim 12.64, we have that with probability at most ρ,
∣∣∣Θi ∩

[
left+ (q − 2)

len

num
, left+ (q + 1)

len

num

]∣∣∣ = 0,

829

then we have that,

Pr
[R∑

i=1

∣∣∣Θi ∩ [left+ (q − 2)
len

num
, left+ (q + 1)

len

num
]
∣∣∣ ≤ R

3

]

≤
(
R

R/3

)
O(ρ)R/3

≤ O(
eR

R/3
)R/3O(ρ)R/3

≤ O(ρ)R/3

where the first step follows from |Θi∩ [left+(q−2)len/num, left+(q+1)len/num]| = 0

or 1 by our parameter setting 1/β > 3len/num and there should be at least R/3

different i ∈ [R] satisfying |Θi ∩ [left+ (q− 2)len/num, left+ (q+1)len/num]| = 0, the

second step follows from
(
n
k

)
≤ (en

k
)k, the third step is straight forward.

Part 2.

By applying Claim 12.65, we have that, for any |q − q′| > 1, with probability

at most O(c) + ρ,
∣∣∣Θi ∩

[
left+ (q′ − 1)

len

num
, left+ q′

len

num

]∣∣∣ = 1,

where the probability follows from a union bound over the success of Claim 12.65 and

αi being significant.

Thus, for any |q − q′| ≥ 3, by a union bound, with probability at most 3((1−
ρ)O(c) + ρ) = O(c+ ρ),

3 ≥
∣∣∣Θi ∩

[
left+ (q′ − 2)

len

num
, left+ (q′ + 1)

len

num

]∣∣∣ ≥ 1.

830

Then, we have that

Pr
[R∑

i=1

∣∣∣Θi ∩ [left+ (q′ − 2)len/num, left+ (q′ + 1)len/num]
∣∣∣ ≥ R

2

]

≤
(
R

R/6

)
O(c+ ρ)R/6

≤ (
eR

R/6
)R/6O(c+ ρ)R/6

≤ O(c+ ρ)R/6

where the first step follows from there should be at least 0.5R/3 = R/6 different

i ∈ [R] satisfying |Θi ∩ [left+ (q′ − 2)len/num, left+ (q′ + 1)len/num]| ≥ 1, the second

step follows from
(
n
k

)
≤ (en

k
)k, the third step is straight forward.

12.16 Signal Reconstruction

In this section, we wrap up all technical tools developed in previous sections

and present our main result: a Fourier interpolation algorithm with improved time

complexity, sample complexity, and output sparsity.

This section consists of two parts. The first part is devoted to the signal

estimation. We first provide some tools that are useful for signal estimation (see

Section 12.16.1). Then, we formally define the heavy clusters and show their approx-

imation property (see Section 12.16.2). Next, we give a Fourier set query algorithm,

which is a component in signal estimation (see Section 12.16.3). We further show

that it suffices to only reconstruct the signals in the bins satisfying the high SNR

band condition (see Section 12.16.4).

The second part focuses on the Fourier interpolation algorithm. Combin-

ing the frequency estimation algorithm in Section 12.15 with the signal estimation

method we just developed, we obtain a Fourier interpolation algorithm with a con-

stant success probability (see Section 12.16.5). Then, we introduce the min-of-median

831

signal estimator used to boost the success probability (see Section 12.16.6). Finally,

we prove our main theorem that gives a Fourier interpolation algorithm with high

success probability (see Section 12.16.7).

12.16.1 Preliminary

We provide some technical tools in this section.

The following two lemma shows that Fourier-polynomial mixed signals and

Fourier-sparse signals can approximate each other.

Lemma 12.68 ([CKPS16]). For any ∆ > 0, δ > 0, for any n1, . . . , nk ∈ Z≥0 with
∑

j∈[k] nj = k, let

x∗(t) =
∑

j∈[k]

e2πifjt
nj∑

i=1

vj,ie
2πif ′j,it,

where |f ′j,i| ≤ ∆ for each j ∈ [k], i ∈ [nj]. There exist k polynomials Pj(t) for j ∈ [k]

of degree at most

d = O(T∆+ k3 log k + k log(1/δ))

such that
∥∥∥
∑

j∈[k]

e2πifjtPj(t)− x∗(t)
∥∥∥
2

T
≤ δ∥x∗(t)∥2T .

Lemma 12.69 ([CKPS16, Lemma 8.8]). For any degree-d polynomial Q(t) =
d∑
j=0

cjt
j,

any T > 0 and any ε > 0, there always exist γ > 0 and

x∗(t) =
d+1∑

j=1

αje
2πi(γj)t

such that

|x∗(t)−Q(t)| ≤ ε ∀t ∈ [0, T].

832

Algorithm 69 Multipoint evaluation of a polynomial
1: procedure PolynomialEvaluation(P, t) ▷ Fact 12.70
2: return (P (t1), P (t2), · · · , P (td)) ▷ t ∈ Cd

3: end procedure
4: procedure MixedPolynomialEvaluation(

∑k
j=1 Pj(t) exp(2πifjt), t)

5: for j ∈ [k] do
6: vj ← (Pj(t1), Pj(t2), · · · , Pj(td)) ▷ t ∈ Cd

7: end for
8: return (

∑k
j=1 vj,1 exp(2πifjt1),

∑k
j=1 vj,2 exp(2πifjt2), · · · ,

∑k
j=1 vj,3 exp(2πifjt3))

9: end procedure

The following fact shows an efficient method multi-point evaluation of a poly-

nomial.

Fact 12.70 ([VZGG99, Chapter 10]). Given a degree-d polynomial P (t), and a set of

d locations {t1, t2, · · · , td}. There exists an algorithm that takes O(d log2 d log log d)

time to output the evaluations {P (t1), P (t2), · · · , P (td)}.

The following lemma shows the time complexity of evaluating a mixed poly-

nomial.

Lemma 12.71 (Time complexity of Algorithm 69). Procedure MixedPolynomial-

Evaluation in Algorithm 69 runs

O
(k∑

j=1

max{d, deg(Pj)} log3(max{d, deg(Pj)})
)

time.

Proof. Procedure MixedPolynomialEvaluation in Algorithm 69 consists of the

following steps:

• In line 5, the for loop repeats k times.

• In line 6, multipoint evaluation of a polynomial takes dj logc(dj) times by Fact

12.70, where dj = max{d, deg(Pj)}.

833

Hence, the total time complexity is

k∑

j=1

O(dj log
3(dj)) = O

(k∑

j=1

max{d, deg(Pj)} log3(max{d, deg(Pj)})
)
.

12.16.2 Heavy cluster

In this section, we formally define the heavy clusters and show that using

“heavy frequencies” only yields a good approximation of the ground-truth signal.

Definition 12.9 (Heavy cluster). Let x∗(t) =
k∑
j=1

vje
2πifjt and N > 0. Let the filter H

be defined as in Lemma 12.24. Let ∆h = |supp(Ĥ)|. We say a frequency f ∗ belongs

to an N-heavy cluster if and only if
∫ f∗+∆h

f∗−∆h

|Ĥ · x∗(f)|2df ≥ T ·N2/k.

Claim 12.72. Given x∗(t) =
k∑
j=1

vje
2πifjt and any N > 0. For the set of heavy

frequencies:

S∗ =

{
j ∈ [k]

∣∣∣∣
∫ fj+∆h

fj−∆h

|Ĥ · x∗(f)|2df ≥ T ·N2/k

}
,

and the signal xS∗(t) =
∑
j∈S∗

vje
2πifjt, it holds that

∥xS∗ − x∗∥2T ≲ N2.

Proof. Let xS∗(t) =
∑

j∈[k]\S∗
vje

2πifjt. Then ∥x∗ − xS∗∥2T = ∥xS∗∥2T .

834

Then, we have that

T∥xS∗(t)∥2T =

∫ T

0

|xS∗(t)|2dt

≲
∫ T

0

|xS∗(t) ·H(t)|2dt

≤
∫ ∞

−∞
|xS∗(t) ·H(t)|2dt

=

∫ ∞

−∞
|x̂S∗(f) ∗ Ĥ(f)|2df

≤
∑

j∈[k]\S∗

∫ fj+∆h

fj−∆h

|x̂S∗(f) ∗ Ĥ(f)|2df

≤
∑

j∈[k]\S∗

TN2/k

≤ TN2,

where the first step follows from the definition of the norm, the second step follows

from Lemma 12.24 Property V, the third step is straight forward, the forth step

follows from Parseval’s theorem, the fifth step follows from the definition of xS∗(t),

the sixth step follows from the definition of heavy frequency, the seventh step is

straightforward.

12.16.3 Fourier set query

In this section, we present a Fourier set query algorithm such that for a Fourier-

polynomial mixed signal, given all of its frequencies, the algorithm can reconstruct

the signal very efficiently.

Lemma 12.73. For j ∈ [k], given a dj-degree polynomial Pj(t) and a frequency

fj. Let xS(t) =
∑k

j=1 Pj(t) exp(2πifjt). Given observations of the form x(t) :=

xS(t) + g(t) for arbitrary noise g(t) in time duration t ∈ [0, T]. Let D :=
∑k

j=1 dj.

Then, there is an algorithm (Procedure SignalEstimation in Algorithm 70)

such that

835

• takes O(D log(D)) samples from x(t),

• runs O(Dω log(D)) time,

• outputs y(t) =
∑k

j=1 P
′
j(t) exp(2πifjt) with d-degree polynomial P ′j(t), such that

with probability at least 0.99, we have

∥y − xS∥2T ≲ ∥g∥2T .

Proof. By Lemma 12.69, we have that, for all t ∈ [0, T], there exist D-Fourier-sparse

signals y1(t) and xS,1(t)

|y(t)− y1(t)| ≤ ε1, (12.88)

and

|xS(t)− xS,1(t)| ≤ ε1. (12.89)

Then, we have that

∥y(t)− xS(t)∥2T ≲ ∥y(t)− y1(t)∥2T + ∥xS(t)− xS,1(t)∥2T + ∥y1(t)− xS,1(t)∥2T
≲ 2ε1 + ∥y1(t)− xS,1(t)∥2T
≲ ∥y1(t)− xS,1(t)∥2T (12.90)

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Eq. (12.88) and Eq. (12.89), the third step follows from ε1 ≲ ∥y1(t)− xS,1(t)∥2T .

We also have that

∥y1(t)− xS,1(t)∥2S,w ≲ ∥y1(t)− y(t)∥2S,w + ∥xS,1(t)− xS(t)∥2S,w + ∥y(t)− xS(t)∥2S,w
≲ 2ε1 + ∥y(t)− xS(t)∥2S,w
≲ ∥y(t)− xS(t)∥2S,w (12.91)

where the first step follows from (a + b)2 ≤ 2a2 + 2b2, the second step follows from

Eq. (12.88) and Eq. (12.89), the third step follows from ε1 ≲ ∥y(t)− xS(t)∥2S,w.

836

By the definition of y(t) in line 17 in Procedure SignalEstimation of Algo-

rithm 70, we have that

∥y(t)− x(t)∥2S,w ≤ ∥xS(t)− x(t)∥2S,w (12.92)

We have that

E[∥x− xS∥2S,w] = E
[∑

i∈[|S|]

wi|x(ti)− xS(ti)|2
]

= E
[∑

i∈[|S|]

1

2T |S|D(t)
|x(ti)− xS(ti)|2

]

=
∑

i∈[|S|]

Eti∼D(t)

[1

2T |S|D(t)
|x(ti)− xS(ti)|2

]

= |S| ·
∫ T

−T
D(t)

1

2T |S|D(t)
|x(t)− xS(t)|2dt

=

∫ T

−T

1

2T
|x(t)− xS(t)|2dt

= ∥x(t)− xS(t)∥2T (12.93)

where the first step follows from the definition of the norm, the second step follows

from the definition of wi, the third step is straightforward, the forth follows from the

definition of expectation, the fifth step follows from the definition of the norm.

We have that

∥y − xS∥2T ≲ ∥y1 − xS,1∥2T
≲ ∥y1 − xS,1∥2S,w
≲ ∥y − xS∥2S,w
≲ ∥y − x∥2S,w + ∥x− xS∥2S,w
≲ ∥x− xS∥2S,w
≲ ∥x− xS∥2T ,

where the first step follows from Eq. (12.90), the second step follows from Lemma

12.45, the third step follows from Eq. (12.91), the forth step follows from (a+ b)2 ≤

837

2a2+2b2, the fifth step follows from Eq. (12.92), the sixth step follows from Eq. (12.93)

by Markov inequality with probability at least 0.99.

12.16.4 High signal-to-noise ratio band approximation

The goal of this section is to prove the following lemma, which roughly states

that for the heavy frequencies, it suffices to only reconstruct those in the bins with

high SNRs.

Lemma 12.74. Let x∗(t) =
∑k

j=1 vje
2πifjt be the ground-truth signal and x(t) =

x∗(t) + g(t) be the noisy observation signal. Let H be defined as in Definition 12.7,

G
(j)
σ,b be defined as in Definition 12.2 with (σ, b) such that Large Offset event does not

happen. Let U := {t0 ∈ R | H(t) > 1− δ1 ∀t ∈ [t0, t0 + β]}. Let

S :=
{
j ∈ [k]

∣∣∣
∫ fj+∆

fj−∆
|Ĥ · x∗(f)|2df ≥ TN2/k

}
,

and xS(t) =
∑

j∈S vje
2πifjt.

For j ∈ [B], let z∗j (t) := (x∗ · H) ∗ G(j)
σ,b(t) and zj(t) = (x · H) ∗ G(j)

σ,b(t). Let

gj(t) := zj(t)− z∗j (t). Let

Sg1 :=
{
j ∈ [B] | ∥gj(t)∥2T ≤ c∥z∗j (t)∥2U

}
, (12.94)

where c ∈ (0, 0.001) is a small universal constant. Let

Sg2 :=

{
j ∈ [B]

∣∣∣∣∣ ∃f0 ∈ {f1, . . . , fk}, and hσ,b(f0) = j, and
∫ f0+∆

f0−∆
|x̂∗ ·H(f)|2df ≥ TN2/k

}
.

Let Sg = Sg1 ∩ Sg2. Let Sf := {j ∈ [k] | hσ,b(fj) ∈ Sg} ∩ S and xSf
(t) :=

∑
j∈Sf

vje
2πifjt.

Then, we have

∥xSf
(t)− xS(t)∥2T ≲ ∥g(t)∥2T .

838

Proof. By the definition of S and Sf , we have that

Sf ⊆ S.

Let [L,R] := U . We have that for any f ∈ S\Sf , j = hσ,b(f),

∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T ≥ c∥(x∗(t) ·H(t)) ∗G(j)

σ,b(t)∥2U

≥ c
T − k2(T + L−R)

R− L ∥(x∗(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

≥ O(c) · ∥(x∗(t) ·H(t)) ∗G(j)
σ,b(t)∥2T , (12.95)

where the first step follows from Eq. (12.94), the second step follows from Lemma

12.51, the third step follows from the Lemma 12.25.

Let T = S\Sf . And for j ∈ [B], let

Tj :=

{
{i ∈ S | hσ,b(fi) = j} , ∀j ∈ [B]\Sg,
∅, otherwise.

It is easy to see that

T =
B⋃

i=1

Ti.

Moreover, by Lemma 12.9 Property I and III, the definition of Tj and Ĝ
(j)
σ,b(f), and

the Large Offset event not happening, we have that for any f ∈ supp(x̂Tj ∗ Ĥ),

Ĝ
(j)
σ,b(f) ≥ 1− δ

k
, (12.96)

where xTj =
∑

i∈Tj vie
2πifit and x̂Tj is its Fourier transform.

839

Then, we have that

T∥(x∗(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

=

∫ T

0

|(x∗(t) ·H(t)) ∗G(j)
σ,b(t)|2dt

≳
∫ ∞

−∞
|(x∗(t) ·H(t)) ∗G(j)

σ,b(t)|2dt

=

∫ ∞

−∞
|(x̂∗(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

=

∫ ∞

−∞
|(x̂Tj(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df +

∫ ∞

−∞
|(x̂[k]\Tj(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

≥
∫ ∞

−∞
|(x̂Tj(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

≳
∫ ∞

−∞
|x̂Tj(f) ∗ Ĥ(f)|2df (12.97)

where the first step follows from the definition of the norm, the second step follows

from Lemma 12.30, third step follows from Parseval’s theorem, the forth step follows

from the Large Offset event not happening and the definition of Tj, the fifth step is

straight forward, the sixth step follows from Eq. (12.96).

840

Thus, we have that

T∥xSf
(t)− xS(t)∥2T

= T∥xT(t)∥2T
≲ T∥xT(t) ·H(t)∥2T

=

∫ T

0

|xT(t) ·H(t)|2dt

≤
∫ ∞

−∞
|xT(t) ·H(t)|2dt

=

∫ ∞

−∞
|x̂T(f) ∗ Ĥ(f)|2df

=
B∑

j=1

∫ ∞

−∞
|x̂Tj(f) ∗ Ĥ(f)|2df

≲
∑

j∈[B]\Sg

T∥(x∗(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

≲
∑

j∈[B]\Sg

T∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T (12.98)

where the first step follows from the definition of T, the second step follows from xT

is a k-Fourier-sparse signal and Lemma 12.24 Property V, the third step follows from

the definition of the norm, the forth step is straight forward, the fifth step follows

from Parseval’s theorem, the sixth step follows from the definition of Tj and the Large

Offset event not happened, the seventh step follows from Eq. (12.97), the eighth step

follows from Eq. (12.95).

Eq. (12.98) can be upper bounded by the summation over all bins, which can

841

be further upper bounded as follows:

∑

j∈[B]

T · ∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

=
∑

j∈[B]

∫ T

0

|(g(t) ·H(t)) ∗G(j)
σ,b(t)|2dt

≤
∑

j∈[B]

∫ ∞

−∞
|(g(t) ·H(t)) ∗G(j)

σ,b(t)|2dt

≤
∑

j∈[B]

∫ ∞

−∞
|(ĝ(f) ∗ Ĥ(f)) · Ĝ(j)

σ,b(f)|2df

=

∫ ∞

−∞
|(ĝ(f) ∗ Ĥ(f))|2 ·

∑

j∈[B]

|Ĝ(j)
σ,b(f)|2df

≲
∫ ∞

−∞
|(ĝ(f) ∗ Ĥ(f))|2df

=

∫ ∞

−∞
|(g(t) ·H(t))|2dt

=

∫ T

0

|(g(t) ·H(t))|2dt

≲
∫ T

0

|g(t)|2dt

= T∥g(t)∥2T (12.99)

where the first step follows from the definition of the norm, the second step is straight-

forward, the third step follows from Parseval’s theorem, the forth step is straightfor-

ward, the fifth step follows from Lemma 12.11, the sixth step follows from Parseval’s

theorem, the seventh step follows from g(t) = 0,∀t ∈ R\[0, T], the eighth step follows

from Lemma 12.24 Property I, II, the ninth step follows from the definition of the

norm.

842

Therefore, we get that

T∥xSf
(t)− xS(t)∥2T

≲
∑

j∈[B]\Sg

T∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

≤
∑

j∈[B]

T∥(g(t) ·H(t)) ∗G(j)
σ,b(t)∥2T

≲ T∥g(t)∥2T ,

where the first step follows from Eq. (12.98), the second step is straight forward, the

third step follows from Eq. (12.99).

The lemma is then proved.

12.16.5 Fourier interpolation with constant success probability

In this section, we give an algorithm for Fourier interpolation by combining

our frequency estimation algorithm with a signal estimation algorithm. However, it

only succeeds with a constant probability.

Theorem 12.75. Let x(t) = x∗(t) + g(t), where x∗(t) ∈ Fk,F and g(t) is arbitrary

noise. Given samples of x over [0, T], there is an algorithm (Procedure Constant-

ProbFourierInterpolation in Algorithm 71) that uses

O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

samples, runs in

O(k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

time, and outputs an O(k4 log4(k/δ))-Fourier-sparse signal y(t) such that with prob-

ability at least 0.6,

∥y − x∗∥T ≲ ∥g∥T + δ∥x∗∥T .

Proof. Let N2 := ∥g(t)∥2T + δ∥x∗(t)∥2T be the noisy level of the observation signal.

843

Heavy-clusters approximation. Let S be the set of heavy frequencies:

S =
{
j ∈ [k]

∣∣∣∣
∫ fj+∆h

fj−∆h

|Ĥ · x∗(f)|2df ≥ T ·N2/k
}
,

where ∆h = |supp(Ĥ)|, and let xS(t) =
∑

j∈S vje
2πifjt. By Claim 12.72, we have

∥xS − x∗∥T ≲ N, (12.100)

which implies that it suffices to reconstruct xS, instead of x∗.

Frequency estimation. Conditioning on Large Offset event not happening, which

holds with probability at least 0.6 by Lemma 12.16, let Sf ⊆ S be defined as in

Lemma 12.74 and xSf
(t) =

∑
j∈Sf

vje
2πifjt. By Lemma 12.74, we have

∥xSf
(t)− xS(t)∥2T ≲ ∥g(t)∥2T . (12.101)

Furthermore, by Theorem 12.61, there is an algorithm that outputs a set of frequencies

L ⊂ R of size B such that with probability at least 1− 2−Ω(k), for any j ∈ Sf , there

exists an f̃ ∈ L such that,

|fj − f̃ | ≲ ∆.

Fourier-polynomial mixed signal approximation. We define a map p : R→ L

as follows:

p(f) := argmin
f̃∈L
|f − f̃ | ∀f ∈ R.

Then, xSf
(t) can be expressed as

xSf
(t) =

∑

j∈Sf

vje
2πifjt

=
∑

j∈Sf

vje
2πi·p(fj)t · e2πi·(fj−p(fj))t

=
∑

f̃∈L

e2πif̃ t ·
∑

j∈Sf : p(fj)=f̃

vje
2πi(fj−f̃)t,

844

where the first step follows from the definition of xSf
, the last step follows from

interchanging the summations.

For each f̃i ∈ L, by Lemma 12.68 with x∗ = xSf
, there exists a degree d =

O(T∆+ k3 log k + k log 1/δ) polynomial Pi(t) such that,
∥∥∥xSf

(t)−
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
≤
√
δ∥xSf

(t)∥T (12.102)

Reconstructing the polynomials. Define the following function family:

F := span
{
e2πif̃ t · tj | f̃ ∈ L, j ∈ {0, 1, . . . , d}

}
.

Note that
∑

f̃i∈L e
2πif̃itPi(t) ∈ F.

Let D := d · |L|. By Lemma 12.73, there is an algorithm that runs in

O(ε−1Dω log3(D) log(1/ρ))-time using O(ε−1D log3(D) log(1/ρ)) samples, and out-

puts y′(t) ∈ F such that, with probability 1− ρ,
∥∥∥y′(t)−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
≤ (1 + ε)

∥∥∥x(t)−
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T

(12.103)

Thus, we have that
∥∥∥y′(t)−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
≲
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T
+ ∥x(t)− x∗(t)∥T

=
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T
+ ∥g(t)∥T , (12.104)

where the first step follows from triangle inequality, the second step follows from the

definition of g(t).

845

For the first term, we have that
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T
≲
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− xSf
(t)
∥∥∥
T
+ ∥xSf

(t)− x∗(t)∥T

≲
√
δ∥xSf

(t)∥T + ∥xSf
(t)− x∗(t)∥T

≤
√
δ(∥xSf

(t)− x∗(t)∥T + ∥x∗(t)∥T) + ∥xSf
(t)− x∗(t)∥T

≲ ∥xSf
(t)− x∗(t)∥T +

√
δ∥x∗(t)∥T

≤ ∥xSf
(t)− xS(t)∥T + ∥xS(t)− x∗(t)∥T +

√
δ∥x∗(t)∥T

≲ ∥xSf
(t)− xS(t)∥T +N +

√
δ∥x∗(t)∥T

≲ ∥g(t)∥T +N +
√
δ∥x∗(t)∥T , (12.105)

where the first step follows from triangle inequality, the second step follows from

Eq. (12.102), the third step follows from triangle inequality, the forth step follows is

straightforward, the fifth step follows from triangle inequality, the sixth step follows

from Eq. (12.100), and the last step follows from Eq. (12.101).

Hence, we get that
∥∥∥y′(t)−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
≤
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T
+ ∥g(t)∥T

≲ ∥g(t)∥T +N +
√
δ∥x∗(t)∥T (12.106)

where the first step follows from Eq. (12.104), the second step follows from Eq. (12.105).

Transforming back to Fourier-sparse signal. By Lemma 12.69, we have that

there is a O(kd)-Fourier-sparse signal y(t), such that

∥y(t)− y′(t)∥T ≤ δ′ (12.107)

where δ′ > 0 is any positive real number. Thus, y(t) can be arbitrarily close to y′(t).

Moreover, the sparsity of y(t) is

O(kd) = O(k · (T∆+ k3 log k + k log 1/δ)) = O(k4 log4(k/δ)),

846

which follows from Lemma 12.24 Property III:

∆ = k∆h = k|supp(Ĥ)| = O(k3 log2(k) log2(1/δ1)/T).

Moreover, we take

N =
√
∥g∥2T + δ∥x∗∥2T ≤ ∥g∥T +

√
δ∥x∗∥T . (12.108)

Therefore, the total approximation error can be bounded as follows:

∥y(t)− x∗(t)∥T
≤ ∥y(t)− y′(t)∥T +

∥∥∥y′(t)−
∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T

≲
∥∥∥y′(t)−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+
∥∥∥
∑

f̃i∈L

e2πif̃itPi(t)− x∗(t)
∥∥∥
T

≲
∥∥∥y′(t)−

∑

f̃i∈L

e2πif̃itPi(t)
∥∥∥
T
+N + ∥g(t)∥T +

√
δ∥x∗(t)∥T

≲ N + ∥g(t)∥T +
√
δ∥x∗(t)∥T

≲ ∥g(t)∥T +
√
δ∥x∗(t)∥T , (12.109)

where the first step follows from triangle inequality, the second step follows from

Eq. (12.107), the third step follows from Eq. (12.105), the forth step follows from

Eq. (12.106), the fifth step follows from N =
√
∥g∥2T + δ∥x∗∥2T ≤ ∥g∥T +

√
δ∥x∗∥T .

The correctness then follows by re-scaling δ.

The running time of the algorithm follows from Lemma 12.76, and the sample

complexity follows from Lemma 12.77.

The theorem is then proved.

Lemma 12.76 (Running time of Algorithm 71). Procedure ConstantProbFouri-

erInterpolation in Algorithm 71 runs in

O(k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

847

times.

Proof. Procedure ConstantProbFourierInterpolation in Algorithm 71 con-

sists of the following two steps:

• Line 2 calls Procedure FrequencyEstimationX. By Theorem 12.61, it runs

in

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)))

time.

• Line 3 calls Procedure SignalEstimation. By Lemma 12.73, it runs in

O(ε−1Dω log(D) log(1/ρ))

time, where ε, ρ are set to be universal constants and D = B · d.

Following from the setting in the algorithm, we have that

B = O(k),

d = O(∆T + k3 log k + k log 1/δ).

By Lemma 12.24 Property III, we have that

∆ = k∆h = k|supp(Ĥ(f))| = O(k3 log2(k) log2(1/δ1)/T).

As a result, we have that

D = B · d = O(k4 log2(k) log2(1/δ1)) (12.110)

Thus, the time complexity of Procedure ConstantProbFourierInterpo-

lation in Algorithm 71 is

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)) +O(ε−1Dω log(D) log(1/ρ))

≤ O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

+O(ε−1(k4 log2(k) log2(1/δ1))
ω log(k4 log2(k) log2(1/δ1)) log(1/ρ))

≤ O(k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

848

where the first step follows from Eq. (12.110), the second step follows from ε =

O(1), ρ = O(1), ρ1 = O(1).

Lemma 12.77 (Sample complexity of Algorithm 71). Procedure ConstantProb-

FourierInterpolation in Algorithm 71 takes

O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

samples.

Proof. The sample complexity of each steps of Procedure ConstantProbFouri-

erInterpolation in Algorithm 71 is as follows:

• Line 2 calls Procedure FrequencyEstimationX. By Theorem 12.61, it takes

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)))

samples.

• Line 3 calls Procedure SignalEstimation. By Lemma 12.73, it takes in

O(ε−1D log(D) log(1/ρ))

samples, where ε, ρ are set to be a universal constant and D = B · d.

By Eq. (12.110), we have

D = O(k4 log2(k) log2(1/δ1)).

Thus, the sample complexity of Procedure ConstantProbFourierInter-

polation in Algorithm 71 is

O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1)) +O(ε−1D log(D) log(1/ρ))

≤ O(k2 log(k) log(k/δ1) log(FT) log(log(FT)/ρ1))

+O(ε−1(k4 log2(k) log2(1/δ1)) log(k
4 log2(k) log2(1/δ1)) log(1/ρ))

≤ O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

849

where the first step follows from Eq. (12.110), the second step follows from ε =

O(1), ρ = O(1), ρ1 = O(1).

12.16.6 Min-of-medians signal estimator

In this section, we propose a “min-of-medians” estimator for signals that can

exponentially boost the success probability.

Lemma 12.78. Let Rp ∈ N. For each i ∈ [Rp], let yi(t) be a signal independently

sampled from some distribution such that with probability at least 0.9,

∥yi(t)− x∗(t)∥2T ≲ ∥g(t)∥2T .

Let y(t) := yj∗(t) where

j∗ := argmin
j∈[Rp]

median
i∈[Rp]

∥yj(t)− yi(t)∥2T .

Then, with probability at least 1− 2−Ω(Rp),

∥y(t)− x∗(t)∥2T ≲ ∥g(t)∥2T .

Proof. Let S = {i | ∥yi(t) − x∗(t)∥2T ≲ ∥g(t)∥2T}. By the Chernoff bound, we have

that

Pr[|S| ≥ 3/4Rp] ≥ 1− 2−Ω(Rp).

For the ease of discussion, we suppose |S| ≥ 3/4Rp holds in the following

proof.

Fix any j ∈ S. Then, for any q ∈ S, we have that

∥yj(t)− yq(t)∥T ≤ ∥yj(t)− x∗(t)∥T + ∥x∗(t)− yq(t)∥T ≲ ∥g(t)∥2T , (12.111)

850

where the first step follows from triangle inequality, the second step follows from the

definition of S.

In other words, there are at least |S| ≥ (3/4)Rp elements such that Eq. (12.111)

holds. By the definition of median, we get that

median
i∈[Rp]

∥yj(t)− yi(t)∥2T ≲ ∥g(t)∥2T . (12.112)

By definition of y(t), we have that,

median
i∈[Rp]

∥y(t)− yi(t)∥2T ≤ median
i∈[Rp]

∥yj(t)− yi(t)∥2T ≲ ∥g(t)∥2T , (12.113)

where the first step follows from the definition of y(t), the second step follows from

Eq. (12.112).

By the definition of median, we know that there are Rp/2 elements r ∈ [Rp]

such that

∥y(t)− yr(t)∥2T ≤ median
i∈[Rp]

∥y(t)− yi(t)∥2T ≲ ∥g(t)∥2T , (12.114)

where the last step follows from Eq. (12.113). Since |S| ≥ (3/4)Rp > (1/2)Rp, there

must exists an r ∈ S such that Eq. (12.114) holds.

As a result, we have that

∥y(t)− x∗(t)∥2T ≤ ∥y(t)− yr(t)∥2T + ∥yr(t)− x∗(t)∥2T
≲ ∥g(t)∥2T + ∥yr(t)− x∗(t)∥2T
≲ ∥g(t)∥2T ,

where the first step follows from triangle inequality, the second step follows from

Eq. (12.113), the third step follows from the definition of S.

The lemma is then proved.

One potential issue in applying the min-of-median signal estimator is that, we

may not be able to compute the distances ∥yi(t) − yj(t)∥2T exactly, but we can only

851

estimate then with high accuracy. Therefore, we show that our estimator is robust

with respect to approximated distances.

We first show a fact about the approximation of min and median.

Fact 12.79. Let x1, · · · , xn ∈ R+, and y1, · · · , yn ∈ R+ such that for any i ∈ [n],

yi ∈ [α · xi, β · xi]. Then, we have:

• min
i∈[n]

yi ∈
[
α ·min

i∈[n]
xi, β ·min

i∈[n]
xi

]
.

• median
i∈[n]

yi ∈
[
α ·median

i∈[n]
xi, β ·median

i∈[n]
xi

]
.

Proof. Part 1: Let i∗ = argmin
i∈[n]

yi. We have that

yi∗ ≥ α · xi∗ ≥ α ·min
i∈[n]

xi.

Let j∗ = argmin
j∈[n]

xj. We have that

min
j∈[n]

yj ≤ yj∗ ≤ β · xj∗ = β ·min
j∈[n]

xj,

Hence,

min
i∈[n]

yi ∈
[
α ·min

i∈[n]
xi, β ·min

i∈[n]
xi

]
.

Part 2: For any xj ≤ median
i∈[n]

xi, we have that

yj ≤ β · xj ≤ β ·median
i∈[n]

xi.

Thus,

|{j ∈ [n] | yj ≤ β ·median
i∈[n]

xi}| ≥ n/2,

which implies that

median
i∈[n]

yi ≤ β ·median
i∈[n]

xi.

852

For any xj ≥ median
i∈[n]

xi, we have that

yj ≥ α · xj ≥ α ·median
i∈[n]

xi.

Thus,

|{j ∈ [n] | yj ≥ α ·median
i∈[n]

xi}| ≥ n/2,

which implies that

median
i∈[n]

yi ≥ α ·median
i∈[n]

xi.

As a result,

median
i∈[n]

yi ∈
[
α ·median

i∈[n]
xi, β ·median

i∈[n]
xi

]
.

The following lemma shows that our min-and-median estimator can still ex-

ponentially boost the success probability given access to approximated distances.

Lemma 12.80 (Robust min-of-median signal estimator). Let Rp ∈ N. For each

i ∈ [Rp], let yi(t) be a signal independently sampled from some distribution such that

with probability at least 0.9,

∥yi(t)− x∗(t)∥2T ≲ ∥g(t)∥2T .

Given d ∈ RRp×Rp

+ such that for any i, j ∈ [Rp],

di,j ∈
[
α · ∥yi(t)− yj(t)∥2T , β · ∥yi(t)− yj(t)∥2T

]
.

Let y(t) := yj∗(t) where

j∗ := argmin
j∈[Rp]

median
i∈[Rp]

dj,i.

Then, we have that, with probability at least 1− 2−Ω(Rp),

∥y(t)− x∗(t)∥2T ≲
β

α
∥g(t)∥2T .

853

Proof. Let S = {i | ∥yi(t) − x∗(t)∥2T ≲ ∥g(t)∥2T}. By the Chernoff bound, we have

that

Pr[|S| ≥ 3/4Rp] ≥ 1− 2−Ω(Rp).

For the ease of discussion, we suppose |S| ≥ 3/4Rp holds in the following

proof.

Fix any i∗ ∈ S. For any q ∈ S, we have that

∥yi∗(t)− yq(t)∥T ≤ ∥yi∗(t)− x∗(t)∥T + ∥x∗(t)− yq(t)∥T ≲ ∥g(t)∥2T , (12.115)

where the first step follows from triangle inequality, the second step follows from the

definition of S.

By the definition of median, since |S| > Rp/2, we know that

median
i∈[Rp]

∥yi∗(t)− yi(t)∥2T ≲ ∥g(t)∥2T . (12.116)

Then, we have that

median
i∈[Rp]

dj∗,i ≤ median
i∈[Rp]

di∗,i

≤ β ·median
i∈[Rp]

∥yi∗(t)− yi(t)∥2T
≲ β · ∥g(t)∥2T , (12.117)

where the first step follows from the definition of j∗, the second step follows from

Fact 12.79, the third step follows from Eq. (12.116).

Since |S| > Rp/2, by the definition of median, there must exists an r ∈ S such

that

dj∗,r ≤ median
i∈[Rp]

dj∗,i ≲ β · ∥g(t)∥2T . (12.118)

854

As a result, we have that

∥y(t)− x∗(t)∥2T ≤ ∥y(t)− yr(t)∥2T + ∥yr(t)− x∗(t)∥2T
≤ 1

α
vj∗,r + ∥yr(t)− x∗(t)∥2T

≲
β

α
∥g(t)∥2T + ∥yr(t)− x∗(t)∥2T

≲
β

α
∥g(t)∥2T ,

where the first step follows from triangle inequality, the second step follows from the

definition of d, the third step follows from Eq. (12.118), the forth step follows from

Eq. (12.117), the fifth step follows from r ∈ S.

The proof of the lemma is then completed.

12.16.7 Main algorithm for Fourier interpolation

In this section, we present our main theorem—a time and sample efficient

Fourier interpolation algorithm with high success probability. The pseudocode is

given in Algorithm 71.

Theorem 12.81 (Main Fourier interpolation algorithm). Let x(t) = x∗(t) + g(t),

where x∗ is k-Fourier-sparse signal with frequencies in [−F, F]. Given samples of x

over [0, T], there is an algorithm (Procedure HighProbFourierInterpolation)

uses

O(k4 log6(k/δ) log(FT) log(log(FT)) log(1/ρ))

samples, runs in

O(k4ω log4ω+2(k/δ) log(FT) log(log(FT)) log5(1/ρ))

time, and outputs an O(k4 log4(k/δ))-Fourier-sparse signal y(t) such that with prob-

ability at least 1− ρ,

∥y − x∗∥T ≲ ∥g∥T + δ∥x∗∥T .

855

Algorithm 70 Signal estimation algorithm
1: procedure WeightedSketch(m, k, T)
2: c← Θ(log(k)−1)
3: D(t) is defined as follows:

D(t)←
{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k),

c · kT−1, for |t| ∈ [T (1− 1/k), T].

4: S0 ← m i.i.d. samples from D
5: for t ∈ S0 do
6: wt ← 1

2T ·|S0|·D(t)

7: end for
8: Set a new distribution D′(t)← wt/

∑
t′∈S0

wt′ for all t ∈ S0

9: return D′

10: end procedure
11: procedure SignalEstimation(x, F, T, L)
12: {f1, f2, · · · , fB} ← L ▷ L ∈ RB

13: d← O(∆T + k3 log k + k log 1/δ)
14: s, {t1, t2, · · · , ts}, w ←WeightedSketch(O(Bd log(Bd)), Bd, T) ▷ w ∈ Rs

15: Ai,B·j2+j1 ← tj2i · exp(2πifj1ti), A ∈ Cs×B

16: b← (x(t1), x(t2), · · · , x(ts))⊤
17: Solving the following weighted linear regression

v′ ← argmin
v′∈CBd

∥√w ◦ (Av′ − b)∥2.

18: return y(t)←∑B
j1=1

∑d
j2=1 v

′
B·j2+j1 · tj2 · exp(2πif ′j1t).

19: end procedure

Proof. We first prove the correctness of the algorithm.

Let

D(t) :=

{
c · (1− |t/T |)−1T−1, for |t| ≤ T (1− 1/k),

c · kT−1, for |t| ∈ [T (1− 1/k), T].

Let y1(t), · · · , yRp(t) be the outputs of Rp independent runs of Procedure Con-

stantProbFourierInterpolation in Algorithm 71. By Theorem 12.75, we have

856

Algorithm 71 Fourier-sparse signal interpolation
1: procedure ConstantProbFourierInterpolation(x,H,G, T, F)
2: L← FrequencyEstimationX(x,H,G, T, F) ▷ L ∈ RB

3: y(t)← SignalEstimation(x, ε, k, F, T, L)
4: return y(t)
5: end procedure
6: procedure HighProbFourierInterpolation(x,H,G, T, F)
7: Rp ← log(1/ρ)
8: for i ∈ [Rp] do
9: yi(t)← ConstantProbFourierInterpolation(x,H,G, T, F)

10: end for
11: y(t)←MergeSignal(y1(t), y2(t), · · · , yRp(t))
12: return y(t)
13: end procedure
14: procedure MergeSignal(y1(t), y2(t), · · · , yRp(t))
15: d← O(∆T + k3 log k + k log 1/δ)
16: for i ∈ [Rp] do
17: for j ∈ [Rp] do
18: s, {t1, t2, · · · , ts}, w ←WeightedSketch(O(Bd log(Bd) log(R2

p/ρ)), 2·
Bd, T)

19: ▷ w ∈ Rs

20: S ← {t1, t2, · · · , ts}
21: Y ←MixedPolynomialEvaluation(yi − yj, S) ▷ Y ∈ Cs

22: ∥yi(t)− yj(t)∥2S,w ←
∑s

l=1wl · |Yl|2
23: end for
24: medi ← medianj∈[Rp]{∥yi − yj∥2S,w}
25: end for
26: i∗ ← argmini∈[Rp]{medi}
27: return yi∗
28: end procedure

that for any j ∈ [Rp] with probability at least 0.9,

∥yj(t)− x∗(t)∥2T ≲ ∥g(t)∥2T .

Let S = {t1, . . . , ts} be s = O(k log(k) log(R2
p/ρ)) i.i.d. samples from D(t),

and let wi = 1/(TsD(ti)) for i ∈ [s]. By Lemma 12.45, for any i, j ∈ [Rp], with

857

probability at least 1− ρ/R2
p,

∥yi(t)− yj(t)∥2S,w ∈ [1/2, 3/2] · ∥yi(t)− yj(t)∥2T .

Let

j∗ = argmin
j∈[Rp]

median
i∈[Rp]

∥yj(t)− yi(t)∥2T ,

and let y(t) := yj∗(t).

By Lemma 12.80, we have that with probability at least 1− 2−Ω(Rp),

∥yj(t)− x∗(t)∥2T ≲
3/2

1/2
∥g(t)∥2T ≂ ∥g(t)∥2T .

By setting Rp = log(1/ρ), we get the desired result. The correctness is then

proved.

The time complexity follows from Lemma 12.84. And the sample complexity

follows from Lemma 12.85.

The proof of the theorem is completed.

In the remaining of this section, we prove the time and sample complexities of

Procedure HighProbFourierInterpolation in Algorithm 71.

The following two lemmas show the time complexity of Procedure MergeS-

ignal in Algorithm 71, which is used to boost the success probability of Fourier

interpolation algorithm.

Lemma 12.82 (Time complexity of Procedure WeightedSketch in Algorithm

70). Procedure WeightedSketch in Algorithm 70 runs in

O(ε−2k log(k) log(1/ρ))

time.

Proof. Procedure WeightedSketch contains the following steps:

858

• In line 4, sampling S0 takes O(ε−2k log(k) log(1/ρ)) times.

• In line 5, the for loop repeats |S0| times, and each takes O(1) times.

Following from the setting in the algorithm, we have that

|S0| = O(ε−2k log(k) log(1/ρ)).

So, the time complexity of Procedure WeightedSketch in Algorithm 70 is

O(ε−2k log(k) log(1/ρ)) + |S0| ·O(1) = O(ε−2k log(k) log(1/ρ)).

Lemma 12.83 (Time complexity of Procedure MergeSignal in Algorithm 71).

Procedure MergeSignal in Algorithm 71 runs in

O(k5 log6(k) log4(1/δ1) log
5(1/ρ))

time.

Proof. In each call of the Procedure MergeSignal in Algorithm 71, the for loop

(Line 16) repeats Rp times, each consisting of the following steps:

• In Line 17, the for loop repeats Rp times and each iteration has the following

steps:

– Line 19 calls Procedure WeightedSketch. By Lemma 12.82, it runs in

O(Bd log(Bd) log(R2
p/ρ))

time.

– Line 21 calls Procedure MixedPolynomialEvaluation. By Lemma

12.71, it runs in

O
(k∑

j=1

max{d′, deg(Pj)} log3(max{d′, deg(Pj)})
)

time, where d′ = O(Bd log(Bd) log(R2
p/ρ)) and deg(Pj) = d.

859

• Line 26 computes the median in Rp log(Rp) time.

Following from the parameter setting in the algorithm, we have that

B = O(k),

d = O(∆T + k3 log k + k log 1/δ).

By Lemma 12.24 Property III, we have that

∆ = k∆h = k|supp(Ĥ(f))|/T = O(k3 log2(k) log2(1/δ1)/T).

As a result, we have that

B · d = O(k4 log2(k) log2(1/δ1)) (12.119)

Moreover, we have that

max{d′, deg(Pj)} = O(Bd log(Bd) log(R2
p/ρ))

= O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(1/ρ) log(log(1/ρ)))

≤ O(k4 log3(k) log3(1/δ1) log
2(1/ρ)). (12.120)

where the first step follows from the definition of d′ and deg(Pj), the second step

follows from Eq. (12.119), the third step is straight forward.

So, the time complexity of Procedure MergeSignal in Algorithm 71 is

R2
p ·
(
O(Bd log(Bd) log(R2

p/ρ)) +O
(k∑

j=1

max{d′, deg(Pj)} log3(max{d′, deg(Pj)})
))

+ Rp ·O(Rp log(Rp))

≤ O
(
R2
p

k∑

j=1

max{d′, deg(Pj)} log3(max{d′, deg(Pj)})
)

≤ O(log2(1/ρ) · k · (k4 log3(k) log3(1/δ1) log2(1/ρ)) log3(k log(1/δ1) log(1/ρ)))

≤ O(k5 log6(k) log4(1/δ1) log
5(1/ρ)),

860

where the first step follows from Eq. (12.119), the second step follows from Eq. (12.120),

the third step follows from Eq. (12.120), the forth step is straight forward.

The following two lemmas show the time complexity and sample complexity

of our main algorithm.

Lemma 12.84 (Time complexity of the main algorithm). Procedure HighProb-

FourierInterpolation in Algorithm 71 runs in

O(k4ω log4ω+2(k/δ) log(FT) log(log(FT)) log5(1/ρ))

times.

Proof. Procedure HighProbFourierInterpolation in Algorithm 71 consists of

the following steps:

• In Line 8, the for loop repeats Rp times with the following step:

– Line 9 calls Procedure ConstantProbFourierInterpolation. By

Lemma 12.76, it runs in

O(k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

time.

• Line 11 calls Procedure MergeSignal. By Lemma 12.83, it runs in

O(k5 log6(k) log4(1/δ1) log
5(1/ρ))

time.

Following from the setting in the algorithm, we have that

δ1 = δ/poly(k). (12.121)

861

So, the time complexity of Procedure HighProbFourierInterpolation in

Algorithm 71 in Algorithm 71 is

Rp ·O
(
k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT))

)

+O(k5 logc+3(k) log4(1/δ1) log
5(1/ρ))

= O(k4ω log2ω+1(k) log2ω(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)) log
5(1/ρ))

≤ O(k4ω log4ω+2(k/δ) log(FT) log(log(FT)) log5(1/ρ)),

where the first step follows fromRp = log(1/ρ), the second step follows from Eq. (12.121).

Lemma 12.85 (Sample complexity of the main algorithm). Procedure HighProb-

FourierInterpolation in Algorithm 71 takes

O(k4 log6(k/δ) log(FT) log(log(FT)) log(1/ρ))

samples.

Proof. Procedure Procedure HighProbFourierInterpolation in Algorithm 71

consists of the following steps:

• In Line 8, the for loop repeats Rp times:

– Line 9 calls Procedure ConstantProbFourierInterpolation. By

Lemma 12.77, it takes

O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

samples.

The remaining steps do not use any new sample.

862

Thus, the total sample complexity is

Rp ·O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)))

≤ O(k4 log3(k) log2(1/δ1) log(log(1/δ1)) log(FT) log(log(FT)) log(1/ρ))

≤ O(k4 log6(k/δ) log(FT) log(log(FT)) log(1/ρ)),

where the first step follows fromRp = log(1/ρ), the second step follows from Eq. (12.121).

863

12.17 Structure of Our Fourier Interpolation Algorithm

Fourier interpolation algorithm
(Theorem 12.81)

Fourier interpolation with
constant success probability

(Theorem 12.75)

Boost success probability
(Lemma 12.80)

Signal estimation
(Lemma 12.73)

Frequency estimation
algorithm (Theorem 12.61)

Heavy-cluster &
High SNR band

(Claim 12.72, Lemma 12.74)

Sufficiency

Assuming

Generate Significant Samples
(Lemmas 12.54, 12.55)

Lemma 12.60

Noisy filtered signal’s
energy estimation (Lemma 12.52)

Noisy local-test signal’s
energy estimation (Lemma 12.53)

Partial energy estimation
for filtered signals
(Lemma 12.48)

Partial energy estimation
for local-test signals

(Lemma 12.49)

Partial energy of filtered
signals (Lemma 12.51)

Sampling & Reweighing
energy estimation (Lemma 12.43)

Energy bound for
local-test signals
(Lemma 12.41)

Energy bound for
filtered signals (Corollary 12.34)

Signal Equivalent Method

Energy bound for
Fourier-sparse signals
(Theorems 12.6, 12.7)

Concentration property
of filtered signals

(Lemmas 12.29, 12.30)

864

Chapter 13: Distance Oracles for Any Symmetric
Norm

13.1 Introduction

Estimating and detecting similarities in datasets is a fundamental problem in

computer science, and a basic subroutine in most industry-scale ML applications, from

optimization [CMJF+20, CLP+21, XSS21] and reinforcement learning [SSX21], to

discrepancy theory [SXZ22] and covariance estimation [Val12, Alm19], Kernel SVMs

[CS09, SSSSC11], compression and clustering [IRW17, MMR19], to mention a few.

Such applications often need to quickly compute distances of online (test) points to

a subset of points in the input data set (e.g., the training data) for transfer-learning

and classification. These applications have motivated the notion of distance oracles

(DO) [Pel00, GPPR04, WP11]: In this problem, the goal is to preprocess a dataset of

n input points X = (x1, x2, . . . , xn) in some d-dimensional metric space, into a small-

space data structure which, given a query vector q and a subset S ⊆ [n], can quickly

estimate all the distances d(q, xi) of q to S (note that the problem of estimating a

single distance d(q, xi) is not interesting in Rd, as this can be trivially done in O(d)

time, which is necessary to merely read the query q). The most well-studied case (in

both theory and practice) is when the metric space is in fact a normed space, i.e., the

data points {xi}i∈[n] ∈ Rd are endowed with some predefined norm ∥ · ∥, and the goal

is to quickly estimate ∥xi− q∥ simultaneously for all i, i.e., in time≪ nd which is the

trivial query time. Distance oracles can therefore be viewed as generalizing matrix-

vector multiplication: for the inner-product distance function ⟨xi, q⟩, the query asks

to approximate X · q in ≪ nd time.

For the most popular distance metrics—the Euclidean distance (ℓ2-norm) and

Manhattan distance (ℓ1-norm)—classic dimension-reduction (sketching) provide very

efficient distance oracles [JL84, AC09, LDFU13]. However, in many real-world prob-

lems, these metrics do not adequately capture similarities between data points, and

865

a long line of work has demonstrated that more complex (possibly learnable) metrics

can lead to substantially better prediction and data compression [DKJ+07]. In par-

ticular, many works over the last decade have been dedicated to extending various

optimization problems beyond Euclidean/Manhattan distances, for example in (ker-

nel) linear regression [SWY+19], approximate nearest neighbor [ANN+17, ANN+18],

sampling [LSV18], matrix column subset selection [SWZ19], and statistical queries

[LNRW19].

For ℓp norms, the DO problem is well-understood [BYJKS04],where the stan-

dard tool for constructing the data structure is via randomized linear sketching : The

basic idea is to reduce the dimension (d) of the data points by applying some sketch-

ing matrix Φ ∈ Rm×d (m≪ d) to each data point xi and store the sketch Φxi ∈ Rm.

For a query point q, linearity then allows to estimate the distance from Φ(q − xi).

The seminal works of [JL84, AMS99, CCF04, TZ12] developed polylogarithmic-size

sketching methods for the ℓ2-norm, which was extended, in a long line of work, to

any ℓp norm with 0 < p < 2 [Ind06, KNPW11, CN20]. For p > 2, the sketch-size (d)

becomes polynomial, yet still sublinear in d [SS02, BYJKS04].

In this chapter, we consider general symmetric norms, which generalize ℓp

norms. More formally, a norm norm l : Rd → R is symmetric if, for all x ∈ Rd and

every d × d permutation matrix P , it satisfies l(Px) = l(x) and also l(|x|) = l(x),

where |x| is the coordinate-wise absolute value of x (for a broader introduction, see

[Bha97] Chapter IV). Important special cases of symmetric norms are ℓp norms and

Orlicz norms [ALS+18], which naturally arise in harmonic analysis and model data

with sub-gaussian properties. Other practical examples of symmetric norms include

top-k norms, max-mix of ℓp norms, sum-mix of ℓp norms, the k-support norm [AFS12]

and the box-norm [MPS14].

Several recent works have studied dimension-reduction (sketching) for special

cases of symmetric norms such as the Orlicz norm [BBC+17, SWY+19, ALS+18], for

various numerical linear algebra primitives [SWZ19]. These sketching techniques are

866

quite ad-hoc and are carefully tailored to the norm in question. It is therefore natural

to ask whether symmetry alone is enough to guarantee dimensionality-reduction for

symmetric similarity search, in other words

Is there an efficient (1 + ϵ)-distance oracle for general symmetric norms?

By “efficient”, we mean small space and preprocessing time (ideally ∼ nd), fast query

time (≪ n|S| for a query (q, S ⊆ [n])) and ideally supporting dynamic updates to

xi’s in Õ(d) time. Indeed, most ML applications involve rapidly-changing dynamic

datasets, and it is becoming increasingly clear that static data structures do not

adequately capture the requirements of real-world applications [JKDG08, CMJF+20,

CLP+21]. As such, it is desirable to design a dynamic distance oracle which has

both small update time (tu) for adding/removing a point xi ∈ Rd, and small query

time (tq) for distance estimation. We remark that most known DOs are dynamic

by nature (as they rely on linear sketching techniques), but for general metrics (e.g.,

graph shortest-path or the ℓ∞ norm) this is much less obvious, and indeed linearity

of encoding/decoding will be a key challenge in our data structure (see next section).

The problem is formally defined as follows:

Definition 13.1 (Symmetric-Norm Distance Oracles). Let ∥·∥sym denote the symmet-

ric norm. We need to design a data structure that efficiently supports any sequence

of the following operations:

• Init({x1, x2, · · · , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)). The data structure takes

n data points {x1, x2, . . . , xn} ⊂ Rd, an accuracy parameter ϵ and a failure

probability δ as input.

• UpdateX(z ∈ Rd, i ∈ [n]). Update the data structure with the i-th new data

point z.

• EstPair(i, j ∈ [n]) Outputs a number pair such that (1 − ϵ)∥xi − xj∥sym ≤
pair ≤ (1 + ϵ) · ∥xi − xj∥sym with probability at least 1− δ.

867

• Query(q ∈ Rd). Outputs a vector dist ∈ Rn such that ∀i ∈ [n], (1 − ϵ)∥q −
xi∥sym ≤ dsti ≤ (1 + ϵ)∥q − xi∥sym. with probability at least 1− δ.

where ∥x∥sym is the symmetric norm of vector x.

This problem can be viewed as an online version of the (approximate) closest-

pair problem [Val12], which asks to find the closest pair of points among an offline

batch of data points X = x1, . . . , xn ∈ Rd, or equivalently, the smallest entry of the

covariance matrix XX⊤. One major (theoretical) advantage of the offline case is that

it enables the use of fast matrix-multiplication (FMM) to speed-up the computation

of the covariance matrix [Val12, AWY14, AWY18, Alm19] (i.e., sub-linear amortized

per query). By contrast, in the online setting such speedups are conjectured to be

impossible [HKNS15, LW17].

Notations. For any positive integer n, we use [n] to denote {1, 2, · · · , n}. For any

function f , we use Õ(f) to denote f ·poly(log f). We use Pr[] to denote probability. We

use E[] to denote expectation. We use both l(·) and ∥ · ∥sym to denote the symmetric

norm. We use ∥ · ∥2 to denote the entry-wise ℓ2 norm. We define a tail notation

which is very standard in sparse recover/compressed sensing literature. For any given

vector x ∈ Rd and an integer k, we use x[k] or xtail(k) to denote the vector that without

(zeroing out) top-k largest entries (in absolute). For a vector x, we use x⊤ to denote

the transpose of x. For a matrix A, we use A⊤ to denote the transpose of A. We

use 1n denote a length-n vector where every entry 1. We use 0n to denote a length-n

vector where every entry is 0.

13.1.1 Our results

Two important complexity measures of (symmetric) norms, which capture

their “intrinsic dimensionality", are the concentration modulus (mc) and maximum

modulus (mmc) parameters. We now define these quantities along the lines of [BBC+17,

SWY+19].

868

Definition 13.2 (Modulus of concentration (mc)). Let X ∈ Rn be uniformly dis-

tributed on Sn−1, the l2 unit sphere. The median of a symmetric norm l is the

(unique) value Ml such that Pr [l(X) ≥Ml] ≥ 1/2 and Pr [l(X) ≤Ml] ≥ 1/2. Simi-

larly, bl denotes the maximum value of l(x) over x ∈ Sn−1. We call the ratio

mc(l) := bl/Ml

the modulus of concentration of the norm l.

For every k ∈ [n], the norm l induces a norm l(k) on Rk by setting

l(k)((x1, x2, . . . , xk)) := l((x1, x2, . . . , xk, . . . , 0, . . . , 0))

Definition 13.3 (mmc). Define the maximum modulus of concentration of the norm

l as

mmc(l) := max
k∈[n]

mc(l(k)) = max
k∈[n]

bl(k)

Ml(k)

Next, we present a few examples (in Table 13.1) for different norm l’s mmc(l).

Norm l mmc(l)
ℓp(p ≤ 2) Θ(1)

ℓp(p > 2) Θ(d1/2−1/p)

top-k norms Θ̃(
√
d/k)

k-support norms and the box-norm O(log d)
max-mix and sum-mix of ℓ1 and ℓ2 O(1)
Orlicz norm ∥ · ∥G O(

√
CG log d)

Table 13.1: Examples of mmc(l), where max-mix of ℓ1 and ℓ2 is defined as
max{∥x∥2, c∥x∥1} for a real number c, sum-mix of ℓ1 and ℓ2 is defined as ∥x∥2+c∥x∥1
for a real number c, and CG of Orlicz norm is defined as the number that for all
0 < x < y, G(y)/G(x) ≤ CG(y/x)

2.

We are now ready to state our main result:

Theorem 13.1 (Main result, informal version of Theorem 13.19). Let ∥ · ∥l be any

symmetric norm on Rd. There is a data structure for the online symmetric-norm Dis-

tance Oracle problem (Definition 13.1), which uses n(d+mmc(l)2)·poly(1/ϵ, log(nd/δ))
space, supporting the following operations:

869

• Init({x1, x2, . . . , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)): Given n data points {x1, x2, . . . , xn} ⊂
Rd, an accuracy parameter ϵ and a failure probability δ as input, the data struc-

ture preprocesses in time n(d+mmc(l)2) ·poly(1/ϵ, log(nd/δ)). Note that mmc()

is defined as Definition 13.3.

• UpdateX(z ∈ Rd, i ∈ [n]): Given an update vector z ∈ Rd and index i ∈ [n],

the data data structure receives z and i as inputs, and updates the i-th data

point xi ← z, in d · poly(1/ϵ, log(nd/δ)) time.

• Query(q ∈ Rd, S ⊆ [n]): Given a query point q ∈ Rd and a subset of the input

points S ⊆ [n], the Query operation outputs a ϵ- multiplicative approximation

to each distance from q to points in S, in time

(d+ |S| ·mmc(l)2) · poly(1/ϵ, log(nd/δ))

i.e. it provides a set of estimates {dsti}i∈S such that:

∀i ∈ S, (1− ϵ)∥q − xi∥l ≤ dsti ≤ (1 + ϵ)∥q − xi∥l

with probability at least 1− δ.

• EstPair(i, j ∈ [n]) Given indices i, j ∈ [n], the EstPair operation takes i

and j as input and approximately estimates the symmetric norm distances from

i-th to the j-th point xi, xj ∈ Rd in time mmc(l)2 · poly(1/ϵ, log(nd/δ)) i.e. it

provides a estimated distance pair such that:

(1− ϵ)∥xi − xj∥l ≤ pair ≤ (1 + ϵ)∥xi − xj∥l

with probability at least 1− δ.

Roadmap. In Section 13.2, we give an overview of techniques we mainly use in

the work. Section 13.3 gives an introduction of the Sparse Recovery Data we use for

sketching. Section 13.4 analyze the running time and space of our data structure with

their proofs, respectively. Section 13.5 show the correctness of our data structure and

give its proof. Finally in Section 13.6 we conclude our work.

870

13.2 Technique Overview

Our distance oracle follows the “sketch-and-decode” approach, which was ex-

tensively used in many other sublinear-time compressed sensing and sparse recovery

problems [Pri11, HIKP12a, LNNT16, NS19, SSWZ22]. The main idea is to compress

the data points into smaller dimension by computing, for each data point xi ∈ Rd,

a (randomized) linear sketch Φ · xi ∈ Rd′ with d′ ≪ d at preprocessing time, where

Φxi is an unbiased estimator of ∥xi∥. At query time, given a query point q ∈ Rd, we

analogously compute its sketch Φq. By linearity of Φ, the distance between q and xi
(i.e., ℓ(q − xi)) can be trivially decoded from the sketch difference Φq − Φxi. As we

shall see, this simple virtue of linearity is less obvious to retain when dealing with

general symmetric norms.

Layer approximation Our algorithm uses the layer approximation method pro-

posed by Indyk and Woodruff in [IW05] and generalized to symmetric norms in

[BBC+17, SWY+19]. Since symmetric norms are invariant under reordering of the

coordinates, the main idea in [IW05] is to construct a “layer vector” as follows: for

a vector v ∈ Rd, round (the absolute value of) each coordinate to the nearest power

αi for some fixed α ∈ R and i ∈ N, and then sort the coordinates in an increasing

order. This ensures that the i-th layer contains all the coordinates j ∈ [d] satisfying:

αi−1 < |vj| ≤ αi. In particular, the layer vector of v has the form

L(v) := (α1, . . . , α1

︸ ︷︷ ︸
b1 times

, α2, . . . , α2

︸ ︷︷ ︸
b2 times

, · · · , αP , . . . , αP︸ ︷︷ ︸
bP times

, 0, . . . , 0) ∈ Rd,

where bi is the number of coordinates in layer-i. More importantly, since the norm is

symmetric, the layer vector L(v) has a succinct representation: (bi)i∈[P].

Then, it suffices to estimate bi for each i ∈ [P], where the Indyk-Woodruff

sketching technique can be used to approximate the vector. At the i-th layer, each

coordinate of v is sampled with probability P/bi, and then the algorithm identifies

the ℓ2-heavy-hitters of the sampled vector. [BBC+17] gave a criterion for identifying

871

the important layers, whose heavy-hitter coordinates in the corresponding sampled

vectors, is enough to recover the entire symmetric norm ∥v∥sym.

Unfortunately, this technique for norm estimation does not readily translate

to estimating distances efficiently:

• Too many layers: In previous works, each data point xi is sub-sampled inde-

pendently in R layers, i.e, generates R subsets of coordinates S1
i , . . . , S

R
i ⊂ [d].

The sketch of the query point S(q) then needs to be compared to each S(xi) in

every layer. Since there are R = Ω(n) layers in [BBC+17, IW05] of size Ω(d)

across all all data points, the total time complexity will be at least Ω(nd), which

is the trivial query time.

• Non-linearity: The aforementioned sketching algorithms [BBC+17, IW05] in-

volve nonlinear operations, and thus cannot be directly used for distance esti-

mation.

• Slow decoding: The aforementioned sketches take linear time to decode the

distance from the sketch, which is too slow for our application.

To overcome these challenges, we use the following ideas:

Technique I: shared randomness To reduce the number of layers, we let all the

data points use the same set of layers. That is, in the initialization of our algorithm,

we independently sample R subsets S1, . . . , SR with different probabilities. Then,

for each data point xi, we consider (xi)Sj as the sub-sample for the j-th layer, and

perform sketch on it. Hence, the number of different layer sets is reduced from nt to

t. For a query point q, we just need to compute the sketches for (q)S1 , . . . , (q)SR . And

the distance between q and xi can be decoded from {Φ(xi)Sj −Φ(q)Sj}j∈[R]. We also

prove that the shared randomness in all data points will not affect the correctness of

layer approximation.

872

Technique II: linearization We choose a different sketching method called Batch-

HeavyHitter (see Theorem 13.20 for details) to generate and maintain the linear

sketches, which allows us to decode the distance from sketch difference.

Technical III: locate-and-verify decoding We design a locate-and-verify style

decoding method to recover distance from sketch. In our data structure, we not only

store the sketch of each sub-sample vector, but also the vector itself. Then, in de-

coding a sketch, we can first apply the efficient sparse-recovery algorithm to identify

the position of heavy-hitters. Next, we directly check the entries at those positions

to verify that they are indeed “heavy” (comparing the values with some threshold),

and drop the non-heavy indices. This verification step is a significant difference from

the typical sparse recovery approaches, which employ complex (and time-consuming)

subroutines to reconstruct the values of the heavy-hitter coordinates. Instead, our

simple verification procedure eliminates all the false-positive heavy-hitters, therefore

dramatically reducing the running time of the second step, which can now be per-

formed directly by reading-off the values from the memory.

With these three techniques, we obtain our sublinear-time distance estimation

algorithm. Our data structure first generate a bunch of randomly selected subsets of

coordinates as the layer sets. Then, for each data point, we run the BatchHeavy-

Hitter procedure to sketch the sub-sample vector in each layer1. In the query phase,

we call the Decode procedure of BatchHeavyHitter for the sketch differences

between the query point q and each data point xi, and obtain the heavy hitters of

each layer. We then select some “important layers” and use them to approximately

recover the layer vector L(q − xi), which gives the estimated distance ∥q − xi∥sym.

Finally, we summarize the time and space costs of our data structure. Let

ϵ be the precision parameter and δ be the failure probability parameter. Our data

1The total sketch size of each data point is mmc(l)2 · poly log d. In the ℓp-norm case with p > 2,
mmc(l) = d1/2−1/p (see Table 13.1) and our sketch size is Õ(d1−2/p), matching the lower bound of
ℓp-sketching. When p ∈ (0, 2], mmc(l) = Θ(1) and our sketch size is Õ(1), which is also optimal.

873

structure achieves Õ(n(d + mmc(l)2))-time for initialization , Õ(d)-time per data

point update, and Õ(d + n · mmc(l)2))-time per query. As for space cost, our data

structure uses the space of Õ(n(d+mmc(l)2)) in total. Note that mmc is defined as

Defnition 13.3.

13.3 Sparse Recovery Data Structure

We design a data structure named BatchHeavyHitter to generate sketches

and manage them. In our design, it is a “linear sketch" data structure, and providing

the following functions:

• Init(ϵ ∈ (0, 0.1), n, d). Create a set of Random Hash functions and all the n

copies of sketches share the same hash functions. This step takes Tinit(ϵ, n, d)

time.

• Encode(i ∈ [n], z ∈ Rd, d). This step takes Tencode(d) encodes z into i-th

sketched location and store a size Sspace linear sketch.

• EncodeSingle(i ∈ [n], j ∈ [d], z ∈ R, d). This step takes Tencodesingle(d) up-

dates one sparse vector ejz ∈ Rd into i-th sketched location.

• Subtract(i, j, l ∈ [n]). Update the sketch at i-th location by j-th sketch minus

l-th sketch.

• Decode(i ∈ [n], ϵ ∈ (0, 0.1), d). This step takes Tdecode(ϵ, d) such that it returns

a set L ⊆ [d] of size |L| = O(ϵ−2) containing all ϵ-heavy hitters i ∈ [n] under

ℓp. Here we say i is an ϵ-heavy hitter under ℓ2 if |xi| ≥ ϵ · ∥x[ϵ−2]∥2 where x[k]
denotes the vector x with the largest k entries (in absolute value) set to zero.

Note that the number of heavy hitters never exceeds 2/ϵ2.

With this data structure, we are able to generate the sketches for each point,

and subtract each other with its function. And one can get the output of heavy

874

hitters of each sketch stored in it with Decode function. More details are deferred

to Section 13.10.2.

13.4 Running Time and Space of Our Algorithm

Algorithm 72 Data structure for symmetric norm estimation: members, init, infor-
mal version of Algorithm 75 and Algorithm 76
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: members
3: {xi}ni=1 ∈ Rd

4: {Sr,l,u}r∈[R],l∈[L],u∈[U] ▷ A list of the BatchHeavyHitter
5: {Hr,l,u}r∈[R],l∈[L],u∈[U] ⊂ [d]× R
6: end members
7:
8: public:
9: procedure Init({x1, · · · , xn} ⊂ Rd, δ, ϵ) ▷ Lemma 13.2

10: Initialize the sparse-recovery data structure {Sr,l,u}
11: Create {bmapr,l,u} shared by all i ∈ [n] ▷ {bmapr,l,u} is list of a layer set map
12: for i ∈ [n], j ∈ [d] do
13: if bmapr,u,l[j] = 1 then
14: Sample xi,j into each subvector xr,u,l,i
15: end if
16: end for
17: Encode {xr,u,l,i}i∈[n] into {Sr,l,u}
18: end procedure
19: end data structure

We first analyze the running time of different procedures of our data structure

DistanceOnSymmetricNorm. See Algorithm 76, with the linear sketch technique,

we spend the time of Õ(n(d+mmc(l)2)) for preprocessing and generate the sketches

stored in the data structure. When it comes a data update (Algorithm 77), we spend

Õ(d) to update the sketch. And when a query comes (Algorithm 78), we spend

Õ(d + n · mmc(l)2)) to get the output distance estimation. The lemmas of running

time and their proof are shown below in this section.

Lemma 13.2 (Init time, informal). Given data points {x1, x2, . . . , xn} ⊂ Rd, an ac-

875

Algorithm 73 Data structure for symmetric norm estimation: query, informal ver-
sion of Algorithm 78
1: data structure DistanceOnSymmetricNorm
2: public:
3: procedure Query(q ∈ Rd) ▷ Lemma 13.4, 13.6
4: Encode q into {Sr,l,u}
5: for i ∈ [n] do
6: Subtract the sketch of xi and q, get the estimated heavy-hitters of q − xi
7: Decode the sketch and store returned estimation of heavy-hitters into Hr,l,u

8: for u ∈ [U] do
9: if Hr,l,u provide correct indices of heavy hitters then

10: Select it as good set and store it in Hr,l

11: end if
12: end for
13: Generate estimated layer sizes {cik}k∈[P]

14: dsti ← LayerVetcorApprox(α, ci1, c
i
2, . . . , c

i
P , d)

15: Reset {Hr,l,u} for next distance
16: end for
17: return {dsti}i∈[n]
18: end procedure
19: end data structure

curacy parameter ϵ ∈ (0, 1), and a failure probability δ ∈ (0, 1) as input, the procedure

init (Algorithm 76) runs in time

O(n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ))).

Proof. The Init time includes these parts:

• Line 12 takes O(RLU · Tinit(
√
β, n, d)) to initialize sketches

• Line 17 to Line 19 takes O(RUdL) to generate the bmap;

• Line 24 takes O(ndRUL · Tencodesingle(d)) to generate sketches

By Theorems 13.20, we have

• Tinit(
√
β, n, d)) = n ·O(β−1 log2 d) = O(n ·mmc(l)2 log7(d)ϵ−5),

876

• Tencodesingle(d) = O(log2(d)).

Adding them together we got the time of

O(RLUTinit(
√
β, n, d)) +O(RUdL) +O(ndRUL · Tencodesingle(d))

= O(RLU(Tinit(
√
β, n, d) + nd · Tencodesingle(d)))

= O(ϵ−4 log(1/δ) log4(d) · log(d) · log(d2/δ · log(nd))(n ·mmc(l)2 log7(d)ϵ−5 + nd log2(d)))

= O(n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ))),

where the first step follows from merging the terms, the second step follows from

the definition of R,L, U,Tencodesingle(d),Tinit, the third step follows from merging the

terms.

Thus, we complete the proof.

Lemma 13.3 (Update time, informal). Given a new data point z ∈ Rd, and an

index i where it should replace the original data point xi ∈ Rd. The procedure Update

(Algorithm 77) runs in time

O(d · poly(1/ϵ, log(nd/δ))

Proof. The Update operation calls BatchHeavyHitter.Encode for RLU times,

so it has the time of

O(RLU · Tencode(d)) = O(ϵ−4 log(1/δ) log4(d) · log(d) · log(d2/δ) · d log2(d) · log(nd))

= O(ϵ−4d log9(nd/δ))

where the first step follows from the definition of R,L, U,Tencode(d), the second step

follows from

log(1/δ) log4(d) log(d) log(d2/δ) log2(d) log(nd)

= (log(1/δ))(log7 d)(2 log d+ log(1/δ)) log(nd)

= O(log9(nd/δ)).

Thus, we complete the proof.

877

Here, we present a Query for outputting all the n distances. In Section 13.11,

we provide a more general version, which can take any input set S ⊆ [n], and output

distance for only them in a shorter time that proportional to |S|.

Lemma 13.4 (Query time, informal). Given a query point q ∈ Rd, the procedure

Query (Algorithm 78) runs in time

O((d+ n ·mmc(l)2) · poly(1/ϵ, log(nd/δ))).

Proof. The Query operation has the following two parts:

• Part 1: Line 5 takes O(RLU ·Tencode) time to call Encode to generate sketches

for q.

• Part 2: For every i ∈ [n]:

– Line 10 takes O(RLU · Tsubtract) time to compute sketch of the difference

between q and xi, and store the sketch at index of n+ 1.

– Line 11 takes O(RLU · Tdecode) time to decode the BatchHeavyHitter

and get estimated heavy hitters of q − xi.

– Line 13 to Line 19 takes O(RLU ·2/β) time to analyze the BatchHeavy-

Hitter and get the set of indices, where 2/β is the size of the set.

– Line 25 takes O(LP · 2/β) time to compute size of the layer sets cut by α.

– Line 27 to Line 31 takes O(PL) time to compute the estimation of each

layer.

The total running time of this part is:

n · (O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP))

= O(nL(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

time in total.

878

Taking these two parts together we have the total running time of the Query proce-

dure:

O(RLU · Tencode) +O(nL(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

= O(RLU(Tencode + n · Tsubtract + n · Tdecode + nβ−1) + nLPβ−1)

= O(ϵ−4 log6(d/δ) log(nd)(d log2(d) + nβ−1 log2(d)) + nϵ−1 log2(d)β−1)

= O((d+ n ·mmc(l)2) · poly(1/ϵ, log(nd/δ)))

where the first step follows from the property of big O notation, the second step

follows from the definition of R,L, U,Tencode, Tencode,Tsubtract,Tdecode (Theorem 13.20)

, P , the third step follows from merging the terms.

Thus, we complete the proof.

Next, we analyze the space usage in our algorithm. We delay the proofs into

Section 13.13.

Lemma 13.5 (Space complexity of our data structure, informal version of Lemma 13.31).

Our data structure (Algorithm 72 and 73) uses space

O(n(d+mmc(l)2) · poly(1/ϵ, log(d/δ))).

13.5 Correctness of Our Algorithm

The correctness of our distance oracle is proved in the following lemma:

Lemma 13.6 (Query correctness). Given a query point q ∈ Rd, the procedure

Query (Algorithm 78) takes q as input and approximately estimates {dsti}i∈[n] the

distance between q and every xi with the norm l, such that for every dsti, with prob-

ability at least 1− δ, we have

(1− ϵ) · ∥q − xi∥sym ≤ dsti ≤ (1 + ϵ) · ∥q − xi∥sym
879

Proof. Without loss of generality, we can consider a fixed i ∈ [n]. For simplicity, we

denote xi by x.

Let v := q − x. By Lemma 13.14, it is approximated by its layer vector L(v),

namely,

∥v∥sym ≤ ∥L(v)∥sym ≤ (1 +O(ϵ))∥v∥sym, (13.1)

where ∥ · ∥sym is a symmetric norm, denoted also by l(·).

We assume without loss of generality that ϵ ≥ 1/poly(d). Our algorithm

maintains a data structure that eventually produces a vector J(v), which is created

with the layer sizes c1, c2, . . . , cP , where c’s denotes the estimated layer sizes output

by out data structure, and the b’s are the ground truth layer sizes. We will show that

with high probability, ∥J(v)∥sym approximates ∥L(v)∥sym. Specifically, to achieve

(1 ± ϵ)-approximation to ∥v∥sym, we set the approximation guarantee of the layer

sets (Definition 13.6) to be ϵ1 := O(ϵ2

log(d)
) and the importance guarantee to be β0 :=

O(ϵ5

mmc(l)2 log5(d)
), where mmc(l) is defined as Definition 13.3.

Observe that the number of non-empty layer sets P = O(logα(d)) = O(log(d)/ϵ).

Let Esucceed denote the event (1− ϵ1)bk ≤ ck ≤ bk. By Lemma 13.25, it happens with

high probability 1− δ. Conditioned on this event.

Denote by J(v) the vector generated with the layer sizes given by Line 30,

and by L∗(v) the vector L(v) after removing all buckets (Definition 13.7) that are

not β-contributing (Definition 13.8), and define J∗(v) similar to L∗(v), where we set

β := ϵ/P = O(ϵ2/ log(d)). Every β-contributing layer is necessarily β0-important

(Definition 13.6) by Lemma 13.17 and Lemma 13.18 and therefore satisfies ck ≥
(1 − ϵ1)bk (Lemma 13.25). We bound the error of ∥L∗(v)∥sym by Lemma 13.16,

namely,

(1−O(ϵ))∥L(v)∥sym ≤ (1−O(logα d) · β)∥L(v)∥sym ≤ ∥L∗(v)∥sym ≤ ∥L(v)∥sym.

where the first step follows from the definition of β, the second step and the third

step follow from Lemma 13.16.

880

Then, we have

∥J(v)∥sym ≥ ∥J∗(v)∥sym
= ∥L∗(v)\Lk1(v) ∪ Jk1(v) . . . \Lkκ(v) ∪ Jkκ(v)∥sym
≥ (1− ϵ1)P∥L∗(v)∥sym
≥ (1−O(ϵ))∥L∗(v)∥sym. (13.2)

where the first step follows from monotonicity (Lemma 13.8), the second step follows

from the definition of J∗(v), the third step follows from Lemma 13.15, and the fourth

step follows from the definition of ϵ1 and P .

Combining Eq. (13.1) and (13.2), we have

(1−O(ϵ)) · ∥v∥sym ≤ ∥J∗(v)∥sym ≤ ∥v∥sym, (13.3)

which bounds the error of ∥J∗(v)∥sym as required. Note that, with Lemma 13.16 we

have

(1−O(ϵ)) · ∥J(v)∥sym ≤ ∥J∗(v)∥sym ≤ ∥J(v)∥sym (13.4)

Combining the Eq.(13.3) and (13.4) we have

(1−O(ϵ)) · ∥v∥sym ≤ ∥J(v)∥sym ≤ (1 +O(ϵ)) · ∥v∥sym

Note that Esucceed has a failure probability of δ. Thus, we complete the proof.

13.6 Conclusion

Similarity search is the backbone of many large-scale applications in machine-

learning, optimization, databases and computational geometry. Our work strengthens

and unifies a long line of work on metric embeddings and sketching, by presenting the

first Distance Oracle for any symmetric norm, with nearly-optimal query and update

times. The generality of our data structure allows to apply it as a black-box for data-

driven learned symmetric distance metrics [DKJ+07] and in various optimization

problems involving symmetric distances.

881

Our work raises several open questions for future study:

• The efficiency of our data structure depends on mmc(l), the concentration prop-

erty of the symmetric norm. Is this dependence necessary?

• Can we generalize our data structure to certain asymmetric norms ?

We believe our work is also likely to influence other fundamental problems

in high-dimensional optimization and search, e.g, kernel linear regression, geometric

sampling and near-neighbor search.

Roadmap. We divide the appendix into the following sections. Section 13.7 gives

the preliminaries for our work. Section 13.8 introduces some useful properties of sym-

metric norms. Section 13.9 gives the proofs for the layer approximation technique.

Section 13.10 states the formal version of our main theorem and algorithms. Sec-

tion 13.11 gives more details about the time complexity proofs. Section 13.12 gives

some details about the correctness proofs. Section 13.13 shows the space complexity

of our algorithm. Section 13.14 states a streaming lower bound for the norm esti-

mation problem and shows that our result is tight in this case. Section 13.15 gives

an instantiation of the sparse recovery data structure (BatchHeavyHitter) that

simplifies the analysis in prior work.

13.7 Preliminaries

In Section 13.7.1, we define the notations we use in this chapter. In Sec-

tion 13.7.2, we introduce some probability tools. In Section 13.7.3, we define p-stable

distributions.

13.7.1 Notations

For any positive integer n, we use [n] to denote a set {1, 2, · · · , n}. We use

E[] to denote the expectation. We use Pr[] to denote the probability. We use Var[] to

882

denote the variance. We define the unit vector ξ(d1) := 1√
d1
(1, 1, 1, , . . . , 1, 0, . . . , 0) ∈

Rd, for any d1 ∈ [d], which has d1 nonzero coordinates. We abuse the notation to

write ξ(d1) ∈ Rd1 by removing zero coordinates, and vice-versa by appending zeros.

We use ∥x∥2 to denote entry-wise ℓ2 norm of a vector. We use ∥x∥sym to denote the

symmetric norm of a vector x.

We define tail as follows

Definition 13.4 (Tail of a vector). For a given x ∈ Rd and an integer k, we use x[k]
or xtail(k) to denote the vector that without largest top-k values (in absolute).

13.7.2 Probability Tools

We state some useful inequalities in probability theory in below.

Theorem 13.7 (Levy’s isoperimetric inequality, [GMS86]). For a continuous func-

tion f : Sd−1 → R, Let Mf be the median of f , i.e., µ({x : f(x) ≤ Mf}) ≥ 1/2 and

µ({x : f(x) ≥ Mf}) ≥ 1/2, where µ(·) is the Haar probability measure on the unit

sphere Sd−1. Then

µ({x : f(x) =Mf}ϵ) ≥ 1−
√
π/2e−ϵ

2d/2,

where for a set A ⊂ Sd−1 we denote Aϵ := {x : l2(x,A) ≤ ϵ} and l2(x,A) :=

infy∈A ∥x− y∥2.

13.7.3 Stable Distributions

We define p-stable distributions.

Definition 13.5 ([Ind06]). A distribution Dp is called p-stable, if there exists p ≥ 0

such that for any d real numbers a1, a2, . . . , ad and i.i.d. variables x1, x2, . . . , xd from

distribution Dp. the random variable
∑d

i=1 aixi has the same distribution as the

variable ∥a∥py, where y is a random variable from distribution Dp.

883

13.8 Symmetric Norms

In this section, we give several technical tools for symmetric norms. In Sec-

tion 13.8.1, we show the monotonicity of symmetric norms. In Section 13.8.2, we

show the concentration properties of symmetric norms. In Section 13.8.3, we show

some properties of the median of symmetric norms.

13.8.1 Monotonicity property of symmetric norm

Lemma 13.8 (Monotonicity of Symmetric Norms, see e.g. Proposition IV.1.1 in

[Bha97]). If ∥ · ∥sym is a symmetric norm and x, y ∈ Rd satisfy that for all i ∈ [d] ,

|xi| ≤ |yi|, then ∥x∥sym ≤ ∥y∥sym.

13.8.2 Concentration property of symmetric norms

Let us give the results of the concentration of measure as followed. The fol-

lowing tools and proofs can be found in [BBC+17]. However, for completeness, we

state them below.

Lemma 13.9 (Concentration of Ml). For every norm l on Rd, if x ∈ Sd−1 is drawn

uniformly at random according to Haar measure on the sphere, then

Pr[∥x∥l −Ml| >
2bl√
d
] <

1

3

Proof. With Theorem 13.7, we know that, for a random x distributed according to

the Haar measure on the l2-sphere, with probability at least 1 −
√
π/2e−2 > 2

3
, we

can always find some y ∈ Sd−1, such that

∥x− y∥2 ≤
2√
d
, and

∥y∥l =Ml.

If we view the norm l as a function, then it is obvious that it is bl-Lipschitz with

884

respect to ∥ · ∥2, so that we have

|∥x∥l −Ml| = |∥x∥l − ∥y∥l|

≤ ∥x− y∥l
≤ bl∥x− y∥

≤ 2bl√
d

where the first step follows from the definition of y, the second step follows from

triangle inequality, the third step follows from that norm l is bl-Lipschitz with respect

to ∥ · ∥2, and the last step follows from the definition of y.

Thus, we complete the proof.

Lemma 13.10 (Concentration inequalities for norms). For every d > 0, and norm

l on Rn, there is a vector x ∈ Sd−1 satisfying

• |∥x∥∞ −Ml
(d)
∞
| ≤ 2/

√
d

• |∥x∥l −Ml(d)| ≤ 2bl(d)/
√
d, and

• |{i : |xi| > 1
K
√
d
}| > d

2
for some universal constant K.

Proof. Let x be drawn uniformly randomly from a unit sphere. From Lemma 13.9,

we have

Pr[|∥x∥l −Ml
(d)
∞
| > 2√

d
] <

1

3

and Pr[|∥x∥l −Ml(d) | >
2bl√
d
] <

1

3
.

Define τ(x, t) := |{i ∈ [d] : |xi| < t}|. Now we are giving the proof to show that, for

a constant K, over a choice of x, we have τ(x, 1
K
√
d
) < d

2
with probability lager than

2/3 .

Let’s consider an random vector z ∈ Rd, such that each entry zi is independent

standard normal random variable. It is well known that z
∥z∥2 is distributed uniformly

885

over a sphere, so it has the same distribution as x. There is a universal constant K1

such that

Pr[∥z∥2 > K1

√
d] <

1

6
,

and similarly, there is a constant K2, such that

Pr[|zi| <
1

K2

] <
1

12
.

Therefore, by Markov bound we have

Pr[τ(z,
1

K2

) >
d

2
] <

1

6
.

By union bound, with probability larger than 2/3, it holds simultaneously that

∥z∥2 ≤ K1

√
d and τ(z,

1

K2

) <
d

2
,

which imply:

τ(
z

∥z∥2
,

1

K1K2

√
d
) <

d

2
.

Now, by union bound, a random vector x satisfies all of the conditions in the statement

of the lemma with positive probability.

Thus, we complete the proof.

13.8.3 Median of symmetric norm

We state a well-known fact before introducing Lemma 13.12.

Fact 13.11 (Concentration for median on infinity norm, [GMS86]). There are abso-

lute constants 0 < γ1 < γ2 such that for every integer d ≥ 1,

γ1
√

log(d)/d ≤M
l
(d)
∞
≤ γ2

√
log(d)/d

We now give the following Lemma, which says that the l-norm of the (normal-

ized) unit vector ξ(d) is closely related to the median of the norm. We are considering

this vector because that it is related to a single layer of L.

886

Lemma 13.12 (Flat Median Lemma). Let l : Rd → R be a symmetric norm. Then

λ1Ml/
√
log(d) ≤ l(ξ(d)) ≤ λ2Ml

where λ1, λ2 > 0 are absolute constants.

We notice that the first inequality is tight for l∞.

Proof. Using Lemma 13.10, we can find a vector x ∈ Sd−1 and a constant λ > 0

satisfying

• |∥x∥∞ −Ml∞| ≤ λ
√

1/d

• |∥x∥l −Ml| ≤ λbl/
√
d, and

• |{i : |xi| > 1
K
√
d
}| > d

2
for some universal constant K.

With Fact 13.11, Ml∞ = Θ(
√

log(d)/d). On the other hand, let mmc(l) be defined

as Definition 13.3, we have

mmc(l) ≤ γ
√
d

for sufficiently small γ, thus

λbl√
d
< Ml.

So with constants γ1, γ2 > 0, we have

γ1Ml ≤ ∥x∥l ≤ γ2Ml

and γ1
√

log(d)/d ≤ ∥x∥∞ ≤ γ2
√

log(d)/d.

So that we have

|x| ≤ γ2
√

log(d) · ξ(d),

887

where the inequality is entry-wise, and with monotonicity of symmetric norms (Lemma 13.8),

we have

γ1 ≤ ∥x∥l ≤ γ2
√

log(d) · ∥ξ(d)∥l.

Now we move to the second condition of the lemma, we first let M = {i : |xi| > 1
K
√
d
}.

As |M | > d
2
, we can find a permutation π satisfying

[d]−M ∈ π(M).

We define a vector π(x) to be the vector by applying the permutation π to each

entry of x. Denote by |x| the vector of taking absolute value of x entry-wise. Notice

|x|+ π(|x|) > ξ(d)

K
entry-wise, so that we have

1

K
· ∥ξ(d)∥l ≤ ∥|x|+ π(|x|)∥l

≤ ∥|x|∥l + ∥π(|x|)∥l
= 2∥x∥l
≤ 2γ2Ml,

where the first step follows from the monotonicity of symmetric norm (Lemma 13.8),

the second step follows from the triangle inequality, the third step follows from the

definition of π, and the last step follows from the definition of γ2.

Thus, we complete the proof.

The following lemma shows the monotonicity of the median (in d), a very

useful property in the norm approximation.

Lemma 13.13 (Monotonicity of Median). Let l : Rd → R be a symmetric norm. For

all d1 ≤ d2, where d1, d2 ∈ [n], let mmc(l) be defined as Definition 13.3, we have

Ml(d1) ≤ λ ·mmc(l) ·
√
log(d1)Ml(d2) ,

where λ > 0 is an absolute constant.

888

Proof. By Lemma 13.12 and the fact that ξ(d1) is also a vector in Sd2−1,

λMl(d1)/
√

log(d1) ≤ ∥ξ(d1)∥l ≤ bl(d2) ≤ mmc(l)Ml(d2) .

Thus, we complete the proof.

13.9 Analysis of Layer Approximation

In this section, we show how to estimate the symmetric norm l(·) of a vector

using the layer vectors. Section 13.9.1 gives the definitions of layer vectors and im-

portant layers. Section 13.9.2 shows that we can approximate the exact value of the

norm and the layer vector. Section 13.9.3 defines the contributing layer and shows

its concentration property. Section 13.9.4 proves that contributing layers are also

important.

Throughout this section, let ϵ ∈ (0, 1) be the precision, α > 0 and β ∈
(0, 1] be some parameters depending on d, ϵ and mmc(l), where mmc(l) is defined

as Definition 13.3. Furthermore, we assume mmc(l) ≤ γ
√
d, for constant parameter

0 ≤ γ ≪ 1/2 small enough.2

13.9.1 Layer vectors and important layers

Definition 13.6 (Important Layers). For v ∈ Rd, define layer i ∈ N+ as

Bi := {j ∈ [d] : αi−1 < |vj| ≤ αi},

and denote its size by bi := |Bi|. We denote the number of non-zero bi’s by t, the

number of non-empty layers. And we say that layer-i is β-important if

• bi > β ·∑t
j=i+1 bj

• biα
2i ≥ β ·∑j∈[i] bjα

2j

2We note that beyond this regime, the streaming lower bound in Theorem 13.32 implies that a
linear-sized memory (time) is required to approximate the norm.

889

With out loss of generality, We restrict the entries of the vector v to be in

[−m,m], and that m = poly(d). Then we know that the number of non-zero bi’s is

at most P = O(logα(d)). In the view of ℓ2-norm, for an arbitrary vector v ∈ Rd, if

we normalize it to a unit vector, then the absolute value of each non-zero entry is at

least 1/poly(d). In order to simplify our analysis and algorithm for approximating

∥v∥sym, we introduce the notations we use as follows.

Definition 13.7 (Layer Vectors and Buckets). For each i ∈ [P], let αi · 1bi ∈ Rbi

denote a vector that has length bi and every entry is αi. Define the layer vector for

v ∈ Rd with integer coordinates to be

L(v) := (α1 · 1b1 , α2 · 1b2 , · · · , αP · 1bP , 0 · 1d−∑j∈[P] bj
) ∈ Rd;

and define the i-th bucket of L(v) to be

Li(v) := (0 · 1b1+b2+···+bi−1
, αi · 1bi , 0 · 1d−∑j∈[i] bj

) ∈ Rd;

We also define J(v) and Ji(v) as above by replacing {bi} with the approximated values

{ci}. Denote L(v)\Li(v) as the vector with the i-th bucket of L(v) replaced by 0. We

also denote (L(v)\Li(v)) ∪ Ji(v) as the vector by replacing the i-th bucket of L(v)

with Ji(v), i.e.,

(L(v)\Li(v)) ∪ Ji(v) := (α1 · 1b1 , α2 · 1b2 , · · · , αi · 1ci , · · · , αP · 1bP , 0 · 1d−∑j∈[P] bj+bi−ci) ∈ Rd;

13.9.2 Approximated layers provides a good norm approximation

We now prove that, ∥v∥sym can be approximated by using layer vector V . We

first choose a base to be α := 1 +O(ϵ).

Lemma 13.14 (Approximattion with Layer Vector). For all v ∈ Rd, we have

∥L(v)∥sym/α ≤ ∥v∥sym ≤ ∥L(v)∥sym.

Proof. The lemma follows from the monotonicity of symmetric norms(Lemma 13.8)

directly.

890

The next key lemma shows that ∥J(v)∥sym is a good approximation to ∥L(v)∥sym.

Lemma 13.15 (Bucket Approximation). For every layer i ∈ [P],

• if ci ≤ bi, then ∥(L(v)\Li(v)) ∪ Ji(v)∥sym ≤ ∥L(v)∥sym;

• if ci ≥ (1− ϵ)bi, then ∥(L(v)\Li(v)) ∪ Ji(v)∥sym ≥ (1− ϵ)∥L(v)∥sym.

Proof. With the monotonicity of norm (Lemma 13.8), the upper bound is quite ob-

vious. So we just focus on the lower bound. Let us take the vector

Ji(v) := (0 · 1c1+c2+···+ci−1
, αi · 1ci , 0, · · · , 0) ∈ Rd;

Here we define K(v) := L(v)−Li(v). Then notice that K(v)+Ji(v) is a permutation

of the vector (L(v)\Li(v))∪ Ji(v). We will then show that, under assumptions of the

lemma, we have

∥K(v) + Ji(v)∥sym ≥ (ci/bi)∥L(v)∥sym.

Assume a vector v ∈ Rd and a permutation π ∈ Σd, we define a vector π(x) to be the

vector by applying the permutation π to each entry of x. Using the property of the

symmetric norm, we have that ∥v∥sym = ∥π(v)∥sym. Consider a set of permutations

that are cyclic shifts over the non-zero coordinates of Li, and do not move any other

coordinates. That is, there is exactly bi permutations in S, and for every π ∈ S, we

have π(K(v)) = K(v). By the construction of S, we have,

∑

π∈S

π(Ji(v)) = ciLi(v)

and therefore
∑

π∈S π(K(v)+Ji(v)) = ciLi(v)+biK(v). As the vectors Li(v) and K(v)

have disjoint support, by monotonicity of symmetric norm (Lemma 13.8) with respect

to each coordinates we can deduce ∥ciLi(v) + biK(v)∥sym ≥ ∥ci(Li(v) + K(v))∥sym.

891

By plugging those together,

ci∥Li(v) +K(v)∥sym ≤ ∥ciLi(v) + biK(v)∥sym
= ∥

∑

π∈S

π(Ji(v) +K(v))∥sym

≤
∑

π∈S

∥π(Ji(v) +K(v))∥sym

= bi∥π(Ji(v) +K(v))∥sym

where the first step follows from ci∥Li(v) + K(v)∥sym = ∥ci(Li(v) + K(v))∥sym and

the monotonicity of the norm l, the second step follows from
∑

π∈S π(Ji(v)+K(v)) =

ciLi(v) + biK(v), the third step follows from triangle inequality, and the last step

follows from the property of symmetric norm and |S| = bi.

Hence,

∥Ji(v) +K(v)∥sym ≥
ci
bi
∥L(v)∥sym ≥ (1− ϵ)∥L(v)∥sym,

Thus, we complete the proof.

13.9.3 Contributing layers

Definition 13.8 (Contributing Layers). For i ∈ [P], layer i is called β-contributing

if

∥Li(v)∥sym ≥ β∥L(v)∥sym.

Lemma 13.16 (Concentration with contributing layers). Let L∗(v) be the vector

obtained from V by removing all layers that are not β-contributing. Then

(1−O(logα(d)) · β) · ∥L(v)∥sym ≤ ∥L∗(v)∥sym ≤ ∥L(v)∥sym.

Proof. Let i1, . . . , ik ∈ [P] be the layers that are not β- contributing.

Then we apply the triangle inequality and have,

∥L(v)∥sym ≥ ∥L(v)∥sym − ∥Li1(v)∥sym − · · · − ∥Lik(v)∥sym
≥ (1− kβ)∥L(v)∥sym

892

The proof follows by bounding k by P = O(logα(n)), which is the total number of

non-zero bi’s.

13.9.4 Contributing Layers Are Important

In this section, we give two lemmas to show that every β-contributing layer

(Definition 13.8) is β′-important (Definition 13.6), where β′ is depending on mmc(l)

(Definition 13.3). The first property of the important layer is proved in Lemma 13.17,

and the second property is proved in Lemma 13.18.

Lemma 13.17 (Importance of contributing layers (Part 1)). For i ∈ [P], if layer i

is β-contributing, then for some absolute constant λ > 0, we have

bi ≥
λβ2

mmc(l)2 log2(d)
·

P∑

j=i+1

bj,

where mmc(l) is defined as Definition 13.3.

Proof. We first fix a layer i which is β-contributing. Let U(v) be the vector L(v)

after removing buckets j = 0, . . . , i. By Lemma 13.12, there is an absolute constant

λ1 > 0 such that

∥Li(v)∥sym = αi ·
√
bi · l(ξ(bi))

≤ λ1 · αi ·
√
bi ·Ml(bi) ,

and similarly

∥U(v)∥sym ≥
λ2α

i

√
log(d)

· (
P∑

j=i+1

bj)
1/2M

l
(
∑P

j=i+1
bj)
.

With these two inequalities, we can have the following deduction.

First, we have

∥Li(v)∥sym ≥ β · ∥L(v)∥sym ≥ β · ∥U(v)∥sym.

893

Second, we assume that bi <
∑P

j=i+1 bj, as otherwise we are done:

bi ≥
P∑

j=i+1

bj ≥
λβ2

mmc(l)2 log2(d)
·

P∑

j=i+1

bj.

Then, by the monotonicity of the median (Lemma 13.13), we have

Ml(bi) ≤ λ3 ·mmc(l) ·
√
log(d) ·M

l
(
∑P

j=i+1
bj)

for some absolute constant λ3 > 0.

Putting it all together, we get

β · λ2α
i

√
log(d)

· (
P∑

j=i+1

bj)
1/2 ≤ λ1 · αi

√
bi · λ3 ·mmc(l) ·

√
log(d).

Therefore, we finish the proof.

Lemma 13.18 (Importance of contributing layers (Part 2)). For a symmetric l, let

mmc(l) be defined as Definition 13.3. If layer i ∈ [P] is β-contributing, then there is

an absolute constant λ > 0 such that

biα
2i ≥ λβ2

mmc(l)2 · logα(n) · log2(n)
·
∑

j∈[i]

bjα
2j.

Proof. We first fix a layer i which is β-contributing, and let h := argmaxj≤i
√
bjα

j.

We consider the two different cases as follows.

First, if bi ≥ bh then the lemma follows obviously by

∑

j∈[i]

bjα
2j

≤ t · bh · α2h

≤ O(logα(d)) · bi · α2i.

894

The second case is when bi < bh. With Definition 13.8 and Lemma 13.12, we have

λ1 · αi ·
√
bi ·Ml(bi)

≥ ∥Li∥sym
≥ β · ∥L∥sym

≥ λ2 · β · αh ·
√

bh
log(d)

·Ml(bh) ,

for some absolute constants λ1, λ2 > 0, where the first step follows from Lemma 13.12,

the second step follows from Definition 13.8, and the last step follows from Lemma 13.12.

following from monotonicity of the median (Lemma 13.13), we can plugging

in Ml(bi) ≤ λ3 ·mmc(l) ·
√

log(d) ·Ml(bh) , for some absolute constant λ3 > 0, so that

we have

λ1 · αi ·
√
bi ·Ml(bi) ≥

λ2 · β ·
√
bh · αh√

log(d)
· Ml(bi)

λ3 ·mmc(l) ·
√

log(d)
,

√
bi · αi ≥

λ2 · β ·
√
bh · αh

λ1λ3 ·mmc(l) · log(d) .

Square the above inequality and we can see that bh · α2h ≥ 1
O(logα(d))

·∑j∈[i] bjα
2j.

Thus we complete the proof.

13.10 Formal Main Result and Algorithms

In this section, we state the formal version of our main theorem and algorithms.

Section 13.10.1 presents our main result: a data structure for distance estimation with

symmetric norm. Section 13.10.2 introduces the sparse recovery tools for sketching.

13.10.1 Formal version of our main result

Here we divide function Query presented in Theorem 13.1 into two versions.

One takes only the query point q ∈ Rd as input to ask all the distances. Another

takes a query point q ∈ Rd and a set S ⊂ [n] to ask for the distance with the specific

895

Algorithm 74 Data structure for symmetric norm estimation
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2:
3: private:
4: procedure LayerVectorApprox(α, b1, b2, . . . , bP , d) ▷ Lemma 13.14
5: For each i ∈ [P], let αi ·1bi ∈ Rbi denote a vector that has length bi and every

entry is αi
6: L← (α1 · 1b1 , · · · , αP · 1bP , 0, . . . , 0) ∈ Rd ▷ Generate the layer vector
7: return ∥L∥sym ▷ Return the norm of the estimated layer vector
8: end procedure
9: end data structure

Algorithm 75 Data structure for symmetric norm estimation: members, formal
version of Algorithm 72
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: members
3: d, n ∈ N+ ▷ n is the number of points, d is dimension
4: X = {xi ∈ Rd}ni=1 ▷ Set of points being queried
5: L ∈ N+ ▷ number of layers we subsample
6: R ∈ N+ ▷ number of substreams in one layer
7: ϵ, δ
8: β ▷ used to cut important layer
9: U ∈ N+ ▷ number of parallel processing

10: BatchHeavyHitter {Sr,l,u}r∈[R],l∈[L],u∈[U]

11: {Hr,l,u ⊂ [d]× R}r∈[R],l∈[L],u∈[U] ▷ each set H has a size of 2/β, and is used to
store the output of BatchHeavyHitter

12: γ ▷ parameter used when cutting layer vector
13: bmap ∈ {0, 1}R×L×U×d
14: xr,l,u ∈ Rn×d, for each r ∈ [R], l ∈ [L], u ∈ [U] ▷ Substreams
15: end members
16: end data structure

set of points. The latter can be viewed as a more general version of the former. In

the former parts, we have proved the correctness of the query (Lemma 13.6), and

the running time of version for all points (Lemma 13.4). Now we state the both in

the following theorem, and the running time analysis for the latter will be stated in

Section 13.11.

896

Algorithm 76 Data structure for symmetric norm estimation: init, formal version
of Algorithm 72
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: public:
3: procedure Init({x1, · · · , xi} ⊂ Rd, n ∈ N+, d ∈ N+, δ ∈ (0, 0.1), ϵ ∈ (0, 0.1)) ▷

Lemma 13.2
4: n← n, d← d, δ ← δ, ϵ← ϵ
5: for i = 1→ n do
6: xi ← xi
7: end for
8: ϵ1 ← O(ϵ2

log d
) ▷ We define this notation for purpose of analysis

9: L← log(d), R← Θ(ϵ−21 log(n/δ) log2 d), U ← ⌈log(nd2/δ)⌉
10: β ← O(ϵ5

mmc(l)2 log5 d
)

11: for r ∈ [R], l ∈ [L], u ∈ [U] do
12: Sr,l,u.Init(

√
β, n+ 2, d) ▷ Theorem 13.20

13: end for
14: for r ∈ [R], u ∈ [U], j ∈ [d], l ∈ [L] do
15: Draw ξ ∈ [0, 1]
16: if ξ ∈ [0, 2−l] then
17: bmap[r, l, u, j]← 1
18: else
19: bmap[r, l, u, j]← 0
20: end if
21: end for
22: for r ∈ [R], u ∈ [U], i ∈ [n], j ∈ [d], l ∈ [L] do
23: if bmap[r, l, u, j] = 1 then
24: Sr,l,u.EncodeSingle(i, j, xi,j, d) ▷ Theorem 13.20
25: [xr,l,u]i,j ← xi,j ▷ Create a copy of subvectors
26: else
27: [xr,l,u]i,j ← 0
28: end if
29: end for
30: end procedure
31: end data structure

Theorem 13.19 (Main result, formal version of Theorem 13.1). There is a data

structure (Algorithm 75, 76, 78, 77) uses O(ϵ−9n(d + mmc(l)2) log14(nd/δ)) spaces

for the Online Approximate Adaptive Symmetric Norm Distance Estimation Problem

897

Algorithm 77 Data structure for symmetric norm estimation: update
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: public:
3: procedure Update(i ∈ [n], z ∈ Rd) ▷ Lemma 13.3
4: ▷ You want to replace xi by z
5: for r ∈ [R], u ∈ [U], j ∈ [d], l ∈ [L] do
6: if bmap[r, l, u] = 1 then
7: Sr,l,u.EncodeSingle(i, j, zj, d) ▷ Theorem 13.20
8: [xr,l,u]i,j ← zj ▷ Create a copy of subvectors
9: else

10: [xr,l,u]i,j ← 0
11: end if
12: end for
13: end procedure
14: end data structure

(Definition 13.1) with the following procedures:

• Init({x1, x2, . . . , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)): Given n data points {x1, x2, . . . , xn} ⊂
Rd, an accuracy parameter ϵ and a failure probability δ as input, the data struc-

ture preprocesses in time O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

• UpdateX(z ∈ Rd, i ∈ [n]): Given an update vector z ∈ Rd and index i ∈ [n],

the UpdateX takes z and i as input and updates the data structure with the

new i-th data point in O(ϵ−4d log9(nd/δ)) time.

• Query(q ∈ Rd) (Querying all points): Given a query point q ∈ Rd, the Query

operation takes q as input and approximately estimates the symmetric norm

distances from q to all the data points {x1, x2, . . . , xn} ⊂ Rd in time

O(ϵ−9(d+ n ·mmc(l)2) log14(nd/δ))

i.e. it provides a set of estimates {dsti}ni=1 such that:

∀i ∈ [n], (1− ϵ)∥q − xi∥sym ≤ dsti ≤ (1 + ϵ)∥q − xi∥sym

with probability at least 1− δ.

898

Algorithm 78 Data structure for symmetric norm estimation: query, formal version
of Algorithm 73
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: procedure Query(q ∈ Rd) ▷ Lemma 13.4, 13.6
3: P ← O(logα(d)) ▷ P denotes the number of non-empty layer sets
4: for r ∈ [R], l ∈ [L], u ∈ [U] do
5: Sr,l,u.Encode(n+ 1, q, d) ▷ Generate Sketch for q
6: end for
7: ξ ← chosen uniformly at random from [1/2, 1], γ ← Θ(ϵ), α← 1 + γ · ξ
8: for i ∈ [n] do
9: for r ∈ [R], l ∈ [L], u ∈ [U] do

10: Sr,l,u.Subtract(n+ 2, n+ 1, i)
11: Hr,l,u ← Sr,l,u.Decode(n+ 2,

√
β, d) ▷ This can be done in 2

βpoly(log d)
12: ▷ At this point Hr,l,u is a list of index, the value of each index is reset to 0
13: for k ∈ Hr,l,u do
14: value← [xr,l,u]i,k
15: Hr,l,u[k]← value, w ← ⌈log(value)/ log(α)⌉
16: if αw−1 ≥ value/(1 + ϵ) then
17: Hr,l,u ← null, break
18: end if
19: end for
20: if Hr,l,u ̸= null then
21: Hr,l ← Hr,l,u

22: end if
23: end for
24: for l ∈ [L], k ∈ [P] do
25: Ail,k ← |{k | ∃k ∈ Hr,l, α

k−1 < |Hr,l[k]| ≤ αk}|
26: end for
27: for k ∈ [P] do
28: qik ← maxl∈[L] {l | Ail,k ≥

R log(1/δ)
100 log(d) } ▷ Definition 13.12

29: If qik does not exist, then η̂ik ← 0; Else η̂ik ←
A

qi
k
,k

R(1+ϵ1)

30: If η̂ik = 0 then cik ← 0; Else cik ←
log(1−η̂ik)
1−w−qk

31: end for
32: dsti ← LayerVetcorApprox(α, ci1, c

i
2, . . . , c

i
P , d)

33: for r ∈ [R], l ∈ [L], u ∈ [U] do
34: {Hr,l,u} ← {0} ▷ Reset the sets to use for next point
35: end for
36: end for
37: return {dsti}i∈[n]
38: end procedure
39: end data structure

899

• Query(q ∈ Rd, S ⊆ [n]) (Querying a specific set S of points). Given a query

point q ∈ Rd and an index i ∈ [n], the QueryOne operation takes q and i as

input and approximately estimates the symmetric norm distances from q to the

i-th point xi ∈ Rd in time

O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ))

i.e. it provides a estimated distance dst ∈ RS such that:

(1− ϵ)∥q − xi∥sym ≤ dsti ≤ (1 + ϵ)∥q − xi∥sym,∀i ∈ S

with probability at least 1− δ.

• EstPair(i, j ∈ [n]) Given indices i, j ∈ [n], the EstPair operation takes i and

j as input and approximately estimates the symmetric norm distances from i-th

to the j-th point xi, xj ∈ Rd in time

O(ϵ−9 ·mmc(l)2 log14(nd/δ))

i.e. it provides a estimated distance pair such that:

(1− ϵ)∥xi − xj∥sym ≤ pair ≤ (1 + ϵ)∥xi − xj∥sym

with probability at least 1− δ.

Proof. In Lemma 13.23, Lemma 13.24, Lemma 13.21 and Lemma 13.22 we analyze

the running time for Init, Update and Query and EstPair respectively.

Lemma 13.31 shows the space complexity.

In Lemma 13.6 we give the correctness of Query, and correctness for EstPair

follows directly.

Thus, by putting them all together, we prove the Theorem.

900

13.10.2 Sparse recovery tools

We start by describing a data structure problem

Definition 13.9 (Batch Heavy Hitter). Given an n× d matrix, the goal is to design

a data structure that supports the following operations:

• Init(ϵ ∈ (0, 0.1), n, d). Create a set of Random Hash functions and all the n

copies of sketches share the same hash functions.

• Encode(i ∈ [n], z ∈ Rd, d). This step encodes z into i-th sketched location and

store a size Sspace linear sketch.

• EncodeSingle(i ∈ [n], j ∈ [d], z ∈ R, d). This step updates one sparse vector

ejz ∈ Rd into i-th sketched location.

• Subtract(i, j, l ∈ [n]). This function updates the sketch at i-th location by

j-th sketch minus l-th sketch.

• Decode(i ∈ [n], ϵ ∈ (0, 0.1), d). This function returns a set L ⊆ [d] of size

|L| = O(ϵ−2) containing all ϵ-heavy hitters i ∈ [n] under ℓp. Here we say i is

an ϵ-heavy hitter under ℓ2 if |xi| ≥ ϵ · ∥x[ϵ−2]∥2 where x[k] denotes the vector x

with the largest k entries (in absolute value) set to zero. Note that the number

of heavy hitters never exceeds 2/ϵ2.

The existing work [KNPW11, Pag13] implies the following result. However

their proofs are very decent and complicated. We provide another data structure in

Section 13.15 that significantly simplifies the analysis (by only paying some extra log

factors). We believe it is of independent interest.

Theorem 13.20. There is (linear sketch) data structure BatchHeavyHitter(ϵ, n, d)

that uses Sspace space that support the following operations:

• Init(ϵ ∈ (0, 0.1), n, d). This step takes Tinit(ϵ, n, d) time.

901

• Encode(i ∈ [n], z ∈ Rd, d). This step takes Tencode(d) time.

• EncodeSingle(i ∈ [n], j ∈ [d], z ∈ R, d). This step takes Tencodesingle(d) time.

• Subtract(i, j, l ∈ [n]). This step takes Tencodesingle(d) time.

• Decode(i ∈ [n], ϵ ∈ (0, 0.1), d). This step takes Tdecode(ϵ, d) time.

The running time of function can be summarize as

• Sspace(ϵ, d) = n ·O(ϵ−2 log2 d)

• Tinit(ϵ, n, d) = n ·O(ϵ−2 log2 d)

• Tencode(d) = O(d log2(d))

• Tencodesingle(d) = O(log2(d))

• Tsubtract(ϵ, d) = O(ϵ−2 log2 d)

• Tdecode(ϵ, d) = O(ϵ−2 log2 d)

Note that the succeed probability is at least 0.99.

We remark that, to boost the probability from constant to 1− 1/poly(nd) we

just need to pay an extra log(nd) factor.

13.11 More Details of the Time Complexity

In this section, we analyze the running time of the general version of Query.

Lemma 13.4 is a special case of the following Lemma when S = [n].

Lemma 13.21 (Query time for general version). Given a query point q ∈ Rd and a

set S ⊆ [n], the procedure Query (Algorithm 79) runs in time

O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ)).

902

Proof. The Query operation for a stored vector (Algorithm 79) has the following

two parts:

• Part 1: Line 5 takes O(RLU ·Tencode) time to call Encode to generate sketches

for q.

• Part 2: For each i ∈ S

– Line 11 takes O(RLU · Tsubtract) time to compute sketch of the difference

between q and xi, and store the sketch at index of n+ 2.

– Line 12 takes O(RLU · Tdecode) time to decode the BatchHeavyHitter

and get estimated heavy hitters of q − xi.

– Line 14 to Line 20 takes O(RLU ·2/β) time to analyze the BatchHeavy-

Hitter and get the set of indices, where 2/β is the size of the set.

– Line 26 takes O(LP · 2/β) time to compute size of the layer sets cut by α.

– Line 28 to Line 32 takes O(PL) time to compute the estimation of each

layer.

The total running time of this part is:

|S| · (O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP)))

= O(|S| · L(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

time in total.

Taking these two parts together we have the total running time of the Query proce-

dure:

O(RLU · Tencode) +O(|S| · L(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

= O(RLU(Tencode + |S| · (Tsubtract + Tdecode + β−1)) + |S| · LPβ−1)

= O(ϵ−4 log6(nd/δ)(d log2(d) log(nd) + |S| · β−1 log2(d) log(nd)) + |S| · ϵ−1 log2(d)β−1)

= O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ))

903

where the first step follows from the property of big O notation, the second step

follows from the definition of R,L, U,Tencode,Tencode,Tsubtract,Tdecode (Theorem 13.20)

, P , the third step follows from merging the terms.

Thus, we complete the proof.

Lemma 13.22 (EstPair time). Given a query point q ∈ Rd, the procedure EstPair

(Algorithm 80) runs in time

O(ϵ−9 ·mmc(l)2 log14(nd/δ)).

Proof. The EstPair operation (Algorithm 80) has the following two parts:

• Line 9 takes O(RLU ·Tsubtract) time to compute sketch of the difference between

xi and xj, and store the sketch at index of n+ 2.

• Line 10 takes O(RLU · Tdecode) time to decode the BatchHeavyHitter and

get estimated heavy hitters of xi − xj.

• Line 12 to Line 20 takesO(RLU ·2/β) time to analyze the BatchHeavyHitter

and get the set of indices, where 2/β is the size of the set.

• Line 26 takes O(LP · 2/β) time to compute size of the layer sets cut by α.

• Line 28 to Line 32 takes O(PL) time to compute the estimation of each layer.

The total running time is:

O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP)

= O(RLU(Tsubtract + Tdecode + β−1) + LPβ−1)

= O(ϵ−4 log6(nd/δ)(β−1 log2(d) log(nd) + ϵ−1 log2(d)β−1 log(nd))

= O(ϵ−9 ·mmc(l)2 log14(nd/δ))

904

time in total, where the first step follows from the property of big O notation, the

second step follows from the definition of R,L, U,Tencode,Tencode,Tsubtract,Tdecode (The-

orem 13.20) , P , the third step follows from merging the terms.

Thus, we complete the proof.

Lemma 13.23 (Init time, formal version of Lemma 13.2). Given data points {x1, x2, . . . , xn} ⊂
Rd, an accuracy parameter ϵ > 0, and a failure probability δ > 0 as input, the proce-

dure init (Algorithm 76) runs in time

O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

Proof. The Init time includes these parts:

• Line 12 takes O(RLU · Tinit(
√
β, n, d)) to initialize sketches

• Line 17 to Line 19 takes O(RUdL) to generate the bmap;

• Line 24 takes O(ndRUL · Tencodesingle(d)) to generate sketches

By Theorems 13.20, we have

• Tinit(
√
β, n, d)) = n ·O(β−1 log2(d) log(nd)) = O(n ·mmc(l)2 log7(d) log(nd)ϵ−5),

• Tencodesingle(d) = O(log2(d) log(nd)).

Adding them together we got the time of

O(RLUTinit(
√
β, n, d)) +O(RUdL) +O(ndRUL · Tencodesingle(d))

= O(RLU(Tinit(
√
β, n, d) + nd · Tencodesingle(d)))

= O(ϵ−4 log(d/δ) log4(d) · log(d) · log(nd2/δ) log(nd)(n ·mmc(l)2 log7(d)ϵ−5 + nd log2(d)))

= O(ϵ−9n(d+mmc(l)2) log14(nd/δ)),

905

where the first step follows from merging the terms, the second step follows from

the definition of R,L, U,Tencodesingle(d),Tinit, the third step follows from merging the

terms.

Thus, we complete the proof.

Lemma 13.24 (Update time, formal version of Lemma 13.3). Given a new data

point z ∈ Rd, and an index i where it should replace the original data point xi ∈ Rd.

The procedure Update (Algorithm 77) runs in time

O(ϵ−4d log9(nd/δ)).

Proof. The Update operation calls BatchHeavyHitter.Encode for RLU times,

so it has the time of

O(RLU · Tencode(d)) = O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · d log2(d) log(nd))

= O(ϵ−4d log9(nd/δ))

where the first step follows from the definition of R,L, U,Tencode(d), the second step

follows from

log(n/δ) log4(d) log(d) log(nd2/δ) log2(d) log(nd)

= (log(n/δ))(log7 d)(2 log d+ log(n/δ)) log(nd)

= O(log9(nd/δ))

Thus, we complete the proof.

13.12 More Details of the Correctness Proofs

In this section, we give the complete proofs of the correctness of our algo-

rithms. In Section 13.12.1 we state and prove the main result of this section, using

the technical lemmas in the following subsections. In Section 13.12.2, we define the

trackable layers and show the connection with important layers (Definition 13.6). In

906

Section 13.12.3, we analyze the sample probability and track the probability of a

layer. In Section 13.12.4, we show that a good estimation of track probability implies

a good approximation of the layer size, which completes the proof of correctness.

13.12.1 Correctness of layer size estimation

We first show that the estimation of layer sizes output by our data structure

is good to approximate the exact values.

Lemma 13.25 (Correctness of layer size approximation). We first show that, the

layer sizes ci1, ci2, . . . , ciP our data structure return satisfy

• for all k ∈ P , cik ≤ bik;

• if k is a β-important layer (Definition 13.6) of q − xi, then cik ≥ (1− ϵ1)bik,

with probability at least 1−δ, where the bik is the ground truth k-th layer size of q−xi.

Proof. We first define two events as

• E1: for all important layers k ∈ [P], qk is well defined;

• E2: for all k ∈ [P], if η̂k > 0 then (1−O(ϵ))η′k,qk ≤ η̂k ≤ η′k,qk .

With Lemma 13.28 and Lemma 13.29, we have that

Pr[E1 ∩ E2] ≥ 1− δO(log(d)).

When the output of every BatchHeavyHitter is correct, if follows from Lemma 13.27,

Lemma 13.28 and Lemma 13.30 the algorithm outputs an approximation to the layer

vector meeting the two criteria.

The BatchHeavyHitter is used a total of LR times, each with error proba-

bility at most δ/d. By a union bound over the layers, the failure probability is at most

(poly(log d)) · δ/d = o(δ). Therefore, the total failure probability of the algorithm is

at most 1− o(δ).

Thus, we complete the proof.

907

13.12.2 Trackability of Layers

Definition 13.10 (Trackability of layers). A layer k ∈ [P] of a vector x is β-trackable,

if

α2k ≥ β · ∥x[β−1]∥22

where x[κ] is defined as Definition 13.4.

Lemma 13.26 (Importance and Trackability). Let α be some parameter such that

α ∈ [0, 2]. Suppose subvector x̃ is obtained by subsampling the original vector with

probability p.

If k ∈ [P] is a β-important layer, then for any λ > P , with probability at least

1− P exp(−λpbk
Pβ

), layer k is β
λpbk

-trackable.

In particular, if pbk = O(1), then with probability at least 1−P exp(−Ω(λ
Pβ

)),

layer k is β
λ
-trackable.

Proof. Let (ζ0, ζ1, . . .) be the new level sizes of the subvector x̃ we sampled. Thus,

for k ∈ [P], we have

E[ζk] = p · bk.

By the definition of important layer (Definition 13.6) we have

E[ζk] ≥ β · E
[P∑

j=k+1

ζj

]

and

E[ζk · α2k] ≥ β · E
[∑

j∈[k]

ζj · α2j
]
.

To have layer k trackable, it has to be in the top λpbk/β elements, so that we have
∑P

j=k+1 ζj ≤ λpbk/β. By Chernoff bound (Lemma A.2), we can know the probability

that this event does not happen is

Pr
[P∑

j=k+1

bj >
λpbk
β

]
≤ exp(−Ω(λpbk/β)).

908

On the other hand, for level k to be trackable α2k ≥ β
λpbk

∑
j∈[k] ζjα

2j.

Thus, the complement occurs with probability

Pr
[β

λpbk

∑

j∈[k]

ζjα
2j > α2k

]
≤ Pr

[
∃j, ζjα2j ≥ λpbkα

2k

Pβ

]

≤
∑

j∈[P]

Pr
[
ζjα

2j ≥ λpbkα
2k

Pβ

]
.

By Chernoff bound (Lemma A.2) and the fact that E[ζjα2j] ≤ pbkα
2k, we have

Pr
[β

λpbk

∑

j∈[k]

ζjα
2j > α2k

]
≤ P · exp

(
− Ω(

λpbkα
2k

α2jPβ
)
)

≤ P · exp
(
− Ω(

λpbk
β

)
)
.

Thus we complete the proof.

13.12.3 Probability analysis

We first define some parameters:

Definition 13.11. For each k ∈ [p], l ∈ R+, we define ηk,l := 1 − (1 − pl)
bk to

be the probability that at least one element from Bk is sampled with the sampling

probability of pl = 2−l.

Set λ = Θ(P log(1/δ)). Let η∗k,l be the probability that an element from Bk is

contained in H1,l, such that, for Hr,l with any other r, the probability is the same as

η∗k,l.

Lemma 13.27 (Sample Probability and Track Probability). For any layer k ∈ [P]

we have η∗k,l < ηk,l. Let δ and ϵ denote the two parameters such that 0 < δ < ϵ < 1.

If layer k is a β-important layer and plbk = O(1), then

η∗k,l ≥ (1−Θ(ϵ)) · ηk,l.

909

Proof. If one is in Hr,l, it has to be sampled, so we have η∗k,l ≤ ηk,l. On the other

hand, using Lemma 13.26, with probability at least 1 − t exp(−Ω(λpbk
tβ

)), layer k is
β

λpbk
-trackable.

We have

β

λpbk
= Θ(

β

P log(1/δ)
)

where the last step follows from definition of λ.

Thus with probability at least

ηk,l(1−Θ(δ)) ≥ ηk,l(1−O(ϵ))

an element from Bk is sampled and the element is reported by BatchHeavy-

Hitter.

Thus we complete the proof.

Lemma 13.28 (Probability Approximation). For k ∈ [P], let η̂k be defined as in

Line 29 in Algorithm 78. With probability at least 1 − δΩ(log d), for all k ∈ [P], if

η̂k ̸= 0 then

(1−O(ϵ1))η∗k,qk ≤ η̂k ≤ η∗k,qk .

Proof. We define

γ :=
R log(1/δ)

100 log d
.

Recall the condition of Line 29, if η̂k ̸= 0, then we have

Aqk,k ≥ γ.

For a fixed k ∈ [P], since the sampling process is independent for each r ∈ [R], we

can assume that

E[Aqk,k] = Rηk,qk ≥ γ.

910

Otherwise, by Chernoff bound (Lemma A.2), we get that

Pr[Aqk,k ≥ γ] = o(δΩ(log d)),

which implies that with probability at least 1 − δΩ(log d), η̂k = 0 for all k ∈ [P], and

we are done.

Thus, under this assumption, by Chernoff bound (Lemma A.2), we have

Pr[|Aqk,k −R · η∗k,qk | ≥ ϵRηk,qk] ≤ exp(−Ω(ϵ2γ)) = δΩ(log d).

Since P = poly log(d), by union bound over the Bk , the event

(1− ϵ1)ηk,qk ≤
Aqk,k
Rk

≤ (1 + ϵ1)ηk,qk

holds for all k ∈ [P] with probability at least 1 − δΩ(log(d)). Since η̂k =
Ak,qk

R(1+ϵ1)
by

definition, we get the desired bounds.

Thus we complete the proof.

Definition 13.12. We define qk as

qk := max
l∈[L]

{
l|Al,k ≥

R log(1/δ)

100 log(d)

}
.

We say that qk is well-defined if the set in the RHS of the above definition is non-

empty.

At Line 28 in Algorithm 78, we define the qik for i-th vector as the definition

above.

Lemma 13.29 (Maximizer Probability). If layer k ∈ [P] is important (Line 28 in

Algorithm 78), then with probability at least 1 − δΩ(log d), the maximizer qk is well

defined.

911

Proof. Lemma 13.27 tells us that, when pkbk = O(1), layer k is at least Ω(β
P log(1/δ)

)-

trackable. On the other hand, if Pk = 2−l0 = 1/bk, we have ηk,l0 = 1−(1−pk)bk ≥ 1/e.

Thus we have

E[Al0,k] ≥ R/e,

so by Chernoff bound (Lemma A.2),

Pr[Al0,k ≤
R log(1/δ)

log d
] ≤ exp(−Ω(R log(1/δ)

log d
))

≤ δΩ(log d).

Thus we show that, there exists one qk ≥ l0 with probability at least 1− δΩ(logn).

Since there are at most P = poly log(d) important layers, with probability at

least 1−δΩ(logn), the corresponding value of qk is well defined for all important layers.

Thus we complete the proof.

13.12.4 From probability estimation to layer size approximation

The following lemma shows that, if we have a sharp estimate for the track

probability of a layer, then we can obtain a good approximation for its size.

Lemma 13.30 (Track probability implies layer size approximation). Suppose qk ≥ 1,

ϵ ∈ (0, 1/2), and d is sufficiently large. Define ϵ1 := O(ϵ2/ log(d)). We have for

k ∈ [P],

• Part 1. If η̂k ≤ ηk,qk then ck ≤ bk.

• Part 2. If η̂i ≥ (1− ϵ1)ηk,qk then ck ≥ (1−O(ϵ1))bk.

Proof. We know that

bk =
log(1− ηk,qk)
log(1− 2−qk)

,

912

which is a increasing function of ηk,qk .

Part 1. If η̂k ≤ ηk,qk , then ck ≤ bk.

Part 2. If η̂k ≥ (1−O(ϵ))ηk,qk we have

ck ≥ bk +
ϵ1ηk,qk

(1− ηk,qk) log(1− 2−qk)
≥ bk −O(ϵ)bk.

Thus we complete the proof.

13.13 Space Complexity

In this section, we prove the space complexity of our data structure.

Lemma 13.31 (Space complexity of our data structure, formal version of Lemma 13.5).

Our data structure (Algorithm 75 and 76) uses O(ϵ−9n(d + mmc(l)2) log14(nd/δ))

space.

Proof. First, we store the original data,

space for x = O(nd).

Second, we store the sub stream/sample of orignal data

space for x = O(RLUnd)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · nd)

= O(ϵ−4nd log6(nd/δ)).

Our data structure holds a set {Sr,l,u}r∈[R],l∈[L],u∈[U] (Line 10). Each Sr,l,u has

a size of Sspace(
√
β, d) = O(n · β−1 log2(d) log(nd)), which uses the space of

space for S = O(RLUn · β−1 log2(d) log(nd))

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd) · log(nd2/δ) · n · (ϵ−5 ·mmc(l)2 log5(d)) log2(d))

= O(ϵ−9n ·mmc(l)2 log14(nd/δ))

913

where the first step follows from the definition of R,L, U , and the second step follows

just simplifying the last step.

We hold a bmap (Line 17 and Line 19) of size O(RLUd), which uses the space

of

space for bmap = O(RLUd)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · d)

= O(ϵ−4d log6(nd/δ)).

In Query, we generate a set of sets {Hr,l,u}r∈[R],l∈[L],u∈[U], each of the sets has

size of O(β−1), so the whole set uses space of

space for H = O(RLU · β−1)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · ϵ−5 ·mmc(l)2 log5(d))

= O(ϵ−9 ·mmc(l)2 log11(nd/δ)).

By putting them together, we have the total space is

total space

= space for x+ space for x+ space for S + space for bmap + space for H

= O(nd) +O(ϵ−4nd log6(nd/δ)) +O(ϵ−9n ·mmc(l)2 log13(nd/δ))

+O(ϵ−4d log6(nd/δ)) +O(ϵ−9 ·mmc(l)2 log11(nd/δ))

= O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

Thus, we complete the proof.

914

13.14 Lower Bound From Previous Work

We first define turnstile streaming model (see page 2 of [LNNT16] as an ex-

ample) as follows

Definition 13.13 (Turnstile streaming model). We define two different turnstile

streaming models here:

• Strict turnstile: Each update ∆ may be an arbitrary positive or negative num-

ber, but we are promised that xi ≥ 0 for all i ∈ [n] at all points in the stream.

• General turnstile: Each update ∆ may be an arbitrary positive or negative

number, and there is no promise that xi ≥ 0 always. Entries in x may be

negative.

Under the turnstile model, the norm estimation problem has the following

streaming lower bound:

Theorem 13.32 (Theorem 1.2 in [BBC+17]). Let l be a symmetric norm on Rn.

Any turnstile streaming algorithm (Definition 13.13) that outputs, with probability at

least 0.99, a (1 ± 1/6)-approximation for l(·) must use Ω(mmc(l)2) bits of space in

the worst case.

We note that this problem is a special case of our symmetry norm distance

oracle problem (i.e., with n = 1 and query vector q = 0d where 0d is a all zeros

length-d vector). And in this case, the query time of our data structure becomes

Õ(mmc(l)2) for a constant-approximation, matching the streaming lower bound in

Theorem 13.32.

13.15 Details About Sparse Recovery Tools

In this section we give an instantiation of the sparse recovery tool we use

(Definition 13.9) in Algorithms 81 - 83. Although the running times of our data

915

structure are slightly worse (by some log factors) than the result of [KNPW11], it’s

enough for our symmetric norm estimation task. In terms of space requirement, the

classical sparse recovery/compressed sensing only sublinear space is allowed. In our

application, we’re allowed to use linear space (e.g. d per point, nd in total). And

more importantly, our instantiation has much simpler algorithm and analysis than

the prior result.

The following lemma shows that the sparse recovery data structure satisfies

our requirements in Theorem 13.20.

13.15.1 Our sparse recovery tool

We first state the correctness, the proof follows from framework of [KNPW11].

Lemma 13.33. The function Decode(i, ϵ, d, δ) (Algorithm 83) returns a set S ⊆ d

of size |S| = O(ϵ−2) containing all ϵ-heavy hitters of the i-column of the matrix

under l2 with probability of 1 − δ. Here we say j is an ϵ-heavy hitter under l2 if

|xj| ≥ ϵ ·∥x[ϵ−2]∥2 where x[k] denotes the vector x with the largest k entries (in absolute

value) set to zero. Note that the number of heavy hitters never exceeds 2/ϵ2.

Proof. The correctness follows from the framework of [KNPW11], and combining tail

estimation (Lemma 13.36) and norm estimation.

We next analyze the running time of our data structure in the following lemma:

Lemma 13.34. The time complexity of our data structure (Algorithm 81, Algo-

rithm 82 and Algorithm 83) is as follows:

• Init takes time of O(ϵ−1(n+ d) log2(nd/δ)).

• EncodeSingle takes time of O(log2(nd/δ)).

916

• Encode takes time of O(d log2(nd/δ)).

• Subtract takes time of O(ϵ−1 log2(nd/δ)).

• Decode takes time of O(ϵ−2 log2(nd/δ)).

Proof. We first notice that L = log2 d and δ′ = ϵδ/(12(log(d) + 1)).

For the procedure Init (Algorithm 81), Line 22 takes time

O(Lϵ−1n log(n/δ′)) = O(ϵ−1n log2(δ−1ϵ−1nd log(d)).

Line 25 takes time O((n + d) log(n/δ)). Taking together, we have the total running

time of Init is O(ϵ−1(n+ d) log2(δ−1ϵ−1nd log(d))

For the procedure EncodeSingle (Algorithm 82), Line 4 takes time of

O(L log(n/δ′)) = O(log2(ϵ−1δ−1nd log(d))).

Line 6 takes time of O(log(n/δ)). Taking together we have the total running time of

EncodeSingle to be O(log2(ϵ−1δ−1nd log(d))).

For the procedure Encode (Algorithm 82), it runs EncodeSingle for d

times, so its running time is O(d log2(ϵ−1δ−1nd log(d))).

For the procedure Subtract (Algorithm 83), Line 4 runs in time

O(Lϵ−1 log(n/δ′)) = O(ϵ−1 log2(ϵ−1δ−1nd log(d))).

Line 6 runs in timeO(log(n/δ)). So the total running time isO(ϵ−1 log2(ϵ−1δ−1nd log(d))).

For the procedure Decode (Algorithm 83), Line 10 runs in time O(log(n/δ)).

Line 14 runs in time

O(Lϵ−2 log(n/δ′)) = O(ϵ−2 log2(ϵ−1δ−1nd log(d))).

So the total running time is O(ϵ−2 log2(ϵ−1δ−1nd log(d)))

Thus we complete the proof.

917

The space complexity of our data structure is stated in below.

Lemma 13.35. Our batch heavy hitter data structure (Algorithm 81, Algorithm 82

and Algorithm 83) takes the space of

O(ϵ−1(n+ d) log2(ϵ−1δ−1nd log(d))).

Proof. Our data structure has these two parts to be considered:

• The instantiations of FpEst we maintain.

• The instantiation of LpLpTailEstimation we maintain .

The first part takes the space of

O(Lϵ−1n log(n/δ′)) = O(ϵ−1n log2(ϵ−1δ−1nd log(d))).

And the second part takes the space of O(d log(n/δ)). Adding them together we

complete the proof.

13.15.2 Lp tail estimation

[NS19] provide a linear data structure LpLpTailEstimation(x, k, p, C0, δ)

that can output the estimation of the contribution of non-heavy-hitter entries. We

restate their Lemma as followed.

Lemma 13.36 (Lemma C.4 of [NS19]). Let C0 ≥ 1000 denote some fixed constant.

There is an oblivious construction of matrix A ∈ Rm×n with m = O(log(1/δ)) along

with a decoding procedure LpLpTailEstimation(x, k, p, C0, δ) such that, given Ax,

it is possible to output a value V in time O(m) such that

1

10k
∥xC0k

∥pp ≤ V ≤ 1

k
∥xk∥pp,

holds with probability 1− δ.

918

Lemma 13.37. The running time of the above data structure is

• Init runs in time of O((n+ d) log(n/δ))

• Update runs in time of O(log(n/δ))

• Subtract runs in time of O(log(n/δ))

• Query runs in time of O(log(n/δ))

And its space is O(d log(n/δ)).

13.15.3 Lp norm estimation

Following the work of [KNW10], we provide a linear sketch satisfying the

following requirements.

Lemma 13.38 ([KNW10]). There is a linear sketch data structure FpEst using

space of

O(ϵ−1ϕ−2n log(n/δ))

and it provide these functions:

• Init(n ∈ Z+, d ∈ Z+, l ∈ Z+, ϕ, ϵ, δ): Initialize the sketches, running in time

O(ϵ−1n log(n/δ))

• Update(i ∈ [n], j ∈ [d], z ∈ R): Update the sketches, running in time O(log(n/δ))

• Subtract(i, j, k ∈ [n]): Subtract the sketches, running in time O(ϵ−1ϕ−2 log(n/δ))

• Query(i ∈ [n], ξ ∈ [2l]): This function will output a V satisfying

(1− ϕ) · Fi(l, ξ) ≤ V ≤ (1 + ϕ) · (Fi(l, ξ) + 5ϵ∥xi∥22),

919

where F (l, ξ) is defined as

Fi(l, ξ) :=

ξ+1

2l
d−1∑

j= ξ

2l
d

|xi,j|2,

running in time O(ϕ−2 log(n/δ))

We choose ϕ to be constant when we use the above Lemma.

920

Algorithm 79 Data structure for symmetric norm estimation: query set
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: procedure Query(q ∈ Rd, S ⊆ [n]) ▷ Lemma 13.4, 13.6
3: P ← O(logα(d)) = O(log(d)/ϵ) ▷ P denotes the number of non-empty layer sets
4: for r ∈ [R], l ∈ [L], u ∈ [U] do
5: Sr,l,u.Encode(n+ 1, q, d) ▷ Generate Sketch for q
6: end for
7: ξ ← chosen uniformly at random from [1/2, 1]
8: γ ← Θ(ϵ), α← 1 + γ · ξ
9: for i ∈ S do

10: for r ∈ [R], l ∈ [L], u ∈ [U] do
11: Sr,l,u.Subtract(n+ 2, n+ 1, i)
12: Hr,l,u ← Sr,l,u.Decode(n+ 2,

√
β, d) ▷ This can be done in 2

βpoly(log d)
13: ▷ At this point Hr,l,u is a list of index, reset to 0
14: for k ∈ Hr,l,u do
15: value← [xr,l,u]i,k
16: Hr,l,u[k]← value, w ← ⌈log(value)/ log(α)⌉
17: if αw−1 ≥ value/(1 + ϵ) then
18: Hr,l,u ← null, break
19: end if
20: end for
21: if Hr,l,u ̸= null then
22: Hr,l ← Hr,l,u

23: end if
24: end for
25: for l ∈ [L], k ∈ [P] do
26: Ail,k ← |{k | ∃k ∈ Hr,l, α

k−1 < |Hr,l[k]| ≤ αk}|
27: end for
28: for k ∈ [P] do
29: qik ← maxl∈[L] {l | Ail,k ≥

R log(1/δ)
100 log(d) }

30: If qik does not exist, then η̂ik ← 0; Else η̂ik ←
A

qi
k
,k

R(1+ϵ2)

31: If η̂ik = 0 then cik ← 0; Else cik ←
log(1−η̂ik)
1−w−qk

32: end for
33: dsti ← LayerVetcorApprox(α, ci1, c

i
2, . . . , c

i
P , d)

34: for r ∈ [R], l ∈ [L], u ∈ [U] do
35: {Hr,l,u} ← {0} ▷ Reset the sets to use for next point
36: end for
37: end for
38: return {dsti}i∈S
39: end procedure
40: end data structure

921

Algorithm 80 Data structure for symmetric norm estimation: query pair
1: data structure DistanceOnSymmetricNorm ▷ Theorem 13.19
2: procedure EstPair(i ∈ [n], j ∈ [n]) ▷ Lemma 13.4, 13.6
3: P ← O(logα(d)) ▷ P denotes the number of non-empty layer sets
4: ξ ← chosen uniformly at random from [1/2, 1]
5: γ ← Θ(ϵ)
6: α← 1 + γ · ξ
7: P ← O(logα(d)) = O(log(d)/ϵ) ▷ P denotes the number of non-empty layer

sets
8: for r ∈ [R], l ∈ [L], u ∈ [U] do
9: Sr,l,u.Subtract(n+ 2, j, i)

10: Hr,l,u ← Sr,l,u.Decode(n+ 2,
√
β, d) ▷ This can be done in 2

β
poly(log d)

11: ▷ At this point Hr,l,u is a list of index, the value of each index is reset to 0
12: for k ∈ Hr,l,u do
13: value← [xr,l,u]i,k
14: Hr,l,u[k]← value
15: w ← ⌈log(value)/ log(α)⌉
16: if αw−1 ≥ value/(1 + ϵ) then
17: Hr,l,u ← null
18: break
19: end if
20: end for
21: if Hr,l,u ̸= null then
22: Hr,l ← Hr,l,u

23: end if
24: end for
25: for l ∈ [L], k ∈ [P] do
26: Al,k ← |{k | ∃k ∈ Hr,l, α

k−1 < |Hr,l[k]| ≤ αk}|
27: end for
28: for k ∈ [P] do
29: qk ← maxl∈[L] {l | Al,k ≥ R log(1/δ)

100 log(d)
}

30: If qk does not exist, then η̂k ← 0; Else η̂k ← Aqk,k

R(1+ϵ2)

31: If η̂k = 0 then ck ← 0; Else ck ← log(1−η̂k)
1−w−qk

32: end for
33: dst← LayerVetcorApprox(α, c1, c2, . . . , cP , d)
34: return dst
35: end procedure
36: end data structure

922

Algorithm 81 Our CountSketch for Batch heavy hitter
1: data structure BasicBatchHeavyHitter ▷ Definition 13.9
2: members
3: d, n ∈ N+ ▷ n is the number of vectors, d is the dimension.
4: ϵ ▷ We are asking for ϵ-heavy hitters
5: δ ▷ δ is the failure probability
6: B ▷ B is the multiple number of each counter to take mean
7: L ▷ L is the number of number of the level of the binary tree.
8: η ▷ η is the precision for l2 norm estimation.
9: K ▷ K is the number of hash functions.

10: {hl,k}l∈{0,...,L},k∈[K] ⊆ [2l]× [B] ▷ hash functions.
11: {Ci

l,b}i∈[n],l∈{0,...,L},b∈[B] ▷ The counters we maintain in CountSketch.
12: {σl,k}l∈{0,...,L},k∈[K] ⊆ [d]× {+1,−1} ▷ The hash function we use for norm

estimation
13: Q ▷ A instantiation of LpLpTailEstimation (Algorithm 84)
14: {Dl}l∈[L] ▷ Instantiations of FpEst (Algorithm 85)
15: end members
16:
17: public:
18: procedure Init(ϵ, n ∈ N+, d ∈ N+, δ)
19: L← log2 d
20: δ′ ← ϵδ/(12(log d) + 1)
21: for l ∈ {0, . . . , L} do
22: Dl.Init(n, d, l, 1/7, ϵ, δ′)
23: end for
24: C0 ← greater than 1000
25: Q.Init(n, ϵ−2, 2, C0, δ)
26: end procedure

923

Algorithm 82 Our CountSketch for Batch heavy hitter
1: data structure BasicBatchHeavyHitter ▷ Definition 13.9
2: procedure EncodeSingle(i ∈ [n], j ∈ [d], z ∈ R, d)
3: for l ∈ {0, . . . , L} do
4: Dl.Update(i, j, z)
5: end for
6: Q.Update(i, j, z)
7: end procedure
8:
9: procedure Encode(i ∈ [n], z ∈ Rd, d)

10: for j ∈ [d] do
11: EncodeSingle(i, j, zj, d)
12: end for
13: end procedure
14:
15: end data structure

924

Algorithm 83 Our CountSketch for Batch heavy hitter
1: data structure BasicBatchHeavyHitter ▷ Definition 13.9
2: procedure Subtract(i, j, k ∈ [n])
3: for l ∈ {0, . . . , L} do
4: Dl.Subtract(i, j, k)
5: end for
6: Q.Subtract(i, j, k)
7: end procedure
8:
9: procedure Decode(i ∈ [n], ϵ, d)

10: EstNorm← Q.Query(i) ▷ Here the EstNorm is the estimated tail l2-norm of
i-vector.

11: S ← {0}, S ′ ← ∅
12: for l ∈ {0, . . . , L} do ▷ The dyadic trick.
13: for ξ ∈ S do
14: Est← D.Query(i, ξ)
15: if Est ≥ (3/4)ϵ2 · EstNorm then
16: S ′ ← S ′ ∪ {2ξ, 2ξ + 1}
17: end if
18: end for
19: S ← S ′, S ′ ← ∅
20: end for
21: return S
22: end procedure
23: end data structure

925

Algorithm 84 Batched ℓp tail estimation algorithm, based on [NS19]
1: data structure LpLpTailEstimation
2: members
3: m ▷ m is the sketch size
4: {gj,t}j∈[d],t∈[m] ▷ random variable that sampled i.i.d. from distribution Dp

5: {δj,t}j∈[d],t∈[m] ▷ Bernoulli random variable with E[δj,t] = 1/(100k)
6: {yi,t}i∈[n],t∈[m] ▷ Counters
7: end members
8: public:
9: procedure Init(n, k, p, C0, δ)

10: m← O(log(n/δ))
11: Choose {gj,t}j∈[d],t∈[m] to be random variable that sampled i.i.d. from distri-

bution Dp

12: Choose {δj,t}j∈[d],t∈[m] to be Bernoulli random variable with E[δj,t] = 1/(100k)
▷ Matrix A in Lemma 13.36 is implicitly constructed based on gj,t and δj,t

13: initialize {yi,t}i∈[n],t∈[m] = {0}
14: end procedure
15:
16: procedure Update(i ∈ [n], j ∈ [d], z ∈ R)
17: for t ∈ [m] do
18: yi,t ← yi,t + δj,t · gjt · z
19: end for
20: end procedure
21:
22: procedure Subtract(i, j, k ∈ [n])
23: for t ∈ [m] do
24: yi,t ← yj,t − yk,t
25: end for
26: end procedure
27:
28: procedure Query(i ∈ [n])
29: V ← mediant∈[m]|yi,t|2
30: return V
31: end procedure

926

Algorithm 85 Batched ℓp norm estimation algorithm, based on [KNW10]
1: data structure LpNormEst
2: members
3: R, T ▷ parallel parameters
4: m ▷ Sketch size
5: {yir,t}i∈[n],r∈[R],t∈[T] ⊂ Rm ▷ Sketch vectors
6: {A}r,t ⊂ Rm×2l ▷ Sketch matrices
7: {ht}t∈[T] : {0, . . . , 2l} → [R] ▷ hash functions
8: end members
9:

10: public:
11: procedure Init(n, d, l, ϕ, ϵ)
12: R← ⌈1/ϵ⌉
13: T ← Θ(log(n/δ))
14: m← O(1/ϕ2)
15: for i ∈ [n], r ∈ [R], t ∈ [T] do
16: yir,t ← 0 ▷ Sketch vectors
17: end for
18: for i ∈ [n], r ∈ [R], t ∈ [T] do
19: generate Ar,t ∈ Rm×2l ▷ See [KNW10] for details
20: end for
21: initialize h
22: end procedure
23:
24: procedure Update(i ∈ [n], j ∈ [d], z ∈ R)
25: ξ ← j · 2l/d
26: for t ∈ [T] do
27: yiht(ξ),t ← yiht(ξ),t +Aht(ξ),ti

l
j,z ▷ ilj,z is define to be the 2l-dimensional vector

with j-th entry of z and others to be 0
28: end for
29: end procedure
30:

927

Algorithm 86 Batched ℓp norm estimation algorithm, based on [KNW10], continued

procedure Subtract(i, j, k ∈ [n])
for r ∈ [R], t ∈ [T] do

yir,t ← yjr,t − ykr,t
end for

end procedure

procedure Query(i ∈ [n], ξ ∈ [2l])
for t ∈ [T] do

Vht(ξ),t ← medianζ∈[m]y
i
r,t,ζ/median(|Dp|) ▷ Definition 13.5

end for
V ← mediant∈[T]Vht(ξ),t
return V

end procedure

928

Part III

Machine Learning

929

Chapter 14: Training Two-Layer Over-Parameterized
Neural Networks

14.1 Introduction

Over the last decade, deep learning has achieved dominating performance over

many areas, e.g., computer vision [LBBH98, KSH12, SLJ+15, HZRS16], natural lan-

guage processing [CWB+11, DCLT18], game playing [SHM+16, SSS+17] and beyond.

The computational resource requirement for deep neural network training grows very

quickly. Designing a fast and provable training method for neural networks is, there-

fore, a fundamental and demanding challenge.

Almost all deep learning models are optimized by gradient descent (or its

variants). The total training time can be split into two components, the first one

is the number of iterations and the second one is the cost per spent per iteration.

Nearly all the iterative algorithms for acceleration can be viewed as two separate

lines of research correspondingly, the first line is aiming for an algorithm that has

as small as possible number of iterations, the second line is focusing on designing

as efficient as possible data structures to improve the cost spent per iteration of the

algorithm [Vai89b, CLS19, LSZ19, JLSW20, JKL+20, JSWZ21]. In this chapter, our

major focus is on the second line.

There are a number of practical works trying to use a nearest neighbor search

data structure to speed up the per-step computation of the deep neural network

training [CMJF+20, LXJ+20, CLP+21, DMZS21]. However, none of the previous

work is able to give a provable guarantee. In this chapter, our goal is to develop

training algorithms that provably reduce per step time complexity. Let us consider

the ReLU activation neural network and two-layer neural network1. Let n denote

the number of training data points. Let d denote the dimension of each data point.

1An alternative name of the two-layer neural network is “one-hidden layer neural network”.

930

Let m denote the number of neurons. In each iteration of gradient descent (GD),

we need to compute prediction for each point in the neural network. Each point

xi ∈ Rd, requires to compute m inner product in d dimension. Thus, Ω(mnd) is a

natural barrier for cost per iteration in training neural networks (in both forward

computation and backward computation).

A natural question to ask is

Is it possible to improve the cost per iteration of training neural network algorithm?

E.g., is o(mnd) possible?

We list our contributions as follows:

• We provide a new theoretical framework for speeding up neural network training by:

1) adopting the shifted neural tangent kernel; 2) showing that only a small fraction

(o(m)) of neurons are activated for each input data in each training iteration; 3)

identifying the sparsely activated neurons via geometric search; 4) proving that the

algorithm can minimize the training loss to zero in a linear convergence rate.

• We provide two theoretical results 1) our first result (Theorem 14.8) builds a dy-

namic half-space report data structure for the weights of a neural network, to

train neural networks in sublinear cost per iteration; 2) our second result (Theo-

rem 14.9) builds a static half-space report data-structure for the input data points

of the training data set for training a neural network in sublinear time.

Acceleration via high-dimensional search data-structure. High-dimensional

search data structures support efficiently finding points in some geometric query re-

gions (e.g., half-spaces, simplices, etc). Currently, there are two main approaches: one

is based on Locality Sensitive Hashing (LSH) [IM98], which aims to find the close-

by points (i.e., small ℓ2 distance [DIIM04, AR15, AIL+15, ARN17, Raz17, AIR18,

BIW19, DIRW20] or large inner product [SL14, SL15b, SL15a]) of a query q ∈ Rd

931

in a given set of points S ⊂ Rd. This kind of algorithms runs very fast in prac-

tice, but most of them only support approximate queries. Another approach is based

on space partitioning data structures, for example, partition trees [Mat92a, Mat92b,

AEM92, AC09, Cha12], k-d trees / range trees [CT17, TOG17, Cha19], Voronoi di-

agrams [ADBMS98, Cha00a], which can exactly search the query regions. Recent

works have successfully applied high-dimensional geometric data structure to reduce

the complexity of training deep learning models. SLIDE [CMJF+20] accelerates the

forward pass by retrieving neurons with maximum inner product via an LSH-based

data structure; Reforemer [KKL20] similarly adopts LSH to reduce the memory usage

for processing long sequence; MONGOOSE [CLP+21] accelerates the forward pass by

retrieving neurons with maximum inner products via a learnable LSH-based data

structure [Cha02] and lazy update framework [CLS19]. Despite the great empirical

success, there is no theoretical understanding of such acceleration.

The goal of our paper is to theoretically characterize the acceleration brought

by the high-dimensional geometric data structure. Specifically, our algorithm and

analysis are built upon the HSR data structures [AEM92] which can find all the

points that have large inner products and support efficient data update. Note that

HSR comes with a stronger recovery guarantee than LSH, in the sense that HSR,

whereas LSH is guaranteed to find some of those points.

Convergence via over-parameterization. Over the last few years, there has

been a tremendous work studying the convergence result of deep neural network expli-

cilty or implicitly based on neural tangent kernel (NTK) [JGH18], e.g. [LL18, DZPS19,

AZLS19a, AZLS19b, DLL+19, ADH+19a, ADH+19b, SY19, CGH+19, ZMG19, CG19,

ZG19, OS20, LSS+20, JT20, ZPD+20, HLSY21, BPSW21]. It has been shown that

(S)GD can train a sufficiently wide NN with random initialization will converge to a

small training error in polynomial steps.

932

14.2 Challenges and Techniques

• Empirical works combine high-dimensional search data structures (e.g., LSH) with

neural network training, however, they do not work theoretically due to the follow-

ing reasons:

– Without shifting, the number of activated (and therefore updated) neurons is

Θ(m). There is no hope to theoretically prove o(m) complexity (See Chal-

lenge 1).

– Approximate high-dimensional search data structures might miss some impor-

tant neurons, which can potentially prevent the training from converging (see

Challenge 2).

• Our solutions are:

– We propose a shifted ReLU activation that is guaranteed to have o(m) number

of activated neurons. Along with the shifted ReLU, we also propose a shifted

NTK to rigorously provide a convergence guarantee (see Solution 1).

– We adopt an exact high-dimensional search data structure that better couples

with the shifted NTK. It takes o(m) time to identify the activated neurons and

fits well with the convergence analysis as it avoids missing important neurons

(see Solution 2).

Challenge 1: How to sparsify an over-parameterized neural network? To

speed up the training process, we need the neural network to be “sparse”, that is,

for each training data x ∈ Rd, the number of activated neurons is small. Then, in

the forward computation, we can just evaluate a small subset of neurons. However,

in the previous NTK analysis (e.g., [DZPS19]), the activation function is σ(x) =

max{⟨wr, x⟩, 0}, and the weights vectors wr are initially sampled from a standard d-

dimensional Gaussian distribution. Then, by the symmetry of Gaussian distribution,

933

we know that for every input data x, there will be about half of the neurons being

activated, which means that we can only obtain a constant-factor speedup.

Solution 1 The problem actually comes from the activation function. In practice,

people use a shifted ReLU function σb(x) = max{⟨wr, x⟩, br} to train neural networks.

The main observation of our work is that threshold implies sparsity. We consider the

setting where all neurons have a unified threshold parameter b. Then, by the con-

centration of Gaussian distribution, there will be O(exp(−b2) ·m) activated neurons

after the initialization.

The next step is to show that the number of activated neurons will not blow

up too much in the following training iterations. In [DZPS19, SY19], they showed

that the weights vectors are changing slowly during the training process. In our

work, we open the black box of their proof and show a similar phenomenon for the

shifted ReLU function. More specifically, a key component is to prove that for each

training data, a large fraction of neurons will not change their status (from non-

activated to activated and vice versa) in the next iteration with high probability.

To achieve this, they showed that this is equivalent to the event that a standard

Gaussian random variable in a small centered interval [−R,R], and applied the anti-

concentration inequality to upper-bound the probability. In our setting, we need to

upper-bound the probability of z ∼ N(0, 1) in a shifted interval [b − R, b + R]. On

the one hand, we can still apply the anti-concentration inequality by showing that

the probability is at most Pr[z ∈ [−R,R]]. On the other hand, this probability is also

upper-bounded by Pr[z > b − R], and for small R, we can apply the concentration

inequality for a more accurate estimation. In the end, by some finer analysis of

the probability, we can show that with high probability, the number of activated

neurons in each iteration is also O(exp(−b2) ·m) for each training data. If we take

b = Θ(
√
logm), we only need to deal with truly sublinear in m of activated neurons

in the forward evaluation.

934

Challenge 2: How to find the small subset of activated neurons? A linear

scan of the neurons will lead to a time complexity linear in m, which we hope to

avoid. Randomly sampling or using LSH for searching can potentially miss important

neurons which are important for a rigorous convergence analysis.

Solution 2 Given the shifted ReLU function σb(⟨wr, x⟩) = max{⟨wr, x⟩ − b, 0}, the

active neurons are those with weights wr lying in the half space of ⟨wr, x⟩ − b > 0.

Finding such neurons is equivalent to a computational geometry problem: given m

points in Rd, in each query and a half space H, the goal is to output the points

contained in H. Here we use the Half-Space Reporting (HSR) data structure proposed

by [AEM92]: after proper initialization, the HSR data structure can return all points

lying in the queried half space with complexity as low as O(log(n) + k), where k is

the number of such points. Note that the HSR data structure well couples with the

shifted ReLU, as the number of activated neurons k is truly sublinear in m as per the

setting of b = Θ(
√
logm).

14.3 Preliminaries

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector

x and p ∈ {0, 1, 2,∞}, we use ∥x∥p to denote the entry-wise ℓp norm of a vector. We

use Id to denote d-dimensional identity matrix. We use N(µ, σ2) to denote Gaussian

distribution with mean mu and variance σ2. We use Õ to hide the polylog factors.

This section is organized as follows. Section 14.3.1 introduces the neural net-

work and present problem formulation. Section 14.3.2 presents the half-space report

data-structure, Section 14.3.3 proposes our new sparsity-based Characterizations.

14.3.1 Problem formulation

In this section, we introduce the neural network model we study in this chapter.

Let us consider a two-layer ReLU activated neural network f that has width m and

935

ℓ2 loss function. 2

Definition 14.1 (Prediction function and loss function). Given b ∈ R, x ∈ Rd,

W ∈ Rd×m and a ∈ Rm,

f(W,x, a) :=
1√
m

m∑

r=1

arσb(⟨wr, x⟩),

L(W) :=
1

2

n∑

i=1

(f(W,xi, a)− yi)2.

We say function f is 2NN(m, b) for simplicity.

Here W are weights that connect input nodes with hidden nodes, a1, · · · , am ∈
R are the weights that connect hidden nodes with output node. The ReLU function

σb(x) := max{x− b, 0}, where b is the threshold parameter. Following the literature,

we mainly focus on optimizing W ∈ Rd×m. For weights a ∈ Rm, we will never change

a during the training after we randomly choose them at the initialization.3

Definition 14.2 (Weights at initialization). We use the following initialization,

• For each r, we sample wr(0) ∼ N(0, Id)

• For each r, we sample ar from {−1,+1} uniformly at random

Next, we can calculate the gradient

Fact 14.1 (Gradient of the prediction function and loss function). For each r ∈ [m],

∂f(W,x, a)

∂wr
=

1√
m
arx1w⊤

r x≥b. (14.1)

and

∂L(W)

∂wr
=

1√
m

n∑

i=1

(f(W,xi, a)− yi)arxi1⟨wr,xi⟩≥b. (14.2)

2This is a very standard formulation in the literature, e.g., see [DZPS19, SY19, BPSW21]
3We remark, in some previous work, they do choose shift, but their shift is a random shift. In

our application, it is important that the same b is fixed for all neurons and never trained.

936

To update the weights from iteration k to iteration k+1, we follow the standard

update rule of the GD algorithm,

GD: W (k + 1) = W (k)− η ·∆W (k), where ∆W (k) =
∂L(W (k))

∂W (k)
. (14.3)

The ODE of the gradient flow is defined as

dwr(t)

dt
= −∂L(W)

∂wr
. (14.4)

Definition 14.3 (Error of prediction). For each t ∈ {0, 1, · · · , T}, we define err(t) ∈
Rn to be the error of prediction err(t) = y − u(t), where u(t) := f(W (t), a,X) ∈ Rn

14.3.2 Data structure for Half-Space Reporting

The half-space range reporting problem is an important problem in computa-

tional geometry, which is formally defined as following:

Definition 14.4 (Half-space range reporting). Given a set S of n points in Rd. There

are two operations:

• Query(H): given a half-space H ⊂ Rd, output all of the points in S that

contain in H, i.e., S ∩H.

• Update: add or delete a point in S.

– Insert(q): insert q into S

– Delete(q): delete q from S

Let Tinit denote the pre-processing time to build the data structure, Tquery denote the

time per query and Tupdate time per update.

We use the data-structure proposed in [AEM92] to solve the half-space range

reporting problem, which admits the interface summarized in Algorithm 87. Intu-

itively, the data-structure recursively partitions the set S and organizes the points

937

in a tree data-structure. Then for a given query (a, b), all k points of S with

sgn(⟨a, x⟩ − b) ≥ 0 are reported quickly. Note that the query (a, b) here defines

the half-space H in Definition 14.4.

Algorithm 87 Half Space Report Data Structure
1: data structure HalfSpaceReport
2: procedures:
3: Init(S, n, d) ▷ Initialize the data structure with a set S of n points in Rd

4: Query(a, b) ▷ a, b ∈ Rd. Output the set {x ∈ S : sgn(⟨a, x⟩ − b) ≥ 0}
5: Add(x) ▷ Add point x ∈ Rd to S
6: Delete(x) ▷ Delete point x ∈ Rd from S
7: end data structure

Adapted from [AEM92], the algorithm comes with the following complexity:

Corollary 14.2 ([AEM92]). Given a set of n points in Rd, the half-space reporting

problem can be solved with the following performances:

• Part 1. Tquery(n, d, k) = Od(n
1−1/⌊d/2⌋ + k), amortized Tupdate = Od(log

2(n)).

• Part 2. Tquery(n, d, k) = Od(log(n) + k), amortized Tupdate = Od(n
⌊d/2⌋−1).

We remark that Part 1 will be used in Theorem 14.8 and Part 2 will be used

in Theorem 14.9.

14.3.3 Sparsity-based characterizations

In this section, we consider the ReLU function with a nonzero threshold:

σb(x) = max{0, x − b}, which is commonly seen in practise, and also has been con-

sidered in theoretical work [ZPD+20].

We first define the set of neurons that are firing at time t.

Definition 14.5 (fire set). For each i ∈ [n], for each t ∈ {0, 1, · · · , T}, let Si,fire(t) ⊂
[m] denote the set of neurons that are “fire” at time t, i.e.,

Si,fire(t) := {r ∈ [m] : ⟨wr(t), xi⟩ > b}.

938

We define ki,t := |Si,fire(t)|, for all t in {0, 1, · · · , T}.

We propose a new “sparsity” lemma in this chapter. It shows that σb gives the

desired sparsity.

Lemma 14.3 (Sparsity after initialization). Let b > 0 be a tunable parameter. If we

use the σb as the activation function, then after the initialization, with probability at

least 1−n · exp(−Ω(m · exp(−b2/2))), it holds that for each input data xi, the number

of activated neurons ki,0 is at most O(m · exp(−b2/2)), where m is the total number

of neurons.

Proof. By the concentration of Gaussian distribution, the initial fire probability of a

single neuron is

Pr[σb(⟨wr(0), xi⟩) > 0] = Pr
z∼N(0,1)

[z > b] ≤ exp(−b2/2).

Hence, for the indicator variable 1r∈Si,fire(0), we have

E[1r∈Si,fire(0)] ≤ exp(−b2/2).

By standard concentration inequality (Lemma A.4),

Pr [|Si,fire(0)| > k0 + t] ≤ exp

(
− t2/2

k0 + t/3

)
,∀t > 0 (14.5)

where k0 := m · exp(−b2/2). If we choose t = k0, then we have:

Pr [|Si,fire(0)| > 2k0] ≤ exp (−3k0/8)

Then, by union bound over all i ∈ [n], we have that with high probability

1− n · exp(−Ω(m · exp(−b2/2))),

the number of initial fire neurons for the sample xi is bounded by ki,0 ≤ 2m ·
exp(−b2/2).

939

The following remark gives an example of setting the threshold b, and will be

useful for showing the sublinear complexity in the next section.

Remark 14.1. If we choose b =
√
0.4 logm then k0 = m4/5. For t = m4/5, Eq. (14.5)

implies that

Pr
[
|Si,fire(0)| > 2m4/5

]
≤ exp

(
−min{mR,O(m4/5)}

)
.

14.4 Training Neural Network with Half-Space Reporting Data
Structure

In this section, we present two sublinear time algorithms for training over-

parameterized neural networks. The first algorithm (Section 14.4.1) relies on building

a high-dimensional search data-structure for the weights of the neural network. The

second algorithm (Section 14.4.2) is based on building a data structure for the input

data points of the training set. Both of the algorithms use the HSR to quickly

identify the fired neurons to avoid unnecessary calculations. The time complexity

and the sketch of the proof are provided after each of the algorithms.

14.4.1 Weights preprocessing

We first introduce the algorithm that preprocesses the weights wr for r ∈ [m],

which is commonly used in practice [CLP+21, CMJF+20, KKL20]. Recall 2NN(m, b)

is f(W,x, a) := 1√
m

∑m
r=1 arσb(⟨wr, x⟩). By constructing a HSR data-structure for

wr’s, we can quickly find the set of active neurons Si,fire for each of the training

sample xi. See pseudo-code in Algorithm 88.

In the remaining part of this section, we focus on the time complexity analysis

of Algorithm 88. The convergence proof will be given in Section 14.5.

Lemma 14.4 (Running time part of Theorem 14.8). Given n data points in d-

dimensional space. Running gradient descent algorithm (Algorithm 88) on 2NN(m, b =
√
0.4 logm) (Definition 14.1) the expected cost per-iteration of the gradient descent

940

Algorithm 88 Training Neural Network via building a data structure of weights of
the neural network
1: procedure TrainingWithPreprocessWeights({(xi, yi)}i∈[n],n,m,d) ▷

Theorem 14.8
2: Initialize wr, ar for r ∈ [m] and b according to Definition 14.2 and Remark 14.1
3: HalfSpaceReport hsr.Init({wr(0)}r∈[m],m, d) ▷ Algorithm 87
4: for t = 1→ T do
5: Si,fire ← hsr.Query(xi, b) for i ∈ [n]
6: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
7: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
8: Gradient update for the neurons in ∪i∈[n]Si,fire
9: hsr.Delete(wr(t)) for r ∈ ∪i∈[n]Si,fire

10: hsr.Add(wr(t+ 1)) for r ∈ ∪i∈[n]Si,fire
11: end for
12: return Trained weights wr(T + 1) for r ∈ [m]
13: end procedure

algorithm is

Õ(m1−Θ(1/d)nd).

Proof. The per-step time complexity is

n∑

i=1

TQuery(m, d, ki,t) + (TDelete + TInsert) · | ∪i∈[n] Si,fire(t)|+ d
∑

i∈[n]

ki,t

The first term
∑n

i=1 TQuery(m, d, ki,t) corresponds to the running time of querying the

active neuron set Si,fire(t) for all training samples i ∈ [n]. With the first result in

Corollary 14.2, the complexity is bounded by Õ(m1−Θ(1/d)nd).

The second term (TDelete +TInsert) · | ∪i∈[n] Si,fire(t)| corresponds to updating

wr in the high-dimensional search data-structure (Lines 9 and 10). Again with the

first result in Corollary 14.2, we have TDelete +TInsert = O(log2m). Combining with

the fact that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n] Si,fire(0)| ≤ O(nm4/5), the second term is

bounded by O(nm4/5 log2m).

The third term is the time complexity of gradient calculation restricted to the

941

Algorithm 89 Training Neural Network via building a data-structure of the input
data points
1: procedure TrainingWithProcessData({(xi, yi)}i∈[n],n,m,d) ▷

Theorem 14.9
2: Initialize wr, ar for r ∈ [m] and b according to Definition 14.2 and Remark 14.1
3: HalfSpaceReport hsr.Init({xi}i∈[n], n, d) ▷ Algorithm 87
4: S̃r,fire ← hsr.Query(wr(0), b) for r ∈ [m] ▷ S̃r,fire are samples which neuron
r fires for

5: Si,fire ← {r | i ∈ S̃r,fire} ▷ Si,fire is the set of neurons, which fire for xi
6: for t = 1→ T do
7: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
8: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
9: Gradient update for the neurons in ∪i∈[n]Si,fire

10: for r ∈ ∪i∈[n]Si,fire do
11: Si,fire.Del(r) for i ∈ S̃r,fire
12: S̃r,fire ← hsr.Query(wr(t+ 1), b)

13: Si,fire.Add(r) for i ∈ S̃r,fire
14: end for
15: end for
16: return Trained weights wr(T + 1) for r ∈ [m]
17: end procedure

set Si,fire(t). With the bound on
∑

i∈[n] ki,t (Lemma 14.18), we have d
∑

i∈[n] ki,t ≤
O(m4/5nd).

Putting them together completes the proof.

14.4.2 Data preprocessing

While the weights preprcessing algorithm is inspired by the common practise,

the dual relationship between the input xi and model weights wr inspires us to pre-

process the dataset before training (i.e., building HSR data-structure for xi). This

largely improves the per-iteration complexity and avoids the frequent updates of the

data structure since the training data is fixed. More importantly, once the training

dataset is preprocessed, it can be reused for different models or tasks, thus one does

not need to perform the expensive preprocessing for each training.

942

The corresponding pseudocode is presented in Algorithm 89. With xi prepro-

cessed, we can query HSR with weights wr and the result S̃r,fire is the set of training

samples xi for which wr fires for. Given S̃r,fire for r ∈ [m], we can easily recon-

struct the set Si,fire, which is the set of neurons fired for sample xi. The forward and

backward pass can then proceed similar to Algorithm 88.

At the end of each iteration, we will update S̃r,fire based on the new wr esti-

mation and update Si,fire accordingly. For Algorithm 89, the HSR data-structure is

static for the entire training process. This is the main difference from Algorithm 88,

where the HSR needs to be updated every time step to account for the changing

weights wr.

We defer the convergence analysis to Section 14.5 and focus on the time com-

plexity analysis of Algorithm 88 in the rest of this section. We consider d being a

constant for the rest of this subsection.

Lemma 14.5 (Running time part of Theorem 14.9). Given n data points in d-

dimensional space. Running gradient descent algorithm (Algorithm 88) on 2NN(m, b =
√
0.4 logm) (Definition 14.1), the expected per-iteration running time of initializing

S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] is O(m log n +m4/5n). The cost per iteration of the

training algorithm is O(m4/5n log n).

Proof. We analyze the initialization and training parts separately.

Initialization In Lines 4 and 5, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are

initialized. For each r ∈ [m], we need to query the data structure the set of data

points x’s such that σb(wr(0)⊤x) > 0. Hence, the running time of this step is
m∑

r=1

Tquery(n, d, k̃r,0) = O(m log n+
m∑

r=1

k̃r,0)

= O(m log n+
n∑

i=1

ki,0)

= O(m log n+m4/5n).

943

where the second step follows from
∑m

r=1 k̃r,0 =
∑n

i=1 ki,0.

Training Consider training the neural network for T steps. For each step, first

notice that the forward and backward computation parts (Line 7 - 9) are the same as

previous algorithm. The time complexity is O(m4/5n log n).

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 10 -

14) takes O(m4/5n log n) time. For each fired neuron r ∈ [m], we first remove the

indices of data in the sets Si,fire, which takes time

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑

r=1

k̃r,t = O(m4/5n).

Then, we find the new set of x’s such that σb(⟨wr(t + 1), x⟩) > 0 by querying the

half-space reporting data structure. The total running time for all fired neurons is

∑

r∈∪i∈[n]Si,fire

Tquery(n, d, k̃r,t+1) ≲ m4/5n log n+
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 = O(m4/5n log n)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training

step takes O(m4/5n log n) time, which completes the proof.

14.5 Convergence of Our Algorithm

We state the result of our training neural network algorithms (Lemma 14.7)

can converge in certain steps. An important component in our proof is to find out

a lower bound on minimum eigenvalue of the continuous Hessian matrix λmin(H
cts).

It turns out to be an anti-concentration problem of the Gaussian random matrix.

In [OS20], they gave a lower bound on λmin(H
cts) for ReLU function with b = 0,

assuming the input data are separable. One of our major technical contribution is

generalizing it to arbitrary b ≥ 0.

Proposition 14.6 (Informal version of Theorem 14.31). Given n (normalized) input

data points {x1, x2, · · · , xn} ⊆ Rd such that ∀i ∈ [n], ∥xi∥2 = 1. Let parameter δ :=

944

mini ̸=j{∥xi − xj∥2, ∥xi + xj∥2} denote the data separability. For any shift parameter

b ≥ 0, we define shifted NTK Hcts ∈ Rn×n as follows

Hcts
i,j := Ew∼N(0,Id)

[
⟨xi, xj⟩ · 1⟨w,xi⟩≥b · 1⟨w,xj⟩≥b

]
,∀i ∈ [n], j ∈ [n].

Then

λmin(H
cts) ≥ 0.01e−b

2/2δ/n2.

With proposition 14.6, we are ready to show the convergence rate of training

an over-parameterized neural network with shifted ReLU function.

Lemma 14.7 (Convergence part of Theorem 14.8 and Theorem 14.9). Suppose

input data-points are δ-separable, i.e., δ := mini ̸=j{∥xi − xj∥2, ∥xi + xj∥2}. Let

m = poly(n, 1/δ, log(n/ρ)) and η = O(λ/n2). Let b = Θ(
√
logm). Then

Pr
[
∥err(k)∥22 ≤ (1− ηλ/2)k · ∥err(0)∥22, ∀k ∈ {0, 1, · · · , T}

]
≥ 1− ρ.

Note that the randomness is over initialization. Eventually, we choose T = λ−2n2 log(n/ϵ)

where ϵ is the final accuracy.

This result shows that despite the shifted ReLU and sparsely activated neu-

rons, we can still retain the linear convergence. Combined with the results on per-step

complexity in the previous section, it gives our main theoretical results of training deep

learning models with sublinear time complexity (Theorem 14.8 and Theorem 14.9).

14.6 Main Classical Results

We present two theorems (under classical computation model) of our work,

showing the sublinear running time and linear convergence rate of our two algorithms.

We leave the quantum application into Appendix 14.14. The first algorithm is relying

on building a high-dimensional geometric search data-structure for the weights of a

neural network.

945

Theorem 14.8 (Main result I, informal of Theorem 14.30). Given n data points in

d-dimensional space. We preprocess the initialization weights of the neural network.

Running gradient descent algorithm (Algorithm 88) on a two-layer, m-width, over-

parameterized ReLU neural network will minimize the training loss to zero, and the

expected running time of gradient descent algorithm (per iteration) is

Õ(m1−Θ(1/d)nd).

The second algorithm is based on building a data structure for the input data

points of the training set. Our second algorithm can further reduce the cost per

iteration from m1−1/d to truly sublinear in m, e.g. m4/5.

Theorem 14.9 (Main result II, informal of Theorem 14.30). Given n data points

in d-dimensional space. We preprocess all the data points. Running gradient descent

algorithm (Algorithm 89) on a two-layer, m-width, over-parameterized ReLU neural

network will minimize the training loss to zero, and the expected running time of

gradient descent algorithm (per iteration) is

Õ(m4/5nd).

14.7 Discussion

In this chapter, we propose two sublinear algorithms to train neural networks.

By preprocessing the weights of the neuron networks or preprocessing the training

data, we rigorously prove that it is possible to train a neuron network with sublinear

complexity, which overcomes the Ω(mnd) barrier in classical training methods. Our

results also offer theoretical insights for many previously established fast training

methods.

Our algorithm is intuitively related to the lottery tickets hypothesis [FC18].

However, our theoretical results can not be applied to explain lottery tickets imme-

diately for two reasons: 1) the lottery ticket hypothesis focuses on pruning weights;

946

while our results identify the important neurons. 2) the lottery ticket hypothesis

identifies the weights that need to be pruned after training (by examining their mag-

nitude), while our algorithms accelerate the training via preprocessing. It would be

interesting to see how our theory can be extended to the lottery ticket hypothesis.

Roadmap. In Section 14.8, we present our main algorithms. In Section 14.9, we

provide some preliminaries. In Section 14.10, we provide sparsity analysis. We show

convergence analysis in Section 14.11. In Section 14.12, we show how to combine

the sparsity, convergence, running time all together. In Section 14.13, we show cor-

relation between sparsity and spectral gap of Hessian in neural tangent kernel. In

Section 14.14, we discuss how to generalize our result to quantum setting.

14.8 Complete Algorithms

In this section, we present three algorithms (Alg. 90, Alg. 91 and Alg. 92)

which are the complete version of Alg. 87, Alg. 88 and Alg. 89.

Algorithm 90 Half Space Report Data Structure
1: data structure HalfSpaceReport
2: procedures:
3: Init(S, n, d) ▷ Initialize the data structure with a set S of n points in Rd

4: Query(a, b) ▷ a, b ∈ Rd. Output the set {x ∈ S : sgn(⟨a, x⟩ − b) ≥ 0}
5: Add(x) ▷ Add a point x ∈ Rd to S
6: Delete(x) ▷ Delete the point x ∈ Rd from S
7: end data structure

947

Algorithm 91 Training Neural Network via building a data structure of weights.
1: procedure TrainingWithPreprocessWeights({xi}i∈[n], {yi}i∈[n],n,m,d) ▷

Theorem 14.8
2: /*Initialization step*/
3: Sample W (0) and a according to Definition 14.2
4: b← √0.4 logm.
5: /*A dynamic data-structure*/
6: HalfSpaceReport hsr ▷ Algorithm 87, Part 1 of Corollary 14.2
7: hsr.Init({wr(0)}r∈[m],m, d) ▷ It takes Tinit(m, d) time
8: /*Iterative step*/
9: for t = 0→ T do

10: /*Forward computation step*/
11: for i = 1→ n do
12: Si,fire ← hsr.Query(xi, b) ▷ It takes Tquery(m, d, ki,t) time
13: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)⊤xi) ▷ It takes O(d · ki,t) time

14: end for
15: /*Backward computation step*/
16: P ← 0n×m ▷ P ∈ Rn×m

17: for i = 1→ n do
18: for r ∈ Si,fire do
19: Pi,r ← 1√

m
ar · σ′b(wr(t)⊤xi)

20: end for
21: end for
22: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
23: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P)) time,

nnz(P) = O(nm4/5)
24: W (t+ 1)← W (t)− η ·∆W .
25: /*Update data structure*/
26: Let Q ⊂ [m] where for each r ∈ Q, the ∆W∗,r is not all zeros ▷
|Q| ≤ O(nm4/5)

27: for r ∈ Q do
28: hsr.Delete(wr(t))
29: hsr.Insert(wr(t+ 1))
30: end for
31: end for
32: return W ▷ W ∈ Rd×m

33: end procedure

948

Algorithm 92 Training Neural Network via building a data-structure of the input
points.
1: procedure TrainingWithProcessData({xi}i∈[n], {yi}i∈[n],n,m,d) ▷ Theorem 14.9
2: /*Initialization step*/
3: Sample W (0) and a according to Definition 14.2
4: b← √0.4 logm.
5: /*A static data-structure*/
6: HalfSpaceReport hsr ▷ Algorithm 87, Part 2 of Corollary 14.2
7: hsr.Init({xi}i∈[n], n, d) ▷ It takes Tinit(n, d) time
8: /*Initialize S̃r,fire and Si,fire */
9: ▷ It takes

∑m
r=1 Tquery(n, d, k̃r,t) = O(m log n+m1/2n) time

10: S̃r,fire ← ∅ for r ∈ [m]. ▷ S̃r,fire is the set of samples, for which neuron r fires
11: Si,fire ← ∅ for i ∈ [n]. ▷ Si,fire is the set of neurons, which fire for xi
12: for r = 1→ m do
13: S̃r,fire ← hsr.Query(wr(0), b)
14: for i ∈ S̃r,fire do
15: Si,fire.Add(r)
16: end for
17: end for
18: /*Iterative step*/
19: for t = 1→ T do
20: /*Forward computation step*/
21: for i = 1→ n do
22: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)

⊤xi) ▷ It takes O(d · ki,t) time
23: end for
24: /*Backward computation step*/
25: P ← 0n×m ▷ P ∈ Rn×m
26: for i = 1→ n do
27: for r ∈ Si,fire do
28: Pi,r ← 1√

m
ar · σ′b(wr(t)⊤xi)

29: end for
30: end for
31: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
32: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P)) time,

nnz(P) = O(nm4/5)
33: W (t+ 1)←W (t)− η ·∆W .
34: /*Update S̃r,fire and Si,fire step*/
35: ▷ It takes O(

∑n
i=1 ki,t +

∑
r∈S[n],fire

Tquery(n, d, k̃r,t+1)) = O(n · log n ·m4/5)

36: S[n],fire ← ∪i∈[n]Si,fire
37: for r ∈ S[n],fire do
38: for i ∈ S̃r,fire do ▷ Removing old fired neuron indices. It takes O(k̃r,t) time
39: Si,fire.Del(r)
40: end for
41: S̃r,fire ← hsr.Query(wr(t+ 1), b) ▷ It takes Tquery(n, d, k̃r,t+1) time
42: for i ∈ S̃r,fire do ▷ Adding new fired neuron indices. It takes O(k̃r,t+1) time
43: Si,fire.Add(r)
44: end for
45: end for
46: end for
47: return W ▷ W ∈ Rd×m
48: end procedure

949

14.9 Preliminaries

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a

vector x, we use ∥x∥2 to denote the entry-wise ℓ2 norm of a vector. We use E[] to

denote the expectation and Pr[] to denote the probability. We use M⊤ to denote

the transpose of M . We define matrix Frobenius norm as ∥M∥F = (
∑

i,jM
2
i,j)

1/2.

We use ∥M∥ to denote the operator norm of M . For d × m weight matrix W , we

define ∥W∥∞,2 := maxr∈[m] ∥wr∥2. We use x⊤y to denote the inner product between

vectors x and y. We use Id to denote d-dimensional identity matrix. We use N(µ, σ2)

to denote Gaussian distribution with mean µ and variance σ2. We use λmin(M) and

λmax(M) to denote the minimum and the maximum eigenvalue of the matrix M ,

respectively.

14.9.1 Half-space reporting data structures

The time complexity of HSR data structure is:

Theorem 14.10 (Agarwal, Eppstein and Matousek [AEM92]). Let d be a fixed

constant. Let t be a parameter between n and n⌊d/2⌋. There is a dynamic data

structure for half-space reporting that uses Od,ϵ(t
1+ϵ) space and pre-processing time,

Od,ϵ(
n

t1/⌊d/2⌋
log n+ k) time per query where k is the output size and ϵ > 0 is any fixed

constant, and Od,ϵ(t
1+ϵ/n) amortized update time.

As a direct corollary, we have

Corollary 14.11 (HSR data-structure time complexity [AEM92]). Given a set of n

points in Rd, the half-space reporting problem can be solved with the following perfor-

mances:

• Part 1.Tinit(n, d) = Od(n log n), Tquery(n, d, k) = Od,ϵ(n
1−1/⌊d/2⌋+ϵ+k), amortized

Tupdate = Od,ϵ(log
2(n)).

• Part 2.Tinit(n, d) = Od,ϵ(n
⌊d/2⌋+ϵ), Tquery(n, d, k) = Od,ϵ(log(n) + k), amortized

Tupdate = Od,ϵ(n
⌊d/2⌋−1+ϵ).

950

14.9.2 Basic algebras

Claim 14.12 ([Sch11]). Let M1,M2 ∈ Rn×n be two PSD matrices. Let M1 ◦ M2

denote the Hadamard product of M1 and M2. Then,

λmin(M1 ◦M2) ≥ (min
i∈[n]

M2i,i) · λmin(M1),

λmax(M1 ◦M2) ≤ (max
i∈[n]

M2i,i) · λmax(M1).

14.10 Sparsity Analysis
14.10.1 Bounding difference between continuous kernel and discrete ker-

nel

In [DZPS19, SY19], they proved the following lemma for b = 0. Here, we

provide a more general statement for any b ≥ 0.

Lemma 14.13. For any shift parameter b ≥ 0, we define continuous version of shifted

NTK Hcts and discrete version of shifted NTK Hdis as:

Hcts
i,j := Ew∼N(0,I)

[
x⊤i xj1w⊤xi≥b,w⊤xj≥b

]
,

Hdis
i,j :=

1

m

m∑

r=1

[
x⊤i xj1w⊤

r xi≥b,w⊤
r xj≥b

]
.

We define λ := λmin(H
cts).

Let m = Ω(λ−1n log(n/ρ)) be number of samples of Hdis, then

Pr
[
λmin(H

dis) ≥ 3

4
λ
]
≥ 1− ρ.

Proof. We will use the matrix Chernoff bound (Theorem A.6) to provide a lower

bound on the least eigenvalue of discrete version of shifted NTK Hdis.

Let Hr :=
1
m
X̃(wr)X̃(wr)

⊤, where X̃(wr) ∈ Rd×n is defined as follows:

X̃(wr) =
[
1w⊤

r xi≥b · x1 · · · 1w⊤
r xn≥b · xn

]
.

951

Hence, Hr ⪰ 0. We need to upper-bound ∥Hr∥. Naively, we have

∥Hr∥ ≤ ∥Hr∥F ≤
n

m
,

since for each entry at (i, j) ∈ [n]× [n],

(Hr)i,j =
1

m
x⊤i xj1w⊤

r xi≥b,w⊤
r xj≥b ≤

1

m
x⊤i xj ≤

1

m
.

Then, Hdis =
∑m

r=1Hr, and E[Hdis] = Hcts. And we assume that λmin(H
cts) =

λ.

Hence, by matrix Chernoff bound (Theorem A.6) and choosing choose m =

Ω(λ−1n · log(n/ρ)), we can show

Pr

[
λmin(H

dis) ≤ 3

4
λ

]
≤ n · exp(− 1

16
λ/(2n/m))

= n · exp(−λm
32n

)

≤ ρ,

Thus, we finish the proof.

14.10.2 Handling Hessian if perturbing weight

We present a tool which is inspired by a list of previous work [DZPS19, SY19].

Lemma 14.14 (perturbed w for shifted NTK). Let b > 0 and R ≤ 1/b. Let c > 0

and c′ > 0 denote two fxied constants. We define function H that is mapping Rm×d

to Rn×n as follows:

the (i, j)-th entry of H(W) is
1

m
x⊤i xj

m∑

r=1

1w⊤
r xi≥b,w⊤

r xj≥b.

Let W̃ ∈ Rd×m be m vectors that are sampled from N(0, Id). Consider W ∈ Rd×m

that satisfy, ∥W̃ −W∥∞,2 ≤ R, it has

• Part 1, ∥H(W̃)−H(W)∥F ≤ n ·min{c · exp(−b2/2), 3R} holds with probability

at least 1− n2 · exp(−m ·min{c′ · exp(−b2/2), R/10}).

952

• Part 2, λmin(H(W)) ≥ 3
4
λ − n · min{c · exp(−b2/2), 3R} holds with probability

at least 1− n2 · exp(−m ·min{c′ · exp(−b2/2), R/10})− ρ.

Proof. Consider

∥H(W)−H(W̃)∥2F =
∑

i∈[n]

∑

j∈[n]

(H(W̃)i,j −H(W)i,j)
2

≤ 1

m2

∑

i∈[n]

∑

j∈[n]

∑

r∈[m]

1w̃⊤
r xi≥b,w̃⊤

r xj≥b − 1w⊤
r xi≥b,w⊤

r xj≥b

2

=
1

m2

∑

i∈[n]

∑

j∈[n]

(∑

r∈[m]

sr,i,j,b

)2
,

where the first step follows from definition of Frobenius norm, the last third

step follows from by defining

sr,i,j,b := 1w̃⊤
r xi≥b,w̃⊤

r xj≥b − 1w⊤
r xi≥b,w⊤

r xj≥b.

For simplicity, we use sr to sr,i,j,b (note that we fixed (i, j) and b).

Define Ai,r to be the event that

Ai,r = {∃w ∈ Rd : ∥w − wr∥2 ≤ R,1w⊤xi≥b ̸= 1w⊤
r xi≥b}.

Note that event Ai,r happens iff |w⊤r xi − b| ≤ R happens.

Prior work [DZPS19, SY19] only one way to bound Pr[Ai,r]. We present two

ways of arguing the upper bound on Pr[Ai,r]. One is anti-concentration, and the other

is concentration.

By anticoncentration, (Lemma A.7),

Pr[Ai,r] ≤
2R√
2π
≤ R.

By concentration,

Pr[Ai,r] ≤ exp(−(b−R)2/2) ≤ c1 · exp(−b2/2).

953

where the last step follows from R < 1/b and c1 ≥ exp(1−R2/2) is a constant.

Hence,

Pr[Ai,r] ≤ min{R, c1 exp(−b2/2)}.

If the event ¬Ai,r happens and the event ¬Aj,r happens, then we have

∣∣1w̃⊤
r xi≥b,w̃⊤

r xj≥b − 1w⊤
r xi≥b,w⊤

r xj≥b
∣∣ = 0.

If the event Ai,r happens or the event Aj,r happens, then we obtain

∣∣1w̃⊤
r xi≥b,w̃⊤

r xj≥b − 1w⊤
r xi≥b,w⊤

r xj≥b
∣∣ ≤ 1.

Case 1: c1 exp(−b2/2) < R. So we have

Ew̃r [sr] ≤ Pr[Ai,r] + Pr[Aj,r]

≤ c1 · exp(−b2/2)

Now, we calculate the variance

Ew̃r

[
(sr − Ew̃r [sr])

2] = Ew̃r [s
2
r]− Ew̃r [sr]

2

≤ Ew̃r [s
2
r]

≤ Ew̃r

[(
1Ai,r∨Aj,r

)2]

≤ c1 · exp(−b2/2).

Note that |sr| ≤ 1 for all r.

Define s = 1
m

∑m
r=1 sr. Thus, we are able to use Lemma A.4,

Pr
[
m · s ≥ m · c1 exp(−b2/2) +mt

]
≤ Pr

[
m∑

r=1

(sr − E[sr]) ≥ mt

]

≤ exp

(
− m2t2/2

m · c1 exp(−b2/2) +mt/3

)
, ∀t ≥ 0.

Define s = 1
m

∑m
r=1 sr. Thus, it gives

954

Pr
[
s ≥ c2 · exp(−b2/2)

]
≤ exp(−c3 ·m exp(−b2/2)),

where c2 := 2c1, c3 :=
3
8
c1 are some constants.

Case 2: exp(−b2/2) > R. Then, we have

Ew̃r [sr] ≤ 2R, Ew̃r

[
(sr − Ew̃r [sr])

2] ≤ 2R.

Define s = 1
m

∑m
r=1 sr. By Lemma A.4,

Pr [s ≥ 3R] ≤ exp (−mR/10) .

Combining two cases:

Thus, we obtain

Pr
[
∥H(W̃)−H(W)∥F ≤ n ·min{c2 exp(−b2/2), 3R}

]

≥ 1− n2 · exp(−m ·min{c3 exp(−b2/2), R/10}).

For the second part, by Lemma 14.14, Pr[λmin(H(W̃)) ≥ 0.75 · λ] ≥ 1 − ρ.

Hence,

λmin(H(W)) ≥ λmin(H(W̃))− ∥H(W̃)−H(W)∥

≥ λmin(H(W̃))− ∥H(W̃)−H(W)∥F
≥ 0.75 · λ− n ·min{c2 · exp(−b2/2), 3R},

which happens with probability 1− n2 · exp(−m ·min{c3 · exp(−b2/2), R/10})− ρ by

the union bound.

14.10.3 Total movement of weights

Definition 14.6 (Hessian matrix at time t). For t ≥ 0, let H(t) be an n× n matrix

with (i, j)-th entry:

H(t)i,j :=
1

m
x⊤i xj

m∑

r=1

1⟨wr(t),xi⟩≥b1⟨wr(t),xj⟩≥b

955

We follow the standard notation Dcts in Lemma 3.5 in [SY19].

Definition 14.7 (Dcts). Let y ∈ Rn be the vector of the training data labels. Let

err(0) ∈ Rn denote the error of prediction of the neural network function (Defini-

tion 14.3). Define the actual moving distance of weight Dcts to be

Dcts := λ−1 ·m−1/2 · √n · ∥err(0)∥2.

We state a tool from previous work [DZPS19, SY19] (more specifically, Lemma

3.4 in [DZPS19], Lemma 3.6 in [SY19]). Since adding the shift parameter b to NTK

doesn’t affect the proof of the following lemma, thus we don’t provide a proof and

refer the readers to prior work.

Lemma 14.15 ([DZPS19, SY19]). The condition Dcts < R implies λmin(H(t)) ≥ λ/2,

∀t ≥ 0. Let err(t) be defined as Definition 14.3. Further,

1. ∥W (t)−W (0)∥∞,2 ≤ Dcts,

2. ∥err(t)∥22 ≤ exp(−λt) · ∥err(0)∥22.

14.10.4 Bounded gradient

The proof of Lemma 3.6 in [SY19] implicitly implies the following basic prop-

erty of gradient.

Claim 14.16 (Bounded gradient). Let err(s) be defined as Definition 14.3. For any

0 ≤ s ≤ t, We have
∥∥∥∥
∂L(W (s))

∂wr(s)

∥∥∥∥
2

≤
√
n√
m
∥err(s)∥2

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

≤
√
n√
m
∥err(s)∥2

956

Proof. For the first part,

∥∥∥∂L(W (s))

∂wr(s)

∥∥∥
2
=
∥∥∥

n∑

i=1

erri(s)
1√
m
arxi · 1wr(s)⊤xi≥b

∥∥∥
2

by Eq. (14.4)

≤ 1√
m

n∑

i=1

|erri(s)| by Eq. (14.2)

≤
√
n√
m
∥err(s)∥2.

For second part, we use ODE to prove it.

14.10.5 Upper bound on the movement of weights per iteration

The following Claim is quite standard in the literature, we omitt the details.

Claim 14.17 (Corollary 4.1 in [DZPS19], Lemma 3.8 in [SY19]). Let err(i) be defined

as Definition 14.3. If ∀i ∈ [t], ∥err(i)∥22 ≤ (1− ηλ/2)i · ∥err(0)∥22, then

∥W (t+ 1)−Wr(0)∥∞,2 ≤ 4λ−1m−1/2 · √n · ∥err(0)∥2 := D.

14.10.6 Bounding the number of fired neuron per iteration

In this section, we will show that for t = 0, 1, . . . , T , the number of fire neurons

ki,t = |Si,fire(t)| is small with high probability.

We define the set of neurons that are flipping at time t:

Definition 14.8 (flip set). For each i ∈ [n], for each time t ∈ [T] let Si,flip(t) ⊂ [m]

denote the set of neurons that are never flipped during the entire training process,

Si,flip(t) := {r ∈ [m] : sgn(⟨wr(t), xi⟩ − b) ̸= sgn(⟨wr(t− 1), xi⟩ − b)}.

Over all the iterations of training algorithm, there are some neurons that never

flip states. We provide a mathematical formulation of that set,

957

Definition 14.9 (noflip set). For each i ∈ [n], let Si ⊂ [m] denote the set of neurons

that are never flipped during the entire training process,

Si := {r ∈ [m] : ∀t ∈ [T] sgn(⟨wr(t), xi⟩ − b) = sgn(⟨wr(0), xi⟩ − b)}. (14.6)

In Lemma 14.3, we already show that ki,0 = O(m · exp(−b2/2)) for all i ∈ [n]

with high probability. We can show that it also holds for t > 0.

Lemma 14.18 (Bounding the number of fired neuron per iteration). Let b ≥ 0

be a parameter, and let σb(x) = max{x, b} be the activation function. For each

i ∈ [n], t ∈ [T], ki,t is the number of activated neurons at the t-th iteration. For

0 < t ≤ T , with probability at least 1− n · exp (−Ω(m) ·min{R, exp(−b2/2)}), ki,t is

at most O(m exp(−b2/2)) for all i ∈ [n].

Proof. We prove this lemma by induction.

The base case of t = 0 is shown by Lemma 14.3 that ki,0 = O(m · exp(−b2/2))
for all i ∈ [n] with probability at least 1− n exp(−Ω(m · exp(−b2/2))).

Assume that the statement holds for 0, . . . , t − 1. By Claim 14.17, we know

∀k < t,

∥W (k + 1)−W (0)∥∞,2 < R.

Consider the t-th iteration. For each i ∈ [n], consider the set of activated

neurons Si,fire. We note that for the neurons in Si, with high probability these neurons

will not be activated in the t-th iteration if they are not activated in the (t − 1)-th

iteration. By Claim 14.19, for r ∈ [m],

Pr[r /∈ Si] ≤ min
{
R,O(exp(−b2/2))

}
.

On the one hand, if R < O(exp(−b2/2)), then E[|Si|] ≤ mR. By Lemma A.4,

Pr
[
|Si| > t

]
≤ exp

(
− t2/2

mR + t/3

)
.

958

If we take t := mR, then we have

Pr
[
|Si| > mR

]
≤ exp (−3mR/8) .

On the other hand, if O(exp(−b2/2)) < R, then E[|Si|] ≤ O(m exp(−b2/2)).
By Lemma A.4, we have that

Pr
[
|Si| > t

]
≤ exp

(
− t2/2

O(m exp(−b2/2)) + t/3

)
.

If we take t := m exp(−b2/2), we have that

Pr
[
|Si| > m exp(−b2/2)

]
≤ exp(−Ω(m exp(−b2/2))).

Then, we know that in addition to the fire neurons in Si,noflip, there are at most

m ·min{R, exp(−b2/2)} neurons are activated in t-th iteration with high probability.

By a union bound for i ∈ [n], we obtain with probability

≥ 1− n · exp(−Ω(m) ·min{R, exp(−b2/2)}),

the number of activated neurons for xi at the t-th iteration of the algorithm is

ki,t = |Si,fire(t)| ≤ ki,0 +mmin{R, exp(−b2/2)} ≤ O(m exp(−b2/2)),

where the last step follows from ki,0 = O(m exp(−b2/2)) by Lemma 14.3.

The Lemma is then proved for all t = 0, . . . , T .

Claim 14.19 (Bound on noflip probability). Let R ≤ 1/b. For i ∈ [n], let Si be the

set defined by Eq. (14.6).

Part 1. For r ∈ [m], r /∈ Si if and only if |⟨wr(0), xi⟩ − b| < R.

Part 2. If wr(0) ∼ N(0, Id), then

Pr[r /∈ Si] ≤ min{R,O(exp(−b2/2))} ∀r ∈ [m].

959

Proof. Part 1. We first note that r /∈ Si ⊂ [m] is equivalent to the event that

∃w ∈ Rd, s.t.1⟨wr(0),xi⟩≥b ̸= 1⟨w,xi⟩≥b ∧ ∥w − wr(0)∥2 < R.

Assume that ∥w−wr(0)∥2 = R. Then, we can write w = wr(0)+R · v with ∥v∥2 = 1

and ⟨w, xi⟩ = ⟨wr(0), xi⟩+R · ⟨v, xi⟩.

Now, suppose there exists a w such that 1⟨wr(0),xi⟩≥b ̸= 1⟨w,xi⟩≥b.

• If ⟨wr(0), xi⟩ > b, then there exists a vector v ∈ Rd such that R · ⟨v, xi⟩ <
b− ⟨wr(0), xi⟩,

• If ⟨wr(0), xi⟩ < b, then there exists a vector v ∈ Rd such that R · ⟨v, xi⟩ >
b− ⟨wr(0), xi⟩.

Since ∥xi∥2 = 1 and ⟨v, xi⟩ ∈ [−1, 1], we can see that the above conditions

hold if and only if

b− ⟨wr(0), xi⟩ > −R, and

b− ⟨wr(0), xi⟩ < +R.

In other words, r /∈ Si if and only if |⟨wr(0), xi⟩ − b| < R.

Part 2.

We have

Pr[r /∈ Si] = Pr
z∼N(0,1)

[|z − b| < R] by ⟨wr, xi⟩ ∼ N(0, 1)

≤ Pr
z∼N(0,1)

[|z| < R] by symmetric property of Gaussian distribution

≤ 2R√
2π

by anti-concentration inequality of Gaussian (Lemma A.7)

≤ R.

On the other hand, we also know

Pr[r /∈ Si] ≤ Pr
z∼N(0,1)

[z ≥ b−R] ≤ exp(−(b−R)2/2) ≤ O(exp(−b2/2)),

where the last step follows from R < 1/b.

960

14.11 Convergence Analysis
14.11.1 Upper bound the initialization

The following Claim provides an upper bound for initialization. Prior work

only shows it for b = 0, we generalize it to b ≥ 0. The modification to the proof of

previous Claim 3.10 in [SY19] is quite straightforward, thus we omit the details here.

Claim 14.20 (Upper bound the initialization, shited NTK version of Claim 3.10 in

[SY19]). Let b ≥ 0 denote the NTK shifted parameter. Let parameter ρ ∈ (0, 1) denote

the failure probability. Then

Pr[∥err(0)∥22 = O(n(1 + b2) log2(n/ρ))] ≥ 1− ρ.

14.11.2 Bounding progress per iteration

In previous work, [SY19] define H and H⊥ only for b = 0. In this section, we

generalize it to b ≥ 0. Let us define two shifted matrices H and H⊥

H(k)i,j :=
1

m

m∑

r=1

⟨xi, xj⟩1⟨wr(k),xi⟩≥b,⟨wr(k),xj⟩≥b, (14.7)

H(k)⊥i,j :=
1

m

∑

r∈Si

⟨xi, xj⟩1⟨wr(k),xi⟩≥b,⟨wr(k),xj⟩≥b. (14.8)

We define

v1,i :=
1√
m

∑

r∈Si

ar(σb(wr(k + 1)⊤xi)− σb(wr(k)⊤xi))

v2,i :=
1√
m

∑

r∈Si

ar(σb(wr(k + 1)⊤xi)− σb(wr(k)⊤xi)) (14.9)

Following the same proof as Claim 3.9 [SY19], we can show that the following Claim.

The major difference between our claim and Claim 3.9 in [SY19] is, they only proved

it for the case b = 0. We generalize it to b ≥ 0. The proof is several basic algebra

computations, we omit the details here.

961

Claim 14.21 (Shifted NTK version of Claim 3.9 in [SY19]). Let err(k) = y − u(k)
be defined as Definition 14.3.

∥err(k + 1)∥22 = ∥err(k)∥22 +B1 +B2 +B3 +B4,

where

B1 := − 2η · err(k)⊤ ·H(k) · err(k),

B2 := + 2η · err(k)⊤ ·H(k)⊥ · err(k),

B3 := − 2err(k)⊤v2,

B4 := + ∥u(k + 1)− u(k)∥22.

The nontrivial parts in our analysis is how to bound B1, B2, B3 and B4 for the

shifted cases (We will provide a proof later). Once we can bound all these terms, we

can show the following result for one iteration of the algorithm:

Lemma 14.22 (Shifted NTK version of Page 13 in [SY19]). We have

∥err(k + 1)∥22 ≤ ∥err(k)∥22 · (1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2))

holds with probability at least

1− 2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)})− ρ.

Proof. We are able to provide the following upper bound for ∥err(k + 1)∥22:

∥err(k + 1)∥22
= ∥err(k)∥22 +B1 +B2 +B3 +B4 by Claim 14.21

≤ ∥err(k)∥22(1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2) by Claim 14.24, 14.25, 14.26 and 14.27

962

14.11.3 Upper bound on the norm of dual Hessian

The proof of the following fact is similar to Fact C.1 in [SY19]. We generalize

the b = 0 to b ≥ 0. The same bound will hold as Fact C.1 in [SY19] if we replace

1wr(k)⊤xi≥0 by 1wr(k)⊤xi≥b. Thus, we omit the details here.

Fact 14.23 (Shifted NTK version of Fact C.1 in [SY19]). Let b ≥ 0. Let shifted

matrix H(k)⊥ be defined as Eq. (14.8). For all k ≥ 0, we have

∥H(k)⊥∥F ≤
n

m2

n∑

i=1

|Si|2.

14.11.4 Bounding the gradient improvement term

Claim 14.24 (Bounding the gradient improvement term). Let H(k) be shifted matrix

(see Eq. (14.7)). Assume b ≥ 0. Denote ρ0 = n2·exp(−m·min{c′·exp(−b2/2), R/10})+
ρ. We define B1 := −2ηerr(k)⊤H(k)err(k). Assuming either of the following condi-

tion,

• R ≤ λ
12n

,

• b ≥
√
2 · log(4cn/λ).

Then, we have

Pr[B1 ≤ −ηλ · ∥err(k)∥22] ≥ 1− ρ0.

Proof. By Lemma 14.14, there exists constants c, c′ > 0 such that

λmin(H(W)) ≥ 3

4
λ− n ·min{c · exp(−b2/2), 3R}

with probability at least 1− ρ0.

If we have R ≤ λ
12n

or b ≥
√
2 · log(4cn/λ), then

λmin(H(W)) ≥ 1

2
λ.

963

Finally, we have

err(k)⊤ ·H(k) · err(k) ≥ ∥err(k)∥22 · λ/2.

14.11.5 Bounding the blowup by the dual Hessian term

Claim 14.25 (Bounding the blowup by the dual Hessian term). Let shifted matrix

H(k)⊥ be defined as Eq. (14.8). Let ρ0 = n exp(−Ω(m) · min{R, exp(−b2/2)}). Let

b ≥ 0 be shifted NTK parameter. We define B2 := 2η · err(k)⊤ ·H(k)⊥ · err(k). Then

Pr[B2 ≤ 2ηn ·min{R, exp(−b2/2)} · ∥err(k)∥22] ≥ 1− ρ0.

Proof. By property of spectral norm,

B2 ≤ 2η∥err(k)∥22∥H(k)⊥∥.

Using Fact 14.23, we have ∥H(k)⊥∥F ≤ n
m2

∑n
i=1 |Si|2.

By Lemma 14.18, ∀i ∈ {1, 2, · · · , n}, it has

Pr
[
|Si| ≤ m ·min{R, exp(−b2/2)}

]
≥ 1− ρ0. (14.10)

Hence, with probability at least 1− ρ0

∥H(k)⊥∥2F ≤
n

m2
· n ·m2 ·min{R2, exp(−b2)} = n2 ·min{R2, exp(−b2)}.

Putting all together, we have

∥H(k)⊥∥ ≤ ∥H(k)⊥∥F ≤ n ·min{R, exp(−b2/2)}

with probability at least 1− ρ0.

964

14.11.6 Bounding the blowup by the flip-neurons term

Claim 14.26 (Bounding the blowup by flipping neurons term). Let ρ0 = n exp(−Ω(m)·
min{R, exp(−b2/2)}). We define B3 := −2err(k)⊤v2. Let b ≥ 0 be shifted NTK pa-

rameter. Then we have

Pr[B3 ≤ 2ηn ·min{R, exp(−b2/2)} · ∥err(k)∥22] ≥ 1− ρ0.

Proof. Using Cauchy-Schwarz inequality, we have B3 ≤ 2∥err(k)∥2 · ∥v2∥2.

Then we focus on ∥v2∥2,

∥v2∥22 ≤
n∑

i=1

 η√

m

∑

r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)⊤xi

∣∣∣∣

2

by Eq. (14.9)

=
η2

m

n∑

i=1

(
m∑

r=1

1r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)⊤xi

∣∣∣∣

)2

≤ η2

m
·max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣
2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
· (
√
n√
m
∥err(k)∥2)2 ·

n∑

i=1

(
m∑

r=1

1r∈Si

)2

by Claim 14.16

≤ η2

m
· (
√
n√
m
∥err(k)∥2)2 ·

n∑

i=1

m2 ·min{R2, exp(−b2)} by Eq. (14.10)

= η2n2 ·min{R2, exp(−b2)} · ∥err(k)∥22,

14.11.7 Bounding the blowup by the prediction movement term

The proof of the following Claim is quite standard and simple in literature,

see Claim 3.14 in [SY19]. We omit the details here.

Claim 14.27 (Bounding the blowup by the prediction movement term).

B4 ≤ η2n2 · ∥err(k)∥22.

965

14.11.8 Putting it all together

The goal of this section to combine all the convergence analysis together.

Lemma 14.28 (Convergence). Let η = λ/(4n2), R = λ/(12n), let b ∈ [0, n], and

m ≥ Ω(λ−4n4b2 log2(n/ρ)),

we have

Pr
[
∥err(t)∥22 ≤ (1− ηλ/2)t · ∥err(0)∥22

]
≥ 1− 2ρ.

Proof. We know with probability ≥ 1− 2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)})− ρ,

∥err(t+ 1)∥22 ≤ ∥err(t)∥22 · (1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2)),

and we want to show that

1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2 ≤ 1− ηλ/2, and (14.11)

2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)}) ≤ ρ. (14.12)

Claim 14.17 requires the following relationship between D and R,

D =
4
√
n∥err(0)∥2√
mλ

< R

By Claim 14.20, we can upper bound the prediction error at the initialization,

∥err(0)∥22 = O(nb2 log2(n/ρ)),

Combining the above two equations gives

R > Ω(λ−1nm−1/2b log(n/ρ)). (14.13)

Claim 14.24 (where 0 < c < e is a constant) requires an upper bound on R,4

R ≤ λ

12n
. (14.14)

4Due to the relationship between b and λ, we are not allowed to choose b in an arbitrary function
of λ. Thus, we should only expect to use R to fix the problem.

966

Combing the lower bound and upper bound of R, it implies the lower bound

on m in our Lemma statement.

And Lemma 14.13 also requires that

m = Ω(λ−1n log(n/ρ)). (14.15)

which is dominated by the lower bound on m in our lemma statement, thus we can

ignore it.

Lemma 14.13 and Claim 14.19 require that

R < 1/b. (14.16)

which is equivalent to

b < 12n/λ

However, by Theorem 14.31, it will always hold for any b > 0.

Note that Eq. (14.11) can be rewritten as

4ηn ·min{R, exp(−b2/2)}+ η2n2 ≤ ηλ/2.

where it follows from taking η := λ/(4n2) and R = λ/(12n).

Therefore, we can take the choice of the parametersm, b,R and Eqs. (14.11), (14.12)

imply

Pr[∥err(t+ 1)∥22 ≤ (1− ηλ/2) · ∥err(t)∥22] ≥ 1− 2ρ.

14.12 Combine

Corollary 14.29 (Sublinear cost per iteration). Let n denote the number of points.

Let d denote the dimension of points. Let ρ ∈ (0, 1/10) denote the failure probability.

967

Let δ be the separability of data points. For any parameter α ∈ (0, 1], we choose

b =
√

0.5(1− α) logm, if

m = Ω((δ−4n10 log4(n/ρ))1/α)

then the sparsity is

O(m
3+α
4).

Furthermore,

• If we preprocess the initial weights of the neural network, then we choose α =

1− 1/Θ(d) to get the desired running time.

• If we preprocess the training data points, then we choose α to be an arbitrarily

small constant to get the desired running time.

Proof. From Theorem 14.31, we know

λ ≥ exp(−b2/2) · δ

100n2

which is equivalent to

λ−1 ≤ exp(b2/2) · 100n
2

δ
.

For convergence, we need

m = Ω(λ−4n4b2 log2(n/ρ))

Since we know the upper bound of λ−1, thus we need to choose

m = Ω(exp(4 · b2/2) · δ−4 · n10b2 log2(n/ρ))

From sparsity, we have

O(m · exp(−b2/2))

968

Let us choose b =
√

0.5(1− α) logm, for any α ∈ (0, 1].

For the lower bound on m, we obtain

m ≥ (δ−4n10 log4(n/ρ))1/α

For the sparsity, we obtain

m ·m−(1−α)/4 = m
3+α
4

Theorem 14.30 (Main result, formal of Theorem 14.8 and 14.9). Given n data

points in d-dimensional space. Running gradient descent algorithm on a two-layer

ReLU (over-parameterized) neural network with m neurons in the hidden layers is

able to minimize the training loss to zero, let Tinit denote the preprocessing time and

Citer denote the cost per iteration of gradient descent algorithm.

• If we preprocess the initial weights of the neural network (Algorithm 88), then

Tinit = Od(m logm),Citer = Õ(m1−Θ(1/d)nd).

• If we preprocess the training data points (Algorithm 89), then

Tinit = O(nd),Citer = Õ(m3/4+o(1)nd).

14.13 Bounds for the Spectral Gap with Data Separation

Theorem 14.31 (Formal version of Proposition 14.6). Let x1, . . . , xn be points in

Rd with unit Euclidean norm and w ∼ N(0, Id). Form the matrix X ∈ Rn×d =

[x1 . . . xn]
⊤. Suppose there exists δ ∈ (0,

√
2) such that

min
i ̸=j∈[n]

{∥xi − xj∥2, ∥xi + xj∥2} ≥ δ.

969

Let b ≥ 0. Recall the continuous Hessian matrix Hcts is defined by

Hcts
i,j := Ew∼N(0,I)

[
x⊤i xj1w⊤xi≥b,w⊤xj≥b

]
∀(i, j) ∈ [n]× [n].

Let λ := λmin(H
cts). Then, we have

exp(−b2/2) ≥ λ ≥ exp(−b2/2) · δ

100n2
. (14.17)

Proof. Part 1: Lower bound.

Define the covariance of the vector 1Xw>b ∈ Rn as

Ew∼N(0,Id)

[
(1Xw>b)(1Xw>b)

⊤] .

Then, Hcts can be written as

Hcts = Ew∼N(0,Id)

[
(1Xw>b)(1Xw>b)

⊤] ◦XX⊤,

where A ◦B denotes the Hadamard product between A and B.

By Claim 14.12, and since ∥xi∥2 = 1 for all i ∈ [n], we only need to show:

Ew∼N(0,Id)

[
(1Xw>b)(1Xw>b)

⊤] ⪰ exp(−b2/2) · δ

100n2
· In.

Fix a unit length vector a ∈ Rn. Suppose there exist constants c1, c2 such that

Pr
[∣∣a⊤1Xw>b

∣∣ ≥ c1∥a∥∞
]
≥ c2δ

n
. (14.18)

This would imply that

E
[(
a⊤1Xw>b

)2] ≥ E
[∣∣a⊤1Xw>b

∣∣]2

≥ c21∥a∥2∞(
c2δ

n
)2

≥ c21c2
δ

n2
,

where the first step follows from Jensen’s inequality, the second step follows from

Markov’s inequality, the last step follows from ∥a∥2 = 1.

970

Since this is true for all a, we find Eq. (14.17) with c21c2 = 1
100

by choosing

c1 = 1/2, c2 = 1/25 as described later.

Hence, our goal is proving Eq. (14.18). Without loss of generality, assume

|a1| = ∥a∥∞ and construct an orthonormal basis Q ∈ Rd×d in Rd where the first

column is equal to x1 ∈ Rd and Q = [x1 Q] ∈ Rd×d. Note that g = Q⊤w ∼ N(0, Id)

and we have

w = Qg = g1x1 +Qg,

where g =
[
g1
g

]
∈ Rd and the first step follows from QQ⊤ = Id.

For 0 ≤ γ ≤ 1/2, Gaussian small ball guarantees

Pr[|g1| ≤ γ] ≥ 7γ

10
.

Then, by Theorem 3.1 in [LS01] (Lemma A.8), we have

Pr[|g1 − b| ≤ γ] ≥ exp(−b2/2) · 7γ
10
.

Next, we argue that zi := ⟨Qg, xi⟩ is small for all i ̸= 1. For a fixed i ≥ 2, observe

that

zi ∼ N(0, 1− ⟨x1, xi⟩2).

Let τi,1 := ⟨xi, x1⟩.

Note that δ-separation implies

1− |⟨x1, xi⟩| =
1

2
min{∥x1 − xi∥22, ∥x1 + xi∥22} ≥

δ2

2

Hence |τi,1| ≤ 1− δ2/2.

Then, from Gaussian anti-concentration bound (Lemma A.7) and variance

971

bound on zi, we have

Pr[|zi| ≤ |τi,1|γ] ≤
√

2

π

|τi,1|γ√
1− τ 2i,1

≤ 2γ

δ
√
π

≤ 2γ

δ
,

which implies that

Pr[|zi − (1− τi,1)b| ≤ |τi,1| · γ] ≤ Pr[|zi| ≤ γ] ≤ 2γ

δ
.

Hence, by union bound,

Pr[∀i ∈ {2, · · · , n} : |zi − (1− τi,1)b| ≤ |τi,1| · γ] ≥ 1− n2γ
δ

Define E to be the following event:

E :=
{
|g1 − b| ≤ γ and |zi − (1− τi,1)b| ≤ |τi,1| · γ, ∀i ∈ {2, · · · , n}

}
.

Since g1 ∈ R is independent of g, we have

Pr[E] = Pr[|g1 − b| ≤ γ] · Pr[∀i ∈ {2, · · · , n} : |zi − (1− τi,1)b| ≤ |τi,1| · γ]

≥ exp(−b2/2) · 7γ
10
· (1− 2nγ/δ)

≥ exp(−b2/2) · 7δ

80n
.

where the last step follows from choosing γ := δ
4n
∈ [0, 1/2].

To proceed, define

f(g) := ⟨a,1Xw>b⟩

= a1 · 1g1>b +
n∑

i=2

(ai · 1x⊤i x1·g1+x⊤i Qg>b)

= a1 · 1g1>b +
n∑

i=2

(ai · 1τi,1·g1+x⊤i Qg>b).

972

where the third step follows from τi,1 = x⊤i x1.

On the event E, by Claim 14.32, we have that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

Hence, conditioned on E,

f(g) = a11g1>b + rest(g),

where

rest(g) :=
n∑

i=2

ai · 1x⊤i Qg>(1−τi,1)b.

Furthermore, conditioned on E, g1, g are independent as zi’s are function of g

alone. Hence, E can be split into two equally likely events that are symmetric with

respect to g1 i.e. g1 ≥ b and g1 < b.

Consequently,

Pr
[
|f(g)| ≥ max{|a11g1>b + rest(g)|, |a11g1<b + rest(g)|}

∣∣∣ E
]
≥ 1/2 (14.19)

Now, using max{|a|, |b|} ≥ |a− b|/2, we find

Pr[|f(g)| ≥ 0.5|a1| · |1g1>b − 1g1<b| | E]

= Pr[|f(g)| ≥ 0.5|a1| | E]

= Pr[|f(g)| ≥ 0.5∥a∥∞ | E]

≥ 1/2,

where |a1| = ∥a∥∞.

This yields

Pr[|f(g)| ≥ ∥a∥∞/2] ≥ Pr[E]/2 ≥ exp(−b2/2) · 7δ

160n
.

973

Part 2: Upper bound.

λ = λmin(H
cts)

= min
x∈Rd:∥x∥2=1

x⊤Hctsx

≤ e⊤1H
ctse1

= (Hcts)1,1

= Ew
[
x⊤1 x11w⊤x1≥b,

]

= Pr
w
[w⊤x1 ≥ b]

≤ exp(−b2/2),

where e1 :=
[
1 0 · · · 0

]⊤, and the sixth step follows from ∥x1∥2 = 1, the last step

follows from the concentration of Gaussian distribution. In Line 5 and 6 of the above

proof, w is sampled from N(0, Id).

Claim 14.32. Suppose |g1 − b| ≤ γ.

• If τi,1 > 0, then |zi− (1− τi,1)b| > +τi,1γ implies that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

• If τi,1 < 0, then |zi− (1− τi,1)b| > −τi,1γ implies that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

That is, if |zi − (1− τi,1)b| > |τi,1|γ, then we have 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

Proof. Case 1. We can assume τi,1 > 0. By assumption, we know that g1 ∈ [b −
γ, b+ γ].

Consider the forward direction first.

If τi,1g1 + zi > b, then

zi > b− τi,1(b+ γ) = (1− τi,1)b− τi,1γ.

According to the range of zi, it implies zi > (1− τi,1)b.

Then, consider the backward direction.

974

If zi > (1− τi,1)b, then by the range of zi, we have zi > (1− τi,1)b+ τi,1γ.

Hence,

τi,1g1 + zi > τi,1(b− γ) + (1− τi,1)b+ τi,1γ = b.

Case 2. The τi,1 < 0 case can be proved in a similar way.

14.14 Quantum Algorithm for Training Neural Network

In this section, we provide a quantum-classical hybrid approach to train neural

networks with truly sub-quadratic time per iteration. The main observation is that

the classical HSR data structure can be replaced with Grover’s search algorithm in

quantum.

We first state our main result in below, showing the running time of our

quantum training algorithm:

Corollary 14.33 (Main theorem). Given n data points in d-dimensional space. Run-

ning gradient descent algorithm on a two-layer, m-with, over-parameterized, and

ReLU neural network will minimize the training loss to zero, let Citer denote the cost

per iteration of gradient descent algorithm. Then, we have

Citer = Õ(m9/10nd).

by applying Grover’s search algorithm for the neurons (Algorithm 93) or the input

data points (Algorithm 94).

Remark 14.2. We remark that previous works ([KLP19, AHKZ20]) on training classi-

cal neural networks use the quantum linear algebra approach, which achieves quantum

speedup in the linear algebra operations in the training process. For example, [KLP19]

used the block encoding technique to speed up the matrix multiplication in training a

convolutional neural network (CNN). [AHKZ20] used the quantum inner-product es-

timation to reduce each neuron’s computational cost. One drawback of this approach

975

is that the quantum linear algebra computation incurs some non-negligible errors.

Hence, extra efforts of error analysis are needed to guarantee that the intermediate

errors will not affect the convergence of their algorithms.

Compared with the previous works, the only quantum component of our algo-

rithm is Grover’s search. So, we do not need to worry about the quantum algorithm’s

error in the training process. And we are able to use our fast training framework to

exploit a sparse structure, which makes Grover’s search algorithm run very fast, and

further leads to a truly sub-quadratic training algorithm.

Remark 14.3. We also remark the difference between the two algorithms in this quan-

tum section the first algorithm runs Grover’s search for each data point to find the

activated neurons, while the second one runs Grover’s search for each neuron to find

the data points that make it activated. The advantage of Algorithm 94 is it uses fewer

quantum resources since its search space is of size O(n) and the first algorithm’s search

space is of size O(m).

976

Algorithm 93 Quantum-Classical Hybrid Training Neural Network, Version 1
1: procedure OraclePrep(i ∈ [n], t ∈ [T])
2: Prepare the quantum query oracle Oi,t such that ▷ Each oracle call takes
O(d) time

Oi,t : |r⟩ |0⟩ 7→
{
|r⟩ |1⟩ if wr(t)⊤xi > b,

|r⟩ |0⟩ otherwise.

3: end procedure
4: procedure QTrainingAlgorithmI({xi}i∈[n], {yi}i∈[n], n,m, d) ▷

Corollary 14.33
5: Sample w(0) and a according to def. 14.2
6: b← √0.4 logm.
7: for t = 0→ T do
8: /*Quantum part*/
9: for i = 1→ n do

10: Oi,t ← OraclePrep(i, t)
11: Use Grover’s search with oracle Oi,t to find the set Si,fire ⊂ [m]

12: ▷ It takes Õ(
√
m · ki,t · d) time

13: end for
14: /*Classical part*/
15: for i = 1→ n do
16: u(t)i ← 1√

m

∑
r∈Si,fire arσb(wr(t)

⊤xi) ▷ It takes O(d · ki,t) time
17: end for
18: for i = 1→ n do
19: for r ∈ Si,fire do
20: Pi,r ← 1√

m
arσ

′
b(wr(t)

⊤xi)
21: end for
22: end for
23: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
24: ∆W ←MP ▷ ∆W ∈ Rd×m, it takes O(d · nnz(P)) time
25: W (t+ 1)← W (t)− η ·∆W .
26: end for
27: return W
28: end procedure

977

Algorithm 94 Quantum-Classical Hybrid Training Neural Network, Version 2.
1: procedure QTrainingAlgorithmII({xi}i∈[n], {yi}i∈[n],n,m,d) ▷

Corollary 14.33
2: Sample w(0) and a according to def. 14.2
3: b← √0.4 logm.
4: /*Initialize S̃r,fire and Si,fire */ ▷ It takes

∑m
r=1 Õ((nk̃r,t)

1/2d) ≤ O(m9/10nd)
time in total.

5: S̃r,fire ← ∅ for r ∈ [m].
6: Si,fire ← ∅ for i ∈ [n].
7: for r = 1→ m do
8: S̃r,fire ← use Grover’s serach to find all i ∈ [n] s.t. σb(wr(1)⊤xi) ̸= 0.
9: for i ∈ S̃r,fire do

10: Si,fire.Add(r)
11: end for
12: end for
13: /*Iterative step*/
14: for t = 0→ T do
15: for i = 1→ n do
16: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)⊤xi) ▷ It takes O(d · ki,t) time

17: end for
18: P ← 0n×m ▷ P ∈ Rn×m

19: for i = 1→ n do
20: for r ∈ Si,fire do
21: Pi,r ← 1√

m
ar · σ′b(wr(t)⊤xi)

22: end for
23: end for
24: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
25: ∆W ←MP ▷ ∆W ∈ Rd×m, it takes O(m4/5nd) time
26: W (t+ 1)← W (t)− η ·∆W .
27: /*Update S̃r,fire and Si,fire step*/ ▷ It takes Õ(m9/10nd) time in total
28: S[n],fire ← ∪i∈[n]Si,fire
29: for r ∈ S[n],fire do
30: for i ∈ S̃r,fire do ▷ It takes O(k̃r,t) time
31: Si,fire.Del(r)
32: end for
33: S̃r,fire ← use Grover’s search to find all i ∈ [n] s.t. σb(wr(t+1)⊤xi) ̸= 0.

34: for i ∈ S̃r,fire do ▷ It takes O(k̃r,t+1) time
35: Si,fire.Add(r)
36: end for
37: end for
38: end for
39: return W ▷ W ∈ Rd×m

40: end procedure

978

We first state a famous result about the quadratic quantum speedup for the

unstructured search problem using Grover’s search algorithm.

Theorem 14.34 (Grover’s search algorithm [Gro96, BHMT02]). Given access to the

evaluation oracle for an unknown function f : [n] → {0, 1} such that |f−1(1)| = k

for some unknown number k ≤ n, we can find all i’s in f−1(1) in Õ(
√
nk)-time

quantumly.

Lemma 14.35 (Running time). For t = 0, 1, . . . , T , the time complexity of the t-th

iteration in Algorithm 93 is

Õ
(
nd
√
m ·max

i∈[n]

√
ki,t

)
,

where ki,t = |Si,fire(t)|.

Proof. We first consider the quantum part of the algorithm, which is dominated by

the for-loop at Line 9. For each i ∈ [n], we need to find the set Si,fire(t) by Grover’s

search, which takes Õ(
√
mki,t · Toracle) time. In our case, each oracle call takes O(d)

time. Hence, the quantum part’s running time is

Õ
(n∑

i=1

√
mki,t · d

)
= Õ

(
nd
√
m ·max

i∈[n]

√
ki,t

)
.

Then, consider the classical part of the algorithm. Since we already get the

sets Si,fire, the for-loop at Line 15 takes O(ktd) time, and the for-loop at Line 18 takes

O(kt) time, where kt =
∑n

i=1 ki,t ≤ n · maxi∈[n] ki,t. Then, at Line 24, we compute

the matrix product Xdiag(y − u(t))P . It’s easy to see that M = Xdiag(y − u(t))

can be computed in time O(nd). Since P is a sparse matrix, MP can be computed

in O(d · nnz(P)) = O(dkt) time. Namely, we maintain a data structure for all the

non-zero entries of P . Then calculate each row of MP in time O(nnz(P)). Hence,

the total running time of the classical part is O(nd ·maxi∈[n] ki,t).

Since ki,t ≤ m for all i ∈ [n], the running time per iteration of Algorithm 93

is Õ(nd
√
m ·maxi∈[n]

√
ki,t), which completes the proof of the lemma.

979

The following lemma proves the running time of Algorithm 94.

Lemma 14.36. For t = 0, 1, . . . , T , the time complexity of the t-th iteration in Algo-

rithm 94 is

Õ
(√

nd ·
m∑

r=1

√
k̃r,t

)
,

where k̃r,t = |S̃r,fire| at time t.

Proof. For the quantum part, the difference is at Line 8, where we use Grover’s search

to find the data points such that the r-th neuron is activated. By Theorem 7.5, it

takes Õ((nk̃r,0)1/2)-time quantumly. And at Line 33, we re-compute S̃r,fire, which takes

Õ((nk̃r,t+1)
1/2)-time quantumly. Thus, the quantum running time of Algorithm 94 is

Õ(
∑

r∈[m](nk̃r,t)
1/2) per iteration.

The classical part is quite similar to Algorithm 92, which takesO(nd·maxi∈[n] ki,t)-

time per iteration.

Therefore, the cost per iteration is Õ(
∑

r∈[m](nk̃r,t)
1/2), and the lemma is then

proved.

Combining Lemma 14.35 and Lemma 14.36 proves the main result of this

section:

Proof of Corollary 14.33. In Section 14.12, we prove that ki,t = m4/5 with high prob-

ability for all i ∈ [n] if we take b =
√
0.4 logm. Hence, by Lemma 14.35, each iteration

in Algorithm 93 takes

Õ
(
nd
√
m ·max

i∈[n]

√
ki,t

)
= Õ

(
ndm9/10

)

980

time in quantum. On the other hand, by Lemma 14.36, each iteration in Algorithm 94

takes quantum time

Õ
(√

nd
∑

r∈[m]

√
k̃r,t

)
≤ Õ

(√
nd
√
m
∑

r∈[m]

k̃r,t

)
(Cauchy-Schwartz inequality.)

= Õ
(√

nd
√
m
(∑

i∈[n]

ki,t
)1/2)

= Õ
(
ndm9/10

)
,

where the second step is by
∑

r∈[m] k̃r,t =
∑

i∈[n] ki,t, which completes the proof of the

corollary.

14.15 More Efficient Data Structures

The classical training algorithms introduced in this chapter employ the half-

space reporting data structures [AEM92], which have very slow pre-processing and are

very complicated to implement in practice. In this section, we provide two alternatives

that are much simpler with less pre-processing time. In addition, we also prove a fine-

grained hardness result showing that our algorithms are nearly optimal.

We first identify the following dynamic algorithms problem, which we prove

appears as a key subroutine of the training process.

Definition 14.10 (Dynamic Detection of Firing Neurons (DDFN)). Given two set

of points X = {x1, . . . , xn} ⊂ Zd, Y = {y1, . . . , ym} ⊂ Zd and a threshold b ∈ R,

design a data structure to support the following operations:

• Update(j ∈ [m], z ∈ Zd), set yj to z

• Query(), either output the set

Q = {(i, j) ∈ [n]× [m] | ⟨xi, yj⟩ ≥ b},

or report that |Q| > m4/5n.

981

The main technical result of this section is a data structure for solving DDFN

withO(mnd)-time for preprocessing, Õ(nd)-time per update, andO(min{|Q|,m4/5n})-
time per query.

In Section 14.15.1, we introduce our data structures. In Section 14.15.2,

we show how these data structures help neural network training. Finally, in Sec-

tion 14.15.3, we prove our fine-grained lower bound for DDFN.

14.15.1 Correlation tree data structure

In this section, we consider a neural network 2NN(m, b) (Definition 14.1) with

n data points. We let {w1, · · · , wm} ⊂ Rd be the weights, {x1, · · · , xn} ⊂ Rd be the

data points, and {(wr, xi)}r∈[m],i∈[n] ⊂ Rm+n be the weight-data pairs.

We propose two data structures: Correlation DTree and Correlation WTree.

For the DTree data structure, it contains n binary trees indexed by n data points and

supports the following operations:

• Initialize It takes data points {x1, · · · , xn} ⊂ Rd and weights {w1, · · · , wm} ⊂
Rd as input and compute inner products of all weight-data pairs (wr, xi). It

uses these inner products to create n different trees. For the i-th tree based on

data point xi, it is constructed from m leaf nodes ⟨wr, xi⟩, r ∈ [m] and satisfies

the property that the value of parent node is the maximum value of its child

nodes.

• Update It takes a new weight z ∈ Rd and an index r ∈ [m] as input. For the

i-th tree, it calculate the new inner product ⟨z, xi⟩ and stores the value into

the r-th leaf node. Then it compares the new value with its parent node. It

replaces parent node with new value if it is larger and continue this comparing

process. Otherwise it stops. Repeat the same operation for all n trees.

• Query It takes a threshold b ∈ R≥0 and an index i ∈ [n] as input. Starting

from the root of the i-th tree, it checks if its value is greater than threshold b.

982

If no, search ends. If yes, it treats the child nodes as the root of a new subtree

and repeat this searching process until stop. Then it finds all indices r ∈ [m]

that satisfy {wr : sgn(⟨wr, xi⟩ − b) ≥ 0}.

Algorithm 95 Correlation DTree Data Structure
1: data structure CorrelationDTree
2: procedures:
3: Init(S ⊂ Rd,W ⊂ Rd, n,m, d) ▷ Initialize the data structure via building n trees
4: Query(i, b) ▷ i ∈ [n], b ∈ R. Output the set {r ∈ [m] : sgn(⟨wr, xi⟩ − b) ≥ 0}
5: Update(x, i) ▷ Update the i’th point in Rd with x
6: end data structure

For the WTree data structure, it contains m binary trees indexed by m weights

and supports the following operations:

• Initialize Similar to DTree, it takes data points {x1, · · · , xn} ⊂ Rd and weights

{w1, · · · , wm} ⊂ Rd as input and compute inner products of all weight-data pairs

(wr, xi). It uses these inner products to create nm different trees. For the r-th

tree based on weight wi, it is constructed from n leaf nodes ⟨wr, xi⟩, i ∈ [n] and

satisfies the property that the value of parent node is the maximum value of its

child nodes.

• Update It takes a new weight z ∈ Rd and an index r ∈ [m] as input. Then it

re-constructs the r-th tree with weight z.

• Query It takes a threshold b ∈ R≥0 and an index r ∈ [m] as input. Starting

from the root of the r-th tree, it checks if its value is greater than threshold b.

If no, search ends. If yes, it treats the child nodes as the root of a new subtree

and repeat this searching process until stop. Then it finds all indices i ∈ [n]

that satisfy {wr : sgn(⟨wr, xi⟩ − b) ≥ 0}.

Below, we provide the details of the DTree and WTree data structures.

983

Algorithm 96 Correlation WTree Data Structure
1: data structure CorrelationWTree
2: procedures:
3: Init(S ⊂ Rd,W ⊂ Rd, n,m, d) ▷ Initialize the data structure via building m

trees
4: Query(r, b) ▷ r ∈ [m], b ∈ R. Output the set {i ∈ [n] : sgn(⟨wr, xi⟩ − b) ≥ 0}
5: Update(w, r) ▷ Update the r’th point in Rd with w
6: end data structure

14.15.1.1 Correlation DTree data structure

We start by stating the main theorem of correlation DTree data structure.

The pseudocodes are presented in Algorithms 97 and 98.

Theorem 14.37 (Correlation DTree data structure). There exists a data structure

with the following procedures:

• Init({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N).

Given a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional

space, it preprocesses in time O(nmd)

• Update(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr
with z in time O(n · (d+ logm))

• Query(i ∈ [n], τ ∈ R). Given an index i indicating data point xi and a threshold

τ , it finds all index r ∈ [m] such that ⟨wr, xi⟩ > τ in time O(|S̃(τ)| · logm),

where S̃(τ) := {r : ⟨wr, xi⟩ > τ}

984

Algorithm 97 Correlation DTree data structure
1: data structure CorrelationDTree ▷ Theorem 14.37
2: members
3: W ∈ Rm×d (m weight vectors)
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , Tn ▷ n binary search trees
6: end members
7: public:
8: procedure Init(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷

Lemma 14.38
9: for i = 1→ n do

10: xi ← xi
11: end for
12: for j = 1→ m do
13: wj ← wj
14: end for
15: for i = 1→ n do ▷ for data point, we create a tree
16: for j = 1→ m do
17: uj ← ⟨xi, wj⟩
18: end for
19: Ti ←MakeMaxTree(u1, · · · , um) ▷ Each node stores the maximum

value for his two children, Algorithm 99
20: end for
21: end procedure
22: procedure Update(z ∈ Rd, r ∈ [m]) ▷ Lemma 14.39
23: wr ← z
24: for i = 1→ n do
25: l← the l-th leaf of tree Ti
26: l.value = ⟨z, xi⟩
27: while l is not root do
28: p ← parent of l
29: p.value← max{p.value, l.value}
30: l← p
31: end while
32: end for
33: end procedure
34: end data structure

985

Algorithm 98 Correlation DTrees
1: data structure CorrelationDTree ▷ Theorem 14.37
2: public:
3: procedure Query(i ∈ [n], τ ∈ R≥0) ▷ Lemma 14.40
4: return Find(τ, root(Ti))
5: end procedure
6:
7: private:
8: procedure Find(τ ∈ R≥0, r ∈ T)
9: if r is leaf then

10: return r
11: else
12: r1 ← left child of r, r2 ← right child of r
13: if r1.value ≥ τ then
14: S1 ←Find(τ, r1)
15: end if
16: if r2.value ≥ τ then
17: S2 ←Find(τ, r2)
18: end if
19: end if
20: return S1 ∪ S2

21: end procedure
22: end data structure

Running time for CorrelationDTree Then, we prove the running time of

Init, Update, and Query. We start by showing the running time of Init.

Lemma 14.38 (Running time of Init). Given a series of weights {w1, w2, · · · , wm} ⊂
Rd and datas {x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd).

Proof. The Init consists of two independent forloop and two recursive forloops. The

first forloop (start from line 9) has n interations, which takes O(n) time. The second

forloop (start from line 12) has m iterations, which takes O(m) time. Now we consider

the recursive forloop. The outer loop (line 15) has n iterations. In inner loop has m

iterations. In each iteration of the inner loop, line 17 takes O(d) time. Line 19 takes

986

Algorithm 99 Constructing a tree satisfying the property that the value of the
parent node is the max value of its child node.
1: procedure MakeMaxTreeInner(r1, · · · , rn)
2: if n = 1 then
3: return r1
4: else
5: for i ∈ [n/2] do
6: Create node r′i
7: if r2i−1.value > r2i.value then
8: r′i ← r2i−1
9: else

10: r′i ← r2i
11: end if
12: Insert r2i−1 as left child
13: Insert r2i as right child
14: end for
15: ▷ If n is odd, create a parent node for the last node.
16: return MakeMaxTreeInner({r′1, · · · , r′i})
17: end if
18: end procedure
19: procedure MakeMaxTree(u1, · · · , un)
20: for i ∈ [n] do
21: Create nodes ri
22: ri.value ← ui
23: end for
24: return MakeMaxTreeInner(r1, · · · , rn)
25: end procedure

O(m) time. Putting it all together, the running time of Init is

O(n+m+ n(md+m)) = O(nmd).

Thus, we complete the proof.

Next, we analyze the running time of Update.

Lemma 14.39 (Running time of Update). Given a weight z ∈ Rd and index j ∈ [m],

it updates weight wj with z in time O(n · (d+ logm)).

987

Proof. The running time of Update mainly comes from the forloop (line 24), which

consists of n iterations. In each iteration, line 25 takes O(logm) time, line 26 takes

O(d) time and the while loop takes O(logm) time since it go through a path bottom

up. Putting it together, the running time of Update is O(n(d+ logm)).

Finally, we state the running time for Query procedure.

Lemma 14.40 (Running time of Query). Given a query q ∈ Rd and a threshold

τ > 0, it finds all index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where

S(τ) := {i : ⟨wi, q⟩ > τ}.

Proof. The running time comes from Find with input τ and root(Ti). In Find, we

start from the root node r and find indices in a recursive way. The Init guarantees

that for a node r satisfying r.value > τ , the sub-tree with root r must contains a

leaf whose value is greater than τ If not satisfied, all the values of the nodes in the

sub-tree with root r is less thanτ . This guarantees that all the paths it search does

not have any branches that leads to the leaf we don’t want and it will report all the

indices i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is O(log n), the running

time of Query is O(|S(τ)| · log n)

14.15.1.2 Correlation WTree data structure

In this section, we state the main theorem of correlation WTree data structure.

The pseudocodes are presented in Algorithms 100 and 101.

Theorem 14.41 (Correlation WTree data structure). There exists a data structure

with the following procedures:

• Init({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd, n ∈ N,m ∈ N, d ∈ N).

Given a series of weights w1, w2, · · · , wm and datas x1, x2, · · · , xn in d-dimensional

space, it preprocesses in time O(nmd)

988

• Update(z ∈ Rd, r ∈ [m]). Given a weight z and index r, it updates weight wr
with z in time O(nd)

• Query(r ∈ [m], τ ∈ R). Given an index r indicating weight wr and a threshold

τ , it finds all index i ∈ [n] such that ⟨wr, xi⟩ > τ in time O(|S(τ)| · logm),

where S(τ) := {i : ⟨wr, xi⟩ > τ}

Running time for Correlation WTree Then, we prove the running time of Init,

Update and Query. As in DTree, we first show the running time for Init.

Lemma 14.42 (Running time of Init). Given a series of weights {w1, w2, · · · , wm} ⊂
Rd and datas {x1, x2, · · · , xn} ⊂ Rd, it preprocesses in time O(nmd)

Proof. The Init consists of two independent forloop and two recursive forloops. The

first forloop (start from line 10) has n interations, which takes O(n) time. The second

forloop (start from line 13) has m iterations, which takes O(m) time. Now we consider

the recursive forloop. The outer loop (line 16) has m iterations. In inner loop has n

iterations. In each iteration of the inner loop, line 18 takes O(d) time. Line 20 takes

O(n) time. Putting it all together, the running time of Init is

O(n+m+m(nd+ n)) = O(nmd).

Thus, we complete the proof.

Next, we turn to the running time for Update.

Lemma 14.43 (Running time of Update). Given a weight z ∈ Rd and index r ∈ [m],

it updates weight wj with z in time O(nd).

Proof. In this procedure, it generates a new tree for weight wr with n leaves, which

takes O(nd) time. Thus, we complete the proof.

Finally, we present the running time of Query.

989

Algorithm 100 Correlation WTree data structure
1: data structure CorrelationWTree ▷ Theorem 14.41
2: members
3: W ∈ Rm×d (m weight vectors)
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , TM ▷ m binary search trees
6: end members
7:
8: public:
9: procedure Init(w1, w2, · · · , wm ∈ Rd,m, x1, x2, · · · , xn ∈ Rd, n, m, d) ▷

Lemma 14.42
10: for i = 1→ n do
11: xi ← xi
12: end for
13: for j = 1→ m do
14: wj ← wj
15: end for
16: for i = 1→ m do ▷ for weight, we create a tree
17: for j = 1→ n do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ←MakeTree(u1, · · · , un) ▷ Each node stores the maximum value for

his two children
21: end for
22: end procedure
23: procedure Update(z ∈ Rd, r ∈ [m]) ▷ Lemma 14.43
24: wr ← z
25: for j = 1→ n do
26: uj ← ⟨xj, wr⟩
27: Ti ←MakeTree(u1, · · · , un) ▷ Each node stores the maximum value for

his two children
28: end for
29: end procedure
30: end data structure

Lemma 14.44 (Running time of Query). Given a query q ∈ Rd and a threshold

τ > 0, it finds all index i ∈ [n] such that ⟨wi, q⟩ > τ in time O(|S(τ)| · logm), where

S(τ) := {i : ⟨wi, q⟩ > τ}.

990

Algorithm 101 Correlation WTree
1: data structure CorrelationWTree
2: public:
3: procedure Query(r ∈ [m], τ ∈ R≥0) ▷ Lemma 14.44
4: return Find(τ, root(Tr))
5: end procedure
6:
7: private:
8: procedure Find(τ ∈ R≥0, r ∈ T)
9: if r is leaf then

10: return r
11: else
12: r1 ← left child of r, r2 ← right child of r
13: if r1.value ≥ τ then
14: S1 ←Find(τ, r1)
15: end if
16: if r2.value ≥ τ then
17: S2 ←Find(τ, r2)
18: end if
19: end if
20: return S1 ∪ S2

21: end procedure
22: end data structure

Proof. The running time comes from Find with input τ and root(Ti). In Find, we

start from the root node r and find indices in a recursive way. The Init guarantees

that for a node r satisfying r.value > τ , the sub-tree with root r must contain a

leaf whose value is greater than τ If not satisfied, all the values of the nodes in the

sub-tree with root r is less thanτ . This guarantees that all the paths it search does

not have any branches that lead to the leaf we don’t want and it will report all the

index i satisfying ⟨wi, q⟩ > 0. Note that the depth of T is O(log n), the running time

of Query is O(|S(τ)| · log n)

991

14.15.2 Training algorithms with correlation tree data structures

In this section, we show two neural network training algorithms using DTree

and WTree data structures.

14.15.2.1 Weights Preprocessing

We first show our training algorithm using DTree, which preprocesses weights

for each data point. The pseudocode is in Algorithm 102.

Theorem 14.45. Given n data points in Rd. Running gradient descent algorithm

(Algorithm 102) on 2NN(m, b =
√
0.4 logm) (Definition 14.1) the expected cost per

iteration of the gradient descent algorithm is

O(m4/5n2d)

Proof. The per-step time complexity is

T = T1 + T2 + T3

=
n∑

i=1

TQuery(m, d, ki,t) + TUpdate · | ∪i∈[n] Si,fire(t)|+ d
∑

i∈[n]

ki,t

The first term T1 =
∑n

i=1 TQuery(m, d, ki,t) corresponds to the running time of query-

ing the active neuron set Si,fire(t) for all training samples i ∈ [n]. With the first result

in Theorem 14.37, the complexity is bounded by O(m4/5n logm).

The second term T2 = TUpdate · | ∪i∈[n] Si,fire(t)| corresponds to updating wr

in the high-dimensional search data-structure (Line 28). Again with the first result

in Theorem 14.37, we have TUpdate = O(n(d + logm)). Combining with the fact

that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n] Si,fire(0)| ≤ O(m4/5n), the second term is bounded by

O(m4/5n2d).

The third term is the time complexity of gradient calculation restricted to the

set Si,fire(t). With the bound on
∑

i∈[n] ki,t (Lemma 14.18), we have d
∑

i∈[n] ki,t ≤
O(m4/5nd)

992

Algorithm 102 Training Neural Network via building n trees, where each tree is the
correlation between one data point and all the weights
1: procedure TrainingWithPreprocessWeights({xi}i∈[n], {yi}i∈[n],n,m,d) ▷

Theorem 14.45
2: /*Initialization step*/
3: Sample W (0) and a according to Definition
4: b← √0.4 logm.
5: /*A dynamic data-structure*/
6: CorrelationDTree cdt ▷ Theorem 14.37
7: cdt.Init({xi}i∈[n], {wr(0)}r∈[m], n,m, d) ▷ It takes Tinit(n,m, d) time. Alg. 97
8: /*Iterative step*/
9: for t = 0→ T do

10: /*Forward computation step*/
11: for i = 1→ n do
12: Si,fire ← cdt.Query(i, b) ▷ It takes Tquery(m, ki,t) time. Alg. 98
13: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)

⊤xi) ▷ It takes O(d · ki,t) time
14: end for
15: /*Backward computation step*/
16: P ← 0n×m ▷ P ∈ Rn×m
17: for i = 1→ n do
18: for r ∈ Si,fire do
19: Pi,r ← 1√

m
ar · σ′b(wr(t)⊤xi)

20: end for
21: end for
22: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
23: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P)) time,

nnz(P) = O(nm4/5)
24: W (t+ 1)←W (t)− η ·∆W .
25: /*Update data structure*/
26: Let Q ⊂ [m] where for each r ∈ Q, the ∆W∗,r is not all zeros ▷ |Q| ≤ O(nm4/5)
27: for r ∈ Q do
28: cdt.Update(wr(t+ 1), r) ▷ Alg. 97
29: end for
30: end for
31: return W ▷ W ∈ Rd×m
32: end procedure

Putting them together, we have

T ≤ O(m4/5n logm) +O(m4/5n2d) +O(m4/5nd)

= O(m4/5n2d)

993

Thus, we complete the proof.

14.15.2.2 Data Preprocessing

Now, we describe a similar version of the aforementioned training algorithm,

but it uses WTree to preprocess data points based on weights. The pseudocode is in

Algorithms 103 and 104.

Algorithm 103 Training Neural Network via building m trees, where each tree is
the correlation between one weight and all the data points
1: procedure TrainingWithProcessData({xi}i∈[n], {yi}i∈[n],n,m,d) ▷ Theorem 14.46
2: /*Initialization step*/
3: Sample W (0) and a according to Definition
4: b← √0.4 logm.
5: /*A static data-structure*/
6: CorrelationWTree cwt ▷ Algorithm 97, Part 2 of Theorem 14.37
7: cwt.Init({xi}i∈[n], {wr(0)}r∈[m], n,m, d) ▷ It takes Tinit(n,m, d) time
8: /*Initialize S̃r,fire and Si,fire */
9: ▷ It takes

∑m
r=1 Tquery(n, k̃r,t) = O(m4/5n · log n) time

10: S̃r,fire ← ∅ for r ∈ [m]. ▷ S̃r,fire is the set of samples, for which neuron r fires
11: Si,fire ← ∅ for i ∈ [n]. ▷ Si,fire is the set of neurons, which fire for xi
12: for r = 1→ m do
13: S̃r,fire ← cwt.Query(r, b)
14: for i ∈ S̃r,fire do
15: Si,fire.Add(r)
16: end for
17: end for
18: end procedure

Theorem 14.46. Given n data points in Rd. Running gradient descent algorithm

(Algorithm 103) on 2NN(m, b =
√
0.4 logm), the expected per-iteration running time

of initializing S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] is O(m4/5n·log n). The cost per-iteration

of the training algorithm is O(m4/5n2d).

Proof. We analyze the initialization and training parts separately.

994

Initialization From Line 10 to Line 17, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are

initialized. For each r ∈ [m], we need to query the data structure the set of data

points x’s such that σb(wr(0)⊤x) > 0. Hence the running time of this step is

m∑

r=1

TQuery(n, k̃r,0) = O(
m∑

r=1

k̃r,0 · log n)

= O(
n∑

i=1

ki,0 · log n)

= O(m4/5n · log n)

where the second step follows from
∑m

r=1 k̃r,0 =
∑n

i=1 ki,0.

Training Consider training the neural networkfor T steps. For each step, first

notice that the forward and backward computation parts (Line 6 - Line 18) are the

same as previous algorithm. The time complexity is O(m4/5n).

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 21 -

Line 30) takes O(m4/5nd) time. For each fired neuron r ∈ [m], we first remove the

indices of data in the sets Si,fire, which takes time

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑

r=1

k̃r,t = O(m4/5n)

Then, we find the new set of x’s such that σb(⟨wr(t + 1), x⟩) > 0 by querying the

correlation tree data structure. The total ruunning time for all fired neurons is

∑

r∈∪i∈[n]Si,fire

TUpdate(n, d) + TQuery(n, k̃r,t+1) ≲ m4/5n2(d+ logm) +
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 · log n

= O(m4/5n2d)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training step

takes O(m4/5n2d) time, which completes the proof.

995

14.15.3 Lower bound for Dynamic Detection of Firing Neurons

The goal of this section is to prove the lower bound for Dynamic Detection of

Firing Neurons.

We refer to a theorem about the maximum bichromatic inner product lower

bound in [Che18].

Theorem 14.47 (Maximum bichromatic inner product lower bound, [Che18]). As-

suming SETH, there is a constant c such that any exact algorithm for Z-Max-IPn,d in

dimension d = clog
∗ n requires n2−o(1) time, with vectors of O(log n)-bit entries.

Putting things together, we state the main result for the lower bound for

Dynamic Detection of Firing Neurons.

Theorem 14.48 (Lower Bound for Dynamic Detection of Firing Neurons). Let d =

2O(log∗ n). Unless SETH fails, for any constants c ∈ (0, 1), no data structure can solve

DDFN with less than m1−cnc−o(1)-time per update and m1−cn1+c−o(1)-time per query.

Proof. Without loss of generality, we assume that m > n. Let d = clog
∗m, where c is

defined in Theorem 14.47.

Suppose there exists a data structure that for (m,n, d+1)-sized instance, can

perform updates in m1−cnc−ϵ-time and answer queries in m1−cn1+c−ϵ-time, for some

c ∈ (0, 1) and ϵ ∈ (0, c).

Let X = {x1, . . . , xm} ⊂ Zd, Y = {y1, . . . , ym} ⊂ Zd be a hard instance of

Z-Max-IPm,d problem constructed in Theorem 14.47. For each vector xi (or yj), we

construct a new vector x̃i (or ỹj) in (d + 1)-dimension such that (x̃i)d+1 = −1 and

(ỹj)d+1 = w, where w is a parameter to be chosen later.

Then, we construct k = ⌈m/n⌉ instances of the DDFN problem in Defini-

tion 14.10 as follows:

X̃(i) := {x̃1, . . . , x̃n}, Ỹ (i) := {ỹ1, . . . , ỹm},

996

and b = 0.

We show that the data structures for these instances {(X̃(i), Ỹ (i), b)}i∈[k] can

be used to solve Z-Max-IPn,d(X, Y).

We perform a binary search for the value of Z-Max-IPn,d(X, Y). Note that at

most O(log n) iterations suffice to find the exact answer.

Suppose the current value in the binary search is t ∈ Z. Consider the i-th

instance (X̃(i), Ỹ (i), b) for any i ∈ [k]. We first call Update() to set (ỹj)d+1 = t for

each j ∈ [m]. By the data structure’s guarantee, this step takes O(m ·m1−cnc−ϵ) =

O(m2−cnc−ϵ) time. Then, we call Query(). Notice that

⟨x̃i, ỹj⟩ = ⟨xi, yj⟩ − t ≥ 0 ⇐⇒ ⟨xi, yj⟩ ≥ t.

Hence, Query() will return all pairs of (i, j) such that ⟨xi, yj⟩ ≥ t. This step runs

in O(m1−cn1+c−ϵ)-time. We repeat this process for all k instances. And based on

whether the outputs of all the Query() are empty or not, we know the direction of

the binary search for the next iteration.

Hence, the total running time of each iteration is

O(k · (m2−cnc−ϵ +m1−cn1+c−ϵ))

= O(m3−cnc−ϵ−1 +m2−cnc−ϵ)

≤ O(m2−ϵ),

which follows from the assumption of m ≥ n. Thus, we can solve Z-Max-IPn,d(X, Y)

in Õ(m2−ϵ) < m2−o(1)-time, which contradicts to the lower bound for Z-Max-IPn,d in

Theorem 14.47.

Therefore, no such data structure can exist.

997

Algorithm 104 Training with process data (continue)
1: procedure TrainingWithProcessData({xi}i∈[n], {yi}i∈[n],n,m,d)
2: · · · ▷ Algorithm 103
3: /*Iterative step*/
4: for t = 1→ T do
5: /*Forward computation step*/
6: for i = 1→ n do
7: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)⊤xi) ▷ It takes O(d · ki,t) time

8: end for
9: /*Backward computation step*/

10: P ← 0n×m ▷ P ∈ Rn×m

11: for i = 1→ n do
12: for r ∈ Si,fire do
13: Pi,r ← 1√

m
ar · σ′b(wr(t)⊤xi)

14: end for
15: end for
16: M ← Xdiag(y − u(t)) ▷ M ∈ Rd×n, it takes O(n · d) time
17: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

▷ ∆W ∈ Rd×m, it takes O(d · nnz(P)) time,

nnz(P) = O(nm4/5)
18: W (t+ 1)← W (t)− η ·∆W .
19: /*Update S̃r,fire and Si,fire step*/
20: ▷ It takes O(

∑n
i=1 ki,t +

∑
r∈S[n],fire

Tquery(n, d, k̃r,t+1)) = O(n · log n ·m4/5)

21: S[n],fire ← ∪i∈[n]Si,fire
22: for r ∈ S[n],fire do
23: for i ∈ S̃r,fire do ▷ Removing old fired neuron indices. It takes O(k̃r,t)

time
24: Si,fire.Del(r)
25: end for
26: cwt.Update(wr(t+ 1), r) ▷ It takes Tupdate(n, d) time
27: S̃r,fire ← cwt.Query(r, b) ▷ It takes Tquery(n, d, k̃r,t+1) time
28: for i ∈ S̃r,fire do ▷ Adding new fired neuron indices. It takes O(k̃r,t+1)

time
29: Si,fire.Add(r)
30: end for
31: end for
32: end for
33: return W ▷ W ∈ Rd×m

34: end procedure

998

Chapter 15: Training Multi-Layer
Over-Parameterized Neural Networks

15.1 Introduction

Convex and non-convex optimizations are popular topics across various com-

munities, such as theoretical computer science, operational research, numerical meth-

ods and machine learning. Typically, optimization algorithms comprise of two parts:

the number of iterations (or iteration counts) and the cost per iteration. While reduc-

ing the iteration count is critical [LS14, LSW15], recently, there are more and more

focus on improving the cost per iteration [CLS19, LSZ19, Ye20, BLSS20, JLSW20,

JKL+20, BLL+21, DLY21, JSWZ21]. As the popularity of deep neural networks

grows in the recent year, developing efficient optimization algorithms to train deep

neural networks that can both have a good convergence rate and a fast training time

has been a central topic. From a theoretical point of view, it is highly non-trivial to

prove the most basic algorithm such as gradient descent will converge in training deep

neural networks due to the non-convexity of the architecture. A rich body of works

has been devoted to use the power of over-parametrization for convergence analy-

sis [LL18, JGH18, DZPS19, AZLS19a, AZLS19b, DLL+19]. The key ingredient of

over-parametrization involves using a much wider neural network, where the network

width m = poly(n, d). However, this induces a weight matrix W ∈ Rm×m (except

for the input layer, which is of size m × d). Training the neural network involves

performing matrix-vector products with the m × m matrix per layer, which would

take Θ(m2) time assuming no structures on the weight matrix W and the vector h

being multiplied, and in standard network training, W and h are both dense. Hence,

it is critical to reduce the cost of training per iteration.

We hence ask the following question:

Is it possible to reduce the cost per iteration during the training process to truly

999

subquadratic in m?

In the case of training two-layer over-parametrized neural networks, two in-

teresting results have been obtained by Brand, Peng, Song and Weinstein [BPSW21]

and Song, Yang and Zhang [SYZ21]. However, we note that the setting both of these

papers studied is different from ours, specifically,

• In the two-layer case, they only need to train a weight matrix of sizem×d. Since

evaluating one data point in d dimensional space for neural network functions

takes O(md) time, the cost per iteration bound they want to match [BPSW21]

or beat [SYZ21] is O(md).

• In the multiple layer case, instead of only having a weight matrix of size m× d,
we will have at least one weight matrix of size m×m. Since evaluating one data

point in d dimensional space for neural network functions takes O(m2) time, the

cost per iteration bound we’re trying to beat in this chapter is O(m2).

In [BPSW21], they provide an algorithm that can adaptively choose the step

size for different gradient directions associated to different data points, which is one

of the goal we want to achieve. However, their method involves forming a Jacobian

matrix of the data, which is of size n×md in the two-layer case, but of size n×m2 in

our case. Hence, their algorithm can only imply an O(nm2) cost per iteration, which

cannot match our subquadratic goal.

In [SYZ21], they beat the nmd barrier for cost per iteration by leveraging

two key ideas: use a shifted ReLU activation and via a sparsity analysis, they show

that only o(m) number of neurons being fired up1. They further use data structure

to preprocess both data points and training weights. However, their algorithm only

works for small d due to the high (exponential) dependence on d in the proprocessing

1Such phenomenon has been observed in practice as in [CMJF+20, CLP+21]

1000

phase. In multiple layer neural network, instead of only having weight matrix with

size m × d, we will have at least one weight matrix with size m × m, this directly

translates to a high dependence on m in the proprocessing phase. Therefore, the

techniques presented in [SYZ21] cannot give n · o(m2) cost per iteration.

In this chapter, we take the first step to break the m2 barrier on cost per

iteration for training multiple layer over-parametrized neural networks.

15.1.1 Our result

Our main result can be summarized in the following three theorems, with one

analyzing the convergence behavior of a general Gram-based optimization framework,

one designing an efficient algorithm to realize the subqudratic cost per iteration, and

the third is a novel algorithm to solve tensor-based regression in high precision and

fast, which is a key step in our meta algorithm.

Throughout this chapter, we will use n to denote the number of training data

points, d to denote the dimension of input data points, m to denote the width of the

network and L to denote the number of layers of the network. We use λL to denote

the smallest eigenvalue of the neural tangent kernel induced by our neural network.

We use ft ∈ Rn to denote the prediction of neural network at time t.

Our first theorem demonstrates the fast convergence rate of our algorithm.

Theorem 15.1 (Convergence, informal version of Theorem 15.32). Suppose the width

of the neural network satisfies m ≥ poly(n, L, λL), then there exists an algorithm

(Algorithm 105) such that, over the randomness of initialization of the network and

the algorithm, with probability at least 1− e−Ω(log2 n), we have

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2.

The above theorem establishes the linear convergence behavior of our method.

However, compared to one-hidden layer case, our analysis is much more sophisti-

1001

cated since we have to carefully control the probability so that it does not blow up

exponentially with respect to the number of layers.

The next theorem concerns the cost per iteration of our algorithm.

Theorem 15.2 (Runtime, informal version of Theorem 15.5). There exists a ran-

domized algorithm (Algorithm 105) that trains a multi-layer neural network of width

m with the cost per training iteration being

Õ(nm2−Ω(1)).

We improve the overall training time of multi-layer over-parametrized networks

from Tinit + T · Õ(nm2) to Tinit + T · õ(nm2), where Tinit is the initialization time

of training, typically takes O(nm2). As we have argued before, multi-layer over-

parametrized networks require m to be in the order of n4, hence improving the cost

per iteration from quadratic to subquadratic is an important gain in speeding up

training. Its advantage is even more evident when one seeks a high precision solution,

and hence the number of iterations T is large.

We highlight that it is non-trivial to obtain a subquadratic running time per

iteration: If not handled properly, computing the matrix-vector product with weight

matrices will take O(m2) time! This means that even for method such as gradient

descent, it is not clear how to achieve a subquadratic running time, since one has to

multiply the weight matrix with a vector in both forward evaluation and backward

computation. In our case, we also have a Jacobian matrix of size n×m2, so forming

it naively will cost O(nm2) time, which is prohibitively large. Finally, note that the

update matrix is also an m ×m matrix. In order to circumvent these problems, we

exploit the fact that the gradient is of low rank (rank n), hence one can compute a

rank-n factorization and use it to support fast matrix-vector product. We also ob-

serve that each row of the Jacobian matrix can be formulated as a tensor product of

two vectors, therefore we can make use of fast randomized linear algebra to approxi-

mate the tensor product efficiently. As a byproduct, we have the following technical

theorem:

1002

Theorem 15.3 (Fast Tensor Regression, informal version of Theorem 15.17). Given

two n × m matrices U and V with m ≫ n and a target vector c ∈ Rn. Let J =

[vec(u1v
⊤
1)
⊤, . . . , vec(unv

⊤
n)
⊤] ∈ Rn×m2 where ui is the i-th row of matrix U ∀i ∈ [n].

There is a randomized algorithm that takes Õ(nm + n2(log(κ/ϵ) + log(m/δ)) + nω)

time and outputs a vector x̂ ∈ Rn such that

∥JJ⊤x̂− c∥2 ≤ ϵ∥c∥2

holds with probability at least 1− δ, and κ is the condition number of J .

From a high level, the algorithm proceeds as follows: given matrices U and V ,

it forms an approximation J̃ ∈ Rn×n log(m/δ), where each row is generated by applying

fast tensor sketching technique to ui and vi ([AKK+20]). Then, it uses another

sketching matrix for J̃ to obtain a good preconditioner R for J̃ . Subsequently, it runs

a gradient descent to solve the regression.

To understand this runtime better, we note that nm term is the size of matrices

U and V , hence reading the entries from these matrices will take at least O(nm)

time. The algorithm then uses tensor-based sketching techniques ([AKK+20]) to

squash length m2 tensors to length O(n log(m/ϵδ)). All subsequent operations are

performed on these much smaller vectors. Finally, computing the preconditioner takes

Õ(nω) time2, and running the gradient descent takes Õ(n2 log(κ/ϵ)) time.

15.1.2 Related Work

Convex and Non-Convex Optimization. In convex optimization problems, such

as linear programming ([Vai89b, DS08, LS14, CLS19, BLSS20, Ye20, SY21, DLY21,

JSWZ21]), empirical risk minimization ([LSZ19]), cutting plane method ([JLSW20]),

maximum bipartite matching and max-flow [BLL+21, GLP21, vdBGJ+22, AMV21]

and semi-definite programming ([LSW15, JKL+20, HJS+22]), one typically uses an

2Here ω is the exponent of matrix multiplication [Wil12, LG14, AW21]

1003

algorithm that can dynamic adjust the search direction and step size to reduce the

iteration count. Due to the prohibitively high cost of implementing one step of these

methods, most of these works focus on improving the cost per iteration.

In non-convex setting, there’s a vast body of ongoing works ([MG15, BRB17,

PW17, ABH17, BLH18, CGH+19, ZMG19, BPSW21, YGS+21]) that try to improve

the iteration count and cost per iteration, especially in the setting of training deep

neural network. As shown in [CGH+19], it is possible to exploit the equivalence

between over-parametrized networks and neural tangent kernel to optimize an n ×
n matrix instead of an m2 × m2 matrix, which is an important breakthrough in

gaining speedup for such method. Sketching and sampling-based methods can also

be used to accelerate the computation of inverses of the Hessian matrix ([PW17]). In

spirit, our work resembles most with [CGH+19] and [BPSW21], in the sense that our

optimization also works on an n× n Gram matrix. Our algorithm also makes use of

sketching and sampling, as in [PW17].

Over-parameterized Neural Networks. In the deep learning community, un-

derstanding the geometry and convergence behavior of various optimization algo-

rithms on over-parameterized neural networks has received a lot of attention ([LL18,

JGH18, DZPS19, AZLS19a, AZLS19b, DLL+19, SY19, BPSW21, ZCZG18, CG19,

LXS+19, LZB20, LSS+20, OS20, LZB22, CCZG21, HLSY21, SYZ21]). The seminal

work of [JGH18] initiates the study of neural tangent kernel (NTK), which is a very

useful analytical model in the deep learning theory area. By over-parametrizing the

neural network so that the network width is relatively large (m ≥ Ω(n4)), one can

show that the training dynamic on a neural network is almost the same as that on a

NTK.

Sketching. Using randomized linear algebra to reduce the dimension of the problem

and speedup the algorithms for various problems has been a growing trend in machine

learning community ([Sar06, CW13, Woo14]) due to its wide range of applications

1004

to various tasks, especially the efficient approximation of kernel matrices ([ANW14,

AKK+20, WZ20, SWYZ21]). The standard “Sketch-and-Solve” ([CW13]) paradigm

involves reducing the dimension of the problem via sketching and then using a black-

box for the original problem to gain an edge on computational efficiency. Another

line of work is to use sketching as a preconditioner ([Woo14, BPSW21]) to obtain a

high precision solution.

Roadmap. In Section 15.2, we give a preliminary view of the training setup we

consider in this chapter. In Section 15.2.1, we introduce the notations that will be

used throughout this chapter. In Section 15.2.2, we consider the training setting. In

Section 15.3, we overview the techniques employed in this chapter. In Section 15.3.1,

we examine the algorithmic tools utilized in this chapter to achieve subquadratic

cost per iteration. In Section 15.3.2, we demonstrate various techniques to prove the

convergence of our second-order method. In Section 15.4, we summarize the results

in this chapter and point out some future directions.

15.2 Preliminaries
15.2.1 Notations

For any integer n > 0, let [n] denote the set {1, 2, · · · , n}. Let Pr[·] denote

probability and E[·] denote expectation. We use ∥x∥2 to denote the ℓ2 norm of a

vector x. We use ∥A∥ and ∥A∥F to denote the spectral norm and the Frobenius norm

of matrix A, respectively. We use A⊤ to denote the transpose of matrix A. We use Im
to denote the identity matrix of size m×m. For α being a vector or matrix, we use

∥α∥0 to denote the number of nonzero entries of α. Given a real square matrix A, we

use λmax(A) and λmin(A) to denote its largest and smallest eigenvalues respectively.

Given a real matrix A, we use σmax(A) and σmin(A) to denote its largest and smallest

singular values respectively. We use N(µ, σ2) to denote the Gaussian distribution

with mean µ and variance σ2. We use Õ(f(n)) to denote O(f(n) ·poly log(f(n)). We

1005

use ⟨·, ·⟩ to denote the inner product, when applying to two vectors, this denotes the

standard dot product between two vectors, and when applying to two matrices, this

means ⟨A,B⟩ = tr[A⊤B], i.e., the trace of A⊤B.

15.2.2 Problem setup

Let X ∈ Rm0×n denote the data matrix with n data points and m0 features.

By proper re-scaling, we have ∥xi∥2 = 1 for all i ∈ [n]. Consider an L layer neural

network with one vector a ∈ RmL and L matrices WL ∈ RmL×mL−1 , · · · , W2 ∈ Rm2×m1

and W1 ∈ Rm1×m0 . We will use Wℓ(t) to denote the weight matrix at layer ℓ at time

t, and ∇Wℓ(t) to denote its gradient. We also use W (t) = {W1(t), . . . ,WL(t)} to

denote the collection of weight matrices at time t.

Architecture. We first describe our network architecture. The network con-

sists of L hidden layers, each represented by a weight matrix Wℓ ∈ Rmℓ×mℓ−1 for any

ℓ ∈ [L]. The output layer consists of a vector a ∈ RmL . We define the neural network

prediction function f : Rm0 → R as follows:

f(W,x) = a⊤ϕ(WL(ϕ(· · ·ϕ(W1x)))),

where ϕ : R → R is the (shifted) ReLU activation function (σb(x) = max{x − b, 0})
applied coordinate-wise to a vector.

We measure the loss via the squared-loss function:

L(W) =
1

2

n∑

i=1

(yi − f(W,xi))2.

This is also the objective function for our training.

The prediction function ft : Rm0×n → Rn is defined as

ft(X) =
[
f(W (t), x1) f(W (t), x2) · · · f(W (t), xn)

]⊤
.

Initialization. Our neural networks are initialized as follows:

1006

• For each ℓ ∈ [L], the layer-ℓ’s weight parameter Wℓ(0) ∈ Rmℓ×mℓ−1 is initialized

such that each entry is sampled from N(0, 2
mℓ

).

• Each entry of a is an i.i.d. sample from {−1,+1} uniformly at random.

Gradient. In order to write gradient in an elegant way, we define some

artificial variables:

gi,1 = W1xi, hi,1 = ϕ(W1xi), ∀i ∈ [n]

gi,ℓ = Wℓhi,ℓ−1, hi,ℓ = ϕ(Wℓhi,ℓ−1), ∀i ∈ [n],∀ℓ ∈ [L]\{1} (15.1)

Di,1 = diag
(
ϕ′(W1xi)

)
, ∀i ∈ [n]

Di,ℓ = diag
(
ϕ′(Wℓhi,ℓ−1)

)
, ∀i ∈ [n],∀ℓ ∈ [L]\{1}

Using the definitions of f and h, we have

f(W,xi) = a⊤hi,L, ∈ R, ∀i ∈ [n]

We can compute the gradient of L in terms of Wℓ ∈ Rmℓ×mℓ−1 , for all ℓ ≥ 2

∂L(W)

∂Wℓ

=
n∑

i=1

(f(W,xi)− yi) Di,ℓ︸︷︷︸
mℓ×mℓ

L∏

k=ℓ+1

W⊤
k︸︷︷︸

mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸

mL×1

h⊤i,ℓ−1︸ ︷︷ ︸
1×mℓ−1

(15.2)

Note that the gradient for W1 ∈ Rm1×m0 (recall that m0 = d) is slightly different and

can not be written by general form. By the chain rule, the gradient of the variables

in W1 can be expressed as:

∂L(W)

∂W1

=
n∑

i=1

(f(W,xi)− yi) Di,1︸︷︷︸
m1×m1

L∏

k=2

W⊤
k︸︷︷︸

mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸

mL×1

x⊤i︸︷︷︸
1×m0

(15.3)

It is worth noting that the gradient matrix is of rank n, since it’s a sum of n

rank-1 matrices.

1007

Jacobian. For each layer ℓ ∈ [L] and time t ∈ [T], we define the Jacobian

matrix Jℓ,t ∈ Rn×mℓmℓ−1 via the following formulation:

Jℓ,t :=
[
vec(∂f(W (t),x1)

∂Wℓ(t)
) vec(∂f(W (t),x2)

∂Wℓ(t)
) · · · vec(∂f(W (t),xn)

∂Wℓ(t)
)
]⊤
.

The Gram matrix at layer ℓ and time t is then defined as Gℓ,t = Jℓ,tJ
⊤
ℓ,t ∈ Rn×n

whose (i, j)-th entry is

〈∂f(W (t), xi)

∂Wℓ

,
∂f(W (t), xj)

∂Wℓ

〉
.

15.3 Technique Overview

In this section, we give an overview of the techniques employed in this chapter.

In Section 15.3.1, we showcase our algorithm and explain various techniques being

used to obtain a subquadratic cost per iteration. In Section 15.3.2, we give an overview

of the proof to show the convergence of our algorithm. To give a simpler and cleaner

presentation, we assume mℓ = m for all ℓ ∈ [L].

15.3.1 Subquadratic time

In this section, we study the different techniques being used to achieve the

subquadratic cost per iteration.

We start by demonstrating our algorithm:

1008

Algorithm 105 Informal version of our algorithm.
1: procedure OurAlgorithm(f, {xi, yi}i∈[n]) ▷ Theorem 15.1,15.2
2: /*Initialization*/
3: Initialize Wℓ(0), ∀ℓ ∈ [L]
4: Store hi,L−1 in memory, ∀i ∈ [n] ▷ Takes O(nm2) time
5: for t = 0→ T do
6: /*Forward computation*/
7: vi,L ← hi,L−1,∀i ∈ [n]
8: hi,L ← ϕ((WL(0) + ∆WL)hi,L−1), ∀i ∈ [n] ▷ Takes o(nm2) time
9: Di,L ← diag(hi,L),∀i ∈ [n]

10: ft ← [a⊤h1,L, . . . , a
⊤hn,L]

⊤ ▷ Takes O(nm) time
11: /*Backward computation*/
12: ui,L ← a⊤Di,L

13: Form J̃L,t that approximates JL,t using {ui,L}ni=1, {vi,L}ni=1

14: ▷ Takes Õ(mn) time, J̃L,t ∈ Rn×s where s = Õ(n)

15: Compute gL that approximates (J̃L,tJ̃
⊤
L,t)
−1(ft − y)

16: Form J⊤L,tgℓ via low rank factorization
∑n

i=1 gL,iui,Lv
⊤
i,L

17: Implicitly update ∆WL ← ∆WL +
∑n

i=1 gL,iui,Lv
⊤
i,L

18: end for
19: end procedure

Step 1: Invert Gram by solving regression. The update rule of our algorithm

is given by

WL(t+ 1)← WL(t)− J⊤L,t(JL,tJ⊤L,t)−1(ft − y),

where c is ft − y after proper scaling. Naively forming the Gram matrix JL,tJ⊤L,t will

take O(n2m2) time and inverting it will take O(nω) time. To avoid the quadratic cost

at this step, we instead solve a regression, or a linear system since the Gram matrix

has full rank: find the vector gL,t ∈ Rn such that

∥JL,tJ⊤L,tgL,t − (ft − y)∥22

is minimized. This enables us to utilize the power of sketching to solve the regression

efficiently.

1009

Step 2: Solve Gram regression via preconditioning. In order to solve the

above regression, we adapt the idea of obtaining a good preconditioner via sketching

then apply iterative method to solve it ([BPSW21]). Roughly speaking, we first use

a random matrix S ∈ Rs×m2 that has the subspace embedding property ([Sar06]) to

reduce the number of rows of J⊤, then we run a QR decomposition on matrix SJ⊤.

This gives us a matrix R such that SJ⊤R has orthonormal columns. We then use

gradient descent to optimize the objective ∥JJ⊤Rzt − y∥22. Since S is a subspace

embedding for J⊤, we can make sure that the condition number of the matrix J⊤R is

small (O(1)), hence the gradient descent converges after log(κ/ϵ) iterations, where κ

is the condition number of J . However, in order to implement the gradient descent,

we still need to multiply an m2 × n matrix with a length n vector, in the worst

case this will incur a time of O(nm2). In order to bypass this barrier, we need to

exploit extra structural properties of the Jocobian, which will be demonstrated in the

following steps.

Step 3: Low rank structure of the gradient. Instead of studying Jacobian

directly, we first try to understand the low rank structure of the gradient. Consider
∂f(W,xi)
∂WL

∈ Rm×m, it can be written as (for simplicity, we use hi,0 to denote xi):

∂f(W,xi)

∂WL

= hi,L−1︸ ︷︷ ︸
vi∈Rm×1

a⊤Di,L︸ ︷︷ ︸
u⊤i ∈R1×m

.

This means the gradient is essentially an outer product of two vectors, and hence has

rank one. This has several interesting consequences: for over-parametrized networks,

the gradient is merely of rank n instead of m. When using first-order method such as

gradient descent or stochastic gradient descent, the weight is updated via a low rank

matrix. To some extent, this explains why the weight does not move too far from

initialization in over-parametrized networks when using first-order method to train.

Also, as we will illustrate below, this enables the efficient approximation of Jacobian

matrices and maintenance of the change.

1010

Step 4: Fast approximation of the Jacobian matrix. We now turn our at-

tention to design a fast approximation algorithm to the Jacobian matrix. Recall

that Jacobian matrix JL,t ∈ Rn×m2 is an n ×m2 matrix, therefore writing down the

matrix will take O(nm2) time. However, it is worth noticing that each row of JL,t
is vec(uiv

⊤
i)
⊤, ∀i ∈ [n], or equivalently, ui ◦ vi where ◦ denotes the tensor product

between two vectors. Suppose we are given the collection of {u1, . . . , un} ∈ (Rm)n

and {v1, . . . , vn} ∈ (Rm)n, then we can compute the tensor product ui ◦ vi via tensor-

based sketching techniques, such as TensorSketch ([ANW14, DSSW17, DJS+19]) or

TensorSRHT ([AKK+20, WZ20]) in time nearly linear in m and the targeted sketch-

ing dimension s, in contrast to the naive O(m2) time. Since it suffices to preserve

the length of all vectors in the column space of J⊤L,t, the target dimension s can be

chosen as O(ϵ−2n · poly(log(m/ϵδ))). Use J̃L,t ∈ Rn×s to denote this approximation

of JL,t, we perform the preconditioned gradient descent we described above on this

smaller matrix. This enables to lower the overall cost of the regression step to be

subquadratic in m.

Step 5: Efficient update via low rank factorization. The low rank structure

of the gradient can further be utilized to represent the change on weight matrices ∆W

in a way such that any matrix-vector product involving ∆W can be performed fast.

Let gL ∈ Rn denote the solution to the regression problem posed in Step 1. Note that

by the update rule of our method, we shall use J⊤L,tgL ∈ Rm×m to update the weight

matrix, but writing down the matrix will already take O(m2) time. Therefore, it is

instructive to find a succinct representation for the update. The key observation is

that each column of J⊤L,t is a tensor product of two vectors: ui ◦ vi or equivalently,

uiv
⊤
i . The update matrix can be rewritten as

∑n
i=1 gL,iuiv

⊤
i , and we can use this

representation for the update on the weight, instead of adding it directly. Let

UL :=

| | . . . |

gL,1u1 gL,2u2 . . . gL,nun
| | . . . |

 ∈ Rm×n, VL :=

| | . . . |
v1 v2 . . . vn
| | . . . |

 ∈ Rm×n,

1011

then the update can be represented as ULV ⊤L . Consider multiplying a vector y ∈ Rm

with this representation, we first multiply y with V ⊤L ∈ Rn×m, which takes O(mn)

time. Then we multiply V ⊤L y ∈ Rn with UL ∈ Rm×n which takes O(mn) time. This

drastically reduces the cost of multiplying the weight matrix with a vector from O(m2)

to O(mn).

It is tempting to store all intermediate low rank representations across all

iterations and use them to facilitate matrix-vector product, which incurs a runtime

of O(Tmn). This is fine when T is relatively small, however, if one looks for a high

precision solution which requires a large number of iterations, then T might be too

large and O(Tmn) might be in the order of O(m2). To circumvent this problem, we

design a data structure so that it will exactly compute the m × m change matrix

and update the weight and clean up the cumulative changes. This can be viewed as

a “restart” of the data structure. To choose the correct number of updates before

restarting, we utilize the dual exponent of matrix multiplication α ([GU18]), which

means it takes O(m2+o(1)) time to multiply an m×m by an m×mα matrix. Hence,

we restart the data structure after around mα/n updates. Therefore, we achieve an

amortized o(m2) time, which is invariant even though the number of iterations T

grows larger and larger.

15.3.2 Convergence analysis

In this section, we demonstrate the strategy to prove that our second-order

method achieves a linear convergence rate on the training loss.

Step 1: Initialization. Let W (0) be the random initialization. We first show that

for any data point xi, the initial neural network output f(W (0), xi) = Õ(1). The

analysis draws inspiration from [AZLS19a]. The general idea is, given a fixed unit

length vector x, multiplying it with a random Gaussian matrix W will make sure

that ∥Wx∥22 ≈ 2. Since W is a random Gaussian matrix, applying shifted ReLU

1012

activation gives a random vector with a truncated Gaussian distribution conditioned

on a binomial random variable indicating which neurons are activated. We will end

up with ∥ϕ(Wx)∥2 ≈ 1 as well as ϕ(Wx) being sparse. Inductively applying this

idea to each layer and carefully controlling the error occurring at each layer, we can

show that with good probability, ∥hi,L∥2 is a constant. We conclude the argument

by exploiting the fact that a is a Rademacher random vector so the inner product

⟨a, hi,L⟩ concentrates around ∥hi,L∥2, and hence with good probability, the value of

f(W (0), xi) = Õ(1).

Furthermore, we show that the Gram matrix for the multiple-layer over-

parametrized neural network, which is defined as Jℓ,0J⊤ℓ,0, has a nontrivial minimum

eigenvalue after the initialization. In particular, we adapt the neural tangent kernel

(NTK) for multiple-layer neural networks defined by [DLL+19] into our setting by

analyzing the corresponding Gaussian process with shifted ReLU activation function.

Then, we can prove that with high probability, the least eigenvalue of the initial Gram

matrix is lower bounded by the least eigenvalue of the neural tangent kernel matrix.

Step 2: Small perturbation. The next step is to show that if all weight ma-

trices undergo a small perturbation from initialization (in terms of spectral norm),

then the corresponding Jacobian matrix has not changed too much. As long as the

perturbation is small enough, it is possible to show that the change of the h vector

(in terms of ℓ2 norm) and the consecutive product (in terms of spectral norm) is

also small. Finally, we use the concentration property of Rademacher random vari-

ables and Gaussian random variables to conclude that the change of Jacobian has a

relatively small spectral norm and Frobenious norm.

Step 3: Connect everything via a double induction. Put things together, we

use a double induction argument, where we assume the perturbation of weight matrix

is small and the gap between ft and y is at most 1/3 of the gap between ft−1 and

y. By carefully bounding various terms and exploiting the fact the Jacobian matrix

1013

always has a relative small spectral norm (Õ(
√
n)), we first show that the weights

are not moving too far from the initialization, then use this fact to derive a final

convergence bound for ∥ft − y∥2.

15.4 Discussion and Future Directions

In this chapter, we propose and analyze a second-order method to train multi-

layer over-parametrized neural networks. Our algorithm achieves a linear conver-

gence rate in terms of training loss and achieves a subquadratic (o(m2)) cost per

training iteration. From an analytical perspective, we greatly extend the analysis

of ([AZLS19a]) to our method, coupled with the use of the equivalence between multi-

layer over-parametrized networks and neural tangent kernels ([DLL+19]). From an

algorithmic perspective, we achieve a subquadratic cost per iteration, which is a sig-

nificant improvement from O(m2) time per iteration due to the prohibitively large

network width m. Our algorithm combines various techniques, such as training with

the Gram matrix, solving the Gram regression via sketching-based preconditioning,

fast tensor computation and dimensionality reduction, and low-rank decomposition

of weight updates. Our algorithm is especially valuable when one requires a high

precision solution on training loss, and hence the number of iterations is large.

One of the interesting questions from our work is: is it possible to obtain an

algorithm that has a nearly linear cost per iteration on m as in the case of training

one-hidden layer over-parametrized networks ([BPSW21])? In particular, can this

runtime be achieved under the current best width of multi-layer over-parametrized

networks (m ≥ n8)? We note that the major limitation in our method is the sparsity

of the change of the diagonal matrices (∆D) is directly related to the magnitude

of the change of weights (∥∆W∥). In our analysis of convergence, we go through a

careful double induction argument, which in fact imposes on a lower bound on ∥∆W∥.
It seems to us that, in order to achieve a nearly linear runtime, one has to adapt a

different analytical framework or approach the problem from a different perspective.

1014

A related question is, how can we maintain the changes of weight more ef-

ficiently? In our work, we achieve speedup in the neural network training process

by observing that the change of the weights are small in each iteration. Similar

phenomenon also appears in some classical optimization problem (e.g., solving lin-

ear program [CLS19, JSWZ21] and solving semi-definite program [JKL+20]) and they

achieve further speedup by using lazy update and amortization techniques to compute

the weight changes, or using more complicated data structure to maintain the changes

of the weight changes. Can we adapt their techniques to neural network training?

An orthogonal direction to maintain the change is to design an initialization setup

such that while we still have enough randomness to obtain provable guarantees, the

matrix-vector product with the initial weight matrix can be performed faster than

O(m2) by sparsifying the Gaussian matrix as in [DLPM21] or imposing extra struc-

tural assumption such as using circulant Gaussian [RRT12, NN13, KMR14].

Another question concerns activation functions. In this chapter, we consider

the shifted ReLU activation and design our algorithm and analysis around its proper-

ties. Is it possible to generalize our algorithm and analysis to various other activation

functions, such as sigmoid, tanh or leaky ReLU? If one chooses a smooth activation,

can we get a better result in terms of convergence rate? Can we leverage this structure

to design faster algorithms?

Finally, the network architecture considered in this chapter is the standard

feedforward network. Is it possible to extend our analysis and algorithm to other archi-

tectures, such as recurrent neural networks (RNN)? For RNN, the weight matrices for

each layer are the same. Hence it is trickier to analyze the training dynamics on such

networks. Though the convergence of the first-order method on over-parametrized

multi-layer RNN has been established, it is unclear whether such analysis can be

extended to our method.

Roadmap. In Section 15.5, we remind readers with the notations and some prob-

ability tools. In Section 15.6, we illustrate the complete version of our algorithm and

1015

give a runtime analysis of it. In Section 15.7, we design a simple low rank mainte-

nance data structure and use it to efficiently implement matrix-vector product. In

Section 15.8, we introduce an efficient regression solver handling our Jacobian and

Gram regression. In Section 15.9, we study the spectral property of the Gram matrix

at each layer and connects it with multi-layer neural tangent kernels. In Section 15.10,

we analyze the convergence of our algorithm by using some heavy machinery such as

structural analysis of the gradient and a careful double induction. In Section 15.11,

we give a detailed proof of one technical lemma.

15.5 Preliminaries

In this section, we introduce notations that will be used throughout the rest

of the chapter and a technical tool that will be heavily exploited in the later proofs.

Notations. For any n ∈ N+, let [n] denote the set {1, 2, · · · , n}. We use E[·] for

expectation and Pr[·] for probability. For any vector x ∈ Rd, we use ∥x∥2 for the ℓ2
norm of a vector x. For any matrix A ∈ Rm×m, We use ∥A∥ for the spectral norm

of matrix A, i.e., ∥A∥ = maxi∈[m]{|λi(A)} where λi(A) is the i-th eigenvalue. We use

∥A∥F for the Frobenius norm of A. For any A ∈ Rn×m, we define A⊤ ∈ Rm×n to be

the transpose of A. We use Im for the identity matrix of size m ×m. For matrix A

or vector x, ∥A∥0, ∥x∥0 denote the number of nonzero entries of A and x respectively.

Note that ∥ · ∥0 is a semi-norm since it satisfies triangle inequality. Given a real

square matrix A, we use λmax(A) and λmin(A) for its largest and smallest eigenvalues

respectively. Given a real matrix A, we use σmax(A) and σmin(A) for its largest and

smallest singular values respectively. We use N(µ, σ2) for the Gaussian distribution

with mean µ and variance σ2. We use Õ(f(n)) for O(f(n) · poly log(f(n)). Let ⟨·, ·⟩
be the inner product between two vectors or two matrices. When applying it to two

vectors, this means the standard dot product between two vectors, and when applying

to two matrices, this means ⟨A,B⟩ = tr[A⊤B] where tr[A] denote the trace of matrix

1016

A. We use x ◦ y = vec(xy⊤) for the tensor product between two conforming vectors

x and y.

Fact 15.4 (Minimum eigenvalue of Hadamard product matrices, [Sch11]). Let A,B ∈
Rn×n be two PSD matrices. Then, we have

λmin(A⊙B) ≥ min
i∈[n]

(B)i,i · λmin(A).

15.6 Complete Algorithm and Its Runtime Analysis

In this section, we first present our complete algorithm, then we analyze its

running time. We show that as long as we use the shifted ReLU activation so that

the number of activated neurons is sparse, then all our operations can be realized in

subquadratic time.

Algorithm 106 Training last layer.

1: procedure CompleteAlgorithm(X ∈ Rd×n, y ∈ Rn) ▷ Theorem 15.5
2: /*Initialization*/
3: Initialize Wℓ(0), ∀ℓ ∈ [L]
4: Compute hi,ℓ for ℓ ∈ [L− 1] ▷ Takes O(nm2L) time
5: Store hi,L−1 in memory, ∀i ∈ [n]
6: LowRankMaintenance LMR ▷ Algorithm 107
7: LMR.Init({W1(0) . . . ,WL(0)})
8: for t = 0→ T do
9: /*Forward computation*/

10: vi,L ← hi,L−1,∀i ∈ [n]
11: gi,L ← LMR.Query(L, hi,L−1),∀i ∈ [n] ▷ Takes o(nm2) time
12: hi,L ← ϕ(gi,L),∀i ∈ [n] ▷ hi,L is sparse
13: Di,L ← diag(ϕ′(gi,L)),∀i ∈ [n] ▷ Di,L is sparse
14: ft ← [a⊤h1,L, . . . , a

⊤hn,L]
⊤ ▷ Takes O(nm) time

15: /*Backward computation*/
16: ui,L ← a⊤Di,L,∀i ∈ [n] ▷ Takes o(nm) time
17: gL ← FastTensorRegression({ui,L}ni=1, {vi,L}ni=1, ft−y) with precision√

λL/n
18: LMR.Update({gL,iui,L}ni=1, {vi,L}ni=1)
19: end for
20: end procedure

1017

Theorem 15.5 (Formal version of Theorem 15.2). Let X ∈ Rd×n and y ∈ Rn, and

let k denote the sparsity of Di,ℓ and s denote the sparsity of ∆Di,ℓ, ∀ℓ ∈ [L], i ∈ [n].

Let m denote the width of neural network, L denote the number of layers and α

denote the dual matrix multiplication exponent (Def. 15.1),then the running time of

Algorithm 106 is

O(Tinit + T · Titer),

where

Tinit = O(m2nL),

Titer = Õ(n · (m2−α +m · (s+ k))).

Therefore, the cost per iteration of Algorithm 106 is

Õ(n · (m2−α +m · (s+ k))).

Proof. We analyze Tinit and Titer separately.

Initialization time. We will first initialize (L − 1) m × m matrices and

one m × d matrix, which takes O(m2L) time. Compute hi,L−1 for all i ∈ [n] takes

O(m2nL) time. Finally, initialize the data structure takes O(m2L) time. Hence,

Tinit = O(m2nL).

Cost per iteration. For each iteration, we perform one forward computation

from layer 1 to L, then we train the last layer via solving a regression based on its

Jacobian matrix.

• Forward computation: In forward computation, we first compute gi,L ∈ Rm,

which involves using the Query procedure of LMR data structure, hence by

Lemma 15.7, it takes O(m·(s+k+mα)) time. Compute hi,L andDi,L takes O(m)

time. Hence the overall runtime of forward computation is O(nm ·(s+k+mα)).

1018

• Backward computation: In backward computation, we first compute ui,L ∈
Rm, which takes O(m(s + k)) time owing to the sparsity of Di,L. Then, we

call Algorithm 110 to solve the Gram regression problem, which due to Theo-

rem 15.17 takes Õ(mn + nω) time. Note that even we want a high probability

version of the solver with e− log2 nL failure probability, we only pay extra log2 nL

term in running time, which is absorbed by the Õ(·) notation. Finally, the

update takes O(m2−αn) amortized time owing to Lemma 15.7. Put things to-

gether, we get an overall running time of Õ(n(m(s+ k) +m2−α)) time.

This concludes the proof of our Theorem.

Corollary 15.6. Suppose the network width m is chosen as in 15.11 and the shift

parameter b is chosen as in 15.10, then the cost per iteration of Algorithm 106 is

Õ(m2−αn).

Remark 15.1. As long as the neural network is wide enough, as in 15.11 and we choose

the shift threshold properly, as in 15.10, then we can make sure that both sparsity

parameters k and s to be o(m), and we achieve subquadratic cost per iteration.

We also compare our result with our approaches. Note that a naive implemen-

tation of variants of gradient descent will take O(nm2) time, namely, one evaluates

the gradient with respect to each data point and sum them up. By batching the n

data points and use fast rectangular matrix multiplication, the running time can be

improved to Tmat(m,n,m), in the setting where n ≤ mα, this will only take O(m2+o(1))

time.

In the specific parameter set we choose, we need that m2−αn < m2 to truly

beat the quadratic barrier, which implies that n < mα. As we will later see the

choice of m (Def. 15.11), we will have n ≤ m1/4, which means that we get a truly

subquadratic time in m.

1019

15.7 Low Rank Maintenance and Efficient Computation of the
Change

The goal of this section is to present a data structure that maintains the low

rank representation of the change of weights in a lazy fashion, so that it can support

matrix-vector product query efficiently.

15.7.1 Low rank maintenance

In this section, we design a lazy data structure that maintains a low rank

representation of the change of weights. We also show that using this data structure,

we can implement matrix-vector product query fast.

Before moving, we define some notions related to rectangular matrix multipli-

cation.

Definition 15.1 ([Wil12, GU18]). Let ω be the matrix multiplication exponent such

that it takes nω+o(1) time to multiply two n× n matrices.

Let α be the dual exponent of the matrix multiplication which is the supremum

among all a ≥ 0 such that it takes n2+o(1) time to multiply an n×n by n×na matrix.

Additionally, we define the function ω(·) where ω(b) denotes the exponent of

multiplying an n × n matrix by an n × nb matrix. Hence, we have ω(1) = ω and

ω(α) = 2.

The overall idea of our low rank maintenance data structure is as follows: we

keep accumulating the low rank change, when the rank of the change reaches a certain

threshold (mα), then we restart the data structure and update the weight matrix.

1020

Algorithm 107 Low rank maintenance data structure
1: data structure LowRankMaintenance ▷ Lemma 15.7
2: members
3: rℓ, ∀ℓ ∈ [L] ▷ rℓ denotes the accumulated rank of the change
4: Wℓ,∀ℓ ∈ [L] ▷ {Wℓ}Lℓ=1 ∈ (Rm×m)L

5: ∆Wℓ,∀ℓ ∈ [L] ▷ {∆Wℓ}Lℓ=1 ∈ (Rm×m)L

6: end members
7:
8: procedures
9: Init({W1(0), . . .WL(0)}) ▷ Initialize the data structure

10: Update(Uℓ, Vℓ) ▷ Update the low rank representation
11: Query(ℓ, y) ▷ Compute the matrix-vector product between ∆Wℓ and y
12: end procedures
13: end data structure

Algorithm 108 Procedures of LRM data structure
1: procedure Init({W1(0), . . . ,WL(0)}) ▷ Lemma 15.7
2: Wℓ ← Wℓ(0)
3: ∆Wℓ ← 0,∀ℓ ∈ [L]
4: rℓ ← 0,∀ℓ ∈ [L]
5: end procedure
6:
7: procedure Update(Uℓ ∈ Rm×n, Vℓ ∈ Rm×n) ▷ Lemma 15.7
8: ∆Wℓ ← ∆Wℓ+UℓV

⊤
ℓ without forming the product and sum the two matrices

9: rℓ ← rℓ + n
10: if rℓ = ma where a = ω(2) then
11: Wℓ ← Wℓ +∆Wℓ ▷ Takes O(m2) time
12: rℓ ← 0
13: ∆Wℓ ← 0
14: end if
15: end procedure
16:
17: procedure Query(ℓ ∈ [L], y ∈ Rm) ▷ Lemma 15.7
18: z ← Wℓ · y +∆Wℓ · y ▷ Takes O(nnz(y) ·m+mrℓ) time
19: return z
20: end procedure

Lemma 15.7. There exists a deterministic data structure (Algorithm 107) such that

1021

maintains

∆W1, . . . ,∆WL

such that

• The procedure Init (Algorithm 108) takes O(m2L) time.

• The procedure Update (Algorithm 108) takes O(nm2−α+o(1)) amortized time,

where α = ω(2).

• The procedure Query (Algorithm 108) takes O(m · (nnz(y) + rℓ)) time, where

rℓ is the rank of ∆Wℓ when Query is called.

Proof. The runtime for Init is straightforward, for Query, notice that we are multi-

plying vector y with a (possibly) dense matrix Wℓ ∈ Rm×m, which takes O(nnz(y) ·m)

time, and an accumulated low rank matrix ∆Wℓ with rank rℓ. By using the low rank

decomposition ∆Wℓ = UV ⊤ with U, V ∈ Rm×rℓ , the time to multiply y with ∆W is

O(mrℓ). Combine them together, we get a running time of O(m · (nnz(y) + rℓ)).

It remains to analyze the amortized cost of Update. Note that if rℓ < ma,

then we just pay O(1) time to update corresponding variables in the data structure.

If rℓ = ma, then we will explicitly form the m ×m matrix ∆Wℓ. To form it, notice

we have accumulated rℓ/n different sums of rank-n decompositions, which can be

represented as

U = [Uℓ(1), Uℓ(2), . . . , Uℓ(rℓ/n)] ∈ Rm×rℓ ,

V = [Vℓ(1), Vℓ(2), . . . , Vℓ(rℓ/n)] ∈ Rm×rℓ ,

and ∆Wℓ = UV ⊤, which takes O(m2+o(1)) time to compute since rℓ = ma and a =

ω(2). Finally, note that this update of Wℓ only happens once per rℓ/n number of calls

to Update, therefore we can charge each step by O(m2

rℓ/n
) = O(m2−an) = O(m2−αn),

arrives at our final amortized running time.

1022

Remark 15.2. Currently, the dual matrix multiplication exponent α ≈ 0.31 [GU18],

hence the amortized time for Update is O(nm1.69). If m ≥ n4, then we achieve

an update time of o(m2). Similarly, the time for Query is O(m · (nnz(y) + rℓ)) =

O(m · nnz(y) + m1+α) = O(m · nnz(y) + m1.31), as long as nnz(y) = o(m), then its

running time is also o(m2). In our application of training neural networks, we will

make sure that the inputted vector y is sparse.

15.7.2 Efficient computation of rank-1 decompositions

We illustrate the method to compute the vectors ui,ℓ, vi,ℓ ∈ Rm using the low

rank maintenance data structure. Recall the definition of these vectors:

ui,ℓ(t)
⊤ = a⊤Di,L(t)WL(t) . . . Di,ℓ+1(t)Wℓ+1(t)Di,ℓ(t) ∈ R1×m,

vi,ℓ(t) = hi,ℓ−1(t) ∈ Rm.

Before proceeding, we list the assumptions we will be using:

• For any ℓ ∈ [L], Di,ℓ(t) is sD-sparse, where sD := k + s, k is the sparsity of

Di,ℓ(0) and s is the sparsity of Di,ℓ(t)−Di,ℓ(0).

• For any ℓ ∈ [L], the change of the weight matrix Wℓ, ∆Wℓ(t) := Wℓ(t)−Wℓ(0),

is of low-rank. That is, ∆Wℓ(t) =
∑rt

j=1 yℓ,jz
⊤
ℓ,j.

• For any i ∈ [n], W1(0)xi is pre-computed.

We first note that as a direct consequence of Di,ℓ(0) is k-sparse, hi,ℓ(0) is k-

sparse as well. Similarly, hi,ℓ(t) − hi,ℓ(0) has sparsity s. Hence hi,ℓ(t) has sparsity

bounded by sD.

Compute ui,ℓ(t). Compute ui,ℓ(t) is equivalent to compute the following vector:

Di,ℓ(t)(Wℓ+1(0) + ∆Wℓ+1(t))
⊤Di,ℓ+1(t) · · · (WL(0) + ∆WL(t))

⊤Di,L(t)a.

1023

First, we know that Di,L(t)a ∈ Rm is an sD-sparse vector, and it takes O(sD) time.

The next matrix is (WL(0)+∆WL(t))
⊤, which gives two terms: WL(0)

⊤(Di,L(t)a) and

∆WL(t)
⊤(Di,L(t)a). For the first term, since Di,L(t)a is sD-sparse, it takes O(msD)-

time. For the second term, we have

∆WL(t)
⊤(Di,L(t)a) =

rt∑

j=1

zL,jy
⊤
L,j(Di,L(t)a)

=
rt∑

j=1

zL,j · ⟨yL,j, Di,L(t)a⟩.

Each inner-product takes O(sD)-time and it takes O(mrt + sDrt) = O(mrt)-time in

total. Hence, in O(m(sD + rt))-time, we compute the vector WL(t)
⊤Di,L(t)a. Note

that we do not assume the sparsity of a.

Thus, by repeating this process for the L−ℓ intermediate matricesW⊤
j (t)Di,j(t),

we can obtain the vector
(

L∏

j=ℓ+1

W⊤
j (t)Di,j(t)

)
a

in time O((L−ℓ)m(sD+rt)). Finally, by multiplying a sparse diagonal matrix Di,ℓ(t),

we get the desired vector ui,ℓ(t).

Compute vi,ℓ(t). Note that vi,ℓ(t) is essentially hi,ℓ−1(t), so we consider how to

compute hi,ℓ(t) for general ℓ ∈ [L]. Recall that

hi,ℓ(t) = ϕ((Wℓ(0) + ∆Wℓ(t))hi,ℓ−1(t)),

since hi,ℓ−1(t) is sD-sparse, the product Wℓ(0)hi,ℓ−1(t) can be computed in O(msD)

time. For the product ∆Wℓ(t)hi,ℓ−1(t) can be computed use the low rank decompo-

sition, which takes O(mrt) time. Apply the shifted ReLU takes O(m) time. Hence,

the total time is O(m(rt + sD)) time.

The running time results are summarized in the following lemma:

1024

Lemma 15.8. For ℓ ∈ [L] and i ∈ [n], suppose ∥Di,ℓ(0)∥0 ≤ k. Let t > 0. Suppose

the change of Di,ℓ is sparse, i.e., ∥Di,ℓ(t) − Di,ℓ(0)∥0 ≤ s. For ℓ ∈ [L], i ∈ [n], for

any t > 0, suppose the change of Wℓ is of low-rank, i.e., ∆Wℓ(t) =
∑rt

j=1 yℓ,jz
⊤
ℓ,j. We

further assume that {yℓ,j, zℓ,j}ℓ∈[L],j∈[rt] and {W1(0)xi}i∈[n] are pre-computed.

Then, for any ℓ ∈ [L] and i ∈ [n], the vectors uℓ,i(t), vℓ,i(t) ∈ Rm can be

computed in

O(mL(s+ k + rt))

time.

As a direct consequence, if we combine Lemma 15.7 and Lemma 15.8, then we

get the following corollary:

Corollary 15.9. For ℓ ∈ [L] and i ∈ [n], we can compute vi,ℓ(t), ui,ℓ(t) ∈ Rm as in

Algorithm 106 with the following time bound:

• Compute ui,ℓ(t) in time O(mL(s+ k + rℓ)).

• Compute vi,ℓ(t) in time O(m(s+ k + rℓ)).

Remark 15.3. We note that the result we present is more general than needed for

our algorithm, since it can handle the updates across all layers. This means we can

use it to implement a subquadratic cost per iteration algorithm for gradient descent

algorithm over all layers. In this chapter, we focus our attention to the training of

last layer, since the step size of that algorithm is chosen adaptively.

15.8 Fast Tensor Product Regression

In this section, we show how to solve a specific type of regression fast using

both tensor-based sketching matrices for approximation, and sketching-based precon-

ditioner for high precision solution.

1025

Consider the following problem: Given two matrices U = [u⊤1 , . . . , u
⊤
n]
⊤, V =

[v⊤1 , . . . , v
⊤
n] ∈ Rm×n with m≫ n, consider the matrix J ∈ Rn×m2 formed by

J =

vec(u1v
⊤
1)
⊤

vec(u2v
⊤
2)
⊤

...
vec(unv

⊤
n)
⊤

 .

We are also given a vector c in n dimension, our task is to find a solution to the

following regression problem:

min
x∈Rn

∥JJ⊤x− c∥22.

Our main theorem for this section is as follows:

Theorem 15.10 (Restatement of Theorem 15.17). Given two n×m matrices U and

V , and a target vector c ∈ Rn. Let J = [vec(u1v
⊤
1)
⊤, . . . , vec(unv

⊤
n)
⊤] ∈ Rn×m2. There

is an algorithm (Algorithm 110) takes Õ(nm+n2(log(κ/ϵ)+log(m/ϵδ)ϵ−2)+nω) time

and outputs a vector x̂ ∈ Rn such that

∥JJ⊤x̂− c∥2 ≤ ϵ∥c∥2

holds with probability at least 1− δ, and κ is the condition number of J .

15.8.1 Approximate J via TensorSketch

We introduce the notion of TensorSketch for two vectors:

Definition 15.2. Let h1, h2 : [m] → [s] be 3-wise independent hash functions, also

let σ : [m] → {±1} be a 4-wise independent random sign function. The degree two

TensorSketch transform, S : Rm × Rm → Rs is defined as follows: for any i, j ∈ [m]

and r ∈ [s],

Sr,(i,j) = σ1(i) · σ2(j) · 1[h1(i) + h2(j) = r mod s].

1026

Remark 15.4. Apply S to two vectors x, y ∈ Rm can be implemented in timeO(s log s+

nnz(x) + nnz(y)).

We introduce one key technical lemma from [ANW14]:

Lemma 15.11 (Theorem 1 of [ANW14]). Let S ∈ Rs×m2 be the TensorSketch matrix,

consider a fixed n-dimensional subspace V . If s = Ω(n2/(ϵ2δ)), then with probability

at least 1− δ, ∥Sx∥2 = (1± ϵ)∥x∥2 simultaneously for all x ∈ V .

Now we are ready to prove the main lemma of this section:

Lemma 15.12. Let ϵ, δ ∈ (0, 1) denote two parameters. Let J ∈ Rn×m2 represent a

matrix such that the i-th row of J is equal to vec(uiv
⊤
i) for some ui, vi ∈ Rm. Then,

we can compute a matrix J̃ ∈ Rn×s such that for any vector x ∈ Rn, with probability

at least 1− δ, we have

∥J̃⊤x∥2 = (1± ϵ)∥J⊤x∥2,

where s = Ω(n2/(ϵ2δ)). The time to compute J̃ is O(ns log s+ nnz(U) + nnz(V)).

Proof. Notice that the row space of matrix J can be viewed as an n-dimensional

subspace, hence, by Lemma 15.11, the TensorSketch matrix S with s = Ω(n2/(ϵ2δ))

can preserve the length of all vectors in the subspace generated by J⊤ with probability

1− δ, to a multiplicative factor of 1± ϵ.

The running time part is to apply the FFT algorithm to each row of J with a

total of n rows. For each row, it takes O(s log s+m) time, hence the overall running

time is O(n(s log s+m)).

15.8.2 Approximate J via TensorSRHT

We note that the dependence on the target dimension of sketching is O(1/δ)

for TensorSketch. We introduce another kind of sketching technique for tensor, called

TensorSRHT. The tradeoff is we lose input sparsity runtime of matrices U and V .

1027

Definition 15.3. We define the TensorSRHT S : Rm × Rm → Rs as S = 1√
s
P ·

(HD1 × HD2), where each row of P ∈ {0, 1}s×m2 contains only one 1 at a random

coordinate, one can view P as a sampling matrix. H is a m×m Hadamard matrix,

and D1, D2 are two m × m independent diagonal matrices with diagonals that are

each independently set to be a Rademacher random variable (uniform in {−1, 1}).

Remark 15.5. By using FFT algorithm, apply S to two vectors x, y ∈ Rm takes time

O(m logm+ s).

We again introduce a technical lemma for TensorSRHT.

Lemma 15.13 (Theorem 3 of [AKK+20]). Let S ∈ Rs×m2 be the TensorSRHT matrix,

consider a fixed n-dimensional subspace V . If s = Ω(n log3(nm/ϵδ)ϵ−2), then with

probability at least 1− δ, ∥Sx∥2 = (1± ϵ)∥x∥2 simultaneously for all x ∈ V .

Lemma 15.14. Let ϵ, δ ∈ (0, 1) denote two parameters. Given a list of vectors

u1, · · · , um, v1, · · · , vm ∈ Rm. Let J ∈ Rn×m2 represent a matrix where the i-th row of

J is equal to vec(uiv
⊤
i). Then, we can compute a matrix J̃ ∈ Rn×s such that for any

vector x ∈ Rn, with probability at least 1− δ, we have

∥J̃⊤x∥2 = (1± ϵ)∥J⊤x∥2,

where s = Ω(n log3(nm/(ϵδ))ϵ−2). The time to compute J̃ is O(n(m logm+ s)).

Proof. The correctness follows directly from Lemma 15.13. The running time follows

from the FFT algorithm to each row of J , each application takes O(m logm+s) time,

and we need to apply it to n rows.

15.8.3 Sketching-based Preconditioner

In this section, we first use TensorSketch and TensorSRHT to approximate J ,

then use a general sketching matrix as a preconditioner to solve a regression task

involving JJ⊤.

Before proceeding, we introduce the notion of subspace embedding :

1028

Definition 15.4 (Subspace Embedding, [Sar06]). Let A ∈ RN×k, we say a matrix

S ∈ Rs×N is a (1 ± ϵ) − ℓ2 subspace embedding for A if for any x ∈ Rk, we have

∥SAx∥22 = (1±ϵ)∥Ax∥22. Equivalently, ∥I−U⊤S⊤SU∥ ≤ ϵ where U is an orthonormal

basis for the column space of A.

We will mainly utilize efficient subspace embedding.

Definition 15.5 ([LDFU13, Woo14]). Given a matrix A ∈ RN×k with N = poly(k),

then we can compute an S ∈ Rkpoly(log(k/δ))/ϵ2×N such that with probability at least

1− δ, we have

∥SAx∥2 = (1± ϵ)∥Ax∥2

hols for all x ∈ Rk. Moreover, SA can be computed in O(Nk log((k logN)/ϵ)) time.

Algorithm 109 Fast Regression algorithm of [BPSW21]]
1: procedure FastRegression(A, y, ϵ) ▷ Lemma 15.15
2: ▷ A ∈ RN×k is full rank, ϵ ∈ (0, 1/2)
3: Compute a subspace embedding SA ▷ S ∈ Rkpoly(log k) ×N
4: Compute R such that SAR has orthonormal columns via QR decomposition
▷ R ∈ Rk×k

5: z0 = 0k ∈ Rk

6: t← 0
7: while ∥A⊤ARzt − y∥2 ≥ ϵ do
8: zt+1 ← zt − (R⊤A⊤AR)⊤(R⊤A⊤ARzt −R⊤y)
9: t← t+ 1

10: end while
11: return Rzt
12: end procedure

Lemma 15.15 (Lemma 4.2 of [BPSW21]). Let N = Ω(kpoly(log k)). Given a matrix

A ∈ RN×k, let κ denote its condition number. Consider the following regression task:

min
x∈Rk

∥A⊤Ax− y∥2.

1029

Using the procedure FastRegression (Algorithm 109), with probability at least 1−δ,
we can compute an ϵ-approximate solution x̂ satisfying

∥A⊤Ax̂− y∥2 ≤ ϵ∥y∥2

in time Õ(Nk log(κ/ϵ) + kω).

Our algorithm is similar to the ridge regression procedure in [SWYZ21], where

they first apply their sketching algorithm as a bootstrapping to reduce the dimension

of the original matrix, then use another subspace embedding to proceed and get

stronger guarantee.

We shall first prove a useful lemma.

Lemma 15.16. Let A ∈ RN×k, suppose SA is a subspace embedding for A (Def. 15.5),

then we have for any x ∈ Rk, with probability at least 1− δ,

∥(SA)⊤SAx− b∥2 = (1± ϵ)∥A⊤Ax− b∥2.

Proof. Throughout the proof, we condition on the event that S preserves the length

of all vectors in the column space of A.

Note that

∥(SA)⊤SAx− b∥22 = ∥(SA)⊤SAx∥22 + ∥b∥22 − 2⟨(SA)⊤SAx, b⟩.

We will first bound the norm of (SA)⊤SAx, then the inner product term.

Bounding ∥(SA)⊤SAx∥22.

Let U ∈ RN×k represent an orthonormal basis of A, then use an alternative

definition of subspace embedding, we have ∥U⊤S⊤SU − I∥ ≤ ϵ, this means all the

eigenvalues of U⊤S⊤SU lie in the range of of [(1−ϵ)2, (1+ϵ)2]. Let V denote the matrix

U⊤S⊤SU , then we know that all eigenvalues of V ⊤V lie in range [(1− ϵ)4, (1 + ϵ)4].

Setting ϵ as ϵ/4, we arrive at ∥V ⊤V − I∥ ≤ ϵ. This shows that for any x ∈ Rk, we

have ∥(SA)⊤SAx∥2 = (1± ϵ)∥A⊤Ax∥2.

1030

Bounding ⟨(SA)⊤SAx, b⟩.

Note that

⟨(SA)⊤SAx, b⟩ = ⟨SAx, SAb⟩

= 1/2 · (∥SAx∥22 + ∥SAb∥22 − ∥SA(x− b)∥22)

= 1/2 · (1± ϵ)(∥Ax∥22 + ∥Ab∥22 − ∥A(x− b)∥22)

= (1± ϵ)⟨A⊤Ax, b⟩.

Combining these two terms, we conclude that, with probability at least 1− δ,

∥(SA)⊤SAx− b∥2 = (1± ϵ)∥A⊤Ax− b∥2.

Algorithm 110 Fast Regression via tensor trick
1: procedure FastTensorRegression({ui}ni=1 ∈ Rm×n, {vi}ni=1 ∈ Rm×n, c ∈ Rn)
▷ Theorem 15.17

2: ▷ J = [vec(u1v
⊤
1)
⊤, vec(u2v

⊤
2)
⊤, . . . , vec(unv

⊤
n)
⊤]⊤ ∈ Rn×m2

3: s1 ← Θ(n log3(nm/δ))
4: s2 ← Θ((n+ logm) log n)
5: Let S1 ∈ Rs1×m2 be a sketching matrix ▷ S1 can be TensorSketch or

TensorSRHT
6: Compute J̃ = JS⊤1 via FFT algorithm ▷ J̃ ∈ Rn×s1

7: Choose S2 ∈ Rs2×s1 to be a sketching matrix (see Def. 15.5)
8: Compute a subspace embedding S2J̃

⊤

9: Compute R such that S2J̃
⊤R has orthonormal columns via QR decomposition

▷ R ∈ Rn×n

10: z0 ← 0k ∈ Rk

11: t← 0
12: while ∥J̃ J̃⊤Rzt − c∥2 ≥ ϵ do
13: zt+1 ← zt − (R⊤J̃ J̃⊤R)⊤(R⊤J̃ J̃⊤Rzt −R⊤c)
14: t← t+ 1
15: end while
16: return Rzt
17: end procedure

1031

Theorem 15.17. Given two n×m matrices U and V , and a target vector c ∈ Rn. Let

J = [vec(u1v
⊤
1)
⊤, . . . , vec(unv

⊤
n)
⊤] ∈ Rn×m2. There is an algorithm (Algorithm 110)

takes Õ(nm+ n2(log(κ/ϵ) + log(m/δ)) + nω) time and outputs a vector x̂ ∈ Rn such

that

∥JJ⊤x̂− c∥2 ≤ ϵ∥c∥2

holds with probability at least 1− δ, and κ is the condition number of J .

Proof. We can decompose Algorithm 110 into two parts:

• Applying S1 to efficiently form matrix J̃ to approximate J and reduce its di-

mension, notice here we only need ϵ for this part to be a small constant, pick

ϵ = 0.1 suffices.

• Using S2 as a preconditioner and solve the regression problem iteratively.

Let x̂ denote the solution found by the iterative regime. We will prove this statement

in two-folds:

• First, we will show that ∥J̃ J̃⊤x̂− c∥2 ≤ ϵ∥c∥2 with probability at least 1− δ;

• Then, we will show that ∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2 with probability

at least 1− δ.

Combining these two statements, we can show that

∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2
≤ 1.1ϵ∥c∥2

Setting ϵ to ϵ/1.1 and δ to δ/2, we conclude our proof. It remains to prove these two

parts.

1032

Part 1 ∥J̃ J̃⊤x̂−c∥2 ≤ ϵ∥c∥2. We observe the iterative procedure is essentially

the same as running FastRegression on input J̃⊤, y, ϵ, hence by Lemma 15.15, we

know

Pr
[
∥J̃ J̃⊤x̂− c∥2 ≤ ϵ∥c∥2

]
≥ 1− δ.

Part 2 ∥JJ⊤x̂ − c∥2 = (1 ± 0.1)∥J̃ J̃⊤x̂ − c∥2. To prove this part, note that

by Lemma 15.13, we know that J̃⊤ is a subspace embedding for J⊤. Hence, we can

utilize Lemma 15.16 and get that,

Pr
[
∥JJ⊤x̂− c∥2 = (1± 0.1)∥J̃ J̃⊤x̂− c∥2

]
≥ 1− δ.

Combining these two parts, we have proven the correctness of the theorem.

It remains to justify the running time. Note that running time can be decomposed

into two parts: 1). The time to generate J̃ , 2). The time to compute x̂ via iterative

scheme.

Part 1 Generate J̃. To generate J̃ , we apply S1 ∈ Rs1×m2 which is a

TensorSRHT. By Lemma 15.14, it takes O(n(m logm+ s1)) time to compute J̃ , plug

in s1 = Θ(n log3(nm/δ)), the time is Õ(nm).

Part 2 Compute x̂. To compute x̂, essentially we run FastRegression

on J̃⊤, c, ϵ, hence by Lemma 15.15, it takes Õ(s2n log(κ/ϵ) + nω) time, with s2 =

Θ((n + logm) log n) and κ is the condition number of J̃ , which has the guarantee

κ = (1± ϵ)κ(J). Hence, the overall running time of this part is Õ(n2 log(κ/ϵ) + nω).

Put things together, the overall running time is Õ(nm+n2 log(κ/ϵ)+nω).

Remark 15.6. Due to the probability requirement (union bounding over all data

points), here we only prove by using TensorSRHT. One can use similar strategy

to obtain an input sparsity time version using TensorSketch. We remark that this

framework is similar to the approach [SWYZ21] takes to solve kernel ridge regression,

where one first uses a shallow but fast sketch to bootstrap, then use another sketching

to proceed with the main task.

1033

We also point out that in a more general neural network architecture, the

network width between different layers might differ, i.e., we are in fact dealing with

the tensor product u ⊗ v where u ∈ Rmℓ and v ∈ Rmℓ−1 . Our sketching can be

modified to handle this kind of inputs. Specifically, for TensorSketch, it is defined by

a pair of hash functions and sign functions, we can change their domain to handle

different input dimensions. For TensorSRHT, it’s more tricky, however, we note that

the Hadamard matrix is merely for speeding up computation via FFT algorithm,

hence we can differ the size of D1 and D2, and change the size of sampling matrix P

accordingly.

15.9 Spectral Properties of Over-parametrized Deep Neural
Network

In this section, we study the spectral structure of our Gram matrix and its

connection to the multi-layer NTK matrix. We show two different results regarding

the minimum eigenvalue of the last layer and the intermediate layers. We also show

that as long as the weight matrix does not move too far, the eigenvalue of the Gram

matrix is relatively stable around its initialization.

15.9.1 Bounds on the Least Eigenvalue of Kernel at Initialization

The following fact gives the exact form of the Gram matrix of the ℓ-th layer

of the neural network.

Fact 15.18 (Multi-layer Gram matrix). For any ℓ ∈ [L], let Gℓ = JℓJ
⊤
ℓ ∈ Rn×n be

the layer-ℓ’s Gram matrix. Then, for any i, j ∈ [n],

(Gℓ)i,j = h⊤i,ℓ−1hj,ℓ−1 · a⊤
(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,k

)
a,

where hi,ℓ−1 =
∏ℓ−1

k=1Di,kWkxi.

1034

Proof. For for any i, j ∈ [n], by definition,

(Gℓ)i,j = vec(
∂f(W,xi)

∂Wℓ

)⊤vec(
∂f(W,xj)

∂Wℓ

)

= vec

(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,kah

⊤
i,ℓ−1

)⊤
vec

(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,kah

⊤
j,ℓ−1

)

=

(
(hi,ℓ−1 ⊗ Imℓ

)

(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,ka

))⊤
(hj,ℓ−1 ⊗ Imℓ

)

(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,ka

)

=

(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,ka

)⊤
(h⊤i,ℓ−1 ⊗ Imℓ

)(hj,ℓ−1 ⊗ Imℓ
)

(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,ka

)

= a⊤

(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,k

)
a · h⊤i,ℓ−1hj,ℓ−1.

The following lemma handles the least eigenvalue for all intermediate layers

ℓ ∈ [L− 1].

Lemma 15.19 (Bounds on the least eigenvalue at initialization for layer 1 to L− 1).

Let λ := minℓ∈[L−1] λℓ. Then, for all ℓ ∈ [L − 1], with probability at least 1 − δ, we

have

λmin(Gℓ) ≥ Ω(λδ2n−2L−1).

Proof. Let ℓ ∈ [L] and i, j ∈ [n]. By Fact 15.18, the (i, j)-th entry of the layer-ℓ Gram

matrix can be expressed as

(Gℓ)i,j = h⊤i,ℓ−1hj,ℓ−1 · a⊤
(
Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,k

)⊤(
Dj,ℓ

L∏

k=ℓ+1

W⊤
k Dj,k

)
a

= (Hℓ−1)i,j · (Aℓ)i,j,

where (Hℓ−1)i,j = h⊤i,ℓ−1hj,ℓ−1 and (Aℓ)i,j = a⊤(Di,ℓ

∏L
k=ℓ+1W

⊤
k Di,k)

⊤(Dj,ℓ

∏L
k=ℓ+1W

⊤
k Dj,k)a.

Hence, we can write Gℓ as

Gℓ = Hℓ−1 ⊙ Aℓ,

1035

where ⊙ represents the Hadamard product.

By Fact 15.4, we have

λmin(Gℓ) ≥ min
i∈[n]

(Aℓ)i,i · λmin(Hℓ)

Note that for i ∈ [n],

(Aℓ)i,i = a⊤(Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,k)

⊤(Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,k)a

=
∥∥∥Di,ℓ

L∏

k=ℓ+1

W⊤
k Di,ka

∥∥∥
2

2

≥

〈
Wℓ

∏ℓ−1
k=1Di,kWkxi, Di,ℓ

∏L
k=ℓ+1W

⊤
k Di,ka

〉2

∥Wℓ

∏ℓ−1
k=1Di,kWkxi∥22

=
⟨a, hi,L⟩2

∥Wℓ

∏ℓ−1
k=1Di,kWkxi∥22

.

By Lemma 15.28 part (a), we have

∥∥∥Wℓ

ℓ−1∏

k=1

Di,kWkxi

∥∥∥
2

2
≤ O(

√
L)

with probability 1 − e−Ω(k/L2) for all i ∈ [n], where k = m exp(−b2m/4) = m0.8 by

our choice of parameters.

By Lemma 15.27,

Pr[∀i ∈ [n], ∥hi,L∥2 ∈ 1± ϵ] ≥ 1−O(nL) · exp(−Ω(kϵ2/L2)).

Conditioning on this event, let hi,L be a fixed vector h with length 1± ϵ and consider

the randomness of the Rademacher vector a.

Note that ⟨a, h⟩ can be written as a⊤(hh⊤)a = a⊤Ba, where B := hh⊤ satisfies

∥B∥ = ∥h∥22 and ∥B∥2HS = ∥h∥42. For r ∈ [mL], we know that ar is a centered

subgaussian random variable with ∥ar∥ψ2 = 1.

1036

By Lemma A.9, we have

Pr[|⟨a, h⟩| ≤ t] ≤ min

{
C1t

∥h∥2
,

C2t

Õ(m−0.2)
√
k

}
≤ Õ(t).

By taking t to be O(δ/n), we have

Pr[∀i ∈ [n], ⟨a, hi,L⟩2 = Ω(δ2/n2)] ≥ 1−O(δ).

Applying a union bound gives

Pr[min
i∈[n]

(Aℓ)i,i = Ω(δ2n−2L−1)] ≥ 1− δ/2.

By Lemma 15.20, with probability at least 1− δ/2, we have:

λmin(Hℓ−1) ≥ Ω(λ)

for all ℓ ∈ [L].

Combine them together, we get that

λmin(Gℓ) ≥ Ω(δ2λn−2L−1)

for all ℓ ∈ [L] with probability 1− δ, which completes the proof of the lemma.

In order to bound λmin(Hℓ), we first define the NTK kernel for multiple layer

neural network.

Definition 15.6 (Multiple layer NTK kernel). The NTK kernel Kℓ ∈ Rn×n for

ℓ ∈ {0, . . . , L} of an L-layer neural network are defined as follows:

• (K0)i,j := x⊤i xj

• For ℓ > 0, let Σℓ,i,j :=

[
(Kℓ−1)i,i (Kℓ−1)i,j
(Kℓ−1)j,i (Kℓ−1)j,j

]
∈ R2×2 for any (i, j) ∈ [n] × [n].

Then,

(Kℓ)i,j := E(x1,x2)∼N(0,2Σℓ−1,i,j)[ϕ(x1)ϕ(x2)] ∀ℓ ∈ [L− 1],

(KL)i,j := E(x1,x2)∼N(0,2ΣL−1,i,j)[ϕ
′(x1)ϕ

′(x2)]

1037

Let λℓ := λmin(Kℓ) to be the minimum eigenvalue of the NTK kernel Kℓ.

In the following lemma, we generalize Lemma C.3 in [BPSW21] (also Lemma

3 in [CGH+19]) into multiple layer neural networks.

Lemma 15.20. For ℓ ∈ [L − 1], let λℓ denote the minimum eigenvalue of NTK

defined for ℓ-th layer of neural networks. Suppose mℓ = Ω(λ−2ℓ n2 log(n/δ)), then with

probability at least 1− δ, we have

λmin(Hℓ) ≥
3

4
λℓ, ∀ℓ ∈ [L]

Proof. We will prove that ∥Hℓ −Kℓ∥∞ is small, which implies that λmin(Hℓ) is close

to λℓ. The proof idea is similar to [DLL+19] via induction on ℓ.

For ℓ = 1, recall (g1,i)k =
∑

b∈[m](W1)k,b(xi)b for k ∈ [m]. Hence, for any

k ∈ [m],

E[(gi,1)k(gj,1)k] =
∑

b,b′∈[m]

E[(W1)k,b(W1)k,b′(xi)b(xj)b′]

=
∑

b∈[m]

E[(W1)
2
k,b] · (xi)b(xj)b ((W1)k,b ∼ N(0, 2

m
).)

=
2

m

∑

b∈[m]

(xi)b(xj)b

=
2

m
x⊤i xj.

Then, we have

E[h⊤i,1hj,1] =
∑

k∈[m]

E[(hi,1)k(hj,1)k]

=
∑

k∈[m]

E[ϕ((gi,1)k)ϕ((gj,1)k)]

=
∑

k∈[m]

E(u,v)∼N(0, 2
m
Σ1,i,j)

[ϕ(u)ϕ(v)]

= E(u,v)∼N(0, 2
m
Σ1,i,j)

[mϕ(u)ϕ(v)]

= E(u′,v′)∼N(0,2Σ1,i,j)[ϕ(u
′)ϕ(v′)]

= (K1)i,j.

1038

Next, we will show that h⊤i,1hj,1 concentrates around its expectation. First, for any

k ∈ [m],

|(hi,1)k(hj,1)k| ≤ |(gi,1)k(gj,1)k| ≤ |⟨(W1)k,∗, xi⟩| · |⟨(W1)k,∗, xj⟩|.

Since ⟨(W1)k,∗, xi⟩ ∼ N(0,
2∥xi∥22
m

), by the concentration of Gaussian distribution,

|⟨(W1)k,∗, xi⟩| ≤
√
c ∀k ∈ [m], i ∈ [n]

holds with probability at least 1−mne−cm/4.

Conditioning on the above event, we have |(hi,1)k(hj,1)k| ≤ c for all i, j ∈ [n]

and k ∈ [m]. Then, by Hoeffding’s inequality, we have for any (i, j) ∈ [n]× [n],

Pr
[
|h⊤i,1hj,1 − (K1)i,j| ≥ t

]
≤ exp

(
− t2

2m · (2c)2
)

= exp(−Ω(t2/(mc2))).

Hence, by union bound, we get that

Pr[max
(i,j)∈[n]×[n]

|h⊤i,1hj,1 − (K1)i,j| ≤ t] ≥ 1−mn · exp(−Ω(mc))− n2 · exp(−Ω(t2/(mc2))).

If we choose c := log(mnL/δ)
m

and t := m−1/2 · polylog(nL/δ), we have with probability

at least 1− δ
L
,

max
(i,j)∈[n]×[n]

|h⊤i,1hj,1 − (K1)i,j| ≤ Õ(m−1/2).

Let h < L. Suppose that for ℓ = 1, . . . h,

max
(i,j)∈[n]×[n]

|h⊤i,ℓhj,ℓ − (Kℓ)i,j| ≤ Õ(m−1/2).

Consider ℓ = h+ 1. By a similar computation, we have

EWℓ
[(gi,ℓ)k(gj,ℓ)k] =

2

m
h⊤i,ℓ−1hj,ℓ−1.

Define a new covariance matrix

Σ̂ℓ,i,j :=

[
h⊤i,ℓ−1hi,ℓ−1 h⊤i,ℓ−1hj,ℓ−1
h⊤j,ℓ−1hi,ℓ−1 h⊤j,ℓ−1hj,ℓ−1

]
∀(i, j) ∈ [n]× [n].

1039

We have

EWℓ
[h⊤i,ℓhj,ℓ] =

∑

k∈[m]

E(u,v)∼N(0, 2
m
Σ̂ℓ,i,j)

[ϕ(u)ϕ(v)]

= E(u′,v′)∼N(0,2Σ̂ℓ,i,j)
[ϕ(u′)ϕ(v′)]

:= (K̂ℓ)i,j.

Hence, we have with probability at least 1− δ
L
,

max
(i,j)∈[n]×[n]

∣∣∣h⊤i,ℓhj,ℓ − (K̂ℓ)i,j

∣∣∣ ≤ Õ(m−1/2). (15.4)

It remains to upper bound the difference ∥K̂ℓ −Kℓ∥∞.
∥∥∥K̂ℓ −Kℓ

∥∥∥
∞

= max
(i,j)∈[n]×[n]

∣∣∣E(u,v)∼N(0,2Σ̂ℓ,i,j)
[ϕ(u)ϕ(v)]− E(u,v)∼N(0,2Σℓ,i,j)[ϕ(u)ϕ(v)]

∣∣∣ .

Recall that

Σℓ,i,j :=

[
(Kℓ−1)i,i (Kℓ−1)i,j
(Kℓ−1)j,i (Kℓ−1)j,j

]
∀(i, j) ∈ [n]× [n],

and hence, by the induction hypothesis, we have

∥Σ̂ℓ,i,j − Σℓ,i,j∥∞ ≤ max
(i,j)∈[n]×[n]

∣∣h⊤i,ℓ−1hj,ℓ−1 − (Kℓ−1)i,j
∣∣ = Õ(m−1/2).

Notice that Σ̂ℓ,i,j can be written as
[

∥hi,ℓ−1∥22 cos(θℓ,i,j)∥hi,ℓ−1∥2∥hj,ℓ−1∥2
cos(θℓ,i,j)∥hi,ℓ−1∥2∥hj,ℓ−1∥2 ∥hj,ℓ−1∥22

]
.

Moreover, when ϕ is the ReLU function, we have

E(u,v)∼N(0,2Σ̂ℓ,i,j)
[ϕ(u)ϕ(v)] = 2∥hi,ℓ−1∥2∥hj,ℓ−1∥2 · F (θℓ,i,j),

where

F (θ) := E(u,v)∼N(0,Σ(θ))[ϕ(u)ϕ(v)] with Σ(θ) :=

[
1 cos(θ)

cos(θ) 1

]
.

1040

We note that F (θ) has the following analytic form:

F (θ) =
1

2π
(sin(θ) + (π − θ) cos(θ)) ∈ [0, 1/2]. (15.5)

Similarly,

E(u,v)∼N(0,2Σℓ,i,j)[ϕ(u)ϕ(v)] = 2
√

(Kℓ−1)i,i(Kℓ−1)j,j · F (τℓ,i,j),

where τℓ,i,j := cos−1
(

(Kℓ−1)i,j√
(Kℓ−1)i,i(Kℓ−1)j,j

)
. By the induction hypothesis, we have

(Kℓ)i,j ∈ h⊤ℓ,ihℓ,j ± Õ(m−1/2) for all i, j ∈ [n]. By Lemma 15.27, we also have

∥hℓ,i∥2 ∈ 1 ± ϵ for all ℓ ∈ [L] and i ∈ [n] with probability 1 − O(nL) · e−Ω(mϵ2/L).

They implies that cos(τℓ,i,j) ∈ cos(θ)± Õ(m−1/2). Thus, by Taylor’s theorem, it gives

us

|F (θℓ,i,j)− F (τℓ,i,j)| ≤ Õ(m−1/2).

Therefore, we have
∣∣∣E(u,v)∼N(0,2Σ̂ℓ,i,j)

[ϕ(u)ϕ(v)]− E(u,v)∼N(0,2Σℓ,i,j)[ϕ(u)ϕ(v)]
∣∣∣

= 2

∣∣∣∣∥hi,ℓ−1∥2∥hj,ℓ−1∥2F (θℓ,i,j)−
√

(Kℓ−1)i,i(Kℓ−1)j,jF (τℓ,i,j)

∣∣∣∣
≤ Õ(m−1/2).

That is,

∥K̂ℓ −Kℓ∥∞ ≤ Õ(m−1/2). (15.6)

Combining Eqs. (15.4) and (15.6) together, we get that

max
(i,j)∈[n]×[n]

|h⊤ℓ,ihℓ,j − (Kℓ)i,j| ≤ Õ(m−1/2)

holds with probability at least 1− δ
L

for ℓ = h+ 1.

By induction, we have proved that for the first L− 1 layers, the intermediate

correlation h⊤ℓ,ihℓ,j is close to the intermediate Gram matrix (Kℓ)i,j, i.e.,

∥Hℓ −Kℓ∥ ≤
λℓ
4
∀ℓ ∈ [L− 1].

1041

Hence, we get that for all ℓ ∈ [L− 1],

λmin(Hℓ) ≥
3

4
λℓ

The lemma is then proved.

Lemma 15.21 (Bounds on the least eigenvalue at initialization for layer L). Suppose

m = Ω(λ−2L n2 log(n/δ)), then we have

Pr[λmin(GL) ≥
3

4
λL] ≥ 1− δ.

Proof. Recall GL is defined as

(GL)i,j = vec(
∂f(W,xi)

∂WL

)⊤vec(
∂f(W,xj)

∂WL

)

= vec(Di,Lah
⊤
i,L−1)

⊤vec(Dj,Lah
⊤
j,L−1)

= a⊤Di,LDj,La · h⊤i,L−1hj,L−1,

which has the same form as the correlation matrix of a two-layer over-parameterized

neural network with input data {hL−1,i}i∈[n]. Define

(K̂L)i,j := h⊤i,L−1hj,L−1 · Ew∼N(0,2Im)

[
ϕ′(w⊤hi,L−1)ϕ

′(w⊤hj,L−1)
]
.

Then, by the analysis of the two-layer case (see for example [SY19, DZPS19]), we

have

∥GL − K̂L∥ ≤
λL
8
,

if m = Ω(λ−2L n2 log(n/δ)), where λL := λmin(KL). It remains to bound ∥K̂L−KL∥∞.

Equivalently, for any (i, j) ∈ [n]× [n],

max
(i,j)∈[n]×[n]

∣∣∣E(u,v)∼N(0,2Σ̂L,i,j)
[ϕ′(u)ϕ′(v)]− E(u,v)∼N(0,2ΣL,i,j)[ϕ

′(u)ϕ′(v)]
∣∣∣ .

The expectation has the following analytic form:

E(z1,z2)∼N(0,Σ)[ϕ
′(z1)ϕ

′(z2)] =
1

4
+

sin−1(ρ)

2π
with Σ =

[
p2 ρpq
ρpq q2

]
.

1042

By the analysis of the (L− 1)-layer, we know that |ρL,i,j − ρ̂L,i,j| ≤ Õ(m−1/2), where

ρL,i,j := cos(τL,i,j) and ρ̂L,i,j := cos(θL,i,j). Also, notice that cos(τL,i,j) = F (τL−1,i,j) ∈
[0, 1/2] by Eq. (15.5). Hence, the derivative of the expectation is bounded, and by

Taylor’s theorem, we have

∥K̂L −KL∥∞ ≤ Õ(m−1/2).

It implies that ∥K̂L −KL∥ ≤ λL
8

, which further implies that

∥GL −KL∥ ≤
λL
4
.

Equivalently, we get that

λmin(GL) ≥
3

4
λL

with probability at least 1− δ.

Remark 15.7. We observe a discrepancy of eigenvalue in our analysis: For last layer,

the eigenvalue of our Gram matrix and the NTK is almost the same, while for inter-

mediate layers, we can only provide a much weaker lower bound for Gram matrix.

The main reason is by definition, the NTK for last layer is defined as the product

of two derivatives of ReLU, which always have value 0 or 1. On the other hand,

the NTKs for intermediate layers are defined in terms of the product of two ReLU’s,

which can have much larger magnitudes.

Due to such eigenvalue discrepancy, our algorithm focuses on training the

last layer, since the training dynamic on intermediate layers has a much smaller

magnitude. Hence, we present an algorithm that only trains the last layer while

obtaining a good convergence result.

15.9.2 Bounds on the Least Eigenvalue during Optimization

In this section, we adapt the Lemma C.5 in [BPSW21] into the last layer of a

multi-layer neural network. We make use of the result proved in [SYZ21].

1043

Lemma 15.22 (Lemma C.2 in [SYZ21]). Let b > 0 and R̃ ≤ 1/b. Let c > 0 and

c′ > 0 denote two fixed constants. Suppose we have

∥WL −WL(0)∥ ≤ R̃,

then we have

• ∥GL(W)−GL(W (0))∥F ≤ nα holds with probability at least 1− n2β.

• λmin(GL(W)) ≥ 3
4
λL − nα holds with probability at least 1− n2β − δ,

where α = min{c · exp(−b2/2), 3R̃} and β = exp(−m ·min{c′ · exp(−b2/2), R̃/10}).

Corollary 15.23. Suppose we have

• α = 3R̃ and R̃ ≤ O(λL
n
).

• α = c · exp(−b2/2) and exp(−b2/2) ≤ O(λL
n
).

then we have λmin(GL(W)) ≥ λL
2

.

Proof. We first note that to prove the corollary, it suffices to show that nα ≤ λL
4

. We

analyze two cases.

Case 1: α = 3R. Suppose α = 3R, then the condition translates to 3nR̃ ≤ λL
4

which indicates R̃ ≤ O(λL
n
).

Case 2: α = c · exp(−b2/2). Suppose α = c · exp(−b2/2), then we have

cn · exp(−b2/2) ≤ λL
4

and exp(−b2/2) ≤ O(λL
n
).

Remark 15.8. We note that the analysis of [SYZ21] focuses on the standard two-layer

case of NTK, the reason we can leverage their result is that we can treat the NTK

for last layer as a two-layer neural network where the inputs are hi,L−1 ∈ Rm. One

can also give include a direct proof of the multi-layer version, which agrees the above

lemma and corollary.

1044

15.10 Convergence Analysis of Our Algorithm

In this section, we present a convergence analysis of Algorithm 106. We show

that as long as the neural network width is large enough, the convergence of Algo-

rithm 106 is linear, and the weight matrix does not change too much.

15.10.1 Preliminary

We recall the initialization of our neural network.

Definition 15.7 (Initialization). Let m = mℓ for all ℓ ∈ [L]. Let m0 = d. We assume

weights are initialized as

• Each entry of weight vector a ∈ Rm is i.i.d. sampled from {−1,+1} uniformly

at random.

• Each entry of weight matrices Wℓ ∈ Rm×m sampled from N(0, 2/m).

Remark 15.9. Later, we will also interpret WL as sampled from N(0, 1) and then being

scaled by
√

2
m

.

We also restate the architecture of our neural network here.

Definition 15.8 (Architecture). Our neural network is a standard L-layer feed-

forward neural network, with the activation functions defined as a scaled version

of shifted ReLU activation: ϕ(x) =
√
cb1[x >

√
2/mb]x, where cb := (2(1 − Φ(b) +

bϕ(b)))−1/2. Here b is a threshold value we will pick later. At last layer, we use a

scaled version of a vector with its entry being Rademacher random variables. We

define the neural network function f : Rm0 → R as

f(W,xi) = a⊤ϕ(WLϕ(WL−1ϕ(. . . ϕ(W1xi)))).

We measure the loss of the neural network via squared-loss function:

L(W) =
1

2

n∑

i=1

(f(xi)− yi)2.

1045

We use ft : Rd×n → Rn denote the prediction of our network:

ft(X) = [f(W (t), x1), . . . , f(W (t), xn)]
⊤.

We state two assumptions here.

Assumption 15.24 (Small Row Norm). Let t ∈ {0, . . . , T} and let R̃ ≤ 1 be a

parameter. We assume

∥WL,r(t)−WL,r(0)∥2 ≤ R̃/
√
m, ∀r ∈ [m].

Here, WL,r ∈ Rm means the r-th row of matrix WL.

Later, we will invoke this assumption by specifying the choice of R̃.

Assumption 15.25 (Sparsity). Let t ∈ {0, . . . , T} and let s ≥ 1 be an integer

parameter. We assume

∥∆Di,ℓ∥0 ≤ s,∀ℓ ∈ [L], i ∈ [n].

Later, we will invoke this assumption by specifying the choice of s.

15.10.2 Technical lemmas

We first show that during initialization, by using our shifted ReLU activation,

the vector hi,ℓ is sparse. Hence, the diagonal matrix Di,ℓ is sparse as well.

Lemma 15.26 (Sparse initialization). Let σb(x) = max{x−b, 0} be the shifted ReLU

activation with threshold b > 0. After initialization, with probability

1− nL · e−Ω(me−b2m/4),

it holds for all i ∈ [n] and ℓ ∈ [L],

∥hi,ℓ∥0 ≤ O(m · e−b2m/4).

1046

Proof. We fix i ∈ [n] and ℓ ∈ [L], since we will union bound over all i and ℓ at last.

Let ui ∈ Rm be a fixed vector and Wℓ,r to denote the r-th row of Wℓ, then by the

concentration of Gaussian, we have

Pr[σb(⟨Wℓ,r, ui⟩) > 0] = Pr
z∼N(0, 2

m
)
[z > b] ≤ exp(−b2m/4).

Let S be the following index set S := {r ∈ [m] : ⟨Wℓ,r, ui⟩ > b}, the above reasoning

means that for the indicator random variable 1[r ∈ S], we have

E[1[r ∈ S]] ≤ exp(−b2m/4).

Use Bernstein’s inequality (Lemma A.4) we have that for all t > 0,

Pr[|S| > k + t] ≤ exp(− t2/2

k + t/3
),

where k := m · exp(−b2m/4). By picking t = k, we have

Pr[|S| > 2k] ≤ exp(
−3k
8

).

Note that |S| is essentially the quantity ∥hi,ℓ∥0, hence we can union bound over all ℓ

and i and with probability at least

1− nL · exp(−Ω(m · exp(−b2m/4))),

we have ∥hi,ℓ∥0 ≤ 2m · exp(−b2m/4).

Remark 15.10. The above lemma shows that by using the shifted ReLU activation,

we make sure that all hi,ℓ are sparse after initialization. Specifically, we use k :=

m · exp(−b2m/4) as a sparsity parameter. Later, we might rescale b so that the

probability becomes exp(−b2/2). We stress that such rescaling does not affect the

sparsity of our initial vectors. If we rescale b and choose it as
√
2α logm, then k =

m1−α and hence with high probability, ∥hi,ℓ∥0 ≤ O(m1−α).

As a direct consequence, we note that all initial Di,ℓ are k-sparse as well.

1047

We state a lemma that handles the ℓ2 norm of hi,ℓ when one uses truncated

Gaussian distribution instead. Due to the length and the delicacy of the proof, we

defer it to Section 15.11.

Lemma 15.27 (Restatement of Lemma 15.45). Let b > 0 be a fixed scalar. Let the

activation function ϕ(x) :=
√
cb1[x >

√
2/mb]x, where cb := (2(1−Φ(b)+bϕ(b)))−1/2.

Let ϵ ∈ (0, 1), then over the randomness of W (0), with probability at least

1−O(nL) · exp(−Ω(m exp(−b2/2)ϵ2/L2)),

we have

∥hi,ℓ∥2 ∈ [1− ϵ, 1 + ϵ], ∀i ∈ [n], ℓ ∈ [L].

The second lemma handles the consecutive product that appears naturally in

the gradient computation. It is useful in analyzing the spectral property of the Gram

matrix.

Lemma 15.28 (Variant of Lemma 7.3 in [AZLS19a]). Suppose m ≥ Ω(nL log(nL)),

then over the randomness of initializations W1(0), . . . ,WL(0) ∈ Rm×m, for all i ∈ [n]

and 1 ≤ a ≤ b ≤ L,

Pr[∥WbDi,b−1Wb−1 . . . Di,aWa∥ ≤ O(
√
L)] ≥ 1− e−Ω(k/L2).

The proof is similarly to the original proof of the corresponding lemma in [AZLS19a],

however we replace the bound on hi,ℓ with our Lemma 15.27. We highlight this does

not change the bound, merely in expense of a worse probability.

The next several lemmas bound norms after small perturbation.

Lemma 15.29 (Lemma 8.2 in [AZLS19a]). Suppose Assumption 15.24 is satisfied

with R̃ ≤ O(1
L9/2 log3m

). With probability at least 1− e−Ω(mR̃2/3L),

(a) ∆gi,ℓ can be written as ∆gi,ℓ = ∆gi,ℓ,1 +∆gi,ℓ,2 where

1048

– ∥∆gi,ℓ,1∥2 ≤ O(R̃L3/2)

– ∥∆gi,ℓ,2∥∞ ≤ O(R̃L
5/2
√
logm√

m
)

(b) ∥∆Di,ℓ∥0 ≤ O(mR̃2/3L) and ∥(∆Di,ℓ)gi,ℓ∥2 ≤ O(R̃L3/2).

(c) ∥∆gi,ℓ∥2, ∥∆hi,ℓ∥2 ≤ O(R̃L5/2
√
logm).

Remark 15.11. Lemma 15.29 establishes the connection between parameter R̃ and s

of Assumption 15.24 and 15.25. As long as R̃ is small, then we have s = O(mR̃2/3L).

Such a relation enables us to pick R to our advantage and ensure the sparsity of ∆Di,ℓ

is sublinear in m, and hence the update time per iteration is subquadratic in m.

15.10.3 Bounds on initialization

In the following lemma, we generalize Lemma C.2 in [BPSW21] into multiple-

layer neural networks.

Lemma 15.30 (Bounds on initialization, multiple layer version of Lemma C.2 in

[BPSW21]). Suppose m = Ω(nL log(nL)), then we have the following

• Pr[f(W,xi) = Õ(1), ∀i ∈ [n]] ≥ 1− e−Ω(log2 n).

• Pr[∥JL,0,i∥ = O(1), ∀i ∈ [n]] ≥ 1−O(nL) · e−Ω(k/L2).

Proof. We will prove the two parts of the statement separately.

Part 1: By definition, for any i ∈ [n], we have

f(W,xi) = a⊤ϕ(WL(ϕ(· · ·ϕ(W1xi)))).

We shall make use of Lemma 15.27 here:

Pr
[
∥hi,L∥2 ∈ [0.9, 1.1],∀i ∈ [n]

]
≥ 1−O(nL) · exp(−Ω(k/L2)).

1049

Recall that a ∈ Rm has each of its entry being a Rademacher random variable,

hence it’s 1-subgaussian. Use the concentration of subgaussian (Lemma A.5), we

know that

Pr[|a⊤hi,L| ≥ 1.1t] ≤ 2 exp(−t
2

2
),

setting t = O(log2 n), and union bound over all i ∈ [n], we conclude our desired result.

Part 2: For the last layer, we consider WL is initialized as follows: each entry is first

sampled from N(0, 1), then we scale down WL by
√
2√
m

. This means we can write the

output of last layer as
√
2√
m
WLhi,L−1, and therefore, the gradient is

√
2√
m
Di,Lhi,L−1a

⊤.

Hence,

∥JL,0,i∥ =
1√
m
∥hi,L−1a⊤Di,L∥

≤
√
2√
m
∥hi,L−1∥2 · ∥Di,La∥2

= O(1).

The last step follows from the fact that ∥Di,La∥2 ≤ O(
√
m) and ∥hi,L−1∥2 ≤ 1.1 with

probability at least 1−O(nL) · exp(−Ω(k/L2)).

15.10.4 Bounds on small perturbation

In the following, we generalize the Lemma C.4 in [BPSW21] into multiple

layer neural network. We use the interpretation that WL is generated from N(0, 1)

and scaled by
√

2
m

in our proof.

Lemma 15.31 (multiple layer version of Lemma C.4 in [BPSW21]). Suppose m =

Ω(nL log(nL)), then over the random initialization of

W (0) = {W1(0),W2(0), · · ·WL(0)},

the following holds with probability at least 1−nL · e− log2m, for any set of weight WL

satisfying for each r ∈ [m],

∥WL,r −WL,r(0)∥2 ≤ R/
√
m,

1050

• ∥WL −WL(0)∥F ≤ R.

• ∥JWL,xi − JWL(0),xi∥2 = Õ(R1/2/m1/4).

• ∥JWL
− JWL(0)∥F = Õ(n1/2R1/2/m1/4).

• ∥JWL
∥F = Õ(n1/2).

Proof. Part 1. Note that

∥WL −WL(0)∥2F =
m∑

r=1

∥WL,r −WL,r(0)∥22

≤ m ·R2/m

= R2.

Taking square root yields our desired result.

Part 2. To simplify the notation, we ignore the subscripts i below. We have

∥JWL,x − JWL(0),x∥2 =
2

m
∥(DL(0) + ∆DL)ah

⊤
L −DL(0)ah

⊤
L∥2

=
2

m
∥∆DLah

⊤
L∥2

=
2

m
∥∆DLah

⊤
L∥2F

=
2

m

∑

r∈[m]

a2r · h2L,r · |1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]|

= O(
1

m
)
∑

r∈[m]

|1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]|.

where we use ∆DLah
⊤
L is a rank 1 matrix in the third step.

Let sr := |1[⟨WL,r, hL⟩ ≥ b]− 1[⟨WL,r(0), hL⟩ ≥ b]| and define the event Er as

Er =
{
∥WL,r −WL,r(0)∥2 ≤ R/

√
m, 1[⟨WL,r, hL⟩ ≥ b] ̸= 1[⟨WL,r(0), hL⟩ ≥ b]

}
.

It is not hard to see that event Er happens if and only if

WL,r(0)
⊤hL ∈ [b− ∥hL∥2R/

√
m, b+ ∥hL∥2R/

√
m].

1051

By the anti-concentration of Gaussian distribution (Lemma A.7), we have

E[sr] = Pr[Er = 1] ≤ 4

5
R/
√
m.

We have

Pr
[m∑

r=1

sr ≥ (t+
4

5
)∥hL∥R

√
m
]
≤ Pr

[m∑

r=1

(sr − E[sr]) ≥ t∥hL∥2R
√
m
]

≤ 2 exp(−2t2R2∥hL∥22m2

m2
)

= 2 exp(−2t2R2∥hL∥22)

≤ 2 exp(−t2),

where the first step follows from our above analysis, we use Lemma A.3 in the second

step, and we use both ∥hL∥22 ≥ 0.5 and R ≥ 1 in the final step.

Set t = logm and by union bound over i, we have with probability at least

1− n · e− log2m,

∥JWL,xi − JWL(0),xi∥2 =
1

m

m∑

r=1

sr

≤ 1

m
Õ(R
√
m)

= Õ(
R√
m
).

Taking square root yields our desired result.

Part 3. Note that the squared Frobenious norm is just the sum of all squared

ℓ2 norm of rows, hence

∥JWL
− JWL(0)∥F ≤ Õ(n1/2R1/2/m1/4).

Part 4. We will prove by triangle inequality:

∥JWL
∥F ≤ ∥JWL(0)∥F + ∥JWL

− JWL(0)∥F
≤ Õ(n1/2) + Õ(n1/2R1/2/m1/4)

= Õ(n1/2).

1052

Note that, in the final step, we use both the choice of R (see Def. 15.10) and m (see

Def. 15.11).

15.10.5 Putting it all together

In this section, we will prove the following core theorem that analyzes the

convergence behavior of Algorithm 106:

Theorem 15.32 (Formal version of Theorem 15.1). Suppose the neural network width

satisfies m = Ω(λ−2L n2L2), then over the randomness of the initialization of the neural

network and the randomness of the algorithm, Algorithm 106 satisfies

Pr[∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2] ≥ 1− exp(−Ω(log2 n)).

Before moving on, we introduce several definitions and prove some useful facts

related to them.

Definition 15.9 (function J). We define

Jℓ(Z1, . . . , ZL)i := Di,ℓ(Zℓ)
L∏

k=ℓ+1

Z⊤k Di,k(Zk)a(hi(Z1, . . . , Zℓ−1))
⊤ ∈ Rmℓ×mℓ−1

where

Di,ℓ(Zℓ) := diag(ϕ′(Zℓhi(Z1, . . . , Zℓ−1))), ∈ Rmℓ×mℓ

hi(Z1, . . . , Zℓ−1) := ϕ(Zℓ−1(ϕ(Zℓ−2 · · · (ϕ(Z1xi))))) ∈ Rmℓ−1

Fact 15.33. Let Jℓ denote the function be defined as Definition 15.9. For any t ∈
{0, . . . , T}, we have

ft+1 − ft =
(∫ 1

0

JL((1− s)W (t) + sW (t+ 1))ds

)⊤
· vec(WL(t+ 1)−WL(t)),

1053

Proof. For i ∈ [n], consider the i-th coordinate.

(ft+1 − ft)i =
∫ 1

0

f((1− s)W (t) + sW (t+ 1), xi)
′ds

=

∫ 1

0

(
∂f

∂WL

((1− s)W (t) + sW (t+ 1), xi)

)⊤
· vec(WL(t+ 1)−WL(t))ds

=

(∫ 1

0

JL((1− s)W (t) + sW (t+ 1))ids

)⊤
· vec(WL(t+ 1)−WL(t)),

Thus, we complete the proof.

Fact 15.34. For any t ∈ {0, . . . , T}, we have Jℓ(W1(t), . . . ,WL(t)) = Jℓ,t.

Proof. In order to simplify the notation, we drop the term t below.

We note that for i ∈ [n], the i-th row of matrix Jℓ,t is defined as

Di,ℓ(
L∏

k=ℓ+1

W⊤
k Di,k)ah

⊤
i,ℓ−1,

where

Di,ℓ = diag(ϕ′(Wℓhi,ℓ−1)),

hi,ℓ−1 = ϕ(Wℓ−1(ϕ(Wℓ−2 . . . (ϕ(W1xi))))),

this is essentially the same as hi(W1, . . . ,Wℓ−1) and Di,ℓ(Wℓ). This completes the

proof.

We state the range we require for parameter R̃ and R:

Definition 15.10. We choose R̃ so that

2√
m
· n
λL
≤ R̃ ≤ min{ 1

L4.5 log3m
,
λL
n
}.

Recall that R is the scale-up version of R̃, hence

n

λL
≤ R ≤ min{ 1

L4.5 log3m
,
λL
n
} · √m.

1054

Remark 15.12. Recall that the sparsity parameter s is directly related to R̃: s =

O(mR̃2/3L), hence to ensure the sparsity is small, we shall pick R̃ as small as possible.

Next, we pick the value of m:

Definition 15.11. We choose m to be

m ≥ Ω(n4Lλ−4L).

We use induction to prove the following two claims recursively.

Definition 15.12 (Induction hypothesis 1). Let t ∈ [T] be a fixed integer. We have

∥WL,r(t)−WL,r(0)∥2 ≤ R/
√
m

holds for any r ∈ [m].

Definition 15.13 (Induction Hypothesis 2). Let t ∈ [T] be a fixed integer. We have

∥ft − y∥2 ≤
1

3
∥ft−1 − y∥2.

Suppose the above two claims hold up to t, we prove they continue to hold for

time t + 1. The second claim is more delicate, we are going to prove it first and we

define

Jℓ,t,t+1 :=

∫ 1

0

Jℓ
(
(1− s)Wt + sWt+1

)
ds,

where Jℓ is defined as Definition 15.9.

Lemma 15.35. Let g⋆L := (JL,tJ
⊤
L,t)
−1(ft − y). We have

∥ft+1 − y∥2 ≤ ∥ft − y − JL,tJ⊤L,tgL,t∥2
+ ∥(JL,t − JL,t,t+1)J

⊤
L,tg

⋆
L∥2

+ ∥(JL,t − JL,t,t+1)J
⊤
ℓ,t(gL,t − g⋆L)∥2. (15.7)

1055

Proof. Consider the following computation:

∥ft+1 − y∥2
= ∥ft − y + (ft+1 − ft)∥2
= ∥ft − y + JL,t,t+1 · vec(WL,t+1 −WL,t)∥2
= ∥ft − y − JL,t,t+1 · J⊤L,tgL,t∥2
= ∥ft − y − JL,tJ⊤L,tgL,t + JL,tJ

⊤
L,tgL,t − JL,t,t+1J

⊤
L,tgL,t∥2

≤ ∥ft − y − JL,tJ⊤L,tgL,t∥2 + ∥(JL,t − JL,t,t+1)J
⊤
L,tgL,t∥2

≤ ∥ft − y − JL,tJ⊤L,tgL,t∥2 + ∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 + ∥(JL,t − JL,t,t+1)J

⊤
L,t(gL,t − g⋆L)∥2,

The second step follows from the definition of JL,t,t+1 and simple calculus.

Claim 15.36 (1st term in Eq. (15.7)). We have

∥ft − y − JL,tJ⊤L,tgL,t∥2 ≤
1

9
∥ft − y∥2.

Proof. We have

∥ft − y − JL,tJ⊤L,tgL,t∥2 ≤ ϵ0∥ft − y∥2
≤ 1

9
∥ft − y∥2, (15.8)

since gL,t is an ϵ0 (ϵ0 ≤ 1
9
) approximate solution to the regression problem

min
g
∥JL,tJ⊤L,tg − (ft − y)∥2.

Claim 15.37 (2nd term in Eq. (15.7)). We have

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤

1

9
∥ft − y∥2.

Proof. We bound the second term in Eq. (15.7) as follows:

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤L,tg⋆L∥2

= ∥JL,t − JL,t,t+1∥ · ∥J⊤L,t(JL,tJ⊤L,t)−1 · (ft − y)∥2
≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤L,t(JL,tJ⊤L,t)−1∥ · ∥ft − y∥2. (15.9)

1056

We bound these term separately.

For the first term in Eq. (15.9),

∥JL,t − JL,t,t+1∥ =
∥∥∥∥JL(Wt)−

∫ 1

0

JL((1− s)Wt + sWt+1)ds

∥∥∥∥

≤
∫ 1

0

∥JL(Wt)− JL((1− s)Wt + sWt+1)∥ ds

≤
∫ 1

0

∥JL(Wt)− JL(W0)∥+ ∥JL(W0)− JL((1− s)Wt + sWt+1)∥ ds

≤ ∥JL(Wt)− JL(W0)∥+
∫ 1

0

∥JL(W0)− JL((1− s)Wt + sWt+1)∥ ds

≤ Õ(n1/2R1/2/m1/4), (15.10)

where by Fact 15.34, we know ∥JL(Wt)−JL(W0)∥ = ∥JWL(t)−JWL(0)∥ ≤ Õ(n1/2R1/2/m1/4),

we use Lemma 15.31 in the last inequality.

For the term
∫ 1

0
∥JL(W0)−JL((1−s)Wt+sWt+1)∥ ds, we analyze the following:

∥(1− s) · vec(WL(t)) + s · vec(WL(t+ 1))− vec(WL(0))∥2
≤ (1− s) · ∥vec(WL(t))− vec(WL(0))∥2 + s · ∥vec(WL(t+ 1))− vec(WL(0))∥2
= (1− s) · ∥WL(t)−WL(0)∥F + s · ∥WL(t+ 1)−WL(0)∥F
≤ O(R).

This means the perturbation of (1− s)WL(t) + sWL(t + 1) with respect to WL(0) is

small, hence ∥JL(W0)− JL((1− s)Wt + sWt+1)∥ = Õ(n1/2R1/2/m1/4).

Furthermore, we have

∥J⊤L,t(JL,tJ⊤L,t)−1∥ =
1

σmin(J⊤L,t)
≤
√

2/λL, (15.11)

where the second inequality follows from σmin(JL,t) =
√
λmin(JL,tJ⊤L,t) ≥

√
λL/2 (see

Lemma 15.23).

Combining Eq. (15.9), (15.10) and (15.11), we have

∥(JL,t − JL,t,t+1)J
⊤
L,tg

⋆
L∥2 ≤ Õ(n1/2R1/2/m1/4) · λ−1/2L · ∥ft − y∥2
≤ 1

9
∥ft − y∥2, (15.12)

1057

where the last step follows from choice of m (Definition 15.11).

Claim 15.38 (3rd term in Eq. (15.7)). We have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤

1

9
∥ft − y∥2

Proof. We can show

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤L,t∥ · ∥gL,t − g⋆L∥2. (15.13)

Moreover, one has

λ

2
∥gL,t − g⋆L∥2 ≤ λmin(JL,tJ

⊤
L,t) · ∥gL,t − g⋆L∥2

≤ ∥JL,tJ⊤L,tgL,t − JL,tJ⊤L,tg⋆L∥2
= ∥JL,tJ⊤L,tgL,t − (ft − y)∥2

≤
√
λL/n

2
· ∥ft − y∥2. (15.14)

The first step comes from λmin(JL,tJ
⊤
L,t) = λmin(GL,t) ≥ λL/2 (see Lemma 15.23).

The last step follows from gL,t is an ϵ0 (ϵ0 ≤
√
λL/n) approximate solution to the

regression.

Consequently, we have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ ∥JL,t − JL,t,t+1∥ · ∥J⊤L,t∥ · ∥gL,t − g⋆L∥2

≤ Õ(n1/2R1/2/m1/4) · Õ(n1/2) · 2√
nλL

· ∥ft − y∥2

= Õ(
n1/2R1/2

m1/4λ
1/2
L

) · ∥ft − y∥2.

Note that, for the 2nd step, it follows from Eq. (15.10) and (15.14) and the fact that

∥JL,t∥ ≤ O(
√
n) (see Lemma 15.31).

Finally, we have

∥(JL,t − JL,t,t+1)J
⊤
L,t(gL,t − g⋆L)∥2 ≤ Õ(

n1/2R1/2

m1/4λ
1/2
L

) · ∥ft − y∥2 (15.15)

≤ 1

9
∥ft − y∥2. (15.16)

1058

The last step follows from choice of m (Definition 15.11).

Lemma 15.39 (Putting it all together). We have

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2. (15.17)

Proof. Combining Eq. (15.7), (15.8), (15.12), and (15.15), we have proved the second

claim, i.e.,

∥ft+1 − y∥2 ≤
1

3
∥ft − y∥2.

15.10.6 Bounds on the movement of weights

Lemma 15.40. Let R be chosen as in Definition 15.10, then the following holds:

∥WL,r(t+ 1)−WL,r(0)∥2 ≤ R/
√
m.

Proof. First, we have

∥gL,t∥2 ≤ ∥g⋆L∥2 + ∥gL,t − g⋆L∥2
= ∥(JL,tJ⊤L,t)−1(ft − y)∥2 + ∥gL,t − g⋆L∥2
≤ ∥(JL,tJ⊤L,t)−1∥ · ∥(ft − y)∥2 + ∥gL,t − g⋆L∥2
≤ 1

λL
· ∥ft − y∥2 +

1√
nλL

· ∥ft − y∥2

≲
1

λL
· ∥ft − y∥2 (15.18)

where the third step is owing to Eq. (15.14), and the final step is due to the fact that

1/
√
nλL ≤ 1/λL.

1059

Then

∥WL,r(k + 1)−WL,r(k)∥2 =
∥∥∥

n∑

i=1

1√
m
arh

⊤
i,L−11[⟨WL,r(k), hi,L−1⟩ ≥ 0]gL,k,i

∥∥∥
2

≤ O(
1√
m
)

n∑

i=1

|gL,k,i|

≤ O(

√
n√
m
) · ∥gL,k∥2

≤ O(

√
n√
m
) · 1

λL
· ∥fk − y∥2

≤ O(
n1/2

2kλLm1/2
) · ∥f0 − y∥2

≤ Õ(
n

2kλLm1/2
).

The first step follows from the update rule, the second step is by triangle inequality,

the third step uses the fact the ℓ1 norm of a vector is upper bounded by
√
n times

the ℓ2 norm, the fourth step is by Eq. (15.18), and the last step is by each entry of

f0 and y is of order Õ(1).

Consequently, we have

∥WL,r(t+ 1)−WL,r(0)∥2 ≤
t∑

k=0

∥WL,r(k + 1)−WL,r(k)∥2

≤
t∑

k=0

Õ(
n

2kλLm1/2
)

≤ Õ(
n

λLm1/2
).

By the choice of R (Definition 15.10), we know this is upper bounded by R/
√
m. This

concludes our proof.

1060

15.11 Bounds on the Intermediate Layer Output with Shifted
ReLU

In this section, we prove a technical lemma (Lemma 15.27) involving truncated

gaussian distribution, which correlates to the shifted ReLU activation we use.

Definition 15.14 (Truncated Gaussian distribution). Suppose X ∼ N(0, σ2). Let

b ∈ R. Then, we say a random variable Y follows from a truncated Gaussian distri-

bution Nb(0, σ
2) if Y = X|X ≥ b. The probability density function for Nb(0, σ

2) is as

follows:

f(y) =
1

σ(1− Φ(b/σ))
· 1√

2π
e−y

2/(2σ2) y ∈ [b,∞),

where Φ(·) is the standard Gaussian distribution’s CDF.

Fact 15.41 (Properties of truncated Gaussian distribution). For b ∈ R, suppose

X ∼ Nb(0, σ
2). Let β := b/σ. Then, we have

• E[X] = σϕ(β)
1−Φ(β)

, where ϕ(x) := 1√
2π
e−x

2/2.

• Var[X] = σ2(1 + βϕ(β)/(1− Φ(β))− (ϕ(β)/(1− Φ(β)))2).

• X/σ ∼ Nb/σ(0, 1).

• When σ = 1, X is C(b+ 1)-subgaussian, where C > 0 is an absolute constant.

Lemma 15.42 (Concentration inequality for b-truncated chi-square distribution).

For b ∈ R, n > 0, let X ∼ χ2
b,n; that is, X =

∑n
i=1 Y

2
i where Y1, . . . , Yn ∼ Nb(0, 1) are

independent b-truncated Gaussian random variables. Then, there exist two constants

C1, C2 such that for any t > 0,

Pr

[∣∣∣∣X − n(1 +
bϕ(b)

1− Φ(b)
)

∣∣∣∣ ≥ nt

]
≤ exp

(
−C1nt

2/b4
)
+ exp

(
−C2nt/b

2
)
.

In particular, we have

Pr [|X − n(1 + b(b+ 1))| ≥ t] ≤ exp
(
−C1t

2/(nb4)
)
+ exp

(
−C2t/b

2
)
.

1061

Proof. Since we know that Yi ∼ Nb(0, 1) is C(b + 1)-subgaussian, it implies that Y 2
i

is a sub-exponential random variable with parameters (4
√
2C2(b+ 1)2, 4C2(b+ 1)2).

Hence, by the standard concentration of sub-exponential random variables, we have

Pr

[∣∣∣∣∣
n∑

i=1

Y 2
i − nE[Y 2

i]

∣∣∣∣∣ ≥ nt

]
≤

2 exp

(
− nt2

2·32C4(b+1)4

)
if nt ≤ 8C2(b+ 1)2

2 exp
(
− nt

2·4C2(b+1)2

)
otherwise

≤ 2 exp
(
−C1nt

2/b4
)
+ 2 exp

(
−C2nt/b

2
)
.

Fact 15.43. Let h ∈ Rp be fixed vectors and h ̸= 0, let b > 0 be a fixed scalar,

W ∈ Rm×p be random matrix with i.i.d. entries Wi,j ∼ N(0, 2
m
) and vector v ∈ Rm

defined as vi = ϕ((Wh)i) = 1[(Wh)i ≥ b](Wh)i. Then

• |vi| follows i.i.d. from the following distribution: with probability 1−e−b2m/(4∥h∥2),
|vi| = 0, and with probability e−b2m/(4∥h∥2), |vi| follows from truncated Gaussian

distribution Nb(0,
2
m
∥h∥22).

• m∥v∥22
2∥h∥22

is in distribution identical to χ2
b′,ω (b′-truncated chi-square distribution

of order ω) where ω follows from binomial distribution B(m, e−b
2m/(4∥h∥2)) and

b′ =

√
m/2

∥h∥2 b.

Proof. We assume each vector Wi is generated by first generating a gaussian vector

g ∼ N(0, 2
m
I) and then setting Wi = ±g where the sign is chosen with half-half

probability.

Now, |⟨Wi, h⟩| = |⟨g, h⟩| only depends on g, and is in distribution identical to

Nb(0,
2
m
∥h∥22).

Next, after the sign is determined, the indicator 1[(Wih)i ≥ b] is 1 with prob-

ability e−b2m/(4∥h∥2) and 0 with probability 1− e−b2m/(4∥h∥2).

Therefore, |vi| satisfies the aforementioned distribution.

1062

As for ∥v∥22, letting ω ∈ {0, 1, . . . ,m} be the variable indicates how many

indicators are 1, then ω ∼ B(m, e−b
2m/(4∥h∥2)) and m∥v∥22

2∥h∥22
∼ χ2

b′,ω, where b′ =
√
m/2

∥h∥2 b.

Fact 15.44 (Gaussian tail bound). For any b > 0, we have

e−b
2/2

C(b+ 1)
≤ 1− Φ(b) ≤ e−b

2/2,

where C is an absolute constant.

We prove a truncated Gaussian version of Lemma 7.1 of [AZLS19a].

Lemma 15.45. Let b > 0 be a fixed scalar. Let the activation function be defined as

ϕ(x) :=
√
cb1[x >

√
2/mb]x,

where

cb := (2(1− Φ(b) + bϕ(b)))−1.

Let ϵ ∈ (0, 1), then over the randomness of W (0), with probability at least

1−O(nL) · exp(−Ω(m exp(−b2/2)ϵ2/L2)),

we have

∥hi,ℓ∥2 ∈ [1− ϵ, 1 + ϵ], ∀i ∈ [n], ℓ ∈ [L].

Proof. We only prove for a fixed i ∈ [n] and ℓ ∈ {0, 1, 2, . . . , L} because we can apply

union bound at the end. Below, we drop the subscript i for notational convenience,

and write hi,ℓ and xi as hℓ and x respectively.

According to Fact 15.43, fixing any hℓ−1 ̸= 0 and letting Wℓ be the only source

of randomness, we have

m

2
∥hℓ∥22 ∼ χ2

b/∥h∥2,ω, with ω ∼ B(m, 1− Φ(b′)),

1063

where b′ := b/∥hℓ−1∥2.

We first consider the ℓ = 1 case. Then, we have ∥hℓ−1∥2 = 1, and b′ = b. Let

Pb := 1− Φ(b). By Chernoff bound, for any δ ∈ (0, 1), we have

Pr[ω ∈ (1± δ)mPb] ≥ 1− exp(−Ω(δ2Pbm)).

In the following proof, we condition on this event. By Fact 15.44,

ω ∈ (1± δ)Pbm ⇐⇒ ω ∈
[
(1− δ) e−b

2/2

C(b+ 1)
m, (1 + δ) exp(−b2/2)m

]
.

By Lemma 15.42, we have

Pr

[∣∣∣∣
m

2
∥h1∥22 − ω

(
1 +

bϕ(b)

Pb

)∣∣∣∣ > t

]
≤ exp

(
−Ω(t2/(ωb4))

)
+ exp

(
−Ω(t/b2)

)

Note that

ω

(
1 +

bϕ(b)

Pb

)
∈ (1± δ)mPb + (1± δ)mPb ·

bϕ(b)

Pb
= (1± δ)(Pb + bϕ(b)) ·m.

Let c−1b := 2(Pb + bϕ(b)) be the normalization constant. Then, we have

Pr[|cb∥h1∥22 − (1± δ)| > 2tcb/m] ≤ exp
(
−Ω(t2/(ωb4))

)
+ exp

(
−Ω(t/b2)

)
.

We want 2tcb/m = O(δ), i.e., t = O(δc−1b m). Then, we have ωt = mΩ(1) > b2. Hence,

by Lemma 15.42, we actually have

Pr[|cb∥h1∥22 − (1± δ)| > O(δ)] ≤ exp
(
−Ω(δm/(cbb2))

)
.

By taking δ = ϵ/L, we get that

∥h1∥22 ∈ [1− ϵ/L, 1 + ϵ/L]

holds with probability

≥ 1− exp(−Ω(ϵ2Pbm/L2))− exp
(
−Ω(ϵm/(cbb2L))

)
≥ 1− exp(−Ω(ϵ2Pbm/L2)),

1064

where the last step follows from 1
cbb2

= Pb+bϕ(b)
b2

= Θ(Pb).

We can inductively prove the ℓ > 1 case. Since the blowup of the norm of

h1 is 1 ± ϵ/L, the concentration bound is roughly the same for hℓ for ℓ ≥ 2. Thus,

by carefully choosing the parameters, we can achieve ∥hℓ∥22 ∈ [(1− ϵ/L)ℓ, (1 + ϵ/L)ℓ]

with high probability.

In this end, by a union bound over all the layers ℓ ∈ [L] and all the input data

i ∈ [n], we get that

∥hi,ℓ∥2 ∈ [1− ϵ, 1 + ϵ]

with probability at least

1−O(nL) exp(−Ω(ϵ2Pbm/L2)),

which completes the proof of the lemma.

1065

Chapter 16: Privacy Distributed Learning: A
Theoretical Analysis of InstaHide’s Security

16.1 Introduction

Collaboratively training neural networks based on sensitive data is appealing

in many AI applications, such as healthcare, fraud detection, and virtual assistants.

How to train neural networks without compromising data confidentiality and predic-

tion accuracy has become a common research goal in both academia and industry.

[HSLA20b] recently proposed an approach called InstaHide for image classification.

The key idea is to train the model on a dataset where (1) each image is a mix of kpriv
private images and kpub public images, and (2) each pixel is independently sign-flipped

after the mixing. Instahide shows promising prediction accuracy on MNIST, CIFAR-

10, CIFAR-100, and ImageNet datasets. TextHide [HSC+20] applies InstaHide’s idea

to text datasets and achieves promising results on natural language processing tasks.

To understand the security aspect of InstaHide in realistic deployment scenar-

ios, InstaHide authors present an InstaHide challenge1 that involves npriv = 100 private

images, ImageNet dataset as the public images, m = 5000 sample images (each image

is a combination of kpriv = 2 private images and kpub = 4 public images and the sign

of each pixel is randomly flipped). The challenge is to recover a private image given

the set of sample images.

[CLSZ21] is a theoretical work that formulates the InstaHide attack problem as

a recovery problem. It also provides an algorithm to recover a private image assuming

each private and public image is a random Gaussian image (i.e., each pixel is an i.i.d.

draw from N(0, 1)). The algorithm shows that O(nkpriv−2/(kpriv+1)
priv) sample images are

sufficient to recover one private image. [CDG+20] provides the first heuristic-based

1https://github.com/Hazelsuko07/InstaHideChallenge.

1066

https://github.com/Hazelsuko07/InstaHide Challenge.

practical attack for the InstaHide challenge (kpriv = 2), and it can generate images

that are visually similar to the private images in the InstaHide challenge dataset.

With the same formulation in [CLSZ21], we achieve a better upper bound on

the number of samples needed to recover private images when kpriv = 2. Our new

algorithm can recover all the private images using only npriv log(npriv) samples.2 This

significantly improves the state-of-the-art theoretical results [CLSZ21] that requires

n
4/3
priv samples to recover a single private image. However, our running time is exponen-

tial in the number of private images (npriv) and polynomial in the number of public

images (npub), where the running time of the algorithm in [CLSZ21] is polynomial in

npriv and npub. In addition, we provide a four-step framework to compare our attacks

with the attacks presented in [CDG+20] and [CLSZ21]. We hope our framework can

inspire more efficient attacks on InstaHide-like approaches and can guide the design

of future-generation deep learning algorithms on sensitive data.

16.1.1 Our result

[CLSZ21] formulates the InstaHide attack problem as a recovery problem that

given sample access to oracle that can generate as much as InstaHide images you want,

there are two goals : 1) sample complexity, minimize the number InstaHide images

being used, 2) running time, use those InstaHide images to recover the original images

as fast as possible.

Let private and public data vectors are Gaussians. Let Spub denote the set

of public images with |Spub| = npub, let Spriv denote the set of private images with

|Spriv| = npriv. The model that produces InstaHide image can be desrcibed as follows:

• Pick kpub vectors from public data set and kpriv vectors from private data set.

• Normalize kpub vectors by 1/
√
kpub and normalize kpriv vectors by 1/

√
kpriv.

2For the worst case distribution, Ω(npriv) is a trivial sample complexity lower bound.

1067

• Add kpub+kpriv vectors together to obtain a new vector, then flip each coordinate

of that new vector independently with probability 1/2.

We state our result as follows:

Theorem 16.1 (Informal version of Theorem 16.3). Let kpriv = 2. If there are npriv

private vectors and npub public vectors, each of which is an i.i.d. draw from N(0, Idd),

then as long as d = Ω(poly(kpub) log(npub+npriv)), there is some m = O(npriv log npriv)

such that, given a sample of m random synthetic vectors independently generated as

above, one can exactly recover all the private vectors in time

O(dm2 + dn2
pub + n2ω+1

pub +mn2
pub) + d2O(m)

with high probability.

Notations. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}.
For a set S, we use supp(S) to denote the support of S. For a vector x, we use ∥x∥2
to denotes entry-wise ℓ2 norm. For two vectors a and b, we use a◦b to denote a vector

where i-th entry is aibi. For a vector a, we use |a| to denote a vector where the i-th

entry is |ai|.

16.1.2 Comparison to recent attacks

Refs Recover kpriv Samples Step 1 Step 2 Step 3 Step 4
[CLSZ21] one ≥ 2 m ≥ nkpriv−2/(kpriv+1) dm2 dn2

pub + n2ω+1
pub m2 2k

2
priv

Ours all = 2 m ≥ npriv log npriv dm2 dn2
pub + n2ω+1

pub mnpriv 2m · n2
privd

Table 16.1: A summary of running times in different steps between ours and [CLSZ21].
This table only compares the theoretical result. Let kpriv denote the number of private
images we select in InstaHide image. Let d denote the dimension of image. Let npub denote
the number of images in public dataset. Let npriv denote the number of images in private
dataset. We provide a computational lower bound for Step 4 in Appendix 16.6. There is
no algorithm that solves Step 4 in 2o(npriv) time under Exponential Time Hypothesis (ETH)
(Theorem 16.13).

1068

Our attack algorithm (Algorithm 111) contains four steps for kpriv = 2. We

can prove m = O(npriv log(npriv)) suffices. Our algorithm shares similarities as two

recent attack results : one is a practical attack [CDG+20], the other is a theoretical

attack [CLSZ21]. In the next a few paragraphs, we describe our attack algorithm in

four major steps. For each step, we also give a comparison with the corresponding

step in [CDG+20, CLSZ21].

• Step 1. Section 16.4.1. Get the Gram matrix M ∈ Rm×m for all images.

– For this step, [CDG+20]’s attack is using a pre-trained neural network on

public dataset to construct the Gram matrix.

– For this step, we use [CLSZ21]’s attack as a black-box. It takes O(m2d)

time.

• Step 2. Section 16.4.2. Get all public image coefficient via using a SDP solver

[JKL+20], and substract public part from Gram matrix.

– For this step, [CDG+20]’s attack is 1) they treat public images as noise,

2) they don’t need to take care of the public images’ labels, since current

InstaHide Challenge doesn’t provide label for public images.

– For this step, we use [CLSZ21]’s attack as a black box. The time of this step

has two parts : 1) formulate the matrix, it takes dn2
pub, 2) solving a SDP

with n2
pub×n2

pub size matrix variable and O(n2
pub) constraints, thus it takes

n2ω+1
pub time [JKL+20], where ω is the exponent of matrix multiplication.

• Step 3. Section 16.4.3. Recover W ∈ Rm×npriv from observation M (M =

WW⊤), this step takes O(m · n2
priv) time.

– For this step, [CDG+20]’s attack is using K-means to figure out cliques

(Figure 16.1) and then do min-cost max flow problem to figure out the

correspondence between InstaHide image and original image (Figure 16.2,

16.3).

1069

– For this step, [CLSZ21]’s attack is using a clever idea called “floral matrix”.

We use the fact that kpriv = 2 is a graph (while kpriv ≥ 3 is corresponding

to hypergraph), exploring the nice combinatorial property on a graph.

• Step 4. Section 16.4.4. Solve d independent ℓ2-regression problems. Given

W ∈ Rm×npriv and Y ∈ Rm×d. For each i ∈ [d], let Y∗,i ∈ Rm denote the i-th

column of Y, we need to solve the following ℓ2 regression

min
z∈Rnpriv

∥|Wz| − |Y∗,i|∥2.

The classical ℓ2 regression can be solved in an efficient way in both theory

and practice. However, here we don’t know the random signs, and there are

2m possibilities. We are unaware any provable algorithm without guessing all

the 2m possibilities. Thus the running time of our algorithm in this step is

dominated by 2m.

– For this step, [CDG+20]’s attack is a heuristic algorithm that uses gradient

descent.

– For this step, [CLSZ21]’s attack is doing the exact same thing as us. How-

ever, their goal is just recover one private image which means m = O(k2).

They only need to guess 2k
2 possibilities.

16.2 Summary of the Attack by Carlini et al.

This section summarizes the result of Carlini et al, which is an attack of

InstaHide when kpriv = 2. [CDG+20]. We first briefly describe the current version of

InstaHide Challenge. Suppose there are npriv private images, the InstaHide authors

[HSLA20b] first choose a parameter T , this can be viewed as the number of iterations

in the deep learning training process. For each t ∈ [T], [HSLA20b] draws a random

permutation πt : [npriv] → [npriv]. Each InstaHide image is constructed from a private

image i, another private image πt(i) and also some public images. Therefore, there

1070

are T · npriv InstaHide images in total. Here is a trivial observation: each private

image shown up in exactly 2T InstaHide images (because kpriv = 2). The model in

[CLSZ21] is a different one: each InstaHide image is constructed from two random

private images and some random public images. Thus, the observation that each

private image appears exactly 2T does not hold. In the current version of InstaHide

Challenge, the InstaHide authors create the InstaHide labels (a vector that lies in RL

where the L is the number of classes in image classification task) in a way that the

label of an InstaHide image is a linear combination of labels (i.e., one-hot vectors)

of the private images and not the public images. This is also a major difference

compared with [CLSZ21]. [CDG+20] won’t be confused about, for the label of an

InstaHide image, which coordinates of the label vector are from the private images

and which are from the public images.

• Step 1. Recover a similarity3 matrix M ∈ {0, 1, 2}m×m.

– Train a deep neural network based on all the public images, and use that

neural network to construct the similarity matrix M.

• Step 2. Treat public image as noise.

• Step 3. Clustering. This step is divided into 3 substeps.

The first substep uses the similarity matrix M to construct Tnpriv clusters of

InstaHide images based on each InstaHide image such that the images inside one

cluster shares a common original image.

The second substep run K-means on these clusters, to group clusters into npriv

groups such that each group corresponds to one original image.

The third substep construct a min-cost flow graph to compute the two original

images that each InstaHide image is mixed from.

3In [CDG+20], they call it similarity matrix, in [CLSZ21] they call it Gram matrix. Here, we
follow [CDG+20] for convenient.

1071

– Grow clusters. Figure 16.1 illustrates an example of this step. For a

subset S of InstaHide images (S ⊂ [m]), we define insert(S) as

Insert(S) = S ∪ argmax
i∈[m]

∑

j∈S

Mi,j

For each i ∈ [m], we compute set Si ⊂ [m] where Si = insert(T/2)({i}).

– Select cluster representatives. Figure 16.1 illustrates an example of

this step. Define distance between clusters as

dist(i, j) =
|Si ∩ Sj|
|Si ∪ Sj|

.

Run k-means using metric dist : [m] × [m] → R and k = npriv. Result is

npriv groups C1, . . . , Cnpriv
⊆ [m]. Randomly select a representative ri ∈ Ci,

for each i ∈ [npriv].

– Computing assignments. Construct a min-cost flow graph as Fig-

ure 16.2, with weight matrix W̃ ∈ Rm×npriv defined as follows:

W̃i,j =
1

|Srj |
∑

k∈Srj

Mi,k.

for i ∈ [m], j ∈ [npriv]. After solving the min-cost flow (Figure 16.3),

construct the assignment matrix W ∈ Rm×npriv such that Wi,j = 1 if the

edge from i to j has flow, and 0 otherwise.

• Step 4. Recover original image. From Step 3, we have the unweighted assign-

ment matrix W ∈ {0, 1}m×npriv . Before we recover the original image, we need

to first recover the weight of mixing, which is represented by the weighted as-

signment matrix U ∈ Rm×npriv . To recover weight, we first recover the label for

each cluster group, and use the recovered label and the mixed label to recover

the weight.

– First, we recover the label for each cluster, for all i ∈ [npriv]. Let L denote

the number of classes in the classification task of InstaHide application. For

1072

j ∈ [m], let yj ∈ RL be the label of j.

label(i) =
⋂

j∈[m],Wj,i=1

supp(yj) ∈ [L].

Then, for i ∈ [m] and j ∈ [npriv] such that Wi,j = 1, define Ui,j = yi,label(j)

for |supp(yi)| = 2 and Ui,j = yi,label(j)/2 for |supp(yi)| = 1.

Here, W ∈ {0, 1}m×npriv is the unweighted assignment matrix and U ∈
Rm×npriv is the weighted assignment matrix. For Wi,j = 0, let Ui,j = 0.

– Second, for each pixel i ∈ [d], we run gradient descent to find the original

images. Let Y ∈ Rm×d be the matrix of all InstaHide images, Y∗,i denote

the i-th column of Y.4

min
z∈Rnpriv

∥|Uz| − |Y∗,i|∥2.

16.3 Preliminaries

We use the same setup as [CLSZ21].

Definition 16.1 (Image matrix notation, Definition 2.2 in [CLSZ21]). Let image

matrix X ∈ Rd×n be a matrix whose columns consist of vectors x1, . . . , xn ∈ Rd

corresponding to n images each with d pixels taking values in R. It will also be

convenient to refer to the rows of X as p1, . . . , pd ∈ Rn.

We define public set and private set as follows,

Definition 16.2 (Public/private notation, Definition 2.3 in [CLSZ21]). Let Spub ⊂ [n]

be some subset. We will refer to Spub and Spriv = [n]\Spub as the set of public and

private images respectively, and given a vector w ∈ Rn, we will refer to supp(w)∩Spub

and supp(w) ∩ Spriv as the public and private coordinates of w respectively.

4The description of the attack in [CDG+20] recovers original images by using gradient descent
for minz∈Rnpriv ∥U|z| − |Y∗,i|∥2, which we believe is a typo.

1073

We define synthetic images as follows,

Definition 16.3 (Synthetic images, Definition 2.4 in [CLSZ21]). Given sparsity levels

kpub ≤ |Spub|, kpriv ≤ |Spriv|, image matrix X ∈ Rd×n and a selection vector w ∈ Rn

for which [w]Spub
and [w]Spriv

are kpub- and kpriv-sparse respectively, the corresponding

synthetic image is the vector yX,w = |Xw| ∈ Rd where | · | denotes entrywise absolute

value. We say that X ∈ Rd×n and a sequence of selection vectors w1, . . . , wm ∈ Rn give

rise to a synthetic dataset Y ∈ Rm×d consisting of the images (yX,w1 , . . . , yX,wm)⊤.

We define Gaussian images,

Definition 16.4 (Gaussian images, Definition 2.5 in [CLSZ21]). We say that X is a

random Gaussian image matrix if its entries are sampled i.i.d. from N(0, 1).

We define the distribution over selection vectors,

Definition 16.5 (Distribution over selection vectors, Definition 2.6 in [CLSZ21]).

Let D be the distribution over selection vectors defined as follows. To sample once

from D, draw random subset T1 ⊂ Spub, T2 ⊆ Spriv of size kpub and kpriv and output

the unit vector whose i-th entry is 1/
√
kpub if i ∈ T1, 1/

√
kpriv if i ∈ T2, and zero

otherwise.5

We define pub and priv operators as follows,

Definition 16.6 (Public/private operators). We define function pub(·) and priv(·)
such that for vector w ∈ Rn, pub(w) ∈ Rnpub will be the vector where the coordinates

of w corresponding to private subset Spriv are deleted, and priv(w) ∈ Rnpriv will be the

vector where the coordinates of w corresponding to public subset Spub are deleted.

5Note that any such vector does not specify a convex combination, but this choice of normalization
is just to make some of the analysis later on somewhat cleaner, and our results would still hold if
we chose the vectors in the support of D to have entries summing to 1.

1074

For subset S̃ ⊂ S we will refer to vec(S̃) ∈ Rn as the vector that vec(S̃)i = 1

if i ∈ S̃ and vec(S̃)i = 0 otherwise. We define the public and private components of

W and Y for convenient.

Definition 16.7 (Public and private components of image matrix and selection vec-

tors). For a sequence of selection vectors w1, . . . , wm ∈ Rn we will refer to W =

(vec(supp(w1)), . . . , vec(supp(wm)))
⊤ ∈ {0, 1}m×n as the mixup matrix.

Specifically, we will refer to Wpub ∈ {0, 1}m×npub as the public component of

mixup matrix and Wpriv ∈ {0, 1}m×npriv as the private component of mixup matrix,

i.e.,

Wpub =

pub(W1,∗)

...
pub(Wm,∗)

 , Wpriv =

priv(W1,∗)

...
priv(Wm,∗)

 .

We will refer to Xpub ∈ Rd×npub as public component of image matrix where

columns of X ∈ Rd×n corresponding to private set Spriv are deleted, and Xpriv ∈ Rd×npriv

as private component of image matrix where columns of X ∈ Rd×n corresponding to

public set Spub are deleted.

Furthermore we define Ypub ∈ Rm×d as public contribution to InstaHide images

and Ypriv ∈ Rm×d as private contribution to InstaHide images:

Ypub =
1√
kpub

WpubX
⊤
pub, Ypriv =

1√
kpriv

WprivX
⊤
priv.

Instead of considering only one private image recovery as [CLSZ21, Problem

1], here we consider a harder question which requires to recover all the private images.

Problem 16.2 (Private image recovery). Let X ∈ Rd×n be a Gaussian image matrix.

Given access to the public images {xs}s∈Spub
and the synthetic dataset (yX,w1 , . . . , yX,wm),

where w1, . . . , wm ∼ D are unknown selection vectors, output a set of vectors {x̃s}s∈Spriv

for which there exists a one-to-one mapping ϕ from {x̃s}s∈Spriv
to {xs}s∈Spriv

satisfying

|ϕ(x̃s)j| = |(xs)j|, ∀j ∈ [d].

1075

Algorithm 111 Recovering All Private Images when kpriv = 2

1: procedure RecoverAll(Y) ▷ Theorem 16.3, Theorem 16.1
2: ▷ InstaHide dataset Y = (yX,w1 , . . . , yX,wm)⊤ ∈ Rm×d
3: ▷ Step 1. Retrieve Gram matrix
4: M← 1

kpriv+kpub
·GramExtract(Y, 1

2(kpub+kpriv)
) ▷ Algorithm 1 in [CLSZ21]

5: ▷ Step 2. Subtract Public images from Gram matrix
6: for i ∈ [m] do
7: Si ← LearnPublic({(pj)Spub

, yX,wi
j)}j∈[d]) ▷ Algorithm 2 in [CLSZ21]

8: end for
9: Wpub ← (pub(vec(S1)), . . . , pub(vec(Sm)))

⊤ ▷ Wpub ∈ {0, 1}m×npub

10: Mpriv ← kpriv · (M− 1
kpub

WpubW
⊤
pub)

11: ▷ Step 3. Assign original images
12: Wpriv ← AssigningOriginalImages(Mpriv, npriv) ▷ Algorithm 112
13: ▷ Step 4. Solving system of equations.
14: Ypub = 1√

kpub
WpubX

⊤
pub ▷ Xpub ∈ Rd×npub , Ypub ∈ Rm×d, Wpub ∈ {0, 1}m×npub

15: X̃ ← SolvingSystemofEquations(Wpriv,
√
kprivYpub,

√
kprivY) ▷ Algorithm 113

16: return X̃
17: end procedure

16.4 Recovering All Private Images when kpriv = 2

In this section, we prove our main algorithmic result:

Theorem 16.3 (Main result). Let Spub ⊂ [n], and let npub = |Spub| and npriv = |Spriv|.
Let kpriv = 2. Let k = kpriv + kpub. If d ≥ Ω

(
poly(kpub, kpriv) log(npub + npriv)

)
and

m ≥ Ω
(
kpoly(kpriv)npriv log npriv

)
, then with high probability over X and the sequence of

randomly chosen selection vectors w1, . . . , wm ∼ D, there is an algorithm which takes

as input the synthetic dataset Y⊤ = (yX,w1 , . . . , yX,wm) ∈ Rd×m and the columns of X

indexed by Spub, and outputs npriv images {x̃s}s∈Spriv
for which there exists one-to-one

mapping ϕ from {x̃s}s∈Spriv
to {xs}s∈Spriv

satisfying |ϕ(x̃s)j| = |(xs)j| for all j ∈ [d].

Furthermore, the algorithm runs in time

O(m2d) +O(dn2
pub) +O(n2ω+1

pub) +O(mn2
priv) + 2m ·mn2

privd.

16.4.1 Retrieving Gram matrix

In this section, we present the algorithm for retrieving the Gram matrix.

1076

Theorem 16.4 (Retrieve Gram matrix, [CLSZ21]). Let n = npub + npriv. Suppose

d = Ω(log(m/δ)/η4). For random Gaussian image matrix X ∈ Rd×n and arbitrary

w1, . . . , wm ∈ Sd−1≥0 , let Σ∗ be the output of GramExtract when we set η = 1/2k.

Then with probability 1− δ over the randomness of X, we have that Σ∗ = k ·WW⊤ ∈
Rm×m. Furthermore, GramExtract runs in time O(m2d).

We briefly describe how they achieved this. Without loss of generality, we may

assume Spriv = [n], since once we determine the support of public images Spub, we can

easily subtract the contribution of them. Consider a matrix Y ∈ Rm×d whose rows

are yX,w1 , . . . , yX,wm . Then, it can be written as

Y =

⟨p1, w1⟩ · · · ⟨pd, w1⟩

...
⟨p1, wm⟩ · · · ⟨pd, wm⟩.

Since X is a Gaussian matrix, we can see that each column of Y is the absolute

value of an independent draw of N(0,WW⊤). They defined this distribution as

Nfold(0,WW⊤), and they can prove that the covariance matrix of Nfold(0,WW⊤)

can be directly related WW⊤. Then, the task becomes estimating the covariance

matrix of Nfold(0,WW⊤) from d independent samples (columns of Y), which can be

done by computing the empirical estimates.

16.4.2 Remove public images

In this section, we present the algorithm of subtracting public images from

Gram matrix. Formally, given any synthetic image yX,w we recover the entire support

of [w]Spub
(essentially supp([w]Spub

)).

Theorem 16.5 (Subtract public images from Gram matrix, [CLSZ21]). Let n =

npriv + npub. For any δ ≥ 0, if d = Ω(poly(kpub)/ log(n/δ)), then with probability

at least 1 − δ over the randomness of X, we have that the coordinates output by

LearnPublic are exactly equal to supp([w]Spub
). Furthermore, LearnPublic runs

1077

in time O(dn2
pub + n2ω+1

pub), where ω ≈ 2.373 is the exponent of matrix multiplication

[Wil12].

Note that this problem is closely related to the Gaussian phase retrieval prob-

lem. However, we can only access the public subset of coordinates for any image

vector pi. We denote these partial vectors as {[pi]Spub
}i∈[d]. The first step they did is

to construct a matrix M̃ ∈ Rnpub×npub :

M̃ =
1

d

d∑

i=1

((yX,wi)2 − 1) · ([pi]Spub
[pi]
⊤
Spub
− I).

They can prove that when pi’s are i.i.d standard Gaussian vectors, the expectation of

M̃ is M = 1
2
[w]Spub

[w]⊤Spub
. However, when d≪ n, M̃ is not a sufficiently good spectral

approximation of M, which means we cannot directly use the top eigenvector of M̃.

Instead, they showed that with high probability, [w]Spub
can be approximated by the

top eigenvector of the solution of the following semi-definite programming (SDP):

max
Z⪰0

⟨M̃, Z⟩ s.t. tr[Z] = 1,

npub∑

i,j=1

|Zi,j| ≤ kpub.

Hence, the time complexity of this step is O(dn2
pub+n

2ω+1
pub), where the first term is the

time cost for constructing M̃ and the second term is the time cost for SDP [JKL+20].

16.4.3 Assigning encoded images to original images

We are now at the position of recovering Wpriv ∈ Rm×npriv from private Gram

matrix Mpriv ∈ Rm×m. Recall that Mpriv = WprivW
⊤
priv ∈ Rm×m where Wpriv ∈

{0, 1}m×npriv is the mixup matrix with column sparsity kpriv. By recovering mixup

matrix W from private Gram matrix M the attacker maps each synthetic image

yX,wi , i ∈ [m] to two original images xi1 , . . . , xikpriv (to be recovered in the next step)

in the private data set, where kpriv = 2.

On the other hand, in order to recover original image xi from private data

set, the attacker needs to know precisely the set of synthetic images yX,wi , i ∈ [m]

1078

Algorithm 112 Assigning Original Images
1: procedure AssigningOriginalImages(Mpriv, npriv)
2: ▷ Mpriv ∈ Rm×m is Private Gram matrix, npriv is the number of private images
3: MG ←Mpriv − I
4: if npriv < 5 then
5: for H ∈ {0, 1}npriv×npriv do
6: MH ← adjacency matrix of the line graph of H
7: if MH = MG then
8: W̃← W̃ ∪ {WH} ▷ WH is the incidence matrix of H
9: end if

10: end for
11: return W̃
12: end if
13: Reconstruct G from MG ▷ By Theorem 16.9
14: return W ▷ The incidence matrix of G
15: end procedure

generated by xi. Therefore this step is crucial to recover the original private images

from InstaHide images.

Definition 16.8 (Distinguishable). For matrix M ∈ Rm×m, we say M is distinguish-

able if there exists unique solution W = (w1, . . . , wm)
⊤ (up to permutation of rows)

to the equation WW⊤ = M such that wi ∈ supp(Dpriv) for all i ∈ [m].

Theorem 16.6 (Assign InstaHide images to the original images). When m = Ω(npriv log npriv),

let Wpriv = (w1, . . . , wm)
⊤ where wi, i ∈ [m] are sampled from distribution Dpriv and

Mpriv = WprivW
⊤
priv ∈ Rm×m. Then with high probability Mpriv is distinguishable

and algorithm AssigningOriginalImages inputs private Gram matrix Mpriv ∈
{0, 1, 2}m×m correctly outputs Wpriv ∈ {0, 1}m×npriv with row sparsity kpriv = 2 such

that WprivW
⊤
priv = Mpriv. Furthermore AssigningOriginalImages runs in time

O(mnpriv).

16.4.4 Solving a large system of equations

In this section, we solve the step 4, recovering all of the private images by

solving an ℓ2-regression problem. Formally, given mixup coefficients Wpriv (for private

1079

images) and contributions to InstaHide images from public images Ypub we recover all

private images Xpriv (up to absolute value).

Theorem 16.7 (Solve ℓ2-regression with hidden signs). Given Wpriv ∈ Rm×npriv and

Ypub,Y ∈ Rm×d. For each i ∈ [d], let Y∗,i ∈ Rm denote the i-th column of Y and

similarily for Ypub∗,i, the following ℓ2 regression

min
zi∈Rnpriv

∥|Wprivzi +Ypub∗,i| −Y∗,i∥2.

for all i ∈ [d] can be solve by SolvingSystemOfEquations in time O(2m·mn2
priv·d).

Furthermore, with probability 1 SolvingSystemOfEquations outputs X̃ whose

columns constitute a set of vectors {x̃s}s∈Spriv
for which there exists a one-to-one map-

ping ϕ from {x̃s}s∈Spriv
to {xs}s∈Spriv

satisfying |ϕ(x̃s)j| = |(xs)j| for all j ∈ [d].

Proof. Suppose Wpriv =
[
w1 w2 · · · wm

]⊤. Then, the ℓ2-regression we considered

actually minimizes

m∑

j=1

(|w⊤j zi +Ypubj,i| −Yj,i)
2 =

m∑

j=1

(w⊤j zi +Ypubj,i − σj ·Yj,i)
2,

where σj ∈ {−1, 1} is the sign of wjz∗i for the minimizer z∗i .

Therefore, in Algorithm 113, we enumerate all possible σ ∈ {±1}m. Once σ is

fixed, the optimization problem becomes the usual ℓ2-regression, which can be solved

in O(nωpriv+mn2
priv) time. Since we assume m = Ω(npriv log(npriv)) in the previous step,

the total time complexity is O(2m ·mn2
priv).

We can repeat this process for all i ∈ [d] and solve all zi’s.

16.5 Missing proofs for Theorem 16.6

For simplicity, let W denote Wpriv and M denote Mpriv in this section.

1080

Algorithm 113 Solving a large system of equations
1: procedure SolvingSystemOfEquations(Wpriv,Ypub,Y)
2: ▷ Wpriv ∈ Rm×npriv ,Ypub ∈ Rm×d,Y ∈ Rm×d
3: for i = 1→ d do
4: x̃i ← ∅
5: for σ ∈ {−1,+1}m do
6: z ← minz∈Rnpriv ∥Wprivz +Ypub∗,i − σ ◦Y∗,i∥2
7: if sign(Wprivz +Ypub∗,i) = σ then
8: x̃i ← x̃i ∪ z
9: end if

10: end for
11: end for
12: X̃ ← {x̃1, · · · , x̃d}
13: return X̃
14: end procedure

16.5.1 A graph problem (kpriv = 2)

In this section, we interpret the kpriv = 2 case as a graph problem. We consider

graph G = (V,E), |V | = npriv and |E| = m where each vi ∈ V corresponds to an

original image in private data set and each e = (vi, vj) ∈ E correspond to an encrypted

image generated from two original images corresponding to vi and vj. We define the

Gram matrix of graph G = (V,E), denoted by MG ∈ {0, 1, 2}m×m where m = |E|, to

be MG = WW⊤ − I where W ∈ {0, 1}m×npriv is the incidence matrix of G. That is,

(MG)i,j = |ei∩ej| for edges ei, ej ∈ E.6 We can see that MG is actually the line graph

L(G) of the graph G. We similarly call a graph G distinguishable if there exists no

other graph G′ such that G and G′ have the same Gram matrix (up to permutations

of edges), namely MG = MG′ (for some ordering of edges). To put it into another

word, if we know MG, we can recover G uniquely. Therefore, recovering W from M

can be viewed as recovering graph G from its Gram matrix MG ∈ Rm×m, and a graph

is distinguishable if and only if its Gram matrix MG is distinguishable.

This problem was studied since 1970s and fully resolved by Whitney [Whi92].

6With high probability, W will not have multi-edge. So, most entries of M will be in {0, 1}.

1081

Theorem 16.8 ([Whi92]). Suppose G and H are connected simple graphs and L(G) ∼=
L(H). If G and H are not K3 and K1,3, then G ∼= H. Furthermore, if |V (G)| ≥ 5,

then an isomorphism of L(G) uniquely determines an isomorphism of G.

In other words, this theorem claims that given M = WW⊤, if the underlying

W is not the incident matrix of K3 or K1,3, W can be uniquely identified up to

permutation. Theorem 16.8 can also be generalized to the case when G has multi-

edges [Zve97].

On the other hand, a series of work [Rou73, Leh74, Sys82, DS95, LTVM15]

showed how to efficiently reconstruct the original graph from its line graph:

Theorem 16.9 ([LTVM15]). Given a graph L with m vertices and t edges, there

exists an algorithm that runs in time O(m + t) to decide whether L is a line graph

and output the original graph G. Furthermore, if L is promised to be the line graph

of G, then there exists an algorithm that outputs G in time O(m).

With Theorem 16.8 and Theorem 16.9, Theorem 16.6 follows immediately:

Proof of Theorem 16.6. First, since m = Ω(npriv log(npriv)), a well-known fact in ran-

dom graph theory by Erdős and Rényi [ER60] showed that the graph G with incidence

matrix W will almost surely be connected. Then, we compute MG = M− I, the ad-

jacency matrix of the line graph L(G). Theorem 16.8 implies that G can be uniquely

recovered from MG as long as npriv is large enough. Finally, We can reconstruct G

from MG by Theorem 16.9.

For the time complexity of Algorithm 112, the reconstruction step can be done

in O(m) time. Since we need to output the matrix W, we will take O(mnpriv)-time

to construct the adjacency matrix of G. Here, we do not count the time for reading

the whole matrix M into memory.

1082

16.5.2 General case (kpriv > 2)

The characterization of M and W as the line graph and incidence graph can

be generalized to kpriv > 2 case, which corresponds to hypergraphs.

Suppose M = WW⊤ with kpriv = k > 2. Then, W can be recognized as

the incidence matrix of a k-uniform hypergraph G, i.e., each hyperedge contains k

vertices. MG = M−I corresponds to adjacency matrix of the line graph of hypergraph

G: (MG)i,j = |ei ∩ ej| for ei, ej being two hyperedges. Now, we can see that each

entry of MG is in {0, . . . , k}.

Unfortunately, the identification problem becomes very complicated for hy-

pergraphs. Lovász [Lov77] stated the problem of characterizing the line graphs of 3-

uniform hypergraphs and noted that Whitney’s isomorphism theorem (Theorem 16.8)

cannot be generalized to hypergraphs. Hence, we may not be able to uniquely deter-

mine the underlying hypergraph and we should just consider a more basic problem:

Problem 16.10 (Line graph recognition for hypergraph). Given a simple graph L =

(V,E) and k ∈ N, decide if L is the line graph of a k-uniform hypergraph G.

Even for the recognition problem, it was proved to be NP-complete for fixed

k ≥ 3 [LT93, PRT81]. However, Problem 16.10 becomes tractable if we add more con-

straints to the underlying hypergraph G. First, suppose G is a linear hypergraph, i.e.,

the intersection of two hyperedges is at most one. If we further assume the minimum

degree of G is at least 10, i.e., each vertex are in at least 10 hyperedges, there exists

a polynomial-time algorithm for the decision problem. Similar result also holds for

k > 3 [JKL97]. Let the edge-degree of a hyperedge be the number of triangles in the

hypergraph containing that hyperedge. [JKL97] showed that assuming the minimum

edge-degree of G is at least 2k2− 3k+1, there exists a polynomial-time algorithm to

decide whether L is the line graph of a linear k-uniform hypergraph. Furthermore, in

the yes case, the algorithm can also reconstruct the underlying hypergraph. We also

1083

note that without any constraint on minimum degree or edge-degree, the complexity

of recognizing line graphs of k-uniform linear hypergraphs is still unknown.

16.6 Computational Lower Bound

The goal of this section is to prove that the ℓ2-regression with hidden signs is

actually a very hard problem, even for approximation (Theorem 16.13), which implies

that Algorithm 113 cannot be significantly improved. For simplicity we consider

Spub = ∅.

We will reduce the MAX-CUT problem to the ℓ2-regression. A MAX-CUT

instance is a graph G = (V,E) with n vertices and m edges. The goal is to find

a subset of vertices S ⊆ V such that the number of edges between S and V \S is

maximized, i.e., maxS⊆V |E(S, V \S)|. We can further assume G is 3-regular, that is,

each vertex has degree 3.

We first state an NP-hardness of approximation result for 3-regular MAX-CUT.

Theorem 16.11 (Imapproximability of 3-regular MAX-CUT, [BK99]). For every ϵ >

0, it is NP-hard to approximate 3-regular MAX-CUT within a factor of r + ϵ, where

r ≈ 0.997.

If we assume the Exponential Time Hypothesis (ETH), which a plausible as-

sumption in theoretical computer science, we can get stronger lower bound for MAX-

CUT.

Definition 16.9 (Exponential Time Hypothesis (ETH), [IP01]). There exists a con-

stant ϵ > 0 such that the time complexity of n-variable 3SAT is at least 2ϵn.

Theorem 16.12 ([FLP16]). Assuming ETH, there exists a constant 0 < r′ < 1 such

that no 2o(n)-time algorithm can r′-approximate the MaxCut of an n-vertex, 5-regular

graph.

1084

With Theorem 16.11 and Theorem 16.12, we can prove the following inapprox-

imability result for the ℓ2-regression problem with hidden signs.

Theorem 16.13 (Lower bound of ℓ2-regression with hidden signs). There exists a

constant ϵ > 0 such that it is NP-hard to (1 + ϵ)-approximate

min
z∈Rn
∥|Wz| − y∥2, (16.1)

where W ∈ {0, 1}m×n is row 2-sparse and y ∈ {0, 1}m.

Furthermore, assuming ETH, there exists a constant ϵ′ such that no 2o(n)-time

algorithm can ϵ′-approximate Eq. (16.1).

Proof. Given a 3-regular MAX-CUT instance G, we construct an ℓ2-regression instance

(W, y) with W ∈ {0, 1}m′×n and y ∈ {0, 1}m′ where m′ = m+ cn = (1 + 3c/2)m and

c = 106 as follows.

• For each i ∈ [m], let the i-th edge of G be ei = {u, v}. We set Wi,∗ to be all zeros

except the u-th and v-th coordinates being one. That is, we add a constraint

|zu + zv|. And we set yi = 0.

• For each j ∈ [n], we set Wm+c(j−1)+1,∗, . . . ,Wm+cj,∗ to be all zero vectors except

the j-th entry being one. That is, we add c constraints of the form |zj|. And

ym+c(j−1)+1 = · · · = ym+cj = 1.

Completeness. Let opt be the optimal value of max-cut of G and let Sopt be the

optimal subset. Then, for each u ∈ Sopt, we set zu = 1; and for u /∈ Sopt, we set

zu = −1. For the first type constraints |zu + zv|, if u and v are cut by Sopt, then

|zu+ zv| = 0; otherwise |zu+ zv| = 2. For the second type constraints |zj|, all of them

are satisfied by our assignment. Thus, ∥Wz − y∥22 = 4(m− opt).

1085

Soundness. Let η be a constant such that r < η < 1, where r is the approximation

lower bound in Theorem 16.11. Let δ = 1−η
10c

. We will show that, if there exits a z

such that ∥Wz − y∥22 ≤ δm′, then we can recover a subset S with cut-size ηm.

It is easy to see that the optimal solution lies in [−1, 1]n. Since for z /∈ [−1, 1]n,
we can always transform it to a new vector z′ ∈ [−1, 1]n such that ∥Wz′ − y∥2 ≤
∥Wz − y∥2.

Suppose z ∈ {−1, 1}n is a Boolean vector. Then, we can pick S = {i ∈ [n] :

zi = 1}. We have the cut-size of S is

|E(S, V \S)| ≥ m− δm′/4

= m− δ(1 + 3c/2)m/4

= (1− δ/4− 3cδ/8)m

≥ ηm,

where the last step follows from δ ≤ 8(1−η)
2+6c

.

For general z ∈ [−1, 1]n, we first round z by its sign: let zi = sign(zi) for

i ∈ [n]. We will show that

∥Wz − y∥22 − ∥Wz − y∥22 ≤
48

c
m

which implies

∥Wz − y∥22 = ∥Wz − y∥22 + (∥Wz − y∥22 − ∥Wz − y∥22)

≤ δm′ +
48

c
m.

Then, we have the cut-size of S is

|E(S, V \S)| ≥ m− (δm′ − 48m/c)/4

= (1− δ/4− 3cδ/8− 12/c)m

≥ ηm,

1086

where the last step follows from δ ≤ 8(1−η−12/c)
2+6c

.

Let ∆i := |zi − zi| = 1− |zi| ∈ [0, 1]. We have

∥Wz − y∥22 − ∥Wz − y∥22 =
m∑

i=1

(zui + zvi)
2 − (zui + zvi)

2 + c ·
n∑

j=1

(|zj| − 1)2 − (|zj| − 1)2

=
m∑

i=1

(zui + zvi)
2 − (zui + zvi)

2 − c ·
n∑

j=1

(|zj| − 1)2

=
m∑

i=1

(zui + zvi)
2 − (zui + zvi)

2 − c ·
n∑

j=1

∆2
j

≤
m∑

i=1

4|∆ui +∆uj | − c ·
n∑

j=1

∆2
j

=
n∑

i=1

12∆i − c∆2
i

≤ 72

c
n

=
48

c
m,

where the first step follows by the construction of W and y. The second step follows

from |zj| = 1 for all j ∈ [n]. The third step follows from the definition of ∆j. The

forth step follows from |zui + zuj | ∈ [0, 2]. The fifth step follows from the degree of

the graph is 3. The fifth step follows from the minimum of the quadratic function

12x− cx2 in [0, 1] is 72
c
. The last step follows from m = 3n/2.

Therefore, by the completeness and soundness of reduction, if we take ϵ ∈
(0, δ), Theorem 16.11 implies that it is NP-hard to (1 + ϵ)-approximate the ℓ2-

regression, which completes the proof of the first part of the theorem.

For the furthermore part, we can use the same reduction for a 5-regular graph.

By choosing proper parameters (c and δ), we can use Theorem 16.12 to rule out 2o(n)-

time algorithm for O(1)-factor approximation. We omit the details since they are

almost the same as the first part.

1087

private images npriv = 4

1

2

3

4

m = Tnpriv = 8

InstaHide images

npriv = 4

T = 2

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

Initial

m = 8 clusters

cluster 1

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 2

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 3

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 4

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 5

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 6

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 7

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 8

init

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

Grow

N = 2

cluster 1
grow on 1

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 2
grow on 2

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 3
grow on 4

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 4
grow on 1

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 5
grow on 3

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 6
grow on 4

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 7
grow on 3

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

cluster 8
grow on 2

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

K-means

K = 4

C1

share 1

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

C2

share 2

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

C3

share 4

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

C4

share 3

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

Figure 16.1: An example about the cluster step in [CDG+20] for T = 2 and npriv = 4.
First, starting from each InstaHide image (top), the algorithm grows cluster Si with
size 3 (middle). Then, we use K-means for K = 4 to compute 4 groups C1, . . . , C4

(bottom), these groups each correspond to one original image.

1088

InstaHide images

T · npriv
original images

npriv

source

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

c = 2, w = 0

c = 1, w = W̃i,j

c = 2T , w = 0

(1, 2)

(4, 1)

(1, 3)

(3, 1)

C1

(1, 2)

(2, 3)

(2, 4)

(4, 2)

C2

(3, 4)

(4, 1)

(2, 4)

(4, 2)

C3

(2, 3)

(3, 4)

(1, 3)

(3, 1)

C4

terminal

Figure 16.2: The construction of the graph for min-cost max flow. c denotes the flow
capacity of the edge, and w denote the weight of the edge. The graph contains T · npriv
nodes for each InstaHide images, npriv nodes for each original images, a source and a terminal.
There are three types of edges: i) (left) from the source to each InstaHide image node, with
flow capacity 2 and weight 0; ii) (middle) from each InstaHide image node i to each original
image node j, with flow capacity 1 and weight W̃i,j ; iii) (right) from each original image
node to the terminal, with flow capacity 2T and weight 0.

1089

InstaHide images

T · npriv
original images

npriv

source

(1, 2)

(2, 3)

(3, 4)

(4, 1)

(1, 3)

(2, 4)

(3, 1)

(4, 2)

c = 2, w = 0

c = 1, w = W̃i,j

c = 2T , w = 0

(1, 2)

(4, 1)

(1, 3)

(3, 1)

C1

(1, 2)

(2, 3)

(2, 4)

(4, 2)

C2

(3, 4)

(4, 1)

(2, 4)

(4, 2)

C3

(2, 3)

(3, 4)

(1, 3)

(3, 1)

C4

terminal

Figure 16.3: The result of solving the min-cost flow in Figure 16.2. Each InstaHide
image is assigned to two clusters, which ideally correspond to two original images. In
reality, a cluster may not contain all InstaHide images that share the same original
image.

1090

Chapter 17: Symmetric Boolean Factor Analysis
with Application to Private Learning

17.1 Introduction

Nonnegative Matrix Factorization (NMF) [AGKM12, Moi13, RSW16, SWZ17,

SWZ19] is a fundamental problem with a wide range of applications including image

segmentation [LS99, SL11], document clustering [XLG03], financial analysis [dFDRC08],

music transcription [SB03], and communication complexity [AUY83, Nis91]. Roughly,

given an n1 × n2 matrix M and a rank parameter r > 0, the goal is to find n1 × r
matrix W1 and an n2 × r matrix W2 for which W1W

⊤
2 best approximates M.

As we discuss in Section 17.1.2, a number of different variants of NMF have

been studied in this literature, e.g. 1) constraining the factorization to be symmetric

in the sense that W1 = W2 [DHS05, ZS05, YHD+12, YGL+13, CRDH08, KG12,

HXZ+11, WLW+11, KDP12, ZWA13], 2) constraining the factors to be binary-valued

[BBB+19, FGL+19, CIK17, KPRW19, ZLDZ07, RPG16], and 3) constraining them

to be sparse [Hoy04, Gil12, KP08, SO06, GC05, ZFRK10]. It turns out that in many

situations, it is fruitful to combine all of these desiderata. In this chapter, we study

the following hybrid of these many variants of NMF.

Suppose we are given a symmetric nonnegative matrix M ∈ Rm×m
≥0 , as well as

parameters k, r ∈ N. Consider the following optimization problem

min
W∈Sm,r,k

∥M−WW⊤∥0 for Sm,r,k = {W ∈ {0, 1}m×r : ∥Wj,∗∥0 = k ∀ j ∈ [m]},
(17.1)

where ∥ · ∥0 denotes the number of nonzero entries, where matrix multiplication is

either over the reals or over the Boolean semiring1. We will refer to this problem as

SSBMF (sparse symmetric Boolean matrix factorization) in the sequel.

1In the Boolean semiring, addition is given by logical OR, and multiplication is given by logical
AND

1091

The particular set Sm,r,k we optimize over turns out to have a number of natural

motivations in graph clustering, combinatorics of hypergraphs, and more recently, ML

security.

Clique Decomposition For instance, consider the problem of identifying

community structure in a social network. In the real world, there will be overlaps

between communities, and a natural goal might be to identify a collection of them

that covers the graph but such that every node only occurs in a limited number of

communities. In (17.1), we can think of M as the adjacency matrix of some graph

G. Now note that over the Boolean semiring, if we had M = WW⊤, then W would

encode a clique cover of G where every vertex belongs to a small number of cliques.

Indeed, we can think of the parameter r as the total number of cliques in the cover

and k as the number of cliques to which any one of the m vertices belongs, in which

case the nonzero entries in the j-th column of W indicate which vertices belong to

the j-th clique.

Line Graphs of Hypergraphs In combinatorics, there is a large body of work

on the problem of recovering hypergraphs from their line graphs [Rou73, Leh74,

Lov77, Sys82, Whi92, DS95, JKL97, MT97, SST05, LTVM15], which turns out to

be equivalent to the version of (17.1) when the input matrix M admits an exact

factorization. We can regard any W ∈ Sm,r,k as the incidence matrix of a k-uniform

hypergraphH withm hyperedges and r vertices, so if we work over the Boolean semir-

ing, M ≜ WW⊤ is exactly the adjacency matrix for the line graph of H, namely the

graph whose vertices correspond to hyperedges of H and whose edges correspond to

pairs of hyperedges which overlap on at least one vertex of H.

When k = 2, Whitney’s isomorphism theorem [Whi92] characterizes which

graphs are uniquely identified by their line graphs; in our notation, this theorem

characterizes when one can uniquely identify W (up to permutation) from M =

WW⊤. In this case, [Rou73, Leh74, Sys82, DS95, LTVM15] have given efficient

1092

algorithms for recovering W from M. Unfortunately, for k > 2, no analogue of

Whitney’s theorem exists [Lov77]. In fact, even determining whether a given graph is

the line graph of some k-uniform hypergraph is NP-complete [PRT81]. Rephrased in

the language of (17.1), this implies the following worst-case hardness result for sparse

symmetric Boolean NMF:

Theorem 17.1 ([PRT81]). If P ̸= NP, no polynomial-time algorithm can take an

arbitrary matrix M and decide whether (17.1) has zero objective value.

A number of results for reconstructing a hypergraph H from its line graph

are known under additional assumptions on H [JKL97, MT97, SST05]. In a similar

spirit, in this chapter we ask whether there are natural average-case settings where

one could hope to do this.. One such setting is suggested by the following recent

application of SSBMF to ML security.

Attacks on InstaHide Interestingly, SSBMF has arisen implicitly in a number of

works [CLSZ21, CDG+20, HST+20] attacking InstaHide, a recently proposed scheme

for privately training neural networks on image data [HSLA20b]. At a high level,

the premise for InstaHide was to train on a synthetic dataset essentially consisting of

random linear combinations of k images from the private dataset [ZCDLP18], rather

than on the private dataset itself.

As we discuss in Section 17.5, attacking this scheme amounts to a certain

natural variant of the classic k-sum problem, and the aforementioned attacks reduce

from solving this problem to solving an instance of SSBMF. Roughly speaking, they

show how to form the Gram matrix M whose rows and columns are indexed by images

in the synthetic dataset such that the (i, j)-th entry of M is 1 if the sets of private

images that give rise to synthetic images i and j overlap, and 0 otherwise. Similar

to the clique cover example above, we can then think of the optimal W in (17.1) as

encoding which private images were used to generate the synthetic images.

1093

We emphasize that the attacks on InstaHide [CLSZ21, CDG+20, HST+20]

were able to devise efficient algorithms for SSBMF precisely because the instances that

arose there were average-case: concretely, the rows of the optimal W were random

k-sparse binary vectors.

That said, the key drawback of these algorithms is that they either lack prov-

able guarantees [CDG+20], require extremely large m [CLSZ21], or only apply to

k = 2 [HST+20].

17.1.1 Our results

Motivated by the average-case version of SSBMF that arises in the above se-

curity application, as well as the shortcomings in the aforementioned works in this

setting, in this chapter we focus on the following distributional assumption:

Assumption 17.2. Every row of W ∈ {0, 1}m×r is an independent, uniformly ran-

dom k-sparse bitstring, and the algorithm takes as input the matrix M = WW⊤

over the Boolean semiring.

Remark 17.1. Note that an algorithm that works under Assumption 17.2 can easily

be modified to handle the setting where M = WW⊤ over the integers/reals instead

of the Boolean semiring. The reason is that the matrix M′ whose (i, j)-th entry is

1Mij > 0 satisfies M′ = WW⊤ over the Boolean semiring. So in the “realizable”

setting of Assumption 17.2, working over the Boolean semiring is more general than

working over the integers/reals.

Our main result is to give a polynomial-time algorithm for (17.1) in this setting:

Theorem 17.3 (Average-case guarantee, informal version of Theorem 17.25). Fix any

integer 2 ≤ k ≤ r, failure probability δ ∈ (0, 1), and suppose m ≥ Ω̃(rk log(1/δ)). Sup-

pose W,M satisfy Assumption 17.2, where matrix multiplication is over the Boolean

semiring. There is an algorithm which takes as input M, runs in O(mω+1) time2 and,

2ω ≈ 2.373 is the exponent of matrix multiplication.

1094

with probability 1 − δ over the randomness of W, outputs a matrix Ŵ ∈ {0, 1}m×r

whose columns are a permutation of those of W.

We stress that the minimum m for which Theorem 17.3 holds is a fixed poly-

nomial in r, k; in contrast, the only known provable result to work in this setting

for general k [CLSZ21] used a rather involved combinatorial argument to “partially”

factorize M when m = Ω(nk−2/k).

Furthermore, we emphasize that our dependence on r is nearly optimal :

Remark 17.2. The connection to line graphs makes clear why m must be at least

Ω(r log r) for unique recovery of W (up to permutation) from M = WW⊤ to be

possible, even for k = 2. In this case, M is simply the adjacency matrix for the line

graph of a random (multi)graph G given by sampling m edges with replacement. It

is well known that such a graph is w.h.p. not connected if m = o(r log r) [ER60], so

by Whitney’s theorem there will be multiple non-isomorphic graphs for which M is

the adjacency matrix of their line graph.

We remark that in the language of line graphs, Theorem 17.3 says that whereas

it is NP-complete to even recognize whether a given graph is a line graph of some

hypergraph in the worst case, reconstructing a random hypergraph from its line graph

is tractable.

To prove Theorem 17.3, we design an algorithm that first bootstraps the “pair-

wise” information present in M into third-order information in the form of the tensor

T =
∑r

i=1W
⊗3
i , where Wi is the i-th column of W (see Section 17.2.1 of the tech-

nical overview for a summary of how T is constructed from M). Once T has been

constructed, we would like to invoke standard algorithms for tensor decomposition to

recover the Wi’s.

However, the main technical hurdle we must overcome before we can apply

tensor decomposition is to prove that W is full column rank with high probability

(see Theorem 17.9). As we discuss in Section 17.2.2 of the overview, this can be done

1095

with a straightforward net argument if m scales at least quadratically in r. As we

are interested in getting an optimal dependence on m in terms of r however, the bulk

of the technical content in this chapter goes into showing this holds even when m

scales near-linearly in r. To achieve this, our analysis appeals to an array of technical

tools from discrete probability, e.g. estimates for binary Krawtchouk polynomials, a

group-theoretic Littlewood-Offord inequality, and modern tools [FKS20] for showing

nonsingularity of random square Boolean matrices.

Connection to the k-sum problem As we alluded to above, the aforementioned

attacks on InstaHide elucidated a simple connection between SSBMF and the following

natural variant of k-sum that we call batched-k-vector sum, or BkV-SUM for short,

for which Theorem 17.3 can also be leveraged to obtain average-case guarantees.

Suppose there is a database X which is a list of d-dimensional vectors x1, · · · , xr.
For a fixed integer k, we are given vectors y1, · · · , ym, where for each j ∈ [m], we

promise that there is a set Sj with size k for which yj =
∑

i∈Sj
xi. Given y1, · · · , ym,

our goal is to recover sets S1, · · · , Sm, even if X is unknown to us. We refer to

Definition 17.4 for a formal definition of BkV-SUM.

[CLSZ21, CDG+20] show that when xi are Gaussian vectors or real images, it

is possible to construct a similarity oracle that, given any yi, yj, returns the number

of x’s they share (i.e., |Si ∩ Sj|). In the presence of such an oracle, it is easy to see

that there is a reduction from BkV-SUM to SSBMF.

For reconstruction attacks however, we would like even finer-grained informa-

tion, e.g. the actual entries of the vectors xi used to generate the yi’s. We give an

algorithm for this that, given the information obtained by SSBMF, recovers all of the

“heavy” coordinates of the xi’s.

Theorem 17.4 (Informal version of Theorem 17.29). Fix any k ∈ N and failure

probability δ ∈ (0, 1), and suppose m ≥ Ω̃(rk log(d/δ)). Given a synthetic dataset of m

d-dimensional vectors generated by batched k-vector sum, together with its similarity

1096

oracle, there is an O(mω+1 + d · r · m)-time algorithm for approximately recovering

the magnitudes of the “heavy” coordinates of every vector in the original dataset X =

{x1, . . . , xr}. Here, a coordinate of a vector is “heavy” if its magnitude is Ω(k) times

the average value of any original vector in that coordinate.

In fact, this theorem applies even if we only get access to the entrywise absolute

values of the yi’s, yielding the first provable attack on InstaHide which is polynomial

in all parameters m, d, k, r (see Section 17.5.3 for details).

Worst-Case Guarantee Finally, we observe for the worst-case version of (17.1),

it is quite straightforward to get a quasipolynomial-time approximation algorithm by

setting up an appropriate CSP and applying known solvers [MM15]:

Theorem 17.5 (Worst-case guarantee, informal version of Theorem 17.32). Given

a symmetric matrix M ∈ Zm×m, rank parameter r ≤ m, and accuracy parameter

ϵ ∈ (0, 1], there is an algorithm that runs in mO(ϵ−1k2 log r) time and outputs Ŵ ∈ Sm,r,k

such that

∥M− ŴŴ⊤∥0 ≤ min
W∈Sm,r,k

∥M−WW⊤∥0 + ϵm2,

where matrix multiplication can be over Z or over the Boolean semiring.

17.1.2 Related work

Nonsingularity of Boolean Matrices The nonsingularity of random matrices

with binary-valued entries has been well-studied in random matrix theory, especially

in the setting where each entry is an i.i.d. random draw from {±1} (see for example,

[CV10, RV08, CV08]). However, in our setting, there exists some dependence within

a row since we require that the row sum equals to k. While there have been a number

of works under this setting (for example [Ngu13, FJLS20, Jai21, AHP20, FKS20]),

they all studied the case when k is large (i.e., when k = Ω(log r)).

1097

For k = O(1), there was a long-standing conjecture from [Vu08] that the ad-

jacency matrix of a random k-regular graph is singular with probability o(1) when

3 ≤ k < r. A recent work [Hua18] fully resolved this conjecture using a local CLT

and large deviation estimate. In contrast, our W corresponds to the adjacency ma-

trix of a bipartite graph with only left-regularity. Furthermore, our proof uses only

elementary techniques, and our emphasis is on showing that for somewhat tall rect-

angular matrices, the columns are linearly dependent with probability 1/ poly(r) for

any constant k ≥ 1.

Fountain Codes Another line of work that studies the nonsingularity of random

matrices with discrete-valued entries is that of fountain codes [Mac05, Lub02]. While

an exposition of this literature would take us too far afield, at a high level many of

these works are interested in establishing that for an m × r matrix whose rows are

independently sampled from a particular distribution over Frq (ideally supported over

sparse vectors to allow for fast decoding), the so-called MDS property holds. This

is the property that any r × r submatrix of the matrix is full rank. Note that this

is an even stronger property than linear independence of the columns. While these

works have considered distributions somewhat similar to ours (e.g. [AD14b] consider

a distribution over vectors of sparsity at most k where one samples k coordinates

from [r] with replacement, assigns those entries to be random from Fq, and sets all

other entries to be zero), to our knowledge they all require the sparsity of the rows

to be at least logarithmic in r.

Comparison to [ADM+18] Perhaps the work most closely related to ours is that

of [ADM+18]. In our notation, they consider the following problem. There is an

unknown matrix W ∈ Rm×r, and for a fixed parameter ℓ ∈ N, they would like to

recover W given the ℓ-th order tensor
∑

iW
⊗ℓ
i . They show that when the columns

of W are sampled from a sufficiently anti-concentrated distribution and r ≤ m⌊
ℓ−1
2
⌋,

then they can recover the Wi’s from the tensor.

1098

While this appears on the surface to be quite related both to SSBMF and to

our choice of algorithm, we emphasize a crucial distinction. In SSBMF we work with

ℓ = 2 as we are simply given the matrix WW⊤ =
∑

iW
⊗2
i , and for this choice of

ℓ, the guarantees of [ADM+18] are vacuous as ⌊ ℓ−1
2
⌋ = 0. There is a good reason

for this: their algorithm is based on directly applying tensor decomposition to the

tensor
∑

iW
⊗ℓ
i that is given as input. In contrast, a key innovation in our work is

to “bootstrap” a higher-order tensor out of only the lower-order information given by

M = WW⊤.

Of course, the other difference between [ADM+18] and our work is that they

work in a smoothed analysis setting, while we work in a random setting. As a re-

sult, even though a key step in both our analysis and theirs is to show that under

our respective distributional assumptions, the columns of W are full rank with high

probability, our techniques for doing so are very different. We also remark that while

the smoothed analysis setting is qualitatively more flexible, their analysis suffers the

same drawback as the abovementioned works on nonsingularity of Boolean matrices

and fountain codes, namely it cannot handle the setting of Assumption 17.2 if the

rows of W are o(log r)-sparse.

Standard NMF Lastly, we give an overview of the large literature on nonnegative

matrix factorization and its many variants. The most standard setting of NMF is

minU,V≥0 ∥M−W1W
⊤
2 ∥, where W1,W2 range over all possible m× r matrices with

nonnegative entries. This has been the subject of a significant body of theoretical

and applied work, and we refer to the survey [Gil12] for a comprehensive overview of

this literature.

Symmetric NMF When we constrain W1 and W2 to be equal, we obtain the ques-

tion of symmetric NMF, which is closely related to kernel k-means [DHS05] and has

been studied in a variety of contexts like graph clustering, topic modeling, and com-

puter vision [ZS05, YHD+12, YGL+13, CRDH08, KG12, WLW+11, ZWA13]. Sym-

1099

metric NMF has received comparatively less attention but is nevertheless a popular

clustering technique [HXZ+11, KDP12, DHS05] where one takes the input matrix M

to be some similarity matrix for a collection of data points and interprets the factor-

ization W as specifying a soft clustering of these points into r groups, where Wi,ℓ is

the “probability” that point i lies in cluster ℓ.

While there exist efficient provable algorithms for asymmetric NMF under cer-

tain separability assumptions [AGKM12, Moi13], the bulk of the work on symmetric

NMF has been focused on designing iterative solvers for converging to a stationary

point [HXZ+11, KDP12, VGL+16, LHW17, ZLLL18]; we refer to the recent work of

[DBd19] for one such result and an exposition of this line of work.

Binary Matrix Factorization In NMF, when we constrain W1,W2 to be ma-

trices with binary-valued entries, the problem becomes binary matrix factorization

[ZLDZ07, CIK17, BBB+19, FGL+19, KPRW19, KT21b, KT19], which is connected

to a diverse array of problems like LDPC codes [RPG16], optimizing passive OLED

displays [KPRW19], and graph partitioning [CIK17].

With the exception of [ZWA13, KT21b] which considered community detection

with overlapping communities, most works on binary matrix factorization focus on

the asymmetric setting. Over the reals, this is directly related to the bipartite clique

partition problem [Orl77, CHHK14, CIK17]. [KPRW19] gave the first constant-factor

approximation algorithm for this problem that runs in time 2O(r2 log r) poly(m). Our

Theorem 17.5 also extends to this asymmetric setting (see Theorem 17.31); see Re-

mark 17.3 for a comparison.

On the other hand, over the Boolean semiring, this problem is directly related

to the bipartite clique cover problem. Also called Boolean factor analysis, the discrete

basis problem, or minimal noise role mining, it has received substantial attention in

the context of topic modeling, database tiling, association rule mining, etc. [SBM03,

ŠH06, BV10, MMG+08, VAG07, LVAH12, MSVA16]. The best algorithm in this

1100

case, due to [FGL+19], runs in time 22
O(r) ·m2, matching the lower bound of [CIK17].

[EU18] considered the decision version of this problem, whose goal is to decide the

minimum clique cover size r, and proved that it is NP-hard if k ≥ 5. A more general

version of this problem was studied by [AGSS12] with applications to community

detection. Our worst-case algorithm also applies to this setting (see Corollary 17.33).

In particular, even without the sparsity condition, the running time still matches the

lower bound (see Remark 17.4).

Over the reals, [KT21b] gives sufficient conditions on W ∈ {0, 1}m×r for which

one can recover the matrix WW⊤, namely that the set of Hadamard products between

columns of W spans a (
(
r
2

)
+ 1)-dimensional space. In this case, they give an SDP-

based algorithm for recovering W. While it is conceivable that for sufficiently large

m, W also satisfy this property with high probability under our Assumption 17.2, in

our setting an even simpler condition suffices, namely that W has full column rank.

As we will see, even this turns out to be quite nontrivial to show when m is small.

More generally, we refer to the comprehensive survey of [MN20] for other

results on BMF.

Sparse NMF In sparse NMF, one enforces that the factors W1,W2 must be sparse

matrices [Hoy04, Gil12] as this can lead to more interpretable results, e.g. in speech

separation [SO06], cancer diagnosis [GC05] and facial expression recognition [ZFRK10].

Hoyer [Hoy04] initiated the study of this problem based on the observation that stan-

dard NMF usually outputs a sparse solution and modeled Sparse NMF by adding

a sparsity (L1-norm divided by L2-norm) penalty term to the minimization. Gillis

[Gil12] studied this problem from a geometric perspective via data preprocessing.

Apart from this regularization approach, there are also works that deal with exact

sparsity constraints [PP12, CG19].

1101

Miscellaneous Notation

We use Fq to denote finite field and sometimes use F to denote F2. For any

nonnegative function f , we use Õ(f) to denote f poly(log f) and use Ω̃(f) to denote

f/ poly(log f).

For a vector x ∈ Rn, we use supp(x) to denote the nonzero indices, ∥x∥0 to

denote the number of nonzero entries, and ∥x∥p to denote its ℓp norm. We use 1⃗d to

denote the all-ones vector in Rd and suppress the subscript when the context is clear.

For a matrix A, we use A+ to denote the pseudo-inverse of matrix A. We

use ∥A∥F to denote the Frobenius norm of matrix A, ∥A∥1 =
∑

i,j |Ai,j| to denote

its entrywise ℓ1 norm, ∥A∥0 to denote the number of nonzero entries, and ∥A∥∞ to

denote maxi,j |Ai,j|.

Given r, k, we let
(
r
[k]

)
denote the collection of all subsets of [r] of size k.

17.2 Technical Overview

As the technical details for Theorems 17.4 and 17.5 are more self-contained, in

this section we focus on highlighting the key technical ingredients for our main result,

Theorem 17.3.

The starting point is the following thought experiment. If instead of getting

access to the matrix M =
∑r

i=1W
⊗2
i over the Boolean semiring, suppose we had the

tensor

T =
r∑

i=1

W⊗3
i (17.2)

over Z. Provided the columns Wi of W are linearly independent over R, then we

can run a standard tensor decomposition algorithm to recover W1, . . . ,Wr up to

permutation. As such, there are two technical steps:

• Step 1. bootstrapping the tensor T given only M,

• Step 2. showing linear independence of the Wi.

1102

17.2.1 Bootstrapping the tensor

The key insight is that although the similarity matrix M only gives access

to “second-order” information about correlations between the entries of W, we can

bootstrap third-order information in the form of T ≜
∑r

i=1W
⊗3
i , where Wi is the

i-th column of W and the tensor is defined over R rather than the Boolean semiring.

Given sets S1, . . . , Sc ⊂ [r], let µ(S1, . . . , Sc) denote the probability that a

randomly chosen subset T of [r] of size k does not intersect any of them. It is easy

to see that

µ(S1, . . . , Sc) =

(
r − |S1 ∪ · · · ∪ Sc|

k

)/(
r

k

)
≜ µ|S1∪···∪Sc|. (17.3)

The following fact implies that µ is monotonically decreasing in |S1 ∪ · · · ∪ Sc| and,

importantly, that the different µt’s are well-separated.

Fact 17.6 (Informal version of Fact 17.14). There exist absolute constants C,C ′ > 0

for which the following holds. If r ≥ C · k2, then for any 0 ≤ t ≤ 3k, we have that

µt ≥ µt+1 + C ′k/r and µt ≥ 1−O(tk/r).

Hence, we first estimate µ by computing the fraction of columns of M which

are simultaneously zero in rows corresponding to the sets S1, . . . , Sc. Provided that

the number of columns m is sufficiently large, we can estimate this probability to

within error O(k/r), and then invert along µ to exactly recover |S1 ∪ · · · ∪ Sc|, from

which we obtain Ta,b,c via:

Ta,b,c = |S1 ∩ S2 ∩ S3| = |S1 ∪ S2 ∪ S3| − |S1 ∪ S2| − |S2 ∪ S3| − |S1 ∪ S3|+ 3k,

for any a, b, c ∈ [m] with the corresponding subsets S1, S2, S3.

Lemma 17.7 (Informal version of Lemma 17.15). If m ≥ Ω̃ (rk log(1/δ)), then with

probability at least 1 − δ over the randomness of M, there is an algorithm (Algo-

rithm 114)for computing Ta,b,c for any a, b, c ∈ [m] in time O(mω+1).

1103

We defer a full proof of Lemma 17.7 to Section 17.4.2. As for the runtime,

we can compute each slice of T by setting up an appropriate matrix multiplication.

Then, it suffices to apply the following standard guarantee for (noiseless) tensor de-

composition:

Lemma 17.8 (Jennrich’s algorithm, see e.g. Lemma 17.16). Given a collection of

linearly independent vectors w1, . . . , wr ∈ Rm, there is an algorithm that takes any

tensor T =
∑r

i=1w
⊗3
i , runs in time O(mω), and outputs a list of vectors ŵ1, . . . , ŵr

for which there exists permutation π satisfying ŵi = wπ(i) for all i ∈ [r].

The full algorithm for recovering W from M is given in Algorithm 114 below.

Algorithm 114 Recovering W from M

1: procedure TensorRecover(M) ▷ M ∈ {0, 1}m×m s.t. M = WW⊤ over
Boolean semiring for some W ∈ Sm,r,k

2: ▷ Form the tensor T
3: for (a, b, c) ∈ [m]× [m]× [m] do
4: Let µabc be the fraction of ℓ ∈ [m] for which Ma,ℓ = Mb,ℓ = Mc,ℓ are all

zero. Define µab, µac, µbc analogously ▷ (Lemma 17.7)
5: Let tabc be the nonnegative integer t for which µt (see Eq. (17.3)) is closest

to µabc. Define tab, tac, tbc analogously
6: Ta,b,c ← tabc − tab − tac − tbc + 3k
7: end for
8: ▷ Run Jennrich’s on T
9: Randomly sample unit vectors v1, v2 ∈ Sm−1.

10: M1 ← T(Id, Id, v1), M2 ← T(Id, Id, v2)
11: Let w̃1, . . . , w̃r ∈ Rm denote the left eigenvectors outside the kernel of M1M

+
2

12: Round {w̃i} to Boolean vectors {vi}; let Ŵ ∈ {0, 1}m×r consist of {wi}
13: return Ŵ ▷ Matrix Ŵ ∈ Sm,r,k which is equal to W up to column

permutation
14: end procedure

17.2.2 Linear independence

To use Jennrich’s, it remains to show that the columns of W are indeed linearly

independent with high probability. This is the technical heart of our analysis. We

1104

show:

Theorem 17.9 (Linear independence of W, informal version of Theorem 17.17).

Let W ∈ {0, 1}m×r be a random matrix whose rows are i.i.d. random vectors each

following a uniform distribution over {0, 1}r with exactly k ones. For constant k ≥ 1

and m = Ω(max(r, (r/k) log r)), the r columns of W are linearly independent in R

with probability at least 1− 1
poly(r)

.

Note that by a simple net argument, when m = Ω̃(r2) one can show that W

is not only full rank, but polynomially well-conditioned. But as our emphasis is on

having the sample complexity m depend near-optimally on the rank parameter r, we

need to be much more careful.

When k is odd, it turns out to be more straightforward to prove Theorem 17.9.

In this case, to show linear independence of the Wi’s over R, we first observe that it

suffices to show linear independence over F2. For a given u ∈ Fr2, one can explicitly

compute the probability that Wu = 0, and by giving fine enough estimates for

these probabilities based on bounds for binary Krawtchouk polynomials and taking a

union bound, we conclude that the columns of W are linearly independent with high

probability in this case.

This proof strategy breaks down for even k because in this case W is not full-

rank over F2: the columns of W add up to zero over F2. Instead, we build on ideas

from [FKS20], which studies the square matrix version of this problem and upper

bounds the probability that there exists some x for which Wx = 0 and for which

the most frequent entry in x occurs a fixed number of times. Intuitively, if the most

frequent entry does not occur too many times, then the probability that Wx = 0 is

very small. Otherwise, even if the probability is large, there are “few” such vectors.

Unfortunately, [FKS20] requires k ≥ Ω(log r), and in order to handle the practically

relevant regime of k = O(1), we need to adapt their techniques and exploit the fact

that W is a slightly tall matrix in our setting.

1105

In particular, we leverage a certain group-theoretic Littlewood-Offord inequal-

ity [JŠ19] which may be of independent interest to the TCS community. More specif-

ically, we consider two scenarios under which there is a vector x such that Wx = 0.

The first one is that there is a vector x with Wx = 0 which has some zero entries, in

which case we can actually still reduce to the F2 case as in the case of odd k. The

second one is that there is a vector x with Wx = 0 where all entries of x are non-

zero. In this case, since 1 ∈ ker(W) in F2, we cannot consider linear independence

over F2, and our main workaround is instead to work over the cyclic group Zq where

q ∈ [k − 1, 2k] is a prime.

For this latter case, we further divide into two more cases: (1) the most fre-

quent entry in x occurs a large number of times; (2) x does not have such an entry. By

a union bound over both kinds of vectors x, it suffices to show anti-concentration in

the sense that we want to upper bound Prw[⟨w, x⟩ = a (mod q)] for a fixed x in either

case. In case (1), we can use the upper bound from [FKS20]. In case (2), [FKS20] used

a Littlewood-Offord-type inequality [Erd45] to upper bound this probability, which

does not apply in our case because it works for real numbers and we cannot apply

union bound for an infinite number of vectors. Instead, we use a group-theoretic

Littlewood-Offord inequality [JŠ19] and follow the idea of [FKS20] to transform the

uniform k-sparse distribution to an i.i.d. Bernoulli distribution, completing the proof.

We defer the details of Theorem 17.9 to Section 17.4.4. Altogether, this allows

us to conclude Theorem 17.3, and the formal proof is in Section 17.4.5.

Roadmap In Section 17.3 we provide technical preliminaries, basic definitions, and

tools from previous work. In Section 17.4 we prove our average-case guarantee, The-

orem 17.3. In Section 17.5 we describe the connection between SSBMF, BkV-SUM,

and private neural network training in greater detail and then prove Theorem 17.4.

In Appendix 17.6 we prove our worst-case guarantee, Theorem 17.5.

1106

17.3 Preliminaries
17.3.1 Notations

We introduce some notations and definitions we will use throughout this chap-

ter.

For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector

x, we use ∥x∥2 to denote its ℓ2 norm. We use ∥x∥1 to denote its ℓ1 norm.

For a matrix A, we use ∥A∥ to denote its spectral norm. We use ∥A∥0 to

denote the number of non-zero entries in A. We use ∥A∥F to denote the Frobenius

norm of A. For a square and full rank matrix A, we use A−1 to denote its inverse.

17.3.2 Basic Definitions

We provide a definition for Boolean semiring.

Definition 17.1. The Boolean semiring is the set {0, 1} equipped with addition

corresponding to logical OR (i.e. x+y = 0 if x = y = 0 and x+y = 1 otherwise) and

multiplication corresponding to logical AND (i.e. x · y = 1 if x = y = 1 and x · y = 0

otherwise).

We define Bernoulli random variable as follows:

Fact 17.10. For any 0 < c < 1 and 0 ≤ p ≤ ϵ, one can estimate the mean of a

Bernoulli random variable Ber(p) to error c · ϵ with probability 1− δ using O(c−2ϵ−1)

samples.

17.3.3 Discrete probability tools

Definition 17.2. Given a vector v ∈ Nr, define a fibre of a vector to be a set of all

indices whose entries are equal to a particular value.

Lemma 17.11 ([FKS20]). Let w ∈ {0, 1}r be a random vector with exactly k ones

where k < r/2. Let q ≥ 2 be an integer and consider a fixed vector v ∈ Zrq whose

1107

largest fibre has size r−s. Then, for any a ∈ Zq we have Pr[⟨w, v⟩ ≡ a (mod q)] ≤ Ps

for some Ps = 2−O(sk/r) if sk = o(r), and Ps = 2−Ω(1) if sk = Ω(r).

Lemma 17.12 ([FKS20]). For x ∈ Rr whose largest fibre has size r − s, and let

w ∈ {0, 1}r be a random vector with k ones. Then

max
a∈R

Pr[⟨x,w⟩ = a] = O
(√

r/(sk)
)
.

In the proof of Proposition 17.21, we needed the following estimate for the

binary Krawtchouk polynomial:

Lemma 17.13 ([Pol19]). For k ≤ 0.16r, λ ≤ r
2
, we have

|Kr
k(λ)| ≤

(
r

k

)
·
(
1− 2k

r

)λ
.

17.4 Average-Case Algorithm

In Section 17.4.1 we prove that the non-intersection probabilities µt defined in

Section 17.2.1 are well-separated, which we previously stated informally as Fact 17.6.

In Section 17.4.2 we show how to exploit this fact to construct the tensor T defined

in (17.2). In Section 17.4.3 we give a sufficient condition for the tensor T to be

decomposable.

Section 17.4.4 is the main technical component of this chapter where we show

that under Assumption 17.2, the columns of W are linearly independent (over R)

with high probability so that we can actually apply tensor decomposition. In Sec-

tion 17.4.4.1 we observe that one way to show linear independent of the columns of W

over R is to show linear independence over F2. In Section 17.4.4.2 we handle the case

of odd k by using this observation together with a helper lemma from Section 17.4.4.3

involving estimates of binary Krawtchouk polynomials. For even k, we cannot reduce

to showing linear independence over F2, so in Section 17.4.4.4 we handle this case

using a combination of ideas from [FKS20] and a group-theoretic Littlewood-Offord

inequality [JŠ19].

1108

Finally, in Section 17.4.5 we put all the ingredients together to complete the

proof of Theorem 17.3.

17.4.1 Non-intersection probabilities µt well-separated

We begin by showing that the non-intersection probabilities µt defined in (17.3)

are monotonically decreasing and well-separated. For ease of reading, we recall the

definition of µt here. Given sets S1, . . . , Sc ⊂ [r], let µ(S1, . . . , Sc) denote the proba-

bility that a randomly chosen subset T of [r] of size k does not intersect any of them.

Then

µ(S1, . . . , Sc) =

(
r − |S1 ∪ · · · ∪ Sc|

k

)/(
r

k

)
≜ µ|S1∪···∪Sc|. (17.4)

Fact 17.14 (Formal version of Fact 17.6). There exist absolute constants C,C ′ > 0

for which the following holds. If r ≥ C · k2, then for any 0 ≤ t ≤ 3k, we have that

µt ≥ µt+1 + C ′k/r and µt ≥ 1−O(tk/r).

Proof. For any 0 ≤ t ≤ r, note that
(
r−t
k

)
(
r
k

) −
(
r−t−1
k

)
(
r
k

) =
r − t− 1

r
· r − t− 2

r − 1
· · · r − t− k + 1

r − k + 2
·
(

r − t
r − k + 1

− r − t− k
r − k + 1

)
.

≥
(
1− t+ 1

r − k + 2

)k−1
· k

r − k + 1

≥
(
1− (t+ 1)(k − 1)

r − k + 2

)
· k

r − k + 1
≥ Ω(k/r),

where in the last step we used the assumptions that r ≥ Ω(k2) and t ≤ O(k). For

the second part of the claim, we similarly have that
(
r−t
k

)
(
r
k

) =
r − t
r
· r − t− 1

r − 1
· · · r − t− k + 1

r − k + 1

≥
(
1− t

r − k + 1

)k

≥ 1− tk

r − k + 1
≥ 1−O(tk/r).

1109

17.4.2 Constructing a tensor

We now use Fact 17.14 to show how to construct the tensor T defined in (17.2),

namely T ≜
∑r

i=1W
⊗3
i .

Lemma 17.15 (Constructing a tensor, formal version of Lemma 17.7). If m ≥
Ω̃ (rk log(1/δ)), then with probability at least 1− δ over the randomness of M, there

is an algorithm for computing Ta,b,c for any a, b, c ∈ [m] in time O(mω+1).

Proof. If entries a, b, c correspond to subsets S1, S2, S3 of [m], then

Ta,b,c = |S1 ∩S2 ∩S3| = |S1 ∪S2 ∪S3| − |S1 ∪S2| − |S2 ∪ S3| − |S1 ∪S3|+3k. (17.5)

By Fact 17.10 and the second part of Fact 17.14 applied to t = |Si ∪ Sj| or t =

|S1 ∪ S2 ∪ S3|, we conclude that any µ|Si∪Sj | or µ|S1∪S2∪S3| can be estimated to error

C ′k/2r with probability 1− δ/m3 provided that

m ≥ Ω

(
t2r

k
log(m3/δ)

)
.

Note that t ≤ 3k, so this holds by the bound on m in the hypothesis of the lemma.

By the first part of Fact 17.14, provided these quantities can be estimated within the

desired accuracy, we can exactly recover every |Si ∪ Sj| as well as |S1 ∪ S2 ∪ S3|. So

by (17.5) and a union bound over all (a, b, c), with probability at least 1 − δ we can

recover every entry of T.

It remains to show that T can be computed in the claimed time. Note that

naively, each entry would require O(m) time to compute, leading to O(m4) runtime.

We now show how to do this more efficiently with fast matrix multiplication. Fix any

a ∈ [m] and consider the a-th slice of T. Recall that for every b, c ∈ [m], we would

like to compute the number of columns ℓ ∈ [m] for which Ma,ℓ,Mb,ℓ,Mc,ℓ are all zero

(note that we can compute the other relevant statistics like the number of ℓ for which

Ma,ℓ and Mb,ℓ are both zero in total time O(m3) across all a, b even naively).

We can first restrict our attention to the set La of ℓ for which Ma,ℓ = 0, which

can be computed in time O(m). Let Ma denote the matrix given by restricting M to

1110

the columns indexed by La and subtracting every resulting entry from 1. By design,

(MaM
⊤
a)b,c is equal to the number of ℓ ∈ La for which Mb,ℓ = Mc,ℓ = 0, and the

matrix MaM
⊤
a can be computed in time O(mω). The claimed runtime follows.

17.4.3 Tensor decomposition

We can invoke standard guarantees for tensor decomposition to decompose

T, the key sufficient condition being that the components {W1, . . . ,Wr} be linearly

independent over R.

Lemma 17.16 (Tensor decomposition, formal version of Lemma 17.8). Given a col-

lection of linearly independent vectors w1, . . . , wr ∈ Rm, there is an algorithm that

takes any tensor T =
∑r

i=1w
⊗3
i , runs in time O(mω), and outputs a list of vectors

ŵ1, . . . , ŵr for which there exists permutation π satisfying ŵi = wπ(i) for all i ∈ [r].

Proof. The algorithm is simply to run Jennrich’s algorithm ([HAR70, LRA93]), but

we include a proof for completeness. Pick random v1, v2 ∈ Sm−1 and define M1 ≜

T(Id, Id, v1) and M2 ≜ T(Id, Id, v2). If W ∈ Rm×r is the matrix whose columns

consist of w1, . . . , wr, then we can write Ma =
∑r

i=1⟨wi, va⟩wiw⊤i = WDaW
⊤, where

Da ≜ diag(⟨w1, va⟩, . . . , ⟨wr, va⟩). As a result, MaM
+
b = WDaD

+
b W

+. This gives an

eigendecomposition of MaM
+
b because the entries of DaD

+
b are distinct almost surely

because {wi} are linearly independent. We conclude that the nontrivial eigenvectors

of MaM
+
b are precisely the vectors {wi} up to permutation as claimed. Forming M1

and M2 takes O(m2) time, and forming MaM
+
b and computing its eigenvectors takes

O(mω) time.

17.4.4 Linear independence of W

We now turn to proving the main technical result in this chapter, namely that

for W satisfying Assumption 17.2, the columns of W are linearly independent over

R with high probability as soon as m is near-linear in r.

1111

Theorem 17.17 (Linear independence of W, formal version of Theorem 17.9). Let

W ∈ {0, 1}m×r be a random matrix whose rows are i.i.d. random vectors each follow-

ing a uniform distribution over {0, 1}r with exactly k ones. For constant k ≥ 1 and

m = Ω(max(r, (r/k) log r)), the r columns of W are linearly independent in R with

probability at least 1− 1
poly(r)

.

17.4.4.1 Reduction to Finite Fields

We treat the cases of odd and even k separately. For the former, we will show

that the columns of W are linearly independent over F2 with high probability, which

by the following is sufficient for linear independence over R:

Lemma 17.18 (Reduction from F2 to R). Let W ∈ {0, 1}m×r. If the columns of W

are linearly independent in F2, then they are also linearly independent in R.

Proof. We prove a contrapositive statement, i.e., if the columns are linearly dependent

in R, then they are still dependent in F2.

Let w1, . . . , wn be the columns of W. If they are linearly dependent in R, then

there exists c1, . . . , cr ∈ R such that
∑r

i=1 ciwi = 0. By Gaussian elimination, it is

easy to see that c1, . . . , cr ∈ Q. By multiplying some common factor, we can get r

integers c′1, . . . , c′r ∈ Z such that not all of them are even numbers and

c′1w1 + c′2w2 + · · ·+ c′rwr = 0.

Then, apply (mod 2) to both sides of the equation and for any j ∈ [m], the j-th entry

of the resulting vector is
r∑

i=1

c′iWij (mod 2) =
r⊕

i=1

(c′i mod 2) ·Wij = 0, (17.6)

where the first step follows from Wij ∈ {0, 1}.

Define a vector a ∈ Fr2 such that ai := c′i mod 2 for i ∈ [r]. Then, a ̸= 0 and

Eq. (17.6) implies that Wa = 0 in F2, which means the columns of W are linearly

dependent in F2. And the claim hence follows.

1112

17.4.4.2 Linear independence for odd k

We are now ready to handle the case of odd k. The following lemma proves

the F2 case.

Lemma 17.19 (Linear independence in F2). Give two fixed positive integers n and

r, for any odd positive integer k, if m = Ω(max(r, (r/k) log r)), then with probability

at least 1− 1
poly(r)

, the columns of m× r matrix W are linearly independent in F2.

Proof. To show that the columns of W are linearly independent, equivalently, we can

show that ker(W) = ∅ with high probability; that is, for all x ∈ Fr2\{0}, Wx ̸= 0.

For 1 ≤ λ ≤ r, let Pλ := Pr[Wu = 0] for u ∈ Fr2 and |u| = λ. Note that this

probability is the same for all weight-λ vectors. Then, we have

Pr[ker(W) ̸= ∅] ≤
r∑

λ=1

Pλ ·
∣∣∣
{
u ∈ Fr2

∣∣∣|u| = λ
}∣∣∣

≤
r∑

λ=1

Pλ ·
(
r

λ

)
.

Fix λ ∈ [r] and u ∈ Fr2 with weight λ. Since the rows of W are independent,

we have

Pλ = Pr[Wu = 0] =
m∏

i=1

Pr[⟨wi, u⟩ = 0] = (Pr[⟨w, u⟩ = 0])m,

where w is a uniformly random vector in the set {u ∈ Fr2||u| = k}. It’s easy to see

that k should be an odd number; otherwise, W1 = 0.

1113

By Proposition 17.21, we have

Pr[kerW ̸= ∅] ≤
r/2∑

λ=1

(
1

2
+

1

2

(
1− 2k

r

)λ)m

·
(
r

λ

)
+

(
1

2

)m
·
(
r

λ

)

≤ 2r−1−m +

r/2∑

λ=1

(
1

2
+

1

2

(
1− 2k

r

)λ)m

·
(
r

λ

)
(
∑r/2

i=0

(
r
i

)
= 2r−1.)

≤ 2r−1−m +

r/2∑

λ=1

(
1 + kλ/r

1 + 2kλ/r

)m
·
(
r

λ

)
((1− 2k

r
)λ ≤ 1

1+(2kλ)/r
.)

≤ 2r−1−m +

r/2∑

λ=1

exp

(
− kmλ/r

1 + kλ/r

)
·
(
r

λ

)
(1− x ≤ e−x.)

≤ 2r−1−m +

r/2∑

λ=1

(
exp

(
− km/r

1 + kλ/r
+ log(er/λ)

))λ
(
(
r
λ

)
≤ (er/λ)λ.)

Suppose m > (r/k) log(er/λ) + λ log(er/λ) for 0 < λ < r/2, then we have

− km/r

1 + kλ/r
+ log(er/λ) < − log(er/λ) + kλ/r log(er/λ)

1 + kλ/r
+ log(er/λ)

= − log(er/λ) + log(er/λ)

= 0.

Note that when 0 < λ < r/2, λ log(er/λ) ≤ Ω(r). Also, (r/k) log(er/λ) ≤ Ω((r/k) log r).

Hence, if we take m = Ω(r + (r/k) log r), we have
(
exp

(
− km/r

1 + kλ/r
+ log(er/λ)

))λ
≤ exp

(−λ · Ω(log(r))
1 + kλ/r

)
≤ 1

poly(r)
.

Therefore,

Pr[kerW ̸= ∅] ≤ 2r−1−m +

r/2∑

λ=1

(
exp

(
− km/r

1 + kλ/r
+ log(er/λ)

))λ

≤ 2−Ω((r/k) log r) +

r/2∑

λ=1

1

poly(r)

=
1

poly(r)
,

and the lemma is then proved.

1114

Combining Lemma 17.18 and Lemma 17.19, we immediately have the following

corollary:

Corollary 17.20 (Linear independence in R for odd k). For r ≥ 0, odd constant

k ≥ 1, when m = Ω((r/k) log r) ≥ r, with probability at least 1− 1
poly(r)

, the columns

of matrix W are linearly independent in R.

17.4.4.3 Helper lemma

In the proof of Lemma 17.19 above, we required the following helper lemma:

Proposition 17.21. For 1 ≤ λ ≤ r
2
, we have either

Pλ ≤
(
1

2
+

1

2

(
1− 2k

r

)λ)m

and Pr−λ ≤
(
1

2

)m
,

or

Pλ ≤
(
1

2

)m
and Pr−λ ≤

(
1

2
+

1

2

(
1− 2k

r

)λ)m

.

Proof. We can write the probability of ⟨w, u⟩ = 0 as follows:

Pr[⟨w, u⟩ = 0] =

(
r

k

)−1
·

k−1∑

i=0, i even

(
λ

i

)(
r − λ
k − i

)
.

We first consider the following sum with alternating signs:

Kr
k(λ) :=

k∑

i=0

(
λ

i

)(
r − λ
k − i

)
(−1)i,

which is the binary Krawtchouk polynomial.

Then, for 1 ≤ λ ≤ r
2
, we have

Pr[⟨w, u⟩ = 0] =

(
r

k

)−1 k−1∑

i=0, i even

(
λ

i

)(
r − λ
k − i

)

=
1

2
+
Kr
k(λ)

2
(
r
k

) .

1115

By symmetry, for r
2
< λ < r,

Pr[⟨w, u⟩ = 0] =

(
r

k

)−1 k−1∑

i=0, i even

(
λ

i

)(
r − λ
k − i

)

=

(
r

k

)−1 k∑

i=1, i odd

(
r − λ
i

)(
λ

k − i

)

=
1

2
− Kr

k(r − λ)
2
(
r
k

) .

By Lemma 17.13, we know that for 1 ≤ λ ≤ r
2
, |Kr

k(λ)| ≤
(
r
k

) (
1− 2k

r

)λ.

Therefore, if Kr
k(λ) > 0, then

Pλ ≤ Pr[⟨w, u⟩ = 0]m ≤
(
1

2
+

1

2

(
1− 2k

r

)λ)m

,

Pr−λ ≤
(

1

m

)m
.

If Kr
k(λ) < 0, then

Pr−λ ≤
(
1

2
+

1

2

(
1− 2k

r

)λ)m

,

Pλ ≤
(

1

m

)m
.

The proposition hence follows.

17.4.4.4 Linear independence for even k

Next, we turn to the case of even k. When k is even, we cannot use Lemma 17.18

because the matrix is not linearly independent in F2. Instead, we use a variant of the

proof in [FKS20] to show that in this case, the linear independence of the columns of

W still holds with high probability:

Lemma 17.22. Give two fixed positive integers n and r, for any even positive integer

k, if m = Ω(r + (r/k) log r), then with probability at least 1 − 1
poly(r)

, the columns of

m× r matrix W are linearly independent in R.

1116

Proof. We first show that it suffices to consider the case when W ∈ Zm×r is an

integral matrix. Suppose the columns of W are not linearly independent, i.e., there

exists x ∈ Qr such that Wx = 0. Then, we will be able to multiply by an integer and

then divide by a power of two to obtain a vector c ∈ Zr with at least one odd entry

such that ⟨wi, c⟩ = 0 for all i ∈ [m] where w⊤i denotes the i-th row of W.

To upper bound the column-singular probability, we have

Pr[W is column-singular] ≤ Pr[Wx = 0 for some x with | supp(x)| < r]

+ Pr[Wx = 0 for some x with | supp(x)| = r].

For the first term, it can be upper bounded by

Pr[⟨wi, x⟩ ≡ 0 (mod 2) ∀i ∈ [r] for some x ̸= 1],

where 1 is an length-r all ones vector.

Note that the reduction (Lemma 17.18) fails only when all of the entries of

c are odd because W1 = 0 in F2 when k is even. Hence, We can use almost the

same calculation in Lemma 17.19 to upper bound this probability by r−Ω(1) when

m = Ω((r/k) log r).

For the second term, let Sr denote the set of vectors with support size r. Define

a fibre of a vector to be a set of all indices whose entries are equal to a particular

value. And define a set P to be

P := {c ∈ Zr : c has largest fibre of size at most (1− δ)r}

Then, we have

Pr[Wx = 0 for some x with | supp(x)| = r] ≤ Pr[∃x ∈ Sr\P : ⟨wi, x⟩ = 0 ∀i ∈ [m]]

+ Pr[∃x ∈ Sr ∩ P : ⟨wi, x⟩ = 0 ∀i ∈ [m]]

≤ B1 +B2.

1117

For B1, let q = k− 1. It suffices to prove that there is no non-constant vector

c ∈ Zrq with largest fibre of size at least (1 − δ)r such that ⟨wi, c⟩ ≡ 0 (mod q) for

all i ∈ [m]. Then, by Lemma 17.11, let t = O(r/k) and the probability can be upper

bounded by

B1 ≤
δr∑

s=1

(
r

s

)
qs+1(Ps)

m1

≤
t∑

s=1

2s log r+(s+1) log q−O(sk/r)·m +
δr∑

s=t+1

2s log r+(s+1) log q−Ω(m)

≤ δr · 2−Ω(log r)

= r−O(1),

if we take m1 = Ω((r/k) log r) and δ < 1.

For B2, we need to apply a union bound:

B2 ≤ |Sr ∩ P| ·
(
max
x∈P

Pr[⟨w, x⟩ = 0]

)m
.

In fact, it suffices to consider the vectors in Zrq, where q is a prime in [k − 1, 2k]. We

need the following group-theoretic Littlewood-Offord inequality:

Lemma 17.23 (Corollary 1 in [JŠ19]). Let q ≥ 2 be a prime. Let x ∈ Znq with

| supp(x)| = n. Let wi ∈ {−1, 1}Zq be a Bernoulli random variable for i ∈ [n]. Then,

sup
g∈Zq

Pr[⟨x,w⟩ = g] ≤ 3max

{
1

q
,

1√
n

}
.

Then, similar to the proof of Lemma 4.2 in [FKS20], Lemma 17.23 implies the

following claim:

Claim 17.24. Let 0 < k ≤ r/2, and consider a vector x ∈ Zrq (q prime) whose largest

fibre has size r−s, and let w ∈ {0, 1}r be a random vector with exactly k ones. Then,

sup
g∈Zq

Pr[⟨x,w⟩ = g] = O
(
max{1/q,

√
r/(ks)}

)
.

1118

In our case, s = δr and
√
r/(ks) = (δk)−1/2. That is,

max
x∈P

Pr[⟨w, x⟩ = 0] ≤ O

(
1√
δk

)

Then, we apply union bound for B2:

B2 ≤ (q − 1)r ·
(

1√
δk

)m

≤ (2k)r · (δk)−m/2

= exp(O(r log(k)−m log(δk)))

= exp(−Ω(r log k))

≤ 1

poly(r)
,

if we take δ to be a constant in (0, 1) and m = Ω(r).

Combining them together, we get that

Pr[W is column-singular] ≤ 1

poly(r)

if m = Ω(max{r, (r/k) log r}).

17.4.5 Putting everything together

In this section we formally show how to conclude our main average-case guar-

antee:

Theorem 17.25 (Average-case guarantee, formal version of Theorem 17.3). Fix any

integer 2 ≤ k ≤ r, failure probability δ ∈ (0, 1), and suppose m ≥ Ω̃(rk log(1/δ)). Let

W ∈ {0, 1}m×r be generated by the following random process: for every i ∈ [m], the

i-th row of W is a uniformly random k-sparse binary vector. Define M ≜ WW⊤

where matrix multiplication is over the Boolean semiring. There is an algorithm which

runs in O(mω+1) time and, with probability 1− δ over the randomness of W, outputs

a matrix Ŵ ∈ {0, 1}m×r whose columns are a permutation of those of W.3

3ω ≈ 2.373 is the exponent of matrix multiplication.

1119

Proof. By Lemma 17.15, as long as m satisfies the bound in the hypothesis, with

probability at least 1 − δ one can successfully form the tensor T =
∑r

i=1 W
⊗3
i in

time O(mω+1). By Theorem 17.17, the columns of W are linearly independent with

high probability. By Lemma 17.16, one can therefore recover the columns of W up

to permutation.

17.5 Connections Between BkV-SUM, SSBMF, InstaHide

In this section, we begin by formally defining BkV-SUM and describing the

connection to SSBMF elucidated in [CLSZ21, CDG+20]. In Section 17.5.3 we then

prove Theorem 17.4 by describing an algorithm that takes a solution to the SSBMF

instance corresponding to a BkV-SUM instance and extracts more fine-grained in-

formation about the latter, specifically certain coordinates of the unknown database

generating the BkV-SUM instance. As we will explain, the motivation for this partic-

ular recovery guarantee comes squarely from designing better attacks on InstaHide.

17.5.1 Connection to batched k-vector sum

We first describe an extension of the well-studied k-sum problem [Kar72, Eri95,

Pat10, AL13, Abb19] to a “batched” setting. Recall that the classic k-sum problem

asks: given a collection of r numbers, determine whether there exists a subset of size

k summing to zero. One can consider an analogous question where we instead have

a collection of r vectors in Rd, and more generally, instead of asking whether some

subset of size k sums to the zero vector, we could ask the following search problem

which has been studied previously [BIWX11, CP14, ALW14]:

Definition 17.3 (k-Vector-Sum). Given a database X consisting of d-dimensional

vectors x1, · · · , xr, for a fixed vector y and an integer k, we promise that there is a

set S ⊂ [n] such that |S| = k and y =
∑

i∈S xi. We can observe y and have access to

database X, our goal is to recover set S.

1120

Even when d = 1, the Exponential Time Hypothesis implies that no algorithm

can do better than ro(k), and this essentially remains true even for vectors over finite

fields of small characteristic [BIWX11].

We consider two twists on this question. First, instead of a single vector y,

imagine we got a batch of multiple vectors y1, . . . , ym, each of which is the sum of

some k vectors in the database, and the goal is to figure out the constituent vectors

for each yi. Second, given that there might be some redundant information among

the yi’s, it is conceivable that under certain assumptions on the database X, we could

even hope to solve this problem without knowing X. These considerations motivate

the following problem:

Definition 17.4 (BkV-SUM). Given unknown database X which is a list of vectors

x1, · · · , xr ∈ Rd and a fixed integer k. For a set of vector y1, · · · , ym ∈ Rd, for each

j ∈ [m], we promise that there is a set Sj ⊂ [n] such that |Sj| = k and yj =
∑

i∈Sj
xi.

Given y1, · · · , ym, our goal is to recover sets S1, · · · , Sm.

As we discuss in Section 17.5.3, BkV-SUM is closely related to existing attacks

on a recently proposed scheme for privately training neural networks called InstaHide.

17.5.2 Similarity oracle

Taking a step back, note that BkV-SUM could even be harder than kV-SUM

from a worst-case perspective, e.g. if y1 = · · · = ym. The workaround we consider

is motivated by the aforementioned applications of BkV-SUM to InstaHide [CLSZ21,

CDG+20]. It turns out that in these applications, the unknown database X possesses

additional properties that allow one to construct the following oracle, e.g. by training

an appropriate neural network classifier [CDG+20]:

Definition 17.5 (Similarity oracle). Recall the notation of Definition 17.4. Given

vectors {y1, . . . , ym} generated by BkV-SUM, let O denote the oracle for which O(i, j) =

|Si ∩ Sj| ≠ ∅] for all i, j ∈ [m]. Also define the selection matrix W ∈ {0, 1}m×r to be

the matrix whose i-th row is the indicator vector for subset Si.

1121

The following simple observation tells us that given an instance of BkV-SUM

together with a similarity oracle, we can immediately reduce to an instance of SSBMF:

Fact 17.26. If the matrix M ∈ Rm×m has entries Mi,j = O(i, j), then it satisfies

M = WW⊤.

17.5.3 An improved attack on InstaHide

Given a similarity oracle, we can in fact do more than just recover S1, . . . , Sm:

provided that d is sufficiently large, we can use the matrix W we have recovered

as well as the vectors y1, . . . , ym to solve a collection of linear systems to recover

x1, . . . , xm. In this section, we show a stronger guarantee: recovery is possible even

if we only have access to the entrywise absolute values of the yi’s. To motivate this

result, we first spell out how exactly InstaHide [HSLA20b] relates to the BkV-SUM

problem considered in this section.

Definition 17.6. From a private dataset X = {x1, . . . , xr}, InstaHide generates a

synthetic dataset by sampling W ∈ {0, 1}m×r according to Assumption 17.2 and

outputting the vectors z1, . . . , zm given by zi = |WiX|, where | · | denotes entrywise

absolute value, Wi is the i-th row of W, and, abusing notation, X denotes the r× d
matrix whose j-th row is xj. In light of Definition 17.4, let Si ⊂ [r] denote the support

of the i-th row of W.

Note that the synthetic dataset {z1, . . . , zm} in Definition 17.6 is simply given

by the entrywise absolute values of the vectors {y1, . . . , ym} in Definition 17.4 if the

size-k subsets S1, . . . , Sm there were chosen uniformly at random.

It was shown in [HSLA20b] that by training a neural network on the synthetic

dataset generated from a private image dataset, one can still achieve good classifica-

tion accuracy, and the hope was that by taking entrywise absolute values, one could

conceal information about the private dataset. This has since been refuted empirically

by [CDG+20], and provably by [CLSZ21, HST+20] for extremely small values of k,

1122

but a truly polynomial-time, provable algorithm for recovering private images from

synthetic ones generated by InstaHide had remained open, even given a similarity

oracle.

Here we close this gap by showing how to efficiently recover most of the pri-

vate dataset by building on our algorithm for SSBMF. The pseudocode is given in

Algorithm 115.

Algorithm 115 Recovering heavy coordinates of M
1: procedure GetHeavyCoordinates(M) ▷ Similarity matrix M for synthetic

images generated from unknown private dataset X
2: W←TensorRecover(M)
3: for j ∈ [d] do
4: Let z ∈ Rm have i-th entry equal to the j-th coordinate of synthetic image

i

5: Form the vector p̃′ ≜ 1
m

∑m
i=1

(
wi − k−1

r−2 1⃗
)
· z2i , where wi is the i-th row of

W

6: Set the j-th row of X̂ to be p̃′ · r(r−1)
k(r−2k+1)

7: end for
8: return X̂ ▷ Matrix X̂ which approximates heavy entries of X (see

Theorem 17.29)
9: end procedure

The following lemma is the main ingredient for analyzing Algorithm 115, whose

main guarantees were informally stated in Theorem 17.4. It essentially says that given

W and the ℓ-th coordinates of all z1, . . . , zm, one can approximately reconstruct the

ℓ-th coordinates of all x1, . . . , xr which are sufficiently “heavy.” Roughly, an index

i ∈ [r] is “heavy” if the magnitude of the ℓ-th coordinate of xi is roughly k times

larger than the average value in that coordinate across all x1, . . . , xr.

Lemma 17.27. For any absolute constant η > 0, there is an absolute constant c > 0

for which the following holds as long as m ≥ Ω(log(d/δ)). There is an algorithm

GetHeavyCoordinates that takes as input W ∈ {0, 1}m×r satisfying Assump-

tion 17.2 and vector z ∈ Rm satisfying |Wp| = z for some vector p ∈ Rr, runs in

1123

time O(r ·m), and outputs p̂ such that for every i ∈ [r] for which |pi| ≥ (ck/r) · p, we

have that p̃i = pi · (1± η).

We will need the following basic calculation. Henceforth, given a vector p, let

p denote the sum of its entries.

Fact 17.28. For any vector p ∈ Rr,

ES[⟨eS, p⟩2] =
k(r − k)
r(r − 1)

∥p∥22 +
k(k − 1)

r(r − 1)
p2 (17.7)

where the expectation is over a random size-k subset S ⊂ [r].

Proof. Let ξi denote the indicator for the event that i ∈ S so that

ES[⟨eS, p⟩2] = ES

∑

i,j∈[r]

ξiξjpipj

=
∑

i∈[r]

p2i · E[ξi] +
∑

i ̸=j

pipj E[ξiξj]

=

(
k

r
− k(k − 1)

r(r − 1)

)
∥p∥22 +

k(k − 1)

r(r − 1)
p2

=
k(r − k)
r(r − 1)

∥p∥22 +
k(k − 1)

r(r − 1)
p2.

as claimed.

We are now ready to prove Lemma 17.27.

Proof of Lemma 17.27. Define the vector

p̃ ≜ ES
[
⟨eS, p⟩2 · eS

]
, (17.8)

where the expectation is over a random subset S ⊂ [r] of size k, and eS ∈ {0, 1}k is

1124

the indicator vector for the subset S. The i-th entry of p̃ is given by

p̃i =

(
r

k

)−1
·
∑

S∈(r−1
[k−1])

(⟨eS, p⟩+ pi)
2

=

(
r

k

)−1
·
∑

S∈(r−1
[k−1])

p2i + 2pi · pS + p2S (pS ≜
∑

j∈S pj.)

=

(
r

k

)−1
·

p2i ·

(
r − 1

k − 1

)
+ 2pi ·

∑

S∈(r−1
[k−1])

pS +
∑

S∈(r−1
[k−1])

p2S

For the second term, we have
∑

S∈(r−1
[k−1])

pS =
∑

j∈[r]−{i}

pj ·
(
r − 2

k − 2

)
.

For the third term, we have
∑

S∈(r−1
[k−1])

p2S =
∑

S∈(r−1
[k−1])

∑

j,ℓ∈S

pjpℓ

=
∑

S∈(r−1
[k−1])

∑

j∈S

p2j +
∑

S∈(r−1
[k−1])

∑

j ̸=ℓ

pjpℓ

=
∑

j∈[r]−{i}

p2j ·
(
r − 2

k − 2

)
+

∑

j,ℓ∈[r]−{i},j ̸=ℓ

pjpℓ ·
(
r − 3

k − 3

)
.

Hence, the i-th entry of ES[⟨eS, p⟩2 · eS] is
(
ES
[
eS · ⟨eS, p⟩2

])
i
= p2i ·

k(r − 2k + 1)

r(r − 1)
+ ∥p∥22 ·

k(k − 1)(r − k)
r(r − 1)(r − 2)

+ 2pip ·
k(k − 1)

r(r − 1)
+ p2 · k(k − 1)(k − 2)

r(r − 1)(r − 2)
.

We conclude by Fact 17.28 that the i-th entry of ES
[
⟨eS, p⟩2 ·

(
eS − k−1

r−2 · 1⃗
)]

is

bounded by
(
ES
[(
eS −

k − 1

r − 2
1⃗

)
· ⟨eS, p⟩2

])

i

= p2i ·
k(r − 2k + 1)

r(r − 1)
+ 2pip ·

k(k − 1)

r(r − 1)

+ p2 · k(k − 1)(2k − 3)

r(r − 1)(r − 2)

1125

We do not have exact access to p̃, but we may form the unbiased estimator

p̃′ ≜
1

m

m∑

i=1

(
wi −

k − 1

r − 2
1⃗

)
· z2i , (17.9)

where wi is the i-th row of W. For any i ∈ [m], each coordinate of wi · z2i is bounded

within the interval [−∥z∥2∞, ∥z∥2∞], so by Chernoff, provided that m ≥ Ω(log(d/δ)/ϵ2),

we ensure that p̃′i ∈ p̃i(1 ± ϵ) for all i with probability at least 1 − δ. Now consider

the following estimator for p2i :

q̂i ≜ p̃′i ·
r(r − 1)

k(r − 2k + 1)
. (17.10)

We can thus upper bound the error of q̂i relative to p2i by

p

pi
·O
(
k

r

)
+

(
p

pi

)2

·O
(
k2

r2

)
± ϵ ·O

(
1 +

p

pi

k

r
+
p2

p2i

k2

r2

)
.

If we assume that |pi| ≥ Ω(k/r)p and ϵ = O(1) for appropriately chosen constant

factors, then we have that q̂i ∈ p2i · (1± η) as desired.

We are now ready to prove the main guarantee for our attack on InstaHide,

originally stated informally in Theorem 17.29.

Theorem 17.29 (Formal version of Theorem 17.4). For any absolute constant η > 0,

there is an absolute constant c > 0 for which the following holds. Fix any integer

k ≥ 2, failure probability δ ∈ (0, 1), and suppose m ≥ Ω̃(rk log(d/δ)). Given a

synthetic dataset of size m generated by BkV-SUM from a matrix X, together with

its similarity oracle, there is an O(mω+1 + d · r ·m)-time algorithm which outputs a

matrix X̂ such that for any (i, j) ∈ [r] × [d] satisfying |Xi,j| ≥ (ck/r)
∑

i′∈[r] |Xi′,j|,
we have that |X̂i,j| = |Xi,j| · (1± η).

Proof. By Theorem 17.25 and the assumed lower bound on m, we can exactly recover

the selection matrix W (up to some column permutation) in time O(mω+1). Using

Lemma 17.27, for every pixel index j ∈ [d] we can run GetHeavyCoordinates(M)

to recover the pixels in position j which are heaviest among the r private images in

time O(m · r), yielding the desired guarantee.

1126

17.6 Worst-Case Algorithm

In this section, we give a worst-case quasi-polynomial algorithm for sparse

boolean matrix factorization problem. It turns out that our techniques here can

handle both SSBMF as well as an asymmetric variant, In Section 17.6.1 we define

this variant and give some background on constraint satisfaction problems (CSPs).

Section 17.6.2 gives the algorithm for the asymmetric and symmetric version of the

problem by exhibiting a reduction to 2-CSP. Section 17.6.3 extends the algorithm to

the Boolean semiring.

17.6.1 CSP preliminaries

We first define a general (asymmetric) version of SSBMF as follows:

Definition 17.7 (Sparse Boolean matrix factorization (Sparse BMF)). Given an m×
m matrix M where each entry is in {0, 1, · · · , k}. Suppose matrix M can be factorized

into two matrices U ∈ {0, 1}m×r and V ∈ {0, 1}r×m, where each row of U is k-sparse

and each column of V is k-sparse.

The task is to find a row k-sparse matrix Û ∈ {0, 1}m×r and a column k-sparse

matrix V̂ ∈ {0, 1}r×m such that M = ÛV̂.

We can also define the sparse Boolean matrix factorization as an optimization

problem.

Definition 17.8 (Sparse BMF, optimization version). Given an m × m matrix M

where each entry is in {0, 1, · · · , k}. The goal is to find a row k-sparse matrix Û ∈
{0, 1}m×r and a column k-sparse matrix V̂ ∈ {0, 1}r×m such that the number of

different entries ∥M− ÛV̂∥0 is minimized.

We now recall the definition of 2-CSPs:

Definition 17.9 (Max 2-CSP). A 2-CSP problem is defined by the tuple (Σ, V, E,C).

Σ is an alphabet set of size q, V is a variable set of size n, E ⊆ V ×V is the constraint

1127

set. V and E define an underlying graph of the 2-CSP instance, and C = {Ce}e∈E
describes the constraints. For each e ∈ E, Ce is a function Σ×Σ→ {0, 1}. The goal

is to find an assignment σ : V → Σ with maximal value, defined to be the number

of satisfied edges e = (u, v) ∈ E (i.e., for which Ce(σ(u), σ(v)) = 1).

We will use the following known algorithm for solving “dense” 2-CSP instances:

Theorem 17.30 ([DM18]). Define the density δ of a 2-CSP instance to be δ ≜

|E|/
(|V |

2

)
. For any 0 < ϵ ≤ 1, there is an approximation algorithm that, given any

δ-dense 2-CSP instance with optimal value OPT, runs in time (nq)O(ϵ−1·δ−1·log q) and

outputs an assignment with value OPT− ϵ|E|, where n = |V | and q = |Σ|.

17.6.2 From factorization to CSPs

We give a reduction that can reduce the general sparse BMF problem to a

Max 2-CSP problem, and then use a quasi-polynomial time 2-CSP solver to find an

approximation solution.

Theorem 17.31 (QPTAS for asymmetric sparse BMF, formal version of Theo-

rem 17.5). Given m, k, r ≥ 0 and an m × m matrix M as the input of an instance

of sparse Boolean matrix factorization problem. Let OPT be the optimal value of the

problem, i.e., OPT := minU,V ∥M−UV∥0, where U,V satisfy the sparsity constraints

of the problem.

For any 1 ≥ ϵ > 0, there exists an algorithm that runs in

mO(ϵ−1k log r)rO(ϵ−1k2 log r)

time and finds a row k-sparse matrix Û and a column k-sparse matrix V̂ satisfying

∥M− ÛV̂∥0 ≤ OPT + ϵm2.

1128

Proof. For the input matrix M, let U and V be the ground-truth of the factorization.

Let (b⊤1 , . . . , b⊤m) be the rows of U and (c1, . . . , cm) be the columns of V. We construct

a 2-CSP instance FA that finds U and V as follows:

• Let Σ =
{
(q1, . . . , qr)

∣∣ qi ∈ {0, 1} ∀i ∈ [r] and
∑

i∈[r] qi = k
}

be the alphabet.

• The underlying graph is a bipartite graph. The left-side vertices VL = [m]

corresponding to the rows of U. The right-side vertices VR = [m] corresponding

to the columns of V.

• For e = (u, v) ∈ VL×VR, define the constraint Ce to be: for all (p1, . . . , pr), (q1, . . . , qr) ∈
Σ× Σ,

Ce((p1, . . . , pr), (q1, . . . , qr)) = 1 ⇐⇒
r∑

i=1

piqi = Au,v.

Note that FA has value OPT. We can create an assignment from the ground-

truth such that σ(u) = bu for u ∈ VL and σ(v) = cv for v ∈ VR. By definition of the

sparse Boolean matrix factorization problem, this is a legal assignment. Also, since

the number of Au,v = ⟨bu, cv⟩ for all (u, v) ∈ [m]× [m] is m2 −OPT, we can see that

all such edges are satisfied by this assignment.

Then, we can run the QPTAS algorithm (Theorem 17.30) on FA and obtain

an assignment that at most OPT− ϵ|E| constraints are unsatisfied, which means the

number of different entries between M and ÛV̂ is at most OPT− ϵm2.

The alphabet size of FA is
(
r
k

)
. The reduction time is O(m2rk) and the 2-CSP

solving time is (mrk)O(ϵ−1 log(rk)) by Theorem 17.30 since the density of a complete

bipartite graph is δ = 1
2
. The theorem is then proved.

Remark 17.3. We briefly compare this to the guarantee of [KPRW19], who obtained

a

2O(r2 log r) poly(m)

1129

constant-factor approximation algorithm. By introducing a sparsity constraint on

the rows of U,V through our new parameter k, we circumvent the exponential de-

pendence on r, at the cost of running in time quasipolynomial in m. In particular,

our guarantee dominates when the rank parameter r is at least roughly Ω̃(
√
logm),

though strictly speaking our guarantee is incomparable because we aim for an additive

approximation and only measure error in L0 rather than Frobenius norm.

A similar reduction can be used to prove a worst-case guarantee for SSBMF,

stated informally in Theorem 17.5.

Theorem 17.32 (Formal version of Theorem 17.5). Given m, k, r ≥ 0 and a sym-

metric m×m matrix M as the input of a (worst-case) instance of SSBMF. Let OPT

be the optimal value of the problem, i.e., OPT := minW ∥M−WW⊤∥0, where W is

a row k-sparse matrix in {0, 1}m×r. For any accuracy ϵ ∈ (0, 1), there is an algorithm

running in time

mO(ϵ−1k log r)rO(ϵ−1k2 log r)

which finds a row k-sparse matrix Ŵ satisfying

∥M− ŴŴ⊤∥0 ≤ OPT + ϵm2.

Proof. The construction of the 2-CSP instance FA is almost the same as in the proof

of Theorem 17.31, except that in this case, the underlying graph is a complete graph,

where the vertices V = [m] correspond to the rows of W. Then, each constraint C(u,v)

checks whether ⟨bu, bv⟩ = Mu,v. The correctness of the reduction follows exactly the

proof of Theorem 17.31 and we omit it here. The density of FA in this case is 1, and

hence the running time of the algorithm is (mrk)O(ϵ−1 log(rk)).

17.6.3 Extension to the Boolean semiring

A direct corollary of Theorem 17.32 is that the sparse BMF over the Boolean

semiring can also be solved in quasi-polynomial time.

1130

Corollary 17.33. Given m, k, r ≥ 0 and a symmetric Boolean m×m matrix M. Let

OPT be the optimal value of the problem, i.e., OPT := minW ∥M−WW⊤∥0, where

W is a row k-sparse matrix in {0, 1}m×r and the matrix multiplication is over the

Boolean semiring, i.e., a + b is a ∨ b and a · b is a ∧ b. For any accuracy parameter

ϵ ∈ (0, 1), there exists an algorithm that runs in

mO(ϵ−1k log r)rO(ϵ−1k2 log r)

time and finds a row k-sparse matrix Ŵ satisfying

∥M− ŴŴ⊤∥0 ≤ OPT + ϵm2.

Proof. The construction can be easily adapted to the case when matrix multiplication

is over the Boolean semiring, where a+ b becomes a ∨ b and a · b becomes a ∧ b. We

can just modify the constraints of the 2-CSP instance in the reduction and it is easy

to see that the algorithm still works.

Remark 17.4. Factorizing Boolean matrices with Boolean arithmetic is equivalent to

the bipartite clique cover problem. It was proved by [CIK17] that the time complexity

lower bound for the exact version of this problem is 22
Ω(r) . Since the approximation

error is ϵm2, when ϵ < 1
m2 , the output of our algorithm is the exact solution. Further,

if we do not have the row sparsity condition, i.e., k = r, then the time complexity

becomes

2O(m2(logm)·r2 log r).

In the realm of parameterized complexity (see for example [CFK+15]), due to the

kernelization in [FMPS09], we may assume m ≤ 2r and the running time of our

algorithm is 2Õ(22r·r3), which matches the lower bound of this problem.

1131

Chapter 18: Copyright Protection in the Quantum
Era

18.1 Introduction

In the past decade, deep learning has achieved remarkable success across various

domains. However, the rapidly increasing size of models has presented a challenge

as training them without a GPU cluster has become nearly impossible. Moreover,

newer large language models like GPT-4 require substantial computational resources

just for doing inference. Consequently, there are two main approaches to accessing

these deep learning models.

The first approach (which is widely used) involves AI companies deploying

their models on the cloud, allowing clients to use them remotely. While this method

provides convenience, it raises concerns regarding data exchange between servers and

clients, potentially compromising privacy.

The second approach is for AI companies to directly send the models to clients

with sufficient computational resources, enabling all computations to be performed

locally. However, it raises a silent question:

how can AI companies prevent clients from copying the models and distributing them

to unauthorized users?

This question motivates the study of copy-protection in cryptography, which

seeks for protocols to distribute deep learning models (or general programs) to clients

and safeguarding against unauthorized copying and distribution. Nonetheless, most

classical approaches are heuristic in nature, as it is inherently impossible to prevent

a malicious user from copying the code of a program.

Quantum copy-protection, proposed by Aaronson [Aar09], aims to use the

unclonability of quantum states to achieve programs that cannot be copied. That

1132

is, the program f is given as a quantum state |ψf⟩. |ψf⟩ allows for computing f on

arbitrary inputs; meanwhile, it is infeasible to copy the state |ψf⟩, or even convert |ψf⟩
into two arbitrary states that both allow for computing f . The quantum no-cloning

theorem shows that quantum states, in general, cannot be copied. Copy protection

takes this much further, augmenting the unclonable state with the ability to evaluate

programs.

Progress on quantum copy-protection has unfortunately been slow. On the

negative side, copy-protection for general programs is impossible. As explained by

Aaronson [Aar09], any learnable program—that is, a program whose description can

be learned from just its input/output behavior—cannot be copy-protected. Indeed,

given the (copy-protected) code for the program, an attacker can just query the code

on several inputs and learn the original program from the results. The attacker can

then copy the original program indefinitely. A more recent result of Ananth and La

Placa [AP20] shows, under certain computational assumptions, that certain contrived

unlearnable programs cannot be copy-protected.

On the positive side, Aaronson demonstrates a quantum oracle1 relative to

which copy-protection exists for any unlearnable program. Due to the negative result

above, this scheme cannot be instantiated in general. Worse, even for programs that

are not subject to the impossibility result, it remains unclear how even heuristically

to instantiate the scheme. Very recently, Ananth and La Placa [AP20] build a version

of copy-protection, which they call software leasing, which guarantees a sort of copy

detection mechanism. Unfortunately, their work explicitly allows copying the func-

tionality and only ensures that such copying can be detected. Also, their construction

only works for a certain class of “evasive” functions, which accept a hidden sparse set

of inputs. The work of Ben-David and Sattath [BDS16] and more recently Amos et

al. [AGKZ20] can be seen as copy-protecting specific cryptographic functionalities.

1That is, an oracle that implements a quantum operation.

1133

18.1.1 This work

In this chapter, we give new general results for copy-protection. Our two main

results are:

• Any unlearnable functionality can be copy-protected, relative to a classical or-

acle.

• Any functionality that can be watermarked in a certain sense, can be copy-

detected assuming just the existence of public-key quantum money.

Both of our results are very general, applying to a wide variety of learning and wa-

termarking settings, including settings where functionality preservation is not re-

quired. Along the way to obtaining our results, we give new definitions for security of

copy-protection (as well as copy-detection and watermarking), which provide stronger

guarantees.

Our first result improves Aaronson [Aar09] to use a classical oracle, which can

then heuristically be instantiated using candidate post-quantum obfuscation (e.g. [BGMZ18,

BDGM20]), resulting in a concrete candidate copy-protection scheme. Of course, the

impossibility of Ananth and La Placa [AP20] means the resulting scheme cannot be

secure in the standard model for arbitrary programs. Still, it can be conjectured to

be secure for programs not subject to the impossibility.

Our second result complements Ananth and La Placa [AP20]’s positive result

for copy-detecting certain evasive functions by copy-detecting arbitrary watermark-

able functions. For our purposes, watermarkable functions are those that can have

a publicly observable “mark” embedded into the program, such that it is infeasible

to remove the mark without destroying the functionality. We note that the results

(and techniques) are incomparable to [AP20]. First, watermarkable functions are

never evasive, so the class of functions considered are disjoint. Second, our security

guarantee is much stronger than theirs, which we discuss in Section 18.1.2.

1134

Taken together, we believe our results strongly suggest that watermarkable

functions may be copy-protectable. Concretely, the impossibility result of Ananth

and La Placa also applies to copy detection, and our second result shows that wa-

termarkable functions, therefore, circumvent the impossibility. Based on this, we

conjecture that our first result, when instantiated with candidate obfuscators, is a

secure copy-protection scheme for watermarkable functions. We leave proving or dis-

proving our conjecture as an interesting direction for future work.

As a consequence, our scheme offers a solution for copy-protecting deep learn-

ing models (relative to a classical oracle). The security provided by our quantum

copy-protection scheme guarantees that for a malicious user in the real-world (with

limited computational power), the only way to copying the model is to training it

from scratch! This presents a significant hurdle, particularly for large models, as the

cost associated with training from scratch is prohibitively high.

18.1.2 Technical overview

Definitional Work. We first investigate the definition of quantum copy-protection.

We find that existing definitions and other straightforward attempts have several

limitations. We therefore carefully develop a strong and general definition of copy-

protection to resolve these limitations. In particular, our definition captures attacks

where (1) the program is meaningfully copied even if the functionality is technically

different, and (2) the program is copied only with a small but detectable probability.

Consider the following attempt of defining quantum copy-protection: we say

an adversary successfully pirates a quantum program for computing a function f if

it outputs two quantum programs σ1, σ2, each of them able to compute f correctly

on a large fraction of inputs. Now consider applying this definition to the case where

f is a signing algorithm with a particular signing key hard-coded, and suppose there

are many valid signatures for each message. Consider a hypothetical adversary who

“splits” the program into two pieces, each computing valid signatures; but neither

1135

computing the same signature that f produces. Such programs are “good enough”

for forging signatures, and the ability to copy a signature-producing program in this

way would naturally be considered an attack. However, the usual notions of security

for copy-protection do not apply to such programs.

Another example is the copy-protection of public-key encryption. Let f be

a decrypting algorithm with a particular decryption key hard-coded. Suppose the

split two program pieces only work correctly on a sparse set: they can only decrypt

correctly on ciphertexts of m0,m1; for ciphertexts of other messages, the output is

arbitrary. This splitting attack does not violate the security notion either since both

functions produced by the adversary differ from the original program on most inputs.

But again, such programs are “good enough” for breaking the semantic security of the

encryption scheme, and therefore would reasonably count as an attack.

Similar definitional issues are discussed in the context of watermarking [GKM+19]

but have not been explored in the setting of copy-protection. Inspired by the water-

marking case, our solution is to define “compute f correctly” by a general relation.

The relation takes some random coins r, the function f (with some additional informa-

tion about f hard-coded in the circuit); it samples an input and runs the (quantum)

program on that classical input; finally, it checks the output of the quantum program,

testing (in superposition) if the output z together with f, r is in the relation. As an

example, if f is a signing circuit (with the signing key hard-coded), the relation is

defined as: use random coins r to generate a random message m, run the quantum

program on m and test in superposition if it is a valid signature, by applying the

verification algorithm Ver(vk,m, · ; r).

Therefore, we propose a general definition that can capture a broader class of

attacks, especially in the context of cryptographic functionalities.

Unfortunately, another uniquely quantum issue arises when trying to formulate

a definition. We intuitively want to consider a program to be a valid copy if it

1136

computes f correctly on a non-trivial fraction of the domain. Unfortunately, there is

no physical way to actually test if a program represented as a quantum state satisfies

the property when an algorithm only receives a single copy of the program, especially

in game-based security definitions.

Generally, any attempt at assigning a non-trivial property to quantum states

(e.g., “valid program” vs. “invalid program”) will be physically meaningless. Indeed,

given any valid program P1 and any invalid program P2 (regardless of the meaning

of “valid”), what is the uniform superposition |P1⟩ + |P2⟩ of the two programs? Is it

valid or invalid? Regardless of which, because the three programs are not orthogonal

quantum states, no measurement can determine all three states’ validity.

At a more operational level, the classical way to test for correctly computing

f is to evaluate the function on all points and report the fraction of inputs where the

program computed correctly. Alternatively, one can efficiently estimate the fraction of

inputs that are computed correctly by simply testing a polynomial number of random

points. Regardless, testing involves running the program on multiple points.

In the setting of quantum programs, however, the uncertainty principle implies

that the moment one tests the first input, the quantum program state is irreversibly

altered, potentially affecting the subsequent evaluations of the program. Thus, the

fraction of inputs computed correctly is ever-changing, and simply evaluating the

program on several points will not give a meaningful indication of the program’s

validity at any single point in time.

To illustrate further issues, consider the adversary which takes its quantum

program P and simply produces 1√
2
(|P ⟩ |D⟩ |0⟩ + |D⟩ |P ⟩ |1⟩) where D is a dummy

program that outputs junk. The two halves of this bipartite system each have prob-

ability 1/2 of outputting the right answer on a random input. And yet, this “attack”

is rather useless and should not be considered a break.

On the other hand, consider a hypothetical attacker which produces 1√
2
|P ⟩ |P ⟩+

1√
2
|D⟩ |D⟩. The two halves of this bipartite system each separately has probability

1137

1/2 of outputting the right answer on a random input. However, if we measure both

halves, there is a 1/2 chance of obtaining two copies of P , which each answers correctly

with probability 1. Therefore, this attack should likely be considered a break.

Thus, we see that any characterization of program validity which just tests

the program on a random input cannot distinguish cases that should be considered

breaks from those that are not. On the other hand, if we test multiple random inputs,

we run into the problem that testing each input causes the program state to change,

meaning we may not get meaningful results.

Our solution will be to use recent ideas from Zhandry [Zha20], who considered

similar issues in the context of traitor tracing. At a high level, the issue above is that

we are trying to assign a property to a quantum state (whether the state is a good

program), but this property is non-physical and does not make sense for mixed or

entangled states. Instead, we want “a program is good” to be a measurement that

can be applied to the state. We would naturally also want the measurement to be

projective, so that if a program is once tested to be “good”, it will always be “good”.

Let M = (M0,M1) be binary positive operator-valued measures (POVMs)

that represents choosing random coins and testing if the quantum program computes

correctly with respect to the random coins. For a mixed quantum program state σ,

the probability the program evaluates correctly relative to this test is given as Tr[M0σ]

. Let M′ be the (inefficient) projective measurement {Pp}p∈[0,1], projecting onto the

eigenspaces of M0, where p ranges over the corresponding eigenvalues of M0
2 Zhandry

showed that the measurement below results in an equivalent POVM as M:

• Apply the projective measurement M′, and obtain p;

• Output 0 with probability p, and output 1 with probability 1− p.

2Since M0 +M1 is the identity, M1 shares the same eigenvectors, with eigenvalue 1− p.

1138

Intuitively, M′ will project a state to an eigenvector with eigenvalue p. The leftover

state computes correctly on p-fraction of all inputs.

Therefore, we say a quantum program σ is tested to be γ-good, if the measure-

ment M′ has outcome p ≥ γ. We say an adversary successfully pirates a quantum

program for computing f if the two programs are both tested to be γ-good with

non-negligible probability. We will show an efficient algorithm that approximates

the measurement. Thus, our new definition provides an operational game-based se-

curity definition that resolves all the issues we mentioned above. Besides, although

the definition may be laborious, this definition implies the previous definitions in

[Aar09, CMP20] and etc, and we find proving security with this definition is consid-

erably easier. Using similar ideas, we also define quantum unlearnability of programs

and quantum copy-detection.

Our Copy-Protection Scheme. We give a quantum copy-protection construction

for all unlearnable functions based on (1) classical oracles, and (2) subspace states,

or more abstractly, any tokenized signature scheme [BDS16].

Note the difference between classical and quantum oracles: a classical oracle is

a classical functionality that can be (superposition) queried in a black-box way, while a

quantum oracle is a quantum unitary operation used as a black-box. It is more feasible

to implement classical oracles heuristically considering existing candidates of (post-

quantum) obfuscations for classical circuits [BDGM20]. Therefore our construction

is a significant improvement from the result in [Aar09].

A tokenized signature generates a signature token |sig⟩ which we call a signing

token. A signer who gets one copy of the signing token can sign a single bit b of her

choice. Sign(b, |sig⟩) outputs a classical signature whose correctness guarantee is the

same as classical signatures: namely, verification will accept the result as a signature

on b. Importantly, the signing procedure is a unitary and will produce a superposition

of all valid signatures of b; to obtain a classical signature, a measurement to the state

1139

is necessary, leading to a collapse of the token state. Thus, a signature token |sig⟩ can

only be used to produce one classical signature of a single bit, and any attempt to

produce a classical signature of the other bit would fail. [BDS16] formalizes this idea

and constructs a tokenized signature scheme relative to a classical oracle (a subspace

membership oracle).

The high-level idea of our copy-protection scheme is that it requires an au-

thorized user to query an oracle twice on signatures of bits 0 and 1. Let f be the

function we want to copy-protect. Define the following classical circuits:

O1(x, sig) =

{
H(x) if Ver(vk, 0, sig) = 1

⊥ otherwise
,

O2(x, sig) =

{
f(x)⊕H(x) if Ver(vk, 1, sig) = 1

⊥ otherwise
.

Here H is a random function. The copy-protected program of f is a signature token

|sig⟩ and obfuscations of O1,O2, which we will heuristically treat as oracles to O1,O2.

We denote this program as (|sig⟩ ,O1,O2).

To obtain f(x), a user has to query on signatures of both bits and getH(x) and

H(x) ⊕ f(x). Note that even if one can only produce one of the classical signatures

with token |sig⟩, a user can still query both oracles O1,O2 multiple times. To obtain

H(x), a user can compute the superposition of all valid signatures of 0 by applying

a unitary and feed the quantum state together with x to O1. It then measures the

output register. The user never actually measures the signature. Because the output

register contains a unique output H(x), by Gentle Measurement Lemma [Aar04], it

can rewind the quantum state back to |sig⟩. Thus, our copy-protection scheme allows

a copy-protected program to be evaluated on multiple inputs multiple times.

We next show how to prove anti-piracy security. Let σ1, σ2 be two (potentially

entangled) program states pirated by an adversary, which makes oracle access to

both O1,O2 and breaks the anti-piracy security. Let O⊥ be an oracle that always

outputs ⊥. If σ1 never queries the oracle O2, we know the two programs (σ1,O1,O2)

1140

and (σ1,O1,O⊥) will have identical output distributions. Moreover, (σ1,O1,O⊥) can

be simulated even without querying f because O1 is simply a random oracle (on

valid inputs). Therefore, the program can be used to break the unlearnability of f .

Similarly, if σ2 never queries the oracle O1, the program (σ2,O⊥,O2) can be used to

break the unlearnability of f .

Since f is unlearnable, the above two cases can not happen. We show that un-

der this case, we can extract signatures of both 0 and 1. Intuitively, since (σ1,O1,O2)

makes queries to O2, we can run the program on random inputs and measure a random

query to O2, thereby extracting a signature of 1. Similarly, it holds for (σ2,O1,O2)

and one could extract a signature of 0. Unfortunately, this intuition does not quite

work since σ1 and σ2 are potentially entangled. It means there can be correlations

between the outcomes of the measurements producing the two signatures: perhaps,

if the measurement on (σ1,O1,O2) produces a valid signature on 1, then the mea-

surement on (σ2,O1,O2) is guaranteed to fail to produce a signature. We show by

a delicate argument that, in fact, adversaries cannot cheat using such correlations.

Intuitively, although σ1, σ2 are entangled, we show there exists an efficient measure-

ment: by applying this measurement to (σ1, σ2), with non-negligible probability, the

resulting programs (σ′1, σ
′
2) have the following properties:

• They are both “good” programs. Thus, we can extract a signature of 1 in σ′1.

• The resulting program σ′′2 after applying any measurement on σ′1 is still “good”.

Similarly, we can extract a signature of 0 in σ′′2 .

Note that the above argument does not directly work for the original programs

(σ1, σ2).

Our Copy-Detection Scheme. Inspired by [AP20], we propose a weaker defini-

tion called copy-detection, which has an additional checking procedure. A user can

1141

publicly verify a program’s validity by running this checking procedure. The secu-

rity guarantees that, given one copy of the program, no adversary can produce two

programs such that both programs pass the checking procedure and both are ‘func-

tionally correct’ (as in the copy-protection definition) — in other words, honest users

can always identify the pirate. Looking ahead, we note that copy-detection is similar

to secure software leasing (SSL, [AP20]), with the major differences are (1) the check-

ing procedure is public, (2) ‘functionally correct’ in the security of copy-detection is

average-case while that in the security of SSL is worst-case.

We construct a copy-detection scheme for any function family that can be

watermarked. A watermarking scheme roughly consists of the following procedure:

Mark takes a circuit and a message, and outputs a circuit embedded with that mark;

Extract takes a marked circuit and produces the embedded mark. A watermarking

scheme requires: (1) the watermarked circuit f̃ = Mark(f,m) should preserve its

intended functionality as f ; (2) any efficient adversary given a marked f̃ , can not

generate a new marked circuit with a different mark (or remove the mark) while

preserving its functionality. Watermarking primitives have been studied in previous

works, including [CHN+18, KW17, QWZ18, KW19, GKM+19].

Our construction also requires a public key quantum money scheme. It consists

two procedures: a generation procedure and a verification procedure. The generation

procedure outputs a quantum banknote |$⟩. Verification is public, takes a quantum

money banknote, and outputs either a (classical) serial number of that banknote or

⊥ indicating it is an invalid banknote. The security requires no efficient adversary

could use a quantum banknote |$⟩ to prepare two quantum banknotes |$1⟩ |$2⟩ such

that both banknotes pass the verification and their serial numbers are equal to that

of |$⟩. We note that this version of quantum money corresponds to a “mini-scheme”

as defined by [AC12].

The copy-detection scheme takes a function f , samples a banknote |$⟩ with

serial number s, lets f̃ ← Mark(f, s) and outputs a copy-detection program as (f̃ , |$⟩).

1142

To evaluate the function, it simply runs the classical program f̃ . To check a program

is valid, it extracts the serial number from the money state and compares it with the

mark of the program.

The security requires that no efficient adversary could produce f̃1, |$1⟩ and

f̃2, |$2⟩ such that two programs pass the check and both classical circuits preserve the

functionality. Let s be the serial number of |$⟩, sb be the serial number of |$b⟩ for

b = 1, 2. To pass the check, there are two possible cases:

• s1 = s2 = s. In this case, |$1⟩ |$2⟩ breaks the security of the quantum money

scheme because one successfully duplicates a banknote with the same serial

number.

• At least one of sb ̸= s. Because the mark of f̃b is also equal to sb, one of f̃b breaks

the security of the watermarking scheme, as it preserves the functionality, while

having a different mark from s.

We show that the above construction and proof apply to a wide range of watermarking

primitives.

Copy-Protection in the Standard Model? The security of our copy-protection

scheme requires treating the obfuscated programs as oracles. While we prove security

for all unlearnable programs, we cannot expect such security to hold in the standard

model: as shown in [AP20], there are unlearnable functions that can not be copy-

protected or even copy-detected. On the other hand, watermarkable programs are a

natural class of programs that are necessarily immune to the style of counter-example

of Barak et al. [BGI+01], on which the copy-protection impossibility is based. Namely,

the counter-example works by giving programs that are unlearnable, but such that

having any (even approximate [BP15]) code for the program lets you recover the

original program. Such programs cannot be watermarkable, as the adversary can

always recover the original program from the (supposedly) watermarked program.

1143

Thus, we broadly conjecture that all watermarkable functions can be copy-

protected. Our copy-detection result gives some evidence that this may be feasible.

Concretely, we conjecture that our copy-protection construction is secure for any

watermarkable program when the oracles are instantiated with post-quantum obfus-

cation constructions. We leave justifying either the broad or concrete conjectures as

fascinating open questions.

18.1.3 Other related works

Quantum Copy Protection Quantum copy-protection was proposed by Aaronson

in [Aar09]; this paper gave two candidate schemes for copy-protecting point functions

without security proofs and showed that any functions that are not quantum learnable

could be quantum copy-protected relative to a quantum oracle (an oracle which could

perform an arbitrary unitary).

[AP20] gave a conditional impossibility of general copy-protection: they con-

struct a quantum unlearnable circuit using the quantum FHE scheme and compute-

and-compare obfuscation [WZ17, GKW17], which is not copy-protectable once a QPT

adversary has non-black-box access to the program. [AP20] also gave a new defini-

tion that is weaker than the standard copy-protection security, called Secure Software

Leasing (SSL) and an SSL construction for a subclass of evasive functions, namely,

searchable compute-and-compare circuits.

[BL19] and [GZ20] introduced two new notions respectively, unclonable en-

cryption/ decryption schemes; [CMP20] gave a construction for copy-protecting point

functions in the quantum random oracle model with techniques inspired by [BL19] and

the construction can be extended to copy-protecting compute-and-compare circuits.

[BJL+21] then constructed information-theoretic SSL for point functions.

Quantum Money Quantum money was first proposed by Wiesner in around 1970;

[Wie83] gave the first private-key quantum money scheme based on conjugate cod-

1144

ing. Aaronson [Aar09] gave a first public-key quantum money scheme. The explicit

scheme was broken by Lutomirski et al. [LAF+09]. Later, [AC12] proposed a secure

public-key quantum money scheme relative to a classical oracle. Zhandry [Zha19]

put forward an even stronger notion, quantum lightning; [Zha19] also instantiated

the quantum money scheme of [AC12] with post-quantum indistinguishability ob-

fuscation. Other public-key quantum money schemes include [Kan18, FGH+12] and

private-key quantum money scheme from [JLS18]. One other variant is classically

verifiable quantum money [Gav12, RS19].

One-time Programs and One-time Memory Another idea of copy-protecting

softwares is through one-time program, introduced in [GKR08]. One-time programs

can be executed on only one single input and nothing other than the result of this

computation is leaked. Quantum one-time programs are further studied in [BGS13]

and [LSZ20].

18.1.4 Concurrent and independent work

Very recently, [KNY20] presents a secure software leasing for a subclass of

evasive functions and PRFs, using watermarking and two-tier quantum-lightning,

which can be built from the LWE assumption. Their main observation is that the full

power of public-key quantum money is not needed in the verification of SSL, and they

introduce a new primitive in between public-key and private-key quantum money,

which they call two-tier quantum lightning. While their construction can be built

from LWE alone, our construction aims at a more generalized definition in terms of

successful piracy and functionality-preserving; our copy detection construction also

works for a broader class of cryptographic functionalities such as encryption and

signature.

1145

18.2 Preliminaries

We denote by λ the security parameter, and when inputted into an algorithm,

λ will be represented in unary. We say a function ϵ(x) is negligible if for all inverse

polynomials 1/p(x), ϵ(x) < 1/p(x) for all large enough x. We denote a negligible

function by negl(x). We use QPT to denote quantum polynomial time.

18.2.1 Quantum computation

We give some basic definitions of quantum computation and quantum infor-

mation in Appendix B.

Definition 18.1 (Trace distance). Let ρ, σ ∈ C2n×2n be the density matrices of two

quantum states. The trace distance between ρ and σ is

∥ρ− σ∥tr :=
1

2

√
Tr[(ρ− σ)†(ρ− σ)],

Here, we only state a key lemma for our construction: the Gentle Measurement

Lemma proposed by Aaronson [Aar04], which gives a way to perform measurements

without destroying the state.

Lemma 18.1 (Gentle Measurement Lemma [Aar04]). Suppose a measurement on

a mixed state ρ yields a particular outcome with probability 1 − ϵ. Then after the

measurement, one can recover a state ρ̃ such that ∥ρ̃− ρ∥tr ≤
√
ϵ. Here ∥·∥tr is the

trace distance (defined in Definition 18.1).

18.2.2 Quantum oracle algorithm

We consider the quantum query model in this chapter, which gives quantum

circuits access to some oracles.

Definition 18.2 (Classical Oracle). A classical oracle O on input query x is a uni-

tary transformation of the form Uf |x, y, z⟩ → |x, y + f(x), z⟩ for classical function

f : {0, 1}n → {0, 1}m. Note that a classical oracle can be queried in quantum super-

position.

1146

In the rest of the chapter, we refer to the word “oracle” as “classical oracle”.

A quantum oracle algorithm with oracle access to O is a sequence of unitary Ui and

oracle access to O (or Uf). Thus, the query complexity of a quantum oracle algorithm

is defined as the number of O access.

In the analysis of the security of the copy-protection scheme in Section 18.5.2,

we will use the following theorem from [BBBV97] to bound the change in adversary’s

state when we change the oracle’s input-output behavior at places where the adversary

hardly ever queries on.

Theorem 18.2 ([BBBV97]). Let |ϕi⟩ be the superposition of quantum Turing machine

M with oracle O on input x at time i. Define Wy(|ϕi⟩) to be the sum of squared

magnitudes in |ϕi⟩ of configurations of M which are querying the oracle on string

y. For ϵ > 0, let F ⊆ [0, T − 1] × Σ∗ be the set of time-string pairs such that
∑

(i,y)∈F Wy(|ϕi⟩) ≤ ϵ2/T .

Now suppose the answer to each query (i, y) ∈ F is modified to some arbitrary

fixed ai,y (these answers need not be consistent with an oracle). Let |ϕ′i⟩ be the su-

perposition of M on input x at time i with oracle O modified as stated above. Then

∥|ϕT ⟩ − |ϕ′T ⟩∥tr ≤ ϵ.

18.2.3 Direct-product problem and quantum signature tokens

In this section, we will define direct-product problems, which are key compo-

nents of the quantum signature token scheme by Ben-David and Sattath [BDS16] and

also our quantum copy-protection scheme.

Definition 18.3 (Dual Subspace). Given a subspace S of a vector space V , let S⊥

be the orthogonal complement of S: the set of y ∈ V such that x ·y = 0 for all x ∈ S.

It is not hard to show: S⊥ is also a subspace of V ; (S⊥)⊥ = S.

Definition 18.4 (Subspace Membership Oracles). A subspace membership oracle for

a subspace A ⊆ Fn, denoted as UA, on input vector v, will output 1 if v ∈ A, v ̸= 0

and output 0 otherwise.

1147

Definition 18.5 (Subspace State). For a subspace A ⊆ Fn, the state |A⟩ is defined

as 1√
|A|

∑
v∈A |v⟩, which is a uniform superposition of all vectors in A.

Direct-Product Problem Our construction relies on the following problem called

the “Direct-Product Problem" in [AC12]: for any QPT adversary A, given one copy

of |A⟩ and oracle access to UA, UA⊥ , the problem is to finds two non-zero vectors such

that u ∈ A and v ∈ A⊥.

Ben-David and Sattath [BDS16] proved the hardness of the direct-product

problem for the construction of quantum signature tokens. More precisely, a signature

token is a subspace state |A⟩ in their construction. All vectors in A\{0} are signatures

for bit 0 and all vectors in A⊥\{0} are signatures for bit 1. Therefore, to generate valid

signatures for both 0 and 1, it is required to solve the “Direct-Product Problem". We

believe that our copy-protection scheme works for general signature token schemes.

To keep the statements and proofs simple, we focus on the construction in [BDS16].

Theorem 18.3 ([BDS16]). Let ϵ > 0 be such that 1/ϵ = o(2n/2). Let A be a random

subspace Fn, and dim(A) = n/2. Given one copy of |A⟩ and access to both subspace

membership oracles of UA and UA⊥, an adversary needs Ω(
√
ϵ2n/4) queries to output

a pair of non-zero vectors (u, v) such that u ∈ A and v ∈ A⊥ with probability at least

ϵ.

We will refer to the direct-product problem as a security game, which is defined

as follows:

Definition 18.6 (Direct-Product Game). A direct-product game consists of the fol-

lowing steps:

Setup Phase: the challenger takes in a security parameter λ, samples a random

λ/2-dimensional subspace A from Fλ; then prepares the membership oracle UA
for A, UA⊥ for the dual subspace A⊥ and a quantum state |A⟩.

1148

Query Phase: the challenger sends |A⟩ to the adversary; the adversary can query

UA, UA⊥ for polynomially many times.

Output Phase: the adversary outputs two vectors (u, v).

The challenger checks if u ∈ A \ {0}, v ∈ A⊥ \ {0}. If this is satisfied, then the

adversary wins the game.

Theorem 18.3 shows that for any QPT adversary, the winning probability of

the direct-product game is negligible.

18.2.4 Testing quantum programs: measurement implementation

In classical cryptographic security games, the challenger typically gets some

information from the adversary and checks if this information satisfies certain prop-

erties.

However, in the quantum world, when a challenger tries to decide if a quantum

adversary has produced a state with certain properties, especially in the context of

security games for properties related to unclonability, classical definitions of “testing

properties” may result in various failures as discussed in [Zha20]. Such an issue has

also been discussed in the introduction.

To deal with this issue, [Zha20] formalized a measurement procedure for testing

an adversary’s state. This is best understood with an example.

Consider a security game where the adversary needs to produce a state that

can decrypt a challenge ciphertext. First, the challenger’s behavior is abstracted into

the following:

• Encrypt a random message bit m to get c using randomness rand, note that

randomness rand is used to sample m and random coins for encryption;

• Run the adversary’s state on the resulting ciphertext c;

1149

• Output 1 or 0 depending on whether the adversary’s state correctly decrypts or

not.

Fixing the ciphertext c, the procedure of outputting 1 or 0 depending on

whether the adversary’s state correctly decrypts c can be described as a projective

measurement Pm,c = (Pm,c, Qm,c) where Pm,c corresponds to output 1, Qm,c corre-

sponds to output 0 and (Pm,c, Qm,c) can be efficiently implemented given subscript

m, c. The challenger uses m, c as a control to decide which projective measurement

to be applied to the state.

More generally, let R be the set of randomness, I be the control set (similar

to the role of m, c in the above example). Let D be a function from R to I. For a

uniform randomness rand, D(rand) defines a distribution over I. Therefore we will use

the word “distribution” for D in the rest of the discussion. For every control (or index)

i ∈ I, we have a projective measurement Pi = (Pi, Qi). Let P = {Pi = (Pi, Qi)} be

a collection of binary projective measurements. We define a mixture of projective

measurement PD as follows.

Definition 18.7 (Mixture of Projective Measurement PD). For P = {Pi, Qi}i∈I and

D : R→ I, a mixture of projective measurement PD = (PD, QD) is a POVM defined

as the following:

PD =
∑

i∈I

Pr[i← D(R)]Pi, QD =
∑

i∈I

Pr[i← D(R)]Qi,

where R is a uniform random variable in R.

In other words, PD is implemented in the following way: sample randomness

rand ← R, compute index/control i ← D(rand) and apply projective measurement

Pi = (Pi, Qi).

Thus, for any quantum state ρ, Tr[PDρ] is the probability that a random

sampled projective measurement Pi = (Pi, Qi) (according to the distribution D)

applies on ρ and outputs 1.

1150

Definition 18.8 (Projective Implementation). Let P = (P,Q) be a binary outcome

POVM. Let D be a finite set of distributions (p, 1 − p) over outcomes {0, 1}. Let

E = {Ep}(p,1−p)∈D be a projective measurement with index set D. Consider the

following measurement experiment:

• Measure under the projective measurement E and obtain a distribution (p, 1−p)
over {0, 1};

• Output a bit according to the distribution: output 1 with probability p and

output 0 with probability 1− p.

We say the measurement E is a projective implementation of P if the above experiment

and P produce identical outcomes on any quantum states. We denote E by ProjImp(P).

Note that if the collapsed state is an eigenvector of P corresponding to eigen-

value p, then it is also an eigenvector of Q corresponding to eigenvalue 1− p.

Lemma 18.4 (A variation of Lemma 1 in [Zha20]). Any binary outcome POVM

P = (P,Q) has a unique projective measurement ProjImp(P).

In this chapter, we propose the following new definition corresponding to

ProjImp.

Definition 18.9 (Threshold Implementation). A threshold implementation with pa-

rameter γ of a binary POVM P = (P,Q) is a variant of projective implementation

ProjImp(P), denoted as (TIγ(P), I− TIγ(P)):

• Measure under the projective measurement E (ProjImp(P)) and obtain a distri-

bution (p, 1− p) over {0, 1};

• Output a bit according to the distribution (p, 1 − p): output 1 if p ≥ γ, or 0

otherwise.

1151

Remark 18.1. For any quantum state ρ, the threshold implementation outputs 1 with

probability Tr[TIγ(P)ρ], and 0 with probability 1− Tr[TIγ(P)ρ].

Remark 18.2. For a binary outcome measurement P = (P,Q), we usually say “per-

form measurement P on ρ” if P was performed on ρ. For example, if we say a

threshold implementation TI(PD) on a quantum state ρ outputs 1, we refer to apply

(TIγ(PD), I− TIγPD) on ρ and the outcome is 1.

18.2.4.1 Approximating Projective Implementation

Before describing the theorem of the approximation algorithm, we give two

definitions that characterize how good an approximation projective implementation

is, which were first introduced in [Zha20].

Definition 18.10 (Shift Distance). For two distributions D0, D1, the shift distance

with parameter ϵ is defined as ∆ϵ
Shift(D0, D1), which is the smallest quantity δ such

that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x+ ϵ] + δ,

Pr[D1 ≤ x] ≤ Pr[D0 ≤ x+ ϵ] + δ.

For two real-valued measurements M and N over the same quantum system,

the shift distance between M and N with parameter ϵ is defined as,

∆ϵ
Shift(M,N) := sup

|ψ⟩
∆ϵ

Shift (M(|ψ⟩),N(|ψ⟩)) .

Definition 18.11 ((ϵ, δ)-Almost Projective). A real-valued quantum measurement

M is said to be (ϵ, δ)-almost projective if for all quantum state |ψ⟩, apply M twice in

a row to |ψ⟩, obtaining outcomes X and Y . Then we have Pr[|X − Y | ≤ ϵ] ≥ 1− δ.

The following theorem gives a way to approximate any projective implemen-

tation:

1152

Theorem 18.5 (Theorem 2 in [Zha20]). Let D be any probability distribution over

some control set I and P be a collection of projective measurements. For any 0 <

ϵ, δ < 1, there exists an algorithm of measurement APIϵ,δP,D that satisfies the followings:

• ∆ϵ
Shift(API

ϵ,δ
P,D,ProjImp(PD)) ≤ δ.

• APIϵ,δP,D is (ϵ, δ)-almost projective.

• The expected running time of APIϵ,δP,D is TP,D · poly(1/ϵ, log(1/δ)) where TP,D is

the combined running time of D, the procedure mapping i to (Pi, Qi) and the

run-time of measurement (Pi, Qi).

18.3 Learning Game Definitions

In this section, we define unlearnability, copy-protection, copy-detection, and

watermarking with respect to a function family and a testing distribution.

We assume a function f is sampled uniformly at random from a function family

Fλ. To test the correctness of a quantum program (for computing f), it samples an

input x from a testing distribution Dλ, runs the quantum program on x, and checks

if the output is f(x).

We will give the generalized definitions (for unlearnability, copy-protection,

copy-detection, and watermarking) in Appendix G.3, which allow for more general

sampling procedures and functionality testing. Since our constructions naturally ex-

tend to these settings, we leave all the discussions about definitions and proofs in the

appendix.

Definition 18.12 (Quantum Program with Classical Inputs and Outputs). A quan-

tum program with classical inputs is a pair of quantum state ρ and unitaries {Ux}x∈[N]

(where [N] is the domain), such that the state of the program evaluated on input x is

equal to UxρU †x. To obtain an output, it measures the first register of UxρU †x. More-

over, {Ux}x∈[N] has a compact classical description which means “applying Ux” can

be efficiently computed given x.

1153

Notation-wise, the input and output space N,M are functions of λ.

18.3.1 Unlearnability

First, we define γ-goodness testing with respect to a fixed function f and a

testing distribution D (over inputs).

Definition 18.13 (γ-Goodness Test with respect to f,D). Let (ρ, {Ux}x∈[N]) be a

quantum program for computing a classical function f : [N] → [M]. Let D be a

testing distribution over the input space [N].

• Define Px = (Px, Qx) be the following projective measurement:

– On input x, it runs Ux on the quantum state ρ;

– It measures whether the output register is equal to f(x); output 1 if yes,

and 0 otherwise.

Let P = {Px} be a collection of projective measurements.

• D is the distribution that samples an input: given randomness rand, output

x = D(rand).

• Let PD = (PD, QD) be the mixture of projective measurement defined in Defi-

nition 18.7.

• We say a quantum program is tested γ-good with respect to f,D, if the thresh-

old implementation TIγ(PD) outputs 1.

We then define a learning game for a function family F and a set of testing

distribution D. Note that we assume for a fixed security parameter λ, f is drawn

uniformly at random from Fλ and the testing distribution Df is efficiently sampleable

given the description f .

1154

Definition 18.14 (Learning Game for F,D). A learning game for a function family

F = {Fλ : [N] → [M]}, a distribution family D = {Df}, a threshold γ ∈ (0, 1), and

an adversary A is denoted as LearningGameAF,D,γ(1
λ), which consists of the following

steps:

1. Sampling Phase: At the beginning of the game, the challenger takes a security

parameter λ and samples a function f ← Fλ uniformly at random;

2. Query Phase: A then gets oracle access to f ;

3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N]).

The game outputs 1 if and only if the program is tested γ-good with respect to f,Df .

Definition 18.15 (Quantum Unlearnability of F with Testing Distribution D). A

family of functions F with respect to D is called γ quantum unlearnable if for any

QPT adversary A, there exists a negligible function negl(·) such that the following

holds for all λ:

Pr
[
b = 1, b← LearningGameAF,D,γ(1

λ)
]
≤ negl(λ)

18.3.2 Copy-protection

Definition 18.16 (Quantum Copy-Protection). A quantum copy-protection scheme

for F,D consists of the following procedures:

Setup(1λ) → sk: the setup algorithm takes in a security parameter λ in unary and

generates a secret key sk.

Generate(sk, f) → (ρf , {Uf,x}x∈[N]): on input f ∈ Fλ and secret key sk, the vendor

generates a quantum program (ρf , {Uf,x}x∈[N]).

Compute(ρf , {Uf,x}x∈[N], x)→ y: given a quantum program, a user can compute the

function f(x) on input x by applying Uf,x on ρf and measuring the first register

of the state.

1155

Efficiency: Setup, Compute and Generate should run in poly(λ) time.

Correctness: There exists a negligible function negl(·) such that: all λ ∈ N, every

f ∈ Fλ, all sk ← Setup(1λ), all (ρf , {Uf,x}x∈[N]) ← Generate(sk, f), for all

x ∈ [N], apply Uf,x on ρf and measure the first register, with probability at

least 1− negl(λ), the output is a fixed value zf,x; moreover, zf,x = f(x).

Security: The γ-anti-piracy security defined below.

Note that correctness ensures that the copy-protected program can be evaluated poly-

nomially many times.

Definition 18.17 (γ-Anti-Piracy Security Game). An anti-piracy security game for

F,D and adversary A is denoted as CopyProtectionGameAF,D,γ(1
λ), which consists of

the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security

parameter λ and obtains a secret key sk← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.

3. Query Phase: A makes a single query to the challenger and obtains a copy-

protection program for f : (ρf , {Uf,x}x∈[N])← Generate(sk, f).

4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state σ

over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x) They can

be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2], {UR2,x}x∈[N]).

The game outputs 1 if and only if both programs P1,P2 are tested to be γ-good with

respect to f,Df .

Definition 18.18 (γ-Anti-Piracy-Security). A copy-protection scheme for F and D

has γ-anti-piracy security, if for any QPT adversary A, there exists a negligible func-

tion negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyProtectionGameAF,D,γ(1

λ)
]
≤ negl(λ) (18.1)

1156

18.3.3 Copy-detection

A copy-detection scheme is very similar to the copy-protection scheme, except

it has an additional procedure Check which applies a projective measurement and

checks if the quantum state is valid.

Definition 18.19 (Quantum Copy-Detection). A quantum copy-detection scheme

for F,D consists of the following procedures:

Setup(1λ), Generate(sk, f) and Compute(ρf , {Uf,x}x∈[N], x) are the same as those in

Definition 18.16, except Setup additionally samples a public key for Check.

Check(pk, ρf , {Uf,x}x∈[N]) → b, ρ′: on input a quantum program, it applies a binary

projective measurement (P0, P1) on ρf that depends on {Uf,x}x∈[N]; it outputs

the outcome b and the leftover state ρ′.

Correctness (Generate): The same as the security of Definition 18.16.

Correctness (Check): For every efficient A, there exists a negligible function negl(·)
such that, all λ ∈ N, (pk, sk)← Setup(1λ), every f ∈ Fλ, all (ρf , {Uf,x}x∈[N])←
Generate(sk, f), Check(pk, ρf , {Uf,x}x∈[N]) outputs 1 with probability at least

1− negl(λ).

Security: The γ-copy-detection security defined below.

Definition 18.20 (γ-Copy-Detection Security Game). A copy-detection security

game for F,D and adversary A is denoted as CopyDetectionGameAF,D,γ(1
λ), which

consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security

parameter λ and obtains keys (pk, sk)← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.

1157

3. Query Phase: A makes a single query to the challenger and obtains a quantum

program for f : (ρf , {Uf,x}x∈[N])← Generate(sk, f).

4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state σ

over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x) They can

be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2], {UR2,x}x∈[N]).

The game outputs 1 if and only if

• Apply Check on Pi respectively and both outcomes are 1. Let P ′i be the collapsed

program conditioned on outcomes are 1.

• Both programs P′1,P
′
2 are tested γ-good with respect to f,Df .

Definition 18.21 (γ-Copy-Detection-Security). A copy-detection scheme for F,D

has γ-copy-detection security, if for any QPT adversary A, there exists a negligible

function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyDetectionGameAF,D,γ(1

λ)
]
≤ negl(λ) (18.2)

18.3.4 Watermarking primitives with public extraction

In this section, we formalize watermarking. We will give the generalized nota-

tions in Appendix G.3.4.

Definition 18.22 (Watermarking Primitives for F,D). A watermarking scheme for

F,D consists of the following classical algorithms:

Setup(1λ): it takes as input a security parameter 1λ and outputs keys (xk,mk). xk

is the extracting key and mk is the marking key. We only consider the publicly

extractable watermarking schemes. Thus, xk is always public.

Mark(mk, f, τ): it takes a circuit f and a message τ ∈Mλ, outputs a marked circuit

f̃ .

1158

Extract(xk, f ′): it takes a circuit f ′ and outputs a message in {⊥} ∪Mλ.

It satisfies the following properties.

Definition 18.23 (Correctness of Mark (Functionality Preserving)). For for ev-

ery efficient algorithm A, there exists a negligible function negl, for all (xk,mk) ←
Setup(1λ), and every τ ∈Mλ, all λ,

Pr

[
f̃(x) = f(x) :

f←Fλ

f̃←Mark(mk,f,τ)
x←Df

]
≥ 1− negl(λ).

Definition 18.24 (Correctness of Extract). For every efficient algorithm A, there

exists a negligible function negl(·), for all (xk,mk) ← Setup(1λ), and every τ ∈ Mλ,

all λ,

Pr
[
τ ̸= Extract(xk, f̃) :

f←Fλ

f̃←Mark(mk,f,τ)

]
≤ negl(λ).

Definition 18.25 (γ-Unremovability with respect to F,D). Consider the following

game, denoted as WaterMarkingGameAF,D,γ:

1. Setup: The challenger samples (xk,mk)← Setup(1λ). A then gets xk.

2. Sampling Phase: A function f is sampled uniformly at random in Fλ.

3. Query Phase: A has classical access to Mark(mk, f, ·) at any time. Define Q

be the set of messages that A has queried on.

4. Output Phase: Finally, the algorithm outputs a circuit f ∗.

The adversary wins the game if and only if

Extract(xk, f ∗) ̸∈ Q ∧ Pr
x←Df

[f ∗(x) = f(x)] ≥ γ

We say a watermarking scheme has γ-unremovability with respect to F,D, if for all

QPT A, it wins the above game with negligible probability in λ.

1159

Remark 18.3. Here, we only consider a weaker security notion where a quantum

adversary only has classical oracle access in the query phase. We claim it is practical

and good enough in most of the settings since the watermarking key mk is only in

the hands of the challenger: whenever adversary queries Mark(mk, f, ·), the challenger

can always measure this query.

Remark 18.4. Watermarking primitives should also satisfy ‘meaningfulness’ property

[GKM+19] but since we do not use this property in our construction, we omit it here.

18.4 Approximating Threshold Implementation

By applying APIϵ,δP,D and checking if the outcome is greater than or smaller

than γ, we get an approximated threshold implementation ATIϵ,δP,D,γ. Here, we use

(ATIϵ,δP,D,γ, I− ATIϵ,δP,D,γ) to denote this binary POVM.

Theorem 18.5 gives the following theorem on approximating threshold imple-

mentation:

Theorem 18.6. For any ϵ, δ, γ,P, D, the algorithm of measurement ATIϵ,δP,D,γ that

satisfies the followings:

• For all quantum state ρ, Tr[ATIϵ,δP,D,γ−ϵ · ρ] ≥ Tr[TIγ(PD) · ρ]− δ.

• By symmetry, for all quantum state ρ, Tr[TIγ−ϵ(PD) · ρ] ≥ Tr[ATIϵ,δP,D,γ · ρ]− δ.

• For all quantum state ρ, let ρ′ be the collapsed state after applying ATIϵ,δP,D,γ on

ρ (conditioned on outcome 1). Then, Tr[TIγ−2ϵ(PD) · ρ′] ≥ 1− 2δ.

• The expected running time is the same as APIϵ,δP,D.

Intuitively the theorem says that if a quantum state ρ has weight p on eigen-

vectors with eigenvalues at least γ, the measurement ATIϵ,δP,D,γ−ϵ with probability at

least p − δ will produce a collapsed state which has weight 1 − 2δ on eigenvectors

with eigenvalues at least γ − 2ϵ. Also note that the running time is proportional to

1160

poly(1/ϵ, 1/(log δ)), which is a polynomial in λ as long as ϵ is any inverse polynomial

and δ is any inverse sub-exponential function. The proof of the above theorem is in

Appendix G.2.1.

We can also consider approximating the measurements on a bipartite (pos-

sibly entangled) quantum state. In this case, we will prove a similar statement as

Theorem 18.6.

Lemma 18.7. Let P1 and P2 be two collections of projective measurements and D1

and D2 be any probability distributions defined on the index set of P1 and P2 respec-

tively. For any 0 < ϵ, δ, γ < 1, the algorithms ATIϵ,δP1,D1,γ
and ATIϵ,δP2,D2,γ

satisfy the

followings:

• For any bipartite (possibly entangled, mixed) quantum state ρ ∈HL ⊗HR,

Tr
[(
ATIϵ,δP1,D1,γ−ϵ ⊗ ATIϵ,δP2,D2,γ−ϵ

)
ρ
]
≥ Tr

[(
TIγ(PD1)⊗ TIγ(PD2)

)
ρ
]
− 2δ.

• For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed state

after applying ATIϵ,δP1,D1,γ
⊗ ATIϵ,δP2,D2,γ

on ρ (and normalized). Then,

Tr
[(
TIγ−2ϵ(PD1)⊗ TIγ−2ϵ(PD2)

)
ρ′
]
≥ 1− 4δ.

We defer the proof of the above Lemma to Appendix G.2.2.

18.5 Quantum Copy-Protection Scheme

Let λ be the security parameter. Let F = {Fλ}λ∈N be a class of circuits. We

assume F is quantum unlearnable with respect to D (see Definition 18.15) and can

be computed by polynomial-sized classical circuits. The construction for quantum

copy-protection of function class Fλ is defined in Fig. 18.1.

Note that this construction works for general quantum unlearnable function

families as well. By simply changing the notation in the proof to that in the general

quantum unlearnability case, we prove it for general quantum unlearnable function

families. More discussion will be given in the appendix.

1161

Setup(1λ)→ sk: The setup algorithm takes in security parameter 1λ.

• Pick a uniformly random subspace A ⊆ Fλ of dimension λ/2.

• Output sk = A, where A is described by a set of orthogonal basis
vectors.

Generate(sk, f ∈ Fλ): The Generate algorithm receives sk = A and a func-
tion f from Fλ.

• Prepare a subspace state on n qubits corresponding to A, |A⟩ =
1√
|A|

∑
v∈A |v⟩.

• Generate oracles UA, UA⊥ which compute subspace membership
functions for subspace A and its dual subspace A⊥ respectively.

• Generate oracles O1,O2 such that

O1(x, v) =

{
f(x)⊕ g(x) if v ∈ A and v ̸= 0,

⊥ otherwise.

O2(x, v) =

{
g(x) if v ∈ A⊥ and v ̸= 0,

⊥ otherwise.

where g is a uniformly random function, with the same input
and output length as f .

• Finally, the Generate algorithm outputs a quantum program(
ρ = |A⟩ ⟨A| , {Ux}x∈[N]

)
, which describes the following proce-

dure:

– On input x, prepare the state |0⟩ ⟨0| ⊗ |x⟩ ⟨x| ⊗ ρ and make
an oracle query UA and measure the first register (output
register) to get y1; the remaining state is |x⟩ ⟨x| ⊗ ρ′.

– Apply QFT on the third register ρ′ to get ρ′′.
– Prepare the state |0⟩ ⟨0| ⊗ |x⟩ ⟨x| ⊗ ρ′′ and make an oracle

query UA⊥ and measure the first register to get y2.
– Output y1 ⊕ y2.

The description of {Ux}x∈[N] requires the oracle of UA, UA⊥ (or the
VBB obfuscations).

Figure 18.1: Quantum copy-protection scheme.

1162

Oracle Heuristics In practice we use a quantum-secure PRF [Zha12] to implement

function g; and we use quantum-secure (classical) VBB obfuscation to implement

each of (O1,O2, UA, UA⊥). We can replace VBB obfuscation programs with oracles

that only allow black-box access by the security of VBB obfuscation; afterwards, we

can also replace PRF g with a real random function by the property of PRF. The

heuristic analysis is straightforward and we omit them here.

18.5.1 Correctness and efficiency

Correctness For the quantum program
(
ρ = |A⟩ ⟨A| , {Ux}x∈[N]

)
produced by the

Generate algorithm, it performs the following computation:

1. Make an oracle query O1 on the state |0⟩ |x⟩ |A⟩, the resulting state is statisti-

cally close to |y1⟩ |x⟩ |A⟩. Note that |A⟩ with overwhelming probability 1−1/|A|
contains a non-zero vector in A. It measures y1, which is y1 = f(x)⊕ g(x).

2. It then prepares a state by applying QFT on the third register and the resulting

state is is statistically close to |0⟩ |x⟩
∣∣A⊥

〉
. It makes an oracle query O2 on the

state |0⟩ |x⟩
∣∣A⊥

〉
, the resulting state is statistically close to |y2⟩ |x⟩

∣∣A⊥
〉

where

y2 = g(x).

Therefore, with overwhelming probability, the output is y1 ⊕ y2 = f(x).

Efficiency In Generate algorithm, as shown in [AC12], given the basis of A, the

subspace state |A⟩ can be prepared in polynomial time using QFT. For the oracles

O1,O2, it only needs to check the membership of A and A⊥ and compute functions f

and g. f can be prepared in polynomial time by definition. As we discussed above, we

can prepare the function g as a PRF. Therefore, the oracles O1,O2 can be generated

in polynomial time. The Compute algorithm is clearly efficient.

1163

18.5.2 Anti-piracy security

We show that for a quantum unlearnable families of functions F with respect

to D defined in Definition 18.15, the quantum copy-protection scheme has anti-piracy

security against any quantum polynomial-time adversaries. More formally:

Theorem 18.8 (Main Theorem). Let F be a function families that is γ-quantum-

unlearnable with respect to distribution D (γ is a non-negligible function of λ). The

above copy-protection scheme for F,D has (γ(λ)−1/poly(λ))-anti-piracy security, for

all polynomial poly.

In order to describe the quantum query behavior of quantum programs made

to oracles, we give the following definitions and notations.

We recall that in Definition 18.13, a QPT adversary A in the anti-piracy se-

curity game CopyProtectionGameAF,D,γ(1
λ), will produce a state σ over registers R1, R2

and unitaries {UR1,x}x∈[N], {UR2,x}x∈[N], the challenger will then perform γ-goodness

test on σ using threshold implementations TIγ(PR1,f) and TIγ(PR2,f). For simplicity

we will describe the unitary ensembles {UR1,x}x∈[N], {UR2,x}x∈[N] as UR1 , UR2 and de-

scribe threshold implementations TIγ(PR1,f), TIγ(PR2,f) as TIR1,γ,TIR2,γ. Similarly, let

ATIR1,γ−ϵ and ATIR2,γ−ϵ denote the approximation threshold implementation ATIϵ,δR1,γ−ϵ

and ATIϵ,δR2,γ−ϵ respectively, for some inverse polynomial ϵ and inverse subexponential

function δ (in other words, log(1/δ) is polynomial in λ).

In this particular construction, A’s behavior can be described as follows: A

“splits" the copy-protection state ρ into two potentially entangled states σ[R1], σ[R2].

A prepares (σ[R1], UR1) with oracle access to (O1,O2) as pirate program P1; and

prepares (σ[R2], UR2) with oracle access (O1,O2) as pirate program P2. Therefore,

TIRb,γ and ATIRb,γ−ϵ both make oracle queries to O1,O2.

We can assume the joint state of R1, R2 has been purified and the overall state

is a pure state over register R1, R2, R3 where P1 has only access to R1 and P2 has

only access to R2.

1164

Quantum Query Weight Let σ be any quantum state of R1, R2, R3. We consider

the program P1. P1 has access to register R1 and oracle access to O = (O1,O2). We

denote |ϕi⟩ to be the overall state of registers R1, R2, R3 before P1 makes i-th query

to O1, when it applies ATIR1,γ−ϵ on σ[R1].

|ϕi⟩ =
∑

x,v,z

αx,v,z |x, v, z⟩ .

where (x, v) is the query to oracle O1 and z is working space of P1, the registers of

R2, R3. Note that when ATIR1,γ−ϵ is applied on σ[R1], it in fact applies some unitary

and eventually makes a measurement, during which the unitary makes queries to

oracles O1,O2. Therefore such a query weight is well-defined.

We denote by W1,A,i to be the sum of squared amplitudes in |ϕi⟩, which are

querying O1 on input (x, v) such that v ∈ A \ {0}:

W1,A,i =
∑

x,v,z:v∈A\{0}

|αx,v,z|2

Then we sum up all the squared amplitudes W1,A,i in all the queries made by

P1 to O1, where v ∈ A \ {0}. We denote this sum as W1,A =
∑

i∈[ℓ1]W1,A,i, where

ℓ1 = ℓ1(λ) is the number of queries made by P1 to O1.

Similarly, we write W1,A⊥ =
∑

i∈[ℓ2]W1,A⊥,i =
∑

i∈[ℓ2]
∑

x,v,z:v∈A⊥\{0} |αx,v,z|
2 to

be the sum of squared amplitudes in |ϕi⟩ where v ∈ A⊥ \ {0}, in the ℓ2 queries made

by P1 to O2.

Accordingly, for the other program P2 and threshold implementation ATIR2,γ−ϵ,

we denote these sums of squared amplitudes as W2,A =
∑

i∈[m1]
W2,A,i and W2,A⊥ =

∑
i∈[m2]

W2,A⊥,i, where m1,m2 are the number of queries made by P2 to oracles O1,O2

respectively.

Case One. Fixing a function f , let (σ, UR1 , UR2) be the two programs output by the

adversary which are both tested γ-good with respect to f,Df with some non-negligible

probability.

1165

Let O⊥ be an oracle that always outputs ⊥. We hope one of the following

events will happen:

1. The program (σ[R1], UR1) with oracle access to O1,O⊥ is tested (γ − 2ϵ)-good

with respect to f,Df , with non-negligible probability.

2. The program (σ[R2], UR2) with oracle access to O⊥,O2 is tested (γ − 2ϵ)-good

with respect to f,Df , with non-negligible probability.

Let ÃTIR1,γ−ϵ be the same as ATIR1,γ−ϵ except with oracle access to O1,O⊥ and

ÃTIR2,γ−ϵ be the same as ATIR2,γ−ϵ except with oracle access to O⊥,O2. Similarly, let

T̃IRb,γ−2ϵ be the same threshold implementation as TIRb,γ−2ϵ except with oracle access

to O1,O⊥ and O⊥,O2 respectively.

Since (σ[R1], UR1) and (σ[R2], UR2) are both γ-good with respect to f,Df with

non-negligible probability, for some non-negligible function β(·),

Tr[(TIR1,γ ⊗ TIR2,γ) · σ] ≥ β(λ)

From the property of the approximated threshold implementation (Lemma 18.7),

Tr[(ATIR1,γ−ϵ ⊗ ATIR2,γ−ϵ) · σ] ≥ β(λ)− 2δ

Thus, for any b ∈ {1, 2}, we have Tr[ATIRb,γ−ϵ ·σ[Rb]] ≥ β(λ)−2δ. Since δ is negligible,

both probabilities are still non-negligible.

We then define the following two events:

E1 : Let E1 be the event denotes Tr[ÃTIR1,γ−ϵ ·σ[R1]] is non-negligible. If E1 happens,

by Theorem 18.6,

Tr[T̃IR1,γ−2ϵ · σ[R1]] ≥ Tr[ÃTIR1,γ−ϵ · σ[R1]]− δ

which is still non-negligible. In other words, (σ[R1], UR1) with oracle access

to O1,O⊥ is tested (γ − 2ϵ)-good with respect to f,Df with non-negligible

probability.

1166

E2 : Similarly, define E2 as the program (σ[R2], UR2) with oracle access to O⊥,O2 is

(γ − 2ϵ)-good with respect to f,Df with non-negligible probability.

Case Two. Fixing a function f , let (σ, UR1 , UR2) be the two programs output by

the adversary which are both γ-good with respect to f,Df , with non-negligible prob-

ability.

If E1 ∨ E2 does not happen, we are in the case Ē1 ∧ Ē2. By definition, there

exist negligible functions negl1, negl2 such that

Tr[ÃTIR1,γ−ϵ · σ[R1]] ≤ negl1(λ) Tr[ÃTIR2,γ−ϵ · σ[R2]] ≤ negl2(λ)

We look at the following thought experiments:

1. We apply ATIR1,γ−ϵ ⊗ ATIR2,γ−ϵ on σ, by Lemma 18.7, there exists a non-

negligible function β(·) such that

Tr [(ATIR1,γ−ϵ ⊗ ATIR2,γ−ϵ) · σ] ≥ β(λ)− 2δ.

2. We apply ATIR1,γ−ϵ ⊗ ÃTIR2,γ−ϵ on σ. We have,

Tr
[
(ATIR1,γ−ϵ ⊗ ÃTIR2,γ−ϵ) · σ

]
≤ Tr

[
(I ⊗ ÃTIR2,γ−ϵ) · σ

]
≤ negl2(λ).

3. Note that in 1 and 2, the only difference is the oracle access: in 1, it has oracle

access to O1,O2; in 2, it has oracle access to O⊥,O2. Let σ′ be the state which

we apply (ATIR1,γ−ϵ⊗I) on σ and obtain a outcome 1, which happens with non-

negligible probability. Let W2,A be the query weight defined on the state σ′. We

know that W2,A can not be negligible otherwise by Theorem 18.2 (BBBV), the

probability difference in 1 and 2 can not be non-neglibile.

Define MR2 be the operator that measures a random query of ATIR2,γ−ϵ to O1

and the query (x, v) satisfies v ∈ A \ {0}. By the above discussion, there exists

a non-negligible function β1(·),

Tr [(ATIR1,γ−ϵ ⊗MR2) · σ] ≥ β1(λ).

1167

4. We apply ÃTIR1,γ−ϵ ⊗MR2 on σ. We have,

Tr
[
(ÃTIR1,γ−ϵ ⊗MR2) · σ

]
≤ Tr

[
(ÃTIR1,γ−ϵ ⊗ I) · σ

]
≤ negl1(λ).

5. By a similar argument of 3, let MR1 be the operator that measures a random

query of ATIR1,γ−ϵ to O2 and the query (x, v) satisfies v ∈ A⊥\{0}. There exists

a non-negligible function β2(·),

Tr [(MR1 ⊗MR2) · σ] ≥ β2(λ).

Thus, in the case, one can extract a pair of vectors (u, v) ∈ (A \ {0}) × (A⊥ \ {0})
with non-negligible probability. To conclude it, we have the following lemma,

Lemma 18.9. Fixing a function f , let (σ, UR1 , UR2) be the two programs output by the

adversary which are both γ-good with respect to f,Df , with non-negligible probability.

If E1 ∨ E2 does not happen, by randomly picking and measuring a query of ATIR1,γ−ϵ

to O2 and a query of ATIR2,γ−ϵ to O1, one can obtain a pair of vectors (u, v) ∈
(A \ {0})× (A⊥ \ {0}) with non-negligible probability.

Then we show a reduction to violate unlearnability in case of E1 or E2 and a

reduction to violate direct product hardness in case of Ē1∧ Ē2. We have the following

lemmas:

Lemma 18.10. Let Pr[E1] be the probability of E1 taken over all randomness of

CopyProtectionGameAF,D,γ(1
λ). If Pr[E1] is non-negligible, there exists an adversary A1

that wins LearningGameA1

F,D,γ−2ϵ(1
λ) with non-negligible probability.

Proof. The challenger in the copy-protection security game plays as the quantum

unlearnability adversary A1 for function f ← F, given only black-box access to f ;

we denote this black box as oracle Of , which on query |x, z⟩, answers the query with

|x, f(x) + z⟩.

1168

Next, we show that A1 can simulate the copy-protection security game for

A using the information given and uses A to quantumly learn f . A1 samples ran-

dom λ/2-dimensional subspace A over F and prepares the membership oracles (two

unitaries) UA, U⊥A as well as state |A⟩.

Using UA, U
⊥
A and given oracle access to f in the unlearnability game, A1

simulates the copy-protection oracles O1,O2 for A in the query phase of anti-piracy

game.

There is one subtlety in the proof: A1 needs to simulate the oracles in the anti-

piracy game slightly differently: A1 simulates the oracles with their functionalities

partially swapped:

O′1(x, v) =

{
g(x) if v ∈ A and v ̸= 0,

⊥ otherwise.

O′2(x, v) =

{
f(x)⊕ g(x) if v ∈ A⊥ and v ̸= 0,

⊥ otherwise.

That is, a random function g(x) is output when queried on u ∈ A\{0}, and f(x)⊕g(x)
is output when queried on u ∈ A⊥ \ {0}. The distributions of O1,O2 and O′1,O

′
2 are

identical. Note that g(x) can be simulated by a quantum secure PRF or a 2t-wise

independent hash function where t is the number of oracle queries made by A [Zha12].

In the output phase, A outputs (σ, UR1 , UR2) and sends to A1. A1 simply

outputs (σ[R1], UR1) with oracle access to O′1,O⊥. The program does not need access

to oracle f because O′1 is only about g(·) and O⊥ is a dummy oracle. If E1 happens,

the program is a (γ − 2ϵ)-good with non-negligible probability, by the definition of

E1. Because Pr[E1] is also non-negligible, A1 breaks (γ − 2ϵ)-quantum-unlearnability

of F,D.

Lemma 18.11. Let Pr[E2] be the probability of E2 taken over all randomness of

CopyProtectionGameAF,D,γ(1
λ). If Pr[E2] is non-negligible, there exists an adversary A2

that wins LearningGameA2

F,D,γ−2ϵ(1
λ) with non-negligible probability.

1169

Proof Sketch. The proof is almost identical to the proof for Lemma 18.11 except

oracles O1,O2 are simulated in the same way as that in the construction. O1(x, v)

outputs f(x) ⊕ g(x) if v ∈ A \ {0}, and otherwise outputs ⊥. Similarly, O2(x, v)

outputs g(x) if v ∈ A⊥ \ {0}, and otherwise outputs ⊥

As discussed above, if Pr[E1 ∨E2] is non-negligible, we can break the quantum

unlearnability. Otherwise, Pr[Ē1 ∧ Ē2] is overwhelming. We show that in the case,

one can use the adversary A to break the direct-product problem Theorem 18.3.

Lemma 18.12. Let Pr[Ē1 ∧ Ē2] be the probability taken over all randomness of the

game CopyProtectionGameAF,D,γ(1
λ). If Pr[Ē1 ∧ Ē2] is non-negligible, there exists an

adversary A3 that breaks the direct-product problem.

Proof. The challenger in the copy-protection security game plays as the adversary in

breaking direct-product problem, denoted as A3. In the reduction, A3 is given the

access to membership oracles UA, U⊥A and one copy of |A⟩.

Next, we show that A3 can simulate the anti-piracy security game for A using

the information given and uses A to obtain the two vectors. A3 samples f ← F,

and simulates a γ-anti-piracy game, specifically simulating the copy-protection oracle

O1,O2 for adversary A. In the output phase, A outputs (σ, UR1 , UR2).

A1 upon taking the output, it randomly picks and measures a query of ATIR1,γ−ϵ

to O2 and a query of ATIR2,γ−ϵ to O1, and obtain a pair of vectors (u, v). If Ē1∧Ē2 hap-

pens. By Lemma 18.9, (u, v) breaks the direct-product problem with non-negligible

probability. Since Pr[Ē1∧Ē2] is non-negligible, the overall probability is non-negligible.

Note that the proof does not naturally extend to q-collusion resistant anti-

piracy. We leave this as an interesting open problem.

1170

Setup(1λ): it runs WM.Setup(1λ) to get xk,mk, let sk = mk and pk = xk.

Generate(sk, f):

• it runs QM.Gen(1λ) to get a money state |$⟩ and a serial number
s (by applying QM.Ver to the banknote);

• let f̃ = WM.Mark(mk, f, s) which is classical;

• it outputs the quantum state ρf = (f̃ , |$⟩), and {Uf,x}x∈[N];

• let {Uf,x}x∈[N] describe the following unitary: on input a quan-
tum state ρ, treat the first register as a classical function g,
compute g(x) in superposition.

Check(pk, (ρf , {Uf,x}x∈[N])):

• it parses and measures the first register, which is (f ′, |$′⟩);
• it checks if QM.Ver(|$′⟩) is valid and it gets the serial number s′;

• it then checks if s′ = WM.Extract(pk = xk, f ′);

• if all the checks pass, it outputs 1; otherwise, it outputs 0.

Figure 18.2: Quantum copy-detection scheme.

18.6 Quantum Copy-Detection
18.6.1 Construction

We construct a copy-detection scheme for a watermarkable function family F

with respect to an input distribution D. Let QM and WM be a public key quantum

money scheme (see Appendix G.1.1) and a publicly extractable watermarking scheme

for F,D, whose serial number space Sλ of QM is a subset of the message space Mλ

of WM. We construct a copy-detection scheme in Fig. 18.2. The general scheme and

full proofs are in Appendix G.5.

1171

18.6.2 Efficiency and correctness

First, for all λ ∈ N, all efficient A, every f ∈ Fλ, the copy-detection pro-

gram is (ρf , {Uf,x}x∈[N]). We have Compute(ρf , {Uf,x}x∈[N], x) = f̃(x), where f̃ =

WM.Mark(mk, f, s) for some serial number s. From the correctness of WM, it satisfies

the correctness of copy-detection.

The correctness of Check comes from the correctness of WM.Extract and unique

serial number property of QM. Check is a projection since QM.Ver is also a projec-

tion. Efficiency is straightforward.

18.6.3 Security

Theorem 18.13. Assume QM is a quantum money scheme and WM for F,D with

γ-unremovability, the above copy-detection scheme for F,D has γ-copy-detection-

security.

Proof. Let A be a QPT algorithm that tries to break the security of the copy-

detection scheme. Let (σ, UR1 , UR2) be the programs output by A which wins the

game CopyDetectionGameAF,D,γ. To win the game, the program (σ, UR1 , UR2) should

pass the following two tests:

1. Apply the projective measurement (defined by Check(pk, ·)) on both σ[R1] and

σ[R2], and both outcomes are 1.

2. Let σ′ be the state that passes step 1. Then both programs (σ′[R1], UR1),

(σ′[R2], UR2) are tested to be γ-good with non-negligible probability.

In our construction, Check first measures the program registers. The resulting

state is f̃1, f̃2, σ, where f̃1, f̃2 are supposed to be classical (marked) circuits that

computes f and σ are (possibly entangled) states that are supposed to be quantum

money for each of the program.

1172

Next, Check applies QM.Ver on both registers of σ and computes serial num-

bers. Define Sb be the random variable of QM.Ver applying on σ[Rb] representing the

serial number of ρb. Define S be the random variable of QM.Ver(|$⟩) representing the

serial number of the quantum money state in the Generate procedure.

Define E be the event that both WM.Extract(xk, f̃b) = Sb and at least one of

S1, S2 is not equal to S. Define E ′ be the event that both S1, S2 are equal to S and

both WM.Extract(xk, f̃b) = Sb. If f̃1, f̃2, σ passes the step 1, exactly one of E and E ′

happens.

In step 2, it simply tests if f̃1 and f̃2 are γ-good with respect to f,Df . Since

f̃1, f̃2 are classical circuits, it is equivalent to check whether they work correctly on

at least γ fraction of all inputs. If it passes step 2, we have for all b ∈ {1, 2},
Prx←Dλ

[f̃b(x) = f(x)] ≥ γ.

Therefore, the probability of A breaks the security game is indeed,

Pr
(f̃1,f̃2,σ)

[
∀b, Pr

x←Dλ

[f̃b(x) = f(x)] ≥ γ

]

= Pr
(f̃1,f̃2,σ)

[
(E ∨ E ′) ∧ ∀b, Pr

x←Dλ

[f̃b(x) = f(x)] ≥ γ

]

≤ Pr
(f̃1,f̃2,σ)

[
E ∧ ∀b, Pr

x←Dλ

[f̃b(x) = f(x)] ≥ γ

]
+ Pr

(f̃1,f̃2,σ)
[E ′]

Note that the probability is taken over the randomness of CopyDetectionGameAF,D,γ.

Next we are going to show both probabilities are negligible, otherwise we can break

the quantum money scheme or watermarking scheme.

Claim 18.14. Pr(f̃1,f̃2,σ)[E
′] ≤ negl(λ).

Proof. It corresponds to the security game of the quantum money scheme. Assume

Pr[E ′] is non-negligible, we can construct an adversary B for the quantum money

scheme with non-negligible advantage. Given a quantum money state |$⟩, the algo-

rithm B simulates the challenger for the copy-detection and can successfully ‘copy’ a

money state.

1173

Claim 18.15. Pr(f̃1,f̃2,σ)

[
E ∧ ∀b,Prx←Dλ

[f̃b(x) = f(x)] ≥ γ
]
≤ negl(λ).

Proof. It corresponds to the security game of the underlying watermarking scheme.

Since if E happens, at least one of the circuit has different mark than s and it satisfies

the correctness requirement.

Thus, the probability of A breaks the game is negligible.

1174

Part IV

Concentration and Discrepancy

1175

Chapter 19: Hyperbolic Polynomials I:
Concentration and Anti-Concentration

19.1 Introduction

The study of concentration of sums of independent random variables dates

back to Central Limit Theorems, and hence to de Moivre and Laplace, while modern

concentration bounds for sums of random variables were probably first established

by Bernstein [Ber24] in 1924. An extremely popular variant now known as Chernoff

bounds was introduced by Rubin and published by Chernoff [Che52] in 1952.

Hyperbolic polynomials are real, multivariate homogeneous polynomials p(x) ∈
R[x1, . . . , xn], and we say that p(x) is hyperbolic in direction e ∈ Rn if the uni-

variate polynomial p(te − x) = 0 for any x has only real roots as a function of t

(counting multiplicities). The study of hyperbolic polynomials was first proposed by

Gårding in [Går51] and has been extensively studied in the mathematics community

[Går59, Gül97, BGLS01, Ren06]. Some examples of hyperbolic polynomials are as

follows:

• Let h(x) = x1x2 · · ·xn. It is easy to see that h(x) is hyperbolic with respect to

any vector e ∈ Rn
+.

• Let X = (xi,j)
n
i,j=1 be a symmetric matrix where xi,j = xj,i for all 1 ≤ i, j ≤ n.

The determinant polynomial h(x) = det(X) is hyperbolic with respect to Ĩ, the

identity matrix I packed into a vector. Indeed, h(tĨ − x) = det(tI − X), the

characteristic polynomial of the symmetric matrix X, has only real roots by the

spectral theorem.

• Let h(x) = x21 − x22 − · · · − x2n. Then, h(x) is hyperbolic with respect to e =
[
1 0 · · · 0

]⊤.

1176

x

y

z

x

y

z

Figure 19.1: The function on the left is h(x, y, z) = z2 − x2 − y2, which is hyperbolic with
respect to e =

[
0 0 1

]⊤, since any line in this direction always has two intersections,
corresponding to the two real roots of h(−x,−y, t − z) = 0. The function on the right is
g(x, y, z) = z4 − x4 − y4, which is not hyperbolic with respect to e, since it only has 2
intersections but the degree is 4.

Inspired by the eigenvalues of matrix, we can define the hyperbolic eigenvalues of a

vector x as the real roots of t 7→ h(te− x), that is, λh,e(x) = (λ1(x), . . . , λd(x)) such

that h(te− x) = h(e)
∏d

i=1(t− λi(x)) (see Fact 19.5). In other words, the hyperbolic

eigenvalues of x are the zero points of the hyperbolic polynomial restricted to a real

line through x. In this chapter, we assume that h and e are fixed and we just write

λ(x) omitting the subscript. Furthermore, similar to the spectral norm of matrix, the

hyperbolic spectral norm of a vector x can be defined as

∥x∥h = max
i∈[d]
|λi(x)|. (19.1)

In this chapter, we study the concentration phenomenon of the roots of hy-

perbolic polynomials. More specifically, we consider the hyperbolic spectral norm

of the sum of randomly signed vectors, i.e., ∥∑n
i=1 rixi∥h, where r ∈ {−1, 1}n are

uniformly random signs and {x1, x2, · · · , xn} are any fixed vectors in Rm. This kind

of summation has been studied in the following cases:

1. Scalar case: xi ∈ {−1, 1} and the norm is just the absolute value, i.e.,

|∑n
i=1 rixi|, the scalar version Chernoff bound [Che52] shows that

Pr
r∼{−1,1}n

[∣∣∣∣∣
n∑

i=1

rixi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−t2/(2n)

)
,

1177

corresponding to the case when h(x) = x for x ∈ R and the hyperbolic direction

e = 1.

2. Matrix case: xi are d-by-d symmetric matrices and the norm is the spectral

norm, i.e., ∥∑n
i=1 rixi∥, the matrix Chernoff bound [Tro15] shows that

Pr
r∼{−1,1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥ > t

]
≤ 2d · exp

(
− t2

2 ∥∑n
i=1 x

2
i ∥

)
,

corresponding to h(x) = det(X) and e = I.

We try to generalize these results to the hyperbolic spectral norm for any

hyperbolic polynomial h, which is recognized as an interesting problem in this field

by James Renegar [Ren19b].

19.1.1 Our results

In this chapter, we can prove the following “Chernoff-type” concentration for

hyperbolic spectral norm. We show that, when adding uniformly random signs to n

vectors, the hyperbolic spectral norm of their summation will concentrate with an

exponential tail.

Theorem 19.1 (Nearly optimal hyperbolic Chernoff bound for Rademacher sum).

Let h be an m-variate, degree-d hyperbolic polynomial with respect to a direction e ∈
Rm. Let 1 ≤ s ≤ d, σ > 0. Given x1, x2, · · · , xn ∈ Rm such that rank(xi) ≤ s for

all i ∈ [n] and
∑n

i=1 ∥xi∥2h ≤ σ2, where rank(x) is the number of nonzero hyperbolic

eigenvalues of x. Then, we have

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤ 2
√
log(s) · σ.

Furthermore, for every t > 0, and for some fixed constant c > 0,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

> t

]
≤ 2 exp

(
− ct2

σ2 log(s+ 1)

)
.

1178

We discuss the optimality of Theorem 19.1 in different cases:

• Degree-1 case: When the hyperbolic polynomial’s degree d = s = 1, the

hyperbolic polynomial is h(z) = z. Then, we have ∥x∥h = |x| and we get the

the Hoeffding’s inequality [Hoe63]:

Pr
r∼{±1}n

[∣∣∣
n∑

i=1

rixi

∣∣∣ > t
]
≤ exp

(
− Ω

(
t2/(

n∑

i=1

x2i)
))
.

It implies that our result is optimal in this case.

• A special degree-2 case: h(z) = z21 − z22 − · · · − z2m. Let v1, . . . , vn be any

(d− 1)-dimensional vectors. Then, we define xi :=
[
0 vi

]
∈ Rd for i ∈ [n]. We

know that ∥xi∥h = ∥vi∥2, and Theorem 19.1 gives the following result:

Pr
r∼{±1}n

[∥∥∥
n∑

i=1

rivi

∥∥∥
2
> t
]
≤ exp(−Ω(t2/σ2)),

where σ2 :=
∑n

i=1 ∥vi∥2, which recovers the dimension-free vector-valued Bern-

stein inequality [Min17].

• Constant degree case: When d > 1 is a constant, consider h being the

determinant polynomial of d-by-dmatrix. Since s ≤ d = O(1), we can show that

σ = (
∑n

i=1 ∥xi∥2)1/2 = Θ(∥∑n
i=1 x

2
i ∥1/2), and Theorem 19.1 exactly recovers the

matrix Chernoff bound [Tro15], which implies that our result is also optimal in

this case.

• Constant rank case: When all the vectors have constant hyperbolic rank, we

still take h = det(X), but X1, . . . , Xn are constant rank matrices with arbitrary

dimension. In this case, we can obtain a dimension-free matrix concentration

inequality:

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥ > t

]
≤ 2 exp

(
−Ω(t2/σ2)

)
.

It will beat the general matrix Chernoff bound [Tro15] when σ is not essentially

larger than ∥∑n
i=1X

2
i ∥1/2. Thus, Theorem 19.1 is nearly optimal in this case.

1179

However, Theorem 19.1 is also sub-optimal in this case if we consider the high

degree polynomial h(z) =
∏n

i=1 zi, and xi = ei ∈ Rn. Then, we have ∥xi∥h = 1,

and ∥∑n
i=1 rixi∥h = 1 for any r ∈ {±1}n. Therefore, the probability density

function of the hyperbolic spectral norm of the Rademacher sum is a delta

function1 in this case. But our concentration result cannot characterize such a

sharp transition.

Theorem 19.1 works for arbitrary vectors in Rm. We also consider the max-

imum and minimum hyperbolic eigenvalues of the sum of random vectors in the

hyperbolic cone, which is a generalization of the positive semi-definite (PSD) cone

for matrices. Recall that for independent random PSD matrices X1, . . . ,Xn with

spectral norm at most R, let µmax := λmax(
∑

i E[Xi]). Then, matrix Chernoff bound

for PSD matrices [Tro15] shows that Pr[λmax(
∑

iXi) ≥ (1 + δ)µmax] ≤ de−Ω(δµmax)

for any δ ≥ 0. The following theorem gives a hyperbolic version of this result:

Theorem 19.2 (Hyperbolic Chernoff bound for random vectors in hyperbolic cone).

Let h be an m-variate, degree-d hyperbolic polynomial with hyperbolic direction e ∈
Rm. Let Λ+ denote the hyperbolic cone2 of h with respect to e. Suppose x1, . . . , xn are n

independent random vectors with supports in Λ+ such that λmax(xi) ≤ R for all i ∈ [n].

Define the mean of minimum and maximum eigenvalues as µmin :=
∑n

i=1 E[λmin(xi)]

and µmax :=
∑n

i=1 E[λmax(xi)].

Then, we have

Pr

[
λmax

(
n∑

i=1

xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax/R

∀δ ≥ 0,

Pr

[
λmin

(
n∑

i=1

xi

)
≤ (1− δ)µmin

]
≤ d ·

(
(1− δ)1−δ

e−δ

)−µmin/R

∀δ ∈ [0, 1].

1The delta function is defined as δ(x) =

{
1 if x = 1,

0 otherwise.
2The hyperbolic cone is a set containing all vectors with non-negative hyperbolic eigenvalues. See

Definition 19.4 for the formal definition.

1180

19.1.2 Hyperbolic anti-concentration

Anti-concentration is an interesting phenomenon in probability theory, which

studies the opposite perspective of concentration inequalities. A simple example is

the standard Gaussian random variable, which has probability at most O(∆) for be-

ing in any interval of length ∆. For Rademacher random variables x ∼ {±1}d, the

celebrated Littlewood-Offord theorem [LO43] states that for any degree-1 polynomial

p(x) =
∑d

i=1 aixi with |ai| ≥ 1, the probability of p(x) in any length-1 interval is

at most O(log d√
d
). Later, the theorem was improved to O(1√

d
) by Erdös [Erd45], and

generalized to higher degree polynomials by [CTV06, RV13, MNV17]. From a geo-

metric prospective, the Littlewood-Offord theorem says that the maximum fraction

of hypercube points that lay in the boundary of a halfspace 1⟨a,x⟩≤θ with |ai| ≥ 1 for

i ∈ [d] is at most O(1√
d
). [OST19] extended this result from half-space to polytope

and [AY22] further extended to positive spectrahedron.

Following this line of research, we prove the following hyperbolic anti-concentration

theorem, which shows that the hyperbolic spectral norm of Rademacher sum of vec-

tors in the hyperbolic cone cannot concentrate within a small interval.

Theorem 19.3 (Hyperbolic anti-concentration theorem, informal). Let h be an m-

variate degree-d hyperbolic polynomial with hyperbolic direction e ∈ Rm. Let {xi}i∈[n] ⊂
Λ+ be a sequence of vectors in the hyperbolic cone such that λmax(xi) ≤ τ for all i ∈ [n]

and
∑n

i=1 λmin(xi)
2 ≥ 1.

Then, for any y ∈ Rm and any ∆ ≥ 20τ log d, we have

Pr
ϵ∼{−1,1}n

[
λmax

(
n∑

i=1

ϵixi − y
)
∈ [−∆,∆]

]
≤ O(∆).

From the geometric viewpoint, we can define a “positive hyperbolic-spectrahedron”

as the space {α ∈ Rn : λmax(α1x1 + · · ·+ αnxn − y) ≤ 0}, where x1, . . . , xn are in the

hyperbolic cone. Then, Theorem 19.3 states that the hyperbolic spectral norm of a

positive hyperbolic-spectrahedron cannot be concentrated in a small region.

1181

19.1.3 Related work

Chernoff-type bounds There is a long line of work generalizing the classical

scalar Chernoff-type bounds to the matrix Chernoff-type bound [Rud99, AW02, RV07,

Tro12, MJC+14, GLSS18, KS18, NRR20, ABY20, JLLV20]. [Rud99, RV07] showed a

Chernoff-type concentration of spectral norm of matrices which are the outer product

of two random vectors. [AW02] first used Laplace transform and Golden-Thompson

inequality [Gol65, Tho65] to prove a Chernoff bound for general random matrices. It

was improved by [Tro12] and [Oli09] independently. [MJC+14] proved a series of ma-

trix concentration results via Stein’s method of exchangeable pairs. Our work further

extends this line of research from matrix to hyperbolic polynomials and can fully re-

cover the result of [AW02]. On the other hand, [GLSS18] showed an expander matrix

Chernoff bound. [KS18] prove a new matrix Chernoff bound for Strongly Rayleigh

distributions.

Hyperbolic polynomials The concept of hyperbolic polynomials was originally

studied in the field of partial differential equations [Går51, Hor83, Kry95]. Güler

[Gül97] first studied the hyperbolic optimization (hyperbolic programming), which

is a generalization of LP and SDP. Later, a few algorithms [Ren06, MT14, RS14,

Ren16, NP18, Ren19a] were designed for hyperbolic programming. On the other

hand, a lot of recent research focused on the equivalence between hyperbolic pro-

gramming and SDP, which is closely related to the “Generalized Lax Conjecture” and

its variants [HV07, LPR05, Brä14, KPV15, Sau18, Ami19, RRSW19]. In addition

to the hyperbolic programming, hyperbolic polynomial is a key component in resolv-

ing Kadison-Singer problem [MSS15b, Brä18] and constructing bipartite Ramanujan

graphs [MSS18]. Gurvits [Gur06, Gur07] proved some Van der Waerden/Schrijver-

Valiant like conjectures for hyperbolic polynomials, giving sharp bounds for the ca-

pacity of polynomials. [Son19] gave an approach to certify the non-negativity of

polynomials via hyperbolic programming, generalizing the Sum-of-Squares method.

1182

19.1.4 Technique overview

In this section, we provide a proof overview of our results. We first show how

prove hyperbolic Chernoff bounds by upper bounding each polynomial moment. After

that, we show how to apply our new concentration inequality to prove hyperbolic anti-

concentration. Finally, we show how to relax the isotropic condition in [Brä18], and

also how to get a more general discrepancy result via hyperbolic concentration.

19.1.4.1 Our technique for hyperbolic Chernoff bound for Rademacher
sum

The main idea of our proof of hyperbolic Chernoff bound is to upper bound

the polynomial moments.

By definition, the hyperbolic spectral norm of X is the ℓ∞ norm of the eigen-

values λ(X). Inspired by the proof of the matrix Chernoff bound by Tropp [Tro18],

we can consider the ℓ2q norm of λ(X), for q ≥ 1. When the hyperbolic polynomial h is

the determinant polynomial, this norm is just the Schatten-2q norm of matrices. For

general hyperbolic polynomials, we define hyperbolic-2q norm as ∥x∥h,2q := ∥λ(x)∥2q.
By the result of [BGLS01], hyperbolic-2q norm is actually a norm in Rm. And the

following inequality shows the connection between a hyperbolic spectral norm and

hyperbolic-2q norm:

Er∼{±1}n [∥X∥h] ≤
(
Er∼{±1}n

[
∥X∥2qh,2q

])1/(2q)
.

In order to compute ∥X∥2qh,2q =
∑rank(X)

i=1 λi(X)2q, we use a deep result about

hyperbolic polynomials: the Helton-Vinnikov Theorem [HV07], which proved a fa-

mous conjecture by Lax [Lax57], to translate between hyperbolic polynomials and

matrices. The theorem is stated as follows.

Theorem 19.4 ([HV07]). Let f ∈ R[x, y, z] be hyperbolic with respect to e = (e1, e2, e3) ∈
R3. Then there exist symmetric real matrices A,B,C ∈ Rd×d such that f = det(xA+

yB + zC) and e1A+ e2B + e3C ≻ 0.

1183

Gurvits [Gur04] proved a corollary (Corollary 19.17) that for any m-variate

hyperbolic polynomial h, and x, y ∈ Rm, there exist two symmetric matrices A,B ∈
Rd×d such that for any a, b ∈ R, λ(ax + by) = λ(aA + bB), where the left-hand side

means the hyperbolic eigenvalues of the vector ax+ by and the right-hand side means

the eigenvalues of the matrix aA+ bB.

Therefore, we try to separate and consider one random variable ri at a time.

We first consider the expectation over r1. By conditional expectation, let X2 :=
∑n

i=2 rixi and we have

Er∼{±1}n
[
∥X∥2qh,2q

]
= Er2,...,rn∼{±1}

[
Er1∼{±1}

[
∥r1x1 +X2∥2qh,2q

]]
,

By Corollary 19.17, there exist two matrices A1, B1 such that λ(r1x1+X2) = λ(r1A1+

B1) holds for any r1. And it follows that

Er1∼{±1}
[
∥r1x1 +X2∥2qh,2q

]
= Er1∼{±1}

[
∥r1A1 +B1∥2q2q

]
.

It becomes much easier to compute the expected Schatten-2q norm of matrices. We

can prove that

Er∼{±1}n
[
∥X∥2qh,2q

]
≤

q∑

k1=0

(
2q

2k1

)
∥x1∥2k1h · Er2,...,rn

[
∥X2∥2q−2k1h,2q−2k1

]
.

Now, we can iterate this process for the remaining expectation Er2,...,rn
[
∥X2∥2q−2k1h,2q−2k1

]
.

After n− 1 iterations, we get that

(
Er∼{±1}n

[
∥X∥2qh,2q

])1/(2q)
≤
√

2q − 1 · s1/(2q) · σ, (19.2)

where σ2 =
∑n

i=1 ∥xi∥2h and s is the maximum rank of x1, . . . , xn. Then, by taking

q := log(s) and ∥X∥h ≤ ∥X∥2qh,2q, we get the desired upper bound for the expectation

Er∼{±1}n [∥
∑n

i=1 rixi∥h] in Theorem 19.1.

To obtain the concentration probability inequality, We can apply the result of

Ledoux and Talagrand [LT13] for the concentration of Rademacher sums in a normed

1184

linear space, which will imply:

Pr
r∼{±1}n

[∥X∥h > t] ≤ 2 exp
(
− t2

/(
32Er∼{±1}n [∥X∥2h]

))
. (19.3)

However, we need to verify that the hyperbolic spectral norm ∥ · ∥h is indeed a

norm, which follows from the result of Gårding [Går59]. Since by Khinchin-Kahane

inequality ([SZ22, Theorem A.16]) the second moment of ∥X∥h can be upper-bounded

via the first moment. Hence, we can put our expectation upper bound into Eq. (19.3)

and have

Pr
r∼{±1}n

[∥X∥h > t] ≤ C1 exp

(
− C2t

2

σ2 log(s+ 1)

)
,

for constants C1, C2 > 0, and hence Theorem 19.1 is proved. We defer the formal

proof in the full version [SZ22, Section B].

19.1.4.2 Our technique for hyperbolic Chernoff bound for positive vectors

We can use similar techniques in the previous section to prove Theorem 19.2.

For any random vectors x1, . . . , xn ∈ Λ+, we may assume ∥xi∥h ≤ 1. Using the

Taylor expansion of the mgf, we can show that:

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ inf

θ>0
e−θt ·

∑

q≥0

θq

q!
E

∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥

q

h,q

 . (19.4)

Then, for the q-th moment, we separate x1 and
∑n

i=2 xi and have

E≥1

∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥

q

h,q

 = E≥2E1 [tr [(A1 +B1)

q]] ,

where A1 and B1 are two PSD matrices obtained via Gurvits’s result (Corollary 19.17)

such that A1 depends on x1 and B1 depends on x2, . . . , xn. The next step is different

from the case of Rademacher sum, since we cannot drop half of the terms by the

distribution of x1. Instead, we can fully expand the matrix products in the trace and

1185

use Horn’s inequality to upper bound the eigenvalue products. We have

E≥2E1 [tr [(A(x1) +B)q]] ≤ E1

q∑

k1=0

(
q

k1

)
λmax(x1)

k1 · E≥2

∥∥∥∥∥

n∑

i=2

xi

∥∥∥∥∥

q−k1

h,q−k1

 .

By repeating this process, we finally have

E

∥∥∥∥∥

n∑

i=1

xi

∥∥∥∥∥

q

h,q

 ≤ E

∑

k1,...,kn≥0
k1+···+kn=q

(
q

k1, . . . , kn

) n∏

i=1

λmax(xi)
ki · d

 ≤ d · E

[(
n∑

i=1

∥xi∥h
)q]

,

where the first step follows from the E[∥xn∥knh,kn] ≤ d · λmax(xn)
kn . Then, we put the

above upper bound into Eq. (19.4), which gives:

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ inf

θ>0
e−θt · d ·

n∏

i=1

E
[
eθ∥xi∥h

]
.

Now, we use some similar calculations in the matrix case [Tro12] to prove that

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ inf

θ>0
d · exp

(
−θt+ (eθ − 1)µmax

)
.

By taking θ := log(t/µmax) and t := (1 + δ)µmax, we get that

Pr

[
λmax

(
n∑

i=1

xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax

(19.5)

For the minimum eigenvalue case, we can define x′i := e − xi for i ∈ [n].

Then, by the property of hyperbolic eigenvalues (Fact 19.9) and the assumption that

∥xi∥h ≤ 1, we know that x′i are also in the hyperbolic cone and λmax(x
′
i) = 1−λmin(x

′
i).

Therefore, we can obtain the Chernoff bound for the minimum eigenvalue of x by

applying Eq. (19.5) with x′i. We defer the formal proof in the full version [SZ22,

Section C].

1186

19.1.4.3 Our technique for hyperbolic anti-concentration

In this part, we will show how to prove the hyperbolic anti-concentration result

(Theorem 19.3) via the hyperbolic Chernoff bound for vectors in the hyperbolic cone

(Theorem 19.2).

In [OST19], they studied the unate functions on hypercube {−1, 1}n, which

is defined as the function being increasing or decreasing with respect to any one of

the coordinates. Then, they showed that the Rademacher measure of a unate func-

tion is determined by the expansion of its indicator set in hypercube. In particular,

for the maximum hyperbolic eigenvalue, it is easy to see that the indicator function
[
λmax

(∑n
i=1 ϵix

j
i − yj

)
∈ [−∆,∆]

]
is unate when xi ∈ Λ+. Hence, we can show the

anti-concentration inequality by studying the expansion in the hypercube, which by

[AY22], is equivalent to lower-bound the minimum eigenvalue of each vector. How-

ever, for the initial input xi, we only assume that
∑n

i=1 λmin(xi)
2 ≥ 1, but we need

a Ω(1√
log d

) lower bound for each xi to prove the theorem. To amplify the minimum

eigenvalue, we follow the proof in [AY22] that uses a random hash function to ran-

domly assign the input vectors into some buckets and considers the sum of the vectors

in each bucket as the new input. They proved that the “bucketing” will not change

the distribution. Then, we can use Theorem 19.2 to lower bound the minimum hy-

perbolic eigenvalue of each bucket, which is a sum of independent random vectors in

the hyperbolic cone. Hence, we get that

Pr

[
λmin

(
n∑

i=1

zi,jxi

)
≤ Ω(

1√
log d

)

]
≤ 1

10
,

which zi,j ∈ {0, 1} is a random variable indicating that xi is hashed to the j-th bucket.

Then, by the standard Chernoff bound for negatively associated random variables, we

can prove that most of the buckets have large minimum eigenvalues, which concludes

the proof of the hyperbolic anti-concentration theorem. We defer the formal proof in

Section 19.5.

1187

19.1.5 Discussion and open problems

In this chapter, we initiate the study of concentration with respect to the

hyperbolic spectral norm, and we generalize several classical concentration and anti-

concentration results to the hyperbolic polynomial setting. Our results are closely

related to the discrepancy theory and pseudorandomness. We provide some open

problems in below.

Tighter hyperbolic Chernoff bound? Our current result has a worse dependence

on the variance σ2 than the matrix Chernoff bound [Tro15]. Can we match the results

when h = det(X)? We note that there is a limitation for using the techniques like

Golden-Thompson inequality and Lieb’s theorem, which were used in [Oli09, Tro12]

to improve the original matrix Chernoff bound [AW02], to tighten our result. Because

for any symmetric matrix X, we can define a mapping such that ϕ(X)’s eigenvalues

are the p-th power of X’s eigenvalues for any p > 0, where the mapping is just Xp.

However, we cannot find such a mapping for vectors with respect to the hyperbolic

eigenvalues. Some new techniques may be required to get a hyperbolic Chernoff

bound matching the matrix results.

Resolving the hyperbolic Spencer conjecture? Inspired by the matrix Spencer

conjecture (due to Meka [Mek14]), we came up with a more general conjecture for hy-

perbolic discrepancy. Can we prove or disprove this conjecture? It is also interesting

to study the connection between hyperbolic Spencer conjecture and the generalized

Lax conjecture [HV07, LPR05, Brä14, KPV15, Sau18, Ami19, RRSW19]. If we as-

sume the matrix Spencer conjecture and the generalized Lax conjecture, can we prove

the hyperbolic Spencer conjecture? On the other hand, in a very recent work by Reis

and Rothvoss [RR20], they conjectured a weaker matrix Spencer by considering the

Schatten-p norm of matrices. We can also define such an ℓp version of the hyper-

bolic Spencer conjecture by looking at the ℓp-norm of hyperbolic eigenvalues (the

1188

hyperbolic-p norm). Any progress towards the ℓp-hyperbolic Spencer conjecture will

provide more insights in matrix and hyperbolic discrepancy theory.

Fooling hyperbolic cone? One of the results in this chapter is showing an anti-

concentration inequality with respect to the hyperbolic spectral norm, which gener-

alizes the results in [OST19, AY22]. They actually combined the anti-concentration

results with the Meka-Zuckerman [MZ13] framework to construct PRGs fooling poly-

topes/positive spectrahedrons. Hence, an open question in complexity theory and

pseudorandomness is: can we apply the hyperbolic anti-concentration inequality

to construct a PRG fooling positive hyperbolic-spectrahedrons, or even hyperbolic

cones?

Concentration of random tensors? Tensor concentration is another natural gen-

eralization of matrix concentration. Although there have been a large number of works

on this problem [Lat06, Leh11, AL12, AW15, Ver20, ALM21], it is still unclear what is

the optimal concentration bound for the Euclidean norm of random tensor X ∈ Rnd ,

even in the simple case whenX = x1⊗· · ·⊗xd for random vectors x1, . . . , xd ∈ Rn. On

the other hand, people also care about whether random tensors are well-conditioned,

which is more related to TCS problems including tensor decompositions and learning

Gaussian mixtures. The current results [Ver20, Aar15, BCMV14] have a large gap

between the matrix case. For these tensor concentration problems, is it possible to

study them via hyperbolic polynomials and obtain tighter bounds?

19.2 Preliminaries
19.2.1 Notations

For a vector x, we use ∥x∥0 to denote the number of non-zeros, use ∥x∥1 to

denotes its ℓ1 norm, and use ∥x∥p to denote its ℓp norm for 0 < p ≤ ∞.

1189

We use r ∈ {±1}n to denote n i.i.d. random variables where each ri is 1 with

probability 1/2 and −1 otherwise.

The general definition of semi-norm and norm is as follows:

Definition 19.1 (Semi-norm and norm). Let ∥·∥ : V → R be a nonnegative function

on vector space V . We say ∥ · ∥ is a semi-norm if it satisfies the following properties:

For all a ∈ R and x, y ∈ V ,

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥;

• ∥ax∥ = |a| · ∥x∥.

If furthermore, ∥x∥ = 0 implies x = 0 the zero vector of V , then we say ∥ · ∥ is a

norm.

Definition 19.2 (Normed linear space). A normed linear space is a vector space over

R or C, on which a normed is defined.

19.2.2 Basic definitions of hyperbolic polynomials

We provide the definition of hyperbolic polynomial.

Definition 19.3 (Hyperbolic polynomial). A homogeneous polynomial h : R → R

is hyperbolic with respect to a vector e ∈ Rm if h(e) ̸= 0, and for all x ∈ Rm, the

univariate polynomial t 7→ h(te− x) has only real zeros.

The following fact shows how to factorize a hyperbolic polynomial, which easily

follows from the homogeneity of the polynomial:

Fact 19.5 (Hyperbolic polynomial factorization). For a degree-d polynomial h ∈
R[z1, . . . , zm] hyperbolic with respect to e ∈ Rm, we have

h(te− x) = h(e)
d∏

i=1

(t− λi(x))

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) are real roots of h(te− x).

1190

All the vectors with nonnegative hyperbolic eigenvalues form a cone, which is

proved by Gårding [Går59]. It is a very important object related to the geometry of

hyperbolic polynomials. The formal definition is as follows:

Definition 19.4 (Hyperbolic cone). For a degree d hyperbolic polynomial h with

respect to e ∈ Rm, its hyperbolic cone is

Λ+(e) := {x : λd(x) ≥ 0}.

The interior of Λm+ is

Λ++(e) := {x : λd(x) > 0}.

Gårding [Går59] showed the following fundamental properties of the hyperbolic

cone:

Theorem 19.6 ([Går59]). Suppose h ∈ R[z1, . . . , zm] is hyperbolic with respect to

e ∈ Rn. Then,

1. Λ+(e),Λ++(e) are convex cones.

2. Λ+ + (e) is the connected component of {x ∈ Rm : h(x) ̸= 0} which contains e.

3. λmin : Rm → R is a concave function, and λmax : Rm → R is convex.

4. If e′ ∈ Λ++(e), then h is also hyperbolic with respect to e′ and Λ++(e
′) = Λ++(e).

For simplicity, we may use Λ+ and Λ++ to denote Λ+(e),Λ++(e), when e is

clear from context. In this chapter, we always assume that e is any fixed vector in

the hyperbolic cone of h.

We define the trace, rank and spectral norm respect to hyperbolic polynomial

h.

1191

Definition 19.5 (Hyperbolic trace, rank, spectral norm). Let h be a degree d hyper-

bolic polynomial with respect to e ∈ Rm. For any x ∈ Rm,

trh[x] :=
d∑

i=1

λi(x), rank(x) := #{i : λi(x) ̸= 0}, ∥x∥h := max
i∈[d]
|λi(x)| = max{λ1(x),−λd(x)}.

We define the p norm with respect to hyperbolic polynomial h.

Definition 19.6 (∥ · ∥h,p norm). For any p ≥ 1, we define the hyperbolic p-norm

∥ · ∥h,p defined as:

∥x∥h,p := ∥λ(x)∥p =
(d∑

i=1

|λi(x)|p
)1/p

∀x ∈ Rm.

It has been shown that ∥ · ∥h and ∥ · ∥h,p are indeed norms:

Theorem 19.7 ([Går59, Brä18, Ren19a]). ∥ · ∥h is a semi-norm.

Furthermore, if Λ+ is regular, i.e., (Λ+ ∩ −Λ+) = {0}, then ∥ · ∥h is a norm

on Rm.

Theorem 19.8 ([BGLS01]). For any p ≥ 1, ∥ · ∥h,p is a semi-norm. Moreover, if the

hyperbolic cone Λ+ is regular, then ∥ · ∥h,p is a norm.

19.2.3 Basic properties of hyperbolic polynomials

We state a fact for the eigenvalues λ(·) of degree-d hyperbolic polynomial h.

Fact 19.9 ([BGLS01]). For all i ∈ [d],

λi(s · x+ t · e) =
{
s · λi(x) + t, if s ≥ 0;

s · λd−i(x) + t, if s < 0.

Then, we show that the elementary symmetric sum-products of eigenvalues

can be computed from the directional derivatives of the polynomial.

1192

Observation 19.10 ([BGLS01]). For a degree-d hyperbolic polynomial h with respect

to e, we have

h(te+ x) = p(e) ·
d∏

i=1

(t+ λi(x)) =
d∑

i=0

si(λ(x)) · td−i,

where λ(x) = (λ1(x), · · · , λd(x)) are the hyperbolic eigenvalues of x and si : Rd → R

is the i-th elementary symmetric polynomial:

si(y) :=

{∑
S∈([d]i)

∏
j∈S yj, ∀i ∈ [d];

1 if i = 0.

Furthermore, for each i ∈ {0, 1, · · · , d},

h(e) · si(λ(x)) =
1

(d− i)! · ∇
d−ih(x) [e, e, . . . , e]︸ ︷︷ ︸

(d−i) terms

.

If i ∈ [d], then si ◦ λ is hyperbolic with respect to e of degree i.

Corollary 19.11. tr[x] is a linear function.

Proof. By Observation 19.10, we have

trh[x] = s1(λ(x)) =
1

h(e) · (d− 1)!
· ∇d−1h(x)[e, e, . . . , e].

Since h is of degree d, ∇d−1h is a degree-1 polynomial. Hence, trh[x] is a linear

function.

19.2.4 Concentration inequalities

In general, for any normed linear space, as mentioned in [LT13], we have the

following concentration result:

Theorem 19.12 (Theorem 4.7 in [LT13]). Let x1, . . . , xn ∈ B be a fixed finite se-

quence in normed linear space B. Let X =
∑n

i=1 rixi, where r1, . . . , rn are independent

Rademacher random variables. Then, for every t > 0,

Pr
r∼{±1}n

[∥X∥B > t] ≤ 2 exp(−t2/(32E[∥X∥2B])).

1193

For matrices with Schatten-p norm, the expectation of Schatten-2p norm of

Rademacher sum can be upper-bounded as follows.

Theorem 19.13 (Theorem 3.1 in [TJ74]). Let p ≥ 1. For a matrix A, we use ∥A∥p to

denote the Shatten-p norm. For any fixed X1, X2, . . . , Xn ∈ Rd×d, and for independent

Rademacher random variables r1, r2, . . . , rn, we have

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

riXi

∥∥∥∥∥

2p

2p

1/(2p)

≤
√

2p− 1 ·
(

n∑

i=1

∥Xi∥22p

)1/2

19.2.5 Khinchin-Kahane inequality

In any normed linear space, for any p, q ≥ 1, the p-th moment and q-th moment

of the norm of Rademacher sum are equivalent up to a constant, as shown in [Kah64],

which generalized the Khinchin inequality [Khi23].

Theorem 19.14 ([Kah64]; also in [LO94, LT13, KR16]). For all p, q ∈ [1,∞), there

exists a universal constant Cp,q > 0 depending only on p, q, such that for all choices

of normed linear space B, finite sets of vectors x1, x2, · · · , xn ∈ B, and independent

Rademacher variables r1, r2, · · · , rn,
(
Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥

q])1/q

≤ Cp,q ·
(
Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥

p])1/p

.

If moreover 1 = p ≤ q ≤ 2, then C1,q = 21−1/q is optimal. If q ∈ [1,∞], then

C1,q ≤ √q.

19.2.6 Matrix analysis tools

We state a Lemma for singular values of the product of matrices.

Lemma 19.15 (General Horn inequality, Lemma 1.2 in [TJ74]). Let A1, · · · , An ∈
Rd×d be symmetric matrices. Let σ1(A), . . . , σd(A) denote the singular values of A.

1194

Then, for each k ∈ [d],

k∑

j=1

σj

(
n∏

i=1

Ai

)
≤

k∑

j=1

n∏

i=1

σj(Ai).

We state a Lemma which is implied by Hölder inequality.

Lemma 19.16 (Lyapunov’s inequality). Let 0 < r < s < ∞ and X be a random

variable. Then,

E [|X|r] ≤ (E [|X|s])r/s .

19.2.7 Helton-Vinnikov Theorem

We state a corollary of Helton-Vinnikov Theorem (Theorem 19.4), proved by

Gurvits [Gur04]:

Corollary 19.17 (Proposition 1.2 in [Gur04]). Let h(x) be a m-variable degree-d

hyperbolic polynomial. Then, for x, y ∈ Rm, there exists two symmetric real matrices

A,B ∈ Rd×d such that for any a, b ∈ R, the ordered eigenvalues λ(ax+ by) = λ(aA+

bB).

This Corollary relates the hyperbolic eigenvalues of a vector ax + by to the

eigenvalues of matrix aA+bB, which allows us to study some properties of hyperbolic

eigenvalues using results in matrix theory.

19.3 Hyperbolic Chernoff bound for Rademacher Sums

In this section, we will prove the Chernoff bound for hyperbolic polynomials

(Theorem 19.25). In Section 19.3.1, we provide some basic facts on the concen-

tration of hyperbolic norm. Then, we prove the main result in Section 19.3.2 and

Section 19.3.3.

1195

19.3.1 Preliminaries

Recall that the hyperbolic spectral norm ∥ · ∥h is defined as:

∥x∥h := ∥λ(x)∥∞.

We should assume that the hyperbolic cone Λh,+ is regular. By Theorem 19.7,

we know that ∥ · ∥h is a norm and (Rm, ∥ · ∥h) is a normed linear space. Applying

the general concentration on normed linear space (Theorem 19.12) to the ∥ · ∥h norm,

and get the following result:

Corollary 19.18 (Concentration of hyperbolic norm). Let X =
∑n

i=1 rixi, where

r1, r2, · · · , rn are independent Rademacher variables and x1, x2, · · · , xn ∈ Rn. Then,

for every t > 0,

Pr
r∼{±1}n

[∥X∥h > t] ≤ 2 exp
(
− t2/

(
32Er∼{±1}n [∥X∥2h]

))
.

By Theorem 19.14, we know that any moments of ∥X∥h are equivalent up to

a constant factor. In particular,

Claim 19.19 (Equivalence between first- and second-moment). Given n vectors

x1, x2, · · · , xn. Let r1, r2, · · · , rn denote a sequence of random Rademacher variables.

Let X =
∑n

i=1 rixi. Then,

(E[∥X∥2h])1/2 ≤
√
2 · E[∥X∥h].

We state two useful facts (Fact 19.20 and 19.21) that upper and lower bound

the hyperbolic-p norm by hyperbolic spectral norm.

Fact 19.20. Let h denote a m-variate degree-d hyperbolic polynomial. For any vector

x, for any q > 1, we have

∥x∥h,q ≤ d1/q · ∥x∥h.

1196

Proof. We have

∥x∥h,q = ∥λ(x)∥q ≤ d1/q · ∥λ(x)∥∞ = d1/q · ∥x∥h.

Thus, we complete the proof.

Fact 19.21. Let h denote a m-variate degree-d hyperbolic polynomial. For any vector

x and for any q ≥ 1, we have

∥x∥h ≤ ∥x∥h,q.

Proof. We have

∥x∥h = ∥λ(x)∥∞ ≤ ∥λ(x)∥q = ∥x∥h,q.

Thus, we complete the proof.

Fact 19.22. Let h denote a m-variate degree-d hyperbolic polynomial. For any vector

x, if there exists a matrix A ∈ Rd×d such that λ(x) = λ(A), then we have

∥x∥h = σ1(A).

Proof. We have

∥x1∥h = ∥λ(x1)∥∞ = ∥λ(A1)∥∞ = σ1(A1).

We state a useful tool from previous work [TJ74, Zyg02].

Lemma 19.23 ([TJ74, Zyg02]). For q ≥ 2, we have
(

2q

2k1, . . . , 2kn

)
≤M2q

2q ·
(

q

k1, . . . , kn

)
,

where M2q = ((2q)!
2qq!

)1/(2q).

Using elementary calculations, we can upper bound M2q.

1197

Fact 19.24. For any q ≥ 1, we have

((2q)!
2qq!

)1/(2q)
≤
√
2q − 1.

Proof. We have

(
(2q)!

2qq!

)1/(2q)

≤
(
e · (2q)2q · √2q · e−2q
2q ·
√
2π · qq · √q · e−q

)1/(2q)

=

(
e1−q√
π
· 2q · qq

)1/(2q)

≤
√

2q − 1,

where the first step follows from Stirling’s formula, and the last step follows from

q ≥ 1.

19.3.2 Proof of the Chernoff bound for hyperbolic polynomials

The goal of this section is to prove Theorem 19.25.

Theorem 19.25 (Chernoff bound for hyperbolic polynomial). Let h be an m-variable,

degree-s hyperbolic polynomial with respect to e. Given x1, x2, · · · , xn ∈ Rm such that

rank(xi) ≤ s for all i ∈ [n] and for some 0 < s ≤ d. Let σ = (
∑n

i=1 ∥xi∥2h)1/2. Then,

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤ min{2

√
log s, 1} · σ.

Furthermore, there exist two constants C1, C2 > 0 such that for every t > 0,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

> t

]
≤ C1 exp

(
− C2t

2

σ2 log(s+ 1)

)
.

1198

Proof. We first upper bound Er∼{±1}n [∥
∑n

i=1 rixi∥h] by

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤ Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥
h,2q

≤

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

1/(2q)

(19.6)

≤
√
2q − 1 · s1/(2q) ·

(
n∑

i=1

∥xi∥2h

)1/2

,

where the first step follows from ∥x∥h ≤ ∥x∥h,2q when q ≥ 1 (Fact 19.21), the second

step follows from the Lyapunov inequality (Lemma 19.16), and the third step follows

from Lemma 19.26.

Let’s first assume s > 1. By taking q = log s, we have

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤
√
4(log s)− 2 ·

(
n∑

i=1

∥xi∥2h

)1/2

=
√
4(log s)− 2 · σ

≤ 2
√
log s · σ.

where the second step follows from σ := (
∑n

i=1 ∥xi∥2h)
1/2. When s = 1, by taking

q = 1, we get that

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤ σ.

By Claim 19.19,

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2

h

 ≤ 2

(
Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

])2

≤ min{8 log s, 2} · σ2.

Then, by Corollary 19.18,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

> t

]
≤ 2 exp

(
− t2

32Er∼{±1}n [∥
∑n

i=1 rixi∥2h]

)

≤ 2 exp

(
− t2

64min{4 log s, 1} · σ2

)
.

1199

Thus, we complete the proof.

19.3.3 Expected hyperbolic-2q norm bound

The goal of this section is to prove Lemma 19.26.

Lemma 19.26 (Expected hyperbolic-2q norm of Rademacher sum). Let h be an m-

variate, degree-d hyperbolic polynomial. Given n vectors x1, · · · , xn ∈ Rm such that

rank(xi) ≤ s for all i ∈ [n] and for some 0 < s ≤ d. For any q ≥ 1, we have

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

1/(2q)

≤
√

2q − 1 · s1/(2q) ·
(

n∑

i=1

∥xi∥2h

)1/2

.

Proof. The main idea is to consider the random variables r1, r2, · · · , rn one at a time.

By the conditional expectation, we have

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 = Er2,··· ,rn∼{±1}

Er1∼{±1}

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

= Er2,...,rn∼{±1}

Er1∼{±1}

d∑

j=1

λj

(
r1x1 +

n∑

i=2

rixi

)2q

 .

where the last step follows from the definition of ∥ · ∥h,2q norm.

To apply Corollary 19.17, let x = x1, y =
∑n

i=2 rixi. Then, there exists two

symmetric matrices A1, B1 ∈ Rd×d such that

λ

(
r1x1 +

n∑

i=2

rixi

)
= λ(r1A1 +B1), (19.7)

where λ is the vector of eigenvalues ordered from large to small. Then, we have

λ(x1) = λ(A1), λ

(
n∑

i=2

rixi

)
= λ(B1).

1200

Hence, by the definition of Schatten-p norm,

d∑

j=1

(
λj

(
r1x1 +

n∑

i=2

rixi

))2q

= ∥r1A1 +B1∥2q2q

= tr
[
(r1A1 +B1)

2q
]

=
∑

β∈{0,1}2q
tr

[
2q∏

i=1

Aβi1 B
1−βi
1

]
· r

∑2q
i=1 βi

1 . (19.8)

where the first step follows from Eq. (19.7) and the definition of matrix Schatten

p-norm, the second step follows from ∥A∥2q2q = tr[A2q] for symmetric matrix A and

q ≥ 1, and the last step follows from the linearity of trace.

We define a set which will be used later.

Beven :=

{
β ∈ {0, 1}2q :

2q∑

i=1

βi is even

}
.

By taking expectation for r1, we have

Er1∼{±1}

d∑

j=1

λj

(
r1x1 +

n∑

i=2

rixi

)2q

 =

∑

β∈{0,1}2q
tr

[
2q∏

i=1

Aβi1 B
1−βi
1

]
· Er1∼{±1}

[
r
∑2q

i=1 βi
1

]

=
∑

β∈Beven

tr

[
2q∏

i=1

Aβi1 B
1−βi
1

]

where the first step follows from Eq. (19.8) and the linearity of expectation, and the

last step follows from

Er1∼{±1}
[
rk1
]
=

{
0 if k is odd,
1 if k is even.

For each β ∈ Beven, we have

tr

[
2q∏

i=1

Aβi1 B
1−βi
1

]
≤

s∑

j=1

σj

(
2q∏

i=1

Aβi1 B
1−βi
1

)
≤

s∑

j=1

2q∏

i=1

σj

(
Aβi1 B

1−βi
1

)
,

where σj(A) is the j-th singular value of A and the first step follows from tr[A] ≤
∑rank(A)

i=1 σj(A) for any real square matrix A, and the second step follows from general

Horn inequality (Lemma 19.15).

1201

Then, it follows that

∑

β∈Beven

tr

[
2q∏

i=1

Aβi1 B
1−βi
1

]
≤

∑

β∈Beven

s∑

j=1

σj(A1)
∑2q

i=1 βiσj(B1)
2q−

∑2q
i=1 βi

=

q∑

k=0

(
2q

2k

) s∑

j=1

σj(A1)
2kσj(B1)

2q−2k, (19.9)

where the first step follows from rank(A) = rank(x1) ≤ s. Hence,

Er1,...,rn∼{±1}

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 ≤

q∑

k1=0

(
2q

2k1

)
Er2,...,rn

[
s∑

j=1

σj(A1)
2k1σj(B1)

2q−2k1

]

≤
q∑

k1=0

(
2q

2k1

)
Er2,...,rn

[
σ1(A1)

2k1

s∑

j=1

σj(B1)
2q−2k1

]

=

q∑

k1=0

(
2q

2k1

)
Er2,...,rn

[
∥x1∥2k1h

s∑

j=1

λj(B1)
2q−2k1

]

=

q∑

k1=0

(
2q

2k1

)
∥x1∥2k1h Er2,...,rn

[
s∑

j=1

λj(B1)
2q−2k1

]

=

q∑

k1=0

(
2q

2k1

)
∥x1∥2k1h Er2,...,rn

∥∥∥∥∥

n∑

i=2

rixi

∥∥∥∥∥

2q−2k1

h,2q−2k1

 ,

(19.10)

where the second step follows from σ1(A) ≥ · · · ≥ σs(A), the third step follows from

for
∑s

i=1 σi(A)
k =

∑s
i=1 λi(A)

k for even k, the forth step follows from Fact 19.22, and

the last step follows from definition of ∥ · ∥h,q.

Now, we can iterate this process for Er2,...,rn
[
∥∑n

i=2 rixi∥
2q−2k1
h,2q−2k1

]
. Consider

r2x2 +
∑n

i=3 rixi. By Corollary 19.17, there exists two symmetric matrices A2, B2 ∈
Rd×d such that

λ

(
r2x2 +

n∑

i=3

rixi

)
= λ(r2A+B)

1202

for all r2 ∈ {−1, 1}. By the conditional expectation again, we can get that

Er1,...,rn

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 ≤

q∑

k1=0

(
2q

2k1

)
∥x1∥2k1h Er2,...,rn

∥∥∥∥∥

n∑

i=2

rixi

∥∥∥∥∥

2q−2k1

h,2q−2k1

≤
q∑

k1=0

(
2q

2k1

)
∥x1∥2k1h

2q−2k1∑

k2=0

(
2q − 2k1

2k2

)
∥x2∥2k2h Er3,...,rn

∥∥∥∥∥

n∑

i=3

rixi

∥∥∥∥∥

2k3

h,2k3

 ,

where k3 = q − k1 − k2 and the second step follows from applying Eq. (19.10) for

Er2,...,rn
[
∥∑n

i=2 rixi∥
2q−2k1
h,2q−2k1

]
.

If we iterate n− 1 times, we finally get

E

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 ≤

∑

k1,...,kn≥0
k1+···+kn=q

n−1∏

i=1

(
2q −∑i−1

j=1 2kj
2ki

)
∥xi∥2kih · Ern

[
∥rnxn∥2knh,2kn

]

=
∑

k1,...,kn≥0
k1+···+kn=q

(
2q

2k1, . . . , 2kn

) n−1∏

i=1

∥xi∥2kih · Ern
[
∥rnxn∥2knh,2kn

]

=
∑

k1,...,kn≥0
k1+···+kn=q

(
2q

2k1, . . . , 2kn

) n−1∏

i=1

∥xi∥2kih · ∥xn∥2knh,2kn
, (19.11)

where the first step follows from iterating the same rule for n − 1 times, the second

step follows from

n−1∏

i=1

(
2q −∑i−1

j=1 2kj
2ki

)
=

(
2q

2k1

)
·
(
2q − 2k1

2k2

)
·
(
2q − 2k1 − 2k2

2k3

)
· · ·
(
2kn−1 + 2kn

2kn−1

)

=

(
2q

2k1

)
·
(
2q − 2k1

2k2

)
·
(
2q − 2k1 − 2k2

2k3

)
· · ·
(
2kn−1 + 2kn

2kn−1

)
·
(
2kn
2kn

)

=

(
2q

2k1, . . . , 2kn

)
.

By Lemma 19.23, we have that
(

2q

2k1, . . . , 2kn

)
≤M2q

2q ·
(

q

k1, . . . , kn

)
,

1203

where M2q =
(

(2q)!
2qq!

)1/(2q)
≤ √2q − 1 by Fact 19.24.

Hence,

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 ≤ M2q

2q

∑

k1,...,kn≥0
k1+···+kn=q

(
q

k1, . . . , kn

) n−1∏

i=1

∥xi∥2kih · ∥xn∥2knh,2kn

≤ M2q
2q

∑

k1,...,kn≥0
k1+···+kn=q

(
q

k1, . . . , kn

) n−1∏

i=1

∥xi∥2kih · s · ∥xn∥2knh

= M2q
2q · s ·

∑

k1,...,kn≥0
k1+···+kn=q

(
q

k1, . . . , kn

) n∏

i=1

∥xi∥2kih

= M2q
2q · s ·

(
n∑

i=1

∥xi∥2h

)q

,

where the second step follows from ∥xn∥h,2kn ≤ s1/(2kn) · ∥xn∥h for rank-s vector (see

Fact 19.20), the third step follows from re-organizing the terms, and the last step

follows from expanding (
∑n

i=1 ∥xi∥2h)q.

Therefore,

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

1/(2q)

≤
√

2q − 1 · s1/(2q) ·
(

n∑

i=1

∥xi∥2h

)1/2

,

which completes the proof of Lemma 19.26.

Remark 19.1. This upper bound depends essentially on the the maximum hyper-

bolic rank of all the vectors x1, . . . , xn, instead of just the last one. It follows since

Eq. (19.10) can be expanded as:

Er1,...,rn∼{±1}

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

 ≤ Er2,...,rn∼{±1}

∥∥∥∥∥

n∑

i=2

rixi

∥∥∥∥∥

2q

h,2q

+ ∥x1∥2qh,2q

+

q−1∑

k1=1

(
2q

2k1

)
∥x1∥2k1h · Er2,...,rn∼{±1}

∥∥∥∥∥

n∑

i=2

rixi

∥∥∥∥∥

2q−k1

h,2q−k1

 .

1204

We can see that the first term depends on the rank of x2, . . . , xn, the second term

depends on the rank(x1). Hence, the whole summation cannot be uniformly bounded

by the rank of the last vector xn. Hence, adding a rank-1 dummy vector cannot

improve the bound.

19.4 Hyperbolic Chernoff bound for hyperbolic cone vectors

The goal of this section is to prove the following theorem, which generalizes the

matrix Chernoff bound for positive semi-definite matrices to the hyperbolic version

with respect to random vectors in the hyperbolic cone.

Theorem 19.27. Let h be an m-variate, degree-d hyperbolic polynomial with hyper-

bolic direction e ∈ Rm. Let Λ+ denote the hyperbolic cone of h with respect to e.

Suppose x1, . . . , xn are n independent random vectors with supports in Λ+ such that

λmax(xi) ≤ R for all i ∈ [n].

Define the mean of minimum and maximum eigenvalues as follows:

µmin :=
n∑

i=1

E[λmin(xi)], and µmax :=
n∑

i=1

E[λmax(xi)].

Then, we have

Pr

[
λmax

(
n∑

i=1

xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax/R

∀δ ≥ 0,

Pr

[
λmin

(
n∑

i=1

xi

)
≤ (1− δ)µmin

]
≤ d ·

(
(1− δ)1−δ

e−δ

)−µmin/R

∀δ ∈ [0, 1].

Proof. Without loss of generality, we may assume that λmax(xi) ≤ 1. The general

case will follow from scaling.

1205

Maximum eigenvalue: By the Laplace transform method, we have

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ inf

θ>0
e−θt · E

[
exp

(
θλmax

(
n∑

i=1

xi

))]

= inf
θ>0

e−θt · E
[∑

q≥0

θq

q!
λmax

(
n∑

i=1

xi

)q]

≤ inf
θ>0

e−θt ·
∑

q≥0

θq

q!
E

[
d∑

j=1

λj

(
n∑

i=1

xi

)q]
, (19.12)

where the second step follows from Taylor expansion, and the third step follows from

xi ∈ Λ+ and each term in the summation are non-negative.

Then, the remaining task is very similar to the proof of Lemma 19.26. We

will upper bound the expectation of trace moments as follows: let Ei denote the

expectation over xi, and E≥i denote the expectation over xi, . . . , xn. Then, we have

E≥1

[
d∑

j=1

λj

(
n∑

i=1

xi

)q]
= E≥2E1

[
d∑

j=1

λj

(
x1 +

n∑

i=2

xi

)q]

= E≥2E1 [tr [(A1 +B1)
q]] ,

where A1, B1 ∈ Rd×d are two symmetric matrices given by Corollary 19.17 such that

A1 depends on the value of x1 and B1 depends on the values of x2, . . . , xn. Since all

eigenvalues of x1, . . . , xn are non-negative, A and B are positive semi-definite matrices.

1206

Then, we have

E≥2E1 [tr [(A1 +B1)
q]] = E≥2E1

 ∑

β∈{0,1}q
tr

[
q∏

k=1

Aβi1 B
1−βi
1

]

≤ E≥2E1

 ∑

β∈{0,1}q

d∑

j=1

λj(A1)
∑q

i=1 βi · λj(B1)
q−

∑q
i=1 βi

= E≥2E1

[
q∑

k1=0

(
q

k1

) d∑

j=1

λj(A1)
k1 · λj(B1)

q−k1

]

≤ E≥2E1

[
q∑

k1=0

(
q

k1

)
λmax(A1)

k1 ·
d∑

j=1

λj(B)q−k1

]

= E1

q∑

k1=0

(
q

k1

)
λmax(x1)

k1 · E≥2

d∑

j=1

λj

(
n∑

i=2

xi

)q−k1

 .

where the second step follows from the repeated application of Horn’s inequality

(Lemma 19.15) and A1, B are positive semi-matrices, and the last step follows from

x1 is independent with x2, . . . , xn.

Then, by repeating this process, we finally get that

E

[
d∑

j=1

λj

(
n∑

i=1

xi

)q]
≤ E

∑

k1,...,kn≥0
k1+···+kn=q

(
q

k1, . . . , kn

) n∏

i=1

λmax(xi)
ki · d

= d · E
[(

n∑

i=1

λmax(xi)

)q]
.

1207

Putting it to Eq. (19.12), we have

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ inf

θ>0
e−θt ·

∑

q≥0

θq

q!
E

[
d∑

j=1

λj

(
n∑

i=1

xi

)q]

≤ inf
θ>0

e−θt ·
∑

q≥0

θq

q!
· d · E

[(
n∑

i=1

λmax(xi)

)q]

= inf
θ>0

e−θt · d · E
[
exp

(
θ ·

n∑

i=1

λmax(xi)

)]

= inf
θ>0

e−θt · d ·
n∏

i=1

E
[
eθλmax(xi)

]
,

where the third step follows from the linearity of expectation, and the last step follows

from the independence of x1, . . . , xn.

For x ∈ [0, 1], we know that eθx ≤ 1 + (eθ − 1)x holds for θ ∈ R. Thus,

e−θt · d ·
n∏

i=1

E
[
eθλmax(xi)

]
≤ e−θt · d ·

n∏

i=1

(1 + (eθ − 1)E[λmax(xi)])

= d · exp
(
−θt+

n∑

i=1

log
(
1 + (eθ − 1)E[λmax(xi)]

)
)

≤ d · exp
(
−θt+

n∑

i=1

(eθ − 1)E[λmax(xi)]

)

= d · exp
(
−θt+ (eθ − 1)µmax

)

where the second step follows from our assumption that λmax(x) ∈ [0, 1] for all i ∈ [n],

and the third step follows from log(1 + x) ≤ x for x > −1. Therefore, by taking

θ := log(t/µmax), we have

Pr

[
λmax

(
n∑

i=1

xi

)
≥ t

]
≤ d ·

(
t

µmax

)−t
· et−µ. (19.13)

If we choose t := (1 + δ)µmax, we get that

Pr

[
λmax

(
n∑

i=1

xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
(1 + δ)1+δ

eδ

)−µmax

,

which completes the proof of the maximum eigenvalue case.

1208

Minimum eigenvalue: We reduce this case to the maximum eigenvalue case by

defining x′i := e− xi for i ∈ [n]. Then, by Fact 19.9,

λmax(x
′
i) = 1− λmin(xi) ≤ 1, and λmin(x

′
i) = 1− λmax(xi) ≥ 0.

Thus,

Pr

[
λmin

(
n∑

i=1

xi

)
≤ (1− δ)µmin

]
= Pr

[
λmax

(
n∑

i=1

x′i

)
≥ n− (1− δ)µmin

]

≤ d ·
(
n− (1− δ)µmin

n− µmin

)n−(1−δ)µmin

· eδµmin

= d ·
(
1 +

δ

n/µmin − 1

)(
n

(1−δ)µmin
−1

)
·(1−δ)µmin

· eδµmin

≤ d ·
(
(1− δ)1−δ

e−δ

)−µmin

,

where the second step follows from taking t := n − (1 − δ)µmin in Eq. (19.13) and

µ′max = n− µmin, the last step follows from n/µmin > 0.

Hence, the proof of the theorem is completed.

19.5 Hyperbolic Anti-Concentration Bound
19.5.1 Our result

In this section, we will prove an anti-concentration bound for random vectors

with respect to the hyperbolic norm, which generalizes the result for PSD matrices

in [AY22]. In particular, an important tool we use is the hyperbolic Chernoff bound

for random vectors in the hyperbolic cone (Theorem 19.27), together with a robust

Littlewood-Offord theorem for hyperbolic cone (Theorem 19.29).

Theorem 19.28 (Hyperbolic anti-concentration theorem). Let h1, h2 be an m-variate

degree-d hyperbolic polynomial with hyperbolic direction e1, e2 ∈ Rm, respectively. Let

y1, y2 ∈ Rm be two vectors. Let {x1i }i∈[n] and {x2i }i∈[n] be two sequences of vectors

such that x1i ∈ Λ+,h1 and x2i ∈ (−Λ+,h2), i.e., λmin,h1(x
1
i) ≥ 0, λmax,h2(x

2
i) ≤ 0 for all

i ∈ [n].

1209

Let τ ≤ 1√
log d

. We further assume that λmax,h1(x
1
i) ≤ τ and λmin,h2(x

2
i) ≥ −τ

for all i ∈ [n]. And for j ∈ [2], we have
∑n

i=1 λmin(x
j
i)

2 ≥ 1.

Then, for ∆ ≥ 20τ log d, we have

Pr
ϵ∼{−1,1}n

∃j ∈ [2] :

∥∥∥∥∥
n∑

i=1

ϵix
j
i − yj

∥∥∥∥∥
hj

≤ ∆

 ≤ O(∆).

Proof. We follow the proof in [AY22] but adapt it to the hyperbolic polynomial.

Let fj(ϵ) :=
∑n

i=1 ϵix
j
i for j ∈ [2]. And we will first show that

Pr
ϵ∼{±1}n

[∃j ∈ [2] : λmax,hj(fj(ϵ)− yj) ≤ ∆] ≤ O(∆),

which implies the anti-concentration bound for the hyperbolic spectral norm.

Let p := 1
20τ2 log d

and let π : [n] → [2p] be a random hash function that

independently assigns each i ∈ [n] to uniformly random bucket in [2p]. For i ∈ [2p],

let Ci := {j ∈ [n] : π[j] = i} be the set of elements in the i-th bucket. Let γ ∼ {±1}2p.
For j ∈ [2], define a new function gj(γ) : {±}2k → Rm as follows:

gj(γ) :=

2p∑

i=1

γi ·
∑

j∈Ci

xji .

That is, we assign the same sign for vectors hashed into the same bucket.

[AY22] proved that fj(ϵ) and gj(γ) have the same distribution using a direct

argument about the random hash function. Thus, it is also true in our case and we

just need to prove

Pr
γ∼{±1}2p

[∃j ∈ [2] : λmax,hj(gj(γ)− yj) ≤ ∆] ≤ O(∆)

For j = 1, define the good bucket set

B1
good :=

c ∈ [2p] : λmin,h1

 ∑

i∈π−1(c)

x1i

 ≥ 1

4τp

 .

1210

By Lemma 19.30, with probability at least 1− e−p/2, we have |B1
good| ≥ 8

5
p.

For j = 2, define the good bucket set

B2
good :=

c ∈ [2p] : λmax,h2

 ∑

i∈π−1(c)

x2i

 ≤ − 1

4τp

 .

By considering −x2i and applying Lemma 19.30, we get that with with probability at

least 1− e−p/2, we have |B2
good| ≥ 8

5
p.

By a pigeonhole principle and union bound, with probability 1−2e−p/2, |B1
good∩

B2
good| ≥ 6

5
p. That is, at least 3

5
-fraction of i ∈ [2p] such that

λmin,h1

 ∑

j∈π−1(c)

x1i

 ≥ 1

4τp
, and λmax,h2

 ∑

j∈π−1(c)

x2i

 ≤ − 1

4τp
.

Thus, we can apply Theorem 19.29 with α = 3
5
, ρ = 1

4τp
and get that

Pr
γ∼{−1,1}2p

[
∃j ∈ [2] : λmax,hj

(
2p∑

i=1

γi ·
∑

k∈π−1

xjk − yj
)
∈
(
− 1

2τp
, 0

]]
≤ O

(
1√
p

)
+ 2e−p/2.

Now, we transform back to the distribution of fj(ϵ) and have the following bound:

Pr
ϵ∼{±1}n

[
∃j ∈ [2] : λmax,hj(fj(ϵ)− yj) ∈

(
− 1

2τp
, 0

]]
≤ O

(
1√
p

)
+ 2e−p/2. (19.14)

However, by our choice of parameters, ∆ ≥ 1
2τp

. We can partition the interval [−∆, 0]
into ⌈2τp∆⌉ sub-intervals each of length 1

2τp
. Since Eq. (19.14) holds for any yj ∈ Rm,

we can use it to bound the probability of the event λmax,hj(fj(ϵ)− yj) ∈ (− k
2τp
,−k−1

2τp
]

by shifting y′j := yj +
k−1
2τp
· e. Therefore, by the union bound, we have

Pr
ϵ∼{±1}n

[
∃j ∈ [2] : λmax,hj(fj(ϵ)− yj) ∈ [∆, 0]

]
≤ ⌈2τp∆⌉ ·

(
O

(
1√
p

)
+ 2e−p/2

)

= O(∆ · τ√p)

= O(∆),

where the last step follows from τ
√
p = O(1) by our choice of parameters.

We note that the above upper bound also holds for the interval [0,∆]. Hence,

we complete the proof of the theorem.

1211

19.5.2 Technical lemmas

To prove Theorem 19.28, we need a robust Littlewood–Offord theorem for

hyperbolic cones. This kind of theorems were previously proved by [OST19] for

polytopes and [AY22] for positive spectrahedrons.

We first give some definitions in [OST19] about functions on hypercube.

Definition 19.7 (Unateness). A function F : {−1, 1}n → {0, 1} is unate if for all

i ∈ [n], F is either increasing or decreasing with respect to the ith coordinate, i.e.,

F (x1, . . . , xi−1,−1, xi+1, . . . , xn) ≤ F (x1, . . . , xi−1, 1, xi+1, . . . , xn) ∀x ∈ {±1}n, or

F (x1, . . . , xi−1,−1, xi+1, . . . , xn) ≥ F (x1, . . . , xi−1, 1, xi+1, . . . , xn) ∀x ∈ {±1}n.

Let H,H be the indicator set of two unate functions and H ⊂ H. The bound-

ary of H is denoted by ∂H := H\H.

Definition 19.8 (Semi-thin). For α ∈ [0, 1], we say ∂H is α-semi thin if for all x ∈ H,

at least α-fraction of its hypercube neighbors (different in one coordinate) are not in

∂H.

Now, we state the main theorem of this section:

Theorem 19.29 (Robust Littlewood-Offord theorem for hyperbolic cones). Let α ∈
[0, 1], ρ > 0. Let {xji}i∈[n],j∈[2] be 2n vectors in Rm such that x1i ∈ Λ+,h1 , x

2
i ∈ (−Λ+,h2)

for all i ∈ [n]. If there are at least α-fraction of i ∈ [n] such that λmin,h1(x
1
i) ≥ ρ and

λmax,h2(x
2
i) ≤ −ρ, then we have

Pr
ϵ∼{−1,1}n

[
∃j ∈ [2] : λmax,hj

(
n∑

i=1

ϵix
j
i − yj

)
∈ (−2ρ, 0]

]
≤ O

(
1

α
√
n

)
.

Proof. For each j ∈ [2], define two sets:

Hj :=

{
ϵ ∈ {−1, 1}n : λmax,h1

(
n∑

i=1

ϵix
j
i

)
≤ −2ρ

}
,

Hj :=

{
ϵ ∈ {−1, 1}n : λmax,h2

(
n∑

i=1

ϵix
j
i

)
≤ 0

}
.

1212

Then, we have

∂Hj := Hj\Hj =

{
ϵ ∈ {−1, 1}n : λmax,hj

(
n∑

i=1

ϵix
j
i

)
∈ (−2ρ, 0]

}
.

Define F := H1 ∩H2 and ∂F := (H1 ∩H2)\F . Hence,

∂F =

{
ϵ ∈ {−1, 1}n : ∃j ∈ [2] s.t. λmax,hj

(
n∑

i=1

ϵix
j
i

)
∈ (−2ρ, 0]

}
.

For any ϵ ∈ H1, consider its hypercube-neighbour ϵ′ which flip the k-th coordinate of

ϵ. If ϵ′ ∈ ∂H1, then we have

λmax,h1

(
n∑

i=1

ϵix
1
i − 2ϵkx

1
k

)
∈ (−2ρ, 0], λmax,h1

(
n∑

i=1

ϵix
1
i

)
≤ −2ρ.

It implies that ϵk = −1. By the fact that λmax(x+ y) ≥ λmax(x) + λmin(y), we have

λmax,h1

(
n∑

i=1

ϵix
1
i

)
+ 2λmin,h1(x

1
k) ≤ λmax

(
n∑

i=1

ϵix
1
i + 2x1k

)
≤ 0,

which means λmin,h1(x
1
k) ≤ ρ. However, we assume that there are α-fraction of k ∈ [n]

such that λmin,h1(x
1
k) ≥ ρ. Hence, H1 is α-semi thin.

Similarly, for ϵ ∈ H2 and its hypercube-neighbor ϵ′ with the k-th coordinate

flipped, if ϵ′ ∈ ∂H2, we have

λmax,h2

(
n∑

i=1

ϵix
2
i − 2x2k

)
∈ (−2ρ, 0], λmax,h2

(
n∑

i=1

ϵix
2
i

)
≤ −2ρ.

Hence,

λmax,h2

(
n∑

i=1

ϵix
2
i

)
+ 2λmin,h2(−x2k) = λmax,h2

(
n∑

i=1

ϵix
2
i

)
− 2λmax,h2(x

2
k) ≤ 0,

which implies λmax,h2(x
2
k) ≥ −ρ. Then, by our assumption, H2 is also α-semi thin.

Thus, by Theorem 7.18 in [OST19], we have

vol(∂F) ≤ O(1/(α
√
n)),

which implies the probability upper bound in the lemma.

1213

In order to satisfy the α-semi thin condition in Theorem 19.29, we use the

following lemma using random hash function to bucket the vectors such that the

resulting distribution will make the condition hold.

Lemma 19.30 (Lemma 46 in [AY22]). Let τ ∈ (0, 1
100
√
log d

]. Let {xi}i∈[n] ⊂ Rm be a

sequence of vectors in the hyperbolic cone Λ+ of h such that

λmax(xi) ≤ τ,
n∑

i=1

λmin(xi)
2 ≥ 1 ∀i ∈ [n].

Let p ≥ 1
10τ2 log d

and π : [n] → [p] be a random hash function that independently

assigns each i ∈ [n] to a uniformly random bucket in [p]. For each c ∈ [p], define

σc :=
∑

i∈π−1(c) xi. And we say c ∈ [p] is good if λmin(σc) ≥ 1
2τp

.

Then, we have

Pr

[
|{c ∈ [p] : c is good}| ≤ 4

5
p

]
≤ exp(−p/4).

Proof. Fix c ∈ [p]. Define indicator random variables zi ∈ {0, 1} for i ∈ [n] such

that zi = 1 if π(i) = c. Since π is a random hash function, we have Pr[zi = 1] = 1
p
.

Then, consider the random vectors {zixi}i∈[n]. For each xi, supp(zixi) ∈ Λ+ and

λmax(zixi) ≤ τ . We note that σc =
∑n

i=1 zixi, and

µmin =
n∑

i=1

E[λmin(zixi)] =
1

m

n∑

i=1

λmin(xi)

≥ 1

m

n∑

i=1

λmin(xi)
2 · 1

λmax(xi)

≥ 1

τm
.

Then, by Theorem 19.27 with δ = 1/2, µmin = 1/(τp), R = τ , we have

Pr

[
λmin

(
n∑

i=1

zixi

)
≤ 1

2τp

]
≤ d · (2/e)

1
2τ2p ≤ 1

10
,

1214

where the last step follows from p ≥ 1
10τ2 log d

. That is,

Pr

[
λmin(σc) ≥

1

2τp

]
≥ 1− 1

10
=

9

10
. (19.15)

Then, for all c ∈ [p] and i ∈ [n], define the indicator variables Bc,i := 1[π(i) =

c]. Then, {Bc,i}c∈[p],i∈[n] are negatively associated by a balls and bins argument (see

[MR95] for details). Now, the even that c is good can be represented by the indicator

variables Gc := 1[λmin(
∑n

i=1Bc,ixi) ≥ 1
2τp

] for c ∈ [p], which is constructed by apply-

ing a monotone non-decreasing function to {Bc,i}i∈[n]. Hence, we know that {Gc}c∈[p]
are also negatively associated. By Eq. (19.15), we have E[Gc] ≥ 9

10
. Thus, by the

Chernoff bound for negatively associated random variables, we have

Pr

[
p∑

i=1

Gc ≤
4

5
p

]
≤ exp(−p/4),

which completes the proof of the lemma.

1215

Chapter 20: Hyperbolic Polynomials II: Discrepancy
and Kadison-Singer-Type Results

20.1 Introduction

Introduced by [KS59], the Kadison-Singer problem was a long-standing open

problem in mathematics. It was resolved by Marcus, Spielman, and Srivastrava in

their seminal work [MSS15b]: For any set of independent random vectors u1, · · · , un
such that each ui has finite support, and u1, · · · , un are in isotropic positions in

expectation, there is positive probability that
∑n

i=1 uiu
∗
i has spectral norm bounded

by 1 +O(maxi∈[n] ∥ui∥). The main result of [MSS15b] is as follows:

Theorem 20.1 (Main result of [MSS15b]). Let ϵ > 0 and let v1, · · · , vn ∈ Cm be

n independent random vectors with finite support, such that E[
∑n

i=1 viv
∗
i] = I, and

E[∥vi∥2] ≤ ϵ, ∀i ∈ [n]. Then

Pr

∥∥∥
∑

i∈[n]

viv
∗
i

∥∥∥ ≤ (1 +
√
ϵ)2

 > 0.

The Kadison-Singer problem is closely related to discrepancy theory, which

is an essential area in mathematics and theoretical computer science. A classical

discrepancy problem is as follows: given n sets over n elements, can we color each

element in red or blue such that each set has roughly the same number of elements in

each color? More formally, for vectors a1, . . . , an ∈ Rn with ∥ai∥∞ ≤ 1 and a coloring

s ∈ {±1}n, the discrepancy is defined by Disc(a1, . . . , an; s) := ∥
∑

i∈[n] siai∥∞. The

famous Spencer’s Six Standard Deviations Suffice Theorem [Spe85] shows that there

exists a coloring with discrepancy at most 6
√
n, which beats the standard Chernoff

bound showing that a random coloring has discrepancy
√
n log n.

More generally, we can consider the “matrix version” of discrepancy: for ma-

1216

trices A1, . . . , An ∈ Rd×d and a coloring s ∈ {±1}n,

Disc(A1, . . . , An; s) :=
∥∥∥
∑

i∈[n]

siAi

∥∥∥.

By the matrix Chernoff bound, it follows that for any symmetric matrix A1, . . . , An ∈
Rd×d with ∥Ai∥ ≤ 1, for a uniformly random s ∼ {−1, 1}n,

Disc(A1, . . . , An; s) ≤ O(
√
n · log d)

with high probability. An important open question is, can we shave the log(d) factor

for some choice of the signs?

Conjecture 20.2 (Matrix Spencer Conjecture, [Mek14]). For any symmetric ma-

trices X1, . . . , Xn ∈ Rd×d with ∥Xi∥ ≤ 1, there exist signs r ∈ {−1, 1}n such that

∥∑n
i=1 riXi∥ = O(

√
n).

We note that Theorem 20.1 is equivalent to the following discrepancy result

for rank-1 matrices:

Theorem 20.3 ([MSS15b]). Let u1, . . . , un ∈ Cm and suppose maxi∈[n] ∥uiu∗i ∥ ≤ ϵ

and
∑n

i=1 uiu
∗
i = I. Then,

min
s∈{±1}n

Disc(u1u
∗
1, . . . , unu

∗
n; s) ≤ O(

√
ϵ).

In other words, the minimum discrepancy of rank-1 isotropic matrices is bounded

by O(
√
ϵ), where ϵ is the maximum spectral norm. This result also beats the matrix

Chernoff bound [Tro15], which shows a discrepancy bound O(
√
ϵ log d). The main

techniques in [MSS15b] are the method of interlacing polynomials and the barrier

methods developed in [MSS15a].

Several generalizations of the Kadison-Singer-type results, which have inter-

esting applications in theoretical computer science, have been established using the

same technical framework as described in [MSS15b]. In particular, Kyng, Luh, and

1217

Song [KLS20] provided a “four derivations suffice” version of Kadison-Singer conjec-

ture: Instead of assuming every independent random vector has a bounded norm, the

main result in [KLS20] only requires that the sum of the squared spectral norm is

bounded by σ2, and showed a discrepancy bound of 4σ:

Theorem 20.4 ([KLS20]). Let u1, . . . , un ∈ Cm and σ2 = ∥∑n
i=1(uiu

∗
i)

2∥. Then, we

have

Pr
ξ∼{±1}n

[∥∥∥
n∑

i=1

ξiuiu
∗
i

∥∥∥ ≤ 4σ

]
> 0.

This result was recently applied by [LZ20] to approximate solutions of gener-

alized network design problems.

Moreover, Anari and Oveis-Gharan [AO14] generalized the Kadison-Singer

conjecture into the setting of real-stable polynomials. Instead of assuming the ran-

dom vectors are independent, [AO14] assumes that the vectors are sampled from any

homogeneous strongly Rayleigh distribution with bounded marginal probability, have

bounded norm, and are in an isotropic position:

Theorem 20.5 ([AO14]). Let µ be a homogeneous strongly Rayleigh probability dis-

tribution on [n] such that the marginal probability of each element is at most ϵ1, and

let u1, · · · , un ∈ Rm be vectors in an isotropic position,
∑n

i=1 uiu
∗
i = I, such that

maxi∈[n] ∥ui∥2 ≤ ϵ2. Then

Pr
S∼µ

[∥∥∥
∑

i∈S

uiu
∗
i

∥∥∥ ≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)
2

]
> 0.

Theorem 20.5 has a direct analog in spectral graph theory: Given any (weighted)

connected graph G = (V,E) with Laplacian LG. For any edge e = (u, v) ∈ E, define

the vector corresponding to e as ve = L
†/2
G (1u − 1v) (here L†G is the Moore-Penrose

inverse). Then the set of {ve : e ∈ E} are in isotropic position, and ∥ve∥2 equals to the

graph effective resistance with respect to e. Also, any spanning tree distribution of

1218

the edges in E is homogeneous strongly Rayleigh. It follows from Theorem 20.5 that

any graph with bounded maximum effective resistance has a spectrally-thin spanning

tree [AO14]. Moreover, [AO15] provided an exciting application to the asymmetric

traveling salesman problem and obtained an O(log log n)-approximation.

Another perspective of generalizing the Kadison-Singer theorem is to study the

discrepancy with respect to a more general norm than the spectral norm, which is the

largest root of a determinant polynomial. A recent work by Bränden [Brä18] proved

a high-rank version of Theorem 20.3 for hyperbolic polynomial, which is a larger class

of polynomials including the determinant polynomial. Moreover, the hyperbolic norm

on vectors is a natural generalization of the matrix spectral norm. (We will introduce

hyperbolic polynomials in Section 20.1.1.) From this perspective, it is very natural

to ask:

Can we extend more matrix discrepancy results (e.g., Theorem 20.4 and

Theorem 20.5) to the hyperbolic polynomial setting?

20.1.1 Our results

Our results in this chapter falls into three classes:

1. In the Kadison-Singer (KS) setting, we show that it holds with respect to the

hyperbolic norm for high-rank, sub-isotropic vectors in the hyperbolicity cone

(Theorem 20.6), which slightly improves Brändén [Brä18]’s result.

2. In the Spencer setting, we propose a hyperbolic Spencer conjecture (Conjec-

ture 20.9), and prove the constant-rank case (Theorem 20.8).

3. In the KS setting, we also generalize Theorem 20.4 and Theorem 20.5 to the

hyperbolic norm. Theorem 20.10 removes the (sub-)isotropic condition in the

rank-1 hyperbolic KS theorem and gives a tighter control for the hyperbolic

deviation. Theorem 20.11 extends the rank-1 hyperbolic KS theorem to the

Strongly-Rayleigh distributions.

1219

Before stating our main results, we recall some basic notation of hyperbolic polyno-

mials below (which was already introduced in Chapter 19).

Hyperbolic polynomials form a broader class of polynomials that encompasses

determinant polynomials and homogeneous real-stable polynomials. An m-variate,

degree-d homogeneous polynomial h ∈ R[x1, · · · , xm] is hyperbolic with respect to

a direction e ∈ Rm if the univariate polynomial t 7→ h(te − x) has only real roots

for all x ∈ Rm. (See Appendix 20.10 for some examples of hyperbolic/real-stable

polynomials.) The set of x ∈ Rm such that all roots of h(te − x) are non-negative

(or strictly positive) is referred to as the hyperbolicity cone Γh+(e) (or Γh++(e)). It

is a widely recognized result [Brä10] that any vector x in the open hyperbolicity

cone Γh++(e) is itself hyperbolic with respect to the polynomial h and have the same

hyperbolicity cone as e, meaning that Γh++(e) = Γh++(x). Therefore, the unique

hyperbolicity cone of h can simply be expressed as Γh+.

The hyperbolic polynomials have similarities to determinant polynomials of

matrices, as they both can be used to define trace, norm, and eigenvalues. Given a

hyperbolic polynomial h ∈ R[x1, · · · , xm] and any vector e ∈ Γh++, we can define a

norm with respect to h(x) and e as follows: for any x ∈ Rm, its hyperbolic norm ∥x∥h
is equal to the largest root (in absolute value) of the linear restriction polynomial

h(te − x) ∈ R[t]. Similar to the eigenvalues of matrices, we define the hyperbolic

eigenvalues of x to be the d roots of h(te− x), denoted by λ1(x) ≥ · · · ≥ λd(x). We

can also define the hyperbolic trace and the hyperbolic rank :

trh[x] :=
d∑

i=1

λi(x), and rank(x)h := |{i ∈ [d] : λi(x) ̸= 0}|.

High-rank hyperbolic KS Brändén [Brä18] proved a hyperbolic Kadison-Singer

theorem, which generalizes Theorem 20.1 to the hyperbolic spectral norm and vectors

with arbitrary rank. However, his result requires the vectors in the isotropic condition.

Our result relaxes the isotropic condition to sub-isotropic:

1220

Theorem 20.6 (Hyperbolic Kadison-Singer with sub-isotropic condition, informal).

Let k ≥ 2 be an integer and ϵ, σ > 0. Suppose h is hyperbolic with respect to e ∈ Rm,

and let x1, . . . , xn be n vectors in the hyperbolic cone such that

trh[xi] ≤ ϵ ∀i ∈ [n], and
∥∥∥

n∑

i=1

xi

∥∥∥
h
≤ σ. (20.1)

where trh[x] :=
∑d

i=1 λi(x). Then, there exists a partition S1 ∪ S2 ∪ · · · ∪ Sk = [n]

such that for all j ∈ [k],
∥∥∥∥∥
∑

i∈Sj

xi

∥∥∥∥∥
h

≤
(√

ϵ+
√
σ/k

)2
.

Theorem 20.6 implies the high-rank case of [MSS15b] result (Theorem 20.1)

without the isotropic condition. We note that there is a naive approach to relax

the isotropic condition in [MSS15b, Brä18]’s results by adding several small dummy

vectors to make the whole set in an isotropic position. (See [Gha15] for more details.)

However, Theorem 20.6 is slightly better than this approach, since the naive approach

will increase the number of vectors which results in a worse bound. (See Remark 20.4

for more details.)

Theorem 20.6 also implies the following hyperbolic discrepancy result:

Corollary 20.7 (Hyperbolic discrepancy for sub-isotropic vectors). Let 0 < ϵ ≤ 1
2
.

Suppose h ∈ R[z1, . . . , zm] is hyperbolic with respect to e ∈ Rm, and let x1, . . . , xn ∈
Λ+(h, e) that satisfy Eq. (20.1). Then, there exist signs r ∈ {−1, 1}n such that

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

≤ 2
√
ϵ(2σ − ϵ).

We note that this result is incomparable with [KLS20] due to the following

reasons: 1) [KLS20] only works for rank-1 matrices while our result holds for arbitrary

rank vectors in the hyperbolic cone; 2) the upper bound of [KLS20] depends on

∥∑n
i=1X

2
i ∥1/2 while our result depends on the hyperbolic trace and spectral norm of

the sum of vectors.

1221

Hyperbolic Spencer To obtain a hyperbolic discrepancy upper bound for arbi-

trary vectors (as in the case of Conjecture 20.2), we can apply hyperbolic Chernoff

bound (Theorem 19.1) and get the following discrepancy result which holds with high

probability:

Theorem 20.8. Let h be a degree-d hyperbolic polynomial with respect to e ∈ Rm.

We are given vectors x1, x2, · · · , xn ∈ Rm such that ∥xi∥h ≤ 1 and rank(xi) ≤ s for

all i ∈ [n] and some s ∈ N+. Then for uniformly random signs r ∼ {−1, 1}n,
∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥
h

≤ O(
√
n log(s+ 1))

holds with probability at least 0.99.

This result may not be tight when the ranks of the input vectors are large. It

is thus interesting to study whether we can do better to improve the
√
log d factor in

the non-constructive case. We thus conjecture the following hyperbolic discrepancy

bound:

Conjecture 20.9 (Hyperbolic Spencer Conjecture). We are given vectors x1, x2, · · · , xn ∈
Rm and a degree d hyperbolic polynomial h ∈ R[z1, . . . , zm] with respect to e ∈ Rm,

where ∥xi∥h ≤ 1 for all i ∈ [n]. Then, there exist signs r ∈ {−1, 1}n, such that
∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥
h

≤ O(
√
n).

Note that Conjecture 20.9 is more general than the matrix Spencer conjecture

(Conjecture 20.2). And for constant degree d or constant maximum rank s, this

conjecture is true by Theorem 20.8.

Rank-1 hyperbolic KS generalizations We first generalize the result of [KLS20]

to the hyperbolic setting:

1222

Theorem 20.10 (Hyperbolic version of [KLS20] (Theorem 1.4), informal statement

of Theorem 20.43). Let h ∈ R[x1, . . . , xm] denote a hyperbolic polynomial in direction

e ∈ Rm. Let v1, . . . , vn ∈ Γh+ be n vectors in the closed hyperbolicity cone. Let

ξ1, . . . , ξn be n independent random variables with finite supports and E[ξi] = µi and

Var[ξi] = τ 2i . Suppose σ := ∥∑n
i=1 τ

2
i trh[vi]vi∥h. Then there exists an assignment

(s1, . . . , sn) with si in the support of ξi for all i ∈ [n], such that

∥∥∥
n∑

i=1

(si − µi)vi
∥∥∥
h
≤ 4σ.

We remark that Theorem 20.10 does not require the isotropic position con-

dition of v1, · · · , vn as in [Brä18]. In addition, we only need the sum of trh[vi]vi’s

hyperbolic norm to be bounded, while [Brä18]’s result requires each vector’s trace to

be bounded individually.

We would also like to note that the class of hyperbolic polynomials is much

broader than that of determinant polynomials, which were used in the original Kadison-

Singer-type theorems. Lax conjectured in [Lax57] that every 3-variate hyperbolic/real-

stable polynomial could be represented as a determinant polynomial, this was later

resolved in [HV07, LPR05]. However, the Lax conjecture is false when the number

of variables exceeds 3, as demonstrated in [Brä11, BVY14] with counterexamples of

hyperbolic/real-stable polynomials h(x) for which even (h(x))k cannot be represented

by determinant polynomials for any k > 0.

Our second result considers the setting where the random vectors are not

independent, but instead, sampled from a strongly Rayleigh distribution. We say a

distribution µ over the subsets of [n] is strongly Rayleigh if its generating polynomial

gµ(z) :=
∑

S⊆[n] µ(S)z
S ∈ R[z1, . . . , zn] is a real-stable polynomial, which means gµ(z)

does not have any root in the upper-half of the complex plane, i.e., gµ(z) ̸= 0 for any

z ∈ Cn with ℜ(z) ≻ 0.

Theorem 20.11 (Hyperbolic version of [AO14] (Theorem 1.2), informal statement

of Theorem 20.54). Let h ∈ R[x1, . . . , xm] denote hyperbolic polynomial in direction

1223

e ∈ Rm. Let µ be a homogeneous strongly Rayleigh probability distribution on [n] such

that the marginal probability of each element is at most ϵ1.

Suppose v1, · · · , vn ∈ Γh+ are in the hyperbolicity cone of h such that
∑n

i=1 vi =

e, and for all i ∈ [n], ∥vi∥h ≤ ϵ2. Then there exists S ⊆ [n] in the support of µ, such

that
∥∥∥
∑

i∈S

vi

∥∥∥
h
≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2.

It is worth mentioning that the previous paper [KLS20, AO14] focused on the

determinant polynomial, leaving the question of whether their techniques could be

extended to the hyperbolic/real-stable setting unresolved. In our paper, we address

this gap by developing new techniques specifically tailored to hyperbolic polynomials.

In addition, we follow the results from [AOSS18] and give an algorithm that

can find the approximate solutions of both Theorem 20.10 and Theorem 20.11 in time

sub-exponential to m:

Proposition 20.12 (Sub-exponential algorithm for Theorem 20.10, informal state-

ment of Corollary 20.64). Let h ∈ R[x1, . . . , xm] denote a hyperbolic polynomial with

direction e ∈ Rm. Let v1, . . . , vn ∈ Γh+ be n vectors in the hyperbolicity cone Γh+ of h.

Suppose σ = ∥∑n
i=1 trh[vi]vi∥h.

Let P be the interlacing family used in the proof of Theorem 20.11. Then there

exists an sub-exponential time algorithm KadisonSinger(δ,P), such that for any δ > 0,

it returns a sign assignment (s1, · · · , sn) ∈ {±1}n satisfying
∥∥∥

n∑

i=1

siui

∥∥∥
h
≤ 4(1 + δ)σ.

Proposition 20.13 (Sub-Exponential algorithm for Theorem 20.11, informal state-

ment of Corollary 20.68). Let h ∈ R[x1, . . . , xm] denote a hyperbolic polynomial in

direction e ∈ Rm. Let µ be a homogeneous strongly Rayleigh probability distribu-

tion on [n] such that the marginal probability of each element is at most ϵ1, and let

v1, · · · , vn ∈ Γh+ be n vectors such that
∑n

i=1 vi = e, and for all i ∈ [n], ∥vi∥h ≤ ϵ2.

1224

Let Q be the interlacing family used in the proof of Theorem 20.11. Then there

exists an sub-exponential time algorithm KadisonSinger(δ,Q), such that for any δ > 0,

it returns a set S in the support of µ satisfying
∥∥∥
∑

i∈S

ui

∥∥∥
h
≤ (1 + δ) ·

(
4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2
)
.

20.2 Related work

Real-Stable Polynomials Real-stability is an important property for multivariate

polynomials. In [BB09], the authors used the real-stability to give a unified framework

for Lee-Yang type problems in statistical mechanics and combinatorics. Real-stable

polynomials are also related to the permanent. Gurvits [Gur07] proved the Van der

Waerden conjecture, which conjectures that the permanent of n-by-n doubly stochas-

tic matrices are lower-bounded by n!/nn, via the capacity of real-stable polynomi-

als. Recently, [GL21] improved the capacity lower bound for real-stable polynomials,

which has applications in matrix scaling and metric TSP. In addition, real-stable

polynomials are an important tool in solving many counting and sampling problems

[NS16, AOR16, AO17, SV17, AOSS16, AMOV18, AOV18, ALOV19, ALO+21].

Hyperbolic Polynomials Hyperbolic polynomial was originally defined to study

the stability of partial differential equations [Går51, Hor83, Kry95]. In theoretical

computer science, Güler [Gül97] first introduced hyperbolic polynomial for optimiza-

tion (hyperbolic programming), which is a generalization of LP and SDP. Later, a few

algorithms [Ren06, MT14, RS14, Ren16, NP18, Ren19a] were designed for hyperbolic

programming. On the other hand, a significant effort has been put into the equivalence

between hyperbolic programming and SDP, which is closely related to the “General-

ized Lax Conjecture” (which conjectures that every hyperbolicity cone is spectrahe-

dral) and its variants [HV07, LPR05, Brä14, KPV15, Sau18, Ami19, RRSW19].

1225

Strongly Rayleigh Distribution The strongly Rayleigh distribution was intro-

duced by [BBL09]. The authors also proved numerous basic properties of strongly

Rayleigh distributions, including negative association, and closure property under

operations such as conditioning, product, and restriction to a subset. [PP14] proved

a concentration result for Lipschitz functions of strongly Rayleigh variables. [KS18]

showed a matrix concentration for strongly Rayleigh random variables, which implies

that adding a small number of uniformly random spanning trees gives a graph spectral

sparsifier.

Strongly Rayleigh distribution also has many algorithmic applications. [AOR16]

exploited the negative dependence property of homogeneous strongly Rayleigh dis-

tributions, and designed efficient algorithms for generating approximate samples from

Determinantal Point Process using Monte Carlo Markov Chain. The strongly Rayleigh

property of spanning tree distribution is a key component for improving the ap-

proximation ratios of TSP [KKO20, KKO21] and k-edge connected graph problem

[KKOZ21].

Other generalizations of the Kadison-Singer-type results The upper bound

of the rank-one Kadison-Singer theorem was improved by [BCMS19, RL20]. [AB20]

further extended [RL20]’s result to prove a real-stable version of Anderson’s paving

conjecture. However, they used a different norm for real-stable polynomials, and

hence their results and ours are incomparable. In the high-rank case, [Coh16a] also

proved a Kadison-Singer result for high-rank matrices.

Another direction of generalizing the Kadison-Singer-type result is to relax the

{+1,−1}-coloring to {0, 1}-coloring, which is called the one-sided version of Kadison-

Singer problem in [Wea04]. More specifically, given n isotropic vectors v1, . . . , vn ∈ Rm

with norm 1√
N

, the goal is to find a subset S ⊂ [n] of size k such that ∥∑i∈S viv
⊤
i ∥ ≤

k
n
+O(1/

√
N). Unlike the original Kadison-Singer problem, Weaver [Wea04] showed

that this problem can be solved in polynomial time. Very recently, Song, Xu and

1226

Zhang [SXZ22] improved the time complexity of the algorithm via an efficient inner

product search data structure.

Applications of Kadison-Singer Problem There are many interesting results

developed from the Kadison-Singer theorem. In spectral graph theory, [HO14] ex-

ploited the same proof technique of interlacing families to show a sufficient condition

of the spectrally thin tree conjecture. [AO14] used the strongly-Rayleigh extension of

Kadison-Singer theorem to show a weaker sufficient condition. Based on this result,

[AO15] showed that any k-edge-connected graph has an O(log log(n)
k

)-thin tree, and

gave a poly(log log(n))-integrality gap of the asymmetric TSP. [MSS18, Coh16b] used

the Kadison-Singer theorem to construct bipartite Ramanujan graphs of all sizes and

degrees. In the network design problem, [LZ20] exploited the result in [KLS20], and

built a spectral rounding algorithm for the general network design convex program,

which has applications in weighted experimental design, spectral network design, and

additive spectral sparsifier.

Discrepancy theory For theoretical results, very recently, [HRS21, DJR21] proved

some special cases of the matrix Spencer conjecture. For algorithmic results, Bansal

[Ban10] proposed the first constructive version of partial coloring for discrepancy

minimization. Based on this work, more approaches [LM15, Raz17, LRR17, ES18,

BDGL18, DNTTJ18] were discovered in recent years. For applications of the discrep-

ancy theory, we refer to the excellent book by Matousek [Mat09].

20.3 Proof Overview
20.3.1 Hyperbolic discrepancy for high-rank vectors

In this section, we sketch our techniques for improving the result of [Brä18]

and proving the hyperbolic Spencer conjecture for constant-rank case.

To relax the isotropic condition in [Brä18], we basically follow their proof.

1227

The high-level idea is to construct a compatible family of polynomials1 such that

the probability in the hyperbolic Kadison-Singer problem (Theorem 20.6) can be

upper-bounded by the largest root of the expected polynomial of the family, which

can be further upper-bounded by the largest root of the mixed hyperbolic polyno-

mial h[v1, . . . , vn] ∈ R[x1, . . . , xm, y1, . . . , yn], defined as h[v1, . . . , vn] :=
∏m

i=1(1 −
yiDvi)h(x), where Dvi is the directional derivative with respect to vi. In particular,

we can consider the roots of the linear restriction h[v1, . . . , vn](te + 1) ∈ R[t]. Then,

using Gårding’s result [Går59] on hyperbolic cone, we know that the largest root

equals the minimum ρ > 0 such that the vector ρe+1 is in the hyperbolic cone Γ+ of

h[v1, . . . , vn], which can be upper-bounded via similar techniques in [MSS15b, KLS20]

to iteratively add each vector vi while keeping the sum in the hyperbolic cone. Our

key observation is that the proof in [Brä18] essentially proved that

ϵµe+
(
1− 1

n

)
δ
∑n

i=1 vi

1 + µ−1
n

+ 1 ∈ Γ+

holds for any vectors vi ∈ Λ+. Hence, once we assume that ∥∑n
i=1 vi∥h ≤ σ, then by

the convexity of the hyperbolic cone, we get that ρ ≤ (ϵµ+(1− 1
n)δσ)

1+µ−1
n

, which will imply

the upper bound in Theorem 20.6. We defer the formal proof in Section 20.5.2.

To obtain the discrepancy result for arbitrary vectors (Theorem 20.8), we can

use the hyperbolic Chernoff bound for Rademacher sum (Theorem 19.1) to derive

the discrepancy upper bound. For any vectors x1, . . . , xn with maximum rank s, by

setting t = O(σ
√
log s) in Theorem 19.1, we get that ∥∑n

i=1 rixi∥h ≤ O(σ
√
log s)

holds with high probability for uniformly random signs r ∼ {±1}n.

20.3.2 Hyperbolic deviations

In this section, we will sketch the proof of our hyperbolic generalization of

the Kadison-Singer theorem (Theorem 20.10). We will use the same strategy as

1The compatible family of polynomials is closely related to the interlacing family in [MSS15b,
MSS18]. See Definition 20.12.

1228

the original Kadison-Singer theorem (Theorem 20.1) in [MSS15a, MSS15b], following

three main technical steps.

For simplicity, we assume that the random variables ξ1, . . . , ξn ∈ {±1} are

independent Rademacher random variables, i.e., Pr[ξi = 1] = 1
2

and Pr[ξi = −1] = 1
2

for all i ∈ [n].

To generalize the Kadison-Singer statement into the hyperbolic norm, one

main obstacle is to define the variance of the hyperbolic norm of the sum of random

vectors
∑n

i=1 ξivi. In the determinant polynomial case, each vi corresponds to a

rank-1 matrix uiu
∗
i , and it is easy to see that the variance of the spectral norm is

∥∑n
i=1(uiu

∗
i)

2∥. However, there is no analog of “matrix square” in the setting of

hyperbolic/real-stable polynomials. Instead, we define the hyperbolic variance:
∥∥∥∥∥

n∑

i=1

trh[vi]vi

∥∥∥∥∥
h

in terms of the hyperbolic trace, and show that four hyperbolic deviations suffice.

Defining interlacing family of characteristic polynomials. In the first step,

we construct a family of characteristic polynomials {ps : s ∈ {±1}t, t ∈ {0, · · · , n}}
as follows: For each s ∈ {±1}n, define the leaf-node-polynomial:

ps(x) :=

(
n∏

i=1

pi,si

)
· h
(
xe+

n∑

i=1

sivi

)
· h
(
xe−

n∑

i=1

sivi

)
,

and for all ℓ ∈ {0, . . . , n−1}, s′ ∈ {±1}ℓ, we construct an inner node with a polynomial

that corresponds to the bit-string s′:

ps′(x) :=
∑

t∈{±1}n−ℓ

p(s′,t)(x).

where (s′, t) ∈ {±1}n is the bit-string concatenated by s′ and t.

We will then show that the above family of characteristic polynomials forms

an interlacing family (see Lemma 20.47 for detail) . By basic properties of interlacing

1229

family, we can always find a leaf-root-polynomial ps (where s ∈ {±1}n) whose largest

root is upper bounded by the largest root of the top-most polynomial.

p∅(x) = Eξ1,··· ,ξn

[
h
(
xe+

n∑

i=1

ξivi

)
· h
(
xe−

n∑

i=1

ξivi

)]
.

(we call p∅ to be the mixed characteristic polynomial). Notice that by rewriting the

largest root of ps to be the expected hyperbolic norm of
∑n

i=1 sivi, we get that

λmax(p∅) =

∥∥∥∥∥
n∑

i=1

sivi

∥∥∥∥∥
h

. (20.2)

(See Corollary 20.48 for a formal statement).

Also, we will take s ∈ {±1}n as the corresponding sign assignment in the

main theorem (Theorem 20.10) It then suffices to upper-bound the largest root of the

mixed characteristic polynomial.

From mixed characteristic polynomial to multivariate polynomial. In the

second step, we will show that the mixed characteristic polynomial that takes the

average on n random variables

p∅(x) = Eξ1,...,ξn

[
h
(
xe+

n∑

i=1

ξivi

)
· h
(
xe−

n∑

i=1

ξivi

)]

is equivalent to a polynomial with n extra variables z1, · · · , zn:

n∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣∣∣
z=0

(
h
(
xe+

n∑

i=1

zivi

))2

. (20.3)

(See Lemma 20.49 for more detail.) Thus, we can reduce the upper bound of χmax(p∅)

to an upper bound of the largest root in (20.3). The latter turns out to be easier to

estimate with the help of a barrier argument [MSS15b].

To show such equivalence holds, we use induction on the random variables

ξ1, . . . , ξn. More specifically, we start from ξ1 and are conditioned on any fixed choice

1230

of ξ2, . . . , ξn. We prove that taking expectation over ξ1 is equivalent to applying the

operator (1− ∂2

∂z21
) to the polynomial

(
h(xe+ z1v1 +

n∑

i=2

ξivi)

)2

and setting z1 = 0. Here we use the relation between expectation and the second

derivatives: for any Rademacher random variable ξ,

Eξ[h(x1 − ξv) · h(x2 + ξv)] =

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tv)h(x2 + tv).

Repeating this process and removing one random variable at a time. After n itera-

tions, we obtain the desired multivariate polynomial.

We also need to prove the real-rootedness of the multivariate polynomial

(Eqn. (20.3)). We first consider an easy case where h itself is a real-stable polynomial,

as in the determinant polynomial case. Then the real-rootedness easily follows from

the closure properties of the real-stable polynomial (see Fact 20.17) . More specifically,

we can show that (h(xe+
∑n

i=1 zivi))
2 is also a real-stable polynomial. Furthermore,

applying the operators (1 − 1
2
∂2

∂z2i
) and restricting z = 0 preserve the real-stability.

Therefore, the multivariate polynomial is a univariate real-stable polynomial, which

is equivalent to being real-rooted.

Next, we show that when h is a hyperbolic polynomial, the multivariate poly-

nomial (Eqn. (20.3)) is also real-rooted. our approach is to show that the linear

restriction of h: h(xe +
∑n

i=1 zivi) is a real-stable polynomial in R[x, z1, . . . , zn]. A

well-known test for real-stability is that if for any a ∈ Rn+1
>0 , b ∈ Rn+1, the one-

dimensional restriction p(at + b) ∈ R[t] is non-zero and real-rooted, then p(x) is

real-stable. We test h(xe +
∑n

i=1 zivi) by restricting to at + b, and get the following

polynomial:

h
(
(a1e+

n∑

i=1

ai+1vi)t+ y
)
∈ R[t],

1231

where y is a fixed vector depending on b. Since ai > 0 for all i ∈ [n+1] and e, v1, . . . , vn
are vectors in the hyperbolicity cone, it implies that the vector a1e +

∑n
i=1 ai+1vi is

also in the hyperbolicity cone. Then, by the definition of hyperbolic polynomial,

we immediately see that h((a1e +
∑n

i=1 ai+1vi)t + y) is real-rooted for any a ∈ Rn+1
>0

and b ∈ Rn+1. Hence, we can conclude that the restricted hyperbolic polynomial

h(xe+
∑n

i=1 zivi) is real-stable and the remaining proof is the same as the real-stable

case.

Applying barrier argument. Finally, we use barrier argument to find an “upper

barrier vector” whose components lie above any roots of multivariate polynomial

can take. In particular, we consider the multivariate polynomial P (x, z) = (h(xe +
∑n

i=1 zivi))
2. Define the barrier function of any variable i ∈ [n] as the following:

Φi
P (α(t),−δ) =

∂ziP (x, z)

P (x, z)

∣∣∣
x=α(t),z=−δ

,

where δ ∈ Rn where δi = ttrh[vi] for i ∈ [n] and α(t) > t is a parameter that depends

on t.

As a warm-up, consider the case when σ = 1 and assuming ∥∑n
i=1 trh[vi]vi∥h ≤

1. It is easy to show that (α(t),−δ) is an upper barrier of P , from the linearity of

the hyperbolic eigenvalues and the assumption. Next, we upper-bound the barrier

function’s value at (α(t),−δ). When h is a determinant polynomial, this step is easy

because the derivative of log det is the trace of the matrix. For a general hyperbolic

polynomial, we will rewrite the partial derivative ∂zi as a directional derivative Dvi

and get

Φi
P (α(t),−δ) = 2 ·

(Dvih)(αe− te+ t(e−∑n
j=1 trh[vj]vj))

h(αe− te+ t(e−∑n
j=1 trh[vj]vj))

.

We observe that our assumption ∥∑n
i=1 trh[vi]vi∥h ≤ 1 implies that e−∑n

j=1 trh[vj]vj ∈
Γh+. By the concavity of the function h(x)

Dvih(x)
in the hyperbolicity cone, we can prove

that

Φi
P (α(t),−δ) ≤

2trh[vi]

α(t)− t .

1232

Now, we can apply the barrier update lemma in [KLS20] (Lemma 20.26) with α(t) =

2t = 4 to show that

Φj

(1− 1
2
∂2zi)P

(4,−δ + δi1i) ≤ Φj
P (4,−δ).

In other words, the partial differential operator (1 − 1
2
∂2zi) shifts the upper-barrier

by (0, · · · , 0, δi, 0, · · · , 0). Using induction for the variables δ1, · · · , δn, we can finally

finally get an upper-barrier of

(4,−δ +
n∑

i=1

δi1i) = (4, 0, . . . , 0),

which implies that (4, 0, . . . , 0) is above the roots of

n∏

i=1

(
1− 1

2

∂2

∂z2i

)(
h
(
xe+

n∑

i=1

ziτivi

))2

(20.4)

(See Lemma 20.53 for detail).

A challenge in this process is ensuring that the barrier function remains non-

negative. To achieve this, we use the multidimensional convexity of the hyperbolic

barrier function as established in [Tao13] (Lemma 20.27) . For cases where σ ̸= 1,

this requirement is satisfied through a simple scaling argument.

Combining the above three steps together, we can prove that Prξ1,··· ,ξn [∥
∑n

i=1 ξivi∥h ≤
4σ] > 0 for vectors v1, . . . , vn in the hyperbolicity cone with ∥∑n

i=1 trh[vi]vi∥h = σ2.

The complete proof can be found in Section 20.7.

20.3.3 Generalization to strongly Rayleigh distributions

Our main technical contribution to Theorem 20.11 is a more universal and

structured method to characterize the mixed characteristic polynomial. Define the

mixed characteristic polynomial as

qS(x) = µ(S) · h
(
xe−

∑

i∈S

vi

)
. (20.5)

1233

we want to show that it is equivalent to the restricted multivariate polynomial:

n∏

i=1

(1− 1

2

∂2

∂z2i
)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

∈ R[x, z1, · · · , zn]. (20.6)

Although Eqn. (20.5) and Eqn. (20.6) are the hyperbolic generalization of

[AO14], we are unable to apply the previous techniques. This is because [AO14]

computes the mixed characteristic polynomial explicitly, which heavily relies on the

fact that the characteristic polynomial is a determinant. It is unclear how to generalize

this method to hyperbolic/real-stable characteristic polynomials.

The key step in [AO14] is to show the following equality between mixed char-

acteristic polynomial and multivariate polynomial:

xdµ−d · ES∼µ
[
det

(
x2I −

∑

i∈S

2viv
⊤
i

)]

=
n∏

i=1

(1− ∂2zi)
(
gµ(x1+ z) · det(xI +

n∑

i=1

ziviv
⊤
i)

)∣∣∣∣∣
z=0

where dµ is the degree of the homogeneous strongly-Rayleigh distribution µ (i.e. the

degree of gµ), and m is the dimension of vi.

Then they expand the right-hand side to get:

RHS =
m∑

k=0

(−1)kxdµ+m−2k
∑

S∈([n]
k)

Pr
T∼µ

[S ⊆ T] · σk(
∑

i∈S

2viv
⊤
i)

= xdµ−m · ES∼µ
[
det

(
x2I −

∑

i∈S

2viv
⊤
i

)]
= LHS,

where σk(M) equals to the sum of all k× k principal minors of M ∈ Rm×m. The first

step comes from expanding the product
∏n

i=1(1 − ∂2zi), and the second step comes

from that

det(x2I −
n∑

i=1

viv
⊤
i) =

m∑

k=0

(−1)2kx2m−2k
∑

S∈([n]
k)

σk(
∑

i∈S

viv
⊤
i).

1234

The naive generalization of a technique to hyperbolic/real-stable polynomial

h faces challenges. One such challenge is the absence of an explicit form for h,

unlike in the case of h = det where the determinant can be expressed as a combi-

nation of minors. This lack of a well-defined minor presents difficulty in rewriting

the hyperbolic/real-stable polynomial. To tackle this issue, we devised a new and

structured proof that relies on induction, offering a novel solution to this problem.

Inductive step. We first rewrite the expectation over the Strongly-Rayleigh dis-

tribution T ∼ µ as follows:

xdµ · 2−n · ET∼µ[h(xe−
∑

i∈T

vi)] =
1

2
Eξ2,··· ,ξn∼{0,1}n−1

[
(1− ∂z1)h(x2 + z1v1)x∂z1g2(x+ z1)

+ h(x2)(1− x∂z1)g2(x+ z1)
∣∣∣
z1=0

]

where g2 is defined as

g2(t) := x
∑n

i=2 ξi ·
n∏

i=2

(
ξi∂zi + (1− ξi)(1− x∂zi)

)
gµ(t, x+ z2, x+ z3, · · · , x+ zn)

∣∣∣
z2,...,zn=0

and x2 = x2e −∑n
i=2 ξivi. The main observation is that the marginals of a homo-

geneous Strongly-Rayleigh distribution can be computed from the derivatives of its

generating polynomial (Fact 20.55) .

Then, we can expand the term inside the expectation as

(1− x

2
∂2z1)

(
h(x2 + z1v1)g2(x+ z1)

)∣∣∣
z1=0

,

using the fact that rank(v1)h ≤ 1 and the degree of g2(t) is at most 1.

Hence, we obtain our inductive step as

xdµ · 2−n · Eξ∼µ
[
h(xe−

n∑

i=1

ξivi)

]

=
1

2
(1− x

2
∂2z1)

(
Eξ2,··· ,ξn

[
h(xe−

n∑

i=2

ξivi + z1v1) · g2(x+ z1)
]) ∣∣∣∣∣

z1=0

.

1235

Applying the step inductively. Repeating the above process for n times, we

finally get

xdµ · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]
=
∑

T⊆[n]

(−x
2
)|T |∂2zT

(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

Then, we rewrite the partial derivatives as directional derivatives (see Definition 20.20

for detail) . For any subset T ⊆ [n] of size k, we have

(−x
2
)k∂2zT

(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

= (−x
2
)k · 2k ·

(∏

i∈T

Dvi

)
h(x2e) · g(T)µ (x1),

where g(T)µ (x1) =
∏

i∈T ∂zigµ(x1 + z)
∣∣∣
z=0

. And by the homogeneity of h, it further

equals to

xd · (−1

2
)k∂2zT

(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)

)∣∣∣∣∣
z=0

.

Therefore, we prove the following formula that relates the characteristic poly-

nomial under SR distribution to the multivariate polynomial:

xdµ · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]
= xd ·

n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

The complete proof can be found in Section 20.8.

Roadmap. We provide preliminary definitions and facts in Section 20.4. We prove

a relaxed version of [Brä18]’s result in Section 20.5. We prove a special case of the

hyperbolic Spencer conjecture in Section 20.6. In Section 20.7, we prove our first

main result (Theorem 20.10), which is a hyperbolic generalization of Kadison-Singer

result for a weaker condition (sum of squares of vectors is bounded). In Section 20.8,

we prove our second main result (Theorem 20.11), which is a hyperbolic extension

1236

of the Kadison-Singer result for strongly-Rayleigh distributions. We put the sub-

exponential algorithm for our main results in Section 20.9. In Section 20.10, we

provide some examples of real-stable and hyperbolic polynomials.

20.4 Preliminaries

We gather several basic linear algebraic and analytic facts in the following

subsections.

Notations. For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. We

use 1 to denote the all-one vector and 1i to denote the vector with one in the i-th

coordinate and zero in other coordinates.

20.4.1 Real-stable polynomials

Definition 20.1. A multivariate polynomial p ∈ C[x1, · · · , xm] is stable if it has no

zeros in the region {(x1, . . . , xm) : Im(xi) > 0 for all i ∈ [m]}. p is real stable if p is

stable and has real coefficients.

In the rest of this chapter, we restrict our discussion into polynomials with

real coefficients.

Fact 20.14. We say a univariate polynomial p ∈ R[t] is real-rooted iff it is real-stable.

Fact 20.15 (Equivalent definition of real-stable polynomial). A multivariate polyno-

mial p ∈ R[x1, · · · , xm] is real stable iff for any a ∈ Rm
>0 and b ∈ Rm, the univariate

polynomial p(at+ b) with respect to t is not identically zero and is real-rooted.

Lemma 20.16 (Proposition 2.4, [BB08]). If A1, . . . , An are positive semidefinite sym-

metric matrices, then the polynomial

det

(
n∑

i=1

ziAi

)

is real stable.

1237

We also need that real stability is preserved under product (see [BBL09]),

restricting variables to real values (see [Wag11, Lemma 2.4(d)]), and taking (1− ∂2xi)
(see [AO14, Corollary 2.8]).

Fact 20.17 (Closure operations of real-stable polynomials). Let p, q ∈ R[x1, . . . , xm]

be two real stable polynomials. Then the following operations preserve real-stability:

• (Product) p · q.

• (Restriction to real values) For any a ∈ R, p|x1=a = p(a, x2, . . . , xm) ∈
R[x2, . . . , xm].

• (One minus second partial derivative) For any c ∈ R+, i ∈ [n], (1 − c ·
∂2xi)p(x1, . . . , xn).

20.4.2 Hyperbolic polynomials

Hyperbolic polynomial and its hyperbolicity cone have been defined in Chap-

ter 19. For convenience, we recall their definitions here.

Definition 20.2 (Hyperbolic polynomials). A homogeneous polynomial h ∈ R[x1, · · · , xm]
is hyperbolic with respect to vector e ∈ Rm with h(e) > 0, if for all x ∈ Rm, the uni-

variate polynomial t 7→ h(te− x) only has real roots.

Furthermore, if h has degree d, fix any x ∈ Rm we can write

h(te− x) = h(e)
d∏

i=1

(t− λi(x)),

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) are the real roots of the univariate polynomial

h(te− x). In particular,

h(x) = h(e)
d∏

i=1

λi(x).

We denote λi(x) as the i-th eigenvalue of x.

1238

Definition 20.3 (hyperbolicity cone). Let h ∈ R[x1, · · · , xm] be a degree d hyperbolic

polynomial with respect to e ∈ Rm. For any x ∈ Rm, let λ1(x) ≥ · · · ≥ λd(x) ∈ Rd

be the real roots of h(te− x). Define the hyperbolicity cone of h as

Γh++ := {x : λd(x) > 0}.

Furthermore, define the closure of Γh+ as

Γh+ := {x : λd(x) ≥ 0}.

Fact 20.18. For any e ∈ Rm
>0 and any homogeneous real-stable polynomial h ∈

R[x1, · · · , xm], we have h is hyperbolic with respect to e. In other words, Rm
>0 ⊆ Γh+.

Proof. For any e ∈ Rm
>0 and for any x ∈ Rm, by Fact 20.15 (with replacing a by e

and b by x), the uni-variate polynomial h(te− x) is real rooted. By Definition 20.2 h

is hyperbolic with respect to direction e.

The hyperbolic trace, rank, and spectral norm are defined in Definition 19.5.

Fact 20.19 (Hyperbolic norm in terms of largest root of characteristic polynomial).

Let h ∈ R[x1, · · · , xm] be a degree d hyperbolic polynomial with respect to e ∈ Rm. For

any v1, · · · vm ∈ Γh+ and any s1, · · · , sm ∈ R, we have
∥∥∥∥∥

m∑

i=1

sivi

∥∥∥∥∥
h

= λmax

(
h

(
xe−

n∑

i=1

sivi

)
· h
(
xe+

n∑

i=1

sivi

))

where λmax(f(x)) is the maximum root of f(x).

Proof. For any vector v ∈ Rm, it is easy to see that the i-th largest eigenvalue

λi(v) = −λd−i+1(−v). Then, we have

λmax

(
h

(
xe−

n∑

i=1

sivi

)
· h
(
xe+

n∑

i=1

sivi

))
= max

{
λ1

(
m∑

i=1

sivi

)
, λ1

(
−

m∑

i=1

sivi

)}

= max

{
λ1

(
m∑

i=1

sivi

)
,−λd

(
m∑

i=1

sivi

)}

=

∥∥∥∥∥
m∑

i=1

sivi

∥∥∥∥∥
h

.

1239

Remark 20.1. It is useful to think of hyperbolic polynomials as generalizations of

the determinant polynomials. Let X ∈ Sn(R) be a symmetric matrix. Define h :

Sn(R) 7→ R as

h(X) = det(X).

Then, h is hyperbolic with respect to the identity matrix In ∈ Sn(R), since for all

X ∈ Sn(R), the roots of h(tI − X) are the eigenvalues of X, thus h(tI − X) is

real-rooted.

The basic concepts for hyperbolic polynomials in Definition 20.3 and Definition

19.5 also have analogues in linear algebra. To illustrate them, let h be the determinant

polynomial:

• The hyperbolicity cone of h is

Γh+ = {X ∈ Rn×n : λn(X) > 0} = {X ∈ Rn×n : X ≻ 0}.

• For all X ∈ Sn(R), the hyperbolic trace of X is

trh[X] =
n∑

i=1

λi(X) = tr[X].

• For all X ∈ Sn(R), the hyperbolic rank of X is

rankh(X) = |{i : λi(X) ̸= 0}| = rank(X).

• For all X ∈ Sn(R), the hyperbolic spectral norm of X is

∥X∥h = max
i∈[n]
|λi(X)| = ∥X∥.

here ∥X∥ denotes the spectral norm of X.

1240

Definition 20.4 (Directional derivative). Given a polynomial h ∈ R[x1, · · · , xm] and

a vector v ∈ Rm, define the directional derivative of h in direction v as

Dvh :=
n∑

i=1

vi
∂h

∂xi
.

Fact 20.20 (Equivalent definition of directional derivative). Given polynomial h ∈
R[x1, · · · , xm] and vectors x, v ∈ Rm,

(Dvh)(x) =
d

dt
h(x+ tv), (20.7)

(D2
vh)(x) =

d2

dt2
h(x+ tv). (20.8)

Fact 20.21 (Directional derivative of hyperbolic polynomials). Let h ∈ R[x1, · · · , xm]
denote a hyperbolic polynomial with respect to e ∈ Rm. Let v1, . . . , vn ∈ Rm be n

vectors such that ∀i ∈ [n], rankh(vi) ≤ 1. Then, for any t ∈ R,

(
m∏

i=1

Dvih)(te) = (
n∏

i=1

∂zih)(te+
n∑

i=1

zivi).

Moreover, for any T ⊆ [m], we have

(
∏

i∈T

Dvih)(te) = (
∏

i∈T

∂zih)(te+
n∑

i=1

zivi)
∣∣∣
z=0

.

Fact 20.22 (First-order expansion of hyperbolic polynomial). Let h ∈ R[x1, · · · , xm]
be any hyperbolic polynomial. For any vectors v1, . . . , vn ∈ Rm such that ∀i ∈ [n],

rankh(vi) ≤ 1, and for any real vector x ∈ Rm,

h(x±
n∑

i=1

vi) =
n∏

i=1

(1± ∂zi)h(x+
n∑

i=1

zivi)

∣∣∣∣∣
z=0

.

Furthermore, for any S ⊆ [n],

h(x±
∑

i∈S

vi) =
∏

i∈S

(1± ∂zi)h(x+
n∑

i=1

zivi)

∣∣∣∣∣
z=0

.

1241

Proof. Prove by induction on n.

If n = 1, we have

h(x± v1) = (1±Dv1)h(x) = (1± ∂z1)h(x+ z1v1)
∣∣∣
z1=0

,

which follows from rankh(v1) ≤ 1.

Assume it holds for n = k.

When n = k + 1, let x′ = x±∑k
i=1 vi. We have

h(x±
k+1∑

i=1

vi) = h(x′ ± vk+1)

= (1± ∂zk+1
)h(x′ + zk+1vk+1)

∣∣∣
zk+1=0

= (1± ∂zk+1
)h(x+ zk+1vk+1 ±

k∑

i=1

vi)
∣∣∣
zk+1=0

= (1± ∂zk+1
)

k∏

i=1

(1± ∂zi)h(x+
k+1∑

i=1

zivi)
∣∣∣
z=0

=
k+1∏

i=1

(1± ∂zi)h(x+
k+1∑

i=1

zivi)
∣∣∣
z=0

,

where the second step follows from rankh(vk+1) ≤ 1, the forth step follows from

the induction hypothesis, and the last step follows from the operators (1 ± ∂zi) and

(1± ∂zj) commute for i ̸= j ∈ [k + 1].

Hence, the fact is proved. And for the furthermore part, it follows from the

remaining variables zi for i /∈ S will disappear when we set z = 0.

20.4.3 Interlacing families

We recall the definition and properties of interlacing families from [MSS15a].

Definition 20.5 (Interlacing polynomials and common interlacing). We say a real

rooted polynomial g(x) = C
∏n−1

i=1 (x−αi) interlaces the real rooted polynomial f(x) =

1242

C ′
∏n

i=1(x− βi) if

β1 ≤ α1 ≤ · · · ≤ αn−1 ≤ βn.

We say the polynomials f1, . . . , fk have a common interlacing if there is a polynomial

g that interlaces each of the fi.

The following lemma relates the roots of a sum of polynomials to those of a

common interlacing.

Lemma 20.23 (Lemma 4.2, [MSS15a]). Let f1, . . . , fk be degree d real rooted poly-

nomials with positive leading coefficients. Define

f∅ :=
k∑

i=1

fi.

If f1, . . . , fk have a common interlacing, then there exists an i ∈ [k] such that the

largest root of fi is at most the largest root of f∅.

Definition 20.6 (Definition 4.3, [MSS15a]). Let S1, . . . , Sn be finite sets. For each

choice of assignment (s1, . . . , sn) ∈ S1×· · ·×Sn, let fs1,...,sn(x) be a real rooted degree

d polynomial with positive leading coefficient. For a partial assignment s1, . . . , sk ∈
S1 × · · · × Sk for k < n, we define

fs1,...,sk :=
∑

sk+1∈Sk+1,...,sn∈Sn

fs1,...,sk,sk+1,...,sn . (20.9)

Note that this is compatible with our definition of f∅ from Lemma 20.23. We say

that the polynomials {fs1,...,sn} form an interlacing family if for all k = 0, . . . , n − 1

and all (s1, . . . , sk) ∈ S1 × · · · × Sk, the polynomials
{
fs1,··· ,sk,t : t ∈ Sk+1

}

have a common interlacing.

The following lemma relates the roots of the interlacing family to those of f∅.

1243

Lemma 20.24 (Theorem 4.4, [MSS15a]). Let S1, . . . , Sn be finite sets and let {fs1,...,sn}
be an interlacing family. Then there exists some (s1, . . . , sn) ∈ S1 × · · · × Sn so that

the largest root of fs1,...,sn is upper bounded by the largest root of f∅.

Finally, we recall a relationship between real-rootedness and common inter-

lacings which has been discovered independently several times [DG94, Fel80, CS07].

Lemma 20.25 ([DG94, Fel80, CS07]). Let f1, . . . , fk be univariate polynomials of

the same degree with positive leading coefficient. Then f1, . . . , fk have a common

interlacing if and only if
∑k

i=1 αifi is real rooted for all convex combinations αi,
∑k

i=1 αi = 1.

20.4.4 Barrier method

Definition 20.7 (Upper barrier of the roots of a polynomial). For a multivariate

polynomial p(z1, . . . , zn), we say z ∈ Rn is above all roots of p if for all t ∈ Rn
+,

p(z + t) > 0.

We use Abp to denote the set of points which are above all roots of p.

We use the barrier function as in [MSS15b] and [KLS20].

Definition 20.8 (Barrier function). For a multivariate polynomial p and z ∈ Abp,

the barrier function of p in direction i at z is

Φi
p :=

∂zip(z)

p(z)
.

We will make use of the following lemma that controls the deviation of the

roots after applying a second order differential operator. This lemma is a slight

variation of Lemma 5.3 in [KLS20].

1244

Lemma 20.26 (Lemma 5.3 of [KLS20]). Suppose that p(z1, · · · , zm) is real stable and

z ∈ Abp. For any c ∈ [0, 1] and i ∈ [m], if

Φi
p(z) <

√
1/c, (20.10)

then z ∈ Ab(1−c·∂2zi)p
. If additionally for δ > 0,

c ·
(
2

δ
Φi
p(z) + (Φi

p(z))
2

)
≤ 1, (20.11)

then, for all j ∈ [m],

Φj

(1−c·∂2i)p
(z + δ1i) ≤ Φj

p(z).

Remark 20.2. We choose c = 1/2 when we use the above lemma in Section 20.7.4 and

Section 20.8.4.

Lemma 20.27 (Multi-dimensional convexity, [Tao13]). Let p(z1, . . . , zm) be a real

stable polynomial of m variables. For any i ∈ [m],

(−1)k ∂
k

∂zkj
Φi
p(x) ≥ 0

for all k = 0, 1, 2, . . . and x ∈ Abp.

20.5 High-Rank Hyperbolic Kadison-Singer with Sub-Isotropic
Condition

In this section, we will show how to relax the isotropic condition in the hyper-

bolic Kadison-Singer theorem [Brä18].

20.5.1 Formal Statements of Previous Matrix Discrepancy Results

In this section, we formally state some matrix discrepancy results. We first

recall the discrepancy theorem implied by the Kadison-Singer theorem.

1245

Theorem 20.28 (A restatement of Theorem 20.3, [MSS15b]). Let x1, . . . , xn ∈ Cm

and suppose ∥xix∗i ∥ ≤ ϵ for all i ∈ [n] and
∑n

i=1 xix
∗
i = I. Then, there exist signs

r ∈ {−1, 1}n such that
∥∥∥∥∥

n∑

i=1

rixix
∗
i

∥∥∥∥∥ ≤ O(
√
ϵ).

This theorem also holds for high rank matrices as long as the isotropic condi-

tion holds:

Theorem 20.29 (High rank Kadison-Singer [Coh16a, Brä18]). Let X1, . . . , Xn ∈
Cd×d be positive semi-definite symmetric matrices such that tr[Xi] ≤ ϵ for all i ∈ [n]

and
∑n

i=1Xi = I. Then, there exist signs r ∈ {−1, 1}n such that
∥∥∥∥∥

n∑

i=1

riXi

∥∥∥∥∥ ≤ O(
√
ϵ).

20.5.2 Hyperbolic Kadison-Singer with relaxed condition

The goal of this section is to prove Theorem 20.31, which relaxes the isotropic

condition in Corollary 20.7 to the bounded hyperbolic norm.

We first formally state the upper bound in [Brä18]:

Definition 20.9. For r ∈ N+, let Ur be the set of all pairs (δ, µ) ∈ R+ × R+ such

that

δ − 1 ≥ δ

µ
·

(
1 + δ

rµ

)r−1
−
(
δ
rµ

)r−1
(
1 + δ

rµ

)r
−
(
δ
rµ

)r ,

and either µ > 1, or δ ∈ [1, 2], µ > 1− δ/r.

Then, the upper bound in [Brä18] is:

δ(ϵ, n, r) := inf
(δ,µ)∈Ur

ϵµ+ (1− 1
n
)δ

1 + µ−1
n

.

In particular, δ(ϵ,∞, r) := inf(δ,µ)∈Ur ϵµ+ δ.

1246

Theorem 20.30 ([Brä18]). Let k ≥ 2 be an integer and ϵ a positive real number.

Suppose h is hyperbolic with respect to e ∈ Rm, and let x1, . . . , xn ∈ Λ+(h, e) be such

that

trh[xi] ≤ ϵ, rank(xi) ≤ r ∀i ∈ [n], and
n∑

i=1

xi = e.

Then there is a partition S1 ∪ S2 ∪ · · · ∪ Sk = [n] such that for all j ∈ [k],
∥∥∥∥∥∥
∑

i∈Sj

xi

∥∥∥∥∥∥
h

≤ 1

k
· δ (kϵ, n, rk) .

The high-level idea of proving Theorem 20.30 is similar to [MSS15b]. We can

show that this discrepancy upper-bound can be obtained by rounding a compatible

family of polynomials, which is a generalization of the interlacing family defined in

[MSS15b]. Then, this rounding problem is further equivalent to upper-bound the

largest root of a mixed hyperbolic polynomial (Definition 20.11), which is achieved

by proving a structural result about the hyperbolic cone of the mixed hyperbolic

polynomial.

Following this approach, we slightly generalize Theorem 20.30 by relaxing the

isotropic condition:

Theorem 20.31. Let k ≥ 2 be an integer and ϵ, σ > 0. Suppose h ∈ R[z1, . . . , zm]

is hyperbolic with respect to e ∈ Rm, and let x1, . . . , xn be n vectors in the hyperbolic

cone Λ+(h, e) (see Definition 19.4) such that

trh[xi] ≤ ϵ, rank(xi) ≤ r ∀i ∈ [n], and

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
h

≤ σ.

Then, there exists a partition S1 ∪ S2 ∪ · · · ∪ Sk = [n] such that for all j ∈ [k],
∥∥∥∥∥∥
∑

i∈Sj

xi

∥∥∥∥∥∥
h

≤ σ

k
· δ
(
kϵ

σ
, n, rk

)
.

1247

Remark 20.3. By Eq. (1.7) in [Brä18], the above bound is at most

σ

k
· δ(kϵ/σ,∞,∞) =

σ

k
· (1 +

√
kϵ/σ)2 =

(√
ϵ+

√
σ/k

)2
,

which also generalizes the result of [MSS15b] (Theorem 20.1) to hyperbolic polyno-

mials with sub-isotropic condition.

Remark 20.4. We note that a naive approach to relax the isotropic condition is to

add some dummy vectors and then apply Theorem 20.30. However, to satisfy the

condition that each vector has trace at most ϵ, the number of dummy vector can

be O(n/ϵ) in the worst case. Then, this approach results in an upper bound of
σ
k
· δ
(
kϵ
σ
, O(n/ϵ), rk

)
. By the property of the δ function, we know that this bound is

worse than ours in Theorem 20.31.

The proof of Theorem 20.31 is almost the same as the proof of Theorem 1.3 in

[Brä18], but relies on the sub-isotropic version of the following theorem. Therefore,

we will only prove Theorem 20.32.

Theorem 20.32 (Sub-isotropic version of Theorem 6.1 in [Brä18]). Suppose h ∈
R[z1, . . . , zm] is a hyperbolic polynomial with respect to e ∈ Rm. Let x1, . . . , xm be

independent random vectors in Λ+(e) with finite supports such that

trh[E[xi]] ≤ ϵ, rank(E[xi]) ≤ r ∀i ∈ [n], and

∥∥∥∥∥
n∑

i=1

E[xi]

∥∥∥∥∥
h

≤ σ.

Then, we have

Pr

[
λmax

(
n∑

i=1

xi

)
≤ σ · δ(ϵ/σ, n, r)

]
> 0.

Proof. Let Vi be the support of xi for i ∈ [n]. By Theorem 20.38, the family

{h[v1, . . . , vm](te+ 1)}vi∈Vi is compatible, where te+ 1 =

[
te
1

]
∈ Rn+m

By Theorem 20.37, there exists (v∗1, . . . , v
∗
n) ∈ V1 × · · · × Vn with nonzero

probability, such that the largest root of h[v∗1, . . . , v∗n](te + 1) is at most the largest

root of E[h[x1, . . . , xn]].

1248

By Fact 20.36, E[h[x1, . . . , xn]] = h[E[x1], . . . ,E[xn]]. Let λmax(v1, . . . , vn) de-

note the largest root of h[v1, . . . , vm](te+ 1). Then, we have

λmax(E[x1], . . . ,E[xn]) ≥ λmax(v
∗
1, . . . , v

∗
n) ≥ λmax(v

∗
1 + · · ·+ v∗n),

where the second step follows from Theorem 20.39.

It is easy to verify that E[x1], . . . ,E[xn] satisfy the conditions in Theorem 20.41.

Thus, by Theorem 20.41, we get that

λmax(v
∗
1 + · · ·+ v∗n) ≤ λmax(E[x1], . . . ,E[xn]) ≤ σ · δ(ϵ/σ, n, r),

which completes the proof.

Similar to Corollary 20.7, Theorem 20.31 also implies the following discrepancy

result for vectors in sub-isotropic position.

Corollary 20.33. Let 0 < ϵ ≤ 1
2
. Suppose h ∈ R[z1, . . . , zm] is hyperbolic with respect

to e ∈ Rm, and let x1, . . . , xn ∈ Λ+(h, e) that satisfy

trh[xi] ≤ ϵ, and

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
h

≤ σ.

Then, there exist signs r ∈ {−1, 1}n such that
∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥
h

≤ 2
√
ϵ(2σ − ϵ).

Proof. By Theorem 20.31 with k = 2 and the upper bound in Remark 20.3, there

exists a set S ⊆ [n] such that
∥∥∥
∑

i∈S

xi

∥∥∥
h
≤ (
√
ϵ+

√
σ/2)2, and

∥∥∥
∑

i ̸∈S

xi

∥∥∥
h
≤ (
√
ϵ+

√
σ/2)2.

Since we know that ∥∑n
i=1 xi∥h ≤ σ, we get that

∥∥∥
∑

i∈S

−
∑

i ̸∈S

xi

∥∥∥
h
≤ σ − 2(

√
ϵ+

√
σ/2)2 = 2

√
ϵ(2σ − ϵ).

By assigning ri = 1 for i ∈ S and ri = −1 for i /∈ S, we complete the proof of the

corollary.

1249

20.5.3 Technical tools in previous work

In this section, we provide some necessary definitions and technical tools we

used in [Brä18].

Definition 20.10 (Directional derivative). Let h ∈ R[x1, . . . , xm]. The directional

derivative of h(x) with respect to v ∈ Rm is defined as

Dvh(x) :=
m∑

i=1

vi ·
∂h

∂xi
(x).

The following fact shows the relation between directional derivative and the

usual derivative.

Fact 20.34. For any polynomial h(x) and any vector v ∈ Rm, we have

Dvh(x+ tv) =
d

dt
h(x+ tv).

If h is a hyperbolic polynomial, then the directional derivative is related to

the hyperbolic trace:

Fact 20.35. If h is hyperbolic with respect to e ∈ Rm, then for any v ∈ Rm, we have

trh[v] =
Dvh(e)

h(e)
.

Definition 20.11 (Mixed hyperbolic polynomial). If h(x) ∈ R[x1, . . . , xm] is a hy-

perbolic polynomial with respect to e ∈ Rm, and v1, . . . , vn ∈ Λ+, then the mixed

hyperbolic polynomial h[v1, . . . , vm] ∈ R[x1, . . . , xm, y1, . . . , yn] is defined as

h[v1, . . . , vn] :=
m∏

i=1

(1− yiDvi)h(x).

Brändén [Brä18] proved that h[v1, . . . , vn] is also hyperbolic with the hyper-

bolic cone containing Λ++ × Rn
≤0. In our proof, we will also use the following fact,

which can be easily proved by showing that h[v1, . . . , vn] is affine linear in each coor-

dinate.

1250

Fact 20.36. Let x1, . . . , xn be independent random variables in Rm. Then,

E[h[x1, . . . , xn]] = h[E[x1], . . . ,E[xn]].

Brändén [Brä18] also defined the compatible family of polynomials, which is

a sub-class of interlacing family of polynomials in [MSS15b, MSS18].

Definition 20.12 (Compatible family of polynomials). Let S1, . . . , Sn be finite sets.

A family of polynomials

F = {f(S; t)}S∈S1×···×Sn ⊂ R[t]

is called compatible if the following properties hold:

• all the nonzero members of F have the same degree and the same signs of their

leading coefficients, and

• for all choices of independent random variables x1 ∈ S1, . . . , xn ∈ Sn, the poly-

nomial

E[f(x1, . . . , xn; t)]

is real-rooted.

The following theorem characterizes the largest root of the expectation poly-

nomial in the compatible family, which is very similar to the result for interlacing

family [MSS15b].

Theorem 20.37 (Theorem 2.3 in [Brä18]). Let {f(S; t)}S∈S1×···×Sn be a compati-

ble family, and let x1 ∈ S1, . . . , xn ∈ Sn be independent random variables such that

E[f(x1, . . . , xn)] ̸≡ 0.

Then there is a tuple S = (s1, . . . , sn) ∈ S1 × · · · × Sn, with Pr[xi = si] > 0

for all i ∈ [n], such that the largest root of f(s1, · · · , sn; t) is smaller or equal to the

largest root of E[f(x1, · · · , xn; t)].

1251

The theorem below shows that mixed hyperbolic polynomials form a compat-

ible family.

Theorem 20.38 (Theorem 3.5 in [Brä18]). Let h(x) be hyperbolic with respect to

e ∈ Rm, and let V1, . . . , Vn be finite sets of vectors in Λ+. Let w ∈ Rm+n. For

V = (v1, . . . , vn) ∈ V1 × · · · × Vn, define

f(V ; t) := h[v1, . . . , vn](te+ w),

where e :=
[
e
0

]
∈ Rn+m. Then, {f(V ; t)}V ∈V1×···×Vn is a compatible family.

Let λmax(v1, . . . , vn) denote the largest root of the mixed hyperbolic polynomial

h[v1, . . . , vm](te+ 1) ∈ R[t], i.e.,

λmax(v1, . . . , vn) := λmax(h[v1, . . . , vm](te+ 1)) (20.12)

The following theorem shows that λmax(v1, . . . , vn) can upper-bounds the largest hy-

perbolic eigenvalue of the vector v1 + · · ·+ vn.

Theorem 20.39 (Theorem 5.2 in [Brä18]). If h is hyperbolic with respect to e and

v1, . . . , vn ∈ Λ+(e), then

λmax(v1 + · · ·+ vn) ≤ λmax(v1, . . . , vn).

The following theorem shows a connection between the hyperbolic cone of h

and the hyperbolic cone of the mixed hyperbolic polynomial h[v1, . . . , vn].

Theorem 20.40 (Corollary 5.5 in [Brä18]). Suppose h is hyperbolic with respect to

e ∈ Rm, and let Γ+ be the hyperbolic cone of h[v1, . . . , vn], where vi ∈ Λ+(e) and

1 ≤ rank(vi) ≤ ri for i ∈ [m]. Suppose x ∈ Λ++(e) be such that for i ∈ [m],

x+ µiei ∈ Γ+ for any µi > 0.

Then, for any (δi, µi) ∈ Uri for i ∈ [m],

x+

(
1− 1

m

) n∑

i=1

δivi +

(
1− 1

m

)
1+

1

m

n∑

i=1

µiei ∈ Γ+.

1252

20.5.4 Upper bound for the largest root of the mixed hyperbolic polyno-
mial

The goal of this section is to prove Theorem 20.41, which gives an upper bound

for the mixed hyperbolic polynomial with vectors in sub-isotropic position.

Theorem 20.41 (Sub-isotropic version of Theorem 5.6 in [Brä18]). Suppose h ∈
R[z1, . . . , zm] is hyperbolic with respect to e ∈ Rm, and let v1, . . . , vn ∈ Λ+(h, e) that

satisfy

trh[vi] ≤ ϵ, rank(vi) ≤ r ∀i ∈ [n], and

∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥
h

≤ σ.

Then,

λmax(v1, . . . , vn) ≤ σ · δ(ϵ/σ, n, r),

where λmax(v1, . . . , vn) is defined in Eq. (20.12).

Proof. For µ > 0, let x := ϵµ · e and µi := µ for i ∈ [n]. Let ei ∈ Rn be the i-th

standard basis vector.

Then, we have

h[v1, . . . , vn](x+ µiei) = (1− µDvi)h(ϵµe)

= ϵdµ
dh(e) + µdϵd−1Dvih(e)

= µdϵd−1h(e)(ϵ− trh[vi])

> 0,

where the first step follows from Fact 20.34, the second step follows from the homo-

geneity of hyperbolic polynomials, and the third step follows from Fact 20.35.

By part (2) of Theorem 19.6, we get that x + µiei ∈ Γ+, the hyperbolic cone

of h[v1, . . . , vn], for all i ∈ [n].

1253

Then, by Theorem 20.40, for any (δ, µ) ∈ Ur,

ϵµe+

(
1− 1

n

)
δ

n∑

i=1

vi + (1 +
µ− 1

n
)1 ∈ Γ+,

which implies

ϵµe+
(
1− 1

n

)
δ
∑n

i=1 vi

1 + µ−1
n

+ 1 ∈ Γ+,

by the homogeneity of Γ+. Since e ∈ Γ++, λmax(
∑n

i=1 vi) ≤ σ, and Γ+ is a convex

cone, we have
(
ϵµ+

(
1− 1

n

)
δσ
)

1 + µ−1
n

e+ 1 ∈ Γ+.

Hence, by Remark 5.1 in [Brä18],

λmax(v1, . . . , vn) = inf
ρ>0

ρe+ 1 ∈ Γ+.

Hence, we conclude that

λmax(v1, . . . , vn) ≤ inf
(δ,µ)∈Ur

(
ϵµ+

(
1− 1

n

)
δσ
)

1 + µ−1
n

= σ · δ(ϵ/σ, n, r).

20.6 Hyperbolic Spencer Result

The goal of this section is to prove Theorem 20.42, which proves the rank-1

case of the hyperbolic Spencer conjecture (Conjecture 20.9).

Theorem 20.42 (Eight deviations suffice). Given x1, x2, · · · , xn ∈ Rm such that

rank(xi) ≤ 1 for all i ∈ [n]. Let h be an m-variable, degree-d hyperbolic polynomial

with respect to e. Let σ = (
∑n

i=1 ∥xi∥2h)1/2. Then, there exists a sign vector r ∼
{−1, 1}n such that

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

≤ 8σ

holds.

1254

Proof. Similar to the proof of Theorem 19.25, we first have

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2q

h,2q

1/(2q)

≤
√
2q − 1 ·

(
n∑

i=1

∥xi∥2h

)1/2

=
√

2q − 1 · σ,

where the first step follows from Eq. (19.6).

By setting q = 1, we have

Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

]
≤ σ.

By Claim 19.19,

Er∼{±1}n

∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥

2

h

 ≤ 2

(
Er∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

])2

≤ 2σ2.

Then, by Corollary 19.18,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

> t

]
≤ 2 exp

(
− t2

32Er∼{±1}n [∥
∑n

i=1 rixi∥2h]

)

≤ 2 exp

(
− t2

64σ2

)
.

By choosing t = 8σ, we have

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
h

> 8σ

]
≤ 2/e.

Therefore, with probability 1− 2/e, we have
∥∥∥∥∥

n∑

i=1

rixi

∥∥∥∥∥
h

≤ 8σ,

which proves the theorem.

1255

Remark 20.5. It is interesting to apply Theorem 20.42 to determinant polynomial

h(x) = det(X). It implies that for rank-1 matrices X1, . . . , Xn ∈ Rd×d,

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥ > t

]
≤ 2 exp

(
− t2

64σ2

)
,

for σ2 =
∑n

i=1 ∥Xi∥2.

This result is in fact incomparable to the matrix Chernoff bound [Tro15], which

shows that

Pr
r∼{±1}n

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥ > t

]
≤ 2d · exp

(
− t2

2σ̃2

)
,

where σ̃2 = ∥∑n
i=1X

2
i ∥. Because we only know the following relation between σ and

σ̃ [Tro15]:

σ̃2 ≤ σ2 ≤ d · σ̃2.

20.7 Hyperbolic Extension of Kadison-Singer for Standard De-
viations

The goal of this section is to prove Theorem 20.43:

Theorem 20.43 (Formal statement of Theorem 20.10). Let h ∈ R[x1, . . . , xm] de-

note a hyperbolic polynomial with respect to a hyperbolic direction e ∈ Γh++, where

Γh++ ⊆ Rm is the hyperbolicity cone of h. Let ξ1, · · · , ξn denote n independent random

variables with E[ξi] = µi and Var[ξ] = τ 2i . Let v1, . . . , vn ∈ Γh+ be n vectors such that

∀i ∈ [n], rankh(vi) ≤ 1. Suppose

σ2 :=
∥∥∥

n∑

i=1

τ 2i trh[vi]vi

∥∥∥
h
.

Then,

Pr
ξ1,··· ,ξn

[∥∥∥
n∑

i=1

(ξi − µi)vi
∥∥∥
h
≤ 4σ

]
> 0.

1256

We will introduce the preliminary facts in Section 20.7.1. In Section 20.7.2,

we define the family of hyperbolic characteristic polynomials and show that it forms

an interlacing family. Therefore, it remains to upper-bound the largest root of the

average of the interlacing polynomial family, i.e. the mixed characteristic polynomial.

We remark that we require a lemma that will be proved later in Section 20.7.3.

In Section 20.7.3, we reduce the problem of upper-bounding the largest root of

the mixed characteristic polynomial to an easier task of upper-bounding the largest

root of a multivariate polynomial. In Section 20.7.4, we upper bound the largest root

of the multivariate polynomial using multivariate barrier method. Finally, in Section

20.7.5, we prove Theorem 20.43.

20.7.1 Preliminaries

In this section, we state several useful facts about hyperbolic polynomials. We

first introduce some important properties of the derivatives of hyperbolic polynomial:

Theorem 20.44 (Theorem 3.1 in [Brä18] and known in [Går59, BGLS01, Ren06]).

Let h ∈ R[x1, · · · , xm] be a hyperbolic polynomial and let v ∈ Γ+ be a vector such that

Dvh ̸≡ 0. Then

1) Dvh is hyperbolic with hyperbolicity cone containing Γ++.

2) The polynomial h(x) − y · Dvh(x) ∈ R[x, y] is hyperbolic with hyperbolicity cone

containing Γ++×{y : y ≤ 0}. Further, we have (h(x)+y·Dvh(x))·(h(x)−y·Dvh(x)) ∈
R[x, y] is hyperbolic with hyperbolicity cone containing Γ++ × {y : y ≤ 0}.
3) The rational function x→ h(x)

Dvh(x)
is concave on Γ++.

The following lemma correlates hyperbolic trace to directional derivative:

Fact 20.45 (Correlation between hyperbolic trace and derivative). Let h ∈ R[x1, · · · , xm]
denote a hyperbolic polynomial with respect to e ∈ Rm. For any v ∈ Rm and α ∈ R,

we have

trh[v] = α · Dvh(αe)

h(αe)
.

1257

Proof. By Theorem 20.44, Dvh is hyperbolic, and thus is homogeneous. By Vieta’s

formula for the sum of roots of a polynomial, we have

trh[v] =
Dvh(e)

h(e)

It follows that h and Dvh are homogeneous, and the degree of h is one larger than

that of Dvh. Therefore,

α · Dvh(αe)

h(αe)
=
Dvh(e)

h(e)
= trh[v].

Fact 20.46. Let h ∈ R[x1, · · · , xm] denote a hyperbolic polynomial with respect to the

direction e ∈ Γ++ and let α > 0. For any M, v ∈ Γ+, we have

Dvh(αe+M)

h(αe+M)
≤ Dvh(αe)

h(αe)
.

Proof. It suffices to show

h(αe+M)

Dv(αe+M)
≥ h(αe)

Dvh(αe)
.

By Theorem 20.44, we know that rational function x 7→ h(x)
Dvh(x)

is concave on

Γ++. Then we know that

h(αe+M)

Dv(αe+M)
≥ 1

2

h(2αe)

Dvh(2αe)
+

1

2

h(2M)

Dvh(2M)

=
h(αe)

Dvh(αe)
+

h(M)

Dvh(M)

≥ h(αe)

Dvh(αe)
.

where the last step follows from h(M)
Dvh(M)

≥ 0 (By [Ren06]).

1258

20.7.2 Defining interlacing family of characteristic polynomials

In this section, we consider the following interlacing family we will crucially

use to prove Theorem 20.43.

Definition 20.13 (Interlacing Family of Theorem 20.43). Let h ∈ R[x1, . . . , xm]

denote a hyperbolic polynomial with respect to hyperbolic direction e ∈ Γh++. Let

ξ1, . . . , ξn denote n independent random variables with finite supports and E[ξi] = µi

for i ∈ [n]. Let v1, . . . , vn ∈ Γh+ be n vectors such that rankh(vi) ≤ 1 for all i ∈ [n].

For each s = (s1, . . . , sn) where si ∈ supp(ξi), let ps ∈ R[x] define the following

polynomial:

ps(x) :=

(
n∏

i=1

pi,si

)
· h
(
xe+

n∑

i=1

(si − µi)vi
)
· h
(
xe−

n∑

i=1

(si − µi)vi
)

where pi,si := Prξi [ξi = si]. Let P denote the following family of polynomials:

P :=

p(s1,··· ,sℓ) =

∑

tℓ+1,··· ,tn:
tj∈supp(ξj) ∀j∈{ℓ+1,...,n}

p(s1,··· ,sℓ,tℓ+1,··· ,tn) : ℓ ∈ [n], si ∈ supp(ξi) ∀i ∈ [ℓ]

.

Lemma 20.47 (Interlacing Family of Theorem 20.43). The polynomial family P

defined in Definition 20.13 is an interlacing family.

Proof. Fix any ℓ ∈ [n− 1], and fix s1, · · · , sℓ as any partial assignment of ξ1, · · · , ξℓ,
i.e. si ∈ {±1} for all i ∈ supp(ξi).

It is easy to see that the polynomial p(s1,...,sℓ) can be written as:
(

ℓ∏

i=1

pi,si

)
Eξℓ+1,...,ξn

[
h

(
xe+

(
ℓ∑

i=1

(si − µi)vi +
n∑

j=ℓ+1

(ξj − µj)vj
))
·

h

(
xe−

(
ℓ∑

i=1

(si − µi)vi +
n∑

j=ℓ+1

(ξj − µj)vj
))]

1259

Let {c1, . . . , ck} be the support of ξℓ+1. Then, by Lemma 20.25, it suffices to

show that for any α ∈ Rk
≥0 with

∑k
i=1 αi = 1, the polynomial

α1p(s1,··· ,sℓ,c1)(x) + · · ·+ αkp(s1,··· ,sℓ,ck)(x)

is real-rooted. We interpret α as the probability density of the (ℓ + 1)-th random

variable, i.e. let pℓ+1,ct = αt for all t ∈ [k]. Then we can define a new random variable

ξ̃ℓ+1 with the same support as ξℓ+1 and Pr[ξ̃ℓ+1 = ct] = pℓ+1,ct for all t ∈ [k].

Notice that

p̃s(x) :=

(
ℓ∏

i=1

pi,si

)

× Eξ̃ℓ+1,ξℓ+2...,ξn

[
h

(
xe−

(
ℓ∑

i=1

(si − µi)vi + (ξ̃ℓ+1 − µℓ+1)vℓ+1 +
n∑

j=ℓ+2

(ξj − µj)vj
))

·h
(
xe+

(
ℓ∑

i=1

(si − µi)vi + (ξ̃ℓ+1 − µℓ+1)vℓ+1 +
n∑

j=ℓ+2

(ξj − µj)vj
))]

=
k∑

t=1

(
ℓ∏

i=1

pi,si

)
pℓ+1,ct

× Eξℓ+2,...,ξn

[
h

(
xe−

(
ℓ∑

i=1

(si − µi)vi + ctvℓ+1 +
n∑

j=ℓ+2

(ξj − µj)vj
))

·h
(
xe+

(
ℓ∑

i=1

(si − µi)vi + ctvℓ+1 +
n∑

j=ℓ+2

(ξj − µj)vj
))]

=
k∑

i=1

αips,ci(x).

By Lemma 20.49 (we remark that it does not require any result in the current

section. We will prove Lemma 20.49 in Section 20.7.3), p̃s is real-rooted, which

completes the proof that P is an interlacing family.

Lemma 20.47 implies the following corollary, which is a hyperbolic version of

Proposition 4.1 in [KLS20]:

1260

Corollary 20.48 (Upper Bound of the Largest Root of Interlacing Family). Let h ∈
R[x1, · · · , xm] denote a hyperbolic polynomial with corresponding hyperbolic direction

e ∈ Γh++. Let ξ1, . . . , ξn denote n independent random variables with finite supports

and E[ξi] = µi for i ∈ [n]. For any v1, . . . vn ∈ Γh++ such that rankh(vi) ≤ 1 for all

i ∈ [n], there exists an sign assignment s = (s1, . . . , sn) ∈ supp(ξi) × · · · supp(ξn),
such that ∥∥∥∥∥

m∑

i=1

(si − µi)vi
∥∥∥∥∥
h

is at most the largest root of

p∅(x) = Eξ1,...,ξm

[
h
(
xe+

m∑

i=1

(ξi − µi)vi
)
· h
(
xe−

m∑

i=1

(ξi − µi)vi
)]

.

Proof. Let P be the interlacing family defined in Definition 20.13. Then by Lemma

20.47, P is an interlacing family.

For any fixed ℓ ∈ [n] and the first ℓ assignments (s1, · · · , sℓ) such that si ∈
supp(ξi) for i ∈ [ℓ], notice that

ps1,··· ,sℓ(x) =

(
ℓ∏

i=1

pi,si

)
Eξℓ+1,...,ξn

[
h

(
xe−

(
ℓ∑

i=1

(si − µi)vi +
n∑

j=ℓ+1

(ξj − µj)vj
))
·

h

(
xe+

(
ℓ∑

i=1

(si − µi)vi +
n∑

j=ℓ+1

(ξj − µj)vj
))]

,

and

p∅ = Eξ1,...,ξm

[
h
(
xe+

m∑

i=1

(ξi − µi)vi
)
· h
(
xe−

m∑

i=1

(ξi − µi)vi
)]

.

Therefore, by Lemma 20.24, there exists a sign assignment

(s1, . . . , sn) ∈ supp(ξi)× · · · supp(ξn)

such that the largest root of ps is upper bounded by the largest root of

Eξ1,...,ξm

[
h
(
xe+

m∑

i=1

(ξi − µi)vi
)
· h
(
xe−

m∑

i=1

(ξi − µi)vi
)]

.

1261

Then by Fact 20.19, we have ∥∑m
i=1(si − µi)vi∥h = λmax(ps), which is upper bounded

by the maximum root of p∅.

20.7.3 From mixed characteristic polynomial to multivariate polynomial

In this section, we want to show that the mixed characteristic polynomial, i.e.

the average of the interlacing family defined in Definition 20.13:

p∅ = Eξ1,...,ξm

[
h
(
xe+

m∑

i=1

(ξi − µi)vi
)
· h
(
xe−

m∑

i=1

(ξi − µi)vi
)]

equals to the following multivariate polynomial after taking z1 = · · · = zn = 0.

n∏

i=1

(
1− 1

2

∂2

∂z2i

)
h
(
xe−Q+

n∑

i=1

ziτivi

)
· h
(
xe+Q+

n∑

i=1

ziτivi

)
∈ R[x, z1, · · · , zn]

The largest root of this multivariate polynomial is relatively easy to upper-bound

using barrier argument. We will describe the details in Section 20.7.4.

The main lemma of this section is as follows:

Lemma 20.49 (Hyperbolic version of Proposition 3.3 in [KLS20]). Let h ∈ R[x1, · · · , xm]
denote a hyperbolic polynomial with respect to a hyperbolic direction e ∈ Γh++. Let

v1, . . . vn ∈ Γh+ such that ∀i ∈ [n], rankh(vi) ≤ 1. Let ξ1, . . . , ξn denote n independent

random variables such that E[ξi] = µi and Var[ξi] = τ 2i . For any Q ∈ Rm, we have

Eξ1,...,ξn

[
h
(
xe− (Q+

n∑

i=1

(ξi − µi)vi)
)
h
(
xe+ (Q+

n∑

i=1

(ξi − µi)vi)
)]

=
n∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣
zi=0

h
(
xe−Q+

n∑

i=1

ziτivi

)
· h
(
xe+Q+

n∑

i=1

ziτivi

)
. (20.13)

Moreover, this is a real-rooted polynomial in x.

Proof. We first show Eqn. (20.13) by induction. Our induction hypothesis will be

1262

that for any 0 ≤ k ≤ n,

Eξ1,...,ξn

[
h
(
xe− (Q+

n∑

i=1

(ξi − µi)vi)
)
h
(
xe+ (Q+

n∑

i=1

(ξi − µi)vi)
)]

= Eξk+1,...,ξn

k∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣
zi=0

h
(
xe−Q−

n∑

i=k+1

(ξi − µi)vi +
k∑

j=1

zjτjvj

)

× h
(
xe+Q+

n∑

i=k+1

(ξi − µi)vi +
k∑

j=1

zjτjvj

)
(20.14)

The base case, k = 0 trivially holds as we get the same formula on both sides.

For the inductive step, suppose the induction hypothesis holds for any k ≤ ℓ

where 0 ≤ ℓ < n. Applying Claim 20.50 to the right-hand-side of Eqn. (20.14) when

letting k = ℓ yields

Eξ1,...,ξm

[
h
(
xe− (Q+

n∑

i=1

(ξi − µi)vi)
)
h
(
xe+ (Q+

n∑

i=1

(ξi − µi)vi)
)]

= Eξℓ+2,...,ξm

ℓ+1∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣
zi=0

h
(
xe−Q−

n∑

i=ℓ+2

(ξi − µi)vi +
ℓ+1∑

j=1

zjτjvj

)

× h
(
xe+Q+

n∑

i=ℓ+2

(ξi − µi)vi +
ℓ+1∑

j=1

zjτjvj

)
(20.15)

This completes the proof of Eqn. (20.13).

We now show that Eqn. (20.13) is real-rooted in x. By Claim 20.51, we know

that

h
(
xe−Q+

n∑

i=1

ziτivi

)
and h

(
xe+Q+

n∑

i=1

ziτivi

)
∈ R[x, z1, . . . , zn],

are real-stable polynomials. Then, by Fact 20.17, we get that

h
(
xe−Q+

n∑

i=1

ziτivi

)
· h
(
xe+Q+

n∑

i=1

ziτivi

)

is also real-stable. And by Fact 20.17 again, the operator
n∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣
zi=0

1263

preserves the real-stability. Hence, by Fact 20.14, the RHS of Eqn. (20.13) is real-

rooted.

The following statements are crucially used in the proof of Lemma 20.49:

Claim 20.50 (Hyperbolic version of Lemma 3.1 in [KLS20]). Let h denote a hyper-

bolic polynomial. Let ξ denote a random variables with E[ξ] = 0 and Var[ξ] = τ 2.

For any v ∈ Rm such that rankh(v) ≤ 1, and any x1, x2 ∈ Rm, we have

Eξ[h(x1 − ξv) · h(x2 + ξv)] =

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tτv)h(x2 + tτv).

Remark 20.6. Claim 20.50 can be easily generalized for non-centered random variable

ξ with E[ξ] = µ:

Eξ[h(x1 − (ξ − µ)v) · h(x2 + (ξ − µ)v)] =
(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tτv)h(x2 + tτv).

Proof. Since rankh(v) ≤ 1, for all k ≥ 2, Dk
vh ≡ 0. Thus, for all x1 ∈ Rm,

h(x1 − ξv) =
(
∞∑

k=0

(−ξ)kDk
v

k!

)
h(x1) = (1− ξDv)h(x1).

where the first step follows from Taylor expansion of h(x1 − ξv) on x1.

Similarly, for all x2 ∈ Rm,

h(x2 + ξv) = (1 + ξDv)h(x2).

Therefore,

h(x1 − ξv) · h(x2 + ξv) = (1− ξDv)h(x1) · (1 + ξDv)h(x2)

= h(x1)h(x2)− ξh(x2)Dvh(x1) + ξh(x1)Dvh(x2)− ξ2Dvh(x1)Dvh(x2)

1264

Since E[ξ] = 0 and Var[ξ] = τ 2, we have

Eξ[h(x1 − ξv) · h(x2 + ξv)] =

(
1− E[ξ2]

2
D2
v

)
h(x1)h(x2) + Eξ[ξ] · (h(x1)Dvh(x2)− h(x2)Dvh(x1))

=

(
1− τ 2

2
D2
v

)
h(x1)h(x2)

=

(
1− 1

2

d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tτv)h(x2 + tτv).

Claim 20.51 (Linear restriction of hyperbolic polynomial is real-stable). Let h ∈
R[x1, . . . , xm] be a hyperbolic polynomial with respect to e ∈ Rm. Let v1, . . . , vn ∈ Γ+

and Q ∈ Rm. Define

p(x, z) := h
(
xe+

n∑

i=1

zivi −Q
)
∈ R[x, z1, . . . , zn].

Then, p(x, z) is a real-stable polynomial.

Proof. For any a ∈ Rn+1
>0 , b ∈ Rn+1, we have

p(at+ b) = h
(
(a1t+ b1)e−Q+

n∑

i=1

(ai+1t+ bi+1)vi

)

= h
(
(a1e+

n∑

i=1

ai+1vi)t+ b1e−Q+
n∑

i=1

bi+1vi

)
.

Since e ∈ Γ++, v1, . . . , vn ∈ Γ+ and ai > 0 for all i ∈ [n+ 1], we have

e′ := a1e+
n∑

i=1

ai+1vi ∈ Γ++,

which follows from Γ++ is a cone.

Since every vector in Γ++ is a hyperbolic direction of h (see e.g., [Brä18,

Theorem 1.2, item 4]), we know that h is also hyperbolic with respect to the direction

e′, which implies that p(at+b) is real-rooted and not identical to the zero polynomial.

Hence, by Fact 20.15, p(x, z) is a real-stable polynomial.

1265

20.7.4 Applying barrier argument to bound the largest root of multivari-
ate polynomial

In this section, we upper bound the largest root of the following multivariate

polynomial:

n∏

i=1

(
1− 1

2

∂2

∂z2i

)
h
(
xe−Q+

n∑

i=1

ziτivi

)
· h
(
xe+Q+

n∑

i=1

ziτivi

)

using the real-stable version of the barrier method in [KLS20].

Definition 20.14. Let h ∈ R[x1, · · · , xm] be a hyperbolic polynomial of degree d

with respect to hyperbolic direction e ∈ Rm. For any vectors u, v ∈ Rm, we say u ⪯ v

if

λi(u) ≤ λi(v) ∀i ∈ [d],

where λ(u), λ(v) are the ordered eigenvalues of u and v, respectively.

Claim 20.52. Let h be a hyperbolic polynomial of degree d with respect to hyperbolic

direction e ∈ Rm. Let u ∈ Rm be any vector such that u ⪯ e. Then we have e−u ∈ Γh+.

Proof. For any i ∈ [d], we have

λi(e− u) = 1− λd−i(u) ≥ 0,

where the last step follows from λi(u) ≤ λi(e) ≤ 1 for all i ∈ [d].

Hence, e− u ∈ Γh+.

The goal of this section is to prove the following lemma:

Lemma 20.53. Let h ∈ R[x1, · · · , xm] denote a hyperbolic polynomial with corre-

sponding hyperbolic direction e ∈ Γh+. Let ξ1, . . . , ξn denote n independent random

variables with finite supports and E[ξi] = µi and Var[ξi] = τ 2i for i ∈ [n]. Let

v1, . . . , vn ∈ Γh+ such that
∑n

i=1 τ
2
i trh[vi]vi ⪯ e and ∀i ∈ [n], rankh(vi) ≤ 1.

1266

Then all the roots of the following (n+ 1)-variate polynomial

n∏

i=1

(
1− 1

2

∂2

∂z2i

)(
h
(
xe+

n∑

i=1

ziτivi

))2

∈ R[x, z1, . . . , zn]

lie below (4, 0, · · · , 0) ∈ Rn+1.

Proof. Define (n+ 1)-variate polynomial P (x, z) ∈ R[x, z1, . . . , zn] as

P (x, z) :=

(
h
(
xe+

n∑

i=1

ziτivi

))2

.

By Claim 20.51 and Fact 20.17, we can show that P (x, z) is real-stable. Thus, we

can apply the multivariate barrier method in [KLS20] with the barrier functions

Φi
P (x, z) =

∂ziP (x,z)

P (x,z)
for i ∈ [n].

For t > 0, let δi = tτitrh[vi] and let

δ = (δ1, . . . , δn).

For some α(t) > t where α(t) is a parameter to be chosen later, we evaluate P at

(α,−δ) = (α(t),−δ1, . . . ,−δn)

to find that

P (α(t),−δ1, . . . ,−δn) =
(
h
(
α(t)e−

n∑

i=1

δiτivi

))2

=

(
h
(
α(t)e− t

n∑

i=1

τ 2i trh[vi]vi

))2

=

(
h(e)

d∏

j=1

(
α(t)− tλj

(n∑

i=1

τ 2i trh[vi]vi

)))2

where d is the degree of h. Here the last step follows from the hyperbolicity of h, and

the fact that the set of roots of

h
(
α(t)e− t

n∑

i=1

τ 2i trh[vi]vi

)

1267

are

(
1

α(t)
· λj
(n∑

i=1

τ 2i trh[vi]vi

))−1

j∈[d]

Since
∑n

i=1 τ
2
i trh[vi]vi ⪯ e, we have for all j ∈ [d], λj(

∑n
i=1 τ

2
i trh[vi]vi) ≤ λj(e) = 1.

Hence, by the assumption of t < α(t), we get that

P (α(t),−δ1, . . . ,−δn) ≥ h(e)2(α(t)− t)2d > 0.

This implies that (α,−δ) ∈ Rm+1 is above the roots of P (x, z), i.e. (α,−δ) ∈ AbP .

Moreover, we can upper bound Φi
P (α,−δ) as follows:

Φi
P (α(t),−δ) =

∂ziP

P

∣∣∣
x=α(t),z=−δ

=
2h(xe+

∑n
i=1 ziτivi)∂zih(xe+

∑n
i=1 ziτivi)

h(xe+
∑n

i=1 ziτivi)
2

∣∣∣
x=α(t),z=−δ

= 2 · ∂zih(xe+
∑n

i=1 ziτivi)

h(xe+
∑n

i=1 ziτivi)

∣∣∣
x=α(t),z=−δ

= 2 ·
(Dτivih)(αe+

∑n
j=1 δjτjvj)

h(αe+
∑n

j=1 δjτjvj)

= 2 ·
(Dτivih)(αe− t

∑n
j=1 τ

2
j trh[vj]vj)

h(αe− t∑n
j=1 τ

2
j trh[vj]vj)

= 2 ·
(Dτivih)(αe− te+ t(e−∑n

j=1 τ
2
j trh[vj]vj))

h(αe− te+ t(e−∑n
j=1 τ

2
j trh[vj]vj))

≤ 2(Dτivih)(αe− te)
h(αe− te)

≤ 2trh[τivi]

α− t .

where the second last step follows from
∑n

i=1 τ
2
j trh[vi]vi ⪯ e, Claim 20.52 and Fact 20.46.

The last step follows from (Dvh)(βe)
h(βe)

= trh[v]
β

by Fact 20.45.

1268

Since rankh(vi) ≤ 1, we have trh[vi] = ∥vi∥h for all i ∈ [n]. Since
∑

j ̸=i τ
2
j trh[vj]vj ∈

Γh+, by the monotonicity of the hyperbolic norm (Theorem 2.15 in [HLJ09]), we have

(τitrh[vi])
2 = ∥τ 2i trh[vi]vi∥h ≤

∥∥∥∥∥
n∑

j=1

τ 2j trh[vj]vj

∥∥∥∥∥
h

≤ ∥e∥h = 1

for all i ∈ [n].

Thus, we have

max
i∈[n]

(τitrh[vi])
2 ≤ 1.

Choosing α(t) = 2t = 4. We get

Φi
P (α,−δ) ≤

2trh[τivi]

α− t =
2τitrh[vi]

α− t =
2τitrh[vi]

2
≤ 1 <

√
2. (20.16)

This coincides with Eqn. (20.10) of Lemma 20.26. Also from Fact 20.17 we know

that (1− 1
2
∂2zi)P is real stable.

Thus by Lemma 20.26, for all i ∈ [n],

(4,−δ) ∈ Ab(1− 1
2
∂2zi)P

.

In addition, ∀i ∈ [n], since δi = tτitrh[vi] = 2τitrh[vi] > 0,

1

δi
Φi
P (4,−δ) +

1

2
Φi
P (4,−δ)2 ≤

1

2τitrh[vi]
τitrh[vi] +

1

2
(τitrh[vi])

2

≤ 1

2
+

1

2
= 1. (20.17)

This coincides with Eqn. (20.11) of Lemma 20.26. Therefore for all j ∈ [n],

Φj

(1− 1
2
∂2zi)P

(4,−δ + δi1i) ≤ Φj
P (4,−δ). (20.18)

In particular, we have

Φ2
(1− 1

2
∂2z1)P

(4,−δ + δ111) ≤ Φ2
P (4,−δ) <

√
2.

1269

We also have (4,−δ + δ111) ∈ Ab(1− 1
2
∂2z1)P

, which follows from (4,−δ) ∈
Ab(1− 1

2
∂2z1)P

. By Lemma 20.27 with k = 0, we get that

Φ2
(1− 1

2
∂2z1)P

(4,−δ + δ111) ≥ 0.

Hence, we have

1

δ2
Φ2

(1− 1
2
∂2z1)P

(4,−δ + δ111) +
1

2
Φ2

(1− 1
2
∂2z1)P

(4,−δ + δ111)
2

≤ 1

δ2
Φ2
P (4,−δ) +

1

2
Φ2
P (4,−δ)2

≤ 1,

where the last step follows from Eqn. (20.17).

Therefore, by Lemma 20.26 again, we have

Φi
(1− 1

2
∂2z2)(1−

1
2
∂2z1)P

(4,−δ + δ111 + δ212) ≤ Φi
(1− 1

2
∂2z1)P

(4,−δ + δ111).

Repeating this argument for each i ∈ [n] demonstrates that

(4,−δ +
n∑

i=1

δi1i) = (4, 0, 0, . . . , 0)

∈ Ab∏n
i=1(1−∂2zi/2)P

i.e. (4, 0, 0, . . . , 0) lies above the roots of

n∏

i=1

(
1− 1

2

∂2

∂z2i

)(
h
(
xe+

n∑

i=1

ziτivi

))2

.

20.7.5 Combining together: proof of Theorem 20.43

In this section, we will combine the results from the previous section and prove

Theorem 20.43:

1270

Proof of Theorem 20.43. Define ui := vi
σ
. Note that σ > 0 since v1, . . . , vn are in the

hyperbolicity cone of h.

Then, we have
∥∥∥∥∥

n∑

i=1

τ 2i trh[ui]ui

∥∥∥∥∥
h

=

∥∥∥∥∥
n∑

i=1

τ 2i trh[vi]vi
σ2

∥∥∥∥∥
h

= 1,

where the first step follows from the linearity of the hyperbolic trace trh, and the

second step follows from ∥ · ∥h is a norm.

By Lemma 20.53 and restricting to zi = 0 for all i ∈ [n], we have that 4 lies

above the largest root of the univariate polynomial

n∏

i=1

(
1− 1

2

∂2

∂z2i

)∣∣∣
zi=0

(
h
(
xe+

n∑

i=1

ziτiui

))2

We then conclude by Lemma 20.49 that 4 upper bounds the largest root of

p∅ = Eξ1,...,ξn

[
h
(
xe+

n∑

i=1

(ξi − µi)ui
)
· h
(
xe−

n∑

i=1

(ξi − µi)ui
)]

.

where p∅ is the average of the polynomials in the interlacing family P in Definition

20.13.

Finally, by Corollary 20.48, we conclude that there exists s1, . . . , sn ∈ supp(ξ1)×
· · · × supp(ξn) such that

∥∥∥∥∥
n∑

i=1

(si − µi)ui
∥∥∥∥∥
h

≤ 4.

Hence we have
∥∥∥∥∥

n∑

i=1

(si − µi)vi
∥∥∥∥∥
h

≤ 4σ.

1271

20.8 Hyperbolic Extension of Kadision-Singer for Strongly Rayleigh

In this section, we prove Theorem 20.11. We restate the theorem as follows:

Theorem 20.54 (Formal statement of Theorem 20.11). Let h ∈ R[x1, . . . , xm] denote

a hyperbolic polynomial with respect to hyperbolic direction e ∈ Γh++. Let µ be a

homogeneous strongly Rayleigh probability distribution on [n] such that the marginal

probability of each element is at most ϵ1, and let v1, · · · , vn ∈ Γh+ be n vectors in

isotropic positions,

n∑

i=1

vi = e,

such that for all i ∈ [n],

rankh(vi) ≤ 1, and ∥vi∥h ≤ ϵ2.

Then

Pr
S∼µ

[∥∥∥
∑

i∈S

vi

∥∥∥
h
≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2

]
> 0.

We will introduce the preliminary facts in Section 20.8.1. In Section 20.8.2,

we define the family of hyperbolic characteristic polynomials and show that it forms

an interlacing family. Therefore, it remains to upper-bound the largest root of the

average of the interlacing polynomial family, i.e. the mixed hyperbolic characteristic

polynomial. We remark that we require a lemma that will be proved later in Section

20.8.3.

In Section 20.8.3, we reduce the problem of upper-bounding the largest root of

the mixed hyperbolic characteristic polynomial to an easier task of upper-bounding

the largest root of a multivariate polynomial. In Section 20.8.4, we upper bound the

largest root of the multivariate polynomial using the multivariate barrier method.

Finally, in Section 20.8.5, we prove Theorem 20.54.

1272

20.8.1 Preliminaries

In this section, we present some preliminary results on strongly Rayleigh dis-

tributions.

Definition 20.15 (Generating polynomial of probability distribution). Let µ : 2[n] →
R≥0 be a probability distribution. For a random variable X ∼ µ, the generating

polynomial of µ is defined as follows:

gµ(z1, . . . , zn) = E
[
zX
]
=
∑

S⊆[n]

Pr[X = S]zS.

Definition 20.16 (Strongly Rayleigh distribution). Let µ : 2[n] → R≥0 be a proba-

bility distribution and gµ be its generating polynomial. We say µ is strongly Rayleigh

(SR) if gµ is a real stable polynomial.

Moreover, we say µ is dµ-homogeneous strongly Rayleigh if gµ is dµ-homogeneous

real stable.

We provide two facts about the generating polynomials of Strongly Rayleigh

distributions.

Fact 20.55 (Marginals of homogeneous SR distributions). Let µ : 2[n] → R≥0 be

a dµ-homogeneous SR distribution with generating polynomial gµ. For 1 ≤ k ≤ n,

consider the marginal distribution on the first k elements µk : 2[k] → R≥0 such that

µk(S) = Pr
T∼µ

[T ∩ [k] = S] ∀S ⊆ [k].

Then, for all S ⊆ [k],

µk(S) = x|S|−dµ ·
∏

i∈S

∂zi
∏

i∈[k]\S

(1− x∂zi)gµ(x1+ z)

∣∣∣∣∣
z=0

. (20.19)

In particular,

µ(S) = x|S|−dµ ·
∏

i∈S

∂zi
∏

i∈[n]\S

(1− x∂zi)gµ(x1+ z)

∣∣∣∣∣
z=0

.

1273

Remark 20.7. We note that the dummy variable x will be cancelled in the RHS of

Eqn. (20.19), and hence both sides are numbers.

Proof. Note that gµ can be written as

gµ(x1+ z) = f(z2, . . . , zn)(x+ z1) + g(z2, . . . , zn),

where

f(z2, . . . , zn) :=
∑

S⊆[n]\{1},
|S|=dµ−1

µ(S ∪ {1})
∏

i∈S

(x+ zi), and

g(z2, . . . , zn) :=
∑

S⊆[n]\{1},
|S|=dµ

µ(S)
∏

i∈S

(x+ zi).

First, if k = 1. We have

µ1({1}) = Pr
T∼µ

[1 ∈ T] = x−dµ+1 · f(z2, . . . , zn)
∣∣∣
z=0

= x−dµ+1 · ∂z1gµ(x1+ z)
∣∣∣
z=0

.

Also,

µ1(∅) = Pr
T∼µ

[1 ̸∈ T] = x−dµ · g(z2, . . . , zn)
∣∣∣
z=0

= x−dµ · (1− x∂z1)gµ(x1+ z)
∣∣∣
z=0

.

So, Eqn. (20.19) holds for k = 1.

For the cases where k > 1s, we can prove by induction on k. Suppose (20.19)

holds for 1, · · · , k − 1. Let S ⊆ [k] be any subset of [k]. If k ∈ S, then consider

∂zkgµ(x1 + z), which is the generating polynomial of µ′ that restricts µ to the sets

T ⊆ [n]\{k} with µ(T ∪{k}) > 0. Let S ′ := S\{k}. By the induction hypothesis, we

have

µ(S) = µ′(S ′) = x|S
′|−dµ′ ·

∏

i∈S′

∂zi
∏

i∈[k−1]\S′

(1− x∂zi)∂zkgµ(x1+ z)

∣∣∣∣∣
z=0

= x|S|−dµ ·
∏

i∈S

∂zi
∏

i∈[k]\S

(1− x∂zi)gµ(x1+ z)

∣∣∣∣∣
z=0

,

1274

where the second line follows from |S ′| = |S| − 1 and dµ′ = dµ − 1.

If k /∈ S, then consider (1 − x∂zk)gµ(x1 + z)
∣∣∣
zk=0

, which is the generating

polynomial of µ′′ that restricts µ to the sets T ⊆ [n]\{k} with µ(T) > 0. Then by

the induction hypothesis, we have

µ(S) = µ′′(S) = x|S|−dµ′′ ·
∏

i∈S

∂zi
∏

i∈[k−1]\S

(1− x∂zi)(1− x∂zk)gµ(x1+ z)

∣∣∣∣∣
z=0

= x|S|−dµ ·
∏

i∈S

∂zi
∏

i∈[k]\S

(1− x∂zi)gµ(x1+ z)

∣∣∣∣∣
z=0

.

Hence, Eqn. (20.19) holds for all k ∈ [n], which completes the proof of the

fact.

20.8.2 Defining interlacing family of characteristic polynomials

In this section, we consider the following family of polynomials:

Definition 20.17 (Interlacing Family of Theorem 20.54). Let h ∈ R[x1, . . . , xm]

denote a degree-d hyperbolic polynomial with respect to hyperbolic direction e ∈ Γh++.

Let µ : 2[n] → R be a homogeneous strongly Rayleigh probability distribution. Let

v1, . . . , vn ∈ Γh+ be n vectors such that rankh(vi) ≤ 1 for all i ∈ [n]. Let F = {S ⊆
[n] : µ(S) > 0} be the support of µ. For any S ∈ F, let

qS(x) = µ(S) · h
(
xe−

∑

i∈S

vi

)
. (20.20)

Let Q denote the following family of polynomials:

Q :=
{
qs1···sℓ(s) =

∑

tℓ+1,··· ,tn
(s1···sℓ,tℓ+1,··· ,tn)∈F

qs1,··· ,sℓ,tℓ+1,··· ,tn : ∀ℓ ∈ [n], (s1, · · · , sℓ) ∈ F|[ℓ]
}
.

where F|[ℓ] is F restricted to [ℓ], and a subset is represented by a binary indicator

vector.

1275

We show that the family defined above is an interlacing family. We will cru-

cially use this fact to show Theorem 20.54.

Lemma 20.56 (Hyperbolic version of Theorem 3.3 in [AO14]). Let Q denote the

family of polynomials as in Definition 20.17. Then, if the polynomial

Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]

is real-rooted in x for any strongly Rayleigh distribution µ, then the polynomial family

Q forms an interlacing family.

The proof of this lemma is the same as that of Theorem 3.3 in [AO14].

From Lemma 20.24 and Fact 20.19, we obtain the following corollary:

Corollary 20.57. Let h ∈ R[x1, . . . , xm] denote a degree-d hyperbolic polynomial

with respect to hyperbolic direction e ∈ Γh++. Let µ : 2[n] → R be a homogeneous

strongly Rayleigh probability distribution. Let v1, . . . , vn ∈ Γh+ be n vectors such that

rankh(vi) ≤ 1 for all i ∈ [n]. Let F = {S ⊆ [n] : µ(S) > 0} be the support of µ. Then

there exists S ∈ F, such that the hyperbolic norm ∥∑i∈S vi∥h equals to the largest

root of qS, and is upper bounded by the largest root of

q∅ = Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]
.

Proof. By Lemma 20.58 (we remark that this lemma does not depend on the results in

this section. We will prove Lemma 20.58 in Section 20.8.3), the mixed characteristic

polynomial

Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]

is real-rooted. Then by Lemma 20.56, the polynomial family Q (see Definition 20.17)

is an interlacing family. Therefore, by Lemma 20.23, there exists a subset S ∈ F,

1276

such that the largest root of qS, is upper bounded by the largest root of

q∅ = Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]
.

The corollary then follows from Fact 20.19.

20.8.3 From mixed characteristic polynomial to multivariate polynomial

In this section, we want to show that the mixed characteristic polynomial

Eξ∼µ

[
h(x2e− (

n∑

i=1

ξivi))

]

has roots equals to the roots of the following multivariate polynomial after taking

z1 = · · · = zn = 0.
n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)

The largest root of this multivariate polynomial is relatively easy to upper-bound

using barrier argument. We will describe the details in Section 20.8.4.

The main lemma of this section is as follows:

Lemma 20.58 (Hyperbolic version of Theorem 3.1 in [AO14]). Let h ∈ R[x1, · · · , xm]
be a degree-d hyperbolic polynomial with hyperbolic direction e ∈ Γh++. Let µ : 2[n] → R

be a dµ-homogeneous strongly Rayleigh probability distribution with generating poly-

nomial gµ ∈ R[z1, · · · , zn]. Let v1, . . . , vn ∈ Γh+ be n vectors such that rankh(vi) ≤ 1

for all i ∈ [n]. Then, we have

xdµ · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]
= xd ·

n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

(20.21)

Moreover,

Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]

is real-rooted in x.

1277

Proof. First, we rewrite the left-hand-side of (20.21) as the expectation over T ∼ µ

as an expectation over all indicator ξ of the subsets of [n]:

xdµ · 2−n · ET∼µ
[
h(x2e− (

∑

i∈T

vi))

]

= xdµ · 2−n ·
∑

ξ∈{0,1}n

(
h(x2e− (

n∑

i=1

ξivi)) · µ(ξ)
)

= xdµ · Eξ∼{0,1}n
[
h(x2e−

n∑

i=1

ξivi) · µ(ξ)
]

= xdµ · Eξ∼{0,1}n
[
h(x2e−

n∑

i=1

ξivi) · x
∑n

i=1 ξi−dµ ·
n∏

i=1

(
ξi∂zi + (1− ξi)(1− zi∂zi)

)
g(x1+ z)

∣∣∣∣∣
z=0

]

(20.22)

where in the third step, we let ξ ∈ {0, 1}n be a random bit string uniformly sampled

from {0, 1}n. In the last step we use Fact 20.55 and the fact that
∏n

i=1

(
ξi∂zi + (1−

ξi)(1− zi∂zi)
)
=
∏

i∈[n]:ξi=1 ∂zi
∏

i∈[n]:ξi=0(1− zi∂zi). Setting g2 ∈ R[t] as

g2(t) := x
∑n

i=2 ξi ·
n∏

i=2

(
ξi∂zi + (1− ξi)(1− x∂zi)

)
g(t, x+ z2, x+ z3, · · · , x+ zn)

∣∣∣
z2,...,zn=0

and x2 = x2e−∑n
i=2 ξivi, we can simplify the above equation as

xdµ · 2−n · ET∼µ
[
h(x2e− (

∑

i∈T

vi))

]

=
1

2
Eξ2,··· ,ξn∼{0,1}n−1

[
h(x2 − v1)x∂z1g2(x+ z1) + h(x2)(1− x∂z1)g2(x+ z1)

∣∣∣∣∣
z1=0

]

=
1

2
Eξ2,··· ,ξn∼{0,1}n−1

[
(1− ∂z1)h(x2 + z1v1)x∂z1g2(x+ z1) + h(x2)(1− x∂z1)g2(x+ z1)

∣∣∣∣∣
z1=0

]
.

(20.23)

Now, we can expand the term inside the expectation of Eqn. (20.23), and get

1278

that

(1− ∂z1)h(x2 + z1v1)x∂z1g2(x+ z1) + h(x2)(1− x∂z1)g2(x+ z1)

∣∣∣∣∣
z1=0

= xh(x2 + z1v1)(∂z1g2(x+ z1))− x(∂z1h(x2 + z1v1))(∂z1g2(x+ z1))

+ h(x2)g2(x+ z1)− h(x2)(x∂z1g2(x+ z1))

∣∣∣∣∣
z1=0

= xh(x2)(Dg2)(x)− x(Dv1h)(x2)(Dg2)(x) + h(x2)g2(x)− xh(x2)(Dg2)(x)

= h(x2)g2(x)− xDv1h(x2)(Dg2)(x)

= (1− x

2
∂2z1)

(
h(x2 + z1v1)g2(x+ z1)

)∣∣∣∣∣
z1=0

,

where the last step follows from rankh(v1) ≤ 1 and deg(g2) ≤ 1.

Therefore, the left-hand-side of (20.21) equals to

xdµ · 2−n · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]

=
1

2
Eξ2,...,ξn

[
(1− x

2
∂2z1)

(
h(x2 + z1v1)g2(x+ z1)

)∣∣∣∣∣
z1=0

]

=
1

2
(1− x

2
∂2z1)

(
Eξ2,...,ξn

[
h(xe−

n∑

i=2

ξivi + z1v1)g2(x+ z1)

]) ∣∣∣∣∣
z1=0

. (20.24)

If we repeat this process for n times, we will finally get

xdµ · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]
=

n∏

i=1

(1− x

2
∂2zi)
(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

(20.25)

Now we show that the right-hand-side of (20.25) equals to the right-hand-side

of (20.21). First, we expand the product of partial operator
∏n

i=1(1 − x
2
∂2zi) and get

that
n∏

i=1

(1− x

2
∂2zi)
(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

=
∑

T⊆[n]

(−x
2
)|T |∂2zT

(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

1279

For any T ⊆ [n] with |T | = k, we have

(−x
2
)k∂2zT

(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

= (−x
2
)k · 2k ·

(∏

i∈T

Dvi

)
h(x2e) · g(T)µ (x1),

where g(T)µ (x1) =
∏

i∈T ∂zigµ(x1+ z)
∣∣∣
z=0

.

Since h is d-homogeneous, we know that (
∏

i∈T Dvi)h is (d− k)-homogeneous.

Hence, we get that

(−x
2
)k∂2zT

(
h(x2e+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

= (−x
2
)k · 2k · xd−k ·

(∏

i∈T

Dvi

)
h(xe) · g(T)µ (x1)

= xd · (−1)k ·
(∏

i∈T

Dvi

)
h(xe) · g(T)µ (x1)

= xd · (−1

2
)k∂2zT

(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)

)∣∣∣∣∣
z=0

.

Therefore,

xdµ · Eξ∼µ
[
h(x2e− (

n∑

i=1

ξivi))

]
=
∑

T⊆[n]

xd · (−1

2
)k∂2zT

(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)

)∣∣∣∣∣
z=0

= xd ·
n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

,

which completes the proof of Eqn. (20.21).

Finally, we show that Eqn. (20.21) is real-rooted in x. Since e ∈ Γh++ and

v1, . . . , vn ∈ Γh+, by Claim 20.51, we get that h(xe+
∑n

i=1 zivi) is real-stable. Further-

more, since gµ(x1+ z) is real-stable, by Fact 20.17,

h(xe+
n∑

i=1

zivi)gµ(x1+ z)

is also real-stable. Then by Fact 20.17 again, we get that

n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

1280

is real-stable. By Fact 20.14, it implies that it is real-rooted in x. Equivalently,

q∅(x
2) = Eξ∼µ

[
h(x2e− (

n∑

i=1

ξivi))

]

is real-rooted in x. Then, it is easy to see that

q∅(x) = Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]

is also real-rooted in x, since a complex root of q∅(x) implies a complex root of q∅(x2).

The lemma is then proved.

20.8.4 Applying barrier argument to bound the largest root of multivari-
ate polynomial

In this section, we upper bound the largest root of the following multivariate

polynomial:

n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)

using the real-stable version of the barrier method in [AO14].

Lemma 20.59 (Hyperbolic version of Theorem 4.1 in [AO14]). Let h ∈ R[x1, · · · , xm]
denote a degree-d hyperbolic polynomial with hyperbolic direction e ∈ Γh++. Let

v1, · · · , vn ∈ Γh+ be n vectors such that
∑n

i=1 vi = e and trh[vi] ≤ ϵ2 for all i ∈ [n]. Let

µ : 2[n] → R≥0 be a dµ-homogeneous strongly Rayleigh probability distribution such

that the marginal probability of each element i ∈ [n] is at most ϵ1. Then, all the roots

of

n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)
∈ R[x, z1, · · · , zn]

lie below (
√
4ϵ+ 2ϵ2, 0, · · · , 0) ∈ Rn+1, where ϵ = ϵ1 + ϵ2.

1281

Proof. Let Q ∈ R[x, z1, . . . , zn] be an (n+ 1)-variate polynomial:

Q(x, z) := h(xe+
n∑

i=1

zivi)gµ(x1+ z).

We have already proved in Lemma 20.58 that Q(x, z) is real-stable.

For 0 < t < α where α = α(t) is a parameter to be chosen later, we have

Q(α,−t1) = h(αe− t
n∑

i=1

vi)gµ((α− t)1)

= h((α− t)e)gµ((α− t)1)

= (α− t)d+dµh(e)gµ(1)

> 0,

where the second step follows from
∑n

i=1 vi = e and the last step follows from α > t,

h(e) > 0 and gµ(1) = 1. This implies that (α,−t1) ∈ AbQ.

We can upper bound Φi
Q(α,−t1) as follows.

Φi
Q(α,−t1) =

∂ziQ

Q

∣∣∣∣∣
x=α,z=−t1

=
(∂zih(xe+

∑n
i=1 zivi))gµ(x1+ z) + h(xe+

∑n
i=1 zivi)(∂zigµ(1+ z))

h(xe+
∑n

i=1 zivi)gµ(x1+ z)

∣∣∣∣∣
x=α,z=−t1

=
∂zih(xe+

∑n
i=1 zivi)

h(xe+
∑n

i=1 zivi)
+
∂zigµ(x1+ z)

gµ(x1+ z)

∣∣∣∣∣
x=α,z=−t1

=
Dvih(xe+

∑n
i=1 zivi)

h(xe+
∑n

i=1 zivi)
+
∂zigµ(x1+ z)

gµ(x1+ z)

∣∣∣∣∣
x=α,z=−t1

=
Dvih(αe− te)
h(αe− te) +

(α− t)dµ−1 · PrS∼µ[i ∈ S]
(α− t)dµ

≤ tr[vi]

α− t +
ϵ1

α− t
≤ ϵ1 + ϵ2

α− t ,

where the first inequality follows from Fact 20.45.

1282

Let ϵ := ϵ1 + ϵ2. By choosing α = 2t =
√
4ϵ+ 2ϵ2, we get that

Φi
Q(α,−t1) ≤

ϵ√
ϵ+ ϵ2/2

=

√
2√

1 + 2/ϵ
<
√
2.

Then, by Lemma 20.26, we know that (α,−t1) ∈ Ab(1− 1
2
∂2zi)Q

for any i ∈ [m].

Furthermore,

1

t
Φi
Q(α,−t1) +

1

2
Φi
Q(α,−t1)2 ≤

ϵ

t2
+

1

2

ϵ2

t2
= 1.

By the second part of Lemma 20.26, we have for all j ∈ [m],

Φj

(1− 1
2
∂2zi)Q

(α,−t1+ t1i) ≤ Φj
Q(α,−t1).

By a similar induction process like in the proof of Lemma 20.53, we have

(α,−t1+
n∑

i=1

t1i) = (
√
4ϵ+ 2ϵ2, 0, 0, . . . , 0)

∈ Ab∏n
i=1(1−∂2zi/2)Q

i.e. (
√
4ϵ+ 2ϵ2, 0, 0, . . . , 0) lies above the roots of

n∏

i=1

(
1− 1

2

∂2

∂z2i

)[
h
(
xe+

n∑

i=1

ξivi

)
· gµ(x1+ z)

]

as desired.

20.8.5 Combining together: proof of Theorem 20.54

Now we can combine the results from the previous section and prove Theorem

20.54:

Proof of Theorem 20.54. Let F be the support of µ.

By Lemma 20.59 and restricting to zi = 0 for all i ∈ [n], we have that
√

4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2 lies above the largest root of the univariate polynomial
n∏

i=1

(1− 1

2
∂2zi)
(
h(xe+

n∑

i=1

zivi)gµ(x1+ z)
)∣∣∣∣∣

z=0

.

1283

We then conclude by Lemma 20.58 that
√

4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2 upper bounds

the largest root of

Eξ∼µ

[
h(x2e− (

n∑

i=1

ξivi))

]
.

Therefore, the largest root of

q∅ = Eξ∼µ

[
h(xe− (

n∑

i=1

ξivi))

]

is upper bounded by 4(ϵ1+ϵ2)+2(ϵ1+ϵ2)
2, where q∅ is the average of the polynomials

in the interlacing family Q in Definition 20.17.

Finally, by Corollary 20.57, there exists S ⊆ [n] in the support of µ, such that
∥∥∥
∑

i∈S

vi

∥∥∥
h
≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2.

20.9 Sub-Exponential Algorithms
20.9.1 Definitions

Definition 20.18 (k-th symmetric polynomials). For any n ∈ Z+, k ≤ n, let ek ∈
R[z1, · · · , zn] denote the k-th elementary symmetric polynomial defined as

ek(z1, · · · , zn) =
∑

T∈([n]
k)

∏

i∈T

zi.

Definition 20.19 (k-th power sum polynomials). For any n, k ∈ Z+, let pk ∈
R[z1, · · · , zn] denote the k-th power sum polynomial defined as pk(z1, · · · , zn) =
∑n

i=1 z
k
i .

Fact 20.60 (Vieta’s formulas). Let f ∈ R[x] be any degree n monic variate polynomial

defined as f(x) = xn + c1x
n−1 + · · ·+ cn. Then for any k ∈ [n],

ck = (−1)kek(λ1, · · · , λn).

1284

Where λ1, · · · , λn ∈ C are the roots of f , and ek is the k-th elementary symmetric

polynomial defined in Definition 20.18.

Fact 20.61 (Newton’s identities). For any n ∈ Z+, k ∈ [n], let ek, pk ∈ R[z1, · · · , zn]
be defined in Definition 20.18 and Definition 20.19 respectively. Then there exists an

O(k2)-time algorithm ElemToPower(k, e1, · · · , ek), such that given any k ∈ [n],

and any e1 = e1(x), · · · , ek = ek(x) for some fixed x ∈ Rn, outputs pk = pk(x).

20.9.2 Algorithm to approximate the largest root

Algorithm 116 Algorithm approximating the largest root.
1: procedure MaxRoot(n ∈ Z+, k ∈ [n], f ∈ R[x], c1, · · · , ck ∈ R)
2: Precondition: k ≤ n, c1, · · · , ck ∈ R are the top-k coefficients of a degree n

real-rooted monic-variate polynomial f ∈ R[x].
3: Output: Return an approximate of the largest root of f .
4: for i = 1 to k do
5: ek ← ck · (−1)k.

▷ ek = ek(λ1, · · · , λn) is the k-th elementary polynomial of the roots of f by
Fact 20.60.

6: end for
7: pk ← ElemToPower(k, e1, · · · , ek)

▷ pk(λ) = λk1 + · · ·+ λkn is the power sum of the roots of f by Fact 20.61.
8: Return (pk)

1/k.
9: end procedure

Lemma 20.62. Let f = xn+c1x
n−1+· · ·+cn ∈ R[x] be any degree n real-rooted monic-

variate polynomial. Then MaxRoot(n, k, f, c1, · · · , ck) (Algorithm 116) returns an

(n1/k)-approximate of the largest root of f in time O(k2 + k).

Proof. Let λ1 ≥ λ2 ≥ λn ∈ R denote the roots of f(x). By Fact 20.60 and Fact 20.61,

Algorithm 116 returns (pk)
1/k, where pk = λk1 + · · ·+ λkn. Notice that

λk1 + · · ·+ λkn
n

≤ λk1 ≤ λk1 + · · ·+ λkn

1285

we have

λ1 ≤ (pk/n)
1/k ≤ n1/kλ1.

Remark 20.8. We remark that when k > log n, the approximation factor n1/k is upper

bounded by 1 + logn
k

.

20.9.3 Reducing Kadison-Singer to finding leading coefficients of inter-
lacing polynomial

We define an oracle that generates the top-k coefficients as follows:

Definition 20.20. Fix a family of degree nmonic-variable polynomials F = {fs1,··· ,sm ∈
R[x] : s1, · · · sℓ ∈ S1 × · · · × Sℓ}. We define oracle MaxCoeffF(k, ℓ, s1, · · · sℓ) as fol-

lows: given any k ∈ [n], ℓ ∈ [m], s1, · · · sℓ ∈ S1× · · · ×Sℓ as inputs, and it outputs the

top-k coefficients of fs1···sℓ in TCoeff(F, k) time.

Lemma 20.63 (Theorem 4.4 of [AOSS18]). Let S1, · · · , Sm be finite sets and let

F = {fs1···sm(x) ∈ R[x] : s1 ∈ S1, · · · , sm ∈ Sm} be an interlacing family of degree n

real-rooted monic-variate polynomials. Let MaxCoeffF(k, ℓ, s1, · · · sℓ) be the oracle

for finding the largest k coefficients defined as Definition 20.20.

Then there is an algorithm KadisonSinger(δ,F = {fs1···sm(x) : s1 ∈ S1, · · · , sm ∈
Sm}) (Algorithm 117) that, given any δ > 0 and F as input, returns the elements

s′1 ∈ S1, · · · , s′m ∈ Sm, such that the maximum root of fs′1···s′m is at most (1 + δ) times

the maximum root of f∅, in time

(
TCoeff

(
F, O(log(n)mδ−1)

)
+ k2

)
· S
√
m · √m,

where S = maxi∈[m] |Si|.

1286

Algorithm 117 Algorithm finding approximate solutions of Kadison-Singer problems
1: procedure KadisonSinger(δ,F = {fs1···sm(x) : s1 ∈ S1, · · · , sm ∈ Sm})
2: Precondition: δ > 0, S1, · · · , Sm are finite sets, F = {fs1···sm(x) ∈ R[x] : s1 ∈
S1, · · · , sm ∈ Sm} is an interlacing family of degree n real-rooted monic-variate
polynomials.

3: Output: s′1 ∈ S1, · · · , s′m ∈ Sm, such that the maximum root of fs′1···s′m is at
most (1 + δ) times the maximum root of f∅.

4: M ← √m
5: k ← M logn

δ

6: λmax ← −∞
7: for i = 0 to m

M
− 1 do ▷

√
m iterations

8: for tiM+1 ∈ SiM+1, · · · , tiM+M ∈ SiM+M do ▷ Brute force search on∏M
j=1 |SiM+j| elements

9: (c1, · · · , ck) ← MaxCoeffF(k,M(i +
1), s1, · · · , siM , tiM+1, · · · , tiM+M)

10: λ←MaxRoot(n, k, fs1,··· ,siM ,tiM+1,··· ,tiM+M
, c1, · · · , ck)

11: if λ ≤ λmin then
12: λmin ← λ
13: siM+1 ← tiM+1, · · · , siM+M ← tiM+M

14: end if
15: end for
16: end for
17: Return (s1, · · · , sm)
18: end procedure

Proof. Notice that Algorithm 117 runs in m
M

=
√
M iterations. Inside each iteration,

it does a brute force search on at most QM = Q
√
m elements. For each element

(tiM+1, · · · , tiM+M), we query the oracles MaxCoeffF and MaxRoot, which takes

TCoeff(F, k) = TCoeff(F, O(log(n)mδ
−1) and O(k + k2) time respectively. Therefore,

the running time of the algorithm is at most

(
TCoeff

(
F, O(log(n)mδ−1)

)
+ k2

)
· S
√
m · √m.

Now we show the correctness of the algorithm by induction on the number

of iteration i. For any 0 ≤ i ≤ m
M
− 1, suppose we have selected s1, · · · , siM in the

1287

previous iterations, and suppose

λmax (fs1,··· ,siM) ≤ (1 +
δ

2M
)i+1 · λmax(f∅)

where λmax(f) denotes the maximum root of the univariate polynomial f .

Suppose we fix siM+1, · · · , siM+M on the i-th iteration. Note that k = 2M logn
δ

>

log n, by Lemma 20.62, Line 10 of the algorithm returns an 1 + logn
k

= (1 + δ
2M

)-

approximation of the largest root of fs1,··· ,siM ,tiM+1,··· ,tiM+M
. Therefore, for any 0 ≤

i ≤ m
M

, we have

λmax

(
fs1,··· ,siM+M

)
≤ (1 +

δ

2M
) · min

tiM+1∈SiM+1,··· ,tiM+M∈SiM+M

λmax

(
fs1,··· ,sM i,tiM+1,··· ,tiM+M

)

Since {fs1···sm(x) : s1 ∈ S1, · · · , sm ∈ Sm} is an interlacing family, we have

min
tiM+1∈SiM+1,··· ,tiM+M∈SiM+M

λmax

(
fs1,··· ,sM i,tiM+1,··· ,tiM+M

)
≤ λmax (fs1,··· ,siM) .

This proves the induction hypothesis.

Remark 20.9. It’s important to note that our algorithm runs in SÕ(
√
n) time. A paper

by [AOSS18] provides an algorithm with a faster running time of SÕ(3√n). However,

this algorithm is limited to only the k-th largest root of determinantal polynomials.

Our algorithm faces a challenge in approximating the k-th largest root of hy-

perbolic polynomials. In order to achieve an (1+ϵ) approximation, our sub-exponential

algorithm must run Õ(
√
nϵ) iterations and search k = Õ(

√
n/ϵ) elements at each time.

This ensures that the cumulative error does not exceed ϵ. During each iteration, we

have to brute-force over O(
√
n) elements, which results in a 2Õ(n) search time.

20.9.4 Sub-exponential algorithm for Theorem 20.10

In this section, we want to describe the sub-exponential algorithm for con-

structing Theorem 20.10. Let P denote the interlacing family as defined in Definition

20.13.

1288

Suppose each ps(x) ∈ P has degree d. Let MaxCoeffP(k, ℓ, s1, · · · , sℓ) be the

oracle defined in Definition 20.20, i.e. given any k ∈ [d], ℓ ∈ [n], (s1, · · · , sℓ) ∈ {±1}ℓ,
outputs the top-k coefficients of ps1,··· ,sℓ in at most TCoeff(P, k) time. The following

lemma states that if TCoeff(P, k) is polynomial in k, then we can construct Theorem

20.10 in sub-exponential time:

Corollary 20.64 (Sub-exponential algorithm for Theorem 20.10, formal statement of

Proposition 20.12). Let h ∈ R[x1, . . . , xm] denote a hyperbolic polynomial with respect

to e ∈ Γh++. Let u1, . . . , un ∈ Γh+ be n vectors such that

σ =
∥∥∥

n∑

i=1

trh[ui]ui

∥∥∥
h
.

Let P be the interlacing family defined in Definition 20.13. Let MaxCoeffP be

the oracle defined in Definition 20.20 with running time TCoeff(P, k). Then for any

δ > 0, the algorithm KadisonSinger(δ,P) (Algorithm 117) returns a sign assignment

(s1, · · · , sn) ∈ {±1}n, such that
∥∥∥

n∑

i=1

siui

∥∥∥
h
≤ 4(1 + δ)σ

in time
(
TCoeff

(
P, O(log(n)mδ−1)

)
+
m log2 n

δ2

)
· 2
√
m · √m.

Proof. For all i ∈ [n], let vi = ui√
σ
. Then we have

∥∥∥∥∥
n∑

i=1

trh[vi]vi

∥∥∥∥∥
h

=

∥∥∥∥∥
n∑

i=1

trh[ui]ui
σ

∥∥∥∥∥
h

= 1.

Let s1, · · · , sm denote the output of KadisonSinger(σ,P) (Algorithm 117).

Then we have

∥
m∑

i=1

sivi∥h = λmax(ps1,··· ,sm)

≤ (1 + δ) · λmax(p∅) (By Lemma 20.63)

≤ 4(1 + δ) (By Lemma 20.53)

1289

Therefore we have

∥
m∑

i=1

siui∥h ≤ 4σ(1 + δ) ≤ 8σ.

20.9.5 Sub-exponential algorithm for Theorem 20.4

In particular, we can explicitly compute the running time of the sub-exponential

algorithm for Theorem 20.4. We first define the interlacing family for Theorem 20.4

with the following statement:

Lemma 20.65 (Interlacing family for Theorem 20.4, Proposition 4.1 and 5.4 of

[KLS20]). Let ξ1, · · · , ξn denote n i.i.d. random variables sampled uniformly at ran-

dom from {±1}. Let u1, . . . , un ∈ Γh+ be n vectors such that σ2 = ∥∑n
i=1(uiu

∗
i)

2∥

For each s ∈ {±1}n, let fs ∈ R[x] denote the following polynomial:

fs(x) := (
n∏

i=1

pi,si) · det

x2 −

(
n∑

i=1

(si − λi)uiu∗i

)2

 .

where ∀i ∈ [n], λi = E[ξi], and ∀i ∈ [n],∀si ∈ {±1}, pi,si = Prξi [ξi = si]. Let F denote

the following family of polynomials:

F :=

fs1···sℓ(x) =

∑

tℓ+1∈{±1},··· ,tn∈{±1}

fs1,··· ,sℓ,tℓ+1,··· ,tn : ∀ℓ ∈ [n], s1, · · · , sℓ ∈ {±1}ℓ

 .

Then F is an interlacing family. Moreover, there exists a choice of outcomes s1, · · · , sn ∈
{±1}n, such that

∥
n∑

i=1

(si − λi)uiu∗i ∥ = λmax(fs1···sn) ≤ λmax(f∅) ≤ 4σ.

Lemma 20.66 (Computing the top k coefficients of interlacing polynomials for The-

orem 20.4). Let F denote the interlacing family defined in Lemma 20.65. Given inde-

pendent random variable ξ1, . . . , ξn ∈ R with finite supports such that we know all mo-

ments of each random variable. There exists an algorithm MaxCoeffF(k, ℓ, s1, · · · , sℓ)

1290

such that for any 1 ≤ ℓ ≤ n and 1 ≤ k ≤ m, and for any s1, . . . , sℓ in the supports of

ξ1, . . . , ξℓ respectively, returns the top-k coefficients of fs1,...,sℓ in time O(nkpoly(m)).

Proof. The leading constant
∏ℓ

i=1 pi,si can be easily computed. It is easy to see that

all odd-degree terms vanish. Thus, for the following expected polynomial:

Eξℓ+1,...,ξn

det

x2I −

(
ℓ∑

i=1

siuiu
∗
i +

n∑

i=ℓ+1

ξiuiu
∗
i

)2

 ,

consider the coefficient of x2(n−k), which is (−1)k times the sum of all principal k-by-

k minors of the matrix (
∑ℓ

i=1 siuiu
∗
i +

∑n
i=ℓ+1 ξiuiu

∗
i)

2 in expectation. For any fixed

value ξℓ+1, . . . , ξn, we have

σk

(

ℓ∑

i=1

siuiu
∗
i +

n∑

i=ℓ+1

ξiuiu
∗
i

)2

= σk

∑

i,j∈[ℓ]

sisj⟨ui, uj⟩uiu∗i +
∑

i∈[ℓ],j∈[n]\[ℓ]

siξj⟨ui, uj⟩(uiu∗j + uju
∗
i) +

∑

i,j∈[n]\[ℓ]

ξiξj⟨ui, uj⟩uiu∗i

 .

For simplicity, let

ci,j :=

sisj⟨ui, uj⟩ if i, j ∈ [ℓ],

ξisj⟨ui, uj⟩ if i ∈ [n]\[ℓ], j ∈ [ℓ],

siξj⟨ui, uj⟩ if i ∈ [ℓ], j ∈ [n]\[ℓ],
ξiξj⟨ui, uj⟩ if i, j ∈ [n]\[ℓ]

, ∀i, j ∈ [n]× [n].

Then, we have

σk

 ∑

i,j∈[n]×[n]

ci,juiu
∗
j

 =

∑

S∈([n]×[n]
k)

σk

 ∑

(i,j)∈S

ci,juiu
∗
j

=
∑

S∈([n]×[n]
k)

∏

(i,j)∈S

ci,j · σk

 ∑

(i,j)∈S

uiu
∗
j

 ,

where the first step follows from Proposition 3.11 in [MSS15b] and the second step

follows from Proposition 3.10 in [MSS15b].

1291

Thus, the coefficient of the expected polynomial is

∑

S∈([n]×[n]
k)

Eξℓ+1,...,ξn

 ∏

(i,j)∈S

ci,j

 · σk

 ∑

(i,j)∈S

uiu
∗
j

 .

Note that there are at most n2k terms in the summation. And for each S, the

expectation Eξℓ+1,...,ξn

[∏
(i,j)∈S ci,j

]
can be computed in O(k)-time, assuming we know

all moments of each random variable, and the inner product ⟨ui, uj⟩ for all i, j ∈ [n]

can be pre-processed in O(n2m)-time. The sum of minors σk(
∑

(i,j)∈S uiu
∗
j) can be

computed in poly(m)-time.

Therefore, the coefficient of x2(m−k) can be computed in n2k · poly(m)-time,

which implies that the top-k coefficients can be computed in O(nkpoly(m))-time.

The Lemma is then proved.

A similar proof of Corollary 20.64 yields the following corollary:

Corollary 20.67 (Sub-exponential algorithm for Theorem 20.4). Let u1, . . . , un ∈ Γh+

be n vectors such that σ2 =
∥∥∥
∑n

i=1(uiu
∗
i)

2∥. Let F be the interlacing family defined

in Lemma 20.65. Then for any δ > 0, the algorithm KadisonSinger(δ,F) returns a

sign assignment (s1, · · · , sn) ∈ {±1}n, such that

∥∥∥
n∑

i=1

siui

∥∥∥
h
≤ 4(1 + δ)σ

in time
(
O(nO(

√
m logn/δ)poly(m)) +

m log2 n

δ2

)
· 2
√
m · √m.

20.9.6 Sub-exponential algorithm for Theorem 20.11

In this section, we want to describe the sub-exponential algorithm for con-

structing Theorem 20.11. Let Q denote the interlacing family defined in Definition

20.17.

1292

Suppose each qs(x) ∈ Q has degree d. Let MaxCoeffQ(k, ℓ, s1, · · · , sℓ) be the

oracle defined in Definition 20.20, i.e. given any k ∈ [d], ℓ ∈ [n], (s1, · · · , sℓ) in the

support of µ, outputs the top-k coefficients of qs1,··· ,sℓ in at most TCoeff(Q, k) time. The

following corollary states that if TCoeff(Q, k) is polynomial in k, then we can construct

Theorem 20.11. The proof of this corollary is similar to that of Corollary 20.64.

Corollary 20.68 (Sub-exponential algorithm for Theorem 20.11, formal statement of

Proposition 20.13). Let h ∈ R[x1, . . . , xm] denote a hyperbolic polynomial with respect

to e ∈ Γh++. Let µ be a homogeneous strongly Rayleigh probability distribution on [n]

such that the marginal probability of each element is at most ϵ1, and let v1, · · · , vn ∈
Γh+ be n vectors such that

∑n
i=1 vi = e, and for all i ∈ [n], ∥vi∥h ≤ ϵ2 and rankh(vi) ≤

1.

Let Q be the interlacing family defined in Definition 20.17 , and MaxCoeffQ

be the oracle defined in Definition 20.20 with running time TCoeff(Q, k). Then for any

δ > 0, the algorithm KadisonSinger(δ,Q) returns a set S in the support of µ, such

that
∥∥∥
∑

i∈S

ui

∥∥∥
h
≤ (1 + δ) ·

(
4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)

2
)

in time
(
TCoeff

(
Q, O(log(n)mδ−1)

)
+ k2

)
· 2
√
m · √m.

20.10 Examples and Discussions

Examples of real-stable polynomials

• Spanning tree polynomial: let G = (V,E) be a connected undirected graph.

Then its spanning tree polynomial

PG(x) =
∑

T⊂E,
T spanning tree

∏

e∈T

xe (20.26)

is real-stable.

1293

• Elementary Symmetric Polynomials: For any n, k > 0, the elementary sym-

metric polynomial

ek(x) =
∑

S∈([n]
k)

∏

i∈S

xi

is real-stable.

• Vertex matching polynomial: let G = (V,E) be a undirected graph. Then its

vertex matching polynomial

MG(x) =
∑

M⊂E,
M matching

∏

{u,v}∈M

−xuxv (20.27)

is real-stable [BB09].

• Vámos matroid polynomial: let B consists of all subsets B ⊂ [10] of size 4 ex-

cept for {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {1, 2, 9, 10}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 9, 10}.
Then, B is the collection of basis of a Vámos matroid. See Figure 20.1 as an

illustration of B. Its generating polynomial

f10(x) =
∑

B∈B

∏

i∈B

xi

is real-stable. Furthermore, for any k > 0, (f10(x))
k cannot be represented

as a determinant of a linear matrix with positive semidefinite Hermitian forms

[BVY14].

• Determinant of the mixture of PSD matrices: let A1, . . . , An ∈ Rd×d be PSD

matrix and B ∈ Rd×d be symmetric. Then, the polynomial

p(x) = det(x1A1 + · · ·+ xnAn +B)

is real-stable.

Figure 20.2 and Figure 20.3 illustrate an example of the spanning tree poly-

nomial (Eqn. (20.26)) and vertex matching polynomial (Eqn. (20.27)) respectively.

1294

2

1

4

3

6

5

8

7

10

9

Figure 20.1: An example of the Vámos matroid B. B contains all the sets in
(
[10]
4

)
,

except the sets of size 4 represented by the colored faces.

Examples of hyperbolic polynomials

• Lorentz polynomial:

p(x) = x2n − x21 − · · · − x2n−1

is hyperbolic with respect to e =
[
0 · · · 0 1

]⊤.

• Determinant polynomial:

p(x) = det(mat(x)) ∈ R[{xi,j}1≤i≤j≤n]

is hyperbolic with respect to e = vec(I), where mat(·) packs an (n(n + 1)/2)-

dimensional vector to an n-by-n symmetric matrix, and vec(·) vectorize a sym-

metric matrix to a vector.

• Multivariate matching polynomial: let G = (V,E) be an undirected graph.

Then

µG(x,w) =
∑

M⊂E,
M matching

(−1)|M | ·
∏

u/∈V (M)

xu ·
∏

e∈M

w2
e

is hyperbolic [Ami19] with respect to e =
[
1V 0

]⊤.

1295

e1

e2

e3

e4

e5

e2

e3

e4

e1 e3

e4

e1

e2

e4

e1

e2

e3

e2

e3
e5 e1

e4

e5

e2

e4

e5 e1 e3
e5

Figure 20.2: An example of the spanning tree polynomial. Above: the graph G;
Below: the set of spanning trees of G. Therefore the spanning tree polynomial of G
is PG(x) = x2x3x4 + x1x3x4 + x1x2x4 + x1x2x3 + x2x3x5 + x1x4x5 + x2x4x5 + x1x3x5.

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

v1

v2 v3

v4

Figure 20.3: An example of the vertex matching polynomial. Above: the graph
G; Below: the set of matchings of G. Therefore the matching polynomial of G is
MG(x) = −(x1x2 + x3x4 + x2x3 + x1x4 + x1x3 + x2x4) + 3 · x1x2x3x4.

1296

Chapter 21: Higher-Order Random Walk and
Edge-Expansion on Posets

21.1 Introduction

Random walks on high dimensional expanders (HDX) have been the object

of intense study in theoretical computer science in recent years. Starting with their

original formulation by Kaufman and Mass [KM16], a series of works on the spectral

structure of these walks [KO20, DDFH18, AL20a] led to significant breakthroughs in

approximate sampling [ALGV19, AL20a, ALG20, CLV20, CLV21, CGŠV21, FGYZ21,

JPV21, Liu21, BCC+21], CSP-approximation [AJT19, BHKL20], error-correcting

codes [JQST20, JST21], agreement testing [DK17, DD19, KM20b], and more. Most of

these works focus on the structure of expansion in hypergraphs (typically called simpli-

cial complexes in the HDX literature). On the other hand, it has become increasingly

clear that hypergraphs are not always the right tool for the job—recent breakthroughs

in locally testable [DEL+22] and quantum LDPC codes [PK21, LH22, LZ22], for in-

stance, all rely crucially on cubical structure not seen in hypergraphs, while many

agreement testing results like the proof of the 2-2 Games Conjecture [SMS18] rely

crucially on linear algebraic rather than simplicial structure.

In this chapter, we study a generalized notion of high dimensional expansion

on partially ordered sets (posets) introduced by Dikstein, Dinur, Filmus, and Har-

sha (DDFH) [DDFH18] called expanding posets (eposets). Random walks on eposets

capture a broad range of important structures beyond their hypergraph analogs, in-

cluding natural sparsifications of the Grassmann graphs that recently proved crucial

to the resolution of the 2-2 Games Conjecture [SMS18, KMS17, DKK+18b, DKK+18a,

BKS18, KMMS18]. DDFH’s notion of eposets is a global definition of high dimen-

sional expansion based on a relaxation of Stanley’s [Sta88] sequentially differential

posets, a definition originally capturing both the Grassmanian and complete simpli-

cial complex. More recently, Kaufman and Tessler (KT) [KT21a] have extended the

1297

study of eposets in two important aspects. First, in contrast to DDFH’s original

global definition, KT introduced the local-to-global study of high dimensional ex-

pansion in eposets. Second, they identified regularity as a key parameter controlling

expansion. In particular, the authors showed strengthened local-to-global theorems

for strongly regular posets like the Grassmann, giving the first general formulation

for characterizing expansion based on an eposet’s underlying architecture.

While analysis of the second eigenvalue is certainly an important considera-

tion (e.g. for mixing applications), a deeper understanding of the spectral structure

of eposets is required for applications like the proof of the 2-2 Games Conjecture. As

such, our main focus in this chapter lies in characterizing the spectral and combinato-

rial behavior of random walks on eposets beyond the second eigenvalue. Strengthening

DDFH and recent work of Bafna, Hopkins, Kaufman, and Lovett (BHKL) [BHKL20],

we prove that at a coarse level (walks on) eposets indeed exhibit the same spectral

and combinatorial characteristics as expanding hypergraphs (e.g. spectral stripping,

expansion of pseudorandom sets). On the other hand, as in KT, we show that the

finer-grained properties of these objects are actually controlled by the underlying

poset’s regularity, including the rate of decay of the spectrum and combinatorial ex-

pansion of associated random walks. This gives a stronger separation between struc-

tures like hypergraphs with weak (linear) eigenvalue decay, and Grassmann-based

eposets with strong (exponential) eigenvalue decay (a crucial property in the proof of

the 2-2 Games Conjecture [SMS18]).

In slightly more detail, we show that all eposets exhibit a behaviour called

“eigenstripping” [KO20, DDFH18, BHKL20]: the spectrum of any associated ran-

dom walk concentrates around a few unique approximate eigenvalues. Moreover, the

approximate eigenvalues of walks on eposets are tightly controlled by the poset ar-

chitecture’s regularity1 R(j, i), which denotes the total number of rank-i elements2

1We will additionally assume a slightly stronger condition introduced in KT [KT21a] called middle
regularity throughout. See Section 21.2.1 for details.

2We consider regular graded posets, where each element has a corresponding rank. In a hyper-

1298

less than any fixed rank-j element (see Section 21.1.1 for standard definitions). For

simplicity, we specialize our result below to the popular “lower” or “down-up” walk

(this simply corresponds to taking a random step down and back up the poset, again

see Section 21.1.1); a more involved version holds for higher order random walks in

full generality.

Theorem 21.1 (Eigenstripping and Regularity (informal Corollary 21.19 and The-

orem 21.21)). The spectrum of the lower walk UD on a k-dimensional γ-eposet is

concentrated in (k + 1) strips:

Spec(UD) ∈ {1} ∪
k⋃

i=1

[λi(UD) +Ok(γ), λi(UD)−Ok(γ)],

where the approximate eigenvalues λi(UD) are determined by the poset’s regularity:

λi(UD) =
R(k − 1, i)

R(k, i)
.

Theorem 21.1 generalizes and tightens recent work on expanding hypergraphs

of BHKL [BHKL20, Theorem 2.2] (which itself extended a number of earlier works

on the topic [KO20, DDFH18, AJT19]). Additionally, our result on the connection

between regularity and approximate eigenvalues generalizes the work of KT [KT21a],

who show an analogous result for λ2. Theorem 21.1 reveals a stark contrast between

the spectral behavior of eposets with different regularity parameters. As a proto-

typical example, consider the case of hypergraphs versus subsets of the Grassmann

(k-dimensional vector spaces over Fnq). In the former, each k-set contains
(
k
i

)
i-sets,

leading to approximate eigenvalues that decay linearly (λi ≈ (k− i)/k). On the other

hand, each k-dimensional vector space contains
(
k
i

)
q
i-dimensional subspaces, which

leads to eigenvalues that decay exponentially (λi ≈ q−i). The latter property, which

we call strong decay is often crucial in applications (e.g. for hardness of approxima-

tion [SMS18] or fast algorithms [BHKL20]), and while it is possible to recover strong

graph, for instance, rank is given by the size of a set, while in the Grassmann poset it is given by
subspace dimension.

1299

decay on weaker posets by increasing the length of the walk [BHKL20], this is often

untenable in application due to the additional degrees of freedom it affords.3

The spectral structure of walks on eposets is closely related to their edge-

expansion, an important combinatorial property that has recently played a crucial role

both in algorithms for [BBK+20, BHKL20] and hardness of unique games [SMS18].

The key insight in both cases lay in understanding the structure of non-expanding

sets. We give a tight understanding of this phenomenon across all eposets in the

so-called ℓ2-regime [BHKL20], where we show that expansion is tightly controlled by

the behavior of local restrictions called links (see Definition 21.2).

Theorem 21.2 (Expansion in the ℓ2-Regime (informal Theorem 21.30)). The expan-

sion of any i-link is almost exactly 1 − λi(M). Conversely, any set with expansion

less than 1− λi+1(M) has high variance across i-links.

In [BHKL20], it was shown this characterization allows for the application of a

local-to-global algorithmic framework for unique games on such walks. This remains

true on eposets, and it is an interesting open question whether there are significant

applications beyond those given in BHKL’s original work.4

Finally, as an application of our structure theorems, we give an in-depth anal-

ysis of the ℓ2-structure of walks on expanding subsets of the Grassmann poset called

q-eposets (first studied in [DDFH18]). We focus in particular on the natural q-analog

of an important set of walks called partial-swap walks introduced by Alev, Jeronimo,

and Tulsiani [AJT19] that generalize the Johnson graphs when applied to expanding

hypergraphs. We show that applied to q-eposets, these objects give a natural set of

walks generalizing the Grassmann graphs and further prove that our generic analysis

3For instance such a walk might take exponential time to implement, or correspond to a more
complicated agreement test than desired.

4While one can apply the framework to playing unique games on the Grassmann poset (or sparsi-
fications thereof), the spectral parameters are such that this does not give a substantial improvement
over standard algorithms [AKK+08].

1300

for eposets gives a tight characterization of non-expansion in this setting. We note

that this does not recover the result used for the proof of the 2-2 Games Conjecture

which lies in the ℓ∞-regime (replacing variance above with maximum) and requires a

dimension-independent bound. This issue was recently (and independently) resolved

for simplicial complexes in [BHKL21] and [GLL22], and we view our work as an im-

portant step towards a more general understanding for families like the Grassmann

beyond hypergraphs.

21.1.1 Background

Before jumping into our results in any further formality, we’ll briefly overview

the theory of expanding posets and higher order random walks. All definitions are

covered in full formality in Section 21.2. A d-dimensional graded poset is a set X

equipped with a partial order “<” and a ranking function r : X → [d] that respects

the partial order and partitions X into levels X(0) ∪ . . . ∪ X(d). When x < y and

r(y) = r(x) + 1, we write x ⋖ y or equivalently y ⋗ x.5 Finally, we will assume

throughout this chapter that our posets are downward regular : there exists a regu-

larity function R(k, i) such that every k-dimensional element is greater than exactly

R(k, i) i-dimensional elements.6

Graded posets come equipped with a natural set of averaging operators called

the up and down operators. Namely, for any function f : X(i)→ R, these operators

average f up or down one level of the poset respectively:

Uif(x) = E
y⋖x

[f(y)],

Dif(y) = E
x⋗y

[f(x)].

Composing the averaging operators leads to a natural notion of random walks on the

underlying poset called higher order random walks (HD-walks). The simplest example

5This is traditionally called a ‘covering relation.’
6For notational convenience, we also define R(i, i) = 1 and R(j, i) = 0 whenever j < i.

1301

of such a walk is the upper walk Di+1Ui which moves between elements x, x′ ∈ X(i) via

a common element y ∈ X(i+1) with y > x, x′. Similarly, the lower walk Ui−1Di walks

between x, x′ ∈ X(i) via a common y ∈ X(i− 1) with y < x, x′. It will also be useful

at points to consider longer variants of the upper and lower walks called canonical

walks N̂ i
k = Dk+1◦. . .◦Dk+i◦Uk+i−1◦. . .◦Uk and qN i

k = Uk◦. . .◦Uk−i◦Dk−i+1◦. . .◦Dk

which similarly walk between k-dimensional elements in X(k) via a shared element

in X(k + i) or X(k − i) respectively.

Following DDFH [DDFH18], we call a poset a (δ, γ)-expander for δ ∈ [0, 1]d−1

and γ ∈ R+ if the upper and lower walks are spectrally similar up to a laziness factor:

∥Di+1Ui − (1− δi)I − δiUi−1Di∥ ≤ γ.

This generalizes standard spectral expansion which can be equivalently defined as

looking at the spectral norm of AG−U0D1, where AG (the adjacency matrix) is exactly

the non-lazy upper walk. We note that under reasonable regularity conditions (see

[KT21a, DDFH18]), this definition is equivalent to local-spectral expansion [DK17],

which requires every local restriction of the poset to be an expander graph. While

most of our results hold more generally, it will also be useful to assume a weak non-

laziness condition on our underlying posets throughout that holds in most cases of

interest (see Definition 21.12).

21.1.2 Results

With these definitions in mind, we can now cover our results in somewhat more

formality. We split this section into three parts for readability: spectral stripping,

characterizing edge expansion, and applications to the Grassmann.

21.1.2.1 Eigenstripping

We start with our generalized spectral stripping theorem for walks on expand-

ing posets.

1302

Theorem 21.3 (Spectrum of HD-Walks (informal Corollary 21.19)). Let M be an

HD-walk on the kth level of a (δ, γ)-eposet. Then the spectrum of M is highly con-

centrated in k + 1 strips:

Spec(M) ∈ {1} ∪
k⋃

i=1

[λi(M)− e, λi(M) + e]

where e ≤ Ok,δ(γ). Moreover, the span of eigenvectors in the ith strip approximately

correspond to functions lifted from X(i) to X(k).

This generalizes and improves an analogous result of BHKL [BHKL20] on

expanding hypergraphs, which had sub-optimal error dependence of Ok(γ
1/2). The

main improvement stems from an optimal spectral stripping result for arbitrary inner

product spaces of independent interest.

Theorem 21.4 (Eigenstripping (informal Theorem 21.13)). Let M be a self-adjoint

operator over an inner product space V , and V = V 1 ⊕ . . .⊕ V k be an “approximate

eigendecomposition” in the sense that there exist {λi}ki=1 and sufficiently small error

factors {ci}ki=1 such that for all fi ∈ V i:

∥Mfi − λifi∥2 ≤ ci ∥fi∥ .

Then the spectrum of M is concentrated around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − ci, λi + ci] .

Note that this result is tight—when there is ci “error” in our basis we cannot

expect to have better than ci error in the resulting spectral strips. Theorem 21.4

improves over a preliminary result to this effect in [BHKL20] which had substantially

worse dependence on ci and required much stronger assumptions.7 Theorem 21.3

7It is also worth noting that the proof in this chapter is substantially simplified from [BHKL20],
requiring no linear algebraic manipulations at all.

1303

then follows by work of DDFH ([DDFH18, Theorem 8.6]), who introduced a natural

approximate eigendecomposition on eposets we call the HD-Level-Set Decomposition.

In full generality, the approximate eigenvalues in Theorem 21.3 depend on the

eposet parameters δ, and can be fairly difficult to interpret. However, we show that

under weak assumptions (see Section 21.2) the eigenvalues can be associated with the

regularity of the underlying poset. We focus on the lower walks for simplicity, though

the result can be similarly extended to general walks on eposets.

Theorem 21.5 (Regularity Controls Spectral Decay (informal Theorem 21.21)). The

approximate eigenvalues of the lower walk qNk−i
k on a (δ, γ)-eposet are controlled by

the poset’s regularity function:

λj(qNk−i
k) ∈ R(i, j)

R(k, j)
±Ok,δ(γ).

As discussed in Section 21.1, this generalizes work of Kaufman and Tessler

[KT21a] for the second eigenvalue of the upper/lower walks, and reveals a major

distinction among poset architectures: posets with higher regularity enjoy faster de-

cay of eigenvalues. We note that Theorem 21.1 can also be obtained by combining

Theorem 21.4 with recent independent work of Dikstein, Dinur, Filmus, and Harsha

on connections between eposets and regularity (namely in the recent update of their

seminal eposet paper, see [DDFH18, Section 8.4.1]).

On a more concrete note, Theorem 21.5 gives a new method of identifying

potential poset architectures exhibiting strong spectral decay in the sense that for

any δ > 0, the lower walk only contains Oδ(1) approximate eigenvalues larger than

δ (rather than a number growing with dimension). This property, referred to as

constant ST-Rank in the context of hypergraphs in [BHKL20], is an important factor

not only for the run-time of approximation algorithms on HDX [BHKL20], but also

for the soundness of the Grassmann-based agreement test in the proof of the 2-2

Games Conjecture [SMS18].

1304

21.1.2.2 Characterizing Edge Expansion

Much of our motivation for studying the spectrum of HD-walks comes from

the desire to understand a fundamental combinatorial quantity of graphs called edge

expansion.

Definition 21.1 (Edge Expansion). Let X be a graded poset and M an HD-Walk

on X(k). The edge expansion of a subset S ⊂ X(k) with respect to M is

Φ(S) = E
v∼S

[M(v,X(k) \ S)] ,

where

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y)

and M(v, y) denotes the transition probability from v to y.

As mentioned in the introduction, characterizing the edge-expansion of sets in

HD-walks has recently proven crucial to understanding both algorithms for [BBK+20,

BHKL20] and hardness of unique games [SMS18]. On expanding hypergraphs, it has

long been known that links give the canonical example of small non-expanding sets.

Definition 21.2 (Link). Let X be a d-dimensional graded poset. The k-dimensional

link of an element σ ∈ X is the set of rank k elements greater than σ:8

Xk
σ = {y ∈ X(k) : y > σ}.

We call the link of a rank-i element an “i-link.” When the level k is clear from context,

we write Xσ for Xk
σ for simplicity.

In greater detail, BHKL [BHKL20] proved that on hypergraphs, the expansion

of links is exactly controlled by their corresponding spectral strip. While their proof

of this fact relied crucially on simplicial structure, we show via a more general analysis

that the result can be recovered for eposets.

8We note that in the literature a link is usually defined to be all such elements, not just those
of rank k. We adopt this notation since we are mostly interested in working at a fixed level of the
complex.

1305

Theorem 21.6 (Expansion of Links (informal Theorem 21.27)). Let X be a (δ, γ)-

eposet and M an HD-walk on X(k). Then for all 0 ≤ i ≤ k and τ ∈ X(i):

Φ(Xτ) = 1− λi(M)±OM,k,δ(γ).

As an immediate consequence, we get that when M is not a small-set ex-

pander, links are examples of small non-expanding sets. One might reasonably won-

der whether the converse is true as well: are all non-expanding sets explained by links?

This requires a bit of formalization. Following BHKL’s exposition [BHKL20], given

a set S consider the function LS,i : X(i)→ R that encodes the behavior of S ⊂ X(k)

on links:

∀τ ∈ X(i) : LS,i(τ) = E
Xτ

[1S]− E[1S].

The statement “Non-expansion is explained by links” can then be interpreted as say-

ing that a non-expanding set S should be detectable by some simple measure of

LS,i. There are two standard formalizations of this idea studied in the literature:

the ℓ2-regime, and the ℓ∞-regime. These are captured by the following notion of

pseudorandomness based on LS,i.

Definition 21.3 (Pseudorandom Sets [BHKL20] (informal Definitions 21.17, 21.18)).

We say a set S is (ε, ℓ)-ℓ2-pseudorandom if9

∀i ≤ ℓ : ∥LS,i∥22 ≤ εE[1S].

A set is (ε, ℓ)-ℓ∞-pseudorandom if:

∀i ≤ ℓ : ∥LS,i∥∞ ≤ ε.

In cases that ℓ2 and ℓ∞-pseudorandomness can be used interchangeably, we will simply

write (ε, ℓ)-pseudorandom.

We prove that pseudorandom sets expand near-optimally.

9Throughout, ∥·∥2 will always refer to the expectation norm ∥f∥2 = E[f2]1/2.

1306

Theorem 21.7 (Pseudorandom Sets Expand (informal Theorem 21.30)). Let X be a

(δ, γ)-eposet and M a walk on X(k). Then the expansion of any (ε, i)-pseudorandom

set S is at least:

Φ(S) ≥ 1− λi+1 −Oδ(R(k, i)ε)−Ok,δ,M(γ).

In other words, any set with expansion less than 1−λi+1 must have appreciable

variance across links at level i. We note that the formal version of this result is

essentially tight in the ℓ2-regime, but can be improved in many important cases in

the ℓ∞-regime. We’ll discuss this further in the next section, especially in the context

of the Grassmann poset.

Before this, however, it is worth separately mentioning the main technical

component behind Theorem 21.7, a result traditionally called a “level-i” inequality.

Theorem 21.8 (Level-i inequality (informal Theorem 21.25)). Let X be a (δ, γ)-

eposet and S ⊂ X(k) a (ε, ℓ)-pseudorandom set. Then for all 1 ≤ i ≤ ℓ:

|⟨1S,1S,i⟩| ≤ (R(k, i)ε+Ok,δ(γ)) ⟨1S,1S⟩

where 1S,i is the projection of 1S onto the ith eigenstrip.10

In other words, pseudorandomness controls the projection of S onto eigen-

strips. Theorems 21.7 and 21.8 recover the analogous optimal bounds for simplicial

high dimensional expanders in [BHKL20], where the regularity parameter R(k, i) =
(
k
i

)
, and are tight in a number of other important settings such as the Grassmann

(discussed below). Theorem 21.7 and Theorem 21.8 can also be viewed as another

separation between eposet architectures, this time in terms of combinatorial rather

than spectral properties.

10Note that since walks on eposets are simultaneously diagonalizable, the decomposition of X into
eigenstrips is independent of the choice of walk.

1307

21.1.2.3 Application: q-eposets and the Grassmann Graphs

Finally, we’ll discuss the application of our results to a particularly important

class of eposets called “q-eposets.” Just like standard high dimensional expanders

arise from expanding subsets of the complete complex (hypergraph), q-eposets arise

from expanding subsets of the Grassmann Poset.

Definition 21.4 (Grassmann Poset). The Grassmann Poset is a graded poset (X,<)

where X is the set of all subspaces of Fnq of dimension at most d, the partial ordering

“<” is given by inclusion, and the rank function is given by dimension.

We call a (downward-closed) subset of the Grassmann poset a q-simplicial

complex, and an expanding q-simplicial complex a q-eposet (see Section 21.2.5 for

exact details). Using our machinery for general eposets, we prove a tight level-i

inequality for pseudorandom sets.

Corollary 21.9 (Grassmann level-i inequality (informal Theorem 21.37)). Let X be

a γ-q-eposet and S ⊆ X(k). If S is (ε, ℓ)-pseudorandom, then for all 1 ≤ i ≤ ℓ:

|⟨1S,1S,i⟩| ≤
((

k

i

)

q

ε+Oq,k(γ)

)
⟨1S,1S⟩

where
(
k
i

)
q
= (1−qk)···(1−qk−i+1)

(1−qi)···(1−q) is the Gaussian binomial coefficient.

Corollary 21.9 is tight in a few senses. First, we prove the bound cannot be

improved by any constant factor, even in the ℓ∞-regime. In other words, for every

c < 1, it is always possible to find an (ε, i)-pseudorandom function satisfying:

|⟨1S,1S,i⟩| > c

((
k

i

)

q

ε+Oq,k(γ)

)
⟨1S,1S⟩.

Furthermore, it is well known the dependence on k in this result is necessary [KMS17],

even if one is willing to suffer a worse dependence on the pseudorandomness ε. This

is different from the case of standard simplicial complexes, where the dependence

1308

can be removed in the ℓ∞-regime [KMMS18, BHKL21, GLL22]. However, there is a

crucial subtlety here. It is likely that the k-dependence in this result can be removed

by changing the definition of pseudorandomness. On the Grassmann poset itself, for

instance, it is known that this can be done by replacing links with a closely related

but finer-grained local structure known as “zoom-in zoom-outs” [SMS18]. Indeed,

more generally it is an interesting open problem whether there always exists a notion

of locality based on the underlying poset structure that gives rise to k-independent

bounds in the ℓ∞-regime.

We close out the section by looking at an application of this level-i inequality

to studying edge-expansion in an important class of walks that give rise to the well-

studied Grassmann graphs.

Definition 21.5 (Grassmann Graphs). The Grassmann Graph Jq(n, k, t) is the graph

on k-dimensional subspaces of Fnq where (V,W) ∈ E exactly when dim(V ∩W) = t.

It is easy to see that the non-lazy upper walk on the Grassmann poset is

exactly the Grassmann graph Jq(n, k, k − 1). In fact, it is possible to express any

Jq(n, k, t) as a sum of standard higher order random walks.

Proposition 21.10 (Grassmann Graphs are HD-Walks (informal Proposition 21.35)).

The Grassmann graphs are a hypergeometric sum of canonical walks:

Jq(n, k, t) =
1

q(k−t)2
(
k
t

)
q

k−t∑

i=0

(−1)k−t−iq(k−t−i
2)
(
k − t
i

)

q

(
k + i

i

)

q

N i
k.

In Section 21.7 we prove a more general version of this result for any q-

simplicial complex. This leads to a set of natural sparsifications of the Grassmann

graphs that may be of independent interest for agreement testing, PCPs, and hard-

ness of approximation. For simplicity, on a given q-simplicial complex X, we’ll refer

to these “sparsified” Grassmann graphs as JX,q(n, k, t) for the moment (more formally

they are the “partial-swap walks,” see Section 21.2.5). With this in mind, let’s take a

look at what our level-i inequality implies for the edge-expansion of these graphs.

1309

Corollary 21.11 (q-eposets Edge-Expansion (informal Corollary 21.40)). Let X be

a d-dimensional γ-q-eposet and S ⊂ X(k) a (ε, ℓ)-pseudorandom set. Then the ex-

pansion of S with respect to the sparsified Grassmann graph JX,q(n, k, t) is at least:

Φ(S) ≥ 1− E[1S]− ε
ℓ∑

i=1

(
t

i

)

q

− q−(ℓ+1)j −Oq,k(γ).

In practice, t is generally thought of as being Ω(k) (or even k − O(1)), which

results in a k-dependent bound. It remains an open problem whether a k-independent

version can be proved for any q-eposet beyond the Grassmann poset itself. We conjec-

ture such a result should indeed hold (albeit under a different notion of pseudorandom-

ness), and may follow from q-analog analysis of recent work proving k-independent

bounds for standard expanding hypergraphs [BHKL21, GLL22].

21.1.3 Related work

Higher Order Random Walks. Higher order random walks were first introduced

in 2016 by Kaufman and Mass [KM16]. Their spectral structure was later elucidated

in a series of works by Kaufman and Oppenheim [KO20], DDFH [DDFH18], Alev,

Jeronimo, and Tulsiani [AJT19], Alev and Lau [AL20a], and finally BHKL [BHKL20].

With the exception of DDFH (who only worked with approximate eigenvectors with-

out analyzing the true spectrum), all of these works focused on hypergraphs rather

than general posets. Our spectral stripping theorem for eposets essentially follows

from combining eposet machinery developed by DDFH with our improved variant of

BHKL’s general spectral stripping theorem.

Higher order random walks have also seen an impressive number of applications

in recent years, frequently closely tied to analysis of their spectral structure. This has

included breakthrough works on approximate sampling [ALGV19, AL20a, ALG20,

CLV20, CLV21, CGŠV21, FGYZ21, JPV21, Liu21, BCC+21], CSP-approximation

[AJT19, BHKL20], error-correcting codes [JQST20, JST21], and agreement testing

[DK17, DD19, KM20b]. In this vein, our work is most closely related to that of Bafna,

1310

Barak, Kothari, Schramm, and Steurer [BBK+20], and BHKL [BHKL20], who used

the spectral and combinatorial structure of HD-walks to build new algorithms for

unique games. As previously discussed, the generalized analysis in this chapter also

lends itself to the algorithmic techniques developed in those works, but we do not

know of any interesting examples beyond those covered in BHKL.

High Dimensional Expansion Beyond Hypergraphs. Most works listed above

(and indeed in the high dimensional expansion literature in general) focus only on the

setting of hypergraphs. However, recent years have also seen the nascent development

and application of expansion beyond this setting [DEL+22, PK21, LH22, LZ22, HL22],

including the seminal work of DDFH [DDFH18] on expanding posets as well as more

recent breakthroughs on locally testable and quantum codes [DEL+22, PK21]. While

DDFH largely viewed eposets as having similar structure (with the exception of the

Grassmann), we strengthen the case that different underlying poset architectures

exhibit different properties. This complements the recent result of Kaufman and

Tessler [KT21a], who showed that expanding posets with strong regularity conditions

such as the Grassmann exhibit more favorable properties with respect to the second

eigenvalue. Our results provide a statement of the same flavor looking at the entire

spectrum, along with additional separations in more combinatorial settings. We note

that a related connection between poset regularity and the approximate spectrum of

walks on eposets was independently developed by DDFH in a recent update of their

seminal work [DDFH18].

Expansion and Unique Games. One of the major motivations behind this chap-

ter is towards building a more general framework for understanding the structure un-

derlying the Unique Games Conjecture [Kho02], a major open problem in complexity

theory that implies optimal hardness of approximation results for a large swath of

combinatorial optimization problems (see e.g. Khot’s survey [KV05]). In 2018, Khot,

Minzer, and Safra [SMS18] made a major breakthrough towards the UGC in proving

1311

a weaker variant known as the 2-2 Games Conjecture, completing a long line of work

in this direction [KMS17, DKK+18b, DKK+18a, BKS18, KMMS18, SMS18]. The key

to the proof lay in a result known as the “Grassmann expansion hypothesis,” which

stated that any non-expanding set in the Grassmann graph Jq(d, k, k − 1) had to

be non-trivially concentrated inside a local-structure called “zoom-in zoom-outs.” As

noted in the previous section, this result differs from our analysis in two key ways: it

lies in the ℓ∞-regime, and must be totally independent of dimension.

Unfortunately, very little progress has been made towards the UGC since this

result. This is in part because KMS’ proof of the Grassmann expansion hypothesis,

while a tour de force, is complicated and highly tailored to the exact structure of the

Grassmann. To our knowledge, the same proof cannot be used, for instance, to resolve

the related “shortcode expansion hypotheses” beyond degree-2, similar conjectures

offered by Barak, Kothari, and Steurer [BKS18] in an effort to push beyond hardness

of 2-2 Games. Just as the ℓ2-regime analysis of DDFH and BHKL recently lead

to a dimension independent bound in the ℓ∞-regime for standard HDX [BHKL21,

GLL22], we expect the groundwork laid in this chapter will be important for proving

generalized dimension independent expansion hypotheses in the ℓ∞-regime beyond

the special case of the Grassmann graphs.

21.2 Preliminaries

Before jumping into the details in full formality, we give a more careful review

of background definitions regarding expanding posets, higher order random walks,

and the Grassmann.

21.2.1 Graded posets

We start with eposets’ underlying structure, graded posets. A partially ordered

set (poset) P = (X,<) is a set of elements X endowed with a partial order “<”. A

graded poset comes equipped additionally with a rank function r : X → N satisfying

1312

two properties:

1. r preserves “<”: if y < x, then r(y) < r(x).

2. r preserves cover relations: if x is the smallest element greater than y, then

r(x) = r(y) + 1.

In other words, the function r partitions X into subsets by rank:

X(0) ∪ . . . ∪X(d),

where maxX(r) = d, and X(i) = r−1(i). We refer to a poset with maximum rank d

as “d-dimensional”, and elements in X(i) as “i-faces”. Throughout this chapter, we

will consider only d-dimensional graded posets with two additional restrictions:

1. They have a unique minimal element, i.e. |X(0)| = 1.

2. They are “pure”: all maximal elements have rank d.

Finally, many graded posets of interest satisfy certain regularity conditions which will

be crucial to our analysis. The first condition of interest is a natural notion called

downward regularity.

Definition 21.6 (Downward Regularity). We call a d-dimensional graded poset

downward regular if for all i ≤ d there exists some constant R(i) such that every

element x ∈ X(i) covers exactly R(i) elements y ∈ X(i− 1).

Second, we will also need a useful notion called middle regularity that ensures

uniformity across multiple levels of the poset.

Definition 21.7 (Middle Regularity). We call a d-dimensional graded poset middle-

regular if for all 0 ≤ i ≤ k ≤ d, there exists a constant m(k, i) such that for any

xk ∈ X(k) and xi ∈ X(i) satisfying xk > xi, there are exactly m(k, i) chains11 of

elements xk > xk−1 > . . . > xi+1 > xi where each xj ∈ X(j).

11Such objects are sometimes called flags, e.g. in the case of the Grassmann poset.

1313

We call a poset regular if it is both downward and middle regular. We note

that regular posets also have the nice property that for any dimensions i < k, there

exists a higher order regularity function R(k, i) such that any x ∈ X(k) is greater

than exactly R(k, i) elements in X(i) (see Section 21.8). We will use this notation

throughout. For notational convenience, we also define R(i, i) = 1 and R(j, i) = 0

whenever j < i.

Important examples of regular posets include pure simplicial complexes and

the Grassmann poset (subspaces of Fnq ordered by inclusion). We will assume all

posets we discuss in this chapter are regular from this point forward.

21.2.2 Measured posets and the random walk operators

Higher order random walks may be defined over posets in a very similar fashion

to simplicial complexes. The main difference is simply that “inclusion” is replaced

with the poset order relation. Just as we might want these walks on HDX to have

non-uniform weights, the same is true for posets, which can be analogously endowed

with a distribution over levels. In slightly more detail, a measured poset is a graded

poset X endowed with a distribution Π = (π0, . . . , πd), where each marginal πi is a

distribution over X(i). While measured posets may be defined in further generality

(cf. [DDFH18, Definition 8.1]), we will focus on the case in which the distribution Π is

induced entirely from πd, analogous to weighted simplicial complexes. More formally,

we have that for every 0 ≤ i < d:

πi(x) =
1

R(i+ 1, i)

∑

y⋗x

πi+1(y).

In other words, each lower dimensional distribution πi may be induced through the

following process: an element y ∈ X(i + 1) is selected with respect to πi+1, and an

element x ∈ X(i) such that x < y is then chosen uniformly at random.

The averaging operators U and D are defined analogously to their notions on

simplicial complexes, with the main change being the use of the general regularity

1314

function R(i+ 1, i):

Uif(y) =
1

R(i+ 1, i)

∑

x⋖y

f(x),

Di+1f(x) =
1

πi+1(Xx)

∑

y⋗x

πi+1(y)f(y),

where for i < k and x ∈ X(i),

πk(Xx) =
∑

y∈X(k):y>x

πk(y) = R(k, i)πi(x)

is the appropriate normalization factor (we will use this notation throughout). On

regular posets, it is useful to note that the up operators compose nicely, and in

particular that:

Uk
i f(y) := Uk−1 ◦ . . . ◦ Uif(y) =

1

R(k, i)

∑

x∈X(i):x<y

f(x)

(see Section 21.8). Furthermore, just like on simplicial complexes, the down and up

operators are adjoint with respect to the standard inner product on measured posets:

⟨f, g⟩X(k) =
∑

τ∈X(k)

πk(τ)f(τ)g(τ),

that is to say for any f : X(k)→ R and g : X(k − 1)→ R:

⟨f, Uk−1g⟩X(k) = ⟨Dkf, g⟩X(k−1).

Note that we’ll generally drop theX(k) from the notation when clear from the context.

This useful fact allows us to define basic self-adjoint notions of higher order random

walks just like on simplicial complexes.

21.2.3 Higher order random walks

Let Ck denote the space of functions f : X(k) → R. We define a natural set

of random walk operators via the averaging operators.

1315

Definition 21.8 (k-Dimensional Pure Walk [KM16, DDFH18, AJT19]). Given a

measured poset (X,Π), a k-dimensional pure walk Y : Ck → Ck on (X,Π) (of height

h(Y)) is a composition:

Y = Z2h(Y) ◦ · · · ◦ Z1,

where each Zi is a copy of D or U , and there are h(Y) of each type.

Following AJT and BHKL, we define general higher order random walks to be

affine combinations12 of pure walks.

Definition 21.9 (HD-walk). Let X be a graded poset. Let Y be a family of pure

walks Y : Ck → Ck on (X,Π). We call an affine combination

M =
∑

Y ∈Y

αY Y

a k-dimensional HD-walk on (X,Π) if it is stochastic and self-adjoint. The height

of M , denoted h(M), is the maximum height of any pure Y ∈ Y with a non-zero

coefficient. The weight of M , denoted w(M), is |α|1.

While most of our results will hold for general HD-walks (or at least some

large subclass), we pay special attention to a basic class of pure walks that have seen

the most study in the literature: canonical walks.

Definition 21.10 (Canonical Walk). Given a d-dimensional measured poset (X,Π)

and parameters k + j ≤ d, the upper canonical walk N̂ j
k is:

N̂ j
k = Dk+j

k Uk+j
k ,

and for j ≤ k the lower canonical walk qN j
k is:

qN j
k = Uk

k−jD
k
k−j,

where Uk
ℓ = Uk−1 . . . Uℓ, and Dk

ℓ = Dℓ+1 . . . Dk.

12An affine combination is a linear combination whose coefficients sum to 1.

1316

Since the non-zero spectrum of N̂ j
k and qN j

k+j are equivalent (c.f. [AL20a]), we

focus in this chapter mostly on the upper walks which we write simply as N j
k .

For certain specially structured posets, we will also study an important class

of HD-walks known as (partial) swap walks. We will introduce these well-studied

walks in more detail in Section 21.2.5, and for now simply note that they give a direct

generalization of the Johnson and Grassmann graphs when applied to the complete

complex and Grassmann poset respectively.

21.2.4 Expanding posets and the HD-Level-Set decomposition

Dikstein, Dinur, Filmus, and Harsha [DDFH18] observed that one can use

the averaging operators to define a natural extension of spectral expansion to graded

posets. Their definition is inspired by the fact that γ-spectral expansion on a standard

graph G can be restated as a bound on the spectral norm of the adjacency matrix

minus its stationary operator:

∥AG − UD∥ ≤ γ.

Informally, DDFH’s definition can be thought of as stating that this relation holds

for every level of a higher dimensional poset.

Definition 21.11 (eposet [DDFH18]). Let (X,Π) be a measured poset, δ ∈ [0, 1]d−1,

and γ < 1. X is an (δ, γ)-eposet if for all 1 ≤ i ≤ d− 1:

∥Di+1Ui − (1− δi)I − δiUi−1Di∥ ≤ γ

.

We note that for a broad range of posets, this definition is actually equivalent

(up to constants) to local-spectral expansion, a popular notion of high dimensional

expansion introduced by Dinur and Kaufman [DK17]. This was originally proved

for simplicial complexes by DDFH [DDFH18], and later extended to a more general

1317

class of posets by Kaufman and Tessler [KT21a]. It is also worth noting that when

γ = 0, posets satisfying the guarantee in Definition 21.11 are known as sequentially

differential, and were actually introduced much earlier by Stanley [Sta88] in the late

80s.

Much of our analysis in this chapter will be based off of an elegant approximate

Fourier decomposition for eposets introduced by DDFH [DDFH18].

Theorem 21.12 (HD-Level-Set Decomposition, Theorem 8.2 [DDFH18]). Let (X,Π)

be a d-dimensional (δ, γ)-eposet with γ sufficiently small. For all 0 ≤ k ≤ d, let

H0 = C0, H
i = Ker(Di), V

i
k = Uk

i H
i.

Then:

Ck = V 0
k ⊕ . . .⊕ V k

k .

In other words, every f ∈ Ck has a unique decomposition f = f0 + . . .+ fk such that

fi = Uk
i gi for gi ∈ Ker(Di).

It is well known that the HD-Level-Set Decomposition is approximately an

eigenbasis for HD-walks on simplicial complex [DDFH18, AJT19, BHKL20]. We

show this statement extends to all eposets in Section 21.4 (extending DDFH’s similar

analysis of the upper walk N1
k).

Finally, before moving on, we will assume for simplicity throughout this chap-

ter an additional property of eposets we called (approximate) non-laziness.

Definition 21.12 (β-non-Lazy Eposets). Let (X,Π) be a d-dimensional measured

poset. We call (X,Π) β-non-lazy if for all 1 ≤ i ≤ d, the laziness of the lower walk

satisfies:

max
σ∈X(i)

{1TσUi−1Di1σ} ≤ β.

Another way to think about this condition is that no element in the poset

carries too much weight, even upon conditioning. All of our results hold for general

1318

eposets,13 but their form is significantly more interpretable when the poset is addi-

tionally non-lazy. In fact, most γ-eposets of interest are O(γ)-non-lazy. It is easy to

see for instance that any “γ-local-spectral” expander satisfies this condition, an equiv-

alent notion of expansion to γ-eposets under suitable regularity conditions [KT21a].

We discuss this further in Section 21.8.

21.2.5 The Grassmann poset and q-eposets

At the moment, there are only two known families of expanding posets of

significant interest in the literature: those based on pure simplicial complexes (the

downward closure of a k-uniform hypergraph), and pure q-simplicial complexes (the

analogous notion over subspaces). The ℓ2-structure of the former set of objects is

studied in detail in [BHKL20]. In this chapter, we will focus on the latter which

has seen less attention in the literature, but is responsible for a number of important

results including the resolution of the 2-to-2 Games Conjecture [SMS18].

Definition 21.13 (q-simplicial complex). Let Gq(n, d) denote the d-dimensional sub-

spaces of Fnq . A weighted, pure q-simplicial complex (X,Π) is given by a family of

subspaces X ⊆ Gq(n, d) and a distribution Π over X. We will usually consider the

downward closure of X in the following sense:

X = X(0) ∪ . . . ∪X(d),

where X(i) ⊆ Gq(n, i) consists of all i-dimensional subspaces contained in some el-

ement in X = X(d). Further, on each level X(i), Π induces a natural distribution

πi:

∀V ∈ X(i) : πi(V) =
1(
d
i

)
q

∑

W∈X(d):W⊃V

πd(W),

where πd = Π and
(
d
i

)
q
= (1−qd)···(1−qd−i+1)

(1−qi)···(1−q) is the Gaussian binomial coefficient.

13The one exception is the lower bound of Theorem 21.6.

1319

The most basic example of a q-simplicial complex is the Grassmann poset,

which corresponds to taking X = Gq(n, d). This is the q-analog of the complete

simplicial complex. The Grassmann poset is well known to be a expander in this

sense (see e.g. [Sta88])—in fact it is a sequentially differential poset with parameters

δi =
(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)
,

the q-analog of the eposet parameters for the complete complex [DDFH18]. With this

in mind, let’s define a special class of eposets based on q-simplicial complexes.

Definition 21.14 (γ-q-eposet [DDFH18]). A pure, d-dimensional weighted q-simplicial

complex (X,Π) is a γ-q-eposet if it is a (δ, γ)-eposet satisfying δi = q qi−1
qi+1−1 for all

1 ≤ i ≤ d− 1.

Constructing bounded-degree q-eposets (a problem proposed by DDFH [DDFH18])

remains an interesting open problem. Kaufman and Tessler [KT21a] recently made

some progress in this direction, but the expansion parameter of their construction is

fairly poor (around 1/2).

Finally, in our applications to the Grassmann we’ll focus our attention on a

particularly important class of walks called partial-swap walks. These should essen-

tially be thought of as non-lazy variants of the upper canonical walks.

Definition 21.15 (Partial-Swap Walk). Let (X,Π) be a weighted, d-dimensional q-

simplicial complex. The partial-swap walk Sjk is the restriction of the canonical walk

N j
k to faces whose intersection has dimension k−j. In other words, if |V ∩W | > k−j

then Sjk(V,W) = 0, and otherwise Sjk(V,W) ∝ N j
k(V,W).

When applied to the Grassmann poset itself, it is clear by symmetry that

the partial-swap walk Sjk returns exactly the Grassmann graph Jq(d, k, k − j). On

the other hand, it is not immediately obvious these objects are even HD-walks when

applied to a generic q-simplicial complex. We prove this is the case in Section 21.7.

1320

21.3 Approximate Eigendecompositions and Eigenstripping

With preliminaries out of the way, we can move on to understanding HD-

walks’ spectral structure. It turns out that on expanding posets, these walks exhibit

almost exactly the same properties as on the special case of simplicial complexes

studied in [KO20, DDFH18, AJT19, BHKL20]: a walk’s spectrum lies concentrated

in strips corresponding to levels of the HD-Level-Set Decomposition. The key to

proving this lies in a more general theorem characterizing the spectral structure of

any inner product space admitting a “approximate eigendecomposition.”

Definition 21.16 (Approximate Eigendecomposition [BHKL20]). Let M be an op-

erator over an inner product space V . A decomposition V = V 1 ⊕ . . .⊕ V k is called

a ({λi}ki=1, {ci}ki=1)-approximate eigendecomposition if for all i and vi ∈ V i, Mvi is

close to λivi:

∥Mvi − λivi∥ ≤ ci ∥vi∥ .

We will always assume for simplicity (and without loss of generality) that the λi are

sorted: λ1 ≥ . . . ≥ λk.

BHKL [BHKL20] proved that as long as the ci are sufficiently small, each

V i (loosely) corresponds to an “eigenstrip,” the span of eigenvectors with eigenvalue

closely concentrated around λi, and that these strips account of the entire spectrum

of M . While sufficient for their purposes, their proof of this result was complicated

and resulted in a variety of sub-optimal parameters. We give a tight variant of this

result and significantly simplify the proof.

Theorem 21.13 (Eigenstripping). Let M be a self-adjoint operator over an inner

product space V , and V = V 1⊕ . . .⊕V k a ({λi}ki=1, {ci}ki=1)-approximate eigendecom-

position. Then as long as ci + ci+1 < λi − λi+1, the spectrum of M is concentrated

around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − ci, λi + ci]

1321

Proof. The idea is to examine for each i the operator M2
i = (M−λiI)2. In particular,

we claim it is enough to show the following:

Claim 21.14. For all 1 ≤ i ≤ k, Spec(M2
i) contains dim(V i) eigenvalues less than

c2i .

Let’s see why this implies the desired result. Notice that the eigenvalues of

M2
i are exactly (µ − λi)2 for each µ in Spec(M) (with matching multiplicities), and

therefore that any eigenvalue µi ∈ Spec(M2
i) less than c2i implies the existence of a

corresponding eigenvalue of M in [λi ± ci]. If each M2
i has dim(V i) eigenvalues less

than c2i , then M has at least dim(V i) eigenvalues in each interval [λi± ci]. Moreover,

since these intervals are disjoint by assumption and
∑

dim(V i) = dim(V), this must

account for all eigenvalues of M .

It remains to prove the claim, which is essentially an immediate application of

Courant-Fischer theorem [Fis05].

Proof of Claim 21.14. The Courant-Fischer theorem states that the kth smallest eigen-

value of a self-adjoint operator A is:

λn−k+1 = min
U

{
max
f∈U

{⟨f, Af⟩
⟨f, f⟩

} ∣∣∣∣ dim(U) = k

}
.

Setting U = V i, A =M2
i and k = dim(V i) gives the claim:

λn−k+1(M
2
i) ≤ max

f∈V i

{⟨f,M2
i f⟩

⟨f, f⟩

}
= max

f∈V i

{
∥(M − λiI)f∥22

⟨f, f⟩

}
≤ c2i

since (M −λiI) is self-adjoint and
⊕

i∈[k] V
i is a ({λi}ki=1, {ci}ki=1)-approximate eigen-

decomposition.

Note that this result is also trivially tight, as any true eigendecomposition is

also a ({λi ± ci}, {ci})-approximate eigendecomposition. We also note that similar

strategies have been used in the numerical analysis literature (see e.g. [HRW98]).

1322

21.4 Spectra of HD-walks

Given Theorem 21.13, it is enough to prove that the HD-Level-Set Decom-

position is an approximate eigenbasis for any HD-walk. This follows by the same

inductive argument as for local-spectral expanders in [BHKL20], where the only dif-

ference is that somewhat more care is required to deal with general eposet parameters.

To start, it will be useful to lay out some notation along with a simple observation

from repeated application of Definition 21.11.

Lemma 21.15 ([DDFH18, Claim 8.8]). Let (X,Π) be a d-dimensional (δ, γ)-eposet.

Then
∥∥Dk+1U

k+1
k−j − (1− δkj)Uk

k−j − δkjUk
k−j−1Dk−j

∥∥ ≤ γkj ,

where

δk−1 = 1, δkj =
k∏

i=k−j

δi, γ
k
j = γ

j−1∑

i=−1

δki .

Applying this fact inductively implies that functions in the HD-Level-Set De-

composition are close to being eigenvectors.

Proposition 21.16. Let (X,Π) be a (δ, γ)-eposet, and Y the pure balanced walk of

height j, with down operators at positions (i1, . . . , ij). For 1 ≤ ℓ ≤ k, let fℓ = Uk
ℓ gℓ

for some gℓ ∈ Hℓ, and let

δkj =
k∏

i=k−j

δi, γ
k
j = γ

j−1∑

i=−1

δki ,

where δki = 1 for any i < 0 for notational convenience. Then fℓ is an approximate

eigenvector of Y :
∥∥∥∥∥Y fℓ −

j∏

s=1

(
1− δk−2s+isk−2s+is−ℓ

)
fℓ

∥∥∥∥∥ ≤ ∥gℓ∥
j∑

s=1

γk−2s+isk−2s+is−ℓ

s−1∏

t=1

(
1− δk−2t+itk−2t+it−ℓ

)
≤ (j+k)jγ ∥gℓ∥ .

Proof. We prove a slightly stronger statement to simplify the induction. For b > 0,

let Y b
j : Cℓ → Cℓ+b denote an unbalanced walk with j down operators, and j + b up

1323

operators. If Y b
j has down operators in positions (i1, . . . , ij) and gℓ ∈ Hℓ, we claim:

∥∥∥∥∥Y
b
j gℓ −

j∏

s=1

(
1− δis+ℓ−2sis−2s

)
Y b
0 gℓ

∥∥∥∥∥ ≤ ∥gℓ∥
j∑

s=1

γis+ℓ−2sis−2s

s−1∏

t=1

(
1− δit+ℓ−2tit−2t

)
,

which implies the result (notice that the indices is shift by b = k − ℓ). The base

case j = 0 is trivial. Assume the inductive hypothesis holds for all Y b
i , i < j. By

Lemma 21.15 and recalling gℓ ∈ ker(Dℓ), we have:

Y b
j gℓ =

(
1− δi1+ℓ−2i1−2

)
Y b
j−1gℓ + Γgℓ,

where Γ has spectral norm

∥Γ∥ ≤ γi1+ℓ−2i1−2 .

Notice that Y b
j−1 has down operator indices {i2 − 2, . . . , ij − 2}. The inductive hy-

pothesis then implies:

Y b
j gℓ =

(
1− δi1+ℓ−2i1−2

) j∏

s=2

(
1− δis+ℓ−2sis−2s

)
Y b
0 gℓ +

(
1− δi1+ℓ−2i1−2

)
Γ′gℓ + Γgℓ

=

j∏

s=1

(
1− δis+ℓ−2sis−2s

)
gℓ +

(
1− δi1+ℓ−2i1−2

)
Γ′gℓ + Γgℓ,

where Γ′gℓ has norm

∥Γ′gℓ∥ ≤ ∥gℓ∥
j∑

s=2

γis+ℓ−2sis−2s

s−1∏

t=2

(
1− δit+ℓ−2tit−2t

)
.

Thus we may bound the norm of the righthand error term by:

∥∥(1− δi1+ℓ−2i1−2
)
Γ′gℓ + Γgℓ

∥∥ ≤
(
1− δi1+ℓ−2i1−2

)
∥Γ′∥ ∥gℓ∥+ ∥Γ∥ ∥gℓ∥

≤
j∑

s=1

γis+ℓ−2sis−2s

s−1∏

t=1

(
1− δit+ℓ−2tit−2t

)
∥gℓ∥ ,

as desired. Recalling the shift in is by k − ℓ, we can then bound the resulting error

by (j + k)jγ ∥gℓ∥ since δ ∈ [0, 1]d−1.

1324

It is worth noting that when γ = 0, this implies that the HD-Level-Set de-

composition is a true eigendecomposition. Since balanced walks are simply affine

combinations of pure walks, this immediately implies a similar result for the more

general case. To align with our definition of approximate eigendecompositions and

Theorem 21.13, we’ll also need the following general relation between ∥gℓ∥ and ∥fℓ∥
for eposets proved in [DDFH18] (albeit without the exact parameter dependence).

Lemma 21.17 ([DDFH18, Lemma 8.11]). Let (X,Π) be a d-dimensional (δ, γ)-

eposet, 0 ≤ ℓ ≤ k < d, and let

ρkℓ =
k−ℓ∏

i=1

(
1− δk−ik−ℓ−i

)
, ρmin = min

0≤ℓ≤k
{ρkℓ}.

Then for any fℓ = Uk
ℓ gℓ for gℓ ∈ Ker(Dℓ) we have:

⟨fℓ, fℓ⟩ ∈ (ρkℓ ± k2γ)⟨gℓ, gℓ⟩,

and for all i ̸= ℓ:

⟨fℓ, fi⟩ ≤ O

(
k2

ρmin
γ ∥fℓ∥ ∥fi∥

)
.

As an aside, we remark that the parameter ρkℓ turns out to be a crucial through-

out much of our work, and while it is difficult to interpret on general eposets, we prove

it has a very natural form as long as non-laziness holds.

Claim 21.18 (ρkℓ for regular eposets). Let (X,Π) be a regular, γ-non-lazy14 d-dimensional

(δ, γ)-eposet. Then for any i ≤ k < d, we have:

ρki ∈
1

R(k, i)
± err,

where err ≤ O
(
i3k2Rmax
δi(1−δi−1)

γ
)
. Likewise as long as γ ≤ O

(
maxi{δi(1−δi−1)}

i3k2R2
max

)
we have

ρ−1min ≤ O(Rmax),

where Rmax := max0≤i≤k{R(k, i)}.

14One can prove this claim more generally for any β-non-laziness, but most γ-eposets of interest
are additionally γ-non-lazy, so this simplified version is generally sufficient.

1325

This gives a nice generalization of the interpretation of ρki on hypergraphs,

which is well known to be 1

(ki)
[DDFH18]. We prove this claim in Section 21.8. For

simplicity, we will assume throughout the rest of this chapter that our eposets are

γ-non-lazy, which is true for most cases of interest (see Section 21.8). All results holds

in the more general case using ρki unless otherwise noted.

Combining Proposition 21.16 and Lemma 21.17 immediately implies that the

HD-Level-Set Decomposition is an approximate eigendecomposition in the sense of

Definition 21.16.

Corollary 21.19. Let (X,Π) be a (δ, γ)-eposet and let M =
∑
Y ∈Y

αY Y be an HD-walk.

For 1 ≤ ℓ ≤ k, if fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ, then for γ ≤ O

(
maxi{δi(1−δi−1)}

k5R2
max

)
:

∥∥∥∥∥Mfℓ −
(∑

Y ∈Y

αY λY,δ,ℓ

)
fℓ

∥∥∥∥∥ ≤ cγ ∥fℓ∥ ,

where λY,δ,ℓ is the corresponding eigenvalues of the pure balanced walk Y on a (δ, 0)-

eposet (the form of which are given in Proposition 21.16), and c ≤ O ((h(M) + k)h(M)R(k, ℓ)w(M)).

Thus as long as the walk in question is self-adjoint (e.g. canonical or swap

walk), Theorem 21.13 immediately implies that the true spectrum is concentrated

around these approximate eigenvalues.

Before moving on it is instructive (and as we will soon see quite useful) to give

an example application of Corollary 21.19 to a basic higher order random walk.

Corollary 21.20 (Spectrum of Lower Canonical Walks). Let (X,Π) be a (δ, γ)-eposet.

The approximate eigenvalues of the canonical lower walk qNk−ℓ
k are:

λj(qNk−ℓ
k) =

k−ℓ∏

s=1

(1− δk−sk−s−j).

Proof. The lower canonical walk qNk−ℓ
k = Uk

ℓD
k
ℓ is of height k − ℓ, and has down

operator at positions {1, . . . , k−ℓ}. In the language of Proposition 21.16 we therefore

1326

have is = s, which therefore gives:

λj(qNk−ℓ
k) =

k−ℓ∏

s=1

(1− δk−sk−s−j).

Note this is 0 when j > ℓ.

Similar to the case of ρki , while this is difficult to interpret in the general

setting, the eigenvalues have a very natural form on non-lazy eposets given by the

regularity parameters.

Theorem 21.21. Let (X,Π) be a γ-non-lazy (δ, γ)-eposet. The approximate eigen-

values of the canonical lower walk qNk−i
k are:

λj(qNk−i
k) ∈ R(i, j)

R(k, j)
± cγ,

where c ≤ O
(
i4k2Rmax
δi(1−δi−1)

γ
)
.

The proof requires machinery developed in Section 21.6 and Section 21.8, and

is given in Section 21.8.

21.5 Pseudorandomness and the HD-Level-Set Decomposition

Now that we know the spectral structure of HD-walks, we shift to studying

their combinatorial structure. In particular, we will focus on how natural notions of

pseudorandomness control the projection of functions onto the HD-Level-Set Decom-

position.

Before proceeding, we state a simple corollary of Lemma 21.17 that will prove

useful going forward:

Corollary 21.22. Let (X,Π) be a (δ, γ)-eposet and suppose f ∈ Ck has HD-Level-Set

Decomposition f = f0 + . . .+ fk. If γ ≤ c′ρmin

k3
for a sufficiently small constant c′ > 0,

then
k∑

j=0

∥fj∥ ≤ O(
√
k∥f∥). (21.1)

1327

Moreover, for any subset of indices I, it holds that

−
∑

j∈I

⟨f, fj⟩ ≤ O

(
k3γ∥f∥2
ρmin

)
.

In particular, if I = {j : ⟨f, fj⟩ ≤ 0}, then

∑

j∈I

|⟨f, fj⟩| ≤ O

(
k3γ∥f∥2
ρmin

)
.

Proof. For the first claim, recall that by the approximate orthogonality of the HD-

Level-Set Decomposition (Lemma 21.17), we have for all i ̸= j:

|⟨fi, fj⟩| ≤ O

(
k2

ρmin
γ ∥fi∥ ∥fj∥

)
.

Then, applying Cauchy-Schwarz gives:
(

k∑

j=1

∥fj∥
)2

≤ k
k∑

j=1

∥fj∥2

≤ k⟨f, f⟩ − k
∑

i ̸=j ̸=0

⟨fi, fj⟩

≤ k⟨f, f⟩+ cγ
∑

i ̸=j ̸=0

∥fi∥ ∥fj∥

≤ k⟨f, f⟩+ cγ

(
k∑

j=1

∥fj∥
)2

where c ≤ O
(

k3

ρmin

)
. By our assumption on γ, we have cγ ≤ 1

2
, and therefore

rearranging yields
k∑

i=1

∥fj∥ ≤ O(
√
k ∥f∥).

We now show how the second claim is a consequence of the first. For any

1328

subset I, we have

−
∑

j∈I

⟨f, fj⟩ ≤ −
∑

j∈I

∑

i ̸=j

⟨f, fj⟩

≤ Ck2γ

ρmin

∑

i,j

∥fi∥ ∥fj∥

=
O(k2γ)

ρmin

(
k∑

i=0

∥fi∥
)2

≤ O

(
k3γ ∥f∥
ρmin

)
.

21.5.1 ℓ2-pseudorandomness

We start with pseudorandomness in the ℓ2-regime, which measures the variance

of a set across links.

Definition 21.17 (ℓ2-Pseudorandom functions [BHKL20]). A function f ∈ Ck is

(ε1, . . . , εℓ)-ℓ2-pseudorandom if its variance across i-links is small for all 1 ≤ i ≤ ℓ:

Var(Dk
i f) ≤ εi|E[f]|.

In their work on simplicial complexes, BHKL [BHKL20] observed a close con-

nection between ℓ2-pseudorandomness, the HD-Level-Set Decomposition, and the

spectra of the lower canonical walks. We’ll show the same connection holds in general

for eposets.

Theorem 21.23. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
. If f ∈

Ck has HD-Level-Set Decomposition f = f0 + . . .+ fk, then for any ℓ ≤ k, Var(Dk
ℓ f)

is controlled by its projection onto V 0
k ⊕ . . .⊕ V ℓ

k in the following sense:

Var(Dk
ℓ f) ∈

ℓ∑

j=1

λj(qNk−ℓ
k)⟨f, fj⟩ ± ckγ∥f∥2,

where ck ≤ O(k5/2Rmax) and λj(qNk−ℓ
k) =

∏k−ℓ
s=1(1− δk−sk−s−j).

1329

Proof. To start, notice that since ⟨Dk
ℓ f,D

k
ℓ f⟩ = ⟨ qNk−ℓ

k f, f⟩ it is enough to analyze the

application of qNk−ℓ
k to f . By Corollary 21.20, we know that each fj is an approximate

eigenvector satisfying:
∥∥∥ qNk−ℓ

k fj − λj(qNk−ℓ
k)fj

∥∥∥ ≤ O(k2R(k, ℓ)γ) ∥fj∥ ,

where λj(qNk−ℓ
k) = 0 for j > ℓ. Combining these observations gives:

Var(Dk
ℓ f) =

〈
Dk
ℓ f,D

k
ℓ f
〉
− E[Dk

ℓ f]
2

=
〈
f, Uk

ℓD
k
ℓ f
〉
− ⟨f, f0⟩

=
k∑

j=1

⟨f, Uk
ℓD

k
ℓ fj⟩

∈
ℓ∑

j=1

λj(qNk−ℓ
k)⟨f, fj⟩ ±O

(
k2

ρmin
γ ∥f∥

k∑

j=1

∥fj∥
)
.

where we have additionally used the fact that ⟨f, f0⟩ = E[f]2 = E[Dk
ℓ f]

2 and λ0(qNk−ℓ
k) =

1. Applying Equation (21.1) from Corollary 21.22 to bound the sum in the error term

and replacing ρ with the relevant regularity parameters by Claim 21.18 then gives

the result.

As an immediate corollary, we get a level-i inequality for pseudorandom func-

tions.

Corollary 21.24. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
and let

f ∈ Ck be an (ε1, . . . , εℓ)-ℓ2-pseudorandom function. Then for any 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤ R(k, i)εi|E[f]|+ cγ∥f∥2,

where c ≤ O
(

k5R2
max

maxi{δi(1−δi−1)}

)
.

Proof. By Corollary 21.22, for any given 1 ≤ i ≤ k, it holds that −∑j ̸=i⟨f, fj⟩ ≤
O
(

k3

ρmin
γ∥f∥2

)
. It follows from Theorem 21.23 that for all 0 ≤ i ≤ k, the variance of

Dk
i f is lower bounded by its projection onto fi:

Var(Dk
i f) ≥ λi(qNk−i

k)⟨f, fi⟩ − cγ⟨f, f⟩,

1330

where c ≤ O(k3

ρmin
). Noting that λi(qNk−i

k) = ρki , if i ≤ ℓ, re-arranging the above and

applying the pseudorandomness assumption gives:

⟨f, fi⟩ ≤
1

ρki
Var(Dk

i f) + c2γ⟨f, f⟩

≤ 1

ρki
εi|E[f]|+ c2γ⟨f, f⟩,

where c2 ≤ O(k3

ρ2min
). The lower bound on ⟨f, fi⟩ is immediate from Corollary 21.22

with the set I = {i}. Applying Claim 21.18 then gives the result.

As mentioned previously, this also recovers the tight inequality for simplicial

complexes given in [BHKL20] where R(k, i) =
(
k
i

)
, as well as providing the natural

q-analog for q-simplicial complexes where R(k, i) =
(
k
i

)
q
.

21.5.2 ℓ∞-pseudorandomness

While ℓ2-pseudorandomness is useful in its own right (e.g. for local-to-global

algorithms for unique games [BBK+20, BHKL20]), there is also significant interest in

a stronger ℓ∞-variant in the hardness of approximation literature [KMMS18, SMS18].

Definition 21.18 (ℓ∞-Pseudorandom functions). A function f ∈ Ck is (ε1, . . . , εℓ)-

ℓ∞-pseudorandom if for all 1 ≤ i ≤ ℓ its local expectation is close to its global

expectation:
∥∥Dk

i f − E[f]
∥∥
∞ ≤ εi.

In their recent work on ℓ2-structure of expanding simplicial complexes, BHKL

prove a basic reduction from ℓ∞ to ℓ2-pseudorandomness that allows for an analogous

level-i inequality for this notion as well. Here, we’ll show the same result holds for

general eposets. As in their work, we’ll take advantage of a weak local-consistency

property called locally-constant sign.

1331

Definition 21.19 (locally-constant sign [BHKL20]). Let (X,Π) be a graded poset.

We say a function f ∈ Ck has ℓ-local constant sign if:

1. E[f] ̸= 0,

2. ∀s ∈ X(ℓ) s.t. E
Xs

[f] ̸= 0 : sign
(
E
Xs

[f]

)
= sign (E[f]).

With this in mind, we now state ℓ∞-variant of Corollary 21.24:

Theorem 21.25. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
and let

f ∈ Ck have HD-Level-Set Decomposition f = f0 + . . . + fk. If f is (ε1, . . . , εℓ)-ℓ∞-

pseudorandom, then for all 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤ (R(k, i) + cγ) ε2i + cγ ∥f∥2 ,

and if f has i-local constant sign:

|⟨f, fi⟩| ≤ (R(k, i) + cγ) εi|E[f]|+ cγ ∥f∥2

where in both cases c ≤ O
(

k5R2
max

maxi{δi(1−δi−1)}

)
.

We note that when f is boolean, this bound simplifies to

|⟨f, fi⟩| ≤ (R(k, i)εi + cγ)E[f],

which we’ll see in the next section is a particularly useful form for analyzing edge

expansion. The proof of Theorem 21.25 relies mainly on a reduction to the ℓ2-variant

for functions with locally-constant sign. This reduction is almost exactly the same as

in [BHKL20], but we include it for completeness.

Lemma 21.26. Let (X,Π) be a graded poset and f ∈ Ck a (ε1, . . . , εℓ)-ℓ∞-pseudorandom

function with i-local constant sign for any i ≤ ℓ. Then f is (ε1, . . . , εℓ)-ℓ2-pseudorandom.

1332

Proof. As in [BHKL20], the idea is to notice that locally constant sign allows us to

rewrite
∥∥Dk

i f
∥∥2
2

as an expectation over some related distribution Pi:

1

E[f]
⟨Dk

i f,D
k
i f⟩ =

∑

s∈X(i)

πi(s)

(
1

E[f]
∑

t∈Xs

πk(t)f(t)

πk(Xs)

)
Dk
i f(s)

=
∑

s∈X(i)

(
1

R(k, i)

∑
t∈Xs

πk(t)f(t)

E[f]

)
Dk
i f(s)

= E
Pi

[Dk
i f],

where Pi being a probability distribution follows from the locally-constant sign of f ,

and the second step follows from the fact that πk(Xs) =
∑

t∈Xs
πk(t) = R(k, i)πi(s).

The result then follows easily from averaging:
∣∣∣∣

1

E[f]
Var(Dk

i f)

∣∣∣∣ =
∣∣∣∣EPi

[Dk
i f]− E[f]

∣∣∣∣ ≤ ∥Dk
i f − E[f]∥∞.

When E[f] > 0, the ℓ∞-norm here may be replaced with maximum.

The proof of Theorem 21.25 now follows from reducing to the case of locally-

constant sign. The argument is exactly as in the proof of [BHKL20, Theorem 8.7],

but we include it for completeness.

Proof of Theorem 21.25. We focus on the general bound, since the result for functions

with locally constant sign is immediate from Lemma 21.26 and Corollary 21.24. The

argument for general functions f follows simply from noting that we can always shift

f to have locally constant sign. With this in mind, assume E[f] ≥ 0 for simplicity

(the negative case is similar). Let f ′ = f + (εi − E[f])1 be the aforementioned shift.

As long as εi > 0, it is easy to see that f ′ has i-local constant sign and further that

f ′ = f ′0 + fi + . . .+ fk,

where f ′0 = f0+(εi−E[f])1. Since shifts have no effect on ℓ∞-pseudorandomness, f ′ is

(ε1, . . . , εℓ)-ℓ∞-pseudorandom by assumption, and therefore (ε1, . . . , εℓ)-ℓ2-pseudorandom

1333

by Lemma 21.26. We can now apply Corollary 21.24 to get:

⟨f + (εi − E[f])1, fi⟩ ≤
1

ρki
εiE[f + (εi − E[f])1] + cγ⟨f + (εi − E[f])1, f + (εi − E[f])1⟩

≤
(

1

ρki
+ cγ

)
ε2i + cγ⟨f, f⟩,

since ⟨fi,1⟩ = 0 for all i > 0. Finally, as this holds for all εi > 0, a limiting argument

implies the result for εi = 0. Applying Claim 21.18 completes the proof.

21.6 Expansion of HD-walks

It is well known that higher order random walks on simplicial complexes (e.g.

the Johnson graphs) are not small-set expanders. BHKL gave an exact characteriza-

tion of this phenomenon for local-spectral expanders: they showed that the expansion

of any i-link with respect to an HD-walk M is almost exactly 1− λi(M). Moreover,

using the level-i inequality from the previous section, BHKL proved a tight converse

to this result in an ℓ2-sense: any non-expanding set must have high variance across

links. This gave a complete ℓ2-characterization of non-expanding sets on local-spectral

expanders, and lay the structural groundwork for new algorithms for unique games

over HD-walks.

In this section, we’ll show that these results extend to general expanding

posets. To start, let’s recall the definition of edge expansion.

Definition 21.20 (Weighted Edge Expansion). Let (X,Π) be a graded poset and M

a k-dimensional HD-Walk. The weighted edge expansion of a subset S ⊂ X(k) with

respect to M is

Φ(S) = E
v∼πk|S

[M(v,X(k) \ S)] ,

where

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y)

and M(v, y) denotes the transition probability from v to y.

1334

Before we prove the strong connections between links and expansion, we need

to introduce an important property of HD-walks, monotonic eigenvalue decay.

Definition 21.21 (Monotonic HD-walk). Let (X,Π) be a (δ, γ)-eposet. We call an

HD-walkM monotonic if its approximate eigenvalues λi(M) (given in Corollary 21.19)

are non-increasing.

Most HD-walks of interest (e.g. pure walks, partial-swap walks on simplicial

or q-simplicial complexes, etc.) are monotonic. This property will be crucial to

understanding expansion. To start, let’s see how it allows us to upper bound the

expansion of links.

Theorem 21.27 (Local Expansion vs Global Spectra). Let (X,Π) be a (δ, γ)-eposet

and M be a k-dimensional monotonic HD-walk. Then for all 0 ≤ i ≤ k and τ ∈ X(i):

Φ(Xτ) ∈ 1− λi(M)± cγ,

where c ≤ O
(
k5R2

max(h(M)+k)h(M)w(M)

δkk−i(1−δi−1)

)
.

The key to proving Theorem 21.27 is to show that the weight of an i-link lies

almost entirely on level i of the HD-Level-Set Decomposition. To show this, we’ll rely

another connection between regularity and eposet parameters for non-lazy posets.

Claim 21.28. Let (X,Π) be a d-dimensional (δ, γ)-eposet. Then for every 1 ≤ k ≤ d

and 0 ≤ i ≤ k, the following approximate relation between the eposet and regularity

parameters holds:

λi(N
1
k) ∈

R(k, i)

R(k + 1, i)
±
(
γkk−i +R(k, i)δkk−iγ

)

where we recall λi(N1
k) = 1−

k∏
j=i

δj.

We prove this relation in Section 21.8. With this in hand, we can show links

project mostly onto their corresponding level.

1335

Lemma 21.29. Let (X,Π) be a d-dimensional (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
.

Then for all 0 ≤ i ≤ k < d and τ ∈ X(i), 1Xτ lies almost entirely in V i
k . That is for

all j ̸= i: ∣∣∣∣
⟨1Xτ ,i,1Xτ ,j⟩
⟨1Xτ ,1Xτ ⟩

∣∣∣∣ ≤ O

(
k3Rmax

δkk−i(1− δi−1)
γ

)
.

Proof. We’ll show that the expansion of 1Xτ with respect to the upper walk N1
k is

almost exactly 1 − λi(N1
k), which implies most of the weight must lie on V k

i . We’ll

start by analyzing the expansion of 1Xτ through a simple combinatorial argument.

First, since D and U are adjoint we have:

Φ̄(1Xτ) =
⟨1Xτ , Dk+1Uk1Xτ ⟩
⟨1Xτ ,1Xτ ⟩

=
⟨Uk1Xτ , Uk1Xτ ⟩
⟨1Xτ ,1Xτ ⟩

.

The trick is now to notice that ⟨1Xτ ,1Xτ ⟩ = R(k, i)πi(τ), and ⟨Uk1Xτ , Uk1Xτ ⟩ =
R(k,i)2

R(k+1,i)
πi(τ). As a result, applying Claim 21.28 gives:

Φ̄(1Xτ) ∈ λi(N1
k)± (cγ +R(k, i)γ),

for c ≤ kγ. To see why this implies that most of the weight lies on V k
i , note that we

can also unfold the expansion of 1Xτ in terms of the HD-Level-Set decomposition:

Φ̄(1Xτ) =
1

⟨1Xτ ,1Xτ ⟩
i∑

j=0

⟨1Xτ , N
1
k1Xτ ,j⟩

∈ 1

⟨1Xτ ,1Xτ ⟩
i∑

j=0

λi(N
1
k)⟨1Xτ ,1Xτ ,j⟩ ± c2γ

where c2 ≤ k
√
k

ρmin
. Recall from Corollary 21.22 that for the set I of indices with negative

inner product, it holds that −∑j∈I⟨1Xτ ,1Xτ ,j⟩ ≤ O
(

k3

ρmin
γ⟨1Xτ ,1Xτ ⟩

)
. Moreover,

the positive inner products (i.e. the indices not in I) must sum to at least ⟨1Xτ ,1Xτ ⟩.
Then if there exists some j ̸= i such that ⟨1Xτ ,1Xτ ,j⟩ > c3⟨1Xτ ,1Xτ ⟩ for large enough

c3 ≤ O
(

1
δkk−i(1−δi−1)

·
(

k3

ρmin
γ +R(k, i)γ

))
, the non-expansion would be strictly larger

than λi(N1
k)+ cγ+R(k, i)γ giving the desired contradiction (note that (1− δi−1)δkk−1

1336

is the gap between the i − 1st and ith approximate eigenvalue). The form in the

theorem statement then follows from applying Claim 21.18.

We note that the above is the only result in our work that truly relies on non-

laziness (it is used only to replace ρ with regularity in all other results). It is possible

to recover the upper bound in Theorem 21.27 for general eposets via arguments used

in [BHKL20], but the lower bound remains open for concentrated posets. With that

in mind, we now prove Theorem 21.27.

Proof of Theorem 21.27. By the previous lemma, we have
∣∣∣∣
⟨1Xτ ,1Xτ ,j⟩
⟨1Xτ ,1Xτ ⟩

∣∣∣∣ ≤ O

(
1

δkk−i(1− δi−1)
·
(
k3

ρmin
γ +R(k, i)γ

))
.

Expanding out Φ̄(1Xτ) then gives:

Φ̄(1Xτ) =
1

⟨1Xτ ,1Xτ ⟩
i∑

j=0

⟨1Xτ ,M1Xτ ,j⟩

≤ 1

⟨1Xτ ,1Xτ ⟩
i∑

j=0

λi(M)⟨1Xτ ,1Xτ ,j⟩+ c2γ

≤ λi(M)
⟨1Xτ ,1Xτ ,i⟩
⟨1Xτ ,1Xτ ⟩

+ err1

≤ λi(M) + err2.

where c2, err1, err2 ≤ O
(

k
δkk−i(1−δi−1)

(
k2(h(M)+k)h(M)w(M)

ρmin
γ +R(k, i)γ

))
and the last

step follows from the approximate orthogonality. As usual, the form in the theorem

statement then follows from applying Claim 21.18.

Altogether, we’ve seen that for sufficiently nice expanding posets, the expan-

sion of any i-link with respect to an HD-walk is almost exactly 1 − λi(M). Since

HD-walks are generally poor expanders (have large λ1(M)), Theorem 21.27 implies

that links are examples of small, non-expanding sets. Following BHKL, we’ll now

prove a converse to this result: any non-expanding set must be explained by some

1337

structure inside links. To help give a precise statement, we first recall BHKL’s notion

of Stripped Threshold Rank (specialized to eposets for convenience).

Definition 21.22 (Stripped Threshold Rank [BHKL20]). Let (X,Π) be a (δ, γ)-

eposet and M a k-dimensional HD-walk with γ small enough that Theorem 21.13

implies the HD-Level-Set Decomposition has a corresponding decomposition of dis-

joint eigenstrips Ck =
⊕

W i
k. The ST-Rank of M with respect to η is the number of

strips containing an eigenvector with eigenvalue at least η:

Rη(M) = |{W i
k : ∃f ∈ V i,Mf = λf, λ > η}|.

We often write just Rη when M is clear from context.

With this in mind, we’ll show a converse to Theorem 21.27 in both ℓ2 and

ℓ∞ senses (respectively that any non-expanding set must have high variance over

links, and must be more concentrated than expected in some particular link). It is

convenient to express these results through their contrapositives: that pseudorandom

sets expand. The proof is the same as in [BHKL20] for simplicial complexes, but we

include it for completeness.

Theorem 21.30. Let (X,Π) (δ, γ)-eposet, M a k-dimensional, monotonic HD-walk,

and γ small enough that the eigenstrip intervals of Theorem 21.13 are disjoint. For

any η > 0, let r = Rη(M)− 1. Then the expansion of a set S ⊂ X(k) of density α is

at least:

Φ(S) ≥ 1− α− (1− α)η −
r∑

i=1

(λi(M)− η)R(k, i)εi − cγ

where S is (ε1, . . . , εr)-pseudorandom and c ≤ O
(
k5R2

max(h(M)+k)h(M)w(M)
maxi{δi(1−δi−1)}

)
.

Proof. Let 1S = 1S,0+ . . .+1S,k be the HD-Level-Set Decomposition of the indicator

1338

of S. By linearity of the inner product, we may then write:

Φ(S) = 1− 1

E[1S]
⟨1Xτ ,M1Xτ ⟩

= 1− 1

E[1S]

k∑

j=0

⟨1S,M1S,j⟩

= 1− 1

E[1S]

k∑

j=0

λj(M)⟨1S,1S,j⟩ −
1

E[1S]

k∑

j=0

⟨1S,Γj1S,j⟩

where ∥Γj∥ ≤ O
(
(h(M) + k)h(M)w(M)

ρmin

)
. The trick is now to notice we can bound

the righthand error term using Cauchy-Schwarz:
∣∣∣∣∣

1

E[1S]

k∑

j=0

⟨1S,Γj1S,j⟩
∣∣∣∣∣ ≤

1

E[1S]

k∑

j=0

|⟨1S,Γj1S,j⟩|

≤ 1

E[1S]

k∑

j=0

∥Γj∥ ∥1S∥ ∥1S,j∥

≤ cγ
∥1S∥
E[1S]

k∑

j=0

∥1S,j∥

≤ c1γ,

where c ≤ O
(
(h(M) + k)h(M)w(M)

ρmin

)
and c1 ≤ O(

√
kc) by Equation (21.1). Since M

is a monotonic walk, we can further write:

Φ(S) ≥ 1− 1

E[1S]

r∑

i=0

λi(M)⟨1S,1S,i⟩ −
1

E[1S]

k∑

i=r+1

λi(M)⟨1S,1S,i⟩ − c1γ

≥ 1− 1

E[1S]

r∑

i=0

λi(M)⟨1S,1S,i⟩ −
η

E[1S]

k∑

i=r+1

⟨1S,1S,i⟩ − c2γ

= 1− 1

E[1S]

r∑

i=0

λi(M)⟨1S,1S,i⟩ − η
(
1− 1

E[1S]

r∑

i=0

⟨1S,1S,i⟩
)
− c2γ

= 1− η − 1

E[1S]

r∑

i=0

(λi(M)− η)⟨1S,1S,i⟩ − c2γ

= 1− η − (1− η)α− 1

E[1S]

r∑

i=1

(λi(M)− η)⟨1S,1S,i⟩ − c2γ,

1339

where c2 ≤ O
(
k2(h(M) + k)h(M)w(M)

ρmin

)
. To justify the second inequality, observe

that for any r < i ≤ k such that ⟨1S,1S,i⟩ ≥ 0, replacing λi(M) with η is valid. For

the set I of r < i ≤ k with negative inner product, Corollary 21.22 implies that the

sum over I is O(k3γ/ρmin), so the inequality remains valid by absorbing the small

error into c2. Applying Corollary 21.24 to bound ⟨1S,1S,i⟩ then gives the ℓ2-variant

result, Theorem 21.25 gives the ℓ∞-variant, and Claim 21.18 gives the form given in

the theorem statement.

We note that Theorem 21.30 recovers the analogous result for simplicial com-

plex in [BHKL20] by plugging in the appropriate value R(k, i) =
(
k
i

)
. BHKL also

prove this special case is tight in two senses. First, they show that if one wants to

retain linear dependence on the pseudorandomness parameter ε, Theorem 21.30 is

tight in both the ℓ2 and ℓ∞-regimes. Second, they show that the dependence on k

is necessary in the ℓ2-regime, even if we allow sub-optimal dependence on ε. In the

next section, we’ll generalize this result to q-simplicial complexes as well. In both

cases the proofs are highly structural and depend on the underlying structure of the

poset—it remains an interesting open problem whether this bound is tight for all

poset structures.

21.7 The Grassmann and q-eposets

In this section, we examine the specification of our results on eposets to ex-

panding subsets of the Grassmann poset. We show that our analysis is tight in this

regime via a classic example of a small non-expanding set in the Grassmann graphs

called co-links.

21.7.1 Spectra

We’ll start by examining the spectrum of HD-walks on the Grassmann and q-

eposets. We’ll focus our attention in this section on the most widely used walks in the

1340

literature, the canonical and partial-swap walks. To start, recall that the Grassmann

poset itself is sequentially differential with parameters

δi =
(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)
. (21.2)

Plugging this into Proposition 21.16 gives a nice exact form for the spectra of canonical

walks.

Corollary 21.31 (Grassmann Poset N j
k Spectra). Let X = Gq(n, d) be the Grass-

mann Poset, k + j ≤ d, and fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ. Then:

N j
kfℓ = λℓfℓ,

where,

λℓ = qℓj

(
k+j−ℓ
j

)
q(

k+j
j

)
q

(
n−k−ℓ

j

)
q(

n−k
j

)
q

≈ q−ℓj.

Proof. By Proposition 21.16 we have that

λℓ(N
j
k) =

j∏

s=1

(
1−

k−s+j∏

i=ℓ

δi

)

=

j∏

s=1

(
1−

k−s+j∏

i=ℓ

(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)

)
.

The result then follows from telescoping the interior product and simplifying:

=

j∏

s=1

(
1− (qℓ − 1)(qn−ℓ+1 − 1)

(qk−s+j+1 − 1)(qn+s−k−j − 1)

)

= qℓj

(
j∏

s=1

(
qk+j−s−ℓ+1 − 1

)

(qk+j−s+1 − 1)

)(
j∏

s=1

(
qn+s−k−j−ℓ − 1

)

(qn+s−k−j − 1)

)

= qℓj

(
k+j−ℓ
j

)
q(

k+j
j

)
q

(
n−k−ℓ

j

)
q(

n−k
j

)
q

as desired.

1341

This recovers a very simple proof of classical results to this effect (see e.g.

[Del76]). An analogous computation gives an approximate bound on the spectrum of

N j
k on q-eposets as well.

Corollary 21.32 (q-eposets N j
k Spectra). Let (X,Π) be a d-dimensional γ-q-eposet

with γ ≤ q−Ω(k2), k + j ≤ d, and fℓ = Uk−1
ℓ gℓ for some gℓ ∈ Hℓ. Then:

∥∥∥∥∥∥
N j
kfℓ −

(
k+j−ℓ
j

)
q(

k+j
j

)
q

fℓ

∥∥∥∥∥∥
≤ O

(
j(j + k)

(
k

ℓ

)

q

)
γ ∥fℓ∥

Note that for small enough γ, Theorem 21.13 implies that the true spectra is

then concentrated around these values as well. It is also worth noting that these eigen-

values are, as one would expect, the natural q-analog of the corresponding eigenvalues

on simplicial complexes.

It turns out that this fact will carry over to the important class of partial-swap

walks as well. Partial-swap walks on simplicial complexes were originally analyzed by

AJT [AJT19], who showed they can be written as a hypergeometric combination of

canonical walks. Their proof is specific to the structure of simplicial complexes, and

some work is required to generalize their ideas to the Grassmann case. Following the

overall proof strategy of AJT, it will be helpful to first show that the canonical walks

themselves can be written as an expectation of swap walks over a q-hypergeometric

distribution, and then use the q-binomial inversion theorem to derive the desired

result.

Lemma 21.33 (q-analog of [AJT19, Lemma 4.11]). Let (X,Π) be a pure, measured

q-simplicial complex. Then:

N j
k =

j∑

i=0

qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

Sik

Proof. We follow the structure and notation of [AJT19, Lemma 4.11]. Assume that

the canonical walk starts at a subspace V ∈ X(k), and walks up to W ∈ X(k+j). We

1342

wish to analyze the probability that upon walking back down to level k, a subspace

V ′ with intersection k − i is chosen, that is:

dim(V ∩ V ′) = k − i.

Let such an event be denoted Ei(W). It follows from elementary q-combinatorics (see

e.g. [BH12, Lemma 9.3.2]) that

Pr
V ′⊂W

[Ei(W) | W] = qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

,

where V ′ ∈ X(k) is drawn uniformly from the k-dimensional subspaces of W . In

essence, we wish to relate this process to the swap walk Sik. To do so, note that while

the swap walk (as defined) only walks up toX(k+i), walking up toX(k+j) and condi-

tioning on intersection i, a process called the i-swapping j-walk by [AJT19], is exactly

the same due to symmetry (via the regularity condition, see [AJT19][Proposition 4.9]

for a more detailed explanation). Thus consider the i-swapping j-walk, and let T ′i
denote the variable standing for the subspace chosen by the walk. Conditioned on

picking the same W as the canonical walk in its ascent, we may relate T ′i to the

canonical walk:

Pr[T ′i = T | W] = Pr[V ′ = T | W and Ei(W)]

1343

We may now decompose the canonical walk by intersection size:

N j
k(V, T) =

j∑

i=0

∑

W∈X(k+j)

Pr[W] Pr[Ei(W) | W] Pr[V ′ = T | W and Ei(W)]

=

j∑

i=0

∑

W∈X(k+j)

qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

E
W⊃V

[Pr[V ′ = T | W and Ei(W)]]

=

j∑

i=0

∑

W∈X(k+j)

qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

E
W⊃V

[Pr[T ′i = T | W]]

=

j∑

i=0

∑

W∈X(k+j)

qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

Pr[T ′i = T]

=

j∑

i=0

∑

W∈X(k+j)

qi
2

(
j
i

)
q

(
k
k−i

)
q(

k+j
k

)
q

Sik(V, T)

This results in the q-analog of the analogous result on simplicial complexes

[AJT19, Lemma 4.11]. To recover the analogous statement writing partial-swap walks

in terms of canonical walks, we can now apply a q-Binomial inversion theorem.

Lemma 21.34 (q-Binomial Inversion (Theorem 2.1 [Zou17])). Suppose {ai}i≥1, {bi}i≥1
are two sequences. If:

aj =

j∑

i=1

(−1)i
(
j

i

)

q

bi,

then

bj =

j∑

i=1

(−1)iq(j−i
2)
(
j

i

)

q

ai

We note that [Zou17, Theorem 2.1] is stated in slightly more generality in the

original work, but the above lemma is an immediate application. With this in hand,

we can finally prove that swap walks on the Grassmann poset are indeed HD-walks:

1344

Proposition 21.35. Let (X,Π) be a weighted pure q-simplicial complex. Then for

k + j ≤ d:

Sjk =
1

qj2
(
k
k−j

)
q

j∑

i=0

(−1)j−iq(j−i
2)
(
j

i

)

q

(
k + i

i

)

q

N i
k,

and similarly,

Jq(n, k, t) = Sk−tk =
1

q(k−t)2
(
k
t

)
q

k−t∑

i=0

(−1)k−t−iq(k−t−i
2)
(
k − t
i

)

q

(
k + i

i

)

q

N i
k

Proof. The proof is an easy application of Lemma 21.34 and the q-Binomial theorem.

In particular, for any V, V ′ ∈ X(k), let

ai = (−1)iqi2
(

k

k − i

)

q

Sik(V, V
′).

Noting that N j
0 = Sj0 = I, Lemma 21.33 gives the following equality:

(
k + j

k

)

q

(
N j
k(V, V

′)− 1(
k+j
k

)
q

I(V, V ′)

)
=

j∑

i=1

(−1)i
(
j

i

)

q

ai.

Setting the second sequence {bi}i≥1 to

bi =

(
k + i

k

)

q

(
N i
k(V, V

′)− 1(
k+i
k

)
q

I(V, V ′)

)
,

Lemma 21.34 then implies:

qj
2

(
k

k − j

)

q

Sjk(V, V
′) =

j∑

i=1

(−1)j−iq(j−i
2)
(
k + i

k

)(
N i
k(V, V

′)− 1(
k+i
k

)
q

I(V, V ′)

)

=

j∑

i=1

(−1)j−iq(j−i
2)
(
k + i

k

)
N i
k(V, V

′)−
j∑

i=1

(−1)j−iq(j−i
2)I(V, V ′)

=

j∑

i=0

(−1)j−iq(j−i
2)
(
k + i

k

)
N i
k(V, V

′)

where the last step follows from the q-Binomial theorem.

1345

Once again, we note that this is unsurprisingly the q-analog of the analogous

statement on simplicial complexes (see [AJT19, Corollary 4.13]). Finally, we’ll use

this to show that the eigenvalues of partial-swap walks on q-simplicial complexes are

given by the natural q-analog of the simplicial complex case.

Corollary 21.36. Let (X,Π) be a d-dimensional γ-q-eposet with γ sufficiently small,

k + j ≤ d, and fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ. Then:

∥∥∥∥∥S
j
kfℓ −

(
k−j
ℓ

)
q(

k
ℓ

)
q

fℓ

∥∥∥∥∥ ≤ O

((
q

q − 1

)min(j,k−j)+2

k2
(
k

ℓ

)

q

)
γ ∥fℓ∥

Proof. This follows from combining Corollary 21.19, Corollary 21.31, and Proposi-

tion 21.35. Let t = k − j. In particular, it is sufficient to note that (in the notation

of Corollary 21.19):

∑

Y ∈Y

αY λY,δ,ℓ =
1

q(k−t)2
(
k
t

)
q

k−t∑

i=0

(−1)k−t−iq(k−t−i
2)
(
k − t
i

)

q

(
k + i− ℓ

i

)

q

=

(
k−j
ℓ

)
q(

k
ℓ

)
q

.

and further that:

w(Sjk) =
1

qj2
(
k
k−j

)
q

j∑

i=0

q(
j−i
2)
(
j

i

)

q

(
k + i

i

)

q

≤ qjk

qj2
(
k
k−j

)
q

j∑

i=0

q−i

≤
(

q

q − 1

)min(j,k−j)+1

Again, since the swap walks are self-adjoint Theorem 21.13 implies that for

small enough γ the true spectra is closely concentrated around these values as well. It

is worth noting that if the above analysis is repeated using the exact eposet parameters

for the Grassmann (see Equation (21.2)), this recovers the standard eigenvalues of

the Grassmann graphs (see e.g. [Del76]).

1346

21.7.2 Pseudorandom functions and small set expansion

With an understanding of the spectra of HD-walks on q-simplicial complexes,

we move to studying its combinatorial structure. By direct computation, it is not

hard to show that on q-eposets, ρkℓ = 1

(kℓ)q
(Claim 21.18 would only imply this is

approximately true). As a result, we get a level-i inequality for q-simplicial complexes

that is the natural q-analog of BHKL’s inequality for basic simplicial complexes.

Theorem 21.37. Let (X,Π) be a γ-q-eposet with γ ≤ q−Ω(k2), and let f : Ck → R be

any function on k-faces with HD-Level-Set Decomposition f = f0 + . . . + fk. If f is

(ε1, . . . , εℓ)-ℓ∞-pseudorandom, then for all 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤
((

k

i

)

q

+ cγ

)
ε2i + cγ ∥f∥2 .

If f additionally has i-local constant sign or is (ε1, . . . , εℓ)-ℓ2-pseudorandom, then

|⟨f, fi⟩| ≤
(
k

i

)

q

εi|E[f]|+ cγ ∥f∥2

where in both cases c ≤ qO(k2)

For large enough q, γ−1, this result is exactly tight. The key to showing this

fact is to examine a local structure unique to the Grassmann called co-links. The

co-link of an element W ∈ X(k′), is all of the subspaces contained in W :

X̄W = {V ∈ X(k) : V ⊆ W}.

Just like links, co-links of dimension i (that is k′ = d− i) also come through levels 0

through i of the complex, although this is somewhat trickier to see.

Lemma 21.38 (HD-level-set decomposition of co-links). Let X = Gq(d, k) and S =

XW be a co-link of dimension i for W ∈ X(d− i). Then, we have

1S ∈ V 0
k ⊕ · · · ⊕ V i

k .

1347

Proof. Since we know that V 0
k ⊕· · ·⊕V i

k = Im(Uk
i Ci) (see e.g. [DDFH18]), all we need

to do is to show that there exists an f ∈ Ci such that 1S = Uk
i f . More specifically,

we can write f =
∑

U∈X(i) αU1U . Then, we have

(Uk
i f)(V) =

∑

U∈X(i)

αU(U
k
i 1U)(V) =

1

R(k, i)

∑

U∈X(i),U⊂V

αU .

Suppose αU = g(dim(U ∩W)) for some function g : {0, . . . , i} → R. We will prove

that there exists a unique g that satisfies the desired equations.

Consider the dimension of V ∩W . If V ⊂ W , i.e., dim(V ∩W) = k, then for

all U ∈ X(i) s.t. U ⊂ V , dim(U ∩W) = i. Then, for all V ⊂ W we must have:

Uk
i 1V =

1

R(k, i)

∑

U∈X(i),U⊂V

g(i) = g(i) = 1.

On the other hand, consider V ̸⊂ W . In this case we must have dim(V ∩W) = k− j
for some i ≥ j > 0 and further that dim(U ∩W) ∈ {i− j, . . . , i} for all U ∈ X(i) s.t.

U ⊂ V . This gives the following set of linear equations:

Uk
i 1V =

i−1∑

ℓ=i−j

cj,ℓg(ℓ) + cj,i = 0 ∀1 ≤ j ≤ i,

where cj,ℓ := R(k, i)−1 · |{U ∈ X(i) : U ⊂ V, dim(U ∩ W) = ℓ, dim(V ∩ W) =

k − j}| is a constant for all ℓ ∈ {i − j, . . . , i}. Since this system can be written as

a triangular form with positive diagonal, it is invertible and there exists a unique

solution for g(0), . . . , g(i − 1) as desired. By definition, such a solution must satisfy

f =
∑

U∈X(i) g(dim(U ∩W))1U , so we have constructed f ∈ Ci such that Uk
i f = 1S,

which completes the proof of the claim.

Using this fact, we can show that our level-i inequality is exactly tight.

Proposition 21.39. Let X = Gq(d, k) be the Grassmann poset. For any i ≤ k ∈ N

and c < 1, there exist large enough q, d and a set S ⊂ X(k) such that

⟨1S,1S,i⟩ > c

(
k

i

)

q

εi⟨1S,1S⟩

where S is (i, εi)-pseudorandom.

1348

Proof. The proof goes through examining a “co-link” of dimension i, that is for W ∈
X(d− i):

X̄W = {V ∈ X(k) : V ⊂ W}.

For simplicity, let S := X̄W . The density of the co-link S in any j-link XV is:

αj =
(qd−i−j − 1) . . . (qd−k+1−i − 1)

(qd−j − 1) . . . (qd−k+1 − 1)
= q−i(k−j) + oq,d(1).

The idea is now to examine the (non)-expansion of the co-link with respect to the

lower walk Uk−1Dk. By direct computation, the probability of returning to X̄W after

moving to a (k − 1)-dimensional subspace is exactly:

Φ̄(X̄W) =
qd−i − qk−1
qd − qk−1 = q−i ± q−Ω(d) (21.3)

On the other hand, by Proposition 21.16 the approximate eigenvalues of the lower

walk are given by

λj =
qk−j − 1

qk − 1
= q−j −O(q−k)

Since a dimension-i co-link has no projection onto levels i+1 through k, we can also

write the non-expansion as:

Φ̄(X̄W) =
1

⟨1S,1S⟩
i∑

j=0

q−j⟨1S,1S,j⟩ −O(q−k)

for large enough q, d. Combining this with our previous formula for the non-expansion

in Equation (21.3), we get that there exists a universal constant c′ such that for large

enough q and d, 1X̄W
cannot have more than a c′

q
fraction of its mass on levels 1

through i− 1. Finally, noticing that:
(
k

i

)

q

αi = 1 + oq(1)

we have

⟨1S,1S,i⟩
⟨1S,1S⟩

≥ q − c′
q
≥ c

(
k

i

)

q

αi

since the latter is strictly bounded away from 1 for large enough q. This completes

the result since X̄W is (αi, i)-pseudorandom.

1349

We’ll close the section by giving an immediate application of Theorem 21.37

to the expansion of pseudorandom sets, and briefly discuss connections with the

proof of the 2-2 Games Conjecture and algorithms for unique games. Namely, as

corollary of Theorem 21.37, we show that for both the canonical and partial-swap

walks, sufficiently pseudorandom functions expand near perfectly.

Corollary 21.40 (q-eposets Edge-Expansion). Let (X,Π) be a d-dimensional γ-q-

eposet, S ⊂ X(k) a subset whose indicator function 1S is (ε1, . . . , εℓ)-pseudorandom.

Then the edge expansion of S with respect to the canonical walk N j
k is bounded by:

Φπk(N
j
k , S) ≥ 1− E[1S]−

ℓ∑

i=1

(
k+j−i
j

)
q(

k+j
j

)
q

(
k

i

)

q

εi − q−(ℓ+1)j − qO(k2)γ

Further, the edge expansion of S with respect to the partial-swap walk Sjk is bounded

by:

Φπk(S
j
k, S) ≥ 1− E[1S]−

ℓ∑

i=1

(
k − j
i

)

q

εi − q−(ℓ+1)j − qO(k2)γ

Note that Sjk on q-eposets is a generalization of the Grassmann Graphs (and

are equivalent when X is the Grassmann Poset). While our definition of pseudoran-

domness is weaker than that of [SMS18] and therefore necessarily depends on the

dimension k, we take the above as evidence that the framework of expanding posets

may be important for making further progress on the Unique Games Conjecture.

In particular, combined with recent works removing this k-dependence on simplicial

complexes [BHKL21, GLL22], it seems plausible that the framework of expanding

posets may lead to a more general understanding of the structure underlying the

unique games conjecture.

21.8 Eposet Parameters and Regularity

In this appendix we will discuss connections between notions of regularity,

the averaging operators, and eposet parameters. To start, we’ll show that downward

1350

and middle regularity (which are defined only on adjacent levels of the poset) imply

extended regularity between any two levels.

Proposition 21.41. Let (X,Π) be a d-dimensional regular measured poset. Then for

any i < k ≤ d, there exist regularity constant R(k, i) such that for any xk ∈ X(k),

there are exactly R(k, i) elements xi ∈ X(i) such that xk > xi.

Proof. Given any element xk ∈ X(k), downward regularity promises there are exactly
∏k

j=i+1R(j) unique chains xk < xk−1 < . . . < xi+1 < xi. By middle regularity, any

fixed xi ∈ X(i) which appears in this fashion appears in exactlym(k, i) chains. Noting

that xi < xk if and only if xi appears in such a chain, the total number of xi < xk

must be exactly:

R(k, i) =

∏k
j=i+1R(j)

m(k, i)
.

A similar argument shows that regularity allows the up operators to compose

in the natural way.

Proposition 21.42. Let (X,Π) be a d-dimensional regular measured poset. Then for

any i < k ≤ d we have:

Uk
i f(xk) =

1

R(k, i)

∑

xi<xk

f(xi)

Proof. Expanding out Uk
i f(y) gives:

Uk
i f(xk) =

1
k∏

j=i+1

R(j)

∑

xk−1<xk

. . .
∑

xi<xi+1

f(xi)

1351

The number of times each xi appears in this sum is exactly the number of chains

starting at xk and ending at xi, so by middle regularity:

1
k∏

j=i+1

R(j)

∑

xk−1<xk

. . .
∑

xi+1<xi

f(xi) =
m(k, i)
k∏

j=i+1

R(j)

∑

xi<xk

f(xi)

=
1

R(k, i)

∑

xi<xk

f(xi).

as desired.

We’ll now take a look at the connection between eposet parameters and regu-

larity. It is convenient to first start with a lemma stating that non-laziness is equiv-

alent to bounding the maximum transition probability of the lower walk.

Lemma 21.43. Let (X,Π) be a d-dimensional measured poset. Then for any 0 < i ≤
d, the maximum laziness of the lower walk is also the maximum transition probability:

max
σ∈X(i)

{
1
T
σUi−1Di1σ

}
= max

σ,τ∈X(i)

{
1
T
σUi−1Di1τ

}
.

Proof. Assume that τ ̸= σ. Then the transition probability from τ to σ is exactly

1
T
σUi−1Di1τ =

πτ (σ \ τ)
R(i, i− 1)

≤ 1

R(i, i− 1)

∑

τ⋖σ

πτ (σ \ τ)

= 1
τ
σUi−1Di1σ,

which implies the result.

We now prove our two claims relating the eposet parameters to regularity.

Claim 21.44. Let (X,Π) be a d-dimensional (δ, γ)-eposet. Then for every 1 ≤ k ≤ d

and 0 ≤ i ≤ k, the following approximate relation between the eposet and regularity

parameters holds:

λi(N
1
k) ∈

R(k, i)

R(k + 1, i)
±
(
γkk−i +R(k, i)δkk−iγ

)

1352

where we recall λi(N1
k) = 1−

k∏
j=i

δj.

Proof. One of our main analytical tools so far has been the relation between the upper

and lower walks given in Lemma 21.15:

∥∥Dk+1U
k+1
i − (1− δkk−i)Uk

i − δkk−iUk
i−1Di

∥∥ ≤ γkk−i.

For this result, we’ll actually need a refinement of this result given in [BHKL20,

Lemma A.1]:15

Dk+1U
k+1
i = (1− δkk−i)Uk

i + δkk−iU
k
i−1Di +

k−i−1∑

j=−1

Uk
k−j−1ΓjU

k−j−1
i (21.4)

where
∑ ∥Γj∥ ≤ γkk−i. The idea is now to examine the “laziness” of the two sides of

this equality. In other words, given a starting k-face τ , what is the probability that

the resulting i-face σ satisfies σ < τ?

To start, we’ll argue that the laziness of the lefthand side is exactly R(k,i)
R(k+1,i)

.

This follows from noting that there are R(k, i) i-faces σ satisfying σ < τ , and R(k +

1, i) options after taking the initial up-step of the walk to τ ′ > τ . After the down-

steps, the resulting i-face is uniformly distributed over these R(k+1, i) options σ < τ ′,

and since every σ < τ < τ ′, all original R(k, i) lazy options are still viable after the

up-step to τ ′.

Analyzing the right-hand side is a bit trickier. The initial term (1− δkk−i)Uk
i is

completely lazy, so it contributes exactly (1− δkk−i) = λi(N
1
k). We’ll break the second

term into two steps: walking from X(k) to X(i) via Uk
i , then from X(i) to X(i) via

the lower walk Ui−1Di. Starting at a k-face τ , notice that after applying the down

step Uk
i we are uniformly spread over σ < τ . Computing the laziness then amounts

to asking what the probability of staying in this set is after the application of UD,

15Formally the result is only stated for simplicial complexes in [BHKL20], but the same proof
holds for eposets.

1353

which one can naively bound by the maximum transition probability times the set

size R(k, i). By non-laziness, the maximum transition probability is at most γ (see

Lemma 21.43).

The third term can be handled similarly. The first down step Uk
k−j−1 spreads

τ evenly across σ < τ in X(k− j−1). The resulting i-face σ′ after applying ΓjU
k−j−1
i

is less than τ if and only if the intermediary (k − j − 1)-face after applying Γj is less

than τ , which is bounded by the spectral norm ∥Γj∥.16

Putting everything together, since both sides of Equation (21.4) must have

equivalent laziness, we get that λi(N1
k) must be within

∑ ∥Γj∥ + δkk−iR(k, i)γ as

desired.

Claim 21.18 and Theorem 21.21 can both be proving an analogous theorem

for the upper walk.

Claim 21.45 (Regularity and Upper Walk Spectrum). Let (X,Π) be a d-dimensional

(δ, γ)-eposet. Then for any j ≤ i ≤ k < d, we have:

λj(N
k−i
i) ∈ R(i, j)

R(k, i)
± err,

where err ≤ O
(
i4k2Rmax
δi(1−δi−1)

γ
)
.

Proof. This follows almost immediately from the fact that i-links lie almost entirely

on the ith eigenstrip (Lemma 21.29). In particular, it is enough to examine the

expansion of i-links with respect to the upper canonical walk Nk−i
i . On the one hand,

16We note that Γj is not stochastic, but it is self-adjoint and an easy exercise to see that the
analogous reasoning still holds.

1354

for any j ≤ i and τ ∈ X(j) we have:

Φ̄(X i
τ) =

⟨1Xi
τ
, Nk−i

i 1Xi
τ
⟩

⟨1Xi
τ
,1Xi

τ
⟩

=
⟨Uk

j 1τ , U
k
j 1τ ⟩

⟨U i
j1τ , U

i
j1τ ⟩

=
R(i, j)2

R(k, i)2
⟨1Xk

τ
,1Xk

τ
⟩

⟨1Xi
τ
,1Xi

τ
⟩

=
R(i, j)

R(k, i)

⟨1τ ,1τ ⟩
⟨1τ ,1τ ⟩

=
R(i, j)

R(k, i)
.

where we have applied the fact that ⟨Xℓ
τ , X

ℓ
τ ⟩ = R(ℓ, j)⟨1τ ,1τ ⟩. On the other hand,

by Lemma 21.29 we also have that:

Φ̄(1Xi
τ
) =

1

⟨1Xi
τ
,1Xi

τ
⟩

i∑

ℓ=0

⟨1Xi
τ
, Nk−i

i 1Xi
τ ,ℓ
⟩

∈ 1

⟨1τ ,1τ ⟩
i∑

ℓ=0

λj(N
k−i
i)⟨1Xi

τ
,1Xi

τ ,ℓ
⟩+ cγ

∈ λj(Nk−i
i)
⟨1τ ,1τ,j⟩
⟨1τ ,1τ ⟩

+
i∑

j=0

err1

∈ λj(Nk−i
i) + err2

where as in the proof of Theorem 21.27, c, err1, err2 ≤ O
(

i4k2Rmax
δii−j(1−δj−1)

γ
)
.

Claim 21.18 follows immediately from observing that ρki = λi(N
k−i
i) (by Propo-

sition 21.16). Theorem 21.21 follows from observing that N̂k−i
i and qNk−i

k have the

same approximate eigenvalues (similarly by Proposition 21.16).

Finally we close out the section by discussing the connection between non-

laziness and a variant of eposets called local-spectral expanders [KT21a]. To start,

let’s recall this latter definition.

1355

Definition 21.23 (Local-Spectral Expander [DK17, KT21a]). A d-dimensional mea-

sured poset (X,Π) is a γ-local-spectral expander if the graph underlying every link17

of dimension at most d− 2 is a γ-spectral expander.18

Under suitable regularity conditions (see [KT21a]), local-spectral expansion is

equivalent to the notion of expanding posets used in this chapter. A simple argument

shows that γ-local-spectral expanders are γ-non-lazy.

Lemma 21.46. Let (X,Π) be a d-dimensional γ-local-spectral expander, and 0 < i <

d. The laziness of the lower walk on level i is at most:

max
σ∈X(i)

{⟨1σ, Ui−1Di1σ⟩
⟨1σ,1σ⟩

}
≤ γ.

Proof. Through direct computation, the laziness probability of the lower walk at

σ ∈ X(i) is exactly
⟨1σ, Ui−1Di1σ⟩
⟨1σ,1σ⟩

=
1

R(i, i− 1)

∑

τ⋖σ

πτ (σ \ τ)

It is therefore enough to argue that πτ (σ \ τ) ≤ γ. This follows from the fact that

the graph underlying the link Xτ is a γ-spectral expander. In particular, recall that

an equivalent formulation of this definition states that:

∥Aτ − UDτ∥ ≤ γ,

where Aτ is the standard (non-lazy upper) walk and UDτ is the lower walk on the

graph underlying Xτ . This implies that the weight of any vertex v in the graph is at

most γ, as:
⟨1v, UDτ1v⟩
⟨1v,1v⟩

=
⟨1v, (UDτ − Aτ)1v⟩

⟨1v,1v⟩
≤ ∥Aτ − UDτ∥ ≤ γ

where we have used the fact that Aτ is non-lazy by definition. Since πτ (σ \ τ) is

exactly the weight of the vertex σ \ τ in Xτ , this completes the proof.

17Here the link of τ is not just its top level faces, but the complex given by taking this set,
removing τ from each face, and downward closing.

18A graph is a γ-spectral expander if its weighted adjacency matrix has no non-trivial eigenvalues
greater than γ in absolute value.

1356

Appendix A: Probability Theory Toolbox

A.1 Concentration Inequalities

Lemma A.1 (Chebyshev’s inequality). Let X be a random variable with finite ex-

pected value µ and finite non-zero variance σ2. Then for any real number k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

Lemma A.2 (Chernoff Bound [Che52]). Let X1, X2, · · · , Xn be independent random

variables. Assume that 0 ≤ Xi ≤ 1 always, for each i ∈ [n]. Let X = X1+X2+· · ·+Xn

and µ = E[X] =
n∑
i=1

E[Xi]. Then for any ϵ > 0,

Pr[X ≥ (1 + ϵ)µ] ≤ exp(− ϵ2

2 + ϵ
µ) and Pr[X ≤ (1− ϵ)µ] ≤ exp(−ϵ

2

2
µ).

Lemma A.3 (Hoeffding bound [Hoe63]). Let Z1, · · · , Zn denote n independent bounded

variables in [ai, bi]. Let Z =
∑n

i=1 Zi, then we have

Pr[|Z − E[Z]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2
)
.

Lemma A.4 (Bernstein inequality [Ber24]). Assume Z1, . . . , Zn are n i.i.d. random

variables with E[Zi] = 0 and |Zi| ≤M for all i ∈ [n] almost surely. Let Z =
∑n

i=1 Zi.

Then, for all t > 0,

Pr[Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j] +Mt/3

)
≤ exp

(
−min

{
t2

2
∑n

j=1 E[Z2
j]
,
t

2M

})

which implies with probability at least 1− δ,

Z ≤

√√√√2
n∑

j=1

E[Z2
j] log

1

δ
+ 2M log

1

δ
.

Lemma A.5 (Concentration of subgaussian random variables). Let a ∈ Rn be a

vector where each coordinate of a is an independent subgaussian random variable with

parameter σ2. Then, for any vector x ∈ Rn,

Pr[|⟨a, x⟩| ≥ t · ∥x∥2] ≤ 2 exp

(
− t2

2σ2

)
.

1357

Theorem A.6 (Theorem 5.1.1 in [Tro15]). Let X1, . . . , Xm ∈ Rn×n be m independent

random Hermitian matrices. Assume that 0 ⪯ Xi ⪯ L · I for some L > 0 and for all

i ∈ [m]. Let X :=
∑m

i=1Xi. Then, for ϵ ∈ (0, 1], we have

Pr[λmin(X) ≤ ϵλmin(E[X])] ≤ n · exp(−(1− ϵ)2λmin(E[X])/(2L)).

A.2 Anti-Concentration

Lemma A.7 (Anti-concentration of Gaussian distribution). Let Z ∼ N(0, σ2). Then,

for t > 0,

Pr[|Z| ≤ t] ≤ 2t√
2πσ

.

Lemma A.8 ([LS01, Theorem 3.1] with improved upper bound for Gaussian)). Let

b > 0 and r > 0. Then,

exp(−b2/2) Pr
w∼N(0,1)

[|w| ≤ r] ≤ Pr
w∼N(0,1)

[|x− b| ≤ r] ≤ 2r · 1√
2π

exp(−(max{b− r, 0})2/2).

Proof. To prove the upper bound, we have

Pr
w∼N(0,1)

[|x− b| ≤ r] =

∫ b+r

b−r

1√
2π

exp(−x2/2) dx ≤ 2r · 1√
2π

exp(−(max{b− r, 0})2/2).

Lemma A.9 (Small ball probability, [RV09]). Let h ∈ Rn be a vector such that

|hi| ≥ δ for all i ∈ [n]. Let a ∈ {−1, 1}n be a random vector such that each coordinate

is an independent Rademacher random variable. Then, for some absolute constants

C1, C2, we have for any t > 0,

Pr[|⟨h, a⟩| ≤ t] ≤ min

{
C1t

∥h∥2
,
C2t

δ
√
n

}
.

1358

Appendix B: Quantum States, Unitary
Transformations, and Quantum Circuits

We provide a brief overview of quantum computation in this appendix. We

recommend the standard textbook [NC11] for a more comprehensive treatment. We

divide the computation into three parts: input, process, and output.

B.1 Input

In quantum computing, we represent information in quantum states using

qubits. We first introduce pure quantum states (defined as follows). In general,

people consider mixed states for quantum information, which we will introduce later.

Definition B.1 (Pure quantum state). A pure quantum state |ψ⟩ on n qubits is

represented as a unit vector in C2n , |ψ⟩ = (α0, α1, . . . , α2n−1)
⊤, where αi ∈ C for

i ∈ {0, . . . , 2n − 1} and
∑

i |αi|2 = 1.

Remark B.1. The Dirac notation is widely used in quantum computing, where |ψ⟩ (a

column vector) is called a “ket". The complex conjugate of |ψ⟩ is denoted as a row

vector ⟨ψ| = (α∗0, · · · , α∗2n−1) (called a “bra").

For example, |0⟩, |1⟩, . . . , |2n−1⟩ represent n-bit classical messages, 0, 1, . . . , 2n−
1. For convenience, we sometimes denote N = 2n. In terms of linear algebra, one can

think of |i⟩ as the column vector with the (i+1)-th entry being 1 and 0 elsewhere. The

input to quantum computers can be any quantum state. For classical problems, we

can encode the classical input x ∈ {0, 1}n as the quantum state |x⟩ ∈ C2n . In general,

any pure quantum state |ψ⟩ can be represented as
∑

i αi|i⟩ for some α0, . . . , α2n−1 ∈ C

with
∑

i |αi|2 = 1. And αi’s are denoted as the amplitudes of |ψ⟩.

The tensor product of quantum states is their Kronecker product: if |ψ⟩ ∈ Cd1

1359

and |ϕ⟩ ∈ Cd2 , then we have |ψ⟩ ⊗ |ϕ⟩ ∈ Cd1 ⊗ Cd2 with

|ψ⟩ ⊗ |ϕ⟩ = (α0β0, α0β1, . . . , αd1−1βd2−1)
⊤,

where αi’s and βj’s are the amplitudes of |ψ⟩ and |ϕ⟩, respectively. We often omit

the operator ⊗ and simply write |ψ⟩|ϕ⟩ or |ψ, ϕ⟩ for being concise.

Mixed quantum states.

Definition B.2 (Mixed state). A mixed state is a collection of pure states |ϕi⟩ for i ∈
[n], each with associated probability pi, with the condition pi ∈ [0, 1] and

∑n
i=1 pi = 1.

A mixed state can also be represented by the density matrix:

ρ :=
n∑

i=1

pi|ϕi⟩⟨ϕi|.

Partial Trace Notations. For a quantum state σ over two registers R1, R2 (i.e.

Hilbert spaces HR1 ,HR2), the partial trace over the R2 subsystem, denoted TrR2 , is

defined as TrR2 [ρ] :=
∑

j(IR1 ⊗ ⟨j|R2)ρ(IR1 ⊗ |j⟩R2), where {|j⟩} is any orthonormal

basis for the Hilbert space of subsystem R2.

We denote the state in R1 as σ[R1], where σ[R1] = Tr2[σ] is a partial trace of

σ. Similarly, we denote σ[R2] = Tr1[σ].

Purification of mixed states. For a mixed state ρ over HA, there exists another

space HB and a pure state |ψ⟩ over HA⊗HB such that ρ is a partial trace of |ψ⟩⟨ψ|
with respect to HB.

B.2 Quantum Process

Quantum process for quantum states is defined as a unitary transformation.

Definition B.3 (Unitary transformation). A unitary transformation U for an n-

qubit quantum state is an isomorphism in the 2n-dimensional Hilbert space. For

1360

convenience, we view U as a 2n × 2n matrix satisfying that U ∈ CN×N with UU † =

U †U = I where U † is the Hermitian adjoint of U .

We can represent an n-qubit quantum process acting on an n-qubit state |ψ⟩
as |ψ⟩ 7→ U |ψ⟩ as a unitary matrix U in C2n×2n . Note that a unitary matrix must

preserve the norm of the input state. Thus any unitary transformation is reversible.

To implement a unitary transformation, we pick a set of local unitary operations that

can generate any unitary transformation with arbitrary precision.

Definition B.4 (Universal quantum gate set). A quantum gate set G is a set of

unitaries such that for any unitary transformation U , U can be approximated by a

finite sequence of gates in G.

For example, {Toffoli,H} is a universal gate set [Shi02]. In this chapter, we

consider gate sets which only contain unitaries with constant dimensions.

Note that choosing different universal gate sets may cause the circuit complex-

ity of the same object to be different. However, the Solovay-Kitaev theorem shows

that one universal gate set can approximate another one at a modest cost.

Theorem B.1 (Solovay-Kitaev Theorem). Let G and G′ be two universal gate sets.

Then, any s-gate circuit C using gates from G can be approximated to precision ϵ by

a s poly log s
ϵ
-gates circuit C′ using gates from G′. We say C approximates to C′ with

precision ϵ if

∥C− C′∥ ≤ ϵ,

where ∥ · ∥ is L2 norm.

We will formally state Solovay-Kitaev Theorem when defining the problems of

quantum circuit complexity.

We can represent quantum algorithms as quantum circuits by using a sequence

of quantum gates from a universal quantum gate set.

1361

Definition B.5 (Quantum circuit QC(s, t,G)). Let s, t : N→ N and G be a universal

quantum gate set. A quantum circuit family {Cn : n > 0} is in QC(s, t,G) if the

following holds: For all n > 0,

• the input to Cn is an n-qubit quantum state |ψ⟩;
• Cn extends the input layer with t(n) ancilla qubits, where these ancilla qubits

are initiated to |0t(n)⟩;
• Cn applies s(n) gates from G on the initial state |ψ⟩|0t(n)⟩.

Here, in addition to the qubits for the input, the circuit can also have ancilla

qubits as its working space. We say that a quantum algorithm is efficient if its

corresponding circuit has circuit size at most polynomial in the input size. In the rest

of the chapter, we may write QC(s, t,G) as QC(s) if the number of ancilla qubits is

at most O(s).

B.3 Output

The outputs of quantum circuits defined in Definition B.5 are quantum states.

To extract useful information from a quantum state |ψ⟩, one can measure the state.

Mathematically, a measurement is simply a sampling process. For example, if we

measure |ψ⟩ in the computational basis, i.e., {|0⟩⟨0|, . . . , |2n − 1⟩⟨2n − 1|}, we get the

output being index i with probability |ci|2. In general, we can measure a state |ψ⟩
on any orthogonal basis B for C2n . Mathematically, this is equivalent to a change of

basis via a unitary transformation.

Therefore, a quantum algorithm for some Boolean function is as follows: Given

|x⟩, apply a quantum circuit C on state |x, 0t(n)⟩, and then measure the state C|x, 0t(n)⟩
in the computational basis. If C computes f , then the measurement outcome will be

f(x) with probability good enough (e.g., ≥ 2/3). Note that a quantum process can

have measurements in the middle of the computation in general. In this case, the

1362

process is not reversible any more. However, we can always defer these measurements

until all the unitaries have been applied by adding ancilla qubits.

Remark B.2 (Deferring measurements). Let Mi be the computational-basis measure-

ment on the i-th qubit. Let |ψ⟩ be any n-qubit state and U, V be any n-qubit unitaries.

Then, the process U ◦Mi◦V operating on |ψ⟩ is equivalent to Mn+1◦U ◦CNOTi,n+1◦V ,

where CNOTi,n+1 has the i-th qubit as the control qubit and the n + 1-th qubit as

the target qubit.

More generally, we can do the following general form of measurement called

POVM:

Definition B.6 (Positive operator-valued measure, POVM). A positive operator-

valued measure (POVM) M is specified by a finite index set I and a set {Mi}i∈I of

Hermitian positive semi-definite matrices Mi such that
∑

i∈IMi = I.

When applying M to a quantum state ρ, the outcome is i with probability

pi = Tr[ρPi] for all i ∈ I.

To characterize the post-measurement states, we define the quantum measure-

ments as follows.

Definition B.7 (Quantum measurement). A quantum measurement E is specified

by a finite index set I and a set {Ei}i∈I of measurement operators Ei such that
∑

i∈IE
†
iEi = I.

When applying E to a quantum state ρ, the outcome is i with probability

pi = Tr[ρE†iEi] for all i ∈ I. Furthermore, conditioned on the outcome being i, the

post-measurement state is EiρE†i /pi.

Note that POVM M and quantum measurement E are related by setting Mi =

E†iEi. In this case, we say that E is an implementation of M. The implementation of

a POVM may not be unique.

1363

Definition B.8 (Projective measurement and projective POVM). A quantum mea-

surement E is projective if for all i ∈ I, Ei is a projection, i.e., Ei is Hermitian and

E2
i = Ei.

Similarly, a POVM M is projective if each Mi is projection for i ∈ I.

1364

Appendix C: Omitted Materials from Chapter 5

C.1 A Review of Lin-Tong’s Algorithm

In this section, we review the techniques in [LT22], which proposed a hybrid

quantum/classical algorithm for estimating the ground state energy of a Hamiltonian.

Compared with the algorithms in previous works, the algorithm in [LT22] uses fewer

quantum resources and does not need to access the block-encoding of the Hamiltonian.

First of all, they assumed that the given initial state |ϕ0⟩1 has a nontrivial

overlap with the ground state of H.

C.1.1 Quantum part of the algorithm

Fix j ∈ Z. Suppose we want to estimate ℜ(⟨ϕ0| e−ijτH |ϕ0⟩). Then, we set

W = I and define a random variable Xj as follows:

Xj :=

{
1 if the outcome is 0

−1 if the outcome is 1
.

Since the state before the measurement is

1

2
(|0⟩ ⊗ (I + e−ijτH) |ϕ0⟩+ |1⟩ ⊗ (I − e−ijτH) |ϕ0⟩), (C.1)

we have

E[Xj] = Pr[Xj = 0]− Pr[Xj = 1]

=
1

4
⟨ϕ0| (I + eijτH)(I + e−ijτH) |ϕ0⟩ −

1

4
⟨ϕ0| (I − eijτH)(I − e−ijτH) |ϕ0⟩

=
1

2
⟨ϕ0| (eijτH + e−ijτH) |ϕ0⟩

= ℜ(⟨ϕ0| e−ijτH |ϕ0⟩). (C.2)

1In [LT22], they allowed the initial state to be a mixed state. For simplicity, we still denote it as
|ϕ0⟩.

1365

For the imaginary part ℑ(⟨ϕ0| e−ijτH |ϕ0⟩), we can set W to be the phase gate
[
1 0
0 −i

]

and define the random variable Yj similarly. Then, we have

E[Yj] = ℑ(⟨ϕ0| e−ijτH |ϕ0⟩). (C.3)

Therefore, Eqs. (C.2) and (C.3) implies the following claim:

Claim C.1 (Estimator of the Hamiltonian expectation). For any j ∈ Z, the random

variable Xj + iYj is an un-biased estimator for ⟨ϕ0| e−ijτH |ϕ0⟩.

C.1.2 Classical part of the algorithm

Let τ be a normalization factor such that ∥τH∥ ≤ π/3. Suppose the initial

state |ϕ0⟩ can be decomposed in the eigenspace of H as |ϕ0⟩ =
∑

k

√
pk |ψk⟩. Let p(x)

be the following density function (spectral measure):

p(x) :=
∑

k

pkδ(x− τλk) ∀x ∈ [−π, π]. (C.4)

That is, p(x) is the distribution of the state energy with respect to τH after we

measure |ϕ0⟩ in the eigenbasis of H.

Define the 2π-periodic Heaviside function by

H(x) =

{
1 x ∈ [2kπ, (2k + 1)π)

0 x ∈ [(2k − 1)π, 2kπ)
∀k ∈ Z. (C.5)

Then, we define the 2π-periodic CDF of p as the convolution of H and p:

C(x) := (H ∗ p)(x). (C.6)

1366

For any x ∈ [−π/3, π/3], for any w ∈ Z, we have

C(x+ 2wπ) =

∫ π

−π
H(x+ 2wπ − t)p(t)dt (C.7)

=
∑

k

pk ·
∫ π

−π
H(x+ 2wπ − t)δ(t− τλk)dt

=
∑

k

pk ·H(x+ 2wπ − τλk)

=
∑

k

pk · 1x≥τλk

=
∑

k:λk≤x

pk, (C.8)

where the first step follows from the definition of convolution, the second step follows

from Dirac delta function’s property, and the third step follows from H has period

2π. We note that C(x) is right continuous and non-decreasing in [−π/3, π/3].

However, we cannot directly evaluate C(x), but we can approximate it! Define

the approximate CDF (ACDF) as

C̃(x) := (F ∗ p)(x), (C.9)

where F (x) =
∑
|j|≤d F̂je

ijx is a low Fourier-degree approximation of the Heaviside

function H(x) such that

|F (x)−H(x)| ≤ ϵ ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. (C.10)

The construction of F is given by Lemma C.6. Furthermore, the approximation error

of C̃(x) is bounded by

C(x− δ)− ϵ ≤ C̃(x) ≤ C(x+ δ) + ϵ, (C.11)

for any x ∈ [−π/3, π/3], δ ∈ (0, π/6) and ϵ > 0.

C.1.2.1 Estimating the ACDF

The goal of this section is to prove Lemma C.2, which constructs an estimator

for C̃(x) (defined by Eq. (C.9)).

1367

Lemma C.2 (Estimating the ACDF). For any σ > 0, for any x ∈ [−π, π], there

exists an un-biased estimator G(x) for the ACDF C̃(x) with variance at most σ2.

Furthermore, G(x) runs the quantum circuit (Figure 4.3) O(log
2 d
σ2) times with

expected total evolution time O(τd log d
σ2).

Proof. C̃(x) can be expanded in the following way:

C̃(x) = (F ∗ p)(x) (C.12)

=

∫ π

−π
F (x− y)p(y)dy

=
∑

|j|≤d

∫ π

−π
F̂je

ij(x−y)p(y)dy

=
∑

|j|≤d

F̂je
ijx

∫ π

−π
p(y)e−ijydy

=
∑

|j|≤d

F̂je
ijx
∑

k

pke
−ijτλk

=
∑

|j|≤d

F̂je
ijx · ⟨ϕ0| e−ijτH |ϕ0⟩ , (C.13)

where the third step follows from the Fourier expansion of F (x − y), the fifth step

follows from the property of Dirac’s delta function, and the last step follows from the

definition of pk and the eigenvalues of matrix exponential.

To estimate ⟨ϕ0| e−ijτH |ϕ0⟩, we use the multi-level Monte Carlo method. De-

fine a random variable J with support {−d, · · · , d} such that

Pr[J = j] =
∣∣∣F̂j
∣∣∣ /F, (C.14)

where F :=
∑
|j|≤d |F̂j|. Then, let Z := XJ + iYJ ∈ {±1 ± i}. Define an estimator

G(x; J, Z) as follows:

G(x; J, Z) := F · Zei(θJ+Jx),

1368

where θj is defined by F̂j = |F̂j|eiθj . Then, we show that G(x; J, Z) is un-biased:

E[G(x; J, Z)] =
∑

|j|≤d

E
[
(Xj + iYj)e

i(θj+jx)|F̂j|
]

=
∑

|j|≤d

F̂je
ijx · E [Xj + iYj]

=
∑

|j|≤d

F̂je
ijx · ⟨ϕ0| e−ijτH |ϕ0⟩

= C̃(x),

where the third step follows from Claim C.1. Moreover, the variance of G can be

upper-bounded by:

Var[G(x; J, Z)] = E[|G(x; J, Z)|2]− |E[G(x; J, Z)]|2

≤ E[|G(x; J, Z)|2]

= F2 · E[|XJ + iYJ |2]

= 2F2,

where the third step follows from |ei(θJ+Jx)| = 1, and the last step follows from

Xj, Yj ∈ {±1}.

Hence, we can take Ns := 2F2

σ2 independent samples of (J, Z), denoted by

{(Jk, Zk)}k∈[Ns] and compute

G(x) :=
1

Ns

Ns∑

k=1

G(x; Jk, Zk).

Then, we have

E[G(x)] = C̃(x), and Var[G(x)] ≤ σ2.

The expected total evolution time is

Ttot := Nsτ E[|J |] =
2F2

σ2
τ
∑

|j|≤d

|j| · |F̂j|
F

=
2Fτ

σ2

∑

|j|≤d

|j||F̂j|.

1369

By Lemma C.6, we know that |F̂j| = O(1/|j|). Hence, we have F =
∑
|j|≤dO(1/|j|) =

O(log d). Thus, the number of samples is

Ns = O

(
log2 d

σ2

)
.

And the expected total evolution time is

Ttot = O

(
τd log d

σ2

)
.

The lemma is then proved.

C.1.2.2 Inverting the CDF

We first define the CDF inversion problem:

Definition C.1 (The CDF inversion problem). For 0 < δ < π/6, 0 < η < 1, find

x⋆ ∈ (−π/3, π/3) such that

C(x⋆ + δ) > η/2, C(x⋆ − δ) < η.

Remark C.1. The condition in Definition C.1 is weaker than η/2 < C(x) < η due

to the discontinuity of C(x). For any CDF C(x), such an x⋆ must exist: let a :=

sup {x ∈ (−π/3, π/3) : C(x) ≤ η/2} and b := inf {x ∈ (−π/3, π/3) : C(x) ≥ η}.
Since C(x) is non-decreasing, we have a ≤ b. And any x ∈ (a− δ, b+ δ) satisfies the

condition in Definition C.1.

Then, we give an algorithm that solves the CDF inversion problem.

Lemma C.3 (Inverting the CDF, Theorem 2 in [LT22]). There exists an algorithm

that solves the CDF inversion problem (Definition C.1) with probability at least 1− ν
such that:

1. the number of independent samples of (J, Z) is

O
(
η−2 · (log(ν−1) + log log(δ−1)) · (log(δ−1) + log log(δ−1η−1))2

)

1370

Algorithm 118 Inverting the CDF
1: procedure InvertCDF(η, δ, {Jk, Zk})
2: xL ← −π/3, XR ← π/3
3: while xR − xL > 2δ do
4: xM ← (xL + xR)/2
5: u← Certify(xM , (2/3)δ, η, {Jk, Zk})
6: if u = 0 then
7: xR ← xM + (2/3)δ
8: else
9: xL ← xM − (2/3)δ

10: end if
11: end while
12: return (xL + xR)/2
13: end procedure

2. the expected total evolution time is

O
(
τη−2 · δ−1 log(δ−1η−1) · (log(δ−1) + log log(δ−1η−1)) · (log(ν−1) + log log(δ−1))

)

3. the maximal evolution time is

O
(
τδ−1 log(δ−1η−1)

)

4. the classical running time is

O
(
η−2 log(δ−1) · (log(ν−1) + log log(δ−1)) · (log(δ−1) + log log(δ−1η−1))2

)
.

Proof. For any x ∈ [−π/3, π/3], at least one of the following conditions will hold:

C(x+ δ) > η/2, or C(x− δ) < η. (C.15)

Suppose we have a sub-routine Certify(x, δ, η, {Jk, Zk}) such that if C(x+δ) > η/2,

it returns 0; otherwise, it returns 1.

Then, we can solve the CDF inversion problem via the binary search (Algo-

rithm 118).

1371

In Line 3, xL and xR always satisfy the following conditions:

C(xL) < η, C(xR) > η/2,

which is guaranteed by Certify(xM , (2/3)δ, η, {Jk, Zk}). Then, when the while-loop

ends, we have xR − xL ≤ 2δ. Let x⋆ := (xL + xR)/2 be the output of Algorithm 118.

Then, we get that

C(x⋆ + δ) ≥ C(xR) > η/2,

C(x⋆ − δ) ≤ C(xL) < η.

And it is easy to see that Algorithm 118 will call Certify L := O(log(1/δ))

times. Then, by Lemma C.4 and union bound, Algorithm 118 will be correct with

probability at least 1 − ν. We note that different runs of Certify can share a

same set of samples {Jk, Zk}, which does not affect the union bound. Hence, the

number of samples and the total evolution time follows directly from Lemma C.4 and

d = O(δ−1 log(δ−1η−1)).

Lemma C.4 (Certify sub-routine). For any ν > 0, there exists an algorithm that

distinguishes the two cases in Eq. (C.15) for any x ∈ [−π/3, π/3] with probability at

least 1−O(ν/L) using

O
(
η−2 log2(d)(log(1/ν) + log log(1/δ))

)

independent samples of (J, Z), and total evolution time

O
(
η−2τd log(d)(log(1/ν) + log log(1/δ))

)

in expectation.

Proof. To decide which one of the conditions holds for x, we can estimate the ACDF

C̃(x). If we take ϵ = η/8 in Lemma C.6, then the constructed ACDF satisfies

C(x− δ)− η/8 ≤ C̃(x) ≤ C(x+ δ) + η/8.

1372

Algorithm 119 Distinguish the two cases in Eq. (C.15)
1: procedure Certify(x, η, δ, {Jk, Zk})
2: c← 0, Nb ← Ω(log(1/ν) + log log(1/δ))
3: for 1 ≤ r ≤ Nb do
4: Compute G(x) using {Jk, Zk}k∈[(r−1)Ns+1,rNs] ▷ Lemma C.2
5: if G(x) ≥ (3/4)η then
6: c← c+ 1
7: end if
8: end for
9: return 1c≤Nb/2

10: end procedure

Thus,

C̃(x) > (5/8)η ⇒ C(x+ δ) > η/2,

C̃(x) < (7/8)η ⇒ C(x− δ) < η.

Then, we can distinguish C̃(x) > (5/8)η or C̃(x) < (7/8)η by the estimator in

Lemma C.2.

In Algorithm 119, we compute the estimator G(x) Nb times independently,

where each time we use Ns samples of (J, Z). We note that an error occurs when

C̃(x) > (7/8)η but G(x) < (3/4)η, or C̃(x) < (5/8)η but G(x) > (3/4)η (when

(5/8)η ≤ C̃(x) ≤ (7/8)η, any output is correct). By Chebyshev’s inequality, we have

Pr[G(x) has an error] ≤ Pr

[
G(x) <

3

4
η
∣∣∣ C̃(x) > 7

8
η

]
+ Pr

[
G(x) >

3

4
η
∣∣∣ C̃(x) < 5

8
η

]

≤ 2 · σ2

η2/64

≤ 1

4
,

if we take σ2 = O(η2) in Lemma C.2.

Then, by the Chernoff bound, we have

Pr[Certify makes an error] ≤ exp(−Ω(Nb)) ≤ ν/L,

1373

if we take Nb := Ω(log(L/ν)) = Ω(log(1/ν) + log log(1/δ)). Thus, the total number

of samples is

NbNs = O
(
η−2 log2(d)(log(1/ν) + log log(1/δ))

)
,

and the expected total evolution time is

O
(
η−2τd log(d)(log(1/ν) + log log(1/δ))

)
,

which complete the proof of the lemma.

C.1.2.3 Estimating the ground state energy

Corollary C.5 (Ground state energy estimation, Corollary 3 in [LT22]). If p0 ≥ η

for some known η, then with probability at least 1− ν, the ground state energy λ0 can

be estimated within additive error ϵ, such that:

1. the number of times running the quantum circuit (Figure 4.3) is Õ(η−2).

2. the expected total evolution time is Õ(ϵ−1η−2).

3. the maximal evolution time is Õ(ϵ−1).

4. the classical running time is Õ(η−2).

Proof. Suppose we can solve the CDF inversion problem (Definition C.1) for δ = τϵ

and η, i.e., we find an x⋆ such that

C(x⋆ + τϵ) > η/2 > 0, C(x⋆ − τϵ) < η ≤ p0.

Since C(x) cannot take value between 0 and p0, we have

x⋆ + τϵ ≥ τλ0, x⋆ − τϵ < τλ0,

which is

|x⋆/τ − λ0| ≤ ϵ.

The costs of this algorithm follows from Lemma C.3.

1374

C.1.3 Low Fourier degree approximation of the Heaviside function

We construct the low degree approximation of the Heaviside function in this

section.2

Lemma C.6 (Constructing low degree approximation of H). Let H(x) be the 2π-

period Heaviside function (Eq. (C.5)). For any δ ∈ (0, π/2) such that tan(δ/2) ≤
1 − 1/

√
2, there exists a d = O(δ−1 log(δ−1ϵ−1)) and a 2π-period function Fd,δ(x) of

the form:

Fd,δ(x) =
1√
2π

d∑

j=−d

F̂d,δ,j · eijx (C.16)

such that

1. Fd,δ(x) ∈ [0, 1] for all x ∈ R.

2. |Fd,δ(x)−H(x)| ≤ ϵ for x ∈ [−π + δ,−δ] ∪ [δ, π − δ].

3. |F̂d,δ,j| = Θ(1/|j|) for j ̸= 0.

Proof. We first construct F ′d,δ(x) by mollifying the Heaviside function with Md,δ(x)

in Lemma C.8:

F ′d,δ(x) := (Md,δ ∗H)(x) =

∫ π

−π
Md,δ(y)H(x− y)dy. (C.17)

We can verify that F ′d,δ has Fourier degree at most d. It follows from the

Chebyshev polynomial Td(x) is of degree d. Hence, the Fourier coefficients of Md,δ(x):

M̂d,δ,j =
1√
2π

∫ π

−π
Md,δ(x)e

−ijxdx ̸= 0 (C.18)

only if j ∈ {−d, . . . , d}. Since Fd,δ is a convolution of Md,δ and H, we have

F̂ ′d,δ,j =
√
2πM̂d,δ,jĤj ∀|j| ≤ d. (C.19)

2The construction in [LT22] is not enough to prove Lemma C.7 because the range of Fd,δ is
[−ϵ/2, 1 + ϵ] while Lemma C.7 requires the range to be [0, 1]. We fix this issue in Lemma C.6.

1375

Then, we define

Fd,δ(x) :=
1√
2π

d∑

j=−d

F̂d,δ,j · eijx, (C.20)

where

F̂d,δ,j =

{
1

1+(5/4)ϵ

(
F̂ ′d,δ,j +

√
2πϵ/4

)
if j = 0,

1
1+(5/4)ϵ

F̂ ′d,δ,j otherwise.
(C.21)

It is easy see that

Fd,δ(x) =
F ′d,δ(x) + ϵ/4

1 + (5/4)ϵ
∀x ∈ R. (C.22)

Then, we will show that taking d = O(δ−1 log(δ−1ϵ−1)) is enough to satisfy

(1)-(3).

Part (1): We first compute the range of F ′d,δ(x):

F ′d,δ(x) ≤
∫ π

−π
|Md,δ(y)|dy ≤ 1 +

4π

Nd,δ

, (C.23)

where the second step follows from (2) in Lemma C.8. On the other hand,

F ′d,δ(x) ≥ −
1

Nd,δ

∫ π

−π
H(y)dy =

−π
Nd,δ

.

Hence, if we take d = O(δ−1 log(δ−1ϵ−1)) such that

Nd,δ ≥ C1e
dδ/
√
2

√
δ

d
· erf(C2

√
dδ) ≥ 4π

ϵ
(C.24)

holds, we will have

−ϵ/4 ≤ F ′d,δ ≤ 1 + ϵ. (C.25)

Therefore, for all x ∈ R,

Fd,δ(x) =
F ′d,δ(x) + ϵ/4

1 + (5/4)ϵ
∈ [0, 1]. (C.26)

1376

Part (2): The approximation error of F ′d,δ is

|F ′d,δ(x)−H(x)| ≤
∣∣∣∣
∫ π

−π
Md,δ(y)(H(x− y)−H(x))dy

∣∣∣∣

≤
∫ π

−π
|Md,δ(y)||H(x− y)−H(x)|dy, (C.27)

where the first step follows from (2) in Lemma C.8, and the second step follows from

the triangle inequality.

Fix x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. If y ∈ (−δ, δ), then H(x− y) = H(x) and
∫ δ

−δ
|Md,δ(y)||H(x− y)−H(x)|dy = 0. (C.28)

If |y| ≥ δ, by (1) in Lemma C.8, we have |Md,δ| ≤ 1
Nd,δ

. Since |H(x− y)−H(x)| ≤ 1,

we have
(∫ −δ

−π
+

∫ π

δ

)
|Md,δ(y)||H(x− y)−H(x)|dy ≤ 2π

Nd,δ

≤ ϵ/2, (C.29)

where the last step follows from Eq. (C.24). Therefore,

|F ′d,δ(x)−H(x)| ≤ ϵ/2 ∀|x| ∈ [δ, π − δ]. (C.30)

Thus,

|Fd,δ(x)−H(x)| =
∣∣∣∣
F ′d,δ(x) + ϵ/4

1 + (5/4)ϵ
−H(x)

∣∣∣∣ (C.31)

≤ |F ′d,δ(x)−H(x)|+ (5/4)ϵ

1 + (5/4)ϵ
|F ′d,δ(x)|+

ϵ/4

1 + (5/4)ϵ

≤ ϵ/2 +
(5/4)ϵ

1 + (5/4)ϵ
(1 + ϵ) +

ϵ/4

1 + (5/4)ϵ

≤ 2ϵ, (C.32)

where the second step follows from the triangle inequality, the third step follows from

Eq. (C.25). By scaling for ϵ, we can make the approximation error at most ϵ.

1377

Part (3): Since |F̂ ′d,δ,j| =
√
2π|M̂d,δ,j||Ĥj|, we first bound |M̂d,δ,j|:

∣∣∣M̂d,δ,j

∣∣∣ ≤ 1√
2π

∫ π

−π
|Md,δ(x)|dx ≤

1√
2π

(
1 +

4π

Nd,δ

)
≤ 1 + ϵ√

2π
, (C.33)

where the second step follows from (2) in Lemma C.8 and the last step follows from

Eq. (C.24).

For |Ĥj|, if j ̸= 0, we have

Ĥj =
1√
2π

∫ π

−π
H(x)e−ijxdx =

1√
2π

∫ π

0

e−ijxdx =

{ √
2

i
√
πj

if j is odd,
0 if j is even.

(C.34)

Hence, for j ̸= 0,

|F̂ ′d,δ,j| ≤
√
2π · 1 + ϵ√

2π
·
√

2

π

1

|j| =
1 + ϵ√
π/2|j|

. (C.35)

Then, by definition, we get that

|F̂d,δ,j| ≤
1 + ϵ√

π/2(1 + (5/4)ϵ)|j|
= Θ(1/|j|). (C.36)

The proof of the lemma is completed.

The following lemma shows the approximation ratio of the ACDF C̃(x) con-

structed from the low degree approximated Heaviside function F (x) by Lemma C.6.

Lemma C.7 (Approximation ratio of the ACDF). For any ϵ > 0, 0 < δ < π/6,

let F (x) := Fd,δ(x) constructed by Lemma C.6. Then, for any x ∈ [−π/3, π/3], the

ACDF C̃(x) = (F ∗ p)(x) satisfies:

C(x− δ)− ϵ ≤ C̃(x) ≤ C(x+ δ) + ϵ.

Proof. By (2) in Lemma C.6, we have

|F (x)−H(x)| ≤ ϵ ∀x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. (C.37)

1378

Define FL := F (x− δ) such that

|FL(x)−H(x)| ≤ ϵ ∀x ∈ [−π + 2δ, 0] ∪ [2δ, π]. (C.38)

For C̃L(x) := (FL ∗ p)(x), we have C̃L(x) = C̃(x− δ), and for x ∈ [−π/3, π/3],

|C(x)− C̃L(x)| =
∣∣∣∣
∫ π

−π
p(x− y)(H(y)− FL(y))dy

∣∣∣∣ (C.39)

≤
∫ π

−π
p(x− y)|H(y)− FL(y)|dy

=

(∫ 0

−π
+

∫ π

2δ

)
p(x− y)|H(y)− FL(y)|dy +

∫ 2δ

0

p(x− y)|H(y)− FL(y)|dy

≤ ϵ ·
(∫ 0

−π
+

∫ π

2δ

)
p(x− y)dy +

∫ 2δ

0

p(x− y)|H(y)− FL(y)|dy

≤ ϵ+

∫ 2δ

0

p(x− y)|H(y)− FL(y)|dy

≤ ϵ+

∫ 2δ

0

p(x− y)dy

= ϵ+

∫ x

x−2δ
p(y)dy

= ϵ+ C(x)− C(x− 2δ), (C.40)

where the second step follows from Cauchy-Schwarz inequality, the forth step follows

from Eq. (C.38), the fifth step follows from p(x) is a density function, the sixth step

follows from H(y) = 1 and FL(y) ∈ [0, 1] for y ∈ [0, 2δ], the last step follows from

C(x) is the CDF of p(x) in [−π, π].

Hence, we have

C̃L(x) ≥ C(x)− (ϵ+ C(x)− C(x− 2δ)) = C(x− 2δ)− ϵ, (C.41)

which proves the first inequality:

C̃(x− δ) ≥ C(x− 2δ)− ϵ. (C.42)

Similarly, we can define FR := F (x + δ) and C̃R(x) := (FR ∗ p)(x). We can

show that

|C(x)− C̃R(x)| ≤ ϵ+ C(x+ 2δ)− C(x), (C.43)

1379

which gives

C̃(x+ δ) ≤ C(x+ 2δ) + ϵ. (C.44)

The lemma is then proved.

C.1.3.1 Technical lemma

Lemma C.8 (Mollifier, Lemma 5 in [LT22]). Define Md,δ(x) to be

Md,δ :=
1

Nd,δ

Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
(C.45)

where Td(x) is the d-th Chebyshev polynomial of the first kind, and

Nd,δ :=

∫ π

−π
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
dx. (C.46)

Then

1. |Md,δ(x)| ≤ 1
Nd,δ

for x ∈ [−π,−δ] ∪ [δ, π], and Md,δ(x) ≥ 1
Nd,δ

for x ∈ [−δ, δ].

2.
∫ π
−πMd,δ(x)dx = 1, 1 ≤

∫ π
−π |Md,δ(x)|dx ≤ 1 + 4π

Nd,δ
.

3. When tan(δ/2) ≤ 1− 1/
√
2, we have

Nd,δ ≥ C1e
dδ/
√
2

√
δ

d
· erf(C2

√
dδ), (C.47)

for some universal constant C1, C2.

The proof can be found in Appendix A in [LT22], and we omit it here.

C.2 Technical Details of the Hadamard Test of Block-Encoded
Observable

In this section, we give a detailed analysis of the Hadamard test for block-

encodings which plays a crucial role in the proof of Theorem 5.17.

1380

We first note that the quantum state before the final measurements is as

follows:

|ϕ1⟩ =
{

1√
2

(
|+⟩ |0m⟩ |ϕ0⟩+ |−⟩ (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩

)
if W = I,

1√
2

(
|+⟩ |0m⟩ |ϕ0⟩+ i |−⟩ (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩

)
if W = S.

(C.48)

Case 1: W = I We measure the first two registers. If the outcome is (0, 0m), the

(un-normalized) remaining state is:

(⟨0| ⟨0m| ⊗ I) 1√
2

(
|+⟩ |0m⟩ |ϕ0⟩+ |−⟩ (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩

)

=
1

2
|ϕ0⟩+

1

2α
e−iHt2Oe−iHt1 |ϕ0⟩ (C.49)

Hence, this event happens with the following probability:

Pr[the outcome is (0, 0m)|W = I] (C.50)

= ⟨ϕ0|
(
1

2
I +

1

2α
eiHt1O†eiHt2

)(
1

2
I +

1

2α
e−iHt2Oe−iHt1

)
|ϕ0⟩

=
1

4

(
1 +

1

α
⟨ϕ0| eiHt1O†eiHt2 |ϕ0⟩+

1

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+

1

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
.

(C.51)

Similarly, if the outcome is (1, 0m), the remaining (un-normalized) state is

1

2
|ϕ0⟩ −

1

2α
e−iHt2Oe−iHt1 |ϕ0⟩ , (C.52)

and the probability is

Pr[the outcome is (1, 0m)|W = I]

=
1

4

(
1− 1

α
⟨ϕ0| eiHt1O†eiHt2 |ϕ0⟩ −

1

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+

1

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
.

(C.53)

1381

Hence, the expectation of X is

E[X] = α · (Pr[the outcome is (0, 0m)|W = I]− Pr[the outcome is (1, 0m)|W = I])

(C.54)

=
1

2
(⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+ ⟨ϕ0| eiHt1O†eiHt2 |ϕ0⟩)

=
1

2
(⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩)

= ℜ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (C.55)

Case 2: W = S Similar to the case 1, we have

Pr[the outcome is (0, 0m)|W = S] (C.56)

= ⟨ϕ0|
(
1

2
I − i

2α
eiHt1O†eiHt2

)(
1

2
I +

i

2α
e−iHt2Oe−iHt1

)
|ϕ0⟩

=
1

4

(
1− i

α
⟨ϕ0| eiHt1O†eiHt2 |ϕ0⟩+

i

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+

1

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
.

(C.57)

And

Pr[the outcome is (1, 0m)|W = S]

=
1

4

(
1 +

i

α
⟨ϕ0| eiHt1O†eiHt2 |ϕ0⟩ −

i

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+

1

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
.

(C.58)

Hence,

E[Y] = α · (Pr[the outcome is (1, 0m)|W = S]− Pr[the outcome is (0, 0m)|W = S])

(C.59)

=
i

2
(−⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩)

= ℑ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (C.60)

Therefore,

E[X + iY] = ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (C.61)

1382

C.2.1 Generalized Hadamard test

In this subsection, we study the generalized Hadamard test for block-encodings

and we will show that the estimator’s variance can be reduced by replacing the first

Hadamard gate with an α-dependent single-qubit gate.

Suppose W = I and we replace the first Hadamard gate with the following

single-qubit gate:

G(a, b, θ) :=

[
a b

−eiθb eiθa

]
, (C.62)

where θ ∈ R, a, b ∈ C with |a|2 + |b|2 = 1.

Then, we have

|0⟩ |0m⟩ |ϕ0⟩
G(a,b,θ)−−−−→ a |0⟩ |0m⟩ |ϕ0⟩ − eiθb |1⟩ |0m⟩ |ϕ0⟩
C-e−iHt1−−−−−→ a |0⟩ |0m⟩ |ϕ0⟩ − eiθb |1⟩ (I ⊗ e−iHt1) |0m⟩ |ϕ0⟩

C-U−−→ a |0⟩ |0m⟩ |ϕ0⟩ − eiθb |1⟩U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩
C-e−iHt2−−−−−→ a |0⟩ |0m⟩ |ϕ0⟩ − eiθb |1⟩ (I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩
G(p,q,ρ)−−−−→ a(p |0⟩ − eiρq |1⟩) |0m⟩ |ϕ0⟩ − eiθb(q |0⟩+ eiρp |1⟩)(I ⊗ e−iHt2)U(I ⊗ e−iHt1) |0m⟩ |ϕ0⟩

=: |ϕ1⟩ .

Hence, the un-normalized remaining state after the measurement with outcome (0, 0m)

is:

(⟨0| ⟨0m| ⊗ I) |ϕ1⟩ = ap |ϕ0⟩ −
eiθbq

α
e−iHt2Oe−iHt1 |ϕ0⟩ . (C.63)

It implies that

Pr[the outcome is (0, 0m)|W = I] (C.64)

= ⟨ϕ0|
(
apI − e−iθbq

α
eiHt1O†eiHt2

)(
apI − eiθbq

α
e−iHt2Oe−iHt1

)
|ϕ0⟩

= |a|2|p|2 + |b|
2|q|2
α2

⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

−e
iθabpq

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ −

e−iθabpq

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩. (C.65)

1383

On the other hand, the un-normalized state for the outcome (1, 0m) is

(⟨1| ⟨0m| ⊗ I) |ϕ1⟩ = −eiρaq |ϕ0⟩ −
ei(θ+ρ)bp

α
e−iHt2Oe−iHt1 |ϕ0⟩ , (C.66)

and the probability is

Pr[the outcome is (1, 0m)|W = I] (C.67)

= ⟨ϕ0|
(
−e−iρaqI − e−i(θ+ρ)bp

α
eiHt1O†eiHt2

)(
−eiρaqI − ei(θ+ρ)bp

α
e−iHt2Oe−iHt1

)
|ϕ0⟩

= |a|2|q|2 + |b|
2|p|2
α2

⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

+
eiθabpq

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩+

e−iθabpq

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ (C.68)

If we choose |p| = |q| = 1√
2
, then we have

Pr[the outcome is (1, 0m)|W = I]− Pr[the outcome is (0, 0m)|W = I]

= ℜ4e
iθabpq

α
⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (C.69)

Notice that to make the Hadamard test work, we need the coefficient 4eiθabpq
α

to be a

real or an imaginary number.

Now, we show how to choose the parameters to minimize the variance. With-

out loss of generality, we may assume a, b ∈ (0, 1) such that a2 + b2 = 1 and use p, q

to cancel the phase factor, i.e., eiθabpq = 1
2
ab. It gives that:

Pr[the outcome is (1, 0m)|W = I]− Pr[the outcome is (0, 0m)|W = I]

=
2ab

α
ℜ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ , (C.70)

and

Pr[the outcome is (1, 0m)|W = I] + Pr[the outcome is (0, 0m)|W = I]

= a2 +
b2

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩ (C.71)

1384

Now, define the random variable as follows:

X :=

α
2ab

if the outcome is (1, 0m),

− α
2ab

if the outcome is (0, 0m),

0 otherwise.
(C.72)

Then, we have

E[X] = ℜ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩ . (C.73)

And we have

Var[X] = E[X2]− E[X]2

=
α2

4a2b2

(
a2 +

b2

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
−
(
ℜ ⟨ϕ0| e−iHt2Oe−iHt1 |ϕ0⟩

)2
.

(C.74)

The second term is fixed for any parameters. And for the first term, we have

α2

4a2b2

(
a2 +

b2

α2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

)
=

α2

4b2
+

1

4a2
⟨ϕ0| eiHt1O†Oe−iHt1 |ϕ0⟩

(C.75)

=
α2

4(1− a2) +
∥Oe−iHt1 |ϕ0⟩ ∥2

4a2

≥ 1

4
(α + ∥Oe−iHt1 |ϕ0⟩ ∥)2, (C.76)

where the minimizer is at a :=
√

∥Oe−iHt1 |ϕ0⟩∥
α+∥Oe−iHt1 |ϕ0⟩∥

. However, since we do not know

the value of ∥Oe−iHt1 |ϕ0⟩ ∥, there are two approaches to resolve this issue: (1) use

another quantum circuit to estimate ∥Oe−iHt1 |ϕ0⟩ ∥ and then set the parameters; (2)

just take a :=
√

1
α+1

. Notice that when the first gate is the Hadamard gate, i.e.,

a = 1√
2
, we have

Var

[
X
∣∣∣ a =

1√
2

]
=

1

2
(α2 + ∥Oe−iHt1 |ϕ0⟩ ∥2). (C.77)

1385

When a =
√

1
α+1

, we have

Var

[
X
∣∣∣ a =

1√
α + 1

]
=

1

4
α(α + 1) +

1

4
∥Oe−iHt1 |ϕ0⟩ ∥2(α + 1) (C.78)

=
1

2
(α2 + ∥Oe−iHt1 |ϕ0⟩ ∥2)−

1

4
(α− 1)(α− ∥Oe−iHt1 |ϕ0⟩ ∥2)

≤ Var

[
X
∣∣∣ a =

1√
2

]
, (C.79)

where the last step follows from α ≥ 1 and ∥Oe−iHt1 |ϕ0⟩ ∥2 ≤ 1. Therefore, we can

reduce the estimator’s variance by choosing a =
√

1
α
. Moreover, if α is large, the new

variance is about half of the variance using the Hadamard gate.

Similar strategy can also be used to reduce the variance of the random variable

Y .

1386

Appendix D: Omitted Materials from Chapter 6

D.1 Proof of the QED-mixer’s universality for planar graphs

In this section we prove that QED-mixer is able to evolve between two arbitrary

paths in O(n) loop operations on a planar graph. Given a undirected graph G(V,E)

with k pairs (si, ti). The goal is to find k paths connecting si and ti for all i ∈ [k]

such that the maximum of congestion in each edge is minimized.

Proof: We first assume that P1 and P2 do not have any common vertex. Then,

s
P1−→ t

−P2−−→ s forms a closed simple region, where −P2 means the inverse direction

of path P2. By Jordan’s theorem [Hal07], we can take the “interior" of this region,

which is a subgraph G′ of G. It’s easy to see that every cycle in G′ is also a cycle

in G. Hence, we can apply a loop operation for every cycle in G′, and doing so in

some specific directions will transform P1 to P2. Wlog., suppose s P1−→ t
−P2−−→ s is in

clockwise direction. Then, for every cycle, we apply a counter-clock loop operator,

which is equivalent to transfer 1 unit of flow counter-clockwise through the cycle. Let

e = (u, v) be an edge in G′. If e is contained in P1 and initially there is 1 unit flow

from u to v. After the loop operation, another 1 unit flow from v to u is introduced

so that the total flow on e is 0. Similarly, if e is contained in P2 and is in the same

direction as P2, then the flow on e is 1. For all the interior edges, the flow on them is

0 because each edge is contained in two cycles and the loop operation on each cycle

will introduce 1 unit flow through e in opposite directions, which will be cancelled by

each other. Therefore, after these loop operations, the flow from s to t through P1

will be transformed to P2.

In general, let v1 = s, . . . , vl = t be l common vertices between P1 and P2,

sorted by their appearance orders in the path. Then, we can see that for all i ∈ [t−1],
vi → vi+1 → vi forms a closed simple region and we take the subgraph G′i. For each

G′i, we can apply a series of loop operations to transform vi
P1−→ vi+1 to vi

P2−→ vi+1.

1387

Therefore, after processing t− 1 subgraphs, P1 will be transformed to P2.

Lastly, we show that the number of loop operations we applied is O(n). For

each cycle, we only apply the corresponding loop operation once. Hence, the number

of loop operations is upper bounded by the number of cycles in G. Since G is planar,

Euler characteristic for planar graph gives n−m+ f = 2, where m is the number of

edges in G and f is the number of cycles. Thus, we have f = m − n + 2. We also

know that, for planar graph, m ≤ 3n− 6. Hence, f ≤ 2n− 4 = O(n). Therefore, we

can transform P1 to P2 by O(n) loop operations.

D.2 Dual “height-model" formulation

Here we consider a canonical (for a detailed description, see, [Fis04], for exam-

ple) dual picture description of the algorithm on plane graphs that might be useful

for implementation sometimes. In graph theory, the dual of any plane graph G is

obtained by taking each of its faces as a vertex, and drawing an edge between any

two neighboring faces. In this dual representation, an initial configuration is chosen,

and the states are defined by the relative “loop distance" to the initial configuration.

The amount of flow on each path is then equal to the initial flow plus the difference

between states of adjacent faces with the direction perpendicular counterclockwise to

the gradient direction. Namely, a “1" state on some elementary loop adds a counter-

clockwise flow loop to the initial configuration, and vice versa. Naively, one would

think that the total Hilbert size for EDP problem becomes 3kf , where f stands for

the number of faces; this makes the Hilbert space a polynomial order less than the

original picture, considering e > f on planar graphs. In addition, we could prepare

equal superposition states in the dual picture. Nevertheless, there are cases which

require more levels on each face, as shown in Figure. D.1. For larger graphs, the dual

encoding thus becomes even more expensive. On the other hand, the encoding still

cannot get rid of isolated loops, although a direct interpretation of RQED-mixer is

possible. In conclusion, the dual description can be a useful alternative when consid-

1388

.

𝑡

𝑠

11

1

1

1

1

1

𝑡

𝑠

-2-1

-1 -1

-1

-1

-1

-1-1

-1

Figure D.1: Examples of dual picture description We consider a single-pair flow
instance: red represents initial/reference configuration, and blue stands for the final
configuration. Numbers on each faces stands for the states encoded in dual picture
language; every unlabeled face has state 0. In some cases (left) the range of dual
state could be simply −1, 0, 1 whereas more complicated paths (right) needs greater
range, which could be proportional to the radius of the graph, namely O(

√
n).

ering the ordinary QED-mixer on small graphs, but adds significant qubit resource

overheads for larger graphs.

1389

Appendix E: Omitted Materials from Chapter 9

E.1 Initialization

Let us state an initialization result which is very standard in literature, see

Section 10 in [LSW15], Appendix A in [CLS19], and Section 9 in [JKL+20]. It can be

easily proved using the property of special matrix/Kronecker product (Fact 9.14).

Lemma E.1. For an SDP instance defined in Definition 9.1 (m n × n constraint

matrices, let X∗ be any optimal solution to SDP.), assume it has two properties :

1. Bounded diameter: for any feasible solution X ∈ Rn×n
⪰0 , it has ∥X∥2 ≤ R.

2. Lipschitz objective: the objective matrix C ∈ Rn×n has bounded spectral norm,

i.e., ∥C∥2 ≤ L.

Given ϵ ∈ (0, 1/2], we can construct the following modified SDP instance in dimension

n+ 2 with m+ 1 constraints:

max
X⪰0

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, ∀i ∈ [m+ 1],

where

Ai =

Ai 0n 0n
0⊤n 0 0
0⊤n 0 bi

R
− tr[Ai]

 ∀i ∈ [m], and Am+1 =

In 0n 0n
0⊤n 1 0
0⊤n 0 0

 .

b =

[
1
R
b

n+ 1

]
, C =

ϵ
L
· C 0n 0n
0⊤n 0 0
0⊤n 0 −1

 .

Moreover, it has three properties:

1390

1. (X0, y0, S0) are feasible primal and dual solutions of the modified instance, where

X0 = In+2 , y0 =

[
0m
1

]
, S0 =

In − C · ϵL 0n 0

0⊤n 1 0
0⊤n 0 1

 . (E.1)

2. For any feasible primal and dual solutions (X, y, S) with duality gap at most ϵ2,

the matrix X̂ = R ·X [n]×[n], where X [n]×[n] is the top-left n-by-n block submatrix

of X. The matrix X̂ has three properties

⟨C, X̂⟩ ≥ ⟨C,X∗⟩ − LR · ϵ,

X̂ ⪰ 0,
∑

i∈[m]

|⟨Ai, X̂⟩ − bi| ≤ 4nϵ ·
(
R
∑

i∈[m]

∥Ai∥1 + ∥b∥1
)
,

3. If we take ϵ ≤ ϵ2N in Eq. (E.1), then the initial dual solution satisfies the induc-

tion invariant:

g(y0, η)H(y0)
−1g(y0, η) ≤ ϵ2N .

E.2 From Dual to Primal

We state a lemma about transforming a nearly optimal dual solution to a

primal solution for SDP, which is very standard in literature and follows directly

from Section 10 in [LSW15] and Fact 9.14.

Lemma E.2. Given parameter ηfinal = 1
n+2

(1 + ϵN
20
√
n
)T where T = 40ϵ−1N

√
n log(n/ϵ),

dual variable y ∈ Rm and slack variable S ∈ Rn×n such that

g(y, ηfinal)H(y)−1g(y, ηfinal) ≤ ϵ2N
m∑

i=1

yiAi − C = S

b⊤y ≤ b⊤y∗ +
n

ηfinal
(1 + 2ϵN)

S ≻ 0

1391

with ϵN ≤ 1/10. Then there is an algorithm that finds a primal variable X ∈ Rn×n

in O(nω+o(1)) time such that

⟨C,X⟩ ≥ ⟨C,X∗⟩ − LR · ϵ

X ⪰ 0 (E.2)
∑

i∈[m]

|⟨Ai, X⟩ − bi| ≤ 4nϵ · (R
∑

i∈[m]

∥Ai∥1 + ∥b∥1)

E.3 Our Straightforward Implementation of the Hybrid Bar-
rier SDP Solver

Theorem E.3 (Our straight forward implementation of the hybrid algorithm [Ans00]).

The original hybrid barrier algorithm [Ans00] use

O∗(m2nω +m4n2 +mω+2)

cost per iteration.

Remark E.1. A naive implementation of hybrid barrier (e.g. Table 1.1 of [JKL+20]1)

takes time

O∗(m3nω +m4n2 +mω+2).

Our implementation (Theorem E.3) improves it to m2nω +m4n2 +mω+2 by reusing

the computations in the Hessian matrix.

Proof. In each iteration, the computation workload is comprised of the following:

• The slack variable S ∈ Rn×n, given by

S = S(y) =
m∑

i=1

yiAi − C.

1The bound claimed in [JKL+20] is O∗(m3nω +m4n2), since they want to consider the special
parameter regime where n ≤ m ≤ n2. In that regime, mω+2 is dominated by the first two terms.

1392

• The gradient of ϕvol, denote by ∇ϕvol(y) ∈ Rm, given by:

∇ϕvol(y)i = −tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤].

• The gradient of ϕlog, denote by ∇ϕlog(y) ∈ Rm, given by:

∇ϕlog(y)i = −tr[S−1 · Ai].

• The Hessian matrix of ϕlog, denoted by H(S) ∈ Rm×m, given by:

H(S) = A · (S−1 ⊗ S−1) · A⊤

• The first component of the Hessian matrix of ϕvol, denoted by Q(S) ∈ Rm×m,

(recall from [Ans00], ∇2ϕvol(y) = 2Q(S) +R(S)− 2T (S) ∈ Rm×m), given by:

Q(S)i,j = tr[H(S)−1A(S−1AiS
−1AjS

−1 ⊗S S−1)A⊤].

• The second component of Hessian matrix of ϕvol, denoted by R(S) ∈ Rm×m,

given by:

R(S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1AjS−1)A⊤].

• The third component of Hessian matrix of ϕvol, denoted by T (S) ∈ Rm×m, given

by:

T (S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1)A⊤H(S)−1A(S−1AjS

−1 ⊗S S−1)A⊤].

• Newton direction, denoted by δy ∈ Rm, given by

δy = −(∇2ϕ(y))−1(ηb−∇ϕ(y)).

To find all these items, we carry out the following computations.

Step 1. We compute S ∈ Rn×n in mn2 time.

1393

Step 2. We compute S−1AiS−1Aj ∈ Rn×n and S−1Ai for all i ∈ {1, · · · ,m}, ∀j ∈
{1, · · · ,m}. This step costs nωm2. Since H(S)i,j = tr[S−1AiS

−1Aj], it costs an

additional nm2 time to compute H(S), and nω time to find H(S)−1 correspondingly.

Since ∇ϕlog(y)i = −tr[S−1 · Aj], we already find ∇ϕlog(y). In total, this step costs

nωm2 time.

Step 3. We compute tr[S−1AkS
−1AlS

−1Ai] and tr[S−1AkS
−1AlS

−1AiS
−1Aj] for

all i, j, k, l ∈ [m]. For the former, we only need to sum up all diagonal terms of

S−1AkS
−1AlS

−1Ai, and each diagonal term is computed by multiplying one column of

S−1Ak and one column of S−1AlS−1Ai. Therefore, the cost of finding tr[S−1AkS
−1AlS

−1Ai]

for all i, k, l ∈ [m] is m3n2. For the latter, we only need to sum up all diagonal terms

of S−1AkS−1AlS−1AiS−1Aj, and each diagonal term is computed by multiplying one

column of S−1AkS−1Al and one column of S−1AiS−1Aj. Therefore, the cost of finding

tr[S−1AkS
−1AlS

−1AiS
−1Aj] for all i, j, k, l ∈ [m] is m4n2.2 In total, this step costs

m4n2 time.

Step 4. We compute ∇ϕvol(y), Q(S), R(S), and T (S). We note

(A(S−1AiS
−1 ⊗ S−1)A⊤)k,l = tr[AkS

−1AlS
−1AiS

−1]

(A(S−1 ⊗ S−1AiS−1)A⊤)k,l = tr[AkS
−1AiS

−1AlS
−1]

and

(A(S−1AiS
−1AjS

−1 ⊗ S−1)A⊤)k,l = tr[AkS
−1AlS

−1AiS
−1AjS

−1]

(A(S−1 ⊗ S−1AiS−1AjS−1)A⊤)k,l = tr[AkS
−1AiS

−1AjS
−1AℓS

−1]

and

(A(S−1AiS
−1 ⊗ S−1AjS−1)A⊤)k,l = tr[AkS

−1AjS
−1AlS

−1AiS
−1]

2If we batch them together and use matrix multiplication, this term will be Tmat(m
2, n2,m2).

1394

Thus each coordinate of ∇ϕvol(y), Q(S), R(S), and T (S) can be computed by multi-

plying the terms in the second step (i.e. tr[S−1AkS−1AlS−1Ai] and tr[S−1AkS
−1AlS

−1AiS
−1Aj]

for all i, j, k, l ∈ [m]) with H(S)−1, and then taking trace. These cost O(mω+2) time,

in total. More specifically, for the gradient ∇ϕvol(y),

(∇ϕvol(y))i = − tr[H(S)−1 · A(S−1AiS−1 ⊗ S−1)A⊤]

=
m∑

k=1

m∑

l=1

−H(S)−1k,l · tr[AkS−1AlS−1AiS−1].

Hence, it takes O(m3)-time to compute ∇ϕvol(y).

For Q(S),

Q(S)i,j = tr[H(S)−1A(S−1AiS
−1AjS

−1 ⊗S S−1)A⊤]

=
m∑

k=1

m∑

l=1

−H(S)−1k,l ·
1

2

(
tr[AkS

−1AlS
−1AiS

−1AjS
−1] + tr[AkS

−1AiS
−1AjS

−1AℓS
−1]
)
.

Hence, it takes O(m4)-time to compute Q(S).

For R(S),

R(S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1AjS−1)A⊤]

=
m∑

k=1

m∑

l=1

−H(S)−1k,l ·
1

2

(
tr[AkS

−1AjS
−1AlS

−1AiS
−1] + tr[AkS

−1AiS
−1AlS

−1AjS
−1]
)
.

Hence, it takes O(m4)-time to compute Q(S). For T (S),

T (S)i,j = tr[H(S)−1A(S−1AiS
−1 ⊗S S−1)A⊤H(S)−1A(S−1AjS

−1 ⊗S S−1)A⊤]

= vec[A(S−1AjS
−1 ⊗S S−1)A⊤]⊤(H(S)−1 ⊗H(S)−1)vec[A(S−1AiS

−1 ⊗S S−1)A⊤].

The matrix A(S−1AiS
−1 ⊗S S−1)A⊤ can be computed in O(m2)-time, via

(A(S−1AiS
−1 ⊗S S−1)A⊤)k,l =

1

2

(
tr[AkS

−1AlS
−1AiS

−1] + tr[AkS
−1AiS

−1AlS
−1]
)
.

Then, we vectorize this matrix and multiply with the Kronecker product H(S)−1 ⊗
H(S)−1. It takes O(mω)-time to obtain the vector

(H(S)−1 ⊗H(S)−1)vec[A(S−1AiS
−1 ⊗S S−1)A⊤] ∈ Rm2

.

1395

Next, we do the inner product and get T (S)i,j in O(m2)-time. Thus, T (S) can be

computed in O(mω+2)-time. Therefore, this step takes mω+2 time in total.

Step 5. We compute δy ∈ Rm. Since

∇2ϕ(y) = 225

√
n

m
·
(
Q(S) +R(S) + T (S) +

m− 1

n− 1
·H(S)

)
,

it can be found in m2 time using the terms in the second and fourth step. Notice

ηb − ∇ϕ(y) = ηb − 225
√

n
m
·
(
∇ϕvol(y) +

m−1
n−1 · ∇ϕlog(y)

)
, it can be computed in m

time. Then, δy can be computed in mω time. In total, this step costs mω time.

Summing up, the total cost per iteration is given by

mn2 + nωm2 +m4n2 + nωm2 +mω+2 = m2nω +m4n2 +mω+2.

E.4 Maintain the Leverage Score Matrix of the Volumetric
Barrier

It is observed in the LP that the volumetric barrier is roughly like the log

barrier weighted by the leverage score of the matrix Ax := S−1A, which is defined to

be the diagonal elements of the orthogonal projection matrix A⊤x (A⊤xAx)⊤Ax. Similar

phenomenon also appears in the SDP. we first consider the orthogonal projection

matrix P ∈ Rn2×n2 on the image of A(S−1/2 ⊗ S−1/2):

P (S) := (S−1/2 ⊗ S−1/2)A⊤
(
A(S−1 ⊗ S−1)A⊤

)−1
A(S−1/2 ⊗ S−1/2) ∈ Rn2×n2

.

Then, we define the leverage score matrix as the block-trace of P (S):

Definition E.1 (Leverage score matrix). For S ≻ 0, define the leverage score matrix

Σ(S) ∈ Rn×n as:

Σ(S)i,j := tr
[
(ei ⊗ In)⊤P (ej ⊗ In)

]
∀i, j ∈ [n].

1396

In this section, we show how to efficiently compute the leverage score matrix

in each iteration of the IPM via low-rank update and amortization, which may be of

independent interest.

E.4.1 Basic facts on the leverage score matrix

Fact E.4 (Gradient of the volumetric barrier). For S ≻ 0, we have

∇ϕvol(y) = −A(S−1/2 ⊗ S−1/2)vec(Σ).

The computation cost is mn2 + nω.

Proof. The computation cost is mn2+Tkron(n), where Tkron(n) is the time to compute

(A⊗B)v for A,B ∈ Rn×n, v ∈ Rn2 .

By Fact 9.12, we have Tkron(n) = nω.

Fact E.5 (“Proxy” Hessian of the volumetric barrier). For S ≻ 0, we have

Q(S) = A(S ⊗ (S−1/2ΣS−1/2))A⊤.

Fact E.6 (Trace of the leverage score matrix). It holds that

tr[Σ] = m.

E.4.2 Efficient algorithm for the leverage score matrix

This section shows how to maintain Σ efficiently.

Lemma E.7. Let Σ(S)i,j := tr
[
(ei ⊗ In)⊤P (S)(ej ⊗ In)

]
. S−1/2 ∈ Rn×n, S−1 ∈

Rn×n, and H(S)−1 ∈ Rn2×n2 are known. Then we can compute Σ(S) ∈ Rn×n it in

min
{
n4 + TM(S), n

ωm2
}

Proof. We provide two different approaches for computing the matrix Σ(S).

1397

Approach 1. Each entry of Σ(S) can be expressed as follows:

Σ(S)i,j := tr
[
(ei ⊗ In)⊤P (S)(ej ⊗ In)

]

= tr
[
(ei ⊗ In)⊤(S−1/2 ⊗ S−1/2)A⊤H(S)−1A(S−1/2 ⊗ S−1/2)(ej ⊗ In)

]

= tr
[(
(S−1/2)⊤i ⊗ S−1/2

)
A⊤H(S)−1A

(
(S−1/2)j ⊗ S−1/2

)]

= tr
[(
(S−1/2)⊤i ⊗ S−1/2

)
M(S)

(
(S−1/2)j ⊗ S−1/2

)]

= tr
[(
(S−1/2)j ⊗ S−1/2

) (
(S−1/2)⊤i ⊗ S−1/2

)
M(S)

]

= tr
[(
(S−1/2)j(S

−1/2)⊤i ⊗ S−1
)
M(S)

]
,

where M(S) := A⊤H(S)−1A ∈ Rn2×n2 . Notice that

(
(S−1/2)j(S

−1/2)⊤i ⊗ S−1
)
M(S)

=
(
(S−1/2)j(S

−1/2)⊤i ⊗ S−1
) [

vec[M(S)(1,1)] vec[M(S)(1,2)] · · · vec[M(S)(n,n)]
]

=
[
vec[S−1M(1,1)(S

−1/2)i(S
−1/2)⊤j] · · · vec[S−1M(n,n)(S

−1/2)i(S
−1/2)⊤j]

]
∈ Rn2×n2

,

where M(k,ℓ) ∈ Rn×n := mat[M(S)(k,ℓ)] is the matrix form of the (k, ℓ)-th column of

M(S) ∈ Rn2×n2 for (k, ℓ) ∈ [n]× [n]. Hence,

Σ(S)i,j =
n∑

k=1

n∑

ℓ=1

vec
[
S−1M(k,ℓ)(S

−1/2)i(S
−1/2)⊤j

]
(k−1)n+ℓ

=
n∑

k=1

n∑

ℓ=1

(
S−1M(k,ℓ)(S

−1/2)i(S
−1/2)⊤j

)
ℓ,k

=
n∑

k=1

n∑

ℓ=1

e⊤ℓ · S−1M(k,ℓ)(S
−1/2)i(S

−1/2)⊤j · ek

=
n∑

k=1

n∑

ℓ=1

(S−1)⊤ℓ ·M(k,ℓ) · (S−1/2)i · (S−1/2)j,k.

1398

Then, we get that

Σ(S) =
n∑

i=1

n∑

j=1

eie
⊤
j

n∑

k=1

n∑

ℓ=1

(S−1)⊤ℓ ·M(k,ℓ) · (S−1/2)i · (S−1/2)j,k

=
n∑

i=1

n∑

k=1

n∑

ℓ=1

(
(S−1)⊤ℓ ·M(k,ℓ) · (S−1/2)i

)
ei ·
(

n∑

j=1

(S−1/2)j,k · e⊤j

)

=
n∑

i=1

n∑

k=1

n∑

ℓ=1

(
(S−1)⊤ℓ ·M(k,ℓ) · (S−1/2)i

)
ei · (S−1/2)⊤k

=
n∑

k=1

n∑

ℓ=1

(
n∑

i=1

(S−1)⊤ℓ ·M(k,ℓ) · (S−1/2)i · ei
)
· (S−1/2)⊤k

=
n∑

k=1

n∑

ℓ=1

(
(S−1)⊤ℓ ·M(k,ℓ) · S−1/2

)⊤ · (S−1/2)⊤k

=
n∑

k=1

n∑

ℓ=1

S−1/2 ·M⊤
(k,ℓ) · (S−1)ℓ · (S−1/2)⊤k

= S−1/2 ·
n∑

k=1

n∑

ℓ=1

M⊤
(k,ℓ) · (S−1)ℓ · e⊤k · S−1/2. (E.3)

Therefore, once we have S−1/2 ∈ Rn×n, S−1 ∈ Rn×n, and M(S) ∈ Rn2×n2 , then

the Σ(S) can be computed exactly in O(n4)-time using Eq. (E.3). More specifically,

Step 1. For k, ℓ ∈ [n], we form M(k,ℓ) from M(S), which takes O(n2)-time.

Step 2. We compute the matrix

Wk,ℓ :=M⊤
(k,ℓ) · (S−1)ℓ · e⊤k ∈ Rn×n

in O(n2) time. And it takes O(n4)-time to compute {Wk,ℓ}k,ℓ∈[m].

Step 3. We sum all the Wk,ℓ together in O(n4)-time. And

Σ(S) = S−1/2 ·
(

n∑

k=1

n∑

ℓ=1

Wk,ℓ

)
· S−1/2,

1399

which can be done in O(nω)-time.

Hence, Σ(S) can be computed in

O
(
nω + n4 + TM(S)

)
= O

(
n4 + TM(S)

)

time, where TM(S) is the computation cost for computing M(S).

Approach 2. Another approach for computing Σ(S) can be done in O (nωm2)-time,

without maintaining M(S).

Recall that

Σ(S)i,j = tr
[(
(S−1/2)⊤i ⊗ S−1/2

)
A⊤ ·H(S)−1 · A

(
(S−1/2)j ⊗ S−1/2

)]

= tr
[
Mi ·H(S)−1 ·M⊤

j

]

=
〈
M⊤

j Mi, H(S)−1
〉

Consider the matrix Mi:

Mi :=
(
(S−1/2)⊤i ⊗ S−1/2

)
A⊤

=
(
(S−1/2)⊤i ⊗ S−1/2

) [
vec[A1] vec[A2] · · · vec[Am]

]

=
[
S−1/2A1(S

−1/2)i · · · S−1/2Am(S
−1/2)i

]
∈ Rn×m.

For k, l ∈ [m], the (k, l)-entry of M⊤
j Mi is

(S−1/2Ak(S
−1/2)j)

⊤ · (S−1/2Al(S−1/2)i) = (S−1/2)⊤j AkS
−1/2 · S−1/2Al(S−1/2)i

= (S−1/2)⊤j AkS
−1Al(S

−1/2)i

= (S−1/2AkS
−1AlS

−1/2)j,i

= (S−1/2AlS
−1AkS

−1/2)i,j.

Hence, (i, j)-entry of Σ(S) is

Σ(S)i,j =
m∑

k=1

m∑

l=1

(S−1/2AlS
−1AkS

−1/2)i,j · (H(S)−1)k,l.

1400

It implies that

Σ(S) =
m∑

k=1

m∑

l=1

S−1/2AlS
−1AkS

−1/2 · (H(S)−1)k,l.

We use the following steps to compute Σ(S):

Step 1. We compute S−1/2AlS
−1AkS

−1/2 for all k, l ∈ [m]. It can be done in

O(nωm2)-time.

Step 2. We compute Σ(S) by summing the m2 matrices with weights (H(S)−1)k,l.

It can be done in O(m2n2)-time.

Hence, it takes O(nωm2)-time in total to compute Σ(S), assuming H(S)−1 is

given.

E.4.3 Maintain intermediate matrix

The following lemma shows how to efficiently compute M(S) in each iteration:

Lemma E.8 (Compute M(S)). The matrix M(S) := A⊤H(S)−1A ∈ Rn2×n2 can be

computed as follows:

• Part 1. In the initialization, if H(S)−1 ∈ Rm×m is already known, then M(S)

can be computed in Tmat(n
2,m, n2) time.

• Part 2. In each iteration, M(S̃) can be computed in Tmat(n
2, n2, nrt) time.

Proof. Part 1. GivenH(S)−1, it costs Tmat(n
2,m, n2) to computeM(S) = A⊤H(S)−1A ∈

Rn2×n2 .

Part 2. We can maintain M(S) in each iteration. Let S̃ ∈ Rn×n be the

approximated slack variable in the previous iteration and S̃new ∈ Rn×n be the current

1401

approximated slack variable. Let G := H(S̃)−1 ∈ Rm×m and Gnew := H(S̃new)−1 ∈
Rm×m. By Lemma 9.23, we have

Gnew = G−G · AY1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 A⊤ ·G

Then,

M(S̃new) = A⊤GnewA

= A⊤GA− A⊤G · AY1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 A⊤ ·GA

= M(S̃)−M(S̃) · Y1 · (I + Y ⊤2 A⊤ · AY1)−1 · Y ⊤2 ·M(S̃),

where Y1, Y2 ∈ Rn2×(2nrt+r2t) and (I + Y ⊤2 A⊤ · AY1)−1 ∈ R(2nrt+r2t)×(2nrt+r2t). Hence,

we first compute M(S̃)Y1 ∈ Rn2×nrt and Y ⊤2 M(S̃) ∈ Rnrt×n2 in Tmat(n
2, n2, nrt).

M(S̃new) ∈ Rn2×n2 can be directly computed from Gnew ∈ Rm×m in Tmat(n
2, nrt, n

2)-

time.

E.4.4 Amortized running time

Theorem E.9. There is an algorithm that compute Σ(S) in each iteration of Algo-

rithm 45 with amortized cost-per-iteration

min
{
n2ω− 1

2 , nωm2
}
.

Proof. By Lemma E.7, we know that the cost-per-iteration to compute Sigma(S) is

min
{
n4 + TM(S), n

ωm2
}
,

where TM(S) = Tmat(n
2, nrt, n

2) by Lemma E.8.

Then, by Corollary 9.57, we have

T∑

t=1

Tmat(n
2, nrt, n

2) = O∗
(
T · n2ω− 1

2

)
.

1402

Therefore, the amortized running time per iteration is

min
{
n4 + n2ω− 1

2 , nωm2
}
= min

{
n2ω− 1

2 , nωm2
}
.

Remark E.2. The second term nωm2 in the running time represents the approach

that does not use the maintenance technique. When m = Ω(n0.94), the first approach

using low-rank update and amortization is faster.

1403

Appendix F: Theoretical Analysis of Sparsely
Activated Wide Neural Networks

This appendix is supplementary to Chapter 14.

F.1 Introduction

In this appendix, we follow the line of theoretical studies of sparsely trained

overparameterized neural networks and address the two main research limitations in

the previous studies (see e.g., Chapters 14 and 15).

1. The bias parameters used in the previous works are not trainable, contrary to

what people are doing in practice.

2. The previous works only provided the convergence guarantee, while lacking

the generalization performance which is of the central interest in deep learning

theory.

Thus, our study will fill the above important gaps, by providing a comprehensive

study of training one-hidden-layer sparsely activated neural networks in the NTK

regime with (a) trainable biases incorporated in the analysis; (b) finer analysis of

the convergence; and (c) first generalization bound for such sparsely activated neural

networks after training with sharp bound on the restricted smallest eigenvalue of the

limiting NTK. We further elaborate our technical contributions are follows:

1. Convergence. Surprisingly, Theorem F.1 shows that the network after spar-

sification can achieve as fast convergence as the original network. It further

provides the required width to ensure that gradient descent can drive the train-

ing error towards zero at a linear rate. Our convergence result contains two novel

ingredients compared to the existing study. (1) Our analysis handles trainable

1404

bias, and shows that even though the biases are allowed to be updated from its

initialization, the network’s activation remains sparse during the entire train-

ing. This relies on our development of a new result showing that the change of

bias is also diminishing with a O(1/
√
m) dependence on the network width m.

(2) A finer analysis is provided such that the required network width to ensure

the convergence can be much smaller, with an improvement upon the previous

result by a factor of Θ̃(n8/3) under appropriate bias initialization, where n is

the sample size. This relies on our novel development of (1) a better charac-

terization of the activation flipping probability via an analysis of the Gaussian

anti-concentration based on the location of the strip and (2) a finer analysis of

the initial training error.

2. Generalization. Theorem F.5 studies the generalization of the network af-

ter gradient descent training where we characterize how the network width

should depend on activation sparsity, which lead to a sparsity-dependent lo-

calized Rademacher complexity and a generalization bound matching previ-

ous analysis (up to logarithmic factors). To our knowledge, this is the first

sparsity-dependent generalization result via localized Rademacher complexity.

In addition, compared with previous works, our result yields a better width’s

dependence by a factor of n10. This relies on (1) the usage of symmetric initial-

ization and (2) a finer analysis of the weight matrix change in Frobenius norm

in Lemma F.8.

3. Restricted Smallest Eigenvalue. Theorem F.5 shows that the generaliza-

tion bound heavily depends on the smallest eigenvalue λmin of the limiting

NTK. However, the previously known worst-case lower bounds on λmin un-

der data separation have a 1/n2 explicit dependence in [OS20, SYZ21], making

the generalization bound vacuous. Instead, our Theorem F.7 establishes a much

sharper lower bound restricted to a data-dependent region, which is sample-size-

independent. This hence yields a desirable generalization bound that vanishes

1405

as fast as O(1/
√
n), given that the label vector is in this region, which can be

done with simple label-shifting.

F.1.1 Related works

A work related to ours is [LK22] where they also considered training a one-

hidden-layer neural network with sparse activation and studied its convergence. How-

ever, different from our work, their sparsity is induced by sampling a random mask

at each step of gradient descent whereas our sparsity is induced by non-zero initial-

ization of the bias terms. Also, their network has no bias term, and they only focus

on studying the training convergence but not generalization. We discuss additional

related works here.

Training Overparameterized Neural Networks. Over the past few years, a

tremendous amount of efforts have been made to study training overparameterized

neural networks. A series of works have shown that if the neural network is wide

enough (polynomial in depth, number of samples, etc), gradient descent can drive the

training error towards zero in a fast rate either explicitly [DZPS19, DLL+19, JT19] or

implicitly [AZLS19a, ZG19, ZCZG20] using the neural tangent kernel (NTK) [JGH18].

Further, under some conditions, the networks can generalize [CG19]. Under the NTK

regime, the trained neural network can be well-approximated by its first order Taylor

approximation from the initialization and [LZB20] showed that this transition to

linearity phenomenon is a result from a diminishing Hessian 2-norm with respect

to width. Later on, [FG21] and [LZB22] showed that closeness to initialization is

sufficient but not necessary for gradient descent to achieve fast convergence as long

as the non-linear system satisfies some variants of the Polyak-Łojasiewicz condition.

On the other hand, although NTK offers good convergence explanation, it contradicts

the practice since (1) the neural networks need to be unrealistically wide and (2) the

neuron weights merely change from the initialization. As [COB19] pointed out, this

“lazy training” regime can be explained by a mere effect of scaling. Other works

1406

have considered the mean-field limit [CB18, MMM19, CCGZ20], feature learning

[AZL20, AZL22, SWL21, Tel22] which allow the weights to travel far away from the

initialization.

Sparse Neural Networks in Practice. Besides finding a fixed sparse mask at

the initialization as we mentioned in introduction, on the other hand, dynamic sparse

training allows the sparse mask to be updated during training, e.g., [MMS+18, MW19,

EGM+20, JPR+20, LCC+21, LMM+21, LYMP21].

F.2 Preliminaries

Notations. We use ∥·∥2 to denote vector or matrix 2-norm and ∥·∥F to denote the

Frobenius norm of a matrix. When the subscript of ∥·∥ is unspecified, it is default

to be the 2-norm. For matrices A ∈ Rm×n1 and B ∈ Rm×n2 , we use [A,B] to denote

the row concatenation of A,B and thus [A,B] is a m× (n1 + n2) matrix. For matrix

X ∈ Rm×n, the row-wise vectorization of X is denoted by X⃗ = [x1, x2, . . . , xm]
⊤

where xi is the i-th row of X. For a given integer n ∈ N, we use [n] to denote the set

{0, . . . , n}, i.e., the set of integers from 0 to n. For a set S, we use S to denote the

complement of S. We use N(µ, σ2) to denote the Gaussian distribution with mean µ

and standard deviation σ. In addition, we use Õ, Θ̃, Ω̃ to suppress (poly-)logarithmic

factors in O,Θ,Ω.

F.2.1 Problem formulation

Let the training set to be (X, y) where X = (x1, x2, . . . , xn) ∈ Rd×n denotes

the feature matrix consisting of n d-dimensional vectors, and y = (y1, y2, . . . , yn) ∈
Rn consists of the corresponding n response variables. We assume ∥xi∥2 ≤ 1 and

yi = O(1) for all i ∈ [n]. We use one-hidden-layer neural network and consider the

1407

regression problem with the square loss function:

f(x;W, b) :=
1√
m

m∑

r=1

arσ(⟨wr, x⟩ − br), L(W, b) :=
1

2

n∑

i=1

(f(xi;W, b)− yi)2,

where W ∈ Rm×d with its r-th row being wr, b ∈ Rm is a vector with br being the bias

of r-th neuron, ar is the second layer weight, and σ(·) denotes the ReLU activation

function. We initialize the neural network by Wr,i ∼ N(0, 1) and ar ∼ Uniform({±1})
and br = B for some value B ≥ 0 of choice, for all r ∈ [m], i ∈ [d]. We train only the

parameters W and b (i.e., the linear layer ar for r ∈ [m] is not trained) via gradient

descent, the update of which are given by

wr(t+ 1) = wr(t)− η
∂L(W (t), b(t))

∂wr
, br(t+ 1) = br(t)− η

∂L(W (t), b(t))

∂br
.

By the chain rule, we have ∂L
∂wr

= ∂L
∂f

∂f
∂wr

. The gradient of the loss with respect to

the network is ∂L
∂f

=
∑n

i=1(f(xi;W, b)− yi) and the network gradients with respect to

weights and bias are

∂f(x;W, b)

∂wr
=

1√
m
arxI(w⊤r x ≥ br),

∂f(x;W, b)

∂br
= − 1√

m
arI(w⊤r x ≥ br),

where I(·) is the indicator function. We further define H as the NTK matrix of this

network with

Hi,j(W, b) :=

〈
∂f(xi;W, b)

∂W
,
∂f(xj;W, b)

∂W

〉
+

〈
∂f(xi;W, b)

∂b
,
∂f(xj;W, b)

∂b

〉

=
1

m

m∑

r=1

(⟨xi, xj⟩+ 1)I(w⊤r xi ≥ br, w
⊤
r xj ≥ br) (F.1)

and the infinite-width version H∞(B) of the NTK matrix H is given by

H∞ij (B) := Ew∼N(0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤xi ≥ B,w⊤xj ≥ B)

]
.

Let λ(B) := λmin(H
∞(B)). We define Ir,i(W, b) := I(w⊤r xi ≥ br) and the matrix

Z(W, b) as

Z(W, b) :=
1√
m

I1,1(W, b)a1[x⊤1 ,−1]⊤ . . . I1,n(W, b)a1[x⊤n ,−1]⊤

...
Im,1(W, b)am[x⊤1 ,−1]⊤ . . . Im,n(W, b)am[x⊤n ,−1]⊤

 ∈ Rm(d+1)×n.

1408

Note that H(W, b) = Z(W, b)⊤Z(W, b). Hence, the gradient descent step can be

written as

⃗[W, b](t+ 1) = ⃗[W, b](t)− ηZ(t)(f(t)− y)

where [W, b](t) ∈ Rm×(d+1) denotes the row-wise concatenation of W (t) and b(t) at

the t-th step of gradient descent, and Z(t) := Z(W (t), b(t)).

F.3 Main Theory
F.3.1 Convergence and sparsity

We present the convergence of gradient descent for the sparsely activated neu-

ral networks. Compared to the convergence result in Chapter 14, our study handles

the trainable bias with constant initialization in the convergence analysis (which is

the first of such a type). Also, our bound is sharper and yields a much smaller bound

on the width of neural networks to guarantee the convergence.

Theorem F.1 (Convergence). Let the learning rate η ≤ O(λ(B) exp(B2)
n2), and the bias

initialization B ∈ [0,
√
0.5 logm]. Assume λ(B) = λ0 exp(−B2/2) for some λ0 > 0

independent of B. Then, if the network width satisfies m ≥ Ω̃
(
λ−40 n4 exp(B2)

)
, over

the randomness in the initialization,

P
[
∀t : L(W (t), b(t)) ≤ (1− ηλ(B)/4)tL(W (0), b(0))

]
≥ 1− δ − e−Ω(n).

This theorem show that the training loss decreases linearly, and its rate de-

pends on the smallest eigenvalue of the NTK. The assumption on λ(B) in Theorem F.1

can be justified by Theorem 14.31 which shows that under some mild conditions, the

NTK’s least eigenvalue λ(B) is positive and has an exp(−B2/2) dependence. This

further implies that the network after sparsification can achieve as fast convergence

as the original network.

Remark F.1. Theorem F.1 establishes a much sharper bound on the width of the

neural network than previous work to guarantee the linear convergence. To elaborate,

1409

our bound only requires m ≥ Ω̃
(
λ−40 n4 exp(B2)

)
, as opposed to the bound m ≥

Ω̃(λ−40 n4B2 exp(2B2)) in Lemma 14.28. If we take B =
√
0.25 logm (as allowed by

the theorem), then our lower bound yields a polynomial improvement by a factor

of Θ̃(n/λ0)
8/3, which implies that the neural network width can be much smaller to

achieve the same linear convergence.

Key ideas in the proof of Theorem F.1. The proof mainly consists of developing

a novel bound on activation flipping probability and a novel upper bound on initial

error, as we elaborate below.

Like previous works, in order to prove convergence, we need to show that the

NTK during training is close to its initialization. Inspecting the expression of NTK in

Equation (F.1), observe that the training will affect the NTK by changing the output

of each indicator function. We say that the r-th neuron flips its activation with

respect to input xi at the k-th step of gradient descent if I(wr(k)⊤xi − br(k) > 0) ̸=
I(wr(k−1)⊤xi−br(k−1) > 0) for all r ∈ [m]. The central idea is that for each neuron,

as long as the weight and bias movement Rw, Rb from its initialization is small, then

the probability of activation flipping (with respect to random initialization) should

not be large. We first present the bound on the probability that a given neuron flips

its activation.

Lemma F.2 (Bound on Activation flipping probability). Let B ≥ 0 and Rw, Rb ≤
min{1/B, 1}. Let W̃ = (w̃1, . . . , w̃m) be vectors generated i.i.d. from N(0, I) and b̃ =

(b̃1, . . . , b̃m) = (B, . . . , B), and weights W = (w1, . . . , wm) and biases b = (b1, . . . , bm)

that satisfy for any r ∈ [m], ∥w̃r − wr∥2 ≤ Rw and |b̃r − br| ≤ Rb. Define the event

Ai,r = {∃wr, br : ∥w̃r − wr∥2 ≤ Rw, |br − b̃r| ≤ Rb, I(x⊤i w̃r ≥ b̃r) ̸= I(x⊤i wr ≥ br)}.

Then, for some constant c,

P [Ai,r] ≤ c(Rw +Rb) exp(−B2/2).

1410

Claim 14.19 presents a O(min{R, exp(−B2/2)}) bound on P[Ai,r]. The reason

that their bound involving the min operation is because P[Ai,r] can be bounded by

the standard Gaussian tail bound and Gaussian anti-concentration bound separately

and then, take the one that is smaller. On the other hand, our bound replaces the min

operation by the product which creates a more convenient (and tighter) interpolation

between the two bounds. Later, we will show that the maximum movement of neuron

weights and biases, Rw and Rb, both have a O(1/
√
m) dependence on the network

width, and thus our bound offers a exp(−B2/2) improvement where exp(−B2/2) can

be as small as 1/m1/4 when we take B =
√
0.5 logm.

Proof idea of Lemma F.2. First notice that P[Ai,r] = Px∼N(0,1)[|x − B| ≤ Rw +

Rb]. Thus, here we are trying to solve a fine-grained Gaussian anti-concentration

problem with the strip centered at B. The problem with the standard Gaussian anti-

concentration bound is that it only provides a worst case bound and, thus, is location-

oblivious. Centered in our proof is a nice Gaussian anti-concentration bound based on

the location of the strip, which we describe as follows: Let’s first assume B > Rw+Rb.

A simple probability argument yields a bound of 2(Rw+Rb)
1√
2π

exp(−(B−Rw−Rb)
2).

Since later in the Appendix we can show that Rw and Rb have a O(1/
√
m) dependence

(Lemma F.15 bounds the movement for gradient descent and Lemma F.16 for gradient

flow) and we only take B = O(
√
logm), by making m sufficiently large, we can safely

assume that Rw and Rb is sufficiently small. Thus, the probability can be bounded

by O((Rw + Rb) exp(−B2/2)). However, when B < Rw + Rb the above bound no

longer holds. But a closer look tells us that in this case B is close to zero, and

thus (Rw+Rb)
1√
2π

exp(−B2/2) ≈ Rw+Rb√
2π

which yields roughly the same bound as the

standard Gaussian anti-concentration.

Next, our proof of Theorem F.1 develops the following initial error bound.

Lemma F.3 (Initial error upper bound). Let B > 0 be the initialization value of the

biases and all the weights be initialized from standard Gaussian. Let δ ∈ (0, 1) be the

1411

failure probability. Then, with probability at least 1 − δ over the randomness in the

initialization, we have

L(W (0), b(0)) = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
.

Claim 14.20 gives a rough estimate of the initial error withO(n(1+B2) log2(n/δ) log(m/δ))

bound. When we set B = C
√
logm for some constant C, our bound improves the

previous result by a polylogarithmic factor. The previous bound is not tight in the

following two senses: (1) the bias will only decrease the magnitude of the neuron

activation instead of increasing and (2) when the bias is initialized as B, only roughly

O(exp(−B2/2)) ·m neurons will activate. Thus, we can improve the B2 dependence

to exp(−B2/2).

By combining the above two improved results, we can prove our convergence

result with improved lower bound of m as in Remark F.1. We provide the complete

proof in Section F.6.

Lastly, since the total movement of each neuron’s bias has a O(1/
√
m) depen-

dence (shown in Lemma F.15), combining with the number of activated neurons at

the initialization, we can show that during the entire training, the number of activated

neurons is small.

Lemma F.4 (Number of Activated Neurons per Iteration). Assume the parameter

settings in Theorem F.1. With probability at least 1− e−Ω(n) over the random initial-

ization, we have

|Son(i, t)| = O(m · exp(−B2/2))

for all 0 ≤ t ≤ T and i ∈ [n], where Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}.

F.3.2 Generalization and restricted least eigenvalue

In this section, we present the sparsity-dependent generalization of our neural

networks after gradient descent training. However, for technical reasons stated in

1412

Section F.3.3, we use symmetric initialization defined below. Further, we adopt the

setting in [ADH+19a] and use a non-degenerate data distribution to make sure the

infinite-width NTK is positive definite.

Definition F.1 (Symmetric Initialization). For a one-hidden layer neural network

with 2m neurons, the network is initialized as the following:

1. For r ∈ [m], independently initialize wr ∼ N(0, I) and ar ∼ Uniform({−1, 1}).

2. For r ∈ {m+ 1, . . . , 2m}, let wr = wr−m and ar = −ar−m.

Definition F.2 ((λ0, δ, n)-non-degenerate distribution, [ADH+19a]). A distribution

D over Rd×R is (λ0, δ, n)-non-degenerate, if for n i.i.d. samples {(xi, yi)}ni=1 from D,

with probability 1− δ we have λmin(H
∞(B)) ≥ λ0 > 0.

Theorem F.5. Fix a failure probability δ ∈ (0, 1) and an accuracy parameter ϵ ∈
(0, 1). Suppose the training data S = {(xi, yi)}ni=1 are i.i.d. samples from a (λ, δ, n)-

non-degenerate distribution D defined in Definition F.2. Assume the one-hidden layer

neural network is initialized by symmetric initialization in Definition F.1. Further, as-

sume the parameter settings in Theorem F.1 except we let m ≥ Ω̃ (λ(B)−6n6 exp(−B2)).

Consider any loss function ℓ : R×R→ [0, 1] that is 1-Lipschitz in its first argument.

Then with probability at least 1−2δ−e−Ω(n) over the randomness in symmetric initial-

ization of W (0) ∈ Rm×d and a ∈ Rm and the training samples, the two layer neural

network f(W (t), b(t), a) trained by gradient descent for t ≥ Ω(1
ηλ(B)

log n log(1/δ)
ϵ

) itera-

tions has empirical Rademacher complexity (see its formal definition in Definition F.6

in Appendix) bounded as

RS(F) ≤
√
y⊤(H∞(B))−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)

and the population loss LD(f) = E(x,y)∼D[ℓ(f(x), y)] can be upper bounded as

LD(f(W (t), b(t), a)) ≤
√
y⊤(H∞(B))−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
. (F.2)

1413

To show good generalization, we need a larger width: the second term in the

Rademacher complexity bound is diminishing withm and to make this termO(1/
√
n),

the width needs to have (n/λ(B))6 dependence as opposed to (n/λ(B))4 for conver-

gence. Now, at the first glance of our generalization result, it seems we can make the

Rademacher complexity arbitrarily small by increasing B. Recall from the discussion

of Theorem F.1 that the smallest eigenvalue of H∞(B) also has an exp(−B2/2) de-

pendence. Thus, in the worst case, the exp(−B2/2) factor gets canceled and sparsity

will not hurt the network’s generalization.

Before we present the proof, we make a corollary of Theorem F.5 for the zero-

initialized bias case.

Corollary F.6. Take the same setting as in Theorem F.5 except now the biases are

initialized as zero, i.e., B = 0. Then, if we let m ≥ Ω̃(λ(0)−6n6), the empirical

Rademacher complexity and population loss are both bounded by

RS(F), LD(f(W (t), b(t), a)) ≤
√
y⊤(H∞(0))−1y · 32

n
+ Õ

(
1

n1/2

)
.

Corollary F.6 requires the network widthm ≥ Ω̃((n/λ(0))6) which significantly

improves upon the previous result in [SY19, Theorem G.7] m ≥ Ω̃(n16poly(1/λ(0)))

(including the dependence on the rescaling factor κ) which is a much wider network.

Generalization Bound via Least Eigenvalue. Note that in Theorem F.5, the

worst case of the first term in the generalization bound in Equation (F.2) is given by

Õ(
√
1/(λ(B) · n)). Hence, the least eigenvalue λ(B) of the NTK matrix can signif-

icantly affect the generalization bound. Previous works [OS20, SYZ21] established

lower bounds on λ(B) with an explicit 1/n2 dependence on n under the δ data sep-

aration assumption (see Theorem F.7), which clearly makes a vacuous generalization

bound of Õ(
√
n). This thus motivates us to provide a tighter bound (desirably in-

dependent on n) on the least eigenvalue of the infinite-width NTK in order to make

the generalization bound in Theorem F.5 valid and useful. However, it turns out that

1414

there are major difficulties in proving a better lower bound in the general case and

thus, we are only able to present a better lower bound when we restrict the domain

to some (data-dependent) regions.

Definition F.3 (Data-dependent Region). Let pij = Pw∼N(0,I)[w
⊤xi ≥ B, w⊤xj ≥ B]

for i ̸= j. Define the (data-dependent) region R = {a ∈ Rn :
∑

i ̸=j aiajpij ≥
mini′ ̸=j′ pi′j′

∑
i ̸=j aiaj}.

Notice that R is non-empty for any input data-set since Rn
+ ⊂ R where Rn

+

denotes the set of vectors with non-negative entries, and R = Rn if pij = pi′j′ for all

i ̸= i′, j ̸= j′.

Theorem F.7 (Restricted Least Eigenvalue). Let X = (x1, . . . , xn) be points in Rd

with ∥xi∥2 = 1 for all i ∈ [n] and w ∼ N(0, Id). Suppose that there exists δ ∈ [0,
√
2]

such that

min
i ̸=j∈[n]

(∥xi − xj∥2 , ∥xi + xj∥2) ≥ δ.

Let B ≥ 0. Consider the minimal eigenvalue of H∞ over the data-dependent region

R defined above, i.e., let λ := min∥a∥2=1, a∈R a
⊤H∞a. Then, λ ≥ max(0, λ′) where

λ′ ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B

2/2

√
2π

)
− e−B2/(2−δ2/2)

π − arctan

(
δ
√

1−δ2/4
1−δ2/2

)

2π
.

(F.3)

To demonstrate the usefulness of our result, if we take the bias initialization

B = 0 in Equation (F.3), this bound yields 1/(2π)·arctan((δ
√

1− δ2/4)/(1− δ2/2)) ≈
δ/(2π), when δ is close to 0 whereas [SYZ21] yields a bound of δ/n2. On the other

hand, if the data has maximal separation, i.e., δ =
√
2, we get a max

(
1
2
− B√

2π
,
(
1
B
− 1

B3

)
e−B2/2
√
2π

)

lower bound, whereas [SYZ21] yields a bound of exp(−B2/2)
√
2/n2. Connecting to

our convergence result in Theorem F.1, if f(t)−y ∈ R, then the error can be reduced

at a much faster rate than the (pessimistic) rate with 1/n2 dependence in the previous

studies as long as the error vector lies in the region.

1415

Remark F.2. The lower bound on the restricted smallest eigenvalue λ in Theorem F.7

is independent on n, which makes that the generalization bound in Theorem F.5

vanishes as fast as O(1/
√
n). Such a lower bound is much sharper than the previous

results with a 1/n2 explicit dependence which yields vacuous generalization. This

improvement relies on a fact that the label vector should lie in the region R, which

can be justified by a simple label-shifting strategy as follows. Since Rn
+ ⊂ R, the

condition can be easily achieved by training the neural network on the shifted labels

y+C (with appropriate broadcast) where C is a constant such that mini yi+C ≥ 0.

Careful readers may notice that in the proof of Theorem F.7 in Section F.7, the

restricted least eigenvalue on Rn
+ is always positive even if the data separation is zero.

However, we would like to point out that the generalization bound in Theorem F.5 is

meaningful only when the training is successful: when the data separation is zero, the

limiting NTK is no longer positive definite and the training loss cannot be minimized

toward zero.

F.3.3 Key ideas in the proof of Theorem F.5

Since each neuron weight and bias move little from their initialization, a nat-

ural approach is to bound the generalization via localized Rademacher complexity.

After that, we can apply appropriate concentration bounds to derive generalization.

The main effort of our proof is devoted to bounding the weight movement to bound

the localized Rademacher complexity. If we directly take the setting in Theorem F.1

and compute the network’s localized Rademacher complexity, we will encounter a non-

diminishing (with the number of samples n) term which can be as large as O(
√
n)

since the network outputs non-zero values at the initialization. [ADH+19a] and [SY19]

resolved this issue by initializing the neural network weights instead by N(0, κ2I) to

force the neural network output something close to zero at the initialization. The

magnitude of κ is chosen to balance different terms in the Rademacher complexity

bound in the end. Similar approach can also be adapted to our case by initializing

the weights by N(0, κ2I) and the biases by κB. However, the drawback of such an

1416

approach is that the effect of κ to all the previously established results for convergence

need to be carefully tracked or derived. In particular, in order to guarantee conver-

gence, the neural network’s width needs to have a polynomial dependence on 1/κ

where 1/κ has a polynomial dependence on n and 1/λ, which means their network

width needs to be larger to compensate for the initialization scaling. We resolve this

issue by symmetric initialization Definition F.1 which yields no effect (up to constant

factors) on previously established convergence results, see [MOSW22]. Symmetric

initialization allows us to organically combine the results derived for convergence to

be reused for generalization, which leads to a more succinct analysis. Further, we

replace the ℓ1-ℓ2 norm upper bound by finer inequalities in various places in the

original analysis. All these improvements lead to the following upper bound of the

weight matrix change in Frobenius norm. Further, combining our sparsity-inducing

initialization, we present our sparsity-dependent Frobenius norm bound on the weight

matrix change.

Lemma F.8. Assume the one-hidden layer neural network is initialized by symmet-

ric initialization in Definition F.1. Further, assume the parameter settings in Theo-

rem F.1. Then with probability at least 1− δ − e−Ω(n) over the random initialization,

we have for all t ≥ 0,

∥[W, b](t)− [W, b](0)∥F ≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)
+

n

λ2
·O
(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)

where R = Rw+Rb denote the maximum magnitude of neuron weight and bias change.

By Lemma F.15 and Lemma F.17 in the Appendix, we have R = Õ(n
λ
√
m
).

Plugging in and setting B = 0, we get ∥[W, b](t)− [W, b](0)∥F ≤
√
y⊤(H∞)−1y +

Õ(n
λm1/4 +

n3/2

λ3/2m1/4 +
n

λ2
√
m
+ n2

λ3
√
m
). On the other hand, taking κ = 1, [SY19, Lemma

G.6] yields a bound of ∥W (t)−W (0)∥F ≤
√
y⊤(H∞)−1y + Õ(n

λ
+ n7/2poly(1/λ)

m1/4). No-

tice that the Õ(n
λ
) term has no dependence on 1/m and is removed by symmetric

1417

initialization in our analysis and we improve the upper bound’s dependence on n by

a factor of n2.

We defer the full proof of Theorem F.5 and Lemma F.8 to Section F.8.

F.3.4 Key ideas in the proof of Theorem F.7

In this section, we analyze the smallest eigenvalue λ := λmin(H
∞) of the limit-

ing NTKH∞ with δ data separation. We first note thatH∞ ⪰ Ew∼N(0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]

and for a fixed vector a, we are interested in the lower bound of Ew∼N(0,I)[|a⊤I(Xw ≥
B)|2]. In previous works, [OS20] showed a lower bound Ω(δ/n2) for zero-initialized

bias, and later [SYZ21] generalized this result to a lower bound Ω(e−B
2/2δ/n2) for

non-zero initialized bias. Both lower bounds have a dependence of 1/n2. Their ap-

proach is by using an intricate Markov’s inequality argument and then proving an

lower bound of P[|a⊤I(Xw ≥ B)| ≥ c ∥a∥∞]. The lower bound is proved by only

considering the contribution from the largest coordinate of a and treating all other

values as noise. It is non-surprising that the lower bound has a factor of 1/n since

a can have identical entries. On the other hand, the diagonal entries can give a

exp(−B2/2) upper bound and thus there is a 1/n2 gap between the two. Now, we

give some evidence suggesting the 1/n2 dependence may not be tight in some cases.

Consider the following scenario: Assume n≪ d and the data set is orthonormal. For

a fixed a, we have

a⊤Ew∼N(0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a

=
∑

i,j∈[n] aiajP[w⊤xi ≥ B, w⊤xj ≥ B] = p0 ∥a∥22 + p1
∑

i ̸=j aiaj

= p0 − p1 + p1 (
∑

i ai)
2 > p0 − p1

where p0, p1 ∈ [0, 1] are defined such that due to the spherical symmetry of the

standard Gaussian we are able to let p0 = P[w⊤xi ≥ B], ∀i ∈ [n] and p1 = P[w⊤xi ≥
B,w⊤xj ≥ B], ∀i, j ∈ [n], i ̸= j. Notice that p0 > p1. Since this is true for all a ∈ Rn,

we get a lower bound of p0 − p1 with no explicit dependence on n and this holds for

all n ≤ d. When d is large and n = d/2, this bound is better than previous bound

1418

by a factor of Θ(1/d2). However, it turns out that the product terms with i ̸= j

above creates major difficulties in analyzing the general case. Due to such technical

difficulties, we are only able to prove a better lower bound by utilizing the extra

constant factor in the NTK thanks to the trainable bias, when we restrict the domain

to some data-dependent region. We defer the proof of Theorem F.7 to Section F.7.

F.4 Experiments
In this section, we study how the activation sparsity patterns of multi-layer

neural networks change during training when the bias parameters are initialized as

non-zero.

Settings. We train a 6-layer multi-layer perceptron (MLP) of width 1024 with

trainable bias terms on MNIST image classification [LCB10]. The biases of the fully-

connected layers are initialized as 0,−0.5 and −1. For the weights in the linear layer,

we use Kaiming Initialization [HZRS15] which is sampled from an appropriately scaled

Gaussian distribution. The traditional MLP architecture only has linear layers with

ReLU activation. However, we found out that using the sparsity-inducing initializa-

tion, the magnitude of the activation will decrease geometrically layer-by-layer, which

leads to vanishing gradients and that the network cannot be trained. Thus, we made

a slight modification to the MLP architecture to include an extra Batch Normaliza-

tion after ReLU to normalize the activation. Our MLP implementation is based on

[ZDZ+21]. We train the neural network by stochastic gradient descent with a small

learning rate 5e-3 to make sure the training is in the NTK regime. The sparsity is

measured as the total number of activated neurons (i.e., ReLU outputs some positive

values) divided by total number of neurons, averaged over every SGD batch. We plot

how the sparsity patterns changes for different layers during training.

Observation and Implication. As demonstrated at Figure F.1, when we initialize

the bias with three different values, the sparsity patterns are stable across all layers

1419

0 10k 20k 30k 40k
Iterations

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Sp
ar

si
ty

layer 0
layer 1
layer 2

layer 3
layer 4
layer 5

(a) Init Bias as 0.

0 10k 20k 30k 40k
Iterations

0.65

0.70

0.75

0.80

0.85

Sp
ar

si
ty

layer 0
layer 1
layer 2

layer 3
layer 4
layer 5

(b) Init Bias as -0.5.

0 10k 20k 30k 40k
Iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Sp
ar

si
ty

layer 0
layer 1
layer 2

layer 3
layer 4
layer 5

(c) Init Bias as -1.0.

Figure F.1: Sparsity pattern on different layers across different training iterations for
three different bias initialization. The x and y axis denote the iteration number and
sparsity level, respectively. The models can achieve 97.9%, 97.7% and 97.3% accuracy
after training, respectively. Note that, in Figure (a), the lines of layers 1-5 overlap
together except layer 0.

during training: when the bias is initialized as 0 and −0.5, the sparsity change is

within 2.5%; and when the bias is initialized as −1.0, the sparsity change is within

10%. Meanwhile, by increasing the initialization magnitude for bias, the sparsity

level increases with only marginal accuracy dropping. This implies that our theory

can be extended to the multi-layer setting (with some extra care for coping with

vanishing gradient) and multi-layer neural networks can also benefit from the sparsity-

inducing initialization and enjoy reduction of computational cost. Another interesting

observation is that the input layer (layer 0) has a different sparsity pattern from other

layers while all the rest layers behave similarly.

F.5 Discussion
In this chapter, we study training one-hidden-layer overparameterized ReLU

networks in the NTK regime with its biases being trainable and initialized as some

constants rather than zero. We showed sparsity-dependent results on convergence,

restricted least eigenvalue, and generalization. A future direction is to generalize our

analysis to multi-layer neural networks. In practice, label shifting is unnecessary for

1420

achieving good generalization. An open problem is whether it is possible to improve

the dependence on the sample size of the lower bound of the infinite-width NTK’s least

eigenvalue, or even whether a lower bound purely dependent on the data separation

is possible so that the generalization bound is no longer vacuous for all labels.

F.6 Convergence

Notation simplification. Since the smallest eigenvalue of the limiting NTK ap-

peared in this proof all has dependence on the bias initialization parameter B, for the

ease of notation of our proof, we suppress its dependence on B and use λ to denote

λ := λ(B) = λmin(H
∞(B)).

F.6.1 Difference between limit NTK and sampled NTK

Lemma F.9. For a given bias vector b ∈ Rm with br ≥ 0, ∀r ∈ [m], the limit NTK

H∞ and the sampled NTK H are given as

H∞ij := Ew∼N(0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤r xi ≥ br, w

⊤
r xj ≥ br)

]
,

Hij :=
1

m

m∑

r=1

(⟨xi, xj⟩+ 1)I(w⊤r xi ≥ br, w
⊤
r xj ≥ br).

Let’s define λ := λmin(H
∞) and assume λ > 0. If the network width m = Ω(λ−1n ·

log(n/δ)), then

P
[
λmin(H) ≥ 3

4
λ

]
≥ 1− δ.

Proof. Let Hr :=
1
m
X̃(wr)

⊤X̃(wr), where X̃(wr) ∈ R(d+1)×n is defined as

X̃(wr) := [I(w⊤r x1 ≥ b) · (x1, 1), . . . , I(w⊤r xn ≥ b) · (xn, 1)],

where (xi, 1) denotes appending the vector xi by 1. Hence Hr ⪰ 0. Since for each

entry Hij we have

(Hr)ij =
1

m
(⟨xi, xj⟩+ 1)I(w⊤r xi ≥ br, w

⊤
r xj ≥ br) ≤

1

m
(⟨xi, xj⟩+ 1) ≤ 2

m
,

1421

and naively, we can upper bound ∥Hr∥2 by:

∥Hr∥2 ≤ ∥Hr∥F ≤
√
n2

4

m2
=

2n

m
.

Then H =
∑m

r=1Hr and E[H] = H∞. Hence, by the Matrix Chernoff Bound in

Theorem A.6 and choosing m = Ω(λ−1n · log(n/δ)), we can show that

P
[
λmin(H) ≤ 3

4
λ

]
≤ n · exp

(
− 1

16
λ/(4n/m)

)

= n · exp
(
−λm
64n

)

≤ δ.

Lemma F.10. Assume m = nO(1) and exp(B2/2) = O(
√
m) where we recall that

B is the initialization value of the biases. With probability at least 1 − δ, we have

∥H(0)−H∞∥F ≤ 4n exp(−B2/4)
√

log(n2/δ)
m

.

Proof. First, we have E[((⟨xi, xj⟩+1)Ir,i(0)Ir,j(0))2] ≤ 4 exp(−B2/2). Then, by Bern-

stein’s inequality in Lemma A.4, with probability at least 1− δ/n2,

|Hij(0)−H∞ij | ≤ 2 exp(−B2/4)

√
2
log(n2/δ)

m
+ 2

2

m
log(n2/δ) ≤ 4 exp(−B2/4)

√
log(n2/δ)

m
.

By a union bound, the above holds for all i, j ∈ [n] with probability at least 1 − δ,
which implies

∥H(0)−H∞∥F ≤ 4n exp(−B2/4)

√
log(n2/δ)

m
.

F.6.2 Bounding the number of flipped neurons

Definition F.4 (No-flipping set). For each i ∈ [n], let Si ⊂ [m] denote the set of

neurons that are never flipped during the entire training process,

Si := {r ∈ [m] : ∀t ∈ [T] sign(⟨wr(t), xi⟩ − br(t)) = sign(⟨wr(0), xi⟩ − br(0))}.

Thus, the flipping set is Si for i ∈ [n].

1422

Lemma F.11 (Bound on flipping probability). Let B ≥ 0 and Rw, Rb ≤ min{1/B, 1}.
Let W̃ = (w̃1, . . . , w̃m) be vectors generated i.i.d. from N(0, I) and b̃ = (b̃1, . . . , b̃m) =

(B, . . . , B), and weights W = (w1, . . . , wm) and biases b = (b1, . . . , bm) that satisfy

for any r ∈ [m], ∥w̃r − wr∥2 ≤ Rw and |b̃r − br| ≤ Rb. Define the event

Ai,r = {∃wr, br : ∥w̃r − wr∥2 ≤ Rw, |br − b̃r| ≤ Rb, I(x⊤i w̃r ≥ b̃r) ̸= I(x⊤i wr ≥ br)}.

Then,

P [Ai,r] ≤ c(Rw +Rb) exp(−B2/2)

for some constant c.

Proof. Notice that the event Ai,r happens if and only if |w̃⊤r xi− b̃r| < Rw+Rb. First,

if B > 1, then by Lemma A.8, we have

P [Ai,r] ≤ (Rw +Rb)
1√
2π

exp(−(B −Rw −Rb)
2/2) ≤ c1(Rw +Rb) exp(−B2/2)

for some constant c1. If 0 ≤ B < 1, then the above analysis doesn’t hold since it is

possible that B − Rw − Rb ≤ 0. In this case, the probability is at most P[Ai,r] ≤
2(Rw + Rb)

1√
2π

exp(−02/2) = 2(Rw+Rb)√
2π

. However, since 0 ≤ B < 1 in this case,

we have exp(−12/2) ≤ exp(−B2/2) ≤ exp(−02/2). Therefore, P[Ai,r] ≤ c2(Rw +

Rb) exp(−B2/2) for c2 = 2 exp(1/2)√
2π

. Take c = max{c1, c2} finishes the proof.

Corollary F.12. Let B > 0 and Rw, Rb ≤ min{1/B, 1}. Assume that ∥wr(t)− wr(0)∥2 ≤
Rw and |br(t) − br(0)| ≤ Rb for all t ∈ [T]. For i ∈ [n], the flipping set Si satisfies

that

P[r ∈ Si] ≤ c(Rw +Rb) exp(−B2/2)

for some constant c, which implies

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− n · exp
(
−2

3
mc(Rw +Rb) exp(−B2/2)

)
.

1423

Proof. The proof is by observing that P[r ∈ Si] ≤ P[Ai,r]. Then, by Bernstein’s

inequality,

P[|Si| > t] ≤ exp

(
− t2/2

mc(Rw +Rb) exp(−B2/2) + t/3

)
.

Take t = 2mc(Rw +Rb) exp(−B2/2) and a union bound over [n], we have

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− n · exp
(
−2

3
mc(Rw +Rb) exp(−B2/2)

)
.

F.6.3 Bounding NTK if perturbing weights and biases

Lemma F.13. Assume λ > 0. Let B > 0 and Rb, Rw ≤ min{1/B, 1}. Let W̃ =

(w̃1, . . . , w̃m) be vectors generated i.i.d. from N(0, I) and b̃ = (b̃1, . . . , b̃m) = (B, . . . , B).

For any set of weights W = (w1, . . . , wm) and biases b = (b1, . . . , bm) that sat-

isfy for any r ∈ [m], ∥w̃r − wr∥2 ≤ Rw and |b̃r − br| ≤ Rb, we define the matrix

H(W, b) ∈ Rn×n by

Hij(W, b) =
1

m

m∑

r=1

(⟨xi, xj⟩+ 1)I(w⊤r xi ≥ br, w
⊤
r xj ≥ br).

It satisfies that for some small positive constant c,

1. With probability at least 1− n2 exp
(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
, we have

∥∥∥H(W̃ , b̃)−H(W, b)
∥∥∥
F
≤ n · 8c(Rw +Rb) exp(−B2/2),

∥∥∥Z(W̃ , b̃)− Z(W, b)
∥∥∥
F
≤
√
n · 8c(Rw +Rb) exp(−B2/2).

2. With probability at least 1− δ − n2 exp
(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
,

λmin(H(W, b)) > 0.75λ− n · 8c(Rw +Rb) exp(−B2/2).

1424

Proof. We have

∥∥∥Z(W, b)− Z(W̃ , b̃)
∥∥∥
2

F
=
∑

i∈[n]

 2

m

∑

r∈[m]

(
I(w⊤r xi ≥ br)− I(w̃⊤r xi ≥ b̃r)

)2

=
∑

i∈[n]

 2

m

∑

r∈[m]

tr,i

and
∥∥∥H(W, b)−H(W̃ , b̃)

∥∥∥
2

F

=
∑

i∈[n], j∈[n]

(Hij(W, b)−Hij(W̃ , b̃))2

≤ 4

m2

∑

i∈[n], j∈[n]

∑

r∈[m]

|I(w⊤r xi ≥ br, w
⊤
r xj ≥ br)− I(w̃⊤r xi ≥ b̃r, w̃

⊤
r xj ≥ b̃r)|

2

=
4

m2

∑

i,j∈[n]

∑

r∈[m]

sr,i,j

2

,

where we define

sr,i,j := |I(w⊤r xi ≥ br, w
⊤
r xj ≥ br)− I(w̃⊤r xi ≥ b̃r, w̃

⊤
r xj ≥ b̃r)|,

tr,i := (I(w⊤r xi ≥ br)− I(w̃⊤r xi ≥ b̃r))
2.

Notice that tr,i = 1 only if the event Ai,r happens (recall the definition of Ai,r in

Lemma F.11) and sr,i,j = 1 only if the event Ai,r or Aj,r happens. Thus,
∑

r∈[m]

tr,i ≤
∑

r∈[m]

I(Ai,r),
∑

r∈[m]

sr,i,j ≤
∑

r∈[m]

I(Ai,r) + I(Aj,r).

By Lemma F.11, we have

Ew̃r [sr,i,j] ≤ Ew̃r [s
2
r,i,j] ≤ Pw̃r [Ai,r] + Pw̃r [Aj,r] ≤ 2c(Rw +Rb) exp(−B2/2).

Define si,j =
∑m

r=1 I(Ai,r) + I(Aj,r). By Bernstein’s inequality in Lemma A.4,

P
[
si,j ≥ m · 2c(Rw +Rb) exp(−B2/2) +mt

]

≤ exp

(
− m2t2/2

m · 2c(Rw +Rb) exp(−B2/2) +mt/3

)
, ∀t ≥ 0.

1425

Let t = 2c(Rw +Rb) exp(−B2/2). We get

P[si,j ≥ m · 4c(Rw +Rb) exp(−B2/2)] ≤ exp

(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
.

Thus, we obtain with probability at least 1− n2 exp
(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
,

∥∥∥H(W̃ , b̃)−H(W, b)
∥∥∥
F
≤ n · 8c(Rw +Rb) exp(−B2/2),

∥∥∥Z(W̃ , b̃)− Z(W, b)
∥∥∥
F
≤
√
n · 8c(Rw +Rb) exp(−B2/2).

For the second result, by Lemma F.9, P[λmin(H(W̃ , b̃)) ≥ 0.75λ] ≥ 1−δ. Hence, with

probability at least 1− δ − n2 exp
(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
,

λmin(H(W, b)) ≥ λmin(H(W̃ , b̃))−
∥∥∥H(W, b)−H(W̃ , b̃)

∥∥∥

≥ λmin(H(W̃ , b̃))−
∥∥∥H(W, b)−H(W̃ , b̃)

∥∥∥
F

≥ 0.75λ− n · 8c(Rw +Rb) exp(−B2/2).

F.6.4 Total movement of weights and biases

Definition F.5 (NTK at time t). For t ≥ 0, let H(t) be an n×n matrix with (i, j)-th

entry

Hij(t) :=

〈
∂f(xi; θ(t))

∂θ(t)
,
∂f(xj; θ(t))

∂θ(t)

〉
=

1

m

m∑

r=1

(⟨xi, xj⟩+ 1)I(wr(t)⊤xi ≥ br(t), wr(t)
⊤xj ≥ br(t)).

We follow the proof strategy from [DZPS19]. Now we derive the total move-

ment of weights and biases. Let f(t) = f(X; θ(t)) where fi(t) = f(xi; θ(t)). The

dynamics of each prediction is given by

d

dt
fi(t) =

〈
∂f(xi; θ(t))

∂θ(t)
,
dθ(t)

dt

〉

=
n∑

j=1

(yj − fj(t))
〈
∂f(xi; θ(t))

∂θ(t)
,
∂f(xj; θ(t))

∂θ(t)

〉

=
n∑

j=1

(yj − fj(t))Hij(t),

1426

which implies

d

dt
f(t) = H(t)(y − f(t)). (F.4)

Lemma F.14 (Gradient Bounds). For any 0 ≤ s ≤ t, we have
∥∥∥∥
∂L(W (s), b(s))

∂wr(s)

∥∥∥∥
2

≤
√
n

m
∥f(s)− y∥2 ,

∥∥∥∥
∂L(W (s), b(s))

∂br(s)

∥∥∥∥
2

≤
√
n

m
∥f(s)− y∥2 .

Proof. We have:

∥∥∥∥
∂L(W (s), b(s))

∂wr(s)

∥∥∥∥
2

=

∥∥∥∥∥
1√
m

n∑

i=1

(f(xi;W (s), b(s))− yi)arxiI(wr(s)⊤xi ≥ br)

∥∥∥∥∥
2

≤ 1√
m

n∑

i=1

|f(xi;W (s), b(s))− yi|

≤
√
n

m
∥f(s)− y∥2 ,

where the first inequality follows from triangle inequality, and the second inequality

follows from Cauchy-Schwarz inequality.

Similarly, we also have:

∥∥∥∥
∂L(W (s), b(s))

∂br(s)

∥∥∥∥
2

=

∥∥∥∥∥
1√
m

n∑

i=1

(f(xi;W (s), b(s))− yi)arI(wr(s)⊤xi ≥ br)

∥∥∥∥∥
2

≤ 1√
m

n∑

i=1

|f(xi;W (s), b(s))− yi|

≤
√
n

m
∥f(s)− y∥2 .

1427

F.6.4.1 Gradient descent

Lemma F.15. Assume λ > 0. Assume ∥y − f(k)∥22 ≤ (1− ηλ/4)k ∥y − f(0)∥22 holds

for all k′ ≤ k. Then for every r ∈ [m],

∥wr(k + 1)− wr(0)∥2 ≤
8
√
n ∥y − f(0)∥2√

mλ
:= Dw,

|br(k + 1)− br(0)| ≤
8
√
n ∥y − f(0)∥2√

mλ
:= Db.

Proof.

∥wr(k + 1)− wr(0)∥2 ≤ η

k∑

k′=0

∥∥∥∥
∂L(W (k′))

∂wr(k′)

∥∥∥∥
2

≤ η
k∑

k′=0

√
n

m
∥y − f(k′)∥2

≤ η
k∑

k′=0

√
n

m
(1− ηλ/4)k′/2 ∥y − f(0)∥2

≤ η
k∑

k′=0

√
n

m
(1− ηλ/8)k′ ∥y − f(0)∥2

≤ η
∞∑

k′=0

√
n

m
(1− ηλ/8)k′ ∥y − f(0)∥2

≤ 8
√
n√

mλ
∥y − f(0)∥2 ,

where the first inequality is by Triangle inequality, the second inequality is by Lemma F.14,

the third inequality is by our assumption and the fourth inequality is by (1− x)1/2 ≤
1− x/2 for x ≥ 0.

The proof for b is similar.

F.6.4.2 Gradient flow

Lemma F.16. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0
2
> 0. Then we have

∥y − f(t)∥22 ≤ exp(−λ0t) ∥y − f(0)∥22 and for any r ∈ [m], ∥wr(t)− wr(0)∥2 ≤
√
n∥y−f(0)∥2√

mλ0

and |br(t)− br(0)| ≤
√
n∥y−f(0)∥2√

mλ0
.

1428

Proof. By the dynamics of prediction in Equation (F.4), we have

d

dt
∥y − f(t)∥22 = −2(y − f(t))⊤H(t)(y − f(t))

≤ −λ0 ∥y − f(t)∥22 ,

which implies

∥y − f(t)∥22 ≤ exp(−λ0t) ∥y − f(t)∥22 .

Now we bound the gradient norm of the weights
∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − fi(s))
1√
m
arxiI(wr(s)⊤xi ≥ b(s))

∥∥∥∥∥
2

≤ 1√
m

n∑

i=1

|yifi(s)| ≤
√
n√
m
∥y − f(s)∥2 ≤

√
n√
m

exp(−λ0s) ∥y − f(0)∥2 .

Integrating the gradient, the change of weight can be bounded as

∥wr(t)− wr(0)∥2 ≤
∫ t

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

ds ≤
√
n ∥y − f(0)∥2√

mλ0
.

For bias, we have
∥∥∥∥
d

ds
br(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − fi(s))
1√
m
arI(wr(s)⊤xi ≥ b(s))

∥∥∥∥∥
2

≤ 1√
m

n∑

i=1

|yi − fi(s)| ≤
√
n√
m
∥y − f(s)∥2 ≤

√
n√
m

exp(−λ0s) ∥y − f(0)∥2 .

Now, the change of bias can be bounded as

∥br(t)− br(0)∥2 ≤
∫ t

0

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

ds ≤
√
n ∥y − f(0)∥2√

mλ0
.

F.6.5 Gradient descent convergence analysis

F.6.5.1 Upper bound of the initial error

Lemma F.17 (Initial error upper bound). Let B > 0 be the initialization value of

the biases and all the weights be initialized from standard Gaussian. Let δ ∈ (0, 1) be

1429

the failure probability. Then, with probability at least 1− δ, we have

∥f(0)∥22 = O(n(exp(−B2/2) + 1/m) log3(mn/δ)),

∥f(0)− y∥22 = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
.

Proof. Since we are only analyzing the initialization stage, for notation ease, we omit

the dependence on time without any confusion. We compute

∥y − f∥22 =
n∑

i=1

(yi − f(xi))2

=
n∑

i=1

(
yi −

1√
m

m∑

r=1

arσ(w
⊤
r xi −B)

)2

=
n∑

i=1

y2i − 2

yi√
m

m∑

r=1

arσ(w
⊤
r xi −B) +

1

m

(
m∑

r=1

arσ(w
⊤
r xi −B)

)2

 .

Since w⊤r xi ∼ N(0, 1) for all r ∈ [m] and i ∈ [n], by Gaussian tail bound and a union

bound over r, i, we have

P[∀i ∈ [n], j ∈ [m] : w⊤r xi ≤
√
2 log(2mn/δ)] ≥ 1− δ/2.

Let E1 denote this event. Conditioning on the event E1, let

zi,r :=
1√
m
· ar ·min

{
σ(w⊤r xi −B),

√
2 log(2mn/δ)

}
.

Notice that zi,r ̸= 0 with probability at most exp(−B2/2). Thus,

Ear,wr [z
2
i,r] ≤ exp(−B2/2)

1

m
2 log(2mn/δ).

By randomness in ar, we know E[zi,r] = 0. Now apply Bernstein’s inequality in

Lemma A.4, we have for all t > 0,

P

[∣∣∣∣∣
m∑

r=1

zi,r

∣∣∣∣∣ > t

]
≤ exp

(
−min

(
t2/2

4 exp(−B2/2) log(2mn/δ)
,

√
mt/2

2
√

2 log(2mn/δ)

))
.

1430

Thus, by a union bound, with probability at least 1− δ/2, for all i ∈ [n],
∣∣∣∣∣
m∑

r=1

zi,r

∣∣∣∣∣ ≤
√
2 log(2mn/δ) exp(−B2/2)2 log(2n/δ) + 2

√
2 log(2mn/δ)

m
log(2n/δ)

≤
(
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ).

Let E2 denote this event. Thus, conditioning on the events E1, E2, with probability

1− δ,

∥f(0)∥22 =
n∑

i=1

(
m∑

r=1

zi,r

)2

= O(n(exp(−B2/2) + 1/m) log3(mn/δ))

and

∥y − f(0)∥22

=
n∑

i=1

y2i − 2
n∑

i=1

yi

m∑

r=1

zi,r +
n∑

i=1

(
m∑

r=1

zi,r

)2

≤
n∑

i=1

y2i + 2
n∑

i=1

|yi|
(
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ)

+
n∑

i=1

((
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ)

)2

= O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
,

where we assume yi = O(1) for all i ∈ [n].

F.6.5.2 Error Decomposition

We follow the proof outline in [SY19, SYZ21] and we generalize it to networks

with trainable b. Let us define matrix H⊥ similar to H except only considering flipped

neurons by

H⊥ij (k) :=
1

m

∑

r∈Si

(⟨xi, xj⟩+ 1)I(wr(k)⊤xi ≥ br(k), wr(k)
⊤xj ≥ br(k))

1431

and vector v1, v2 by

v1,i :=
1√
m

∑

r∈Si

ar(σ(⟨wr(k + 1), xi⟩ − br(k + 1))− σ(⟨wr(k), xi⟩ − br(k))),

v2,i :=
1√
m

∑

r∈Si

ar(σ(⟨wr(k + 1), xi⟩ − br(k + 1))− σ(⟨wr(k), xi⟩ − br(k))).

Now we give out our error update.

Claim F.18.

∥y − f(k + 1)∥22 = ∥y − f(k)∥
2
2 +B1 +B2 +B3 +B4,

where

B1 := −2η(y − f(k))⊤H(k)(y − f(k)),

B2 := 2η(y − f(k))⊤H⊥(k)(y − f(k)),

B3 := −2(y − f(k))⊤v2,

B4 := ∥f(k + 1)− f(k)∥22 .

Proof. First we can write

v1,i =
1√
m

∑

r∈Si

ar

(
σ

(〈
wr(k)− η

∂L

∂wr
, xi

〉
−
(
br(k)− η

∂L

∂br

))
− σ(⟨wr(k), xi⟩ − br(k))

)

=
1√
m

∑

r∈Si

ar

(〈
−η ∂L

∂wr
, xi

〉
+ η

∂L

∂br

)
I(⟨wr(k), xi⟩ − br(k) ≥ 0)

=
1√
m

∑

r∈Si

ar

(
η

1√
m

n∑

j=1

(yj − fj(k))ar(⟨xj, xi⟩+ 1)I(wr(k)⊤xj ≥ br(k))

)

· I(⟨wr(k), xi⟩ − br(k) ≥ 0)

= η
n∑

j=1

(yj − fj(k))(Hij(k)−H⊥ij (k))

which means

v1 = η(H(k)−H⊥(k))(y − f(k)).

1432

Now we compute

∥y − f(k + 1)∥22 = ∥y − f(k)− (f(k + 1)− f(k))∥22
= ∥y − f(k)∥22 − 2(y − f(k))⊤(f(k + 1)− f(k)) + ∥f(k + 1)− f(k)∥22 .

Since f(k + 1)− f(k) = v1 + v2, we can write the cross product term as

(y − f(k))⊤(f(k + 1)− f(k))

= (y − f(k))⊤(v1 + v2)

= (y − f(k))⊤v1 + (y − f(k))⊤v2
= η(y − f(k))⊤H(k)(y − f(k))

− η(y − f(k))⊤H⊥(k)(y − f(k)) + (y − f(k))⊤v2.

F.6.5.3 Bounding the decrease of the error

Lemma F.19. Assume λ > 0. Assume we choose Rw, Rb, B where Rw, Rb ≤ min{1/B, 1}
such that 8cn(Rw + Rb) exp(−B2/2) ≤ λ/8. Denote δ0 = δ + n2 exp(−2

3
cm(Rw +

Rb) exp(−B2/2)). Then,

P[B1 ≤ −η5λ ∥y − f(k)∥22 /8] ≥ 1− δ0.

Proof. By Lemma F.13 and our assumption,

λmin(H(W)) > 0.75λ− n · 8c(Rw +Rb) exp(−B2/2) ≥ 5λ/8

with probability at least 1− δ0. Thus,

(y − f(k))⊤H(k)(y − f(k)) ≥ ∥y − f(k)∥22 5λ/8.

1433

F.6.5.4 Bounding the effect of flipped neurons

Here we bound the term B2, B3. First, we introduce a fact.

Fact F.20.

∥∥H⊥(k)
∥∥2
F
≤ 4n

m2

n∑

i=1

|Si|2.

Proof.

∥∥H⊥(k)
∥∥2
F
=
∑

i,j∈[n]

 1

m

∑

r∈Si

(x⊤i xj + 1)I(wr(k)⊤xi ≥ br(k), wr(k)
⊤xj ≥ br(k))

2

≤
∑

i,j∈[n]

(
1

m
2|Si|

)2

≤ 4n

m2

n∑

i=1

|Si|2.

Lemma F.21. Denote δ0 = n exp(−2
3
cm(Rw +Rb) exp(−B2/2)). Then,

P[B2 ≤ 8ηnc(Rw +Rb) exp(−B2/2) · ∥y − f(k)∥22] ≥ 1− δ0.

Proof. First, we have

B2 ≤ 2η ∥y − f(k)∥22
∥∥H⊥(k)

∥∥
2
.

Then, by Fact F.20,

∥∥H⊥(k)
∥∥2
2
≤
∥∥H⊥(k)

∥∥2
F
≤ 4n

m2

n∑

i=1

|Si|2.

By Corollary F.12, we have

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− δ0.

Thus, with probability at least 1− δ0,
∥∥H⊥(k)

∥∥
2
≤ 4nc(Rw +Rb) exp(−B2/2).

1434

Lemma F.22. Denote δ0 = n exp(−2
3
cm(Rw +Rb) exp(−B2/2)). Then,

P[B3 ≤ 4cηn(Rw +Rb) exp(−B2/2) ∥y − f(k)∥22] ≥ 1− δ0.

Proof. By Cauchy-Schwarz inequality, we have B3 ≤ 2 ∥y − f(k)∥2 ∥v2∥2. We have

∥v2∥22 ≤
n∑

i=1

 η√

m

∑

r∈Si

∣∣∣∣
〈
∂L

∂wr
, xi

〉∣∣∣∣+
∣∣∣∣
∂L

∂br

∣∣∣∣

2

≤
n∑

i=1

η2

m
max
i∈[n]

(∣∣∣∣
〈
∂L

∂wr
, xi

〉∣∣∣∣+
∣∣∣∣
∂L

∂br

∣∣∣∣
)2

|Si|2

≤ n
η2

m

(
2

√
n

m
∥f(k)− y∥2 2mc(Rw +Rb) exp(−B2/2)

)2

= 16c2η2n2 ∥y − f(k)∥22 (Rw +Rb)
2 exp(−B2),

where the last inequality is by Lemma F.14 and Corollary F.12 which holds with

probability at least 1− δ0.

F.6.5.5 Bounding the network update

Lemma F.23.

B4 ≤ C2
2η

2n2 ∥y − f(k)∥22 exp(−B2).

for some constant C2.

Proof. Recall that the definition that Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}, i.e., the

set of neurons that activates for input xi at the t-th step of gradient descent.

∥f(k + 1)− f(k)∥22 ≤
n∑

i=1

 η√

m

∑

r:r∈Son(i,k+1)∪Son(i,k)

∣∣∣∣
〈
∂L

∂wr
, xi

〉∣∣∣∣+
∣∣∣∣
∂L

∂br

∣∣∣∣

2

≤ n
η2

m
(|Son(i, k + 1)|+ |Son(i, k)|)2max

i∈[n]

(∣∣∣∣
〈
∂L

∂wr
, xi

〉∣∣∣∣+
∣∣∣∣
∂L

∂br

∣∣∣∣
)2

≤ n
η2

m

(
C2m exp(−B2/2) ·

√
n

m
∥y − f(k)∥2

)2

≤ C2
2η

2n2 ∥y − f(k)∥22 exp(−B2).

1435

where the third inequality is by Lemma F.25 for some C2.

F.6.5.6 Putting it all together

Theorem F.24 (Convergence). Assume λ > 0. Let η ≤ λ exp(B2)

5C2
2n

2 , B ∈ [0,
√
0.5 logm]

and

m ≥ Ω̃
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Assume λ = λ0 exp(−B2/2) for some constant λ0. Then,

P
[
∀t : ∥y − f(t)∥22 ≤ (1− ηλ/4)t ∥y − f(0)∥22

]
≥ 1− δ − e−Ω(n).

Proof. From Lemma F.19, Lemma F.21, Lemma F.22 and Lemma F.23, we know

with probability at least 1− 2n2 exp(−2
3
cm(Rw +Rb) exp(−B2/2))− δ, we have

∥y − f(k + 1)∥22 ≤ ∥y − f(k)∥
2
2

(
1− 5ηλ/8 + 12ηnc(Rw +Rb) exp(−B2/2)

+C2
2η

2n2 ∥y − f(k)∥22 exp(−B2)
)
.

By Lemma F.15, we need

Dw =
8
√
n ∥y − f(0)∥2√

mλ
≤ Rw,

Db =
8
√
n ∥y − f(0)∥2√

mλ
≤ Rb.

By Lemma F.17, we have

P[∥f(0)− y∥22 = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
] ≥ 1− δ.

Let R = min{Rw, Rb}, D = max{Dw, Db}. Combine the results we have

R > Ω(λ−1m−1/2n

√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)).

Lemma F.19 requires

8cn(Rw +Rb) exp(−B2/2) ≤ λ/8

⇒ R ≤ λ exp(B2/2)

128cn
.

1436

which implies a lower bound on m

m ≥ Ω
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Lemma F.9 further requires a lower bound of m = Ω(λ−1n · log(n/δ)) which can be

ignored.

Lemma F.13 further requires R < min{1/B, 1} which implies

B <
128cn

λ exp(B2/2)
,

m ≥ Ω̃
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

From Theorem F.1 in [SYZ21] we know that λ = λ0 exp(−B2/2) for some λ0 with no

dependence on B and λ exp(B2/2) ≤ 1. Thus, by our constraint on m and B, this is

always satisfied.

Finally, to require

12ηnc(Rw +Rb) exp(−B2/2) + C2
2η

2n2 exp(−B2) ≤ ηλ/4,

we need η ≤ λ exp(B2)

5C2
2n

2 . By our choice of m,B, we have

2n2 exp(−2

3
cm(Rw +Rb) exp(−B2/2)) = e−Ω(n).

F.6.6 Bounding the number of activated neurons per iteration

First, we define the set of activated neurons at iteration t for training point xi
to be

Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}.

Lemma F.25 (Number of Activated Neurons at Initialization). Assume the choice of

m in Theorem F.24. With probability at least 1−e−Ω(n) over the random initialization,

we have

|Son(i, t)| = O(m · exp(−B2/2)),

1437

for all 0 ≤ t ≤ T and i ∈ [n]. And As a by-product,

∥Z(0)∥2F ≤ 8n exp(−B2/2).

Proof. First we bound the number of activated neuron at the initialization. We have

P[w⊤r xi ≥ B] ≤ exp(−B2/2). By Bernstein’s inequality,

P[|Son(i, 0)| ≥ m exp(−B2/2) + t] ≤ exp

(
− t2

m exp(−B2/2) + t/3

)
.

Take t = m exp(−B2/2) we have

P[|Son(i, 0)| ≥ 2m exp(−B2/2)] ≤ exp
(
−m exp(−B2/2)/4

)
.

By a union bound over i ∈ [n], we have

P[∀i ∈ [n] : |Son(i, 0)| ≤ 2m exp(−B2/2)] ≥ 1− n exp
(
−m exp(−B2/2)/4

)
.

Notice that

∥Z(0)∥2F ≤
4

m

m∑

r=1

n∑

i=1

Ir,i(0) ≤ 8n exp(−B2/2).

Lemma F.26 (Number of Activated Neurons per Iteration). Assume the parame-

ter settings in Theorem F.24. With probability at least 1 − e−Ω(n) over the random

initialization, we have

|Son(i, t)| = O(m · exp(−B2/2))

for all 0 ≤ t ≤ T and i ∈ [n].

Proof. By Corollary F.12 and Theorem F.24, we have

P[∀i ∈ [n] : |Si| ≤ 4mc exp(−B2/2)] ≥ 1− e−Ω(n).

Recall Si is the set of flipped neurons during the entire training process. Notice that

|Son(i, t)| ≤ |Son(i, 0)|+ |Si|. Thus, by Lemma F.25

P[∀i ∈ [n] : |Son(i, t)| = O(m exp(−B2/2))] ≥ 1− e−Ω(n).

1438

F.7 Bounding the Restricted Smallest Eigenvalue with Data
Separation

Theorem F.27. Let X = (x1, . . . , xn) be points in Rd with ∥xi∥2 = 1 for all i ∈ [n]

and w ∼ N(0, Id). Suppose that there exists δ ∈ [0,
√
2] such that

min
i ̸=j∈[n]

(∥xi − xj∥2 , ∥xi + xj∥2) ≥ δ.

Let B ≥ 0. Recall the limit NTK matrix H∞ defined as

H∞ij := Ew∼N(0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤xi ≥ B,w⊤xj ≥ B)

]
.

Define p0 = P[w⊤x1 ≥ B] and pij = P[w⊤xi ≥ B, w⊤xj ≥ B] for i ̸= j. Define the

(data-dependent) region R = {a ∈ Rn :
∑

i ̸=j aiajpij ≥ mini′ ̸=j′ pi′j′
∑

i ̸=j aiaj} and

let λ := min∥a∥2=1, a∈R a
⊤H∞a. Then, λ ≥ max(0, λ′) where

λ′ ≥ p0 −min
i ̸=j

pij

≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B

2/2

√
2π

)
− e−B2/(2−δ2/2)

π − arctan

(
δ
√

1−δ2/4
1−δ2/2

)

2π
.

Proof. Define ∆ := maxi ̸=j | ⟨xi, xj⟩ |. Then by our assumption,

1−∆ = 1−max
i ̸=j
| ⟨xi, xj⟩ | =

mini ̸=j(∥xi − xj∥22 , ∥xi + xj∥22)
2

≥ δ2/2

⇒ ∆ ≤ 1− δ2/2.

Further, we define

Z(w) := [x1I(w⊤x1 ≥ B), x2I(w⊤x2 ≥ B), . . . , xnI(w⊤xn ≥ B)] ∈ Rd×n.

Notice that H∞ = Ew∼N(0,I)

[
Z(w)⊤Z(w) + I(Xw ≥ B)I(Xw ≥ B)⊤

]
. We need to

lower bound

min
∥a∥2=1,a∈R

a⊤H∞a = min
∥a∥2=1,a∈R

a⊤Ew∼N(0,I)

[
Z(w)⊤Z(w)

]
a

+ a⊤Ew∼N(0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a

≥ min
∥a∥2=1,a∈R

a⊤Ew∼N(0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a.

1439

Now, for a fixed a,

a⊤Ew∼N(0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a =

n∑

i=1

a2iP[w⊤xi ≥ B] +
∑

i ̸=j

aiajP[w⊤xi ≥ B, w⊤xj ≥ B]

= p0 ∥a∥22 +
∑

i ̸=j

aiajpij,

where the last equality is by P[w⊤x1 ≥ B] = . . . = P[w⊤xn ≥ B] = p0 which is due to

spherical symmetry of standard Gaussian. Notice that maxi ̸=j pij ≤ p0. Since a ∈ R,

Ew∼N(0,I)

[
(a⊤I(Xw ≥ B))2

]
≥ (p0 −min

i ̸=j
pij) ∥a∥22 + (min

i ̸=j
pij) ∥a∥22 + (min

i ̸=j
pij)

∑

i ̸=j

aiaj

= (p0 −min
i ̸=j

pij) ∥a∥22 + (min
i ̸=j

pij)

(∑

i

ai

)2

.

Thus,

λ ≥ min
∥a∥2=1,a∈R

Ew∼N(0,I)

[
(a⊤I(Xw ≥ B))2

]

≥ min
∥a∥2=1,a∈R

(p0 −min
i ̸=j

pij) ∥a∥22 + min
∥a∥2=1,a∈R

(min
i ̸=j

pij)

(∑

i

ai

)2

≥ p0 −min
i ̸=j

pij.

Now we need to upper bound

min
i ̸=j

pij ≤ max
i ̸=j

pij.

We divide into two cases: B = 0 and B > 0. Consider two fixed examples x1, x2.

Then, let v = (I − x1x⊤1)x2/
∥∥(I − x1x⊤1)x2

∥∥ and c = | ⟨x1, x2⟩ | 1.

Case 1: B = 0. First, let us define the region A0 as

A0 =

{
(g1, g2) ∈ R2 : g1 ≥ 0, g1 ≥ −

√
1− c2
c

g2

}
.

1Here we force c to be positive. Since we are dealing with standard Gaussian, the probability is
exactly the same if c < 0 by symmetry and therefore, we force c > 0.

1440

Then,

P[w⊤x1 ≥ 0, w⊤x2 ≥ 0] = P[w⊤x1 ≥ 0, w⊤(cx1 +
√
1− c2v) ≥ 0]

= P[g1 ≥ 0, cg1 +
√
1− c2g2 ≥ 0]

= P[A0]

=
π − arctan

(√
1−c2
|c|

)

2π

≤
π − arctan

(√
1−∆2

|∆|

)

2π
,

where we define g1 := w⊤x1 and g2 := w⊤v and the second equality is by the fact

that since x1 and v are orthonormal, g1 and g2 are two independent standard Gaus-

sian random variables; the last inequality is by arctan is a monotonically increasing

function and
√
1−c2
|c| is a decreasing function in |c| and |c| ≤ ∆. Thus,

min
i ̸=j

pij ≤ max
i ̸=j

pij ≤
π − arctan

(√
1−∆2

|∆|

)

2π
.

Case 2: B > 0. First, let us define the region

A =

{
(g1, g2) ∈ R2 : g1 ≥ B, g1 ≥

B

c
−
√
1− c2
c

g2

}
.

Then, following the same steps as in case 1, we have

P[w⊤x1 ≥ B, w⊤x2 ≥ B] = P[g1 ≥ B, cg1 +
√
1− c2g2 ≥ B] = P[A].

Let B1 = B and B2 = B
√

1−c
1+c

. Further, notice that A = A0 + (B1, B2). Then,

P[A] =

∫∫

(g1,g2)∈A

1

2π
exp

{
−g

2
1 + g22
2

}
dg1 dg2

=

∫∫

(g1,g2)∈A0

1

2π
exp

{
−(g1 +B1)

2 + (g2 +B2)
2

2

}
dg1 dg2

= e−(B
2
1+B

2
2)/2

∫∫

(g1,g2)∈A0

1

2π
exp {−B1g1 −B2g2} exp

{
−g

2
1 + g22
2

}
dg1 dg2.

1441

Now, B1g1 +B2g2 = Bg1 +B
√

1−c
1+c

g2 ≥ 0 always holds if and only if g1 ≥ −
√

1−c
1+c

g2.

Define the region A+ to be

A+ =

{
(g1, g2) ∈ R2 : g1 ≥ 0, g1 ≥ −

√
1− c
1 + c

g2

}
.

Observe that
√

1− c
1 + c

≤
√
1− c2
c

=

√
(1− c)(1 + c)

c
⇔ c ≤ 1 + c.

Thus, A0 ⊂ A+. Therefore,

P[A] ≤ e−(B
2
1+B

2
2)/2

∫∫

(g1,g2)∈A0

1

2π
exp

{
−g

2
1 + g22
2

}
dg1 dg2

= e−(B
2
1+B

2
2)/2P[A0]

= e−(B
2
1+B

2
2)/2

π − arctan
(√

1−c2
|c|

)

2π

≤ e−B
2/(1+∆)

π − arctan
(√

1−∆2

|∆|

)

2π
.

Finally, we need to lower bound p0. This can be done in two ways: when B is small,

we apply Gaussian anti-concentration bound and when B is large, we apply Gaussian

tail bounds. Thus,

p0 = P[w⊤x1 ≥ B] ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B

2/2

√
2π

)
.

Combining the lower bound of p0 and upper bound on maxi ̸=j pij we have

λ ≥ p0 −min
i ̸=j

pij ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B

2/2

√
2π

)
− e−B2/(1+∆)

π − arctan
(√

1−∆2

|∆|

)

2π
.

Applying ∆ ≤ 1− δ2/2 and noticing that H∞ is positive semi-definite gives our final

result.

1442

F.8 Generalization
F.8.1 Rademacher complexity

In this section, we would like to compute the Rademacher Complexity of our

network. Rademacher complexity is often used to bound the deviation from empirical

risk and true risk (see, e.g. [SSBD14].)

Definition F.6 (Empirical Rademacher Complexity). Given n samples S, the em-

pirical Rademacher complexity of a function class F, where f : Rd → R for f ∈ F, is

defined as

RS(F) =
1

n
Eϵ

[
sup
f∈F

n∑

i=1

ϵif(xi)

]

where ϵ = (ϵ1, . . . , ϵn)
⊤ and ϵi is an i.i.d Rademacher random variable.

Theorem F.28 ([SSBD14]). Suppose the loss function ℓ(·, ·) is bounded in [0, c] and

is ρ-Lipschitz in the first argument. Then with probability at least 1− δ over sample

S of size n:

sup
f∈F

LD(f)− LS(f) ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
.

In order to get meaningful generalization bound via Rademacher complexity,

previous results, such as [ADH+19a, SY19], multiply the neural network by a scaling

factor κ to make sure the neural network output something small at the initialization,

which requires at least modifying all the previous lemmas we already established. We

avoid repeating our arguments by utilizing symmetric initialization to force the neural

network to output exactly zero for any inputs at the initialization. 2

2While preparing the manuscript, the authors notice that this can be alternatively solved by
reparameterized the neural network by f(x;W) − f(x;W0) and thus minimizing the following ob-
jective L = 1

2

∑n
i=1(f(xi;W)− f(xi;W0)− yi)2. The corresponding generalization is the same since

Rademacher complexity is invariant to translation. However, since the symmetric initialization is
widely adopted in theory literature, we go with symmetric initialization here.

1443

Definition F.7 (Symmetric Initialization). For a one-hidden layer neural network

with 2m neurons, the network is initialized as the following

1. For r ∈ [m], initialize wr ∼ N(0, I) and ar ∼ Uniform({−1, 1}).

2. For r ∈ {m+ 1, . . . , 2m}, let wr = wr−m and ar = −ar−m.

It is not hard to see that all of our previously established lemmas hold including

expectation and concentration. The only effect this symmetric initialization brings is

to worse the concentration by a constant factor of 2 which can be easily addressed.

For detailed analysis, see [MOSW22].

In order to state our final theorem, we need to use Definition F.2. Now we can

state our theorem for generalization.

Theorem F.29. Fix a failure probability δ ∈ (0, 1) and an accuracy parameter ϵ ∈
(0, 1). Suppose the training data S = {(xi, yi)}ni=1 are i.i.d. samples from a (λ, δ, n)-

non-degenerate distribution D. Assume the settings in Theorem F.24 except now we

let

m ≥ Ω̃
(
λ−4n6

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Consider any loss function ℓ : R×R→ [0, 1] that is 1-Lipschitz in its first argument.

Then with probability at least 1 − 2δ − e−Ω(n) over the symmetric initialization of

W (0) ∈ Rm×d and a ∈ Rm and the training samples, the two layer neural network

f(W (k), b(k), a) trained by gradient descent for k ≥ Ω(1
ηλ

log n log(1/δ)
ϵ

) iterations has

population loss LD(f) = E(x,y)∼D[ℓ(f(x), y)] upper bounded as

LD(f(W (k), b(k), a)) ≤
√
y⊤(H∞)−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
.

Proof. First, we need to bound LS. After training, we have ∥f(k)− y∥2 ≤ ϵ < 1, and

1444

thus

LS(f(W (k), b(k), a)) =
1

n

n∑

i=1

[ℓ(fi(k), yi)− ℓ(yi, yi)]

≤ 1

n

n∑

i=1

|fi(k)− yi|

≤ 1√
n
∥f(k)− y∥2

≤ 1√
n
.

By Theorem F.28, we know that

LD(f(W (k), b(k), a)) ≤ LS(f(W (k), b(k), a)) + 2RS(F) + Õ(n−1/2)

≤ 2RS(F) + Õ(n−1/2).

Then, by Theorem F.30, we get that for sufficiently large m,

RS(F) ≤
√
y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)

≤
√
y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
,

where the last step follows from B > 0.

Therefore, we conclude that:

LD(f(W (k), b(k), a)) ≤
√
y⊤(H∞)−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
.

Theorem F.30. Fix a failure probability δ ∈ (0, 1). Suppose the training data S =

{(xi, yi)}ni=1 are i.i.d. samples from a (λ, δ, n)-non-degenerate distribution D. Assume

the settings in Theorem F.24 except now we let

m ≥ Ω̃
(
λ−6n6

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

1445

Denote the set of one-hidden-layer neural networks trained by gradient descent as F.

Then with probability at least 1− 2δ − e−Ω(n) over the randomness in the symmetric

initialization and the training data, the set F has empirical Rademacher complexity

bounded as

RS(F) ≤
√
y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)
.

Note that the only extra requirement we make on m is the (n/λ)6 dependence

instead of (n/λ)4 which is needed for convergence. The dependence of m on n is

significantly better than previous work [SYZ21] where the dependence is n14. We

take advantage of our initialization and new analysis to improve the dependence on

n.

Proof. Let Rw (Rb) denotes the maximum distance moved any any neuron weight

(bias), the same role as Dw (Db) in Lemma F.15. From Lemma F.15 and Lemma F.17,

and we have

max(Rw, Rb) ≤ O

n
√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

√
mλ

 .

The rest of the proof depends on the results from Lemma F.31 and Lemma F.33. Let

R := ∥[W, b](k)− [W, b](0)∥F . By Lemma F.31 we have

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2)

≤ R

√
8 exp(−B2/2)

n
+O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)
.

Lemma F.33 gives that

R ≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√

(Rw +Rb) exp(−B2/2)

λ

)

+
n

λ2
·O
(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

1446

Combining the above results and using the choice of m,R,B in Theorem F.24 gives

us

R(F) ≤
√
y⊤(H∞)−1y · 8 exp(−B2/2)

n
+O

(√
n exp(−B2/2)

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(√
n(Rw +Rb)

λ exp(B2/2)

)
+

√
n

λ2
·O
(
exp(−B2/2)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−3B2/4)

)

+O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)
.

Now, we analyze the terms one by one by plugging in the bound of m and

Rw, Rb and show that they can be bounded by Õ(exp(−B2/4)/n1/2). For the second

term, we have

O

(√
n exp(−B2/2)

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

= O

(√
λ exp(−B2/8) log1/4(n/δ)

n

)
.

For the third term, we have

O

(√
n(Rw +Rb)

λ exp(B2/2)

)
= O

(√
n

λ exp(B2/2)

√
n(1 + (exp(−B2/2) + 1/m) log3(2mn/δ))1/4

m1/4λ1/2

)

= O

(
n

exp(B2/2)n6/4 exp(−B2/4)

)

= O

(
exp(−B2/4)

n1/2

)
.

For the fourth term, we have
√
n

λ2
·O
(
exp(−B2/2)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−3B2/4)

)

= O

(
λ
√

log(n/δ)

n2.5

)
+O

(
exp(−B2/4)

n1.5

)
.

For the last term, we have

O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)

= O

λ
√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

n

 .

1447

Recall our discussion on λ in Section F.3.4 that λ = λ0 exp(−B2/2) ≤ 1 for some λ0
independent of B. Putting them together, we get the desired upper bound for R(F),

and the theorem is then proved.

Lemma F.31. Assume the choice of Rw, Rb,m in Theorem F.24. Given R > 0, with

probability at least 1− e−Ω(n) over the random initialization of W (0), a, the following

function class

FRw,Rb,R = {f(W,a, b) : ∥W −W (0)∥2,∞ ≤ Rw, ∥b− b(0)∥∞ ≤ Rb,∥∥∥ ⃗[W, b]− [W (0), b(0)]
∥∥∥ ≤ R}

has empirical Rademacher complexity bounded as

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2).

Proof. We need to upper bound RS(FRw,Rb,R). Define the events

Ar,i = {|wr(0)⊤xi − br(0)| ≤ Rw +Rb}, i ∈ [n], r ∈ [m]

1448

and a shorthand I(wr(0)⊤xi −B ≥ 0) = Ir,i(0). Then,

n∑

i=1

ϵi

m∑

r=1

arσ(w
⊤
r xi − br)−

n∑

i=1

ϵi

m∑

r=1

arIr,i(0)(w⊤r xi − br)

=
n∑

i=1

m∑

r=1

ϵiar
(
σ(w⊤r xi − br)− Ir,i(0)(w⊤r xi − br)

)

=
n∑

i=1

m∑

r=1

I(Ar,i)ϵiar
(
σ(w⊤r xi − br)− Ir,i(0)(w⊤r xi − br)

)

=
n∑

i=1

m∑

r=1

I(Ar,i)ϵiar
(
σ(w⊤r xi − br)− Ir,i(0)(wr(0)⊤xi − br(0))

− Ir,i(0)((wr − wr(0))⊤xi − (br − br(0)))
)

=
n∑

i=1

m∑

r=1

I(Ar,i)ϵiar
(
σ(w⊤r xi − br)− σ(wr(0)⊤xi − br(0))

− Ir,i(0)((wr − wr(0))⊤xi − (br − br(0)))
)

≤
n∑

i=1

m∑

r=1

I(Ar,i)2(Rw +Rb),

where the second equality is due to the fact that σ(w⊤r xi − br) = Ir,i(0)(w⊤r xi − br) if

1449

r /∈ Ar,i. Thus, the Rademacher complexity can be bounded as

RS(FRw,Rb,R)

=
1

n
Eϵ

 sup
∥W−W (0)∥2,∞≤Rw, ∥b−b(0)∥∞≤Rb,

∥ ⃗[W,b]−[W (0),b(0)]∥≤R

n∑

i=1

ϵi

m∑

r=1

ar√
m
σ(w⊤r xi − br)

≤ 1

n
Eϵ

 sup
∥W−W (0)∥2,∞≤Rw, ∥b−b(0)∥∞≤Rb,

∥ ⃗[W,b]−[W (0),b(0)]∥≤R

n∑

i=1

ϵi

m∑

r=1

ar√
m
Ir,i(0)(w⊤r xi − br)

+

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i)

=
1

n
Eϵ

 sup
∥ ⃗[W,b]−[W (0),b(0)]∥≤R

⃗[W, b]
⊤
Z(0)ϵ

+

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i)

=
1

n
Eϵ

 sup
∥ ⃗[W,b]−[W (0),b(0)]∥≤R

⃗[W, b]− [W (0), b(0)]
⊤
Z(0)ϵ

+

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i)

≤ 1

n
Eϵ[R ∥Z(0)ϵ∥2] +

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i)

≤ R

n

√
Eϵ[∥Z(0)ϵ∥22] +

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i)

=
R

n
∥Z(0)∥F +

2(Rw +Rb)

n
√
m

n∑

i=1

m∑

r=1

I(Ar,i),

where we recall the definition of the matrix

Z(0) =
1√
m

I1,1(0)a1[x⊤1 ,−1]⊤ . . . I1,n(0)a1[x⊤n ,−1]⊤

...
...

Im,1(0)am[x⊤1 ,−1]⊤ . . . Im,n(0)am[x⊤n ,−1]⊤

 ∈ Rm(d+1)×n.

By Lemma F.25, we have ∥Z(0)∥F ≤
√

8n exp(−B2/2) and by Corollary F.12, we

have

P

[
∀i ∈ [n] :

m∑

r=1

I(Ar,i) ≤ 2mc(Rw +Rb) exp(−B2/2)

]
≥ 1− e−Ω(n).

1450

Thus, with probability at least 1− e−Ω(n), we have

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2).

F.8.2 Analysis of radius

Theorem F.32. Assume the parameter settings in Theorem F.24. With probability

at least 1− δ − e−Ω(n) over the initialization we have

f(k)− y = −(I − ηH∞)ky ± e(k),

where

∥e(k)∥2 = k(1− ηλ/4)(k−1)/2ηn3/2 ·O
(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

Proof. Before we start, we assume all the events needed in Theorem F.24 succeed,

which happens with probability at least 1− δ − e−Ω(n).

Recall the no-flipping set Si in Definition F.4. We have

fi(k + 1)− fi(k) =
1√
m

m∑

r=1

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)⊤xi − br(k))]

=
1√
m

∑

r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)⊤xi − br(k))]

+
1√
m

∑

r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)⊤xi − br(k))]

︸ ︷︷ ︸
ϵi(k)

.

(F.5)

1451

Now, to upper bound the second term ϵi(k),

|ϵi(k)| =

∣∣∣∣∣∣
1√
m

∑

r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)⊤xi − br(k))]

∣∣∣∣∣∣

≤ 1√
m

∑

r∈Si

|wr(k + 1)⊤xi − br(k + 1)− (wr(k)
⊤xi − br(k))|

≤ 1√
m

∑

r∈Si

∥wr(k + 1)− wr(k)∥2 + |br(k + 1)− br(k)|

=
1√
m

∑

r∈Si

∥∥∥∥∥
η√
m
ar

n∑

j=1

(fj(k)− yj)Ir,j(k)xj
∥∥∥∥∥
2

+

∣∣∣∣∣
η√
m
ar

n∑

j=1

(fj(k)− yj)Ir,j(k)
∣∣∣∣∣

≤ 2η

m

∑

r∈Si

n∑

j=1

|fj(k)− yj|

≤ 2η
√
n|Si|
m

∥f(k)− y∥2

⇒ ∥ϵ∥2 =

√√√√
n∑

i=1

4η2n|Si|2
m2

∥f(k)− y∥22 ≤ ηnO((Rw +Rb) exp(−B2/2)) ∥f(k)− y∥2

(F.6)

1452

where we apply Corollary F.12 in the last inequality. To bound the first term,

1√
m

∑

r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)⊤xi − br(k))]

=
1√
m

∑

r∈Si

arIr,i(k)
(
(wr(k + 1)− wr(k))⊤xi − (br(k + 1)− br(k))

)

=
1√
m

∑

r∈Si

arIr,i(k)

(
− η√

m
ar

n∑

j=1

(fj(k)− yj)Ir,j(k)xj
)⊤

xi −
η√
m
ar

n∑

j=1

(fj(k)− yj)Ir,j(k)

=
1√
m

∑

r∈Si

arIr,i(k)

(
− η√

m
ar

n∑

j=1

(fj(k)− yj)Ir,j(k)(x⊤j xi + 1)

)

= −η
n∑

j=1

(fj(k)− yj)
1

m

∑

r∈Si

Ir,i(k)Ir,j(k)(x⊤j xi + 1)

= −η
n∑

j=1

(fj(k)− yj)Hij(k) + η
n∑

j=1

(fj(k)− yj)
1

m

∑

r∈Si

Ir,i(k)Ir,j(k)(x⊤j xi + 1)

︸ ︷︷ ︸
ϵ′i(k)

(F.7)

where we can upper bound |ϵ′i(k)| as

|ϵ′i(k)| ≤
2η

m
|Si|

n∑

j=1

|fj(k)− yj| ≤
2η
√
n|Si|
m

∥f(k)− y∥2

⇒ ∥ϵ′∥2 =

√√√√
n∑

i=1

4η2n|Si|2
m2

∥f(k)− y∥22 ≤ ηnO((Rw +Rb) exp(−B2/2)) ∥f(k)− y∥2 .

(F.8)

Combining Equation (F.5), Equation (F.6), Equation (F.7) and Equation (F.8), we

1453

have

fi(k + 1)− fi(k) = −η
n∑

j=1

(fj(k)− yj)Hij(k) + ϵi(k) + ϵ′i(k)

⇒ f(k + 1)− f(k) = −ηH(k)(f(k)− y) + ϵ(k) + ϵ′(k)

= −ηH∞(f(k)− y) + η(H∞ −H(k))(f(k)− y) + ϵ(k) + ϵ′(k)︸ ︷︷ ︸
ζ(k)

⇒ f(k)− y = (I − ηH∞)k(f(0)− y) +
k−1∑

t=0

(I − ηH∞)tζ(k − 1− t)

= −(I − ηH∞)ky + (I − ηH∞)kf(0) +
k−1∑

t=0

(I − ηH∞)tζ(k − 1− t)
︸ ︷︷ ︸

e(k)

.

Now the rest of the proof bounds the magnitude of e(k). From Lemma F.10 and

Lemma F.13, we have

∥H∞ −H(k)∥2 ≤ ∥H(0)−H∞∥2 + ∥H(0)−H(k)∥2

= O

(
n exp(−B2/4)

√
log(n2/δ)

m

)
+O(n(Rw +Rb) exp(−B2/2)).

Thus, we can bound ζ(k) as

∥ζ(k)∥2 ≤ η ∥H∞ −H(k)∥2 ∥f(k)− y∥2 + ∥ϵ(k)∥2 + ∥ϵ′(k)∥2

= O

(
ηn

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

))
∥f(k)− y∥2 .

Notice that ∥H∞∥2 ≤ Tr(H∞) ≤ n since H∞ is symmetric. By Theorem F.24, we

pick η = O(λ/n2)≪ 1/ ∥H∞∥2 and, with probability at least 1− δ − e−Ω(n) over the

random initialization, we have ∥f(k)− y∥2 ≤ (1− ηλ/4)k/2 ∥f(0)− y∥2.

Since we are using symmetric initialization, we have (I − ηH∞)kf(0) = 0.

1454

Thus,

∥e(k)∥2 =
∥∥∥∥∥
k−1∑

t=0

(I − ηH∞)tζ(k − 1− t)
∥∥∥∥∥
2

≤
k−1∑

t=0

∥I − ηH∞∥t2 ∥ζ(k − 1− t)∥2

≤
k−1∑

t=0

(1− ηλ)tηnO
(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)

· ∥f(k − 1− t)− y∥2

≤
k−1∑

t=0

(1− ηλ)tηnO
(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)

· (1− ηλ/4)(k−1−t)/2 ∥f(0)− y∥2

≤ k(1− ηλ/4)(k−1)/2ηnO
(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)

· ∥f(0)− y∥2

≤ k(1− ηλ/4)(k−1)/2ηn3/2O

((
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)

·
(√

1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

))

= k(1− ηλ/8)k−1ηn3/2O

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

Lemma F.33. Assume the parameter settings in Theorem F.24. Then with proba-

bility at least 1− δ − e−Ω(n) over the random initialization, we have for all k ≥ 0,

∥[W, b](k)− [W, b](0)∥F ≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)

+
n

λ2
·O
(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)

1455

where R = Rw +Rb.

Proof. Before we start, we assume all the events needed in Theorem F.24 succeed,

which happens with probability at least 1− δ − e−Ω(n).

⃗[W, b](K)− ⃗[W, b](0)

=
K−1∑

k=0

⃗[W, b](k + 1)− ⃗[W, b](k)

= −
K−1∑

k=0

Z(k)(u(k)− y)

=
K−1∑

k=0

ηZ(k)((I − ηH∞)ky − e(k))

=
K−1∑

k=0

ηZ(k)(I − ηH∞)ky −
K−1∑

k=0

ηZ(k)e(k)

=
K−1∑

k=0

ηZ(0)(I − ηH∞)ky
︸ ︷︷ ︸

T1

+
K−1∑

k=0

η(Z(k)− Z(0))(I − ηH∞)ky
︸ ︷︷ ︸

T2

−
K−1∑

k=0

ηZ(k)e(k)

︸ ︷︷ ︸
T3

.

(F.9)

Now, by Lemma F.13, we have ∥Z(k)− Z(0)∥F ≤ O(
√
nR exp(−B2/2)) which im-

plies

∥T2∥2 =
∥∥∥∥∥
K−1∑

k=0

η(Z(k)− Z(0))(I − ηH∞)ky
∥∥∥∥∥
2

≤
K−1∑

k=0

η ·O(
√
nR exp(−B2/2)) ∥I − ηH∞∥k2 ∥y∥2

≤ η ·O(
√
nR exp(−B2/2))

K−1∑

k=0

(1− ηλ)k√n

= O

(
n
√
R exp(−B2/2)

λ

)
. (F.10)

1456

By ∥Z(k)∥2 ≤ ∥Z(k)∥F ≤
√
2n, we get

∥T3∥2 =
∥∥∥∥∥
K−1∑

k=0

ηZ(k)e(k)

∥∥∥∥∥
2

≤
K−1∑

k=0

η
√
2n

(
k(1− ηλ/8)k−1ηn3/2O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

))

=
n

λ2
·O
(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)
. (F.11)

Define T = η
∑K−1

k=0 (I − ηH∞)k. By Lemma F.10, we know ∥H(0)−H∞∥2 ≤
O(n exp(−B2/4)

√
log(n/δ)

m
) and this implies

∥T1∥22 =
∥∥∥∥∥
K−1∑

k=0

ηZ(0)(I − ηH∞)ky
∥∥∥∥∥

2

2

= ∥Z(0)Ty∥22
= y⊤TZ(0)⊤Z(0)Ty

= y⊤TH(0)Ty

≤ y⊤TH∞Ty + ∥H(0)−H∞∥2 ∥T∥
2
2 ∥y∥

2
2

≤ y⊤TH∞Ty +O

(
n exp(−B2/4)

√
log(n/δ)

m

)(
η
K−1∑

k=0

(1− ηλ)k
)2

n

= y⊤TH∞Ty +O

(
n2 exp(−B2/4)

λ2

√
log(n/δ)

m

)
.

Let H∞ = UΣU⊤ be the eigendecomposition. Then

T = U

(
η

K−1∑

k=0

(I − ηΣ)k
)
U⊤ = U((I − (I − ηΣ)K)Σ−1)U⊤

⇒ TH∞T = U((I − (I − ηΣ)K)Σ−1)2ΣU⊤ = U(I − (I − ηΣ)K)2Σ−1U⊤ ⪯ UΣ−1U⊤ = (H∞)−1.

1457

Thus,

∥T1∥22 =
∥∥∥∥∥
K−1∑

k=0

ηZ(0)(I − ηH∞)ky
∥∥∥∥∥
2

≤

√√√√y⊤(H∞)−1y +O

(
n2 exp(−B2/4)

λ2

√
log(n/δ)

m

)

≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)
. (F.12)

Finally, plugging in the bounds in Equation (F.9), Equation (F.12), Equation (F.10),

and Equation (F.11), we have

∥[W, b](K)− [W, b](0)∥F
=
∥∥∥ ⃗[W, b](K)− ⃗[W, b](0)

∥∥∥
2

≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)

+
n

λ2
·O
(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)
.

F.9 The Benefit of Constant Initialization of Biases

In short, the benefit of constant initialization of biases lies in inducing sparsity

in activation and thus reducing the per step training cost. This is the main motivation

of our work on studying sparsity from a deep learning theory perspective. Since our

convergence shows that sparsity doesn’t change convergence rate, the total training

cost is also reduced.

To address the width’s dependence on B, our argument goes like follows. In

practice, people set up neural network models by first picking a neural network of

1458

some pre-chosen size and then choose other hyper-parameters such as learning rate,

initialization scale, etc. In our case, the hyper-parameter is the bias initialization.

Thus, the network width is picked before B. Let’s say we want to apply our theoretical

result to guide our practice. Since we usually don’t know the exact data separation

and the minimum eigenvalue of the NTK, we don’t have a good estimate on the exact

width needed for the network to converge and generalize. We may pick a network

with width that is much larger than needed (e.g. we pick a network of width Ω(n12)

whereas only Ω(n4) is needed; this is possible because the smallest eigenvalue of NTK

can range from [Ω(1/n2), O(1)]). Also, it is an empirical observation that the neural

networks used in practice are very overparameterized and there is always room for

sparsification. If the network width is very large, then per step gradient descent is very

costly since the cost scales linearly with width and can be improved to scale linearly

with the number of active neurons if done smartly. If the bias is initialized to zero (as

people usually do in practice), then the number of active neurons is O(m). However,

since we can sparsify the neural network activation by non-zero bias initialization,

the number of active neurons can scale sub-linearly in m. Thus, if the neural network

width we choose at the beginning is much larger than needed, then we are indeed able

to obtain total training cost reduction by this initialization. The above is an informal

description of the result proven in [SYZ21] and the message is sparsity can help reduce

the per step training cost. If the network width is pre-chosen, then the lower bound

on network width m ≥ Ω̃(λ−40 n4 exp(B2)) in Theorem 3.1 can be translated into an

upper bound on bias initialization: B ≤ Õ(

√
log

λ40m

n4) if m ≥ Ω̃(λ−40 n4). This would

be a more appropriate interpretation of our result. Note that this is different from

how Theorem 3.1 is presented: first pick B and then choose m; since m is picked

later, m can always satisfy B ≤ √0.5 logm and m ≥ Ω̃(λ−40 n4 exp(B2)). Of course,

we don’t know the best (largest) possible B that works but as long as we can get

some B to work, we can get computational gain from sparsity.

In summary, sparsity can reduce the per step training cost since we don’t know

the exact width needed for the network to converge and generalize. Our result should

1459

be interpreted as an upper bound on B since the width is always chosen before B in

practice.

1460

Appendix G: Omitted Materials from Chapter 18

G.1 Cryptographic Primitives
G.1.1 Public-key quantum money

Definition G.1 (Public Key Quantum Money). A public-key (publicly-verifiable)

quantum money consists of the following algorithms:

• KeyGen(1λ) : takes as input a security parameter λ, and generates a key pair

(sk, pk).

• GenNote(sk) : takes a secret key sk and generates a quantum banknote state |$⟩.

• Ver(pk, |$′⟩) : takes a public key pk, and a claimed money state |$′⟩, and outputs

either 1 for accepting or 0 for rejecting.

A secure public-key quantum money should satisfy the following properties:

Verification Correctness: there exists a negligible function negl(·) such that the

following holds for any λ ∈ N,

Pr
(sk,pk)←KeyGen(1λ)

[Ver(pk,GenNote(sk)) = 1] ≥ 1− negl(λ)

Unclonable Security: Suppose a QPT adversary is given q = poly(λ) number

of valid banknotes {ρi}i∈[q] and then generates q′ = q + 1 banknotes {ρ′j}j∈[q′]
where ρ′j are potentially entangled, there exists a negligible function negl(·), for

all λ ∈ N,

Pr
(sk,pk)←KeyGen(1λ)

[
∀i ∈ [q′],Ver(pk, ρ′j) = 1 : {ρ′j} ← A(1λ, {ρi}

]
≤ negl(λ)

Remark G.1. In rest of the chapter, q is set to be 1 for simplicity, and the scheme

satisfies unclonable security if A cannot produce two banknotes that pass verification.

1461

[AC12] shows that any public-key quantum money scheme that satisfies security when

q = 1, can be generalized to a scheme that is secure when q = poly(λ), using quantum-

secure digital signatures.

A non-perturb property is also required. That is, one can verify a quantum

banknote polynomially many times and the banknote is still a valid banknote. Since

Ver is almost a deterministic function, by Gentle Measurement Lemma (Lemma 18.1),

the above definition implies the non-perturb property.

In some settings, instead of outputting 0/1, Ver is required to output either

⊥ which indicates the verification fails, or a serial number s ∈ Sλ if it passes the

verification. In this case, the scheme should satisfy the following correctness (unique

serial number property) and unclonable security [Zha19]:

Unique Serial Number: For a money state |$⟩, letH∞(|$⟩) = − logmins Pr[Ver(|$⟩) =
s]. We say a quantum scheme has unique serial number property, if E[H∞(|$⟩)] is
negligible for all λ, (sk, pk)← KeyGen(1λ) and |$⟩ is sampled from GenNote(sk).

Unclonable Security: Consider the following game with a challenger and an ad-

versary,

1. The challenger runs (sk, pk)← KeyGen(1λ) and |$⟩ ← GenNote(sk), it then

runs Ver to get a serial number s.

2. A is given the public key pk, the banknote |$⟩ and the serial number s.

3. A produces σ∗ (which contains two separate registers, but they may be

entangled) and denotes σ1 = Tr2[σ
∗] and σ2 = Tr1[σ

∗].

4. A wins if and only if Ver(σ1) = Ver(σ2) = s.

We say a public key quantum money scheme is secure, if for all QPT A, it wins

the above game with negligible probability in λ.

1462

G.1.2 Obfuscation

Definition G.2 (Virtual Black-Box Obfuscation, [BGI+01]). An obfuscator O (with

auxiliary input) for a collection of circuits C =
⋃
λ∈N Cλ is a (worst-case) VBB obfus-

cator if it satisfies:

• Functionality-Preserving: For every C ∈ C, every input x, Pr[O(C)(x) =

C(x)] = 1.

• Virtual Black-Box: For every poly-size adversary A, there exists a poly-size

simulator S, such that for every λ ∈ N, auxiliary input aux ∈ {0, 1}poly(λ), and

every predicate π : Cλ → {0, 1}, and every C ∈ Cλ:
∣∣∣∣PrA,O

[A(O(C), aux) = π(C)]− Pr
S
[SC(1λ, aux)) = π(C)]

∣∣∣∣ ≤ negl(λ)

where the probability is over C ← Cλ, and the randomness of the algorithms

O,A and S.

G.2 Missing Details For Threshold Implementation
G.2.1 Proof of Theorem 18.6

Theorem G.1 (Theorem 18.6, restated). For any ϵ, δ, γ,P, D, the algorithm of mea-

surement ATIϵ,δP,D,γ that satisfies the followings:

• For all quantum state ρ, Tr[ATIϵ,δP,D,γ−ϵ · ρ] ≥ Tr[TIγ(PD) · ρ]− δ.

• By symmetry, for all quantum state ρ, Tr[TIγ−ϵ(PD) · ρ] ≥ Tr[ATIϵ,δP,D,γ · ρ]− δ.

• For all quantum state ρ, let ρ′ be the collapsed state after applying ATIϵ,δP,D,γ on

ρ. Then, Tr[TIγ−2ϵ(PD) · ρ′] ≥ 1− 2δ.

• The expected running time is the same as APIϵ,δP,D.

We give the following fact before proving the theorem.

1463

Fact G.2. Let D0, D1 be two real-valued probability distributions with shift distance

∆ϵ
Shift = δ. Then, we have

Pr[D0 ≥ x− ϵ] ≥ Pr[D1 > x]− δ, and

Pr[D1 ≥ x− ϵ] ≥ Pr[D0 > x]− δ

Proof. We prove the first inequality. By the definition of shift distance, we have

Pr[D0 ≤ x− ϵ] ≤ Pr[D1 ≤ x] + δ.

Then, Pr[D0 ≥ x− ϵ] = 1− Pr[D0 ≤ x− ϵ] ≥ 1− Pr[D1 ≤ x]− δ = Pr[D1 ≥ x]− δ.
The second inequality can be proved in a symmetric way.

Now, we prove the Theorem 18.6 in below.

Proof. By Theorem 18.5, we know that there exists an algorithm APIϵ,δP,D that approx-

imates the measurement of ProjImp(PD), i.e.,

∆ϵ
Shift(API

ϵ,δ
P,D,ProjImp(PD)) ≤ δ.

In particular, for any pure quantum state |ψ⟩, letDA be the distribution of APIϵ,δP,D(|ψ⟩)
and DP be the distribution of ProjImp(PD)(|ψ⟩).

Then, by Fact G.2, we have

Pr[DA ≥ γ − ϵ] ≥ Pr[DP ≥ γ]− δ,

Hence, by the definition of threshold implementation (Definition 18.9) and the

construction of the algorithm ATIϵ,δP,D,γ, we can get

Tr
[
ATIϵ,δP,D,γ−ϵ |ψ⟩ ⟨ψ|

]
≥ Tr

[
TIγ(PD) |ψ⟩ ⟨ψ|

]
− δ.

Note that mixed state is just a convex combination of pure states. Hence, by

the linearity of trace, for any mixed state ρ, we have

Tr
[
ATIϵ,δP,D,γ−ϵ · ρ

]
≥ Tr

[
TIγ(PD) · ρ

]
− δ,

1464

which proves the first bullet. The second bullet follows the same idea by symmetry.

For the third bullet, notice that the measurement algorithms ATIϵ,δP,D,γ and

APIϵ,δP,D do the same thing to the quantum state. So, ρ′ is also the collapsed state after

the measurement of APIϵ,δP,D(ρ).

Since we assume that the outcome of ATIϵ,δP,D,γ(ρ) is 0, it implies the corre-

sponding outcome of APIϵ,δP,D(ρ) is at least γ.

By Theorem 18.5, APIϵ,δP,D is (ϵ, δ)-almost projective, which means that if we

apply APIϵ,δP,D (again) to ρ′, the outcome satisfies

Pr[APIϵ,δP,D(ρ
′) < γ − ϵ] < δ.

Theorem 18.5 also provides that the shift distance between ProjImp and API is small,

which means

Pr[ProjImp(PD)(ρ
′) ≤ γ − 2ϵ] ≤ Pr[APIϵ,δP,D(ρ

′) < γ − 2ϵ+ ϵ] + δ ≤ 2δ.

Hence,

Tr[TIγ−2ϵ · ρ′] = 1− Pr[ProjImp(PD)(ρ
′) ≤ γ − 2ϵ] ≥ 1− 2δ.

The third bullet easily follows from the construction.

G.2.2 Proof of Lemma 18.7

Lemma G.3 (Lemma 18.7, restated). Let P1 and P2 be two collections of projective

measurements and D1 and D2 be any probability distributions defined on the index

set of P1 and P2 respectively. For any 0 < ϵ, δ, γ < 1, the algorithms ATIϵ,δP1,D1,γ
and

ATIϵ,δP2,D2,γ
satisfy the followings:

• For any bipartite (possibly entangled, mixed) quantum state ρ ∈HL ⊗HR,

Tr
[(
ATIϵ,δP1,D1,γ−ϵ ⊗ ATIϵ,δP2,D2,γ−ϵ

)
ρ
]
≥ Tr

[(
TIγ(PD1)⊗ TIγ(PD2)

)
ρ
]
− 2δ.

1465

• For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed state

after applying ATIϵ,δP1,D1,γ
⊗ ATIϵ,δP2,D2,γ

on ρ (and normalized). Then,

Tr
[(
TIγ−2ϵ(PD1)⊗ TIγ−2ϵ(PD2)

)
ρ′
]
≥ 1− 4δ.

Here PDi
stands for the mixture of projective measurement Pi relative to Di (see

Definition 18.7).

Proof. We use the hybrid argument to show that ATIϵ,δP1,D1,γ−ϵ ⊗ ATIϵ,δP2,D2,γ−ϵ approxi-

mates TIγ(PD1)⊗ TIγ(PD2).

For brevity, let ATI1 denote ATIϵ,δP1,D1,γ−ϵ and ATI2 denote ATIϵ,δP2,D2,γ−ϵ. Simi-

larly, let TI1 denote TIγ(PD1) and TI2 denote TIγ(PD2).

We first show that,

Tr[(TI1 ⊗ TI2)ρ] ≤ Tr[(TI1 ⊗ ATI2)ρ] + δ. (G.1)

Note that ρ is a bipartite quantum state in HL ⊗HR. So, we can consider TI1 ⊗ TI2

as a measurement performed by two parties L and R. In this way, we can write the

trace as the probability that L gets outcome 0 and R gets outcome 0:

Tr[(TI1 ⊗ TI2)ρ] = Pr[L← 0 ∧ R← 0].

We can see that from TI1⊗TI2 to TI1⊗ATI2, L performs the same measurement.

Hence, we can condition on the event that L gets outcome 0 and let ρ1 be the

remaining mixed state that traced out the L-part. Then, we get that

Pr[L← 0 ∧R← 0] = Pr[L← 0] · Pr[R← 0|L← 0]

= Pr[L← 0] · Tr[TI2 · ρ1]

≤ Pr[L← 0] · (Tr[ATI2 · ρ1] + δ)

≤ Tr[(TI1 ⊗ ATI2)ρ] + δ,

1466

where the first inequality follows from Theorem 18.6 and the last step follows from

Pr[L← 0] ≤ 1.

The next step is to show that:

Tr[(TI1 ⊗ ATI2)ρ] ≤ Tr[(ATI1 ⊗ ATI2)ρ] + δ. (G.2)

In this case, R performs the same measurement. We can condition on the

event that R gets outcome 0 and let ρ2 be the remaining mixed state traced out the

R-part.

Hence, by a similar argument, we get that

Tr[(TI1 ⊗ ATI2)ρ] = Pr[L← 0 ∧ R← 0]

= Pr[R← 0] · Pr[L← 0|R← 0]

= Pr[R← 0] · Tr[TI1 · ρ2]

≤ Pr[R← 0] · (Tr[ATI1 · ρ2] + δ)

≤ Tr[(ATI1 ⊗ ATI2)ρ] + δ.

Combining the Eq. (G.1) and Eq. (G.2) proves the first bullet of the lemma:

Tr[(TI1 ⊗ TI2)ρ] ≤ Tr[(TI1 ⊗ ATI2)ρ] + δ

≤ Tr[(ATI1 ⊗ ATI2)ρ] + 2δ.

For the second part of the lemma, the trace can also be written as

Tr
[(
TIγ−2ϵ(PD1)⊗ TIγ−2ϵ(PD2)

)
ρ′
]
= Pr[L← 0 ∧ R← 0]

= Pr[L← 0] · Pr[R← 0|L← 0],

where L and R are now performing measurements on ρ′.

We first rewrite the term Pr[L← 0] as

Pr[L← 0] = Tr[(TIγ−2ϵ(PD1)⊗ I)ρ′].

We can see that this measure process is equivalent to the following process:

1467

1. R first performs the measurement ATIϵ,δP2,D2,γ
on the R-part of ρ and gets a state

ρ1 such that TrL[ρ1] = TrL[ρ
′].

2. L measures ATIϵ,δP1,D1,γ
on TrR[ρ1] and get the collapsed state ρ2 such that ρ2 =

TrR[ρ
′].

3. L measures TIγ−2ϵ(PD1) on ρ2.

Hence, we have

Tr[(TIγ−2ϵ(PD1)⊗ I)ρ′] = Tr[TIγ−2ϵ(PD1) · ρ2],

By Theorem 18.6 (the third bullet),

Tr[TIγ−2ϵ(PD1) · ρ2] ≥ 1− 2δ.

Hence, we get that Pr[L← 0] ≥ 1− 2δ.

For the second term Pr[R← 0|L← 0], it can be written as

Pr[R← 0|L← 0] = Tr[(I⊗ TIγ−2ϵ(PD2)) · ρ3] = Tr[TIγ−2ϵ(PD2) · ρ4],

where ρ3 is the collapsed state conditioned on the outcome of L being 0 and ρ4 =

TrL[ρ3].

This measure process is equivalent to the followings:

1. L first performs two consecutive measurements ATIϵ,δP1,D1,γ
and TIγ−2ϵ(PD1) on

the L-part of ρ, and gets the collapsed state ρ′′ such that TrR[ρ
′′] = TrR[ρ3].

2. R measures ATIϵ,δP2,D2,γ
on TrL[ρ

′′] and gets ρ3.

3. R measures TIγ−2ϵ(PD2) on ρ4.

By Theorem 18.6 again, we have

Pr[R← 0|L← 0] = Tr[TIγ−2ϵ(PD2) · ρ4] ≥ 1− 2δ.

1468

Therefore, we have

Tr
[(
TIγ−2ϵ(PD1)⊗ TIγ−2ϵ(PD2)

)
ρ′
]
≥ (1− 2δ)2 ≥ 1− 4δ,

which completes the proof of the second part of the lemma.

Notice that Lemma 18.7 can be easily generalized to the case of q-partite state.

We state the following corollary without proof:

Corollary G.4. Let P1,P2, . . . ,Pq be q collections of projective measurements and

Di be any probability distributions defined on the index set of Pi for all i ∈ [q]. For

any 0 < ϵ, δ, γ < 1, for all i ∈ [q], the algorithms ATIϵ,δPi,Di,γ
satisfy the followings:

• For any q-partite (possibly entangled, mixed) quantum state ρ ∈H1⊗ · · ·⊗Hq,

Tr

[(
q⊗

i=1

ATIϵ,δPi,Di,γ−ϵ

)
ρ

]
≥ Tr

[(
q⊗

i=1

TIγ(PDi
)

)
ρ

]
− qδ.

• For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed state

after applying
⊗q

i=1 ATI
ϵ,δ
Pi,Di,γ−ϵ on ρ (and normalized). Then,

Tr

[(
q⊗

i=1

TIγ−2ϵ(PDi
)

)
ρ′

]
≥ 1− 2qδ.

G.3 Generalizing Learning Games
G.3.1 Generalized unlearnability

The γ-goodness test for quantum program (Definition 18.13) captures the in-

tuition that a quantum program’s behavior on classical inputs is γ-good compar-

ing to the input-output behavior of f with respect to the input distribution Df .

For cryptographic primitives, as discussed in the introduction, achieving a particular

cryptographic functionality does not necessarily mean to have the exact input-output

behavior. As an example, to sign a message, there are usually more than one valid

1469

signatures and the intended functionality is preserved as long as any valid signature

is provided.

For a randomized function f , we denote the input x of f as the real input

taken by f as well as random coins used by f .

Definition G.3 (Predicate). A classical predicate E(P, y1, · · · , yk, r) is a binary out-

come function that runs a classical program P on a randomly sampled input x to

get output z, and outputs 0/1 depending on whether (z, y1, · · · , yk, r) ∈ R for some

binary relation defined by R. The randomness of sampling x, program P all depends

on randomness r. y1, · · · , yk are auxiliary inputs that specify the relation.

Quantumly, it runs a quantum program on random classical input x and mea-

sure if (z, y1, · · · , yk, r) ∈ R in superposition, where z is the first register of the

resulting state. In other words, it is a projective measurement indexed by r (also by

y1, · · · , yk).

We use Samp,F to denote a cryptographic application. F denotes the in-

tended functionality that this cryptographic application should achieve.

Definition G.4 (Cryptographic Application Samp,F). Samp is a sampler that takes

a security parameter λ and interacts with an adversary A: f ← (A ⇔ Samp(1λ))

where f is a classical circuit that contains some secret information sf which is un-

known to A, and A can get some public information auxf from the interaction.

F = {Fλ} and Fλ(P, f, r) is a predicate which takes a program, a circuit f

and randomness r. For all efficient A, all f sampled by Samp, there exists a negligible

function negl(·) such that, Pr [Fλ(f, f, r) = 1] ≥ 1− negl(λ).

Remark G.2. The sampling procedure Samp is defined in an interactive way. One

example is predicate encryption. To generate a pair of keys, Samp needs to addi-

tionally take a description of a predicate function (which provided by A). Therefore,

we define the sampling procedure as an interaction between an algorithm A and

1470

Samp. For most of the applications, it is safe to assume Samp that takes a security

parameter and outputs a function f together with the public parameter auxf , i.e.,

(f, auxf)← Samp(1λ).

This security of the cryptographic application is orthogonal to its correctness

and unlearnability. The definition of security varies a lot when different applications

are given. Some examples include CPA security for public key encryption schemes

and signature unforgeability. However, the security should be easy to prove, when

we implement a copy-protection/copy detection scheme using our construction. In

this chapter, we only focus on its correctness and copy-protect security/copy-detect

security/unlearnability/unremovability.

Definition G.5 (γ-Goodness Test with respect to f, E). Let a quantum program for

computing f be (ρ, {Ux}x∈[N]).

• Define Pr = (Pr, Qr) be the following projective measurement:

– It first samples an input x using the randomness r; the sampling procedure

is hardcoded in the predicate E (as defined in Definition G.3);

– On input x, it runs Ux on the quantum state ρ;

– It measures the output register by checking if the output of the quantum

circuit satisfies the predicate E(·, f, r); output 1 if yes, and 0 otherwise.

Let P = {Pr} be a collection of projective measurements.

• D is the distribution of uniform randomness (over r).

• Let PD = (PD, QD) be the mixture of projective measurement defined in Defi-

nition 18.7.

• We say a quantum program is tested γ-good with respect to f, E if the threshold

implementation TIγ(PD) outputs 1.

1471

Note that Definition 18.13 fits into this general definition, where the predicate

E on a random input x (x is drawn depending on randomness r) and f , checks if the

output is equal to f(x).

We then generalize the learning game to the setting of cryptographic applica-

tions. Note that E may be not the same as F . In the game below, an adversary tries

to learn a more restricted functionality of f (described by E).

Definition G.6 (Learning Game for Samp,E). A learning game for a sampler Samp

(which samples a function in Fλ), a predicate E = {Eλ}, and an adversary A is

denoted as LearningGameASamp,E ,γ(1
λ), which consists the following steps:

1. Sampling Phase: At the beginning of the game, A interacts with the chal-

lenger and samples f ← (A⇐⇒ Samp(1λ)).

2. Query Phase: A then gets oracle access to f ;

3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N]).

The game outputs 1 if and only if the program is tested to be γ-good with respect to

f, Eλ.

It is easy to see that Definition G.6 implies Definition 18.14. One example is

digital signature. Samp picks a pair of signing key and verification key (sk, vk) and

outputs a signing circuit f = Sign(sk, ·) which hard-wires sk and appends vk with

the circuit description. The predicate is defined as: sample m, rs, rv according to

randomness r, run the program with input m and randomness rs to obtain outcome z,

decode sk, vk from the circuit f and the predicate is 1 if and only if Ver(vk,m, z; rv) =

1. In other words, the predicate checks if the program outputs a valid signature on a

random message.

Definition G.7 (Quantum Unlearnability of (Samp,F),E). ((Samp,F),E) is called

γ-quantum-unlearnable if for any QPT adversary A, there exists a negligible function

1472

negl(·) such that the following holds for all λ:

Pr
[
b = 1, b← LearningGameASamp,E ,γ(1

λ)
]
≤ negl(λ)

G.3.2 Generalized copy protection

Definition G.8 (Quantum Copy Protection). A quantum copy-protection scheme

for (Samp,F),E consists of the following procedures:

Setup(1λ)→ (sk): the setup algorithm takes in a security parameter λ in unary and

generates a secret key sk.

Generate(sk, f) → (ρf , {Uf,x}x∈[N]): on input f ∈ Fλ and secret key sk, the vendor

generates a quantum program (ρf , {Uf,x}x∈[N]).

Compute(ρf , {Uf,x}x∈[N], x)→ y: given a quantum program, a user can compute the

function f(x) on input x by applying Uf,x on ρ and measuring the first register

of the state.

Efficiency: Setup, Compute and Generate should run in poly(λ) time.

Correctness: For all λ ∈ N, all efficient A, every f ← (A ⇐⇒ Samp(1λ)), all

(ρf , {Uf,x}x∈[N])← Generate(sk, f), there exists a negligible function negl(·) such

that,

unique output: for all x ∈ [N], apply Uf,x on ρf and measure the first

register, with probability at least 1 − negl(λ), the output is a fixed value

zf,x;

functionality preserving: (ρf , {Uf,x}x∈[N]) are (1 − negl(λ))-good with re-

spect to f, Eλ with probability 1.

Security: It has γ-anti-piracy security defined below.

1473

Note that the property “unique output” enables the copy-protected program can be

evaluated polynomially many times.

Definition G.9 (γ-Anti-Piracy Security Game). An anti-piracy security game for a

sampler Samp, a predicate E and adversary A is denoted as CopyProtectionGameASamp,E ,γ(1
λ),

which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security

parameter λ and obtains secret key sk← Setup(1λ).

2. Sampling Phase: A interacts with the challenger and samples f ← (A ⇐⇒
Samp(1λ)).

3. Query Phase: A makes a single query to the challenger and obtains a quantum

program for f : (ρf , {Uf,x}x∈[N])← Generate(sk, f).

4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state σ

over two registers R1, R2 and two sets of unitaries ({UR1,x}x∈[N], {UR2,x}x∈[N])

They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2],

{UR2,x}x∈[N]).

The game outputs 1 if and only if both programs P1,P2 are tested to be γ-good with

respect to f, Eλ.

Similarly, we can define q-collusion resistant γ-anti-piracy security game

CopyProtectionGameq,ASamp,E ,γ(1
λ)

in which the adversary A can make at most q queries in the query phases and is

required to output q+1 programs {(σ[Ri], {URi,x}x∈[N])}i∈[q+1] such that each program

is tested to be γ-good.

1474

Definition G.10 (γ-Anti-Piracy-Security). A copy-protection scheme for Samp and

E has γ-anti-piracy security, if for any QPT adversary A, there exists a negligible

function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyProtectionGameASamp,E ,γ(1

λ)
]
≤ negl(λ) (G.3)

G.3.3 Generalized copy detection

A copy detection scheme for (Samp,F),E is very similar to the copy-protection

scheme, except it has an additional procedure Check which applies a projective mea-

surement and checks if the quantum state is valid.

Definition G.11 (Quantum Copy Detection). A quantum copy-detection scheme for

(Samp,F),E consists of the following procedures:

Setup(1λ), Generate(sk, f) and Compute(ρf , {Uf,x}x∈[N], x) are the same as those in

Definition G.8.

Check(pk, auxf , ρf , {Uf,x}x∈[N])→ b, ρ′: on input a public key pk, public information

auxf generated during Samp, a quantum program, it applies a binary projective

measurement P0, P1 on ρf that depends on pk, auxf , {Uf,x}x∈[N]; it outputs the

outcome b and the collapsed state ρ′.

Correctness (Generate): The same as the security of Definition G.8.

Correctness (Check): For all λ ∈ N, all efficient A, every f ← (A⇐⇒ Samp(1λ)),

all (ρf , {Uf,x}x∈[N]) ← Generate(sk, f), there exists a negligible function negl(·)
such that, Check(pk, auxf , ρf , {Uf,x}x∈[N]) outputs 1 with probability at least

1− negl(λ).

Security: It has γ-copy-detection security defined below.

Definition G.12 (γ-Copy-Detection Security Game). A copy-detection security game

for a sampler Samp, a predicate E and adversary A is denoted as CopyDetectionGameASamp,E ,γ(1
λ),

which consists of the following steps:

1475

1. Setup Phase: At the beginning of the game, the challenger takes a security

parameter λ and obtains keys (pk, sk)← Setup(1λ).

2. Sampling Phase: A interacts with the challenger and samples a function f ,

which is denoted by f ← (A ⇐⇒ Samp(1λ)). Let auxf denote the public

information A obtains during the interaction.

3. Query Phase: A makes a single query to the challenger and obtains a copy

detection program for f : (ρf , {Uf,x}x∈[N])← Generate(sk, f).

4. Output Phase: Finally, A outputs a state σ over two registers R1, R2 and two

sets of unitaries ({UR1,x}x∈[N], {UR2,x}x∈[N]). They can be viewed as programs

P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2], {UR2,x}x∈[N]).

The game outputs 1 if and only if

• Apply Check on input pk, auxf ,Pi respectively and both outcomes are 1. Let P ′i
be the collapsed program conditioned on outcomes are 1.

• Both programs P′1,P
′
2 are both tested to be γ-good with respect to f, Eλ.

Similarly, we can define q-collusion resistant γ-copy-detection security game

CopyDetectionGameA,qSamp,E ,γ(1
λ), in which the adversary A can perform at most q query

phases and output q+1 programs Pi = (σ[Ri], {URi,x}x∈[N]) for i ∈ [q+1]. The game

outputs 1 if and only if for all i ∈ [q + 1], the outcome of applying Check on Pi is 1,

and the collapsed program P ′i is tested to be γ-good.

Definition G.13 (γ-Copy-Detection-Security). A copy detection scheme for Samp

and E has γ-security, if for any QPT adversary A, there exists a negligible function

negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyDetectionGameASamp,E ,γ(1

λ)
]
≤ negl(λ) (G.4)

1476

G.3.4 Watermarking primitives with public extraction

In this subsection, we give a unified definition that covers most of the def-

initions in the previous works about watermarking primitives, including [CHN+18,

KW17, QWZ18, KW19, GKM+19]. We will give several concrete examples of water-

marking schemes in Appendix G.3.5.

Definition G.14 (Watermarking Primitives for (Samp,F),E). A watermarking scheme

for (Samp,F),E consists of the following classical algorithms:

Setup(1λ): it takes as input a security parameter 1λ and outputs keys (xk,mk). xk

is the extracting key and mk is the marking key. We only consider publicly

extractable watermarking scheme. Thus xk is always public.

Samp(1λ): it takes a security parameter 1λ,

f ← (A⇐⇒ Samp(1λ)).

We also denote auxf as the public information A obtains during the interaction.

Mark(mk, f, τ): it takes a circuit f and a message τ ∈Mλ, outputs a marked circuit

f̃ .

Extract(xk, auxf , f
′): it takes the public auxiliary information auxf , a circuit and

outputs a message in {⊥} ∪Mλ.

Remark G.3. In some watermarking schemes, Setup also outputs a watermarking

public parameter wpp and Samp takes this parameter to sample a function. Our

construction works in this setting. For the sake of clarity, we use the above notion.

Extract may also take an aux that specifies its restricted functionality that f ′ should

achieve. We assume f ′ contains a piece of information aux as a comment.

It satisfies the following properties.

1477

Definition G.15 (Correctness of Mark (Functionality Preserving)). For all λ, for

every efficient algorithm A, there exists a negligible function negl, for all (xk,mk)←
Setup(1λ), and every τ ∈Mλ,

Pr
[
Fλ(f̃ , f, r) = 1 : f←(A⇐⇒Samp(1λ))

f̃←Mark(mk,f,τ)

]
≥ 1− negl(λ).

Definition G.16 (Correctness of Extract). For all λ, for every efficient algorithm

A, there exists a negligible function negl(·), for all (xk,mk) ← Setup(1λ), and every

τ ∈Mλ, every aux,

Pr
[
τ ̸= Extract(xk, auxf , f̃ ||aux) : f←(A⇐⇒Samp(1λ))

f̃←Mark(mk,f,τ)

]
≤ negl(λ),

where auxf is the public information given to A and f̃ ||aux is the program appended

with aux.

Definition G.17 (Meaningfulness). For all λ, for every efficient algorithm A, there

exists a negligible function negl(·), for every aux,

Pr
[
⊥ ≠ Extract(xk, auxf , f ||aux) : (xk,mk)←Setup(1λ)

f←(A⇐⇒Samp(1λ))

]
≤ negl(λ).

where auxf is the public information given to A and f ||aux is the program appended

with aux.

Definition G.18 (γ-Unremovability with respect to Samp,E). Consider the following

game, denoted as WaterMarkingGameASamp,E ,γ:

1. Setup: The challenger samples (xk,mk)← Setup(1λ). A then gets xk.

2. Sampling Phase: The challenger interacts with the algorithm A and samples

f ← (A⇐⇒ Samp(1λ)).

3. Query Phase: A has classical access to Mark(mk, f, ·) at any time. Define Q

be the set of messages that A has queried on.

4. Output Phase: Finally, the algorithm outputs a circuit f ∗.

1478

The adversary wins the game if and only if

Extract(xk, auxf , f
∗) ̸∈ Q ∧ Pr

r
[Eλ(f

∗, f, r) = 1] ≥ γ

We say a watermarking scheme has γ-unremovability with respect to Samp,E , if for

all QPT A, it wins the above game with negligible probability in λ. We say it has q-

collusion resistant γ-unremovability if the number of queries made in the query phase

is at most q.

G.3.5 Examples of watermarking primitives

Let us look at how the definitions in [CHN+18, GKM+19] fit into our frame-

works.

1. Watermarkable PRF in [CHN+18]:

• Setup(1λ) = (wpp, xk,mk);

• Samp(1λ,wpp) samples a PRF key k, f = PRF(k, ·), auxf = ⊥.

• Fλ(f̃ , f, r) is 0 if and only if it samples a random input x (according to r),

and f̃(x) = f(x).

• Unremovability is defined by Eλ = Fλ. γ = 1/2 + 1/poly(λ).

2. Watermarkable signature in [GKM+19]:

• Setup(1λ) = (wpp, xk,mk);

• Samp(1λ,wpp) samples a pair of keys vk, sk and we interpret f = Sign(sk, ·)||vk,
auxf = vk.

• Fλ(f̃ , f, r) is 0 if and only if Ver(vk,m, f̃(m)) = 1, where vk is decoded

from f and m is sampled by r.

• Unremovability: Eλ = Fλ. γ is inverse polynomial.

3. Watermarkable public key encryption in [GKM+19]:

1479

• Setup(1λ) = (wpp, xk,mk);

• Samp(1λ,wpp) is defined below:

– It samples (pk, sk)← PKEGen(1λ,wpp);

– f = Dec(sk, ·)||pk, auxf = pk.

• Fλ(f̃ , f, r) is defined as:

– Decode pk from f , sample m according to r;

– Let ct = Enc(pk,m);

– It outputs 0 if and only if f̃(ct) = m.

• Unremovability: Eλ(f̃ , f, r) defined as:

– Decode pk from f , sample b according to r;

– Decode aux = (m0,m1) from f̃ ; if m0 = m1, outputs 1;

– Let ct = Enc(pk,mb);

– It outputs 0 if and only if f̃(ct) = mb.

And, γ = 1/2 + 1/poly(λ).

G.4 General Copy-Protection Scheme

In this section, we show the copy-protection scheme in Section 18.5 works for

general unlearnable function families (or cryptographic applications, as defined in

Definition G.7).

Theorem G.5. Let ((Samp,F),E) be γ-quantum-unlearnable. Then the construc-

tion in Section 18.5 is a copy-protection scheme satisfies efficiency, correctness and

(γ − 1/poly)-anti-piracy (see Definition G.10), for all polynomial poly.

Efficiency and Correctness are straightforward. The proof of Theorem 18.8

works for the general case, by simply doing the followings:

1480

1. TI,ATI are now defined as the (approximated) projective measurement corre-

sponding to the predicate Eλ;

2. In Lemma 18.10, 18.11 and 18.12, the randomness is taken over the general

unlearnability game and copy-protection game.

G.5 General Quantum Copy-Detection
G.5.1 Construction

Now we construct a copy detection scheme for Samp,F ,E . Let QM and WM

be a public key quantum money scheme and a publicly extractable watermarking

scheme for Samp,F ,E , whose serial number space Sλ of QM is a subset of the message

space Mλ of WM. We construct a copy detection scheme in Fig. G.1.

G.5.2 Efficiency and correctness

First, for all λ ∈ N, all efficient A, every f ← (A⇐⇒ Samp(1λ)), the program

output is (ρf , {Uf,x}x∈[N]), we have Compute(ρf , {Uf,x}x∈[N], x) = f̃(x), where f̃ =

WM.Mark(mk, f, s) for some serial number s. From the correctness of WM, it satisfies

unique output and functionality preserving (with respect to F).

The correctness of Check comes from the correctness of WM.Extract and unique

serial number property of QM. Check is a projection since QM.Ver is also a projec-

tion. Efficiency is straightforward.

G.5.3 Security

Theorem G.6. Assume QM is a quantum money scheme and WM is a q-collusion

resistant for Samp,E with γ-unremovability, the above copy-detection scheme for

Samp,F ,E has q-collusion resistant γ-copy-detection-security.

Proof. We prove the case for q = 1. Let A be a QPT algorithm that tries to break

the security of the copy detection scheme. Let (σ, UR1 , UR2) be the programs output

1481

Setup(1λ): it runs WM.Setup(1λ) to get xk,mk, let sk = mk and pk = xk.

Generate(sk, f):

• it runs QM.Gen(1λ) to get a money state |$⟩ and a serial number
s (by applying QM.Ver to the banknote);

• let f̃ = WM.Mark(mk, f, s) which is classical;

• it outputs the quantum state ρf = (f̃ , |$⟩), and {Uf,x}x∈[N];

• let {Uf,x}x∈[N] describe the following unitary: on input a quan-
tum state ρ, treat the first register as a classical function g,
compute g(x) in superposition.

Check(pk, auxf , (ρf , {Uf,x}x∈[N])):

• it parses and measures the first register, which is (f ′, |$′⟩);
• it checks if QM.Ver(|$′⟩) is valid and it gets the serial number s′;

• it then checks if s′ = WM.Extract(pk = xk, auxf , f
′);

• if all the checks pass, it outputs 0; otherwise, it outputs 1.

Figure G.1: Quantum copy detection scheme.

1482

by A which wins the game CopyDetectionGameASamp,E ,γ.

To win the game, the program (σ, UR1 , UR2) should pass the following two

tests:

1. Apply the projective measurement (defined by Check(pk, auxf , ·)) on both σ[R1]

and σ[R2], and both outcomes are 0.

2. Let σ′ be the state that passes step 1. Then both programs (σ′[R1], UR1),

(σ′[R2], UR2) are tested to be γ-good with non-negligible probability.

In our construction, Check first measures the program registers. The resulting

state is f̃1, f̃2, σ, where f̃1, f̃2 are supposed to be classical (marked) circuits that

computes f and σ are (possibly entangled) states that are supposed to be quantum

money for each of the program.

Next, Check applies QM.Ver on both registers of σ and computes serial num-

bers. Define Sb be the random variable of QM.Ver applying on σ[Rb] representing the

serial number of ρb. Define S be the random variable of QM.Ver(|$⟩) representing the

serial number of the quantum money state in the Generate procedure.

Define E be the event that both WM.Extract(xk, auxf , f̃b) = Sb and at least

one of S1, S2 is not equal to S. Define E ′ be the event that both S1, S2 are equal to

S and both WM.Extract(xk, auxf , f̃b) = Sb. If f̃1, f̃2, σ passes the step 1, exactly one

of E and E ′ happens.

In step 2, it simply tests if f̃1 and f̃2 are γ-good with respect to f, Eλ. Since

f̃1, f̃2 are classical circuits, it is equivalent to check whether they work correctly on

at least γ fraction of all inputs. If it passes step 2, we have for all b ∈ {1, 2},
Prr[Eλ(f̃b, f, r) = 0] ≥ γ.

1483

Therefore, the probability of A breaks the security game is indeed,

Pr
(f̃1,f̃2,σ)

[
∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]

= Pr
(f̃1,f̃2,σ)

[
(E ∨ E ′) ∧ ∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]

≤ Pr
(f̃1,f̃2,σ)

[
E ∧ ∀b,Pr

r
[Eλ(f̃b, f, r) = 0] ≥ γ

]
+ Pr

(f̃1,f̃2,σ)
[E ′]

Note that the probability is taken over the randomness of CopyDetectionGameASamp,E ,γ.

Next we are going to show both probabilities are negligible, otherwise we can break

the quantum money scheme or watermarking scheme.

Claim G.7. Pr(f̃1,f̃2,σ)[E
′] ≤ negl(λ).

Proof. It corresponds to the security game of the quantum money scheme. Assume

Pr[E ′] is non-negligible, we can construct an adversary B for the quantum money

scheme with non-negligible advantage. Given a quantum money state |$⟩, the algo-

rithm B does the following (it simulates the challenger for the copy-detection scheme):

• It first runs WM.Setup(1λ) to get xk,mk and let sk = mk and pk = xk.

• It interacts with A and samples f .

• Instead of sampling a new quantum money state, it uses the state |$⟩. Let

s = Ver(|$⟩) and f̃ ← WM.Mark(mk, f, s). It gives the instance ρf = (f̃ , |$⟩).

• When A outputs (f̃1, f̃2, σ), B outputs σ.

Thus Pr[E ′] is exact the probability that both verification gives s.

Claim G.8. Pr(f̃1,f̃2,σ)

[
E ∧ ∀b,Prr[Eλ(f̃b, f, r) = 0]

]
≤ negl(λ).

Proof. It corresponds to the security game of the underlying watermarking scheme.

Since if E happens, at least one of the circuit has different mark than s and it satisfies

the correctness test F . The reduction is the following (B simulates the challenger for

the copy-detection scheme):

1484

• Given xk, auxf in the watermarking security game, B prepares a quantum money

state |$⟩ with serial number s and gets the marked circuit f̃ whose marking is

s.

• It prepares ρf = (f̃ , |$⟩) and feeds it to A.

• When A outputs outputs (f̃1, f̃2, σ), B outputs f̃b whose mark is not s, i.e,

Extract(xk, auxf , f̃b) ̸= s.

When A succeeds, B breaks the security of the watermarking scheme.

Thus, the probability of A breaks the game is negligible.

It is natural to extend the proof to q-collusion resistance. We briefly sketch

the proof for q-collusion resistance which is very similar to the case q = 1. Let

(f̃1, · · · , f̃q+1, σ) be the output of the adversary. Let s1, · · · , sq be the serial numbers

in the Generate procedure. Let s′1, · · · , s′q+1 be the serial numbers corresponding to

σ. If A succeeds, there are two cases:

1. {s′i}i∈[q+1] ⊆ {sj}j∈[q]: in this case, A successfully copies one of the money state.

Thus, we can use A to construct an adversary for the quantum money scheme.

2. {s′i}i∈[q+1] ⊊ {sj}j∈[q]: in this case, A successfully unmarks one of the marked

program. Thus, we can use A to construct an adversary for the watermarking

scheme.

Therefore, assuming the existence of q-collusion resistant quantum money

scheme and watermarking scheme, the construction above is a q-collusion resistant

copy-detection scheme.

Combining Theorem G.6 with the watermarking primitives (see examples in

Appendix G.3.5), we can get the corresponding copy-detection schemes.

1485

G.6 Public-key Quantum Money from Copy Detection

In this section, we show that we can use quantum copy detection and public-

key encryption to construct a public-key quantum money scheme. This implication

shows one more application of copy detection and further demonstrates the relation-

ship between copy detection and public-key quantum money.

We give the following the construction of the public-key quantum money.

Assume that we have an underlying public key encryption scheme called PKE =

(PKE.KeyGen,PKE.Enc,PKE.Enc) with message space M, and an underlying copy

detection scheme CD = (CD.Setup,CD.Generate,CD.Compute,CD.Check).

1486

KeyGen(1λ)→ (pk, sk) :

• Take in security parameter λ

• Run PKE.KeyGen(1λ) → (PKE.pk,PKE.sk) and CD.Setup(1λ) →
(CD.pk,CD.sk).

• Output pk = (PKE.pk,CD.pk) and sk = (PKE.sk,CD.sk).

GenNote(sk)→ |$⟩ :

• Take in the secret key sk = (PKE.sk,CD.sk).

• Run CD.Generate(CD.sk, f = PKE.Dec(PKE.sk, ·) to generate a
copy detection program (ρf , {Uf,x}x∈[N]) for the function f =
PKE.Dec(PKE.sk, ·).

• Output |$⟩ = (ρf , {Uf,x}x∈[N]).

Ver(pk, |$′⟩)→ 0/1 :

• Take in the public key pk = (PKE.pk,CD.pk) and a claimed
banknote state |$′⟩, i.e. a claimed copy detection program for
f = PKE.Dec(PKE.sk, ·).

• Parse the claimed banknote |$′⟩ as (auxf , ρ
′
f , {U ′f,x}x∈[N]).

• Run CD.Check(CD.pk, auxf , ρ
′
f , {U ′f,x}x∈[N])) → b; if b = 1, out-

put 1 (for reject).

• Test if the program (ρ′f , {U ′f,x}x∈[N]) is a γ-good program
with respect to f , Eλ, using the public information in pk =
(PKE.pk,CD.pk); if yes, output 0; else output 1.

Figure G.2: Public-key Quantum Money Scheme from Copy Detection

G.6.1 Security analysis

We now show that the public-key quantum money construction has correctness

and unclonable security, given a quantum copy detection scheme with correctness and

γ-anti-piracy security. The proof is intuitive and we omit some details.

1487

Verification Correctness By the computation correctness of the underlying copy

detection scheme CD and decryption correctness of the underlying PKE, a valid ban-

knote |$⟩ = (ρf , {Uf,x}x∈[N]) for f = PKE.Dec(PKE.sk, ·) is supposed to pass Check

and be a γ-good program with respect to f, Eλ with all but negligible probability.

Therefore, verification correctness holds.

Unclonable Security We give a brief proof for the unclonable security of the

quantum money scheme, whose security definition is given in Definition G.1.

Lemma G.9. Assuming that the quantum copy-protection scheme CD has γ-anti-

piracy, then public-key quantum money scheme has unclonable security.

Proof. Suppose there is a QPT adversary A that breaks unclonable security, then we

can construct a QPT adversary B that breaks γ-anti-piracy security for CD.

The quantum copy detection challenger interacts with B in a copy detec-

tion anti-piracy game: In the Setup phase, challenger runs the setup CD.Setup(1λ)

to generate the keys (CD.pk,CD.sk). In the Sampling phase, the challenger sam-

ples f = PKE.Dec(PKE.sk, ·), where (PKE.pk,PKE.sk) ← PKE.KeyGen(1λ); note that

it gives aux = PKE.pk to adversary B and sf = PKE.sk is kept secret. B then

gives (CD.pk,PKE.pk) to the quantum money adversary A as the public key. In

the Query phase, copy detection challenger generates one copy of copy detection

program (ρf , {Uf,x}x∈[N]) ← CD.Generate(CD.sk, f) and gives to B. Then B sends

(ρf , {Uf,x}x∈[N]) as a money state |$⟩ to A. Finally, A output two claimed money

states {|$i⟩} = {ρi, Ui}i∈[2] and sends to B. B uses them as its pirate programs and

passes to copy detection challenger. It is easy to see that if both claimed money states

{|$i⟩}i∈[2] produced by A’s pass verification with non-negligible probability, then B

wins the copy detection anti-piracy security game with non-negligible probability.

1488

Bibliography

[AA17] Yosi Atia and Dorit Aharonov. Fast-forwarding of hamiltonians and

exponentially precise measurements. Nature communications, 8(1):1–

9, 2017.

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C.

Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G.

S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen,

Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth,

Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa

Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harri-

gan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang,

Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir

Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey

Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike

Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R.

McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,

Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles

Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.

Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C.

Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.

Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,

Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut

Neven, and John M. Martinis. Quantum supremacy using a pro-

grammable superconducting processor. Nature, 574(7779):505–510,

Oct 2019.

[AAKV01] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazi-

1489

rani. Quantum walks on graphs. In Proceedings of the thirty-third

annual ACM symposium on Theory of computing, pages 50–59, 2001.

arXiv:quant-ph/0012090.

[Aar04] Scott Aaronson. Limitations of quantum advice and one-way commu-

nication. In Proceedings. 19th IEEE Annual Conference on Compu-

tational Complexity, 2004., pages 320–332. IEEE, 2004.

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In 21st Annual

IEEE Conference on Computational Complexity (CCC’06), pages 15–

pp. IEEE, 2006.

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In

2009 24th Annual IEEE Conference on Computational Complexity,

pages 229–242. IEEE, 2009.

[Aar15] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293,

2015.

[Aar16] Scott Aaronson. The complexity of quantum states and transforma-

tions: from quantum money to black holes. arXiv preprint arXiv:1607.05256,

2016.

[Aar18] Scott Aaronson. Shadow tomography of quantum states. In Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2018, pages 325–338, New York, NY, USA, 2018.

Association for Computing Machinery.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-

ern Approach. Cambridge University Press, 2009.

[AB20] Kasra Alishahi and Milad Barzegar. Paving property for real stable

polynomials and strongly rayleigh processes. arXiv preprint arXiv:2006.13923,

2020.

1490

https://arxiv.org/abs/quant-ph/0012090

[Abb19] Amir Abboud. Fine-grained reductions and quantum speedups for dy-

namic programming. In 46th International Colloquium on Automata,

Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2019.

[ABH17] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochas-

tic optimization for machine learning in linear time. The Journal of

Machine Learning Research, 18(1):4148–4187, 2017.

[ABN23] Anurag Anshu, Nikolas P Breuckmann, and Chinmay Nirkhe. Nlts

hamiltonians from good quantum codes. In Proceedings of the 55th

Annual ACM Symposium on Theory of Computing, pages 1090–1096,

2023.

[ABY20] Richard Aoun, Marwa Banna, and Pierre Youssef. Matrix Poincaré

inequalities and concentration. In Advances in Mathematics, volume

371. https://arxiv.org/pdf/1910.13797.pdf, 2020.

[AC09] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss

transform and approximate nearest neighbors. SIAM Journal on com-

puting, 39(1):302–322, 2009.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden

subspaces. In Proceedings of the forty-fourth annual ACM symposium

on Theory of computing, pages 41–60. ACM, 2012.

[AC23] Jason M Altschuler and Sinho Chewi. Faster high-accuracy log-

concave sampling via algorithmic warm starts. arXiv preprint arXiv:2302.10249,

2023.

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential

privacy. In Proceedings of the 2016 ACM SIGSAC Conference on

1491

https://arxiv.org/pdf/1910.13797.pdf

Computer and Communications Security, CCS ’16, page 308–318, New

York, NY, USA, 2016. Association for Computing Machinery.

[ACH+18] Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, and Ashwin

Nayak. Online learning of quantum states. Advances in neural infor-

mation processing systems, 31, 2018.

[ACL+20] Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and

Ruizhe Zhang. On the quantum complexity of closest pair and re-

lated problems. In 35th Computational Complexity Conference (CCC

2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury

Makarychev. o(
√
log n) approximation algorithms for min uncut, min

2cnf deletion, and directed cut problems. In Proceedings of the thirty-

seventh annual ACM symposium on Theory of computing, pages 573–

581, 2005.

[AD14a] Eric Allender and Bireswar Das. Zero knowledge and circuit minimiza-

tion. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán

Ésik, editors, Mathematical Foundations of Computer Science 2014,

pages 25–32, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[AD14b] Megasthenis Asteris and Alexandros G Dimakis. Repairable foun-

tain codes. IEEE Journal on Selected Areas in Communications,

32(5):1037–1047, 2014.

[ADBMS98] Pankaj K Agarwal, Mark De Berg, Jiri Matousek, and Otfried Schwarzkopf.

Constructing levels in arrangements and higher order voronoi dia-

grams. SIAM journal on computing, 27(3):654–667, 1998.

1492

[ADH+19a] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang.

Fine-grained analysis of optimization and generalization for overpa-

rameterized two-layer neural networks. In International Conference

on Machine Learning, pages 322–332, 2019.

[ADH+19b] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhut-

dinov, and Ruosong Wang. On exact computation with an infinitely

wide neural net. In NeurIPS, 2019.

[ADM+18] Nima Anari, Constantinos Daskalakis, Wolfgang Maass, Christos Pa-

padimitriou, Amin Saberi, and Santosh Vempala. Smoothed analysis

of discrete tensor decomposition and assemblies of neurons. In Ad-

vances in Neural Information Processing Systems, volume 31, 2018.

[AdW17] Srinivasan Arunachalam and Ronald de Wolf. Guest column: A sur-

vey of quantum learning theory. ACM SIGACT News, 48(2):41–67,

2017.

[AEM92] Pankaj K Agarwal, David Eppstein, and Jirí Matousek. Dynamic

half-space reporting, geometric optimization, and minimum spanning

trees. In Annual Symposium on Foundations of Computer Science

(FOCS), volume 33, pages 80–80, 1992.

[AESW91] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and

Emo Welzl. Euclidean minimum spanning trees and bichromatic clos-

est pairs. Discrete & Computational Geometry, 6(3):407–422, 1991.

[AFS12] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction

with the k-support norm. Advances in Neural Information Processing

Systems (NeurIPS), 25, 2012.

1493

[AG19] Joran van Apeldoorn and András Gilyén. Improvements in quantum

SDP-solving with applications. In Proceedings of the 46th Interna-

tional Colloquium on Automata, Languages, and Programming, vol-

ume 132 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 99:1–99:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2019. arXiv:1804.05058.

[AGDLHG05] Alán Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin

Head-Gordon. Simulated quantum computation of molecular ener-

gies. Science, 309(5741):1704–1707, 2005.

[AGG+20] Srinivasan Arunachalam, Alex B Grilo, Tom Gur, Igor C Oliveira, and

Aarthi Sundaram. Quantum learning algorithms imply circuit lower

bounds. arXiv preprint arXiv:2012.01920, 2020.

[AGGW17] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de

Wolf. Quantum sdp-solvers: Better upper and lower bounds. In 2017

IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 403–414. IEEE, 2017.

[AGGW20] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de

Wolf. Convex optimization using quantum oracles. Quantum, 4:220,

2020. arXiv:1809.00643.

[AGKM12] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Com-

puting a nonnegative matrix factorization–provably. In Proceedings

of the forty-fourth annual ACM symposium on Theory of computing

(STOC), pages 145–162. https://arxiv.org/pdf/1111.0952.pdf,

2012.

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry.

One-shot signatures and applications to hybrid quantum/classical au-

1494

https://arxiv.org/abs/1804.05058
https://arxiv.org/abs/1809.00643
https://arxiv.org/pdf/1111.0952.pdf

thentication. In Proceedings of the 52nd Annual ACM SIGACT Sym-

posium on Theory of Computing, STOC 2020, pages 255–268. Associ-

ation for Computing Machinery, 2020.

[AGSS12] Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck.

Finding overlapping communities in social networks: toward a rigorous

approach. In Proceedings of the 13th ACM Conference on Electronic

Commerce, pages 37–54, 2012.

[AHKZ20] Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu

Zhang. Quantum algorithms for feedforward neural networks. ACM

Transactions on Quantum Computing, 1(1):1–24, 2020.

[AHN+21] Srinivasan Arunachalam, Vojtech Havlicek, Giacomo Nannicini, Kris-

tan Temme, and Pawel Wocjan. Simpler (classical) and faster (quan-

tum) algorithms for Gibbs partition functions. In 2021 IEEE Inter-

national Conference on Quantum Computing and Engineering (QCE),

pages 112–122. IEEE, 2021. arXiv:2009.11270.

[AHO98] F Alizadeh, JPA Haeberly, and ML Overton. Primal-dual interior-

point methods for semidefinite programming: convergence rates, sta-

bility and numerical results. In SIAM Journal on Optimization, 1998.

[AHP20] Elad Aigner-Horev and Yury Person. On sparse random combinatorial

matrices. arXiv preprint arXiv:2010.07648, 2020.

[AIL+15] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn,

and Ludwig Schmidt. Practical and optimal lsh for angular distance.

In Advances in Neural Information Processing Systems (NIPS), pages

1225–1233. Curran Associates, 2015.

1495

https://arxiv.org/abs/2009.11270

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate

nearest neighbor search in high dimensions. arXiv preprint arXiv:1806.09823,

7, 2018.

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani.

Approximating constraint satisfaction problems on high-dimensional

expanders. In 2019 IEEE 60th Annual Symposium on Foundations of

Computer Science (FOCS), pages 180–201. IEEE, 2019.

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual ap-

proach to semidefinite programs. In Proceedings of the 39th Annual

ACM Symposium on Theory of Computing (STOC), 2007.

[AK22] Eric R Anschuetz and Bobak T Kiani. Beyond barren plateaus: Quan-

tum variational algorithms are swamped with traps. arXiv preprint

arXiv:2205.05786, 2022.

[AKK+08] Sanjeev Arora, Subhash A Khot, Alexandra Kolla, David Steurer,

Madhur Tulsiani, and Nisheeth K Vishnoi. Unique games on expand-

ing constraint graphs are easy. In Proceedings of the fortieth annual

ACM symposium on Theory of computing, pages 21–28, 2008.

[AKK+20] Thomas D. Ahle, Michael Kapralov, Jakob Bæk Tejs Knudsen, Ras-

mus Pagh, Ameya Velingker, David P. Woodruff, and Amir Zandieh.

Oblivious sketching of high-degree polynomial kernels. In Proceedings

of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 141–160, 2020.

[AL12] Radosław Adamczak and Rafał Latała. Tail and moment estimates for

chaoses generated by symmetric random variables with logarithmically

concave tails. Annales de l’Institut Henri Poincaré, Probabilités et

Statistiques, 48(4):1103 – 1136, 2012.

1496

[AL13] Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum

conjecture. In International Colloquium on Automata, Languages, and

Programming (ICALP), 2013.

[AL20a] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order

random walks and applications. arXiv preprint arXiv:2001.02827,

2020.

[AL20b] Andris Ambainis and Nikita Larka. Quantum algorithms for com-

putational geometry problems. In 15th Conference on the Theory of

Quantum Computation, Communication and Cryptography, 2020.

[AL22] Dong An and Lin Lin. Quantum linear system solver based on time-

optimal adiabatic quantum computing and quantum approximate op-

timization algorithm. ACM Transactions on Quantum Computing,

3(2), mar 2022.

[ALG20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral indepen-

dence in high-dimensional expanders and applications to the hardcore

model. arXiv preprint arXiv:2001.00303, 2020.

[ALGV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant.

Log-concave polynomials ii: high-dimensional walks and an fpras for

counting bases of a matroid. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing, pages 1–12, 2019.

[ALL+21] Dong An, Noah Linden, Jin-Peng Liu, Ashley Montanaro, Changpeng

Shao, and Jiasu Wang. Quantum-accelerated multilevel Monte Carlo

methods for stochastic differential equations in mathematical finance.

Quantum, 5:481, 2021. arXiv:2012.06283.

1497

https://arxiv.org/abs/2012.06283

[Alm19] Josh Alman. An illuminating algorithm for the light bulb prob-

lem. In 2nd Symposium on Simplicity in Algorithms (SOSA). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[ALM21] Radosław Adamczak, Rafał Latała, and Rafał Meller. Moments of

gaussian chaoses in banach spaces. Electronic Journal of Probability,

26:1–36, 2021.

[ALO16] Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using opti-

mization to obtain a width-independent, parallel, simpler, and faster

positive SDP solver. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms(SODA), 2016.

[ALO+21] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and

Thuy-Duong Vuong. Log-concave polynomials iv: approximate ex-

change, tight mixing times, and near-optimal sampling of forests. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory

of Computing, pages 408–420, 2021.

[ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant.

Log-concave polynomials ii: high-dimensional walks and an fpras for

counting bases of a matroid. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing, pages 1–12, 2019.

[ALS+18] Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong, and Ruiqi

Zhong. Subspace embedding and linear regression with orlicz norm.

In International Conference on Machine Learning (ICML), pages 224–

233. PMLR, 2018.

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by

gaining edges. In European Symposium on Algorithms (ESA), 2014.

1498

[AM20] Srinivasan Arunachalam and Reevu Maity. Quantum boosting. In

International Conference on Machine Learning (ICML), pages 377–

387. PMLR, 2020.

[Amb04] Andris Ambainis. Quantum search algorithms. SIGACT News,

35(2):22–35, 2004.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness.

SIAM Journal on Computing, 37(1):210–239, 2007.

[Amb14] Andris Ambainis. On physical problems that are slightly more dif-

ficult than qma. In 2014 IEEE 29th Conference on Computational

Complexity (CCC), pages 32–43, 2014.

[Ami19] Nima Amini. Spectrahedrality of hyperbolicity cones of multivariate

matching polynomials. Journal of Algebraic Combinatorics, 50(2):165–

190, 2019.

[AMOV18] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani.

Nash social welfare for indivisible items under separable, piecewise-

linear concave utilities. In Proceedings of the Twenty-Ninth An-

nual ACM-SIAM Symposium on Discrete Algorithms, pages 2274–

2290. SIAM, 2018.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity

of approximating the frequency moments. Journal of Computer and

system sciences, 58(1):137–147, 1999.

[AMV21] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Faster sparse

minimum cost flow by electrical flow localization. In 2021 IEEE 62nd

Annual Symposium on Foundations of Computer Science (FOCS), 2021.

1499

[ANN+17] Alexandr Andoni, Huy L Nguyen, Aleksandar Nikolov, Ilya Razen-

shteyn, and Erik Waingarten. Approximate near neighbors for general

symmetric norms. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing (STOC), pages 902–913, 2017.

[ANN+18] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn,

and Erik Waingarten. Hölder homeomorphisms and approximate

nearest neighbors. In 2018 IEEE 59th Annual Symposium on Foun-

dations of Computer Science (FOCS), pages 159–169. IEEE, 2018.

[Ans00] Kurt M Anstreicher. The volumetric barrier for semidefinite program-

ming. Mathematics of Operations Research, 2000.

[ANTZ21] Brandon Augustino, Giacomo Nannicini, Tamás Terlaky, and Luis F

Zuluaga. Quantum interior point methods for semidefinite optimiza-

tion. arXiv preprint arXiv:2112.06025, 2021.

[ANW14] Haim Avron, Huy L. Nguyen, and David P. Woodruff. Subspace

embeddings for the polynomial kernel. In NeurIPS, 2014.

[AO14] Nima Anari and Shayan Oveis Gharan. The kadison-singer problem

for strongly rayleigh measures and applications to asymmetric tsp. In

arXiv preprint. https://arxiv.org/pdf/1412.1143.pdf, 2014.

[AO15] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing

flows, spectrally thin trees, and asymmetric tsp. In Foundations of

Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on,

pages 20–39. IEEE, 2015.

[AO17] Nima Anari and Shayan Oveis Gharan. A generalization of perma-

nent inequalities and applications in counting and optimization. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory

of Computing, pages 384–396, 2017.

1500

https://arxiv.org/pdf/1412.1143.pdf

[AOR16] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo

markov chain algorithms for sampling strongly rayleigh distributions

and determinantal point processes. In Conference on Learning Theory,

pages 103–115. PMLR, 2016.

[AOSS16] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh.

Nash social welfare, matrix permanent, and stable polynomials. arXiv

preprint arXiv:1609.07056, 2016.

[AOSS18] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Nikhil Srivas-

tava. Approximating the largest root and applications to interlacing

families. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1015–1028. SIAM, 2018.

[AOV18] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-

concave polynomials, entropy, and a deterministic approximation al-

gorithm for counting bases of matroids. In 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS), pages 35–

46. IEEE, 2018.

[AP20] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing,

2020.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent

hashing for approximate near neighbors. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing (STOC),

pages 793–801, 2015.

[ARN17] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh

forest: Practical algorithms made theoretical. In Proceedings of the

Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 67–78. SIAM, 2017.

1501

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows,

geometric embeddings and graph partitioning. Journal of the ACM

(JACM), 2009.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the

collision and the element distinctness problems. Journal of the ACM

(JACM), 51(4):595–605, 2004.

[AS16] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley

Series in Discrete Mathematics and Optimization. John Wiley & Sons,

Inc., Hoboken, NJ, fourth edition, 2016.

[ASSN08] Abiodun Musa Aibinu, M. J. E. Salami, Amir Akramin Shafie, and

Athaur Rahman Najeeb. Mri reconstruction using discrete fourier

transform: A tutorial. World Academy of Science, Engineering and

Technology, International Journal of Computer, Electrical, Automa-

tion, Control and Information Engineering, 2:1852–1858, 2008.

[ASZ+21] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio

Figalli, and Stefan Woerner. The power of quantum neural networks.

Nature Computational Science, 1(6):403–409, 2021.

[ATS03] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state gen-

eration and statistical zero knowledge. In Proceedings of the 35th An-

nual ACM Symposium on Theory of Computing, pages 20–29, 2003.

arXiv:quant-ph/0301023.

[AUY83] Alfred V Aho, Jeffrey D Ullman, and Mihalis Yannakakis. On notions

of information transfer in vlsi circuits. In Proceedings of the fifteenth

annual ACM symposium on Theory of computing, pages 133–139, 1983.

1502

https://arxiv.org/abs/quant-ph/0301023

[AV95] David S Atkinson and Pravin M Vaidya. A cutting plane algorithm

for convex programming that uses analytic centers. Mathematical

Programming, 69(1-3):1–43, 1995.

[AW02] Rudolf Ahlswede and Andreas Winter. Strong converse for identifica-

tion via quantum channels. ITIT, 48(3):569–579, 2002.

[AW08] Arash A Amini and Martin J Wainwright. High-dimensional analysis

of semidefinite relaxations for sparse principal components. In 2008

IEEE International Symposium on Information Theory (ISIT), pages

2454–2458. IEEE, 2008.

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and ham-

ming nearest neighbors. In Proceedings of the 56th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2015), pages

136–150. IEEE, 2015.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method

and faster matrix multiplication. In Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 522–539.

SIAM, 2021.

[AWY14] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications

of the polynomial method to algorithm design. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,

pages 218–230. SIAM, 2014.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications

of the polynomial method to algorithm design. In Proceedings of the

26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2015), pages 218–230, 2015.

1503

[AWY18] Josh Alman, Joshua R Wang, and Huacheng Yu. Cell-probe lower

bounds from online communication complexity. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing,

pages 1003–1012, 2018.

[AY22] Srinivasan Arunachalam and Penghui Yao. Positive spectrahedra:

Invariance principles and pseudorandom generators. In Proceedings of

the 54th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2022, page 208–221, New York, NY, USA, 2022. Association

for Computing Machinery.

[AYBGM17] Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, and Alan Malek.

Hit-and-run for sampling and planning in non-convex spaces. In

Artificial Intelligence and Statistics, pages 888–895. PMLR, 2017.

arXiv:1610.08865.

[AZL17] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader:

faster online learning of eigenvectors and faster mmwu. In Proceedings

of the 34th International Conference on Machine Learning (ICML),

2017.

[AZL20] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How

deep learning performs deep learning. arXiv preprint arXiv:2001.04413,

2020.

[AZL22] Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adver-

sarial training performs robust deep learning. In 2021 IEEE 62nd An-

nual Symposium on Foundations of Computer Science (FOCS), pages

977–988. IEEE, 2022.

[AZLS19a] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory

for deep learning via over-parameterization. In ICML, 2019.

1504

https://arxiv.org/abs/1610.08865

[AZLS19b] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence

rate of training recurrent neural networks. In NeurIPS, 2019.

[Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization.

In 2010 IEEE 51st Annual Symposium on Foundations of Computer

Science, pages 3–10. IEEE, 2010.

[Ban19] Nikhil Bansal. On a generalization of iterated and randomized round-

ing. In Proceedings of the 51st Annual ACM SIGACT Symposium on

Theory of Computing (STOC), 2019.

[BB08] Julius Borcea and Petter Brändén. Applications of stable polynomials

to mixed determinants: Johnson’s conjectures, unimodality, and sym-

metrized fischer products. Duke Mathematical Journal, 143(2):205–

223, 2008.

[BB09] Julius Borcea and Petter Brändén. The lee-yang and pólya-schur

programs. ii. theory of stable polynomials and applications. Commu-

nications on Pure and Applied Mathematics: A Journal Issued by the

Courant Institute of Mathematical Sciences, 62(12):1595–1631, 2009.

[BBB+19] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Eui-

woong Lee, and David P Woodruff. A ptas for lp-low rank approxima-

tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 747–766. SIAM, 2019.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh

Vazirani. Strengths and weaknesses of quantum computing. SIAM

Journal on Computing, 26(5):1510–1523, Oct 1997.

[BBC+17] Jarosław Błasiok, Vladimir Braverman, Stephen R Chestnut, Robert

Krauthgamer, and Lin F Yang. Streaming symmetric norms via mea-

1505

sure concentration. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, pages 716–729, 2017.

[BBF+20] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne,

Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. Training

deep quantum neural networks. Nature communications, 11(1):1–6,

2020.

[BBK+20] Mitali Bafna, Boaz Barak, Pravesh Kothari, Tselil Schramm, and

David Steurer. Playing unique games on certified small-set expanders.

arXiv preprint arXiv:2006.09969, 2020.

[BBL09] Julius Borcea, Petter Brändén, and Thomas Liggett. Negative de-

pendence and the geometry of polynomials. Journal of the American

Mathematical Society, 22(2):521–567, 2009.

[BBRR+87] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Ran, C.L. Scheffer,

Robert L. Smith, and Jan Telgen. Hit-and-run algorithms for the

identification of nonredundant linear inequalities. Mathematical Pro-

gramming, 37(2):184–207, 1987.

[BCC+15] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari,

and Rolando D Somma. Simulating hamiltonian dynamics with a

truncated taylor series. Physical review letters, 114(9):090502, 2015.

[BCC+17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari,

and Rolando D. Somma. Exponential improvement in precision for

simulating sparse Hamiltonians. Forum of Mathematics, Sigma, 5,

2017.

[BCC+21] Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel

Štefankovič, and Eric Vigoda. On mixing of markov chains: Coupling,

1506

spectral independence, and entropy factorization. arXiv preprint

arXiv:2103.07459, 2021.

[BCK15] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamil-

tonian simulation with nearly optimal dependence on all parameters.

2015 IEEE 56th Annual Symposium on Foundations of Computer Sci-

ence, Oct 2015.

[BCMS19] Marcin Bownik, Pete Casazza, Adam W Marcus, and Darrin Speegle.

Improved bounds in weaver and feichtinger conjectures. Journal für

die reine und angewandte Mathematik (Crelles Journal), 2019(749):267–

293, 2019.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vija-

yaraghavan. Smoothed analysis of tensor decompositions. In Proceed-

ings of the forty-sixth annual ACM symposium on Theory of computing

(STOC), pages 594–603, 2014.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Al-

gebraic complexity theory, volume 315. Springer Science & Business

Media, 1997.

[BCWdW01] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf.

Quantum fingerprinting. Phys. Rev. Lett., 87:167902, Sep 2001.

[BDG16] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm

for komlós conjecture matching banaszczyk. In 57th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), 2016.

[BDGL18] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett.

The gram-schmidt walk: a cure for the banaszczyk blues. In Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, pages 587–597, 2018.

1507

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.

Factoring and pairings are not necessary for io: Circular-secure lwe

suffices. IACR Cryptol. ePrint Arch, 2020:1024, 2020.

[BDS16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signa-

tures. arXiv preprint arXiv:1609.09047, 2016.

[BdWD+01] Harry Buhrman, Ronald de Wolf, Christoph Dürr, Mark Heiligman,

Peter H"yer, Frédéric Magniez, and Miklos Santha. Quantum al-

gorithms for element distinctness. In Proceedings of the 16th Annual

Conference on Computational Complexity (CCC 2001), pages 131–137,

Washington, DC, USA, 2001. IEEE.

[BE06] Peter Borwein and Tamás Erdélyi. Nikolskii-type inequalities for shift

invariant function spaces. Proceedings of the American Mathematical

Society, 134(11):3243–3246, 2006.

[Bel58] Richard Bellman. On a routing problem. Quarterly of applied math-

ematics, 16(1):87–90, 1958.

[Ber24] Sergei Bernstein. On a modification of chebyshev’s inequality and of

the error formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect.

Math, 1(4):38–49, 1924.

[Bes98] Sergei N Bespamyatnikh. An optimal algorithm for closest-pair main-

tenance. Discrete & Computational Geometry, 19(2):175–195, 1998.

[BFS11] Brielin Brown, Steven T Flammia, and Norbert Schuch. Computa-

tional difficulty of computing the density of states. Physical review

letters, 107(4):040501, 2011.

[BFV20] Adam Bouland, Bill Fefferman, and Umesh Vazirani. Computa-

tional Pseudorandomness, the Wormhole Growth Paradox, and Con-

straints on the AdS/CFT Duality (Abstract). In Thomas Vidick,

1508

editor, 11th Innovations in Theoretical Computer Science Conference

(ITCS 2020), volume 151 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 63:1–63:2, Dagstuhl, Germany, 2020. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BG17] Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond

partial coloring. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing (STOC), 2017.

[BGB+18] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jar-

rod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven.

Encoding electronic spectra in quantum circuits with linear t complex-

ity. Physical Review X, 8(4):041015, 2018.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit

Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscat-

ing programs. In Annual International Cryptology Conference, pages

1–18. Springer, 2001.

[BGLS01] Heinz H Bauschke, Osman Güler, Adrian S Lewis, and Hristo S Sendov.

Hyperbolic polynomials and convex analysis. Canadian Journal of

Mathematics, 53(3):470–488, 2001.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Pre-

venting zeroizing attacks on ggh15. In Proceedings of TCC 2018,

2018.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-

time programs. In Annual Cryptology Conference, pages 344–360.

Springer, 2013.

[BH12] Andries E Brouwer and Willem H Haemers. Distance-regular graphs.

In Spectra of graphs, pages 177–185. Springer, 2012.

1509

[Bha97] Rajendra Bhatia. Matrix analysis, volume 169 of. Graduate texts in

mathematics, 1997.

[BHKL20] Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. High

dimensional expanders: Eigenstripping, pseudorandomness, and unique

games. arXiv e-prints, pages arXiv–2011, 2020.

[BHKL21] Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. Hy-

percontractivity on high dimensional expanders: a local-to-global ap-

proach for higher moments. arXiv preprint arXiv:2111.09444, 2021.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quan-

tum amplitude amplification and estimation. Contemporary Mathe-

matics, 305:53–74, 2002.

[BIS17] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-

grained complexity of empirical risk minimization: Kernel methods

and neural networks. In Advances in Neural Information Processing

Systems, pages 4308–4318, 2017.

[BIW19] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time effi-

cient kernel density estimation in high dimensions. In NeurIPS, pages

15773–15782, 2019.

[BIWX11] Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and Ning Xie.

The complexity of linear dependence problems in vector spaces. In

Innovations in Computer Science (ICS), pages 496–508, 2011.

[BJL+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder,

and Aarthi Sundaram. Secure software leasing without assumptions,

2021.

1510

[BJLM13] Daniel J Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.

Quantum algorithms for the subset-sum problem. In International

Workshop on Post-Quantum Cryptography, pages 16–33. Springer,

2013.

[BJM22] Nikhil Bansal, Haotian Jiang, and Raghu Meka. Resolving matrix

spencer conjecture up to poly-logarithmic rank. arXiv preprint arXiv:2208.11286,

2022.

[BK99] Piotr Berman and Marek Karpinski. On some tighter inapproxima-

bility results. In International Colloquium on Automata, Languages,

and Programming, pages 200–209. Springer, 1999.

[BKKT20] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang.

Obstacles to variational quantum optimization from symmetry protec-

tion, Dec 2020.

[BKL+17] Fernando GSL Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin,

Krysta M Svore, and Xiaodi Wu. Exponential quantum speed-ups

for semidefinite programming with applications to quantum learning.

arXiv preprint arXiv:1710.02581, 84, 2017.

[BKL+19] Fernando GSL Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu

Lin, Krysta M Svore, and Xiaodi Wu. Quantum sdp solvers: Large

speed-ups, optimality, and applications to quantum learning. In 46th

International Colloquium on Automata, Languages, and Programming

(ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[BKS18] Boaz Barak, Pravesh K Kothari, and David Steurer. Small-set ex-

pansion in shortcode graph and the 2-to-2 conjecture. arXiv preprint

arXiv:1804.08662, 2018.

1511

[BL19] Anne Broadbent and Sébastien Lord. Uncloneable quantum encryp-

tion via random oracles. IACR Cryptology ePrint Archive, 2019:257,

2019.

[BLH18] Alberto Bernacchia, Mate Lengyel, and Guillaume Hennequin. Ex-

act natural gradient in deep linear networks and its application to the

nonlinear case. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems. Curran Associates, Inc., 2018.

[BLL+21] Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranu-

rak, Aaron Sidford, Zhao Song, and Di Wang. Minimum cost flows,

mdps, and ℓ1-regression in nearly linear time for dense instances. In

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory

of Computing (STOC). arXiv preprint arXiv:2101.05719, 2021.

[BLNR15] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexan-

der Rakhlin. Escaping the local minima via simulated annealing:

Optimization of approximately convex functions. In Conference on

Learning Theory, pages 240–265. PMLR, 2015. arXiv:1501.07242.

[BLNZ95] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A

limited memory algorithm for bound constrained optimization. SIAM

Journal on scientific computing, 16(5):1190–1208, 1995.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song.

Solving tall dense linear programs in nearly linear time. In 52nd

Annual ACM SIGACT Symposium on Theory of Computing (STOC),

2020.

[BMN+21] Ryan Babbush, Jarrod R McClean, Michael Newman, Craig Gidney,

Sergio Boixo, and Hartmut Neven. Focus beyond quadratic speedups

1512

https://arxiv.org/abs/1501.07242

for error-corrected quantum advantage. PRX Quantum, 2(1):010103,

2021.

[BMO+15] Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra,

Oded Regev, David Steurer, Luca Trevisan, Aravindan Vijayaragha-

van, David Witmer, and John Wright. Beating the random assign-

ment on constraint satisfaction problems of bounded degree. CoRR,

abs/1505.03424, 2015.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, et al. Language models are few-shot learn-

ers. Advances in neural information processing systems, 33:1877–1901,

2020.

[BNWN22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen.

Negative-weight single-source shortest paths in near-linear time. In

2022 IEEE 63rd Annual Symposium on Foundations of Computer Sci-

ence (FOCS), pages 600–611. IEEE, 2022.

[BOG08] Michael Ben-Or and Dan Gutfreund. Trading help for interaction in

statistical zero-knowledge proofs. Journal of Cryptology, 16:95–116,

03 2008.

[BOM+21] Kyle EC Booth, Bryan O’Gorman, Jeffrey Marshall, Stuart Hadfield,

and Eleanor Rieffel. Quantum-accelerated constraint programming.

Quantum, 5:550, 2021.

[Bou14] Jean Bourgain. An improved estimate in the restricted isometry

problem. In Geometric aspects of functional analysis, pages 65–70.

Springer, 2014.

1513

[BP15] Nir Bitansky and Omer Paneth. On non-black-box simulation and the

impossibility of approximate obfuscation. SIAM Journal on Comput-

ing, 44(5):1325–1383, 2015.

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eck-

stein, et al. Distributed optimization and statistical learning via

the alternating direction method of multipliers. Foundations and

Trends® in Machine learning, 3(1):1–122, 2011.

[BPLC+19] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz

Cincio, and Patrick J. Coles. Variational quantum linear solver, 2019.

[BPS19] Harry Buhrman, Subhasree Patro, and Florian Speelman. The quan-

tum strong exponential-time hypothesis. arXiv preprint arXiv:1911.05686,

2019.

[BPS21] Harry Buhrman, Subhasree Patro, and Florian Speelman. A Frame-

work of Quantum Strong Exponential-Time Hypotheses. In Markus

Bläser and Benjamin Monmege, editors, 38th International Symposium

on Theoretical Aspects of Computer Science (STACS 2021), volume

187 of Leibniz International Proceedings in Informatics (LIPIcs), pages

19:1–19:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik.

[BPSW21] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein.

Training (overparametrized) neural networks in near-linear time. In

12th Innovations in Theoretical Computer Science Conference (ITCS),

2021.

[Brä10] Petter Brändén. Notes on hyperbolicity cones. Verfügbar unter

https://math. berkeley. edu/˜ bernd/branden. pdf, 2010.

1514

[Brä11] Petter Brändén. Obstructions to determinantal representability. Ad-

vances in Mathematics, 226(2):1202–1212, 2011.

[Brä14] Petter Brändén. Hyperbolicity cones of elementary symmetric polyno-

mials are spectrahedral. Optimization Letters, 8(5):1773–1782, 2014.

[Brä18] Petter Brändén. Hyperbolic polynomials and the Kadison-Singer

problem. In arXiv preprint. https://arxiv.org/pdf/1809.03255,

2018.

[Bra20] Jan van den Brand. A deterministic linear program solver in current

matrix multiplication time. In ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2020.

[Bra21] Jan van den Brand. Unifying matrix data structures: Simplifying

and speeding up iterative algorithms. In Symposium on Simplicity in

Algorithms (SOSA), pages 1–13. SIAM, 2021.

[BRB17] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical

Gauss-Newton optimisation for deep learning. In Proceedings of the

34th International Conference on Machine Learning, pages 557–565,

2017.

[BRS93] Claude J.P. Bélisle, H. Edwin Romeijn, and Robert L. Smith. Hit-and-

run algorithms for generating multivariate distributions. Mathematics

of Operations Research, 18(2):255–266, 1993.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Va-

sudevan. Proofs of useful work. IACR Cryptology ePrint Archive,

2017:203, 2017.

[BS76] Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in

multidimensional space. In Proceedings of the 8th annual ACM Sym-

1515

https://arxiv.org/pdf/1809.03255

posium on Theory of Computing (STOC 1976), pages 220–230. ACM,

1976.

[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through

the lens of sum-of-squares. Course notes: http://www. sumofsquares.org/public/index.html,

2016.

[BS17] Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for

solving semidefinite programs. In 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 415–426. IEEE,

2017.

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-

ramanujan sparsifiers. SIAM Journal on Computing, 41(6):1704–1721,

2012.

[BT06] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case

reductions for np problems. SIAM Journal on Computing, 36(4):1119–

1159, 2006.

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern con-

vex optimization: analysis, algorithms, and engineering applications.

SIAM, 2001.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity.

Foundations and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[BV02] Dimitris Bertsimas and Santosh Vempala. Solving convex programs

by random walks. In Proceedings of the thiry-fourth annual ACM

symposium on Theory of computing (STOC), pages 109–115. ACM,

2002.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge University Press, New York, NY, USA, 2004.

1516

[BV10] Radim Belohlavek and Vilem Vychodil. Discovery of optimal factors

in binary data via a novel method of matrix decomposition. Journal

of Computer and System Sciences, 76(1):3–20, 2010.

[BVY14] Sam Burton, Cynthia Vinzant, and Yewon Youm. A real stable exten-

sion of the vamos matroid polynomial. arXiv preprint arXiv:1411.2038,

2014.

[BWP+17] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,

Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,

549(7671):195–202, 2017.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal

principal component analysis in distributed and streaming models. In

Proceedings of the forty-eighth annual ACM symposium on Theory of

Computing (STOC), pages 236–249, 2016.

[BYJKS04] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar.

An information statistics approach to data stream and communication

complexity. Journal of Computer and System Sciences, 68(4):702–732,

2004.

[BZ06] Ingemar Bengtsson and Karol Zyczkowski. Geometry of Quantum

States: An Introduction to Quantum Entanglement. Cambridge Uni-

versity Press, 2006.

[Cam19] Earl Campbell. Random compiler for fast hamiltonian simulation.

Physical review letters, 123(7):070503, 2019.

[Cam21] Earl T Campbell. Early fault-tolerant simulations of the hubbard

model. Quantum Science and Technology, 7(1):015007, 2021.

1517

[CB18] Lenaic Chizat and Francis Bach. On the global convergence of gra-

dient descent for over-parameterized models using optimal transport.

Advances in neural information processing systems, 31, 2018.

[CBKC21] Laura Clinton, Johannes Bausch, Joel Klassen, and Toby Cubitt. Phase

estimation of local hamiltonians on nisq hardware, 2021.

[CC89] Andrew Chi-Chih. Lower bounds for algebraic computation trees

with integer inputs. In Proceedings of the 30th Annual Symposium on

Foundations of Computer Science (FOCS 1989), pages 308–313, 1989.

[CCAY+18] Xiang Cheng, Niladri S Chatterji, Yasin Abbasi-Yadkori, Peter L Bartlett,

and Michael I Jordan. Sharp convergence rates for langevin dynamics

in the nonconvex setting. arXiv preprint arXiv:1805.01648, 2018.

[CCBJ18] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I.

Jordan. Underdamped langevin mcmc: A non-asymptotic analy-

sis. In Conference on learning theory, pages 300–323. PMLR, 2018.

arXiv:1707.03663.

[CCCW21] Shouvanik Chakrabarti, Chi-Ning Chou, Kai-Min Chung Chung, and

Xiaodi Wu. Scalable verification of quantum supremacy based on

circuit obfuscation. Manuscript, 2021.

[CCF04] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding

frequent items in data streams. Theor. Comput. Sci., 312(1):3–15,

2004.

[CCGZ20] Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A gen-

eralized neural tangent kernel analysis for two-layer neural networks.

Advances in Neural Information Processing Systems, 33:13363–13373,

2020.

1518

https://arxiv.org/abs/1707.03663

[CCH+19] Shouvanik Chakrabarti, Andrew M. Childs, Shih-Han Hung, Tongyang

Li, Chunhao Wang, and Xiaodi Wu. Quantum algorithm for estimat-

ing volumes of convex bodies, 2019. arXiv:1908.03903.

[CCH+22] Nadiia Chepurko, Kenneth Clarkson, Lior Horesh, Honghao Lin, and

David Woodruff. Quantum-inspired algorithms from randomized nu-

merical linear algebra. In International Conference on Machine Learn-

ing, pages 3879–3900. PMLR, 2022.

[CCLW20] Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi

Wu. Quantum algorithms and lower bounds for convex optimization.

Quantum, 4:221, 2020. arXiv:1809.01731.

[CCZG21] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much

over-parameterization is sufficient to learn deep ReLU networks? In

International Conference on Learning Representations (ICLR), 2021.

[CDG19] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust

mean estimation in nearly-linear time. In Proceedings of the Thirti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

SIAM, 2019.

[CDG+20] Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed

Mahloujifar, Mohammad Mahmoody, Shuang Song, Abhradeep Thakurta,

and Florian Tramer. An attack on instahide: Is private learning pos-

sible with instance encoding? arXiv preprint arXiv:2011.05315, 2020.

[CDGW19] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David Woodruff. Faster

algorithms for high-dimensional robust covariance estimation. In Con-

ference on Learning Theory (COLT), 2019.

1519

https://arxiv.org/abs/1908.03903
https://arxiv.org/abs/1809.01731

[CDHS19] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower

bounds for finding stationary points i. Mathematical Programming,

pages 1–50, 2019.

[CDST19] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-

1 sketch for matrix multiplicative weights. In Conference on Learning

Theory (COLT), pages 589–623, 2019.

[CDWY20] Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. Fast

mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-

step gradients. Journal of Machine Learning Research, 21(92):1–72,

2020. arXiv:1905.12247.

[CEL+21] Sinho Chewi, Murat A Erdogdu, Mufan Bill Li, Ruoqi Shen, and

Matthew Zhang. Analysis of langevin monte carlo from poincar\’e
to log-sobolev. arXiv preprint arXiv:2112.12662, 2021.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,

Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.

Parameterized Algorithms. Springer, 2015.

[CG18] Yu Cheng and Rong Ge. Non-convex matrix completion against a

semi-random adversary. In Conference On Learning Theory (COLT),

2018.

[CG19] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic

gradient descent for wide and deep neural networks. In NeurIPS,

pages 10835–10845, 2019.

[CGH+19] Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He,

Zhihua Zhang, and Liwei Wang. Gram-gauss-newton method: Learn-

ing overparameterized neural networks for regression problems. arXiv

preprint arXiv:1905.11675, 2019.

1520

https://arxiv.org/abs/1905.12247

[CGJ19] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The

Power of Block-Encoded Matrix Powers: Improved Regression Tech-

niques via Faster Hamiltonian Simulation. In Christel Baier, Ioan-

nis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,

46th International Colloquium on Automata, Languages, and Program-

ming (ICALP 2019), volume 132 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 33:1–33:14, Dagstuhl, Germany, 2019.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CGL+20] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin

Tang, and Chunhao Wang. Sampling-based sublinear low-rank matrix

arithmetic framework for dequantizing quantum machine learning. In

Proceedings of the 52nd Annual ACM SIGACT symposium on theory

of computing (STOC), pages 387–400, 2020.

[CGLZ20] Matthias Christandl, François Le Gall, Vladimir Lysikov, and Jeroen

Zuiddam. Barriers for rectangular matrix multiplication. In arXiv

preprint. https://arxiv.org/pdf/2003.03019.pdf, 2020.

[CGŠV21] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda.

Rapid mixing for colorings via spectral independence. In Proceedings

of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1548–1557. SIAM, 2021.

[Cha00a] Timothy M Chan. Random sampling, halfspace range reporting, and

construction of (≤ k)-levels in three dimensions. SIAM Journal on

Computing, 30(2):561–575, 2000.

[Cha00b] Bernard Chazelle. The discrepancy method. Cambridge University

Press, Cambridge, 2000. Randomness and complexity.

1521

https://arxiv.org/pdf/2003.03019.pdf

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding

algorithms. In Proceedings of the thiry-fourth annual ACM symposium

on Theory of computing (STOC), pages 380–388, 2002.

[Cha12] Timothy M Chan. Optimal partition trees. Discrete & Computational

Geometry, 47(4):661–690, 2012.

[Cha19] Timothy M Chan. Orthogonal range searching in moderate dimen-

sions: kd trees and range trees strike back. Discrete & Computational

Geometry, 61(4):899–922, 2019.

[CHC+22] Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma,

Andrew Sornborger, Lukasz Cincio, and Patrick J Coles. General-

ization in quantum machine learning from few training data. Nature

communications, 13(1):4919, 2022.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a

hypothesis based on the sum of observations. The Annals of Mathe-

matical Statistics, pages 493–507, 1952.

[Che18] Lijie Chen. On the hardness of approximate and exact (bichromatic)

maximum inner product. In Proceedings of the 33rd Computational

Complexity Conference (CCC 2018), pages 1–45, 2018.

[CHHK14] Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas

Karrenbauer. Nearly tight approximability results for minimum bi-

clique cover and partition. In European Symposium on Algorithms

(ESA), pages 235–246. Springer, 2014.

[Chi21] Andrew M. Childs. Lecture notes on quantum algorithms. Lecture

notes at the University of Maryland, https://www.cs.umd.edu/ am-

childs/qa/qa.pdf, 2021.

1522

[CHL+22] Xinyi Chen, Elad Hazan, Tongyang Li, Zhou Lu, Xinzhao Wang, and

Rui Yang. Adaptive online learning of quantum states. arXiv preprint

arXiv:2206.00220, 2022.

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,

and Daniel Wichs. Watermarking cryptographic capabilities. SIAM

Journal on Computing, 47(6):2157–2202, 2018.

[CHO+20] Lijie Chen, Shuichi Hirahara, Igor C Oliveira, Ján Pich, Ninad Ra-

jgopal, and Rahul Santhanam. Beyond natural proofs: Hardness

magnification and locality. Leibniz International Proceedings in In-

formatics, 151, 2020.

[CHS20] Nai-Hui Chia, Sean Hallgren, and Fang Song. On Basing One-way

Permutations on NP-hard Problems under Quantum Reductions. Quan-

tum, 4:312, August 2020.

[CIK17] Sunil Chandran, Davis Issac, and Andreas Karrenbauer. On the

parameterized complexity of biclique cover and partition. In 11th

International Symposium on Parameterized and Exact Computation

(IPEC). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and

Antonina Kolokolova. Learning algorithms from natural proofs. In

Proceedings of the 31st Conference on Computational Complexity, CCC

’16, Dagstuhl, DEU, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik.

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst

Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost

flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium

on Foundations of Computer Science (FOCS), pages 612–623. IEEE,

2022.

1523

[CKP13] Alessandro Cosentino, Robin Kothari, and Adam Paetznick. Dequan-

tizing read-once quantum formulas. In 8th Conference on the Theory

of Quantum Computation, Communication and Cryptography (TQC

2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[CKPS16] Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse

interpolation without a frequency gap. In 2016 IEEE 57th Annual

Symposium on Foundations of Computer Science (FOCS), pages 741–

750. IEEE, 2016.

[CKS17] Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum

algorithm for systems of linear equations with exponentially improved

dependence on precision. SIAM Journal on Computing, 46(6):1920–

1950, 2017.

[CL12] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm

for edge-disjoint paths with congestion 2. In 2012 IEEE 53rd Annual

Symposium on Foundations of Computer Science, pages 233–242, 2012.

[Cla88] Kenneth L Clarkson. A randomized algorithm for closest-point queries.

SIAM Journal on Computing, 17(4):830–847, 1988.

[CLA+21] Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic,

and Philippe Rigollet. Optimal dimension dependence of the metropolis-

adjusted langevin algorithm. In Conference on Learning Theory,

pages 1260–1300. PMLR, 2021. arXiv:2012.12810.

[CLM20] Sitan Chen, Jerry Li, and Ankur Moitra. Learning structured dis-

tributions from untrusted batches: Faster and simpler. In NeurIPS.

arXiv preprint arXiv:2002.10435, 2020.

[CLP+21] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie

Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re.

1524

https://arxiv.org/abs/2012.12810

MONGOOSE: A learnable LSH framework for efficient neural net-

work training. In Proceedings of the Nineth International Conference

on Learning Representations (ICLR’2021), 2021.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to Algorithms. MIT press, 2009.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear pro-

grams in the current matrix multiplication time. In Proceedings of

the 51st Annual ACM Symposium on Theory of Computing (STOC),

2019.

[CLSZ21] Sitan Chen, Xiaoxiao Li, Zhao Song, and Danyang Zhuo. On in-

stahide, phase retrieval, and sparse matrix factorization. In Interna-

tional Conference on Learning Representations, 2021.

[CLV20] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of

glauber dynamics up to uniqueness via contraction. arXiv preprint

arXiv:2004.09083, 2020.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of

glauber dynamics: Entropy factorization via high-dimensional expan-

sion. In Proceedings of the 53rd Annual ACM SIGACT Symposium

on Theory of Computing, pages 1537–1550, 2021.

[CLW19] Yu Cao, Jianfeng Lu, and Lihan Wang. On explicit L2-convergence

rate estimate for underdamped Langevin dynamics, 2019. arXiv:1908.04746.

[CMD20] Pablo AM Casares and Miguel Angel Martin-Delgado. A quantum

interior-point predictor–corrector algorithm for linear programming.

Journal of physics A: Mathematical and Theoretical, 53(44):445305,

2020.

1525

https://arxiv.org/abs/1908.04746

[CMJF+20] Beidi Chen, Tharun Medini, Sameh Gobriel James Farwell, Charlie

Tai, and Anshumali Shrivastava. SLIDE : In defense of smart al-

gorithms over hardware acceleration for large-scale deep learning sys-

tems. In MLSys’2020, 2020.

[CMN+18] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and

Yuan Su. Toward the first quantum simulation with quantum speedup.

Proceedings of the National Academy of Sciences, 115(38):9456–9461,

2018.

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quan-

tum copy-protection of compute-and-compare programs in the quan-

tum random oracle model, 2020.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Dif-

ferentially private empirical risk minimization. Journal of Machine

Learning Research, 12(29):1069–1109, 2011.

[CN20] Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance

estimation. In Advances in Neural Information Processing Systems,

2020.

[CN21] Yeshwanth Cherapanamjeri and Jelani Nelson. Terminal embeddings

in sublinear time. In FOCS, 2021.

[CND+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,

Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,

Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language

modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy train-

ing in differentiable programming. Advances in Neural Information

Processing Systems, 32, 2019.

1526

[Coh16a] Michael Cohen. Improved spectral sparsification and Kadison-Singer

for sums of higher-rank matrices. In Banff International Research

Station for Mathematical Innovation and Discovery. https://open.

library.ubc.ca/cIRcle/collections/48630/items/1.0340957, 2016.

[Coh16b] Michael B Cohen. Ramanujan graphs in polynomial time. In 2016

IEEE 57th Annual Symposium on Foundations of Computer Science

(FOCS), pages 276–281. IEEE, 2016.

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices.

SIAM Journal on Computing, 11(3):467–471, 1982.

[CP14] David Cattanéo and Simon Perdrix. The parameterized complexity of

domination-type problems and application to linear codes. In Inter-

national Conference on Theory and Applications of Models of Compu-

tation, pages 86–103. Springer, 2014.

[CP19a] Xue Chen and Eric Price. Active regression via linear-sample sparsi-

fication. In Conference on Learning Theory (COLT), pages 663–695.

PMLR, 2019.

[CP19b] Xue Chen and Eric Price. Estimating the frequency of a clustered

signal. In 46th International Colloquium on Automata, Languages,

and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2019.

[CRAG18] Yudong Cao, Jhonathan Romero, and Alán Aspuru-Guzik. Potential

of quantum computing for drug discovery. IBM Journal of Research

and Development, 62(6):6–1, 2018.

[CRDH08] Yanhua Chen, Manjeet Rege, Ming Dong, and Jing Hua. Non-negative

matrix factorization for semi-supervised data clustering. Knowledge

and Information Systems, 17(3):355–379, 2008.

1527

https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957
https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957

[CRO+19] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Deg-

roote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke,

Borja Peropadre, Nicolas PD Sawaya, et al. Quantum chemistry in the

age of quantum computing. Chemical reviews, 119(19):10856–10915,

2019.

[CRT06] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable sig-

nal recovery from incomplete and inaccurate measurements. Commu-

nications on Pure and Applied Mathematics: A Journal Issued by the

Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

[CS93] Ming-Hui Chen and Bruce Schmeiser. Performance of the Gibbs,

hit-and-run, and Metropolis samplers. Journal of Computational and

Graphical Statistics, 2(3):251–272, 1993.

[CS07] Maria Chudnovsky and Paul Seymour. The roots of the independence

polynomial of a clawfree graph. J. Combin. Theory Ser. B, 97(3):350–

357, 2007.

[CS09] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning.

Advances in neural information processing systems, 22, 2009.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine

calculation of complex fourier series. Mathematics of computation,

19(90):297–301, 1965.

[CT06] Emmanuel J Candes and Terence Tao. Near-optimal signal recov-

ery from random projections: Universal encoding strategies? IEEE

transactions on information theory, 52(12):5406–5425, 2006.

[CT17] Timothy M Chan and Konstantinos Tsakalidis. Dynamic orthogonal

range searching on the ram, revisited. Leibniz International Proceed-

ings in Informatics, LIPIcs, 77:281–2813, 2017.

1528

[CTV06] Kevin P Costello, Terence Tao, and Van Vu. Random symmetric

matrices are almost surely nonsingular. Duke Mathematical Journal,

135(2):395–413, 2006.

[CV08] Kevin P Costello and Van H Vu. The rank of random graphs. Random

Structures & Algorithms, 33(3):269–285, 2008.

[CV10] Kevin p Costello and Van Vu. On the rank of random sparse matrices.

Combinatorics, Probability and Computing, 19(3):321–342, 2010.

[CVB20] Daan Camps and Roel Van Beeumen. Approximate quantum circuit

synthesis using block encodings. Physical Review A, 102(5):052411,

2020.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation

and regression in input sparsity time. In Symposium on Theory of

Computing Conference (STOC), 2013.

[CW16] Timothy M Chan and Ryan Williams. Deterministic APSP, orthog-

onal vectors, and more: Quickly derandomizing razborov-smolensky.

In Proceedings of the 27th annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2016), pages 1246–1255. Society for Industrial and

Applied Mathematics, 2016.

[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal

vectors. In Proceedings of the 30th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2019), pages 21–40. SIAM, 2019.

[CWB+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)

from scratch. Journal of machine learning research, 12(ARTICLE):2493–

2537, 2011.

1529

[Dan47] George B Dantzig. Maximization of a linear function of variables

subject to linear inequalities. Activity analysis of production and al-

location, 13:339–347, 1947.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H.

Overmars. Computational geometry: algorithms and applications, 3rd

Edition. Springer, 2008.

[DBd19] Radu-Alexandru Dragomir, Jérôme Bolte, and Alexandre d’Aspremont.

Fast gradient methods for symmetric nonnegative matrix factorization.

arXiv preprint arXiv:1901.10791, 2019.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv preprint arXiv:1810.04805, 2018.

[DCR+22] Alain Delgado, Pablo AM Casares, Roberto dos Reis, Modjtaba Shokrian

Zini, Roberto Campos, Norge Cruz-Hernández, Arne-Christian Voigt,

Angus Lowe, Soran Jahangiri, MA Martin-Delgado, et al. How to

simulate key properties of lithium-ion batteries with a fault-tolerant

quantum computer. arXiv preprint arXiv:2204.11890, 2022.

[DCWY18] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-

concave sampling: Metropolis-Hastings algorithms are fast! In Con-

ference on learning theory, pages 793–797. PMLR, 2018. arXiv:1801.02309.

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on lay-

ered set systems. In 2019 IEEE 60th Annual Symposium on Founda-

tions of Computer Science (FOCS), pages 1495–1524. IEEE, 2019.

[DDFH18] Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean

function analysis on high-dimensional expanders. In Approxima-

tion, Randomization, and Combinatorial Optimization. Algorithms

1530

https://arxiv.org/abs/1801.02309

and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2018.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition, pages 248–255.

Ieee, 2009.

[dEGJL07] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and

Gert RG Lanckriet. A direct formulation for sparse pca using semidef-

inite programming. SIAM review, 49(3):434–448, 2007.

[Del76] Philippe Delsarte. Association schemes and t-designs in regular semi-

lattices. Journal of Combinatorial Theory, Series A, 20(2):230–243,

1976.

[DEL+22] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar

Mozes. Locally testable codes with constant rate, distance, and local-

ity. In Proceedings of the 54th Annual ACM SIGACT Symposium on

Theory of Computing, pages 357–374, 2022.

[dFDRC08] Ruairí de Fréin, Konstantinos Drakakis, Scott Rickard, and Andrzej

Cichocki. Analysis of financial data using non-negative matrix factor-

ization. international mathematical forum, 3(38):1853–1870, 2008.

[DG94] Jean-Pierre Dedieu and R. J. Gregorac. Corrigendum: “Obreschkoff’s

theorem revisited: what convex sets are contained in the set of hy-

perbolic polynomials?” [J. Pure Appl. Algebra 81 (1992), no. 3,

269–278; MR1179101 (93g:12001)] by Dedieu. J. Pure Appl. Algebra,

93(1):111–112, 1994.

[DH96] Christoph Durr and Peter Hoyer. A quantum algorithm for finding

the minimum, 1996.

1531

[DHK09] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Structured

logconcave sampling with a restricted gaussian oracle. In Conference

on Learning Theory, pages 355–366, 2009.

[DHL19] Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring

for fast robust mean estimation and improved outlier detection. In

Advances in Neural Information Processing Systems (NeurIPS), pages

6067–6077, 2019.

[DHS05] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of

nonnegative matrix factorization and spectral clustering. In Proceed-

ings of the SIAM international conference on data mining (ICDM),

pages 606–610. SIAM, 2005.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.

Locality-sensitive hashing scheme based on p-stable distributions. In

Proceedings of the twentieth annual symposium on Computational ge-

ometry (SoCG), pages 253–262, 2004.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959.

[DIRW20] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning

space partitions for nearest neighbor search. In ICLR. arXiv preprint

arXiv:1901.08544, 2020.

[DJR21] Daniel Dadush, Haotian Jiang, and Victor Reis. A new framework for

matrix discrepancy: Partial coloring bounds via mirror descent. arXiv

preprint arXiv:2111.03171, 2021.

[DJS+19] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff.

Optimal sketching for kronecker product regression and low rank ap-

1532

proximation. In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply

agreement expanders. In 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS), pages 974–985. IEEE,

2017.

[DK19] Arnak S. Dalalyan and Avetik Karagulyan. User-friendly guarantees

for the Langevin Monte Carlo with inaccurate gradient. Stochastic

Processes and their Applications, 129(12):5278–5311, 2019. arXiv:1710.00095.

[DKJ+07] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S

Dhillon. Information-theoretic metric learning. In Proceedings of

the 24th international conference on Machine learning, pages 209–216,

2007.

[DKK+16] I Diakonikolas, G Kamath, DM Kane, J Li, A Moitra, and A Stewart.

Robust estimators in high dimensions without the computational in-

tractability. In 2016 IEEE 57th Annual Symposium on Foundations

of Computer Science (FOCS), pages 655–664, 2016.

[DKK+18a] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra.

On non-optimally expanding sets in grassmann graphs. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Comput-

ing, pages 940–951, 2018.

[DKK+18b] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra.

Towards a proof of the 2-to-1 games conjecture? In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing,

pages 376–389, 2018.

1533

https://arxiv.org/abs/1710.00095

[DKS14] Martin Dyer, Ravi Kannan, and Leen Stougie. A simple randomised

algorithm for convex optimisation: Application to two-stage stochastic

programming. Mathematical Programming, 147:207–229, 2014.

[DKW05] Evgeny Dantsin, Vladik Kreinovich, and Alexander Wolpert. On

quantum versions of record-breaking algorithms for SAT. SIGACT

News, 36(4):103–108, December 2005.

[DLL+19] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai.

Gradient descent finds global minima of deep neural networks. In

ICML, 2019.

[DLPM21] Michał Dereziński, Jonathan Lacotte, Mert Pilanci, and Michael W.

Mahoney. Newton-less: Sparsification without trade-offs for the sketched

newton update, 2021.

[DLT22] Yulong Dong, Lin Lin, and Yu Tong. Ground state preparation and

energy estimation on early fault-tolerant quantum computers via quan-

tum eigenvalue transformation of unitary matrices. arXiv preprint

arXiv:2204.05955, 2022.

[DLY21] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time

algorithm for linear programs with small treewidth: A multiscale rep-

resentation of robust central path. In Proceedings of the 53rd Annual

ACM SIGACT Symposium on Theory of Computing (STOC), 2021.

[DM17] Alain Durmus and Eric Moulines. Nonasymptotic convergence anal-

ysis for the unadjusted Langevin algorithm. The Annals of Applied

Probability, 27(3):1551–1587, 2017. arXiv:1507.05021.

[DM18] Irit Dinur and Pasin Manurangsi. Eth-hardness of approximating 2-

csps and directed steiner network. In 9th Innovations in Theoretical

1534

https://arxiv.org/abs/1507.05021

Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2018.

[DMM19] Alain Durmus, Szymon Majewski, and Błażej Miasojedow. Analysis

of Langevin Monte Carlo via convex optimization. The Journal of Ma-

chine Learning Research, 20(1):2666–2711, 2019. arXiv:1802.09188.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.

Calibrating noise to sensitivity in private data analysis. In Proceedings

of the Third Conference on Theory of Cryptography, TCC’06, page

265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[DMZS21] Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao, and Anshu-

mali Shrivastava. Accelerating slide deep learning on modern cpus:

Vectorization, quantizations, memory optimizations, and more. Pro-

ceedings of Machine Learning and Systems, 3, 2021.

[DNTTJ18] Daniel Dadush, Aleksandar Nikolov, Kunal Talwar, and Nicole Tomczak-

Jaegermann. Balancing vectors in any norm. In 2018 IEEE 59th An-

nual Symposium on Foundations of Computer Science (FOCS), pages

1–10. IEEE, 2018.

[Don06] D.L. Donoho. Compressed sensing. IEEE Transactions on Informa-

tion Theory, 52(4):1289–1306, 2006.

[dP95] Gaspard Riche de Prony. Essai experimental et analytique: sur les lois

de la dilatabilite des fluides elastique et sur celles de la force expansive

de la vapeur de l’eau et de la vapeur de l’alkool, a differentes tem-

peratures. Journal Polytechnique ou Bulletin du Travail fait a l’Ecole

Centrale des Travaux Publics, 1795.

1535

https://arxiv.org/abs/1802.09188

[DPMRF23] Giacomo De Palma, Milad Marvian, Cambyse Rouzé, and Daniel Stilck

França. Limitations of variational quantum algorithms: a quantum

optimal transport approach. PRX Quantum, 4(1):010309, 2023.

[DS95] Daniele Giorgio Degiorgi and Klaus Simon. A dynamic algorithm for

line graph recognition. In International Workshop on Graph-Theoretic

Concepts in Computer Science, pages 37–48. Springer, 1995.

[DS08] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy

generalized flow via interior point algorithms. In Proceedings of the

fortieth annual ACM symposium on Theory of computing (STOC),

pages 451–460, 2008.

[DSL19] Roee David, Karthik C S., and Bundit Laekhanukit. On the com-

plexity of closest pair via polar-pair of point-sets. SIAM Journal on

Discrete Mathematics, 33(1):509–527, 2019.

[DSSW17] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching

for kronecker product regression and p-splines. In AISTATS, 2017.

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient

descent provably optimizes over-parameterized neural networks. In

International Conference on Learning Representations, 2019.

[EGM+20] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and

Erich Elsen. Rigging the lottery: Making all tickets winners. In Inter-

national Conference on Machine Learning, pages 2943–2952. PMLR,

2020.

[EH21] Murat A Erdogdu and Rasa Hosseinzadeh. On the convergence of

langevin monte carlo: The interplay between tail growth and smooth-

ness. In Conference on Learning Theory, pages 1776–1822. PMLR,

2021.

1536

[EIS75] Shimon Even, Alon Itai, and Adi Shamir. "on the complexity of

time table and multi-commodity flow problems". In 16th Annual

Symposium on Foundations of Computer Science (sfcs 1975), pages

184–193. IEEE, 1975.

[ER60] Paul Erdős and Alfréd Rényi. On the evolution of random graphs.

Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[Erd45] Paul Erdös. On a lemma of littlewood and offord. Bulletin of the

American Mathematical Society, 51(12):898–902, 1945.

[Eri95] Jeff Erickson. Lower bounds for linear satisfiability problems. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 388–

395, 1995.

[ES18] Ronen Eldan and Mohit Singh. Efficient algorithms for discrep-

ancy minimization in convex sets. Random Structures & Algorithms,

53(2):289–307, 2018.

[EU18] Alessandro Epasto and Eli Upfal. Efficient approximation for re-

stricted biclique cover problems. Algorithms, 11(6):84, 2018.

[FAESS22] Alaa Fkirin, Gamal Attiya, Ayman El-Sayed, and Marwa A Shouman.

Copyright protection of deep neural network models using digital wa-

termarking: a comparative study. Multimedia Tools and Applications,

81(11):15961–15975, 2022.

[FC18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. In International Confer-

ence on Learning Representations, 2018.

[Fel80] H. J. Fell. On the zeros of convex combinations of polynomials. Pa-

cific J. Math., 89(1):43–50, 1980.

1537

[FG21] Spencer Frei and Quanquan Gu. Proxy convexity: A unified frame-

work for the analysis of neural networks trained by gradient descent.

Advances in Neural Information Processing Systems, 34:7937–7949,

2021.

[FGG14a] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum

approximate optimization algorithm. arXiv preprint arXiv:1411.4028,

2014.

[FGG14b] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum

approximate optimization algorithm applied to a bounded occurrence

constraint problem. arXiv preprint arXiv:1412.6062, 2014.

[FGG20a] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum

approximate optimization algorithm needs to see the whole graph: A

typical case. arXiv preprint arXiv:2004.09002, 2020.

[FGG20b] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum

approximate optimization algorithm needs to see the whole graph:

Worst case examples. arXiv preprint arXiv:2005.08747, 2020.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski,

and Peter Shor. Quantum money from knots. In Proceedings of the

3rd Innovations in Theoretical Computer Science Conference, ITCS

’12, pages 276–289, New York, NY, USA, 2012. Association for Com-

puting Machinery.

[FGL+19] Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, Fahad Panolan,

and Saket Saurabh. Approximation schemes for low-rank binary

matrix approximation problems. ACM Transactions on Algorithms

(TALG), 16(1):1–39, 2019.

1538

[FGYZ21] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mix-

ing from spectral independence beyond the boolean domain. In Pro-

ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1558–1577. SIAM, 2021.

[FHL08] Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Im-

proved approximation algorithms for minimum weight vertex separa-

tors. SIAM Journal on Computing, 38(2):629–657, 2008.

[Fis05] Ernst Fischer. Über quadratische formen mit reellen koeffizienten.

Monatshefte für Mathematik und Physik, 16(1):234–249, 1905.

[Fis04] Matthew P. A. Fisher. Duality in low dimensional quantum field the-

ories. In D. Baeriswyl and L. Degiorgi, editors, Strong interactions

in low dimensions, pages 419–438, Dordrecht, 2004. Springer Nether-

lands.

[FJLS20] Asaf Ferber, Vishesh Jain, Kyle Luh, and Wojciech Samotij. On the

counting problem in inverse littlewood–offord theory. Journal of the

London Mathematical Society, 2020.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic

Proofs and Efficient Algorithm Design. Foundations and Trends in

Theoretical Computer Science, 2019.

[FKS20] Asaf Ferber, Matthew Kwan, and Lisa Sauermann. Singularity of

sparse random matrices: simple proofs. Combinatorics, Probability

and Computing, pages 1–8, 2020.

[FKT20] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic

convex optimization: optimal rates in linear time. In Proceedings of

the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

pages 439–449, 2020.

1539

[Fle13] Roger Fletcher. Practical methods of optimization. John Wiley &

Sons, 2013.

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th Paschos. Sub-

exponential approximation schemes for csps: From dense to almost

sparse. In 33rd Symposium on Theoretical Aspects of Computer Sci-

ence (STACS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2016.

[FMPS09] Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szei-

der. Covering graphs with few complete bipartite subgraphs. Theo-

retical Computer Science, 410(21-23):2045–2053, 2009.

[FYC23] Jiaojiao Fan, Bo Yuan, and Yongxin Chen. Improved dimension

dependence of a proximal algorithm for sampling. arXiv preprint

arXiv:2302.10081, 2023.

[Gam22] Jay Gambetta. Ibm quantum roadmap to build quantum-centric su-

percomputers, Aug 2022.

[Går51] Lars Gårding. Linear hyperbolic partial differential equations with

constant coefficients. Acta Mathematica, 85:1–62, 1951.

[Går59] Lars Gårding. An inequality for hyperbolic polynomials. Journal of

Mathematics and Mechanics, pages 957–965, 1959.

[Gav12] D. Gavinsky. Quantum money with classical verification. In 2012

IEEE 27th Conference on Computational Complexity, pages 42–52,

June 2012.

[GC05] Yuan Gao and George Church. Improving molecular cancer class

discovery through sparse non-negative matrix factorization. Bioinfor-

matics, 21(21):3970–3975, 2005.

1540

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to con-

struct random functions. J. ACM, 33(4):792–807, August 1986.

[GH16] Dan Garber and Elad Hazan. Sublinear time algorithms for approx-

imate semidefinite programming. Mathematical Programming, 158(1-

2):329–361, 2016.

[Gha15] Shayan Oveis Gharan. Proof of kadison-singer conjecture and the

extensions, 2015.

[GIIS14] Anna C. Gilbert, Piotr Indyk, Mark A. Iwen, and Ludwig Schmidt.

Recent developments in the sparse fourier transform: A compressed

fourier transform for big data. IEEE Signal Process. Mag., 31(5):91–

100, 2014.

[Gil08] Michael B. Giles. Multilevel Monte Carlo path simulation. Operations

Research, 56(3):607–617, 2008.

[Gil12] Nicolas Gillis. Sparse and unique nonnegative matrix factorization

through data preprocessing. The Journal of Machine Learning Re-

search, 13(1):3349–3386, 2012.

[Gil15] Michael B. Giles. Multilevel Monte Carlo methods. Acta Numerica,

24:259–328, 2015.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J

Wu. Watermarking public-key cryptographic primitives. In Annual

International Cryptology Conference, pages 367–398. Springer, 2019.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-

time programs. In Annual International Cryptology Conference, pages

39–56. Springer, 2008.

1541

[GKR13] Martin Grötschel, Sven O Krumke, and Jörg Rambau. Online opti-

mization of large scale systems. Springer Science & Business Media,

2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable ob-

fuscation. In 2017 IEEE 58th Annual Symposium on Foundations of

Computer Science (FOCS), pages 612–621. IEEE, 2017.

[GL21] Leonid Gurvits and Jonathan Leake. Capacity lower bounds via pro-

ductization. In Proceedings of the 53rd Annual ACM SIGACT Sym-

posium on Theory of Computing, pages 847–858, 2021.

[GLG22] Sevag Gharibian and François Le Gall. Dequantizing the quantum

singular value transformation: Hardness and applications to quantum

chemistry and the quantum pcp conjecture. In Proceedings of the 54th

Annual ACM SIGACT Symposium on Theory of Computing, pages

19–32, 2022.

[GLL20] Rong Ge, Holden Lee, and Jianfeng Lu. Estimating normalizing con-

stants for log-concave distributions: Algorithms and lower bounds. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory

of Computing, pages 579–586, 2020. arXiv:1911.03043.

[GLL22] Tom Gur, Noam Lifshitz, and Siqi Liu. Hypercontractivity on high

dimensional expanders. In Proceedings of the 54th Annual ACM

SIGACT Symposium on Theory of Computing, pages 176–184, 2022.

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum

random access memory. Physical review letters, 100(16):160501, 2008.

[GLP21] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical

flows: Sparse maxflow faster than goldberg-rao. In 2021 IEEE 62nd

Annual Symposium on Foundations of Computer Science (FOCS), 2021.

1542

https://arxiv.org/abs/1911.03043

[GLSS18] Ankit Garg, Yin-Tat Lee, Zhao Song, and Nikhil Srivastava. A matrix

expander chernoff bound. In STOC. https://arxiv.org/pdf/1704.

03864, 2018.

[GMS86] M Gromov, V Milman, and G Schechtman. Asymptotic theory of

finite dimensional normed spaces, volume 1200 of lectures notes in

mathematics, 1986.

[GMS05] Anna C Gilbert, Shan Muthukrishnan, and Martin Strauss. Im-

proved time bounds for near-optimal sparse fourier representations.

In Wavelets XI, volume 5914, page 59141A. International Society for

Optics and Photonics, 2005.

[Gol65] Sidney Golden. Lower bounds for the helmholtz function. Physical

Review, 137(4B):B1127, 1965.

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Dis-

tance labeling in graphs. Journal of Algorithms, 53(1):85–112, 2004.

[GPY20] Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle Com-

plexity Classes and Local Measurements on Physical Hamiltonians. In

Christophe Paul and Markus Bläser, editors, 37th International Sym-

posium on Theoretical Aspects of Computer Science (STACS 2020),

volume 154 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 20:1–20:37, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik.

[GR02] Lov Grover and Terry Rudolph. Creating superpositions that corre-

spond to efficiently integrable probability distributions, 2002. arXiv:quant-

ph/0208112.

1543

https://arxiv.org/pdf/1704.03864
https://arxiv.org/pdf/1704.03864
https://arxiv.org/abs/quant-ph/0208112
https://arxiv.org/abs/quant-ph/0208112

[GRB+20] Jérôme F Gonthier, Maxwell D Radin, Corneliu Buda, Eric J Doskocil,

Clena M Abuan, and Jhonathan Romero. Identifying challenges to-

wards practical quantum advantage through resource estimation: the

measurement roadblock in the variational quantum eigensolver. arXiv

preprint arXiv:2012.04001, 2020.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database

search. In Proceedings of the Twenty-Eighth Annual ACM Symposium

on Theory of Computing, STOC ’96, pages 212–219, New York, NY,

USA, 1996. Association for Computing Machinery.

[GS18] Sevag Gharibian and Jamie Sikora. Ground state connectivity of local

hamiltonians. ACM Trans. Comput. Theory, 10(2), apr 2018.

[GS20] François Le Gall and Saeed Seddighin. Quantum meets fine-grained

complexity: Sublinear time quantum algorithms for string problems.

arXiv preprint arXiv:2010.12122, 2020.

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quan-

tum singular value transformation and beyond: exponential improve-

ments for quantum matrix arithmetics. In Proceedings of the 51st

Annual ACM SIGACT Symposium on Theory of Computing, pages

193–204, 2019.

[GST22] András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-

inspired algorithm for linear regression. Quantum, 6:754, 2022.

[GTC19] Yimin Ge, Jordi Tura, and J Ignacio Cirac. Faster ground state

preparation and high-precision ground energy estimation with fewer

qubits. Journal of Mathematical Physics, 60(2):022202, 2019.

[GU18] François Le Gall and Florent Urrutia. Improved rectangular matrix

multiplication using powers of the coppersmith-winograd tensor. In

1544

Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2018.

[Gül97] Osman Güler. Hyperbolic polynomials and interior point methods for

convex programming. Mathematics of Operations Research, 22(2):350–

377, 1997.

[Gur04] Leonid Gurvits. Combinatorics hidden in hyperbolic polynomials and

related topics. arXiv preprint math/0402088, 2004.

[Gur06] Leonid Gurvits. Hyperbolic polynomials approach to van der waerden/schrijver-

valiant like conjectures: sharper bounds, simpler proofs and algorith-

mic applications. In Proceedings of the thirty-eighth annual ACM

symposium on Theory of computing, pages 417–426, 2006.

[Gur07] Leonid Gurvits. Van der waerden/schrijver-valiant like conjectures

and stable (aka hyperbolic) homogeneous polynomials: one theorem

for all. arXiv preprint arXiv:0711.3496, 2007.

[GW94] Michel X Goemans and David P Williamson. .879-approximation

algorithms for max cut and max 2sat. In Proceedings of the twenty-

sixth annual ACM symposium on Theory of computing (STOC), pages

422–431, 1994.

[GWL+22] Joshua J Goings, Alec White, Joonho Lee, Christofer S Tautermann,

Matthias Degroote, Craig Gidney, Toru Shiozaki, Ryan Babbush, and

Nicholas C Rubin. Reliably assessing the electronic structure of cy-

tochrome p450 on today’s classical computers and tomorrow’s quan-

tum computers. arXiv preprint arXiv:2202.01244, 2022.

[GY19] Sevag Gharibian and Justin Yirka. The complexity of simulating local

measurements on quantum systems. Quantum, 3:189, 2019.

1545

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable decryption keys.

Cryptology ePrint Archive, Report 2020/877, 2020. https://eprint.

iacr.org/2020/877.

[Hal07] Thomas C Hales. The jordan curve theorem, formally and informally.

The American Mathematical Monthly, 114(10):882–894, 2007.

[Ham21] Yassine Hamoudi. Quantum Sub-Gaussian Mean Estimator. In 29th

Annual European Symposium on Algorithms, volume 204 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 50:1–50:17.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. arXiv:2108.12172.

[HAR70] RA HARSHMAN. Foundations of the parafac procedure: Models and

conditions for an" explanatory" multi-mode factor analysis. UCLA

Working Papers in Phonetics, 16:1–84, 1970.

[Has19] Matthew B Hastings. Classical and quantum bounded depth approx-

imation algorithms. arXiv preprint arXiv:1905.07047, 2019.

[HBE22] Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu. Heavy-

tailed sampling via transformed unadjusted langevin algorithm. arXiv

preprint arXiv:2201.08349, 2022.

[HBR21] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost. Near-term

quantum algorithms for linear systems of equations with regression

loss functions. New Journal of Physics, 23(11):113021, nov 2021.

[Hei01] Stefan Heinrich. Multilevel Monte Carlo methods. In Interna-

tional Conference on Large-Scale Scientific Computing, pages 58–67.

Springer, 2001.

[Her15] Timon Hertli. Improved Exponential Algorithms for SAT and ClSP.

PhD thesis, ETH Zurich, 2015.

1546

https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/877
https://arxiv.org/abs/2108.12172

[HH06] Eran Halperin and Elad Hazan. Haplofreq—estimating haplotype

frequencies efficiently. Journal of Computational Biology, 13(2):481–

500, 2006.

[HHL09] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum

algorithm for linear systems of equations. Physical review letters,

103(15):150502, 2009.

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly

optimal sparse fourier transform. In Proceedings of the forty-fourth

annual ACM symposium on Theory of computing, pages 563–578, 2012.

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple

and practical algorithm for sparse fourier transform. In Proceedings

of the twenty-third annual ACM-SIAM symposium on Discrete Algo-

rithms (SODA), pages 1183–1194. SIAM, 2012.

[Hil14] Roland Hildebrand. Canonical barriers on convex cones. Mathematics

of operations research, 39(3):841–850, 2014.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael

Luby. A pseudorandom generator from any one-way function. SIAM

Journal on Computing, 28(4):1364–1396, 1999.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reduc-

tions within np. In 2018 IEEE 59th Annual Symposium on Founda-

tions of Computer Science (FOCS), pages 247–258. IEEE, 2018.

[HJO14] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-

structure theory. John Wiley & Sons, 2014.

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe

Zhang. Solving sdp faster: A robust ipm framework and efficient im-

1547

plementation. In 2022 IEEE 63rd Annual Symposium on Foundations

of Computer Science (FOCS), pages 233–244. IEEE, 2022.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and

Thatchaphol Saranurak. Unifying and strengthening hardness for dy-

namic problems via the online matrix-vector multiplication conjecture.

In Proceedings of the forty-seventh annual ACM symposium on Theory

of computing, pages 21–30, 2015.

[HKT+22] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert,

and John Preskill. Provably efficient machine learning for quantum

many-body problems. Science, 377(6613):eabk3333, 2022.

[HL16] Elad Hazan and Yuanzhi Li. An optimal algorithm for bandit convex

optimization, 2016. arXiv:1603.04350.

[HL22] Max Hopkins and Ting-Chun Lin. Explicit lower bounds against ω(n)-

rounds of sum-of-squares. arXiv preprint arXiv:2204.11469, 2022.

[HLJ09] F Reese Harvey and H Blaine Lawson Jr. Hyperbolic polynomials and

the dirichlet problem. arXiv preprint arXiv:0912.5220, 2009.

[HLSY21] Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neu-

ral tangent kernel-based framework for federated learning convergence

analysis. In ICML, 2021.

[HM19] Yassine Hamoudi and Frédéric Magniez. Quantum Chebyshev’s in-

equality and applications. In Proceedings of the 46th International

Colloquium on Automata, Languages, and Programming, volume 132

of Leibniz International Proceedings in Informatics, pages 69:1–69:16,

2019. arXiv:1807.06456.

1548

https://arxiv.org/abs/1603.04350
https://arxiv.org/abs/1807.06456

[HO14] Nicholas JA Harvey and Neil Olver. Pipage rounding, pessimistic

estimators and matrix concentration. In Proceedings of the twenty-fifth

annual ACM-SIAM symposium on Discrete algorithms, pages 926–945.

SIAM, 2014.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded ran-

dom variables. Journal of the American Statistical Association, 58(301):13–

30, 1963.

[Hor83] L Hormander. The analysis of linear partial differential operators ii.

Grundlehren, 257, 1983.

[HOS18] Shuichi Hirahara, Igor C Oliveira, and Rahul Santhanam. Np-hardness

of minimum circuit size problem for or-and-mod circuits. In 33rd

Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2018.

[Hoy04] Patrik O Hoyer. Non-negative matrix factorization with sparseness

constraints. Journal of machine learning research, 5(Nov):1457–1469,

2004.

[HR17] Ishay Haviv and Oded Regev. The restricted isometry property of

subsampled fourier matrices. In Geometric aspects of functional anal-

ysis, pages 163–179. Springer, 2017.

[HRS21] Samuel B Hopkins, Prasad Raghavendra, and Abhishek Shetty. Ma-

trix discrepancy from quantum communication. arXiv preprint arXiv:2110.10099,

2021.

[HRW98] Roger A Horn, Noah H Rhee, and So Wasin. Eigenvalue inequalities

and equalities. Linear Algebra and its Applications, 270(1-3):29–44,

1998.

1549

[HS07] Lisa Hellerstein and Rocco A Servedio. On PAC learning algorithms

for rich Boolean function classes. Theoretical Computer Science,

384(1):66–76, 2007.

[HSC+20] Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and Sanjeev Arora.

Texthide: Tackling data privacy in language understanding tasks. In

The Conference on Empirical Methods in Natural Language Processing

(Findings of EMNLP), 2020.

[HSLA20a] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide

challenge. https://github.com/Hazelsuko07/InstaHide_Challenge,

2020.

[HSLA20b] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide:

Instance-hiding schemes for private distributed learning. In Inter-

national Conference on Machine Learning (ICML), pages 4507–4518,

2020.

[HST+20] Baihe Huang, Zhao Song, Runzhou Tao, Ruizhe Zhang, and Danyang

Zhuo. Instahide’s sample complexity when mixing two private images.

arXiv preprint arXiv:2011.11877, 2020.

[Hua18] Jiaoyang Huang. Invertibility of adjacency matrices for random d-

regular graphs. arXiv preprint arXiv:1807.06465, 2018.

[HV07] J William Helton and Victor Vinnikov. Linear matrix inequality repre-

sentation of sets. Communications on Pure and Applied Mathematics:

A Journal Issued by the Courant Institute of Mathematical Sciences,

60(5):654–674, 2007.

[HW20] Aram W. Harrow and Annie Y. Wei. Adaptive quantum simulated

annealing for Bayesian inference and estimating partition functions.

1550

https://github.com/Hazelsuko07/InstaHide_Challenge

In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 193–212, 2020.

[HWO+19] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rief-

fel, Davide Venturelli, and Rupak Biswas. From the quantum ap-

proximate optimization algorithm to a quantum alternating operator

ansatz. Algorithms, 12(2):34, 2019.

[HXZ+11] Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej

Cichocki. Symmetric nonnegative matrix factorization: Algorithms

and applications to probabilistic clustering. IEEE Transactions on

Neural Networks, 22(12):2117–2131, 2011.

[HYF21] Robin Harper, Wenjun Yu, and Steven T Flammia. Fast estimation

of sparse quantum noise. PRX Quantum, 2(1):010322, 2021.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international conference on

computer vision, pages 1026–1034, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), pages

770–778, 2016.

[IK14] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling

in any constant dimension. In IEEE 55th Annual Symposium onFoun-

dations of Computer Science (FOCS), pages 514–523. IEEE, 2014.

[IKP14] Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-

optimal sparse fourier transform. In Proceedings of the twenty-fifth

1551

annual ACM-SIAM symposium on Discrete algorithms, pages 480–499.

SIAM, 2014.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The

power of natural properties as oracles. In 33rd Computational Com-

plexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2018.

[Ila19] R. Ilango. AC0[p] lower bounds and np-hardness for variants of mcsp.

Electron. Colloquium Comput. Complex., 26:21, 2019.

[Ila20a] Rahul Ilango. Connecting Perebor Conjectures: Towards a Search

to Decision Reduction for Minimizing Formulas. In Shubhangi Saraf,

editor, 35th Computational Complexity Conference (CCC 2020), vol-

ume 169 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 31:1–31:35. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

2020.

[Ila20b] Rahul Ilango. Constant depth formula and partial function versions of

mcsp are hard. In 2020 IEEE 61st Annual Symposium on Foundations

of Computer Science (FOCS), pages 424–433. IEEE, 2020.

[ILO20] Rahul Ilango, Bruno Loff, and Igor C. Oliveira. Np-hardness of cir-

cuit minimization for multi-output functions. In 35th Computational

Complexity Conference (CCC 2020), CCC ’20, Dagstuhl, DEU, 2020.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing (STOC),

pages 604–613, 1998.

1552

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embed-

dings, and data stream computation. Journal of the ACM (JACM),

53(3):307–323, 2006.

[INT05] Toshiya Itoh, Tatsuya Nagatani, and Jun Tarui. Explicit construction

of k-wise nearly random permutations by iterated Feistel transform.

In Workshop on Randomness and Computation, 2005.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-

SAT. Journal of Computer and System Sciences, 62(2):367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which

problems have strongly exponential complexity? Journal of Computer

and System Sciences, 63(4):512–530, 2001.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any

samplable distribution suffices: New characterizations of one-way func-

tions by meta-complexity. Electron. Colloquium Comput. Complex.,

28:82, 2021.

[IRW17] Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Practical data-

dependent metric compression with provable guarantees. Advances

in Neural Information Processing Systems, 30, 2017.

[ITU92] ITU. Information technology - digital compression and coding of con-

tinuous - tone still images - requirements and guidelines. CCITT,

Recommendation, 1992.

[IW97] Russell Impagliazzo and Avi Wigderson. P= BPP if E requires ex-

ponential circuits: Derandomizing the XOR lemma. In Proceedings

of the twenty-ninth annual ACM symposium on Theory of computing,

pages 220–229, 1997.

1553

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the

frequency moments of data streams. In Proceedings of the thirty-

seventh annual ACM symposium on Theory of computing, pages 202–

208, 2005.

[Jai21] Vishesh Jain. Approximate spielman-teng theorems for the least sin-

gular value of random combinatorial matrices. Israel Journal of Math-

ematics, 242(1):461–500, 2021.

[Jef14] Stacey Jeffery. Frameworks for Quantum Algorithms. PhD thesis,

University of Waterloo, 2014.

[Jen17] Frank Jensen. Introduction to computational chemistry. John Wiley

& Sons, 2017.

[Jeř09] Emil Jeřábek. Approximate counting by hashing in bounded arith-

metic. Journal of Symbolic Logic, 74(3):829–860, 2009.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tan-

gent kernel: Convergence and generalization in neural networks. In

Advances in neural information processing systems, pages 8571–8580,

2018.

[JGL10] Stephen P Jordan, David Gosset, and Peter J Love. Quantum-merlin-

arthur–complete problems for stoquastic hamiltonians and markov ma-

trices. Physical Review A, 81(3):032331, 2010.

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous.

QIP = PSPACE. Journal of the ACM (JACM), 2011.

[JKDG08] Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman.

Online metric learning and fast similarity search. In NIPS, volume 8,

pages 761–768. Citeseer, 2008.

1554

[JKG+22] Peter D Johnson, Alexander A Kunitsa, Jérôme F Gonthier, Maxwell D

Radin, Corneliu Buda, Eric J Doskocil, Clena M Abuan, and Jhonathan

Romero. Reducing the cost of energy estimation in the variational

quantum eigensolver algorithm with robust amplitude estimation. arXiv

preprint arXiv:2203.07275, 2022.

[JKL97] Michael S Jacobson, André E Kézdy, and Jenő Lehel. Recognizing

intersection graphs of linear uniform hypergraphs. Graphs and Com-

binatorics, 13(4):359–367, 1997.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan,

and Zhao Song. A faster interior point method for semidefinite pro-

gramming. In 61st Annual IEEE Symposium on Foundations of Com-

puter Science (FOCS), 2020.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz

mappings into a hilbert space. Contemporary mathematics, 26(189-

206):1, 1984.

[JLL+20] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and

Kevin Tian. Positive semidefinite programming: mixed, parallel, and

width-independent. In Proccedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing (STOC). ACM, 2020.

[JLLV20] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh S Vempala. Reducing

isotropy and volume to KLS: An O∗(n3ψ2) volume algorithm. arXiv

preprint arXiv:2008.02146, 2020.

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum

states. In Annual International Cryptology Conference, pages 126–

152. Springer, 2018.

1555

[JLS23] Yaonan Jin, Daogao Liu, and Zhao Song. Super-resolution and robust

sparse continuous fourier transform in any constant dimension: Nearly

linear time and sample complexity. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2023.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong.

An improved cutting plane method for convex optimization, convex-

concave games and its applications. In STOC, 2020.

[JLT20] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian

principal component analysis and width-independent schatten packing.

Advances in Neural Information Processing Systems (NeurIPS), 33,

2020.

[JNV+20] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and

Henry Yuen. MIP*=RE. arXiv preprint arXiv:2001.04383, 2020.

[Jor05] Stephen P. Jordan. Fast quantum algorithm for numerical gradient

estimation. Physical Review Letters, 95(5):050501, 2005.

[JPR+20] Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero,

and Erich Elsen. Top-kast: Top-k always sparse training. Advances

in Neural Information Processing Systems, 33:20744–20754, 2020.

[JPV21] Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. Spectral

independence, coupling with the stationary distribution, and the spec-

tral gap of the glauber dynamics. arXiv preprint arXiv:2105.01201,

2021.

[JQST20] Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava,

and Madhur Tulsiani. Unique decoding of explicit epsilon-balanced

codes near the gilbert-varshamov bound. arXiv preprint arXiv:2011.05500,

2020.

1556

[JR23] Samuel Jaques and Arthur G. Rattew. Qram: A survey and critique,

2023.

[JŠ19] Tomas Juškevičius and Grazvydas Šemetulskis. Optimal littlewood-

offord inequalities in groups. Combinatorica, 39(4):911–921, 2019.

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tul-

siani. Near-linear time decoding of ta-shma’s codes via splittable reg-

ularity. In Proceedings of the 53rd Annual ACM SIGACT Symposium

on Theory of Computing, pages 1527–1536, 2021.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster

dynamic matrix inverse for faster lps. In Proceedings of the 53rd An-

nual ACM SIGACT Symposium on Theory of Computing (STOC).

arXiv preprint arXiv:2004.07470, 2021.

[JT19] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gra-

dient descent to achieve arbitrarily small test error with shallow relu

networks. In International Conference on Learning Representations,

2019.

[JT20] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gra-

dient descent to achieve arbitrarily small test error with shallow relu

networks. In ICLR, 2020.

[JY11] Rahul Jain and Penghui Yao. A parallel approximation algorithm

for positive semidefinite programming. In Proceedings of the 2011

IEEE 52nd Annual Symposium on Foundations of Computer Science

(FOCS), 2011.

[JY12] Rahul Jain and Penghui Yao. A parallel approximation algorithm for

mixed packing and covering semidefinite programs. CoRR, abs/1201.6090,

2012.

1557

[Kah64] Jean-Pierre Kahane. Sur les sommes vectorielles sigma plus minus

un. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE

L ACADEMIE DES SCIENCES, 259(16):2577, 1964.

[Kan18] Daniel M Kane. Quantum money from modular forms. arXiv preprint

arXiv:1809.05925, 2018.

[Kap16] Michael Kapralov. Sparse fourier transform in any constant dimen-

sion with nearly-optimal sample complexity in sublinear time. In

Proceedings of the forty-eighth annual ACM symposium on Theory of

Computing, pages 264–277, 2016.

[Kap17] Michael Kapralov. Sample efficient estimation and recovery in sparse

FFT via isolation on average. In Chris Umans, editor, 58th IEEE An-

nual Symposium on Foundations of Computer Science, FOCS 2017,

Berkeley, CA, USA, October 15-17, 2017, pages 651–662. IEEE Com-

puter Society, 2017.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In

Complexity of computer computations, pages 85–103. Springer, 1972.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear

programming. In Proceedings of the sixteenth annual ACM symposium

on Theory of computing (STOC), 1984.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd In-

ternational Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In

Proceedings of the thirty-second annual ACM symposium on Theory of

computing, pages 73–79, 2000.

1558

[KDP12] Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative

matrix factorization for graph clustering. In Proceedings of the SIAM

International Conference on Data Mining (ICDM), pages 106–117.

SIAM, 2012.

[KG12] Vassilis Kalofolias and Efstratios Gallopoulos. Computing symmetric

nonnegative rank factorizations. Linear algebra and its applications,

436(2):421–435, 2012.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming.

USSR Computational Mathematics and Mathematical Physics, 20(1):53–

72, 1980.

[Khi23] A Khiintchine. Über dyadische bruche. Math. Z, 18:109, 1923.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In

Proceedings of the thiry-fourth annual ACM symposium on Theory of

computing, pages 767–775, 2002.

[Kit95] Alexei Yu Kitaev. Quantum measurements and the Abelian stabilizer

problem, 1995. arXiv:quant-ph/9511026.

[KKJ22] Rutuja Kshirsagar, Amara Katabarwa, and Peter D Johnson. On

proving the robustness of algorithms for early fault-tolerant quantum

computers. arXiv preprint arXiv:2209.11322, 2022.

[KKL20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The

efficient transformer. arXiv preprint arXiv:2001.04451, 2020.

[KKO20] Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. An im-

proved approximation algorithm for tsp in the half integral case. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory

of Computing, pages 28–39, 2020.

1559

https://arxiv.org/abs/quant-ph/9511026

[KKO21] Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly)

improved approximation algorithm for metric tsp. In Proceedings of

the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

pages 32–45, 2021.

[KKOZ21] Anna R Karlin, Nathan Klein, Shayan Oveis Gharan, and Xinzhi

Zhang. An improved approximation algorithm for the minimum k-

edge connected multi-subgraph problem. arXiv preprint arXiv:2101.05921,

2021.

[KKPJ21] Amara Katabarwa, Alex Kunitsa, Borja Peropadre, and Peter John-

son. Reducing runtime and error in vqe using deeper and noisier

quantum circuits. arXiv preprint arXiv:2110.10664, 2021.

[Kle80] Victor Klee. On the complexity of d-dimensional Voronoi diagrams.

Archiv der Mathematik, 34(1):75–80, 1980.

[KLM06] Ravi Kannan, László Lovász, and Ravi Montenegro. Blocking con-

ductance and mixing in random walks. Comb. Probab. Comput.,

15(4):541–570, 2006.

[KLP19] Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum

algorithms for deep convolutional neural networks. arXiv preprint

arXiv:1911.01117, 2019.

[KLP+22] Isaac H Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts,

and Eunseok Lee. Fault-tolerant resource estimate for quantum chem-

ical simulations: Case study on li-ion battery electrolyte molecules.

Physical Review Research, 4(2):023019, 2022.

[KLS20] Rasmus Kyng, Kyle Luh, and Zhao Song. Four deviations suffice

for rank 1 matrices. In Advances in Mathematics. arXiv preprint

arXiv:1901.06731, 2020.

1560

[KM95] S Khuller and Y Matias. A simple randomized sieve algorithm for the

closest-pair problem. Information and Computation, 118(1):34–37,

1995.

[KM01] Phillip Kaye and Michele Mosca. Quantum networks for generating ar-

bitrary quantum states. In International Conference on Quantum In-

formation, page PB28. Optical Society of America, 2001. arXiv:quant-

ph/0407102.

[KM03] Kartik Krishnan and John E Mitchell. Properties of a cutting plane

method for semidefinite programming. submitted for publication, 2003.

[KM16] Tali Kaufman and David Mass. High dimensional combinatorial ran-

dom walks and colorful expansion. arXiv preprint arXiv:1604.02947,

2016.

[KM20a] CS Karthik and Pasin Manurangsi. On closest pair in euclidean met-

ric: Monochromatic is as hard as bichromatic. Combinatorica, pages

1–35, 2020.

[KM20b] Tali Kaufman and David Mass. Local-to-global agreement expansion

via the variance method. In 11th Innovations in Theoretical Computer

Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2020.

[KMMS18] Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Small

set expansion in the johnson graph. In Electronic Colloquium on

Computational Complexity (ECCC), volume 25, page 78, 2018.

[KMR14] Felix Krahmer, Shahar Mendelson, and Holger Rauhut. Suprema of

chaos processes and the restricted isometry property. Communications

on Pure and Applied Mathematics, 67(11):1877–1904, 2014.

1561

https://arxiv.org/abs/quant-ph/0407102
https://arxiv.org/abs/quant-ph/0407102

[KMS94] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate

graph coloring by semidefinite programming. In Proceedings 35th An-

nual Symposium on Foundations of Computer Science (FOCS). IEEE,

1994.

[KMS17] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-

to-2 games, and grassmann graphs. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, pages 576–589,

2017.

[KMY+16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-

gies for improving communication efficiency. arXiv preprint arXiv:1610.05492,

2016.

[KNPW11] Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast

moment estimation in data streams in optimal space. In Proceedings

of the forty-third annual ACM symposium on Theory of computing,

pages 745–754, 2011.

[KNW10] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact

space complexity of sketching and streaming small norms. In Proceed-

ings of the twenty-first annual ACM-SIAM symposium on Discrete

Algorithms, pages 1161–1178. SIAM, 2010.

[KNY20] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure

software leasing from standard assumptions, 2020.

[KO20] Tali Kaufman and Izhar Oppenheim. High order random walks: Be-

yond spectral gap. Combinatorica, pages 1–37, 2020.

1562

[KOS07] Emanuel Knill, Gerardo Ortiz, and Rolando D Somma. Optimal

quantum measurements of expectation values of observables. Physical

Review A, 75(1):012328, 2007.

[Kós08] Géza Kós. Two turán type inequalities. Acta Mathematica Hungarica,

119(3):219–226, 2008.

[KP08] Jingu Kim and Haesun Park. Sparse nonnegative matrix factorization

for clustering. Technical report, Georgia Institute of Technology, 2008.

[KP17] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation

systems. In 8th Innovations in Theoretical Computer Science Confer-

ence (ITCS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[KP20a] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent

for linear systems and least squares. Physical Review A, 101(2):022316,

2020.

[KP20b] Iordanis Kerenidis and Anupam Prakash. A quantum interior point

method for lps and sdps. ACM Transactions on Quantum Computing,

1(1):1–32, 2020.

[KPRW19] Ravi Kumar, Rina Panigrahy, Ali Rahimi, and David Woodruff. Faster

algorithms for binary matrix factorization. In International Confer-

ence on Machine Learning (ICML), pages 3551–3559, 2019.

[KPS21] Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. Quantum

algorithms for second-order cone programming and support vector ma-

chines. Quantum, 5:427, 2021.

[KPV15] Mario Kummer, Daniel Plaumann, and Cynthia Vinzant. Hyperbolic

polynomials, interlacers, and sums of squares. Mathematical Program-

ming, 153(1):223–245, 2015.

1563

[KR16] Apoorva Khare and Bala Rajaratnam. The khinchin–kahane inequal-

ity and banach space embeddings for abelian metric groups. arXiv

preprint math.PR/1610.03037, 2016.

[Kre21] William Kretschmer. Quantum Pseudorandomness and Classical Com-

plexity. In 16th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2021), volume 197 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 2:1–2:20,

2021.

[Kry95] N.V. Krylov. On the general notion of fully nonlinear second-order el-

liptic equations. Transactions of the American Mathematical Society,

347(3):857–895, 1995.

[KS59] Richard V Kadison and Isadore M Singer. Extensions of pure states.

American journal of mathematics, 81(2):383–400, 1959.

[KS18] Rasmus Kyng and Zhao Song. A matrix chernoff bound for strongly

rayleigh distributions and spectral sparsifiers from a few random span-

ning trees. In FOCS. https://arxiv.org/pdf/1810.08345, 2018.

[KS19] KR Khadiev and LI Safina. Quantum algorithm for shortest path

search in directed acyclic graph. Moscow University Computational

Mathematics and Cybernetics, 43(1):47–51, 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. Advances in

neural information processing systems, 25:1097–1105, 2012.

[KSV02] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum

Computation. American Mathematical Society, USA, 2002.

[KT06] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education

India, 2006.

1564

https://arxiv.org/pdf/1810.08345

[KT19] Richard Kueng and Joel A Tropp. Binary component decomposition

part ii: The asymmetric case. arXiv preprint arXiv:1907.13602, 2019.

[KT21a] Tali Kaufman and Ran J Tessler. Local to global high dimensional

expansion and garland’s method for general posets. arXiv preprint

arXiv:2101.12621, 2021.

[KT21b] Richard Kueng and Joel A Tropp. Binary component decomposition

part i: the positive-semidefinite case. SIAM Journal on Mathematics

of Data Science, 3(2):544–572, 2021.

[KTE88] Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The

method of inscribed ellipsoids. Soviet Math. Dokl, 37(1):226–230,

1988.

[KV05] Subhash Khot and Nisheeth K Vishnoi. On the unique games conjec-

ture. In FOCS, volume 5, page 3. Citeseer, 2005.

[KW17] Sam Kim and David J Wu. Watermarking cryptographic function-

alities from standard lattice assumptions. In Annual International

Cryptology Conference, pages 503–536. Springer, 2017.

[KW19] Sam Kim and David J Wu. Watermarking prfs from lattices: Stronger

security via extractable prfs. In Annual International Cryptology Con-

ference, pages 335–366. Springer, 2019.

[LAF+09] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset,

Avinatan Hassidim, Jonathan Kelner, and Peter Shor. Breaking and

making quantum money: toward a new quantum cryptographic pro-

tocol. arXiv preprint arXiv:0912.3825, 2009.

[Lat06] Rafał Latała. Estimates of moments and tails of gaussian chaoses.

The Annals of Probability, 34(6):2315–2331, 2006.

1565

[Lat20] Tor Lattimore. Improved regret for zeroth-order adversarial bandit

convex optimisation. Mathematical Statistics and Learning, 2(3):311–

334, 2020. arXiv:2006.00475.

[Lax57] Peter D Lax. Differential equations, difference equations and matrix

theory. Technical report, New York Univ., New York. Atomic Energy

Commission Computing and Applied, 1957.

[Lay22] David Layden. First-order trotter error from a second-order perspec-

tive. Phys. Rev. Lett., 128:210501, May 2022.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324, 1998.

[LC17] Guang Hao Low and Isaac L Chuang. Optimal hamiltonian simulation

by quantum signal processing. Physical review letters, 118(1):010501,

2017.

[LC19] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by

qubitization. Quantum, 3:163, 2019.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten

digit database. att labs, 2010.

[LCC+21] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin,

Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, and

Decebal Constantin Mocanu. Sparse training via boosting pruning

plasticity with neuroregeneration. Advances in Neural Information

Processing Systems, 34:9908–9922, 2021.

[LDFU13] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster

ridge regression via the subsampled randomized hadamard transform.

1566

https://arxiv.org/abs/2006.00475

In Advances in neural information processing systems (NIPS), pages

369–377, 2013.

[LE20] Mufan Bill Li and Murat A Erdogdu. Riemannian langevin algorithm

for solving semidefinite programs. arXiv preprint arXiv:2010.11176,

2020.

[Leh74] Philippe GH Lehot. An optimal algorithm to detect a line graph and

output its root graph. Journal of the ACM (JACM), 21(4):569–575,

1974.

[Leh11] Joseph Lehec. Moments of the gaussian chaos. In Séminaire de

Probabilités XLIII, pages 327–340. Springer, 2011.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication.

In Proceedings of the 39th international symposium on symbolic and

algebraic computation (ISSAC), pages 296–303. ACM, 2014.

[LG21] Tor Lattimore and Andras Gyorgy. Improved regret for zeroth-order

stochastic convex bandits. In Conference on Learning Theory, pages

2938–2964. PMLR, 2021.

[LH22] Ting-Chun Lin and Min-Hsiu Hsieh. c3-local testable codes from

lossless expanders. arXiv preprint arXiv:2201.11369, 2022.

[LHP+20] Jessica Lemieux, Bettina Heim, David Poulin, Krysta Svore, and Matthias

Troyer. Efficient quantum walk circuits for metropolis-hastings algo-

rithm. Quantum, 4:287, 2020.

[LHW17] Songtao Lu, Mingyi Hong, and Zhengdao Wang. A nonconvex split-

ting method for symmetric nonnegative matrix factorization: Conver-

gence analysis and optimality. IEEE Transactions on Signal Process-

ing, 65(12):3120–3135, 2017.

1567

[Liu21] Kuikui Liu. From coupling to spectral independence and blackbox

comparison with the down-up walk. arXiv preprint arXiv:2103.11609,

2021.

[LK22] Fangshuo Liao and Anastasios Kyrillidis. On the convergence of shal-

low neural network training with randomly masked neurons. Trans-

actions on Machine Learning Research, 2022.

[LKAS+21] Seth Lloyd, Bobak T Kiani, David RM Arvidsson-Shukur, Samuel

Bosch, Giacomo De Palma, William M Kaminsky, Zi-Wen Liu, and

Milad Marvian. Hamiltonian singular value transformation and in-

verse block encoding. arXiv preprint arXiv:2104.01410, 2021.

[LKK+21] Jin-Peng Liu, Herman Øie Kolden, Hari K Krovi, Nuno F Loureiro,

Konstantina Trivisa, and Andrew M Childs. Efficient quantum algo-

rithm for dissipative nonlinear differential equations. Proceedings of

the National Academy of Sciences, 118(35):e2026805118, 2021.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural net-

works via stochastic gradient descent on structured data. In NeurIPS,

2018.

[LLM21] Jerry Li, Allen Liu, and Ankur Moitra. Sparsification for sums of ex-

ponentials and its algorithmic applications. arXiv preprint arXiv:2106.02774,

2021.

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry

of graphs and some of its algorithmic applications. Combinatorica,

15(2):215–245, 1995.

[LLV20] Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Strong self-

concordance and sampling. In Proceedings of the 52nd Annual ACM

SIGACT Symposium on Theory of Computing, pages 1212–1222, 2020.

1568

[LM15] Shachar Lovett and Raghu Meka. Constructive discrepancy mini-

mization by walking on the edges. SIAM Journal on Computing,

44(5):1573–1582, 2015.

[LMM+21] Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapu-

ram Matavalam, Yulong Pei, and Mykola Pechenizkiy. Sparse evolu-

tionary deep learning with over one million artificial neurons on com-

modity hardware. Neural Computing and Applications, 33(7):2589–

2604, 2021.

[LMR+11] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario

Szegedy. Quantum query complexity of state conversion. In 2011

IEEE 52nd Annual Symposium on Foundations of Computer Science,

pages 344–353. IEEE, 2011.

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum

principal component analysis. Nature Physics, 10(9):631–633, 2014.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly super-

exponential parameterized problems. In Proceedings of the twenty-

second annual ACM-SIAM symposium on Discrete Algorithms, pages

760–776. SIAM, 2011.

[LNE+21] Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, and Slim

Trabelsi. Yes we can: Watermarking machine learning models beyond

classification. In 2021 IEEE 34th Computer Security Foundations

Symposium (CSF), pages 1–14. IEEE, 2021.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Tho-

rup. Heavy hitters via cluster-preserving clustering. In 2016 IEEE

57th Annual Symposium on Foundations of Computer Science (FOCS),

pages 61–70. IEEE, 2016.

1569

[LNRW19] Jerry Li, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten.

On mean estimation for general norms with statistical queries. In

Conference on Learning Theory (COLT), pages 2158–2172. PMLR,

2019.

[LO43] John Edensor Littlewood and Albert Cyril Offord. On the number

of real roots of a random algebraic equation (iii). Rec. Math. [Mat.

Sbornik] N.S., 12(3):277–286, 1943.

[LO94] Rafał Latała and Krzysztof Oleszkiewicz. On the best constant in

the khinchin-kahane inequality. Studia Mathematica, 109(1):101–104,

1994.

[Lov77] L Lovász. Problem, beitrag zur graphentheorie und deren auwendun-

gen, vorgstragen auf dem intern. koll, 1977.

[Lov99] László Lovász. Hit-and-run mixes fast. Mathematical Programming,

86(3):443–461, 1999.

[LP20a] Yin Tat Lee and Swati Padmanabhan. An Õ(m/ϵ3.5)-cost algorithm

for semidefinite programs with diagonal constraints. In Conference on

Learning Theory (COLT), Proceedings of Machine Learning Research.

PMLR, 2020.

[LP20b] Yanyi Liu and R. Pass. On one-way functions and kolmogorov com-

plexity. 2020 IEEE 61st Annual Symposium on Foundations of Com-

puter Science (FOCS), pages 1243–1254, 2020.

[LP21] Yanyi Liu and Rafael Pass. A note on one-way functions and sparse

languages. Electron. Colloquium Comput. Complex., 28:92, 2021.

[LPR05] Adrian Lewis, Pablo Parrilo, and Motakuri Ramana. The lax con-

jecture is true. Proceedings of the American Mathematical Society,

133(9):2495–2499, 2005.

1570

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decompo-

sition for three-way arrays. SIAM Journal on Matrix Analysis and

Applications, 14(4):1064–1083, 1993.

[LRR17] Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Determin-

istic discrepancy minimization via the multiplicative weight update

method. In International Conference on Integer Programming and

Combinatorial Optimization, pages 380–391. Springer, 2017.

[LS99] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by

non-negative matrix factorization. Nature, 401(6755):788–791, 1999.

[LS01] W.V. Li and Q.-M. Shao. Gaussian processes: Inequalities, small ball

probabilities and applications. In Stochastic Processes: Theory and

Methods, volume 19 of Handbook of Statistics, pages 533–597. Elsevier,

2001.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear

programming: Solving linear programs in õ(sqrt(rank)) iterations and

faster algorithms for maximum flow. In 55th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,

USA, October 18-21, 2014, pages 424–433, 2014.

[LS15] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsi-

fication in almost-linear time. In IEEE 56th Annual Symposium on

Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,

17-20 October, 2015, pages 250–269, 2015.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spec-

tral sparsification. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, Montreal, QC,

Canada, June 19-23, 2017, pages 678–687, 2017.

1571

[LS19] Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt

(rank) linear system solves. arXiv preprint arXiv:1910.08033, 2019.

[LSS+20] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu.

Generalized leverage score sampling for neural networks. In NeurIPS,

2020.

[LST20] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Logsmooth gradient con-

centration and tighter runtimes for metropolized Hamiltonian Monte

Carlo. In Conference on Learning Theory, pages 2565–2597. PMLR,

2020. arXiv:2002.04121.

[LST21] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Lower bounds on Metropolized

sampling methods for well-conditioned distributions. In Advances

in Neural Information Processing Systems, volume 34, pages 18812–

18824, 2021. arXiv:2106.05480.

[LSV18] Yin Tat Lee, Zhao Song, and Santosh S Vempala. Algorithmic the-

ory of odes and sampling from well-conditioned logconcave densities.

arXiv preprint arXiv:1812.06243, 2018.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cut-

ting plane method and its implications for combinatorial and convex

optimization. In 56th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), 2015.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk

minimization in the current matrix multiplication time. In Annual

Conference on Learning Theory (COLT), 2019.

[LSZ20] Qipeng Liu, Amit Sahai, and Mark Zhandry. Quantum immune one-

time memories, 2020.

1572

https://arxiv.org/abs/2002.04121
https://arxiv.org/abs/2106.05480

[LT93] AG Levin and Regina Iosifovna Tyshkevich. Edge hypergraphs. Diskret-

naya Matematika, 5(1):112–129, 1993.

[LT13] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces:

isoperimetry and processes. Springer Science & Business Media, 2013.

[LT20a] Lin Lin and Yu Tong. Near-optimal ground state preparation. Quan-

tum, 4:372, 2020.

[LT20b] Lin Lin and Yu Tong. Optimal polynomial based quantum eigenstate

filtering with application to solving quantum linear systems. Quan-

tum, 4:361, 2020.

[LT22] Lin Lin and Yu Tong. Heisenberg-limited ground-state energy esti-

mation for early fault-tolerant quantum computers. PRX Quantum,

3(1):010318, 2022.

[LTVM15] Dajie Liu, Stojan Trajanovski, and Piet Van Mieghem. Iligra: an effi-

cient inverse line graph algorithm. Journal of Mathematical Modelling

and Algorithms in Operations Research, 14(1):13–33, 2015.

[Lub02] Michael Luby. Lt codes. In The 43rd Annual IEEE Symposium on

Foundations of Computer Science, 2002. Proceedings., pages 271–271.

IEEE Computer Society, 2002.

[Lup58] Oleg B. Lupanov. On the synthesis of switching circuits. Doklady

Akademii Nauk SSSR, 119(1):23–26, 1958.

[LV03] László Lovász and Santosh Vempala. Hit-and-run is fast and fun,

2003. Preprint, Microsoft Research, https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/02/tr-2003-05.pdf.

[LV06] László Lovász and Santosh Vempala. Hit-and-run from a corner.

SIAM Journal on Computing, 35(4):985–1005, 2006.

1573

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave

functions and sampling algorithms. Random Structures and Algo-

rithms, 30(3):307–358, 2007.

[LVAH12] Haibing Lu, Jaideep Vaidya, Vijayalakshmi Atluri, and Yuan Hong.

Constraint-aware role mining via extended boolean matrix decompo-

sition. IEEE Transactions on Dependable and Secure Computing,

9(5):655–669, 2012.

[LW17] Kasper Green Larsen and Ryan Williams. Faster online matrix-vector

multiplication. In Proceedings of the Twenty-Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 2182–2189. SIAM,

2017.

[LWME19] Xuechen Li, Yi Wu, Lester Mackey, and Murat A Erdogdu. Stochastic

runge-kutta accelerates langevin monte carlo and beyond. Advances

in neural information processing systems, 32, 2019.

[LXJ+20] Zichang Liu, Zhaozhuo Xu, Alan Ji, Jonathan Li, Beidi Chen, and

Anshumali Shrivastava. Climbing the wol: Training for cheaper infer-

ence. arXiv preprint arXiv:2007.01230, 2020.

[LXS+19] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri,

Roman Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide

neural networks of any depth evolve as linear models under gradient

descent. In Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages

8570–8581, 2019.

[LXW+21] Xinjian Luo, Xiaokui Xiao, Yuncheng Wu, Juncheng Liu, and Beng Chin

Ooi. A fusion-denoising attack on instahide with data augmentation.

arXiv preprint arXiv:2105.07754, 2021.

1574

[LYC14] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Quantum

inference on Bayesian networks. Physical Review A, 89(6):062315,

2014. arXiv:1402.7359.

[LYMP21] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pech-

enizkiy. Do we actually need dense over-parameterization? in-time

over-parameterization in sparse training. In International Conference

on Machine Learning, pages 6989–7000. PMLR, 2021.

[LZ20] Lap Chi Lau and Hong Zhou. A spectral approach to network de-

sign. In Proceedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing (STOC), pages 826–839, 2020.

[LZ22] Anthony Leverrier and Gilles Zémor. Quantum tanner codes. arXiv

preprint arXiv:2202.13641, 2022.

[LZB20] Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large

non-linear models: when and why the tangent kernel is constant. In

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-

tors, Advances in Neural Information Processing Systems, volume 33,

pages 15954–15964. Curran Associates, Inc., 2020.

[LZB22] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and

optimization in over-parameterized non-linear systems and neural net-

works. Applied and Computational Harmonic Analysis, 59:85–116,

2022.

[LZUC22] Henrik R Larsson, Huanchen Zhai, Cyrus J Umrigar, and Garnet Kin

Chan. The chromium dimer: closing a chapter of quantum chemistry.

arXiv preprint arXiv:2206.10738, 2022.

[Mac05] David JC MacKay. Fountain codes. IEE Proceedings-Communications,

152(6):1062–1068, 2005.

1575

https://arxiv.org/abs/1402.7359

[Mas79] William J Masek. Some np-complete set covering problems. Unpub-

lished Manuscript, 1979.

[Mat92a] Jiří Matoušek. Efficient partition trees. Discrete & Computational

Geometry, 8(3):315–334, 1992.

[Mat92b] Jiri Matousek. Reporting points in halfspaces. Computational Geom-

etry, 2(3):169–186, 1992.

[Mat09] Jiri Matousek. Geometric discrepancy: An illustrated guide, vol-

ume 18. Springer Science & Business Media, 2009.

[MBS+18] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Bab-

bush, and Hartmut Neven. Barren plateaus in quantum neural net-

work training landscapes. Nature communications, 9(1):1–6, 2018.

[MCC+19] Yi-An Ma, Niladri Chatterji, Xiang Cheng, Nicolas Flammarion, Pe-

ter Bartlett, and Michael I. Jordan. Is there an analog of nesterov

acceleration for mcmc?, 2019.

[Mek14] Raghu Meka. Discrepancy and beating the union bound. In Windows

on theory, a research blog. https://windowsontheory.org/2014/02/

07/discrepancy-and-beating-the-union-bound/, 2014.

[MG15] James Martens and Roger Grosse. Optimizing neural networks with

kronecker-factored approximate curvature. In Proceedings of the 32nd

International Conference on International Conference on Machine Learn-

ing - Volume 37, ICML’15, pages 2408–2417. JMLR.org, 2015.

[Min17] Stanislav Minsker. On some extensions of bernstein’s inequality for

self-adjoint operators. Statistics & Probability Letters, 127:111–119,

2017.

1576

https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound/
https://windowsontheory.org/2014/02/07/discrepancy-and-beating-the-union-bound/

[Mir23] Piotr Mironowicz. Semi-definite programming and quantum informa-

tion. arXiv preprint arXiv:2306.16560, 2023.

[MJC+14] Lester Mackey, Michael I Jordan, Richard Y Chen, Brendan Farrell,

and Joel A Tropp. Matrix concentration inequalities via the method

of exchangeable pairs. The Annals of Probability, 42(3):906–945, 2014.

[MKZ+09] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Bran-

don Westover. Exact discovery of time series motifs. In Proceedings

of the 2009 SIAM international conference on data mining, pages 473–

484. SIAM, 2009.

[MLA+22] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fa-

bien Rortais, Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto,

Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, et al. Quan-

tum computational advantage with a programmable photonic proces-

sor. Nature, 606(7912):75–81, 2022.

[MM15] Pasin Manurangsi and Dana Moshkovitz. Approximating dense max

2-csps. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques (APPROX/RANDOM 2015).

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[MMG+08] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das,

and Heikki Mannila. The discrete basis problem. IEEE Transac-

tions on Knowledge and Data Engineering (TKDE), 20(10):1348–1362,

2008.

[MMM19] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-

field theory of two-layers neural networks: dimension-free bounds and

kernel limit. In Conference on Learning Theory, pages 2388–2464.

PMLR, 2019.

1577

[MMM21] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning

with invariances in random features and kernel models. In Mikhail

Belkin and Samory Kpotufe, editors, Conference on Learning Theory,

COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume

134 of Proceedings of Machine Learning Research, pages 3351–3418.

PMLR, 2021.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep net-

works from decentralized data. In Artificial Intelligence and Statistics,

pages 1273–1282. PMLR, 2017.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn.

Performance of johnson-lindenstrauss transform for k-means and k-

medians clustering. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2019, pages 1027–1038,

New York, NY, USA, 2019. Association for Computing Machinery.

[MMS+18] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H

Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable training

of artificial neural networks with adaptive sparse connectivity inspired

by network science. Nature communications, 9(1):1–12, 2018.

[MMS+19] Sam McArdle, Alexander Mayorov, Xiao Shan, Simon Benjamin, and

Xiao Yuan. Digital quantum simulation of molecular vibrations.

Chemical science, 10(22):5725–5735, 2019.

[MMS20] Mateusz B Majka, Aleksandar Mijatović, and Lukasz Szpruch. Nonasymp-

totic bounds for sampling algorithms without log-concavity. Annals of

applied probability: an official journal of the Institute of Mathematical

Statistics, 30(4):1534–1581, 2020.

1578

[MN20] Pauli Miettinen and Stefan Neumann. Recent developments in boolean

matrix factorization. arXiv preprint arXiv:2012.03127, 2020.

[MNRS11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha.

Search via quantum walk. SIAM Journal on Computing, 40(1):142–

164, 2011.

[MNV17] Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for poly-

nomials of independent random variables. In Theory Of Computing.

arXiv preprint arXiv:1507.00829, 2017.

[Moi13] Ankur Moitra. An almost optimal algorithm for computing nonneg-

ative rank. In Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1454–1464. SIAM,

2013.

[Moi15] Ankur Moitra. Super-resolution, extremal functions and the condition

number of vandermonde matrices. In Proceedings of the forty-seventh

annual ACM symposium on Theory of computing, pages 821–830, 2015.

[Mon15] Ashley Montanaro. Quantum speedup of Monte Carlo methods. Pro-

ceedings of the Royal Society A, 471(2181):20150301, 2015. arXiv:1504.06987.

[MOSW22] Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff.

Bounding the width of neural networks via coupled initialization a

worst case analysis. In International Conference on Machine Learning,

pages 16083–16122. PMLR, 2022.

[MPS14] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. Spec-

tral k-support norm regularization. Advances in neural information

processing systems, 27, 2014.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.

Cambridge university press, 1995.

1579

https://arxiv.org/abs/1504.06987

[MRBAG16] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-

Guzik. The theory of variational hybrid quantum-classical algorithms.

New Journal of Physics, 18(2):023023, 2016.

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.

Grand unification of quantum algorithms. PRX Quantum, 2:040203,

Dec 2021.

[MS13] J. Maldacena and L. Susskind. Cool horizons for entangled black

holes. Fortschritte der Physik, 61(9):781–811, Aug 2013.

[MSS15a] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Inter-

lacing families I: Bipartite Ramanujan graphs of all degrees. Ann. of

Math. (2), 182(1):307–325, 2015.

[MSS15b] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Inter-

lacing families II: Mixed characteristic polynomials and the Kadison-

Singer problem. Ann. of Math. (2), 182(1):327–350, 2015.

[MSS18] Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlac-

ing families IV: Bipartite ramanujan graphs of all sizes. SIAM Journal

on Computing, 47(6):2488–2509, 2018.

[MSVA16] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.

A survey of role mining. ACM Computing Surveys (CSUR), 48(4):1–

37, 2016.

[MT97] Yury Metelsky and Regina Tyshkevich. On line graphs of linear 3-

uniform hypergraphs. Journal of Graph Theory, 25(4):243–251, 1997.

[MT00] Renato DC Monteiro and Takashi Tsuchiya. Polynomial convergence

of primal-dual algorithms for the second-order cone program based on

the mz-family of directions. Mathematical programming, 88(1):61–83,

2000.

1580

[MT14] Tor Myklebust and Levent Tunçel. Interior-point algorithms for con-

vex optimization based on primal-dual metrics. arXiv preprint arXiv:1411.2129,

2014.

[MW92] Yigal Meir and Ned S Wingreen. Landauer formula for the cur-

rent through an interacting electron region. Physical review letters,

68(16):2512, 1992.

[MW05] Chris Marriott and John Watrous. Quantum Arthur–Merlin games.

Computational Complexity, 14(2):122–152, 2005.

[MW17] Cody D Murray and R Ryan Williams. On the (non) np-hardness

of computing circuit complexity. Theory of Computing, 13(1):1–22,

2017.

[MW19] Hesham Mostafa and Xin Wang. Parameter efficient training of deep

convolutional neural networks by dynamic sparse reparameterization.

In International Conference on Machine Learning, pages 4646–4655.

PMLR, 2019.

[MWR+14] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U.-J. Wiese, and

P. Zoller. Two-dimensional lattice gauge theories with superconduct-

ing quantum circuits. Annals of Physics, 351:634–654, Dec 2014.

[MZ10] Lingsheng Meng and Bing Zheng. The optimal perturbation bounds of

the moore–penrose inverse under the frobenius norm. Linear algebra

and its applications, 432(4):956–963, 2010.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for

polynomial threshold functions. SIAM Journal on Computing, 42(3):1275–

1301, 2013.

1581

[Nar16] Hariharan Narayanan. Randomized interior point methods for sam-

pling and optimization. The Annals of Applied Probability, 26(1):597–

641, 2016.

[NC10] Michael A Nielsen and Isaac Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2010.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation

and Quantum Information: 10th Anniversary Edition. Cambridge

University Press, USA, 10th edition, 2011.

[Nee12] Frank Neese. The orca program system. Wiley Interdisciplinary

Reviews: Computational Molecular Science, 2(1):73–78, 2012.

[Nee18] Frank Neese. Software update: the orca program system, version

4.0. Wiley Interdisciplinary Reviews: Computational Molecular Sci-

ence, 8(1):e1327, 2018.

[Nes88a] Yu Nesterov. Polynomial-time iterative methods in linear and quadratic

programming. Voprosy kibernetiki, Moscow, pages 102–125, 1988.

[Nes88b] YY Nesterov. Polynomial methods in the linear and quadratic-programming.

Soviet Journal of Computer and Systems Sciences, 26(5):98–101, 1988.

[Ngu13] Hoi H Nguyen. On the singularity of random combinatorial matrices.

SIAM Journal on Discrete Mathematics, 27(1):447–458, 2013.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In

Proceedings of the twenty-third annual ACM symposium on Theory of

computing, pages 410–418, 1991.

[NN89] Yurii Nesterov and Arkadi Nemirovski. Self-concordant functions and

polynomial time methods in convex programming. preprint, central

1582

economic & mathematical institute, ussr acad. Sci. Moscow, USSR,

1989.

[NN92] Yurii Nesterov and Arkadi Nemirovski. Conic formulation of a con-

vex programming problem and duality. Optimization Methods and

Software, 1(2):95–115, 1992.

[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial al-

gorithms in convex programming, volume 13. Siam, 1994.

[NN13] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear

algebra algorithms via sparser subspace embeddings. In 54th An-

nual IEEE Symposium on Foundations of Computer Science (FOCS).

IEEE, 2013.

[NP18] Simone Naldi and Daniel Plaumann. Symbolic computation in hyper-

bolic programming. Journal of Algebra and Its Applications, 17(10):1850192,

2018.

[NRR20] Assaf Naor, Shravas Rao, and Oded Regev. Concentration of markov

chains with bounded moments. In Annales de l’Institut Henri Poincaré,

Probabilités et Statistiques, volume 56, pages 2270–2280. Institut Henri

Poincaré, 2020.

[NS16] Aleksandar Nikolov and Mohit Singh. Maximizing determinants under

partition constraints. In Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing, pages 192–201, 2016.

[NS19] Vasileios Nakos and Zhao Song. Stronger l2/l2 compressed sensing;

without iterating. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, pages 289–297, 2019.

1583

[NSW19] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly) sample-

optimal sparse fourier transform in any dimension; ripless and filterless.

In 2019 IEEE 60th Annual Symposium on Foundations of Computer

Science (FOCS), pages 1568–1577. IEEE, 2019.

[NTM01] Alexandros Nanopoulos, Yannis Theodoridis, and Yannis Manolopou-

los. C2P: Clustering based on closest pairs. In Proceedings of the 27th

International Conference on Very Large Data Bases (VLDB 2001),

pages 331–340, 2001.

[NW99] Ashwin Nayak and Felix Wu. The quantum query complexity of

approximating the median and related statistics. In Proceedings of

the 31st Annual ACM Symposium on Theory of Computing, pages

384–393, 1999. arXiv:quant-ph/9804066.

[OB+19] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki

Cheung, Przemysław “Psyho" Dębiak, Christy Dennison, David Farhi,

Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott

Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P.

d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas

Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and

Susan Zhang. Dota 2 with large scale deep reinforcement learning,

2019.

[OBD18] Davide Orsucci, Hans J. Briegel, and Vedran Dunjko. Faster quantum

mixing for slowly evolving sequences of markov chains. Quantum,

2:105, 2018. arXiv:1503.01334.

[Oli09] Roberto Imbuzeiro Oliveira. Concentration of the adjacency matrix

and of the laplacian in random graphs with independent edges. arXiv

preprint arXiv:0911.0600, 2009.

1584

https://arxiv.org/abs/quant-ph/9804066
https://arxiv.org/abs/1503.01334

[Oli19] Igor Carboni Oliveira. Advances in hardness magnification. https://

www.dcs.warwick.ac.uk/~igorcarb/documents/papers/magnification-note.

pdf, 2019.

[Ope23] OpenAI. Gpt-4 technical report, 2023.

[Opp11] Alan V. Oppenheim. Lecture notes: Fourier transform properties.

https://ocw.aprende.org/resources/res-6-007-signals-and-systems-spring-

2011/lecture-notes/MITRES_6_007S11_lec09.pdf, 2011.

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness

magnification near state-of-the-art lower bounds. In 34th Computa-

tional Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2019.

[Orl77] James Orlin. Contentment in graph theory: Covering graphs with

cliques. Indagationes Mathematicae (Proceedings), 80(5):406–424,

1977.

[ORR13] Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejec-

tion sampling. ACM Transactions on Computation Theory (TOCT),

5(3):1–33, 2013. arXiv:1103.2774.

[OS16] Igor C Oliveira and Rahul Santhanam. Conspiracies between learn-

ing algorithms, circuit lower bounds and pseudorandomness. arXiv

preprint arXiv:1611.01190, 2016.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnifica-

tion for natural problems. In 2018 IEEE 59th Annual Symposium on

Foundations of Computer Science (FOCS), pages 65–76. IEEE, 2018.

[OS20] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate over-

parameterization: Global convergence guarantees for training shallow

1585

https://www.dcs.warwick.ac.uk/~igorcarb/documents/papers/magnification-note.pdf
https://www.dcs.warwick.ac.uk/~igorcarb/documents/papers/magnification-note.pdf
https://www.dcs.warwick.ac.uk/~igorcarb/documents/papers/magnification-note.pdf
https://arxiv.org/abs/1103.2774

neural networks. IEEE Journal on Selected Areas in Information

Theory, 1(1):84–105, 2020.

[Osg02] Brad Osgood. Lecture notes for ee 261 the fourier transform and its

applications. https://see.stanford.edu/materials/lsoftaee261/book-fall-

07.pdf, 2002.

[OSS+19] Thomas E O’Brien, Bruno Senjean, Ramiro Sagastizabal, Xavier Bonet-

Monroig, Alicja Dutkiewicz, Francesco Buda, Leonardo DiCarlo, and

Lucas Visscher. Calculating energy derivatives for quantum chemistry

on a quantum computer. npj Quantum Information, 5(1):1–12, 2019.

[OST19] Ryan O’Donnell, Rocco A Servedio, and Li-Yang Tan. Fooling poly-

topes. In Proceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, pages 614–625, 2019.

[OWN+97] Alan V Oppenheim, Alan S Willsky, Syed Hamid Nawab, Gloria Mata

Hernández, et al. Signals & systems. Pearson Educación, 1997.

[Pag13] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions

on Computation Theory (TOCT), 5(3):1–17, 2013.

[PAH+18] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-

preserving deep learning via additively homomorphic encryption. IEEE

Transactions on Information Forensics and Security, 13(5):1333–1345,

2018.

[Pat10] Mihai Patrascu. Towards polynomial lower bounds for dynamic prob-

lems. In Proceedings of the forty-second ACM symposium on Theory

of computing (STOC), pages 603–610, 2010.

[Pel00] David Peleg. Proximity-preserving labeling schemes. Journal of

Graph Theory, 33(3):167–176, 2000.

1586

[PK21] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum

and locally testable classical ldpc codes. arXiv preprint arXiv:2111.03654,

2021.

[PMS+14] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,

Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien.

A variational eigenvalue solver on a photonic quantum processor. Na-

ture communications, 5(1):1–7, 2014.

[Pol19] Yury Polyanskiy. Hypercontractivity of spherical averages in hamming

space. SIAM Journal on Discrete Mathematics, 33(2):731–754, 2019.

[Pow07] Michael JD Powell. A view of algorithms for optimization without

derivatives. Mathematics Today-Bulletin of the Institute of Mathe-

matics and its Applications, 43(5):170–174, 2007.

[PP10] Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit

satisfiability. In Proceedings of the 42nd ACM Symposium on Theory

of Computing (STOC 2010), pages 241–250. ACM, 2010.

[PP12] Robert Peharz and Franz Pernkopf. Sparse nonnegative matrix fac-

torization with ℓ0-constraints. Neurocomputing, 80:38–46, 2012.

[PP14] Robin Pemantle and Yuval Peres. Concentration of lipschitz function-

als of determinantal and other strong rayleigh measures. Combina-

torics, Probability and Computing, 23(1):140–160, 2014.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane.

An improved exponential-time algorithm for k-SAT. Journal of the

ACM (JACM), 52(3):337–364, 2005.

[Pré71] András Prékopa. Logarithmic concave measures with applications to

stochastic programming. Acta Scientiarum Mathematicarum, 32:301–

316, 1971.

1587

[Pré73] András Prékopa. On logarithmic concave measures and functions.

Acta Scientiarum Mathematicarum, 34:335–343, 1973.

[Pre18] John Preskill. Quantum computing in the nisq era and beyond.

Quantum, 2:79, 2018.

[Pri11] Eric Price. Efficient sketches for the set query problem. In Dana

Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2011, San Francisco, Cal-

ifornia, USA, January 23-25, 2011, pages 41–56. SIAM, 2011.

[PRT81] Svatopluk Poljak, Vojtěch Rödl, and Daniel TURZiK. Complexity of

representation of graphs by set systems. Discrete Applied Mathemat-

ics, 3(4):301–312, 1981.

[PS15] Eric Price and Zhao Song. A robust sparse Fourier transform in

the continuous setting. In 2015 IEEE 56th Annual Symposium on

Foundations of Computer Science, pages 583–600. IEEE, 2015.

[PV21] Richard Peng and Santosh Vempala. Solving sparse linear systems

faster than matrix multiplication. In Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 504–521.

SIAM, 2021.

[PW09] David Poulin and Pawel Wocjan. Preparing ground states of quantum

many-body systems on a quantum computer. Physical review letters,

102(13):130503, 2009.

[PW17] Mert Pilanci and Martin J. Wainwright. Newton sketch: A near

linear-time optimization algorithm with linear-quadratic convergence.

SIAM J. Optim., 27:205–245, 2017.

1588

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking prfs

under standard assumptions: Public marking and security with extrac-

tion queries. In Theory of Cryptography Conference, pages 669–698.

Springer, 2018.

[Rab76] Michael O Rabin. Probabilistic algorithms algorithms and complexity:

New directions and recent results, 1976.

[Rab02] Majid Rabbani. Jpeg2000: Image compression fundamentals, stan-

dards and practice. Journal of Electronic Imaging, 11(2):286, 2002.

[Ral20] Patrick Rall. Quantum algorithms for estimating physical quantities

using block encodings. Physical Review A, 102(2):022408, 2020.

[Ral21] Patrick Rall. Faster coherent quantum algorithms for phase, energy,

and amplitude estimation. Quantum, 5:566, 2021.

[Raz17] Ilya Razenshteyn. High-dimensional similarity search and sketching:

algorithms and hardness. PhD thesis, Massachusetts Institute of Tech-

nology, 2017.

[RDN+22] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

Chen. Hierarchical text-conditional image generation with clip latents.

arXiv preprint arXiv:2204.06125, 2022.

[Rei09] Ben W. Reichardt. Span programs and quantum query complexity:

The general adversary bound is nearly tight for every boolean function.

In 2009 50th Annual IEEE Symposium on Foundations of Computer

Science, pages 544–551. IEEE, 2009. arXiv:0904.2759.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s

method, for linear programming. Mathematical Programming, 40(1-

3):59–93, 1988.

1589

https://arxiv.org/abs/0904.2759

[Ren01] James Renegar. A Mathematical View of Interior-point Methods in

Convex Optimization. Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA, USA, 2001.

[Ren06] James Renegar. Hyperbolic programs, and their derivative relax-

ations. Foundations of Computational Mathematics, 6(1):59–79, 2006.

[Ren16] James Renegar. “Efficient” subgradient methods for general convex

optimization. SIAM Journal on Optimization, 26(4):2649–2676, 2016.

[Ren19a] James Renegar. Accelerated first-order methods for hyperbolic pro-

gramming. Mathematical Programming, 173(1-2):1–35, 2019.

[Ren19b] James Renegar. Personal communication, 2019.

[Rey89] George O Reynolds. The New Physical Optics Notebook: Tutorials in

Fourier Optics. ERIC, 1989.

[RGM+21] Julia E Rice, Tanvi P Gujarati, Mario Motta, Tyler Y Takeshita, Eu-

nseok Lee, Joseph A Latone, and Jeannette M Garcia. Quantum

computation of dominant products in lithium–sulfur batteries. The

Journal of Chemical Physics, 154(13):134115, 2021.

[Ric07] Peter C. Richter. Quantum speedup of classical mixing processes.

Physical Review A, 76(4):042306, 2007.

[RL16] Andrej Risteski and Yuanzhi Li. Algorithms and matching lower

bounds for approximately-convex optimization. In Advances in Neural

Information Processing Systems, volume 29, 2016.

[RL20] Mohan Ravichandran and Jonathan Leake. Mixed determinants and

the kadison–singer problem. Mathematische Annalen, 377(1):511–541,

2020.

1590

[RML14] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum

support vector machine for big data classification. Physical review

letters, 113(13):130503, 2014.

[Rot16] Thomas Rothvoss. Integer optimization and lattices. University of

Washington, Spring, 2016.

[Rou73] Nicholas D Roussopoulos. A max{m,n} algorithm for determining

the graph h from its line graph g. Information Processing Letters,

2(4):108–112, 1973.

[RPG16] Siamak Ravanbakhsh, Barnabás Póczos, and Russell Greiner. Boolean

matrix factorization and noisy completion via message passing. In

Proceedings of the 33rd International Conference on International Con-

ference on Machine Learning (ICML), pages 945–954, 2016.

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal

of Computer and System Sciences, 1(55):24–35, 1997.

[RR20] Victor Reis and Thomas Rothvoss. Vector balancing in lebesgue

spaces. arXiv preprint arXiv:2007.05634, 2020.

[RRSW19] Prasad Raghavendra, Nick Ryder, Nikhil Srivastava, and Benjamin

Weitz. Exponential lower bounds on spectrahedral representations of

hyperbolicity cones. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 2322–2332. SIAM,

2019.

[RRT12] Holger Rauhut, Justin Romberg, and Joel A Tropp. Restricted isome-

tries for partial random circulant matrices. Applied and Computa-

tional Harmonic Analysis, 32(2):242–254, 2012.

1591

[RS14] James Renegar and Mutiara Sondjaja. A polynomial-time affine-

scaling method for semidefinite and hyperbolic programming. arXiv

preprint arXiv:1410.6734, 2014.

[RS19] Roy Radian and Or Sattath. Semi-quantum money. In Proceedings of

the 1st ACM Conference on Advances in Financial Technologies, AFT

’19, pages 132–146. Association for Computing Machinery, 2019.

[RS21] Hanlin Ren and Rahul Santhanam. A relativization perspective on

meta-complexity. Electron. Colloquium Comput. Complex., 28:89,

2021.

[RSBG19] Abhishek Roy, Lingqing Shen, Krishnakumar Balasubramanian, and

Saeed Ghadimi. Stochastic zeroth-order discretizations of Langevin

diffusions for Bayesian inference, 2019. arXiv:1902.01373.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefi-

nite relaxations for certifying robustness to adversarial examples. In

Advances in Neural Information Processing Systems (NeurIPS), pages

10877–10887, 2018.

[RSS12] Sasha Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and ran-

domize: From value to algorithms. Advances in Neural Information

Processing Systems, 25, 2012.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted

low rank approximations with provable guarantees. In Proceedings

of the forty-eighth annual ACM symposium on Theory of Computing

(STOC), pages 250–263, 2016.

[RTD+18] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Man-

cuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. A generic

1592

https://arxiv.org/abs/1902.01373

framework for privacy preserving deep learning. CoRR, abs/1811.04017,

2018.

[Rud99] Mark Rudelson. Random vectors in the isotropic position. Journal

of Functional Analysis, 164(1):60–72, 1999.

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices:

An approach through geometric functional analysis. Journal of the

ACM (JACM), 54(4), 2007.

[RV08] Mark Rudelson and Roman Vershynin. On sparse reconstruction from

fourier and gaussian measurements. Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of

Mathematical Sciences, 61(8):1025–1045, 2008.

[RV09] Mark Rudelson and Roman Vershynin. Smallest singular value of a

random rectangular matrix. Communications on Pure and Applied

Mathematics: A Journal Issued by the Courant Institute of Mathe-

matical Sciences, 62(12):1707–1739, 2009.

[RV13] Mark Rudelson and Roman Vershynin. Hanson-wright inequality and

sub-gaussian concentration. Electronic Communications in Probabil-

ity, 18:1–9, 2013.

[SAH+20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-

monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lock-

hart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess

and shogi by planning with a learned model. Nature, 588(7839):604–

609, 2020.

[San09] Rahul Santhanam. Circuit lower bounds for merlin–arthur classes.

SIAM Journal on Computing, 39(3):1038–1061, 2009.

1593

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices

via random projections. In Proceedings of 47th Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS), 2006.

[Sau18] James Saunderson. A spectrahedral representation of the first deriva-

tive relaxation of the positive semidefinite cone. Optimization Letters,

12(7):1475–1486, 2018.

[SB03] Paris Smaragdis and Judith C Brown. Non-negative matrix factoriza-

tion for polyphonic music transcription. In 2003 IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics (IEEE Cat.

No. 03TH8684), pages 177–180. IEEE, 2003.

[SB13] Rolando D Somma and Sergio Boixo. Spectral gap amplification.

SIAM Journal on Computing, 42(2):593–610, 2013.

[SBB07] Rolando D. Somma, Sergio Boixo, and Howard Barnum. Quantum

simulated annealing, 2007. arXiv:0712.1008.

[SBBK08] Rolando D. Somma, Sergio Boixo, Howard Barnum, and Emanuel

Knill. Quantum simulations of classical annealing processes. Physical

Review Letters, 101(13):130504, 2008. arXiv:0804.1571.

[SBM03] Jouni K Seppänen, Ella Bingham, and Heikki Mannila. A simple

algorithm for topic identification in 0–1 data. In European Conference

on Principles of Data Mining and Knowledge Discovery, pages 423–

434. Springer, 2003.

[Sch11] J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen

mit unendlich vielen veränderlichen. Journal für die reine und ange-

wandte Mathematik, 140:1–28, 1911.

1594

https://arxiv.org/abs/0712.1008
https://arxiv.org/abs/0804.1571

[Sch99] T Schoning. A probabilistic algorithm for k-SAT and constraint satis-

faction problems. In Proceedings of the 40th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 1999), pages 410–414.

IEEE, 1999.

[SFGP21] Daniel Stilck França and Raul Garcia-Patron. Limitations of op-

timization algorithms on noisy quantum devices. Nature Physics,

17(11):1221–1227, 2021.

[SH75] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings

of the 16th Annual Symposium on Foundations of Computer Science

(SFCS 1975), pages 151–162, 1975.

[ŠH06] Tomáš Šingliar and Miloš Hauskrecht. Noisy-or component analysis

and its application to link analysis. Journal of Machine Learning

Research (JMLR), 7(Oct):2189–2213, 2006.

[Shi02] Yaoyun Shi. Both toffoli and controlled-not need little help to do

universal quantum computation. arXiv preprint quant-ph/0205115,

2002.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent

Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go

with deep neural networks and tree search. nature, 529(7587):484–489,

2016.

[Sho77] Naum Z Shor. Cut-off method with space extension in convex pro-

gramming problems. Cybernetics and systems analysis, 13(1):94–96,

1977.

1595

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete log-

arithms and factoring. In Proceedings 35th annual symposium on

foundations of computer science, pages 124–134. Ieee, 1994.

[SL11] Roman Sandler and Michael Lindenbaum. Nonnegative matrix fac-

torization with earth mover’s distance metric for image analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(8):1590–

1602, 2011.

[SL14] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublin-

ear time maximum inner product search (mips). Advances in Neural

Information Processing Systems (NIPS), pages 2321–2329, 2014.

[SL15a] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for

indexing binary inner products and set containment. In Proceedings

of the 24th international conference on world wide web (WWW), pages

981–991, 2015.

[SL15b] Anshumali Shrivastava and Ping Li. Improved asymmetric locality

sensitive hashing (alsh) for maximum inner product search (mips). In

Proceedings of the Thirty-First Conference on Uncertainty in Artificial

Intelligence (UAI), pages 812–821, 2015.

[SL19] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method

for log-concave sampling. In Proceedings of the 33rd International

Conference on Neural Information Processing Systems, pages 2100–

2111, 2019. arXiv:1909.05503.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott

Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 1–9, 2015.

1596

https://arxiv.org/abs/1909.05503

[Smi84] Robert L. Smith. Efficient Monte Carlo procedures for generating

points uniformly distributed over bounded regions. Operations Re-

search, 32(6):1296–1308, 1984.

[SMS18] Khot Subhash, Dor Minzer, and Muli Safra. Pseudorandom sets in

grassmann graph have near-perfect expansion. In 2018 IEEE 59th An-

nual Symposium on Foundations of Computer Science (FOCS), pages

592–601. IEEE, 2018.

[SO06] Mikkel N Schmidt and Rasmus K Olsson. Single-channel speech sep-

aration using sparse non-negative matrix factorization. In Ninth In-

ternational Conference on Spoken Language Processing, 2006.

[SO12] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: intro-

duction to advanced electronic structure theory. Courier Corporation,

2012.

[Som19] Rolando D Somma. Quantum eigenvalue estimation via time series

analysis. New Journal of Physics, 21(12):123025, 2019.

[Son19] Zhao Song. Matrix Theory: Optimization, Concentration and Algo-

rithms. PhD thesis, The University of Texas at Austin, 2019.

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the

American mathematical society, 289(2):679–706, 1985.

[SRL12] Jacob T Seeley, Martin J Richard, and Peter J Love. The bravyi-

kitaev transformation for quantum computation of electronic struc-

ture. The Journal of chemical physics, 137(22):224109, 2012.

[SS02] Michael Saks and Xiaodong Sun. Space lower bounds for distance

approximation in the data stream model. In Proceedings of the thiry-

fourth annual ACM symposium on Theory of computing, pages 360–

369, 2002.

1597

[SS15] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, CCS ’15, page 1310–1321, New York,

NY, USA, 2015. Association for Computing Machinery.

[SS17] Dominik Scheder and John P Steinberger. PPSZ for general k-SAT:

Making Hertli’s analysis simpler and 3-SAT faster. In Proceedings of

the 32nd Computational Complexity Conference (CCC 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine

learning: From theory to algorithms. Cambridge university press,

2014.

[SSO19] Yiğit Subaşı, Rolando D Somma, and Davide Orsucci. Quantum algo-

rithms for systems of linear equations inspired by adiabatic quantum

computing. Physical review letters, 122(6):060504, 2019.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, et al. Mastering the game of go without human knowl-

edge. nature, 550(7676):354–359, 2017.

[SSSSC11] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cot-

ter. Pegasos: Primal estimated sub-gradient solver for svm. Mathe-

matical programming, 127(1):3–30, 2011.

[SST01] Kunihiko Sadakane, Norito Sugawara, and Takeshi Tokuyama. Quan-

tum algorithms for intersection and proximity problems. In Proceed-

ings of the 12th International Symposium on Algorithms and Com-

putation (ISAAC 2001), pages 148–159. Springer Berlin Heidelberg,

2001.

1598

[SST05] PV Skums, SV Suzdal, and RI Tyshkevich. Edge intersection graphs

of linear 3-uniform hypergraphs. Electronic Notes in Discrete Mathe-

matics, 22:33–40, 2005.

[SSWZ22] Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse

fourier transform over lattices: A unified approach to signal reconstruc-

tion. arXiv preprint arXiv:2205.00658, 2022.

[SSX21] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear

least-squares value iteration via locality sensitive hashing. arXiv

preprint arXiv:2105.08285, 2021.

[Sta88] Richard P Stanley. Differential posets. Journal of the American

Mathematical Society, 1(4):919–961, 1988.

[Ste66] P Stein. A note on the volume of a simplex. The American Mathe-

matical Monthly, 73(3):299–301, 1966.

[Sus16] Leonard Susskind. Computational complexity and black hole hori-

zons. Fortschritte der Physik, 64(1):24–43, 2016.

[SV17] Damian Straszak and Nisheeth K Vishnoi. Real stable polynomials

and matroids: Optimization and counting. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, pages

370–383, 2017.

[ŠVV09] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. Adaptive

simulated annealing: A near-optimal connection between sampling and

counting. Journal of the ACM, 56(3):1–36, 2009.

[SWL21] Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on

feature learning in neural networks: Emergence from inputs and ad-

vantage over fixed features. In International Conference on Learning

Representations, 2021.

1599

[SWY+19] Zhao Song, Ruosong Wang, Lin Yang, Hongyang Zhang, and Peilin

Zhong. Efficient symmetric norm regression via linear sketching. Ad-

vances in Neural Information Processing Systems, 32, 2019.

[SWYZ21] Zhao Song, David P. Woodruff, Zheng Yu, and Lichen Zhang. Fast

sketching of polynomial kernels of polynomial degree. In ICML, 2021.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank ap-

proximation with entrywise ℓ1-norm error. In Proceedings of the 49th

Annual Symposium on the Theory of Computing (STOC). ACM, 2017.

[SWZ19] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error ten-

sor low rank approximation. In ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2019.

[SXZ22] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsi-

fication using inner product search data structures. arXiv preprint

arXiv:2204.03209, 2022.

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization

via matrix chernoff bound. In arXiv preprint. https://arxiv.org/

pdf/1906.03593.pdf, 2019.

[SY21] Kazuhiro Seki and Seiji Yunoki. Quantum power method by a super-

position of time-evolved states. PRX Quantum, 2(1):010333, 2021.

[Sys82] Maciej M Syslo. A labeling algorithm to recognize a line digraph and

output its root graph. Information Processing Letters, 15(1):28–30,

1982.

[SYZ21] Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help

training over-parameterized neural networks? In Thirty-Fifth Confer-

ence on Neural Information Processing Systems (NeurIPS), 2021.

1600

https://arxiv.org/pdf/1906.03593.pdf
https://arxiv.org/pdf/1906.03593.pdf

[SZ22] Zhao Song and Ruizhe Zhang. Hyperbolic concentration, anti-concentration,

and discrepancy. In Approximation, Randomization, and Combinato-

rial Optimization. Algorithms and Techniques (APPROX/RANDOM

2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms.

In 45th Annual IEEE Symposium on Foundations of Computer Sci-

ence, pages 32–41. IEEE, 2004.

[Tan19] Ewin Tang. A quantum-inspired classical algorithm for recommen-

dation systems. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, pages 217–228, 2019.

[Tan21] Ewin Tang. Quantum principal component analysis only achieves

an exponential speedup because of its state preparation assumptions.

Physical Review Letters, 127(6):060503, 2021.

[Tao13] Terence Tao. Real stable polynomials and the kadison-singer problem.

https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/,

2013.

[TAWL21] Yu Tong, Dong An, Nathan Wiebe, and Lin Lin. Fast inversion,

preconditioned quantum linear system solvers, fast green’s-function

computation, and fast evaluation of matrix functions. Physical Review

A, 104(3):032422, 2021.

[Tel22] Matus Telgarsky. Feature selection with gradient descent on two-layer

networks in low-rotation regimes. arXiv preprint arXiv:2208.02789,

2022.

[Tho65] Colin J Thompson. Inequality with applications in statistical mechan-

ics. Journal of Mathematical Physics, 6(11):1812–1813, 1965.

1601

https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/

[TJ74] Nicole Tomczak-Jaegermann. The moduli of smoothness and convex-

ity and the rademacher averages of the trace classes sp(1 ≤ p < ∞).

Studia Mathematica, 50(2):163–182, 1974.

[TMZE+18] Norm M Tubman, Carlos Mejuto-Zaera, Jeffrey M Epstein, Diptarka

Hait, Daniel S Levine, William Huggins, Zhang Jiang, Jarrod R Mc-

Clean, Ryan Babbush, Martin Head-Gordon, et al. Postponing the or-

thogonality catastrophe: efficient state preparation for electronic struc-

ture simulations on quantum devices. arXiv preprint arXiv:1809.05523,

2018.

[TOG17] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook

of discrete and computational geometry. CRC press, 2017.

[Ton22] Yu Tong. Designing algorithms for estimating ground state properties

on early fault-tolerant quantum computers. Quantum Views, 6:65,

2022.

[TOV+11] Kristan Temme, Tobias J. Osborne, Karl G. Vollbrecht, David Poulin,

and Frank Verstraete. Quantum Metropolis sampling. Nature,

471(7336):87–90, 2011. arXiv:0911.3635.

[Tra84] Boris A Trakhtenbrot. A survey of russian approaches to perebor

(brute-force searches) algorithms. Annals of the History of Comput-

ing, 6(4):384–400, 1984.

[Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices.

Foundations of computational mathematics, 12(4):389–434, 2012.

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities.

Foundations and Trends in Machine Learning, 8(1-2):1–230, 2015.

[Tro18] Joel A Tropp. Second-order matrix concentration inequalities. Ap-

plied and Computational Harmonic Analysis, 44(3):700–736, 2018.

1602

https://arxiv.org/abs/0911.3635

[TV07] Luca Trevisan and Salil Vadhan. Pseudorandomness and average-

case complexity via uniform reductions. Computational Complexity,

16(4):331–364, 2007.

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hash-

ing with applications to linear probing and second moment estimation.

SIAM J. Comput., 41(2):293–331, 2012.

[vACGN22] Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Giacomo

Nannicini. Quantum tomography using state-preparation unitaries.

arXiv preprint arXiv:2207.08800, 2022.

[VAG07] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining

problem: finding a minimal descriptive set of roles. In Proceedings of

the 12th ACM symposium on Access control models and technologies,

pages 175–184, 2007.

[Vai89a] Pravin M Vaidya. A new algorithm for minimizing convex functions

over convex sets. In 30th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pages 338–343, 1989.

[Vai89b] Pravin M Vaidya. Speeding-up linear programming using fast ma-

trix multiplication. In 30th Annual Symposium on Foundations of

Computer Science (FOCS), pages 332–337. IEEE, 1989.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the

ACM, 27(11):1134–1142, 1984.

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with ap-

plications to learning parities and juntas. In 2012 IEEE 53rd Annual

Symposium on Foundations of Computer Science (FOCS), pages 11–

20. IEEE, 2012.

1603

[VBW98] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant

maximization with linear matrix inequality constraints. SIAM journal

on matrix analysis and applications, 19(2):499–533, 1998.

[vdBGJ+22] Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P

Liu, Richard Peng, and Aaron Sidford. Faster maxflow via improved

dynamic spectral vertex sparsifiers. In Proceedings of the 54th Annual

ACM SIGACT Symposium on Theory of Computing, pages 543–556,

2022.

[Ver20] Roman Vershynin. Concentration inequalities for random tensors.

Bernoulli, 26(4):3139–3162, 2020.

[VGL+16] Arnaud Vandaele, Nicolas Gillis, Qi Lei, Kai Zhong, and Inderjit

Dhillon. Efficient and non-convex coordinate descent for symmet-

ric nonnegative matrix factorization. IEEE Transactions on Signal

Processing, 64(21):5571–5584, 2016.

[VM10] Nilton Volpato and Arnaldo Moura. A fast quantum algorithm for

the closest bichromatic pair problem, 2010.

[Voe11] David George Voelz. Computational fourier optics: a MATLAB tuto-

rial. SPIE press Bellingham, Washington, 2011.

[Vu08] Van Vu. Random discrete matrices. In Horizons of combinatorics,

pages 257–280. Springer, 2008.

[VW15] Virginia Vassilevska Williams. Hardness of easy problems: Basing

hardness on popular conjectures such as the strong exponential time

hypothesis (invited talk). In 10th International Symposium on Pa-

rameterized and Exact Computation (IPEC 2015). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2015.

1604

[VW19] Santosh Vempala and Andre Wibisono. Rapid convergence of the un-

adjusted Langevin algorithm: Isoperimetry suffices. Advances in Neu-

ral Information Processing Systems, 32:8094–8106, 2019. arXiv:1903.08568.

[VZGG99] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer

algebra. Cambridge university press, 1999.

[WA08] Pawel Wocjan and Anura Abeyesinghe. Speedup via quantum sam-

pling. Physical Review A, 78(4):042336, 2008. arXiv:0804.4259.

[Wag11] David Wagner. Multivariate stable polynomials: theory and appli-

cations. Bulletin of the American Mathematical Society, 48(1):53–84,

2011.

[Wat94] Andrew B. Watson. Image compression using the discrete cosine

transform. Mathematica Journal, 4:81–88, 1994.

[WB21] James D. Watson and Johannes Bausch. The complexity of approxi-

mating critical points of quantum phase transitions, 2021.

[WBC21a] Kianna Wan, Mario Berta, and Earl T Campbell. A randomized

quantum algorithm for statistical phase estimation. arXiv preprint

arXiv:2110.12071, 2021.

[WBC+21b] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen,

Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan,

et al. Strong quantum computational advantage using a supercon-

ducting quantum processor. Physical review letters, 127(18):180501,

2021.

[WBG20] James D. Watson, Johannes Bausch, and Sevag Gharibian. The com-

plexity of translationally invariant problems beyond ground state en-

ergies, 2020.

1605

https://arxiv.org/abs/1903.08568
https://arxiv.org/abs/0804.4259

[WCNA09] Pawel Wocjan, Chen-Fu Chiang, Daniel Nagaj, and Anura Abeyesinghe.

Quantum algorithm for approximating partition functions. Physical

Review A, 80(2):022340, 2009. arXiv:0811.0596.

[Wea04] Nik Weaver. The Kadison-Singer problem in discrepancy theory. Dis-

crete Math., 278(1-3):227–239, 2004.

[Wed73] Per-Åke Wedin. Perturbation theory for pseudo-inverses. BIT Nu-

merical Mathematics, 13(2):217–232, 1973.

[WG15] Nathan Wiebe and Christopher Granade. Can small quantum systems

learn?, 2015. arXiv:1512.03145.

[Whi92] Hassler Whitney. Congruent graphs and the connectivity of graphs.

In Hassler Whitney Collected Papers, pages 61–79. Springer, 1992.

[Wib19] Andre Wibisono. Proximal langevin algorithm: Rapid convergence

under isoperimetry. arXiv preprint arXiv:1911.01469, 2019.

[Wie83] Stephen Wiesner. Conjugate coding. ACM Sigact News, 15(1):78–88,

1983.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction

and its implications. Theoretical Computer Science, 348(2-3):357–365,

2005.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. In Proceedings of the forty-fourth annual ACM symposium

on Theory of computing (STOC), pages 887–898. ACM, 2012.

[Wil17] Ryan Williams. Pairwise comparison of bit vectors. Theoretical Com-

puter Science Stack Exchange, 2017. https://cstheory.stackexchange.

com/q/37369, visited 2020-07-21.

1606

https://arxiv.org/abs/0811.0596
https://arxiv.org/abs/1512.03145
https://cstheory.stackexchange.com/q/37369
https://cstheory.stackexchange.com/q/37369

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in al-

gorithms and complexity. In Proceedings of the ICM, volume 3, pages

3431–3472. World Scientific, 2018.

[WJB03] Pawel Wocjan, Dominik Janzing, and Thomas Beth. Two QCMA-

complete problems. Quantum Info. Comput., 3(6):635–643, Novem-

ber 2003.

[WKJC21] Guoming Wang, Dax Enshan Koh, Peter D Johnson, and Yudong Cao.

Minimizing estimation runtime on noisy quantum computers. PRX

Quantum, 2(1):010346, 2021.

[WLW+11] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Commu-

nity discovery using nonnegative matrix factorization. Data Mining

and Knowledge Discovery, 22(3):493–521, 2011.

[Woo49] Max A Woodbury. The stability of out-input matrices. Chicago, IL,

9, 1949.

[Woo50] Max A. Woodbury. Inverting modified matrices. Princeton Univer-

sity, Princeton, N. J., 1950. Statistical Research Group, Memo. Rep.

no. 42,.

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra.

Foundations and Trends in Theoretical Computer Science, 10(1–2):1–

157, 2014.

[WP11] Oren Weimann and David Peleg. A note on exact distance labeling.

Information processing letters, 111(14):671–673, 2011.

[WRDR20] Zhihui Wang, Nicholas C Rubin, Jason M Dominy, and Eleanor G

Rieffel. xy mixers: Analytical and numerical results for the quantum

alternating operator ansatz. Physical Review A, 101(1):012320, 2020.

1607

[WSC22] Keru Wu, Scott Schmidler, and Yuansi Chen. Minimax mixing time of

the Metropolis-adjusted Langevin algorithm for log-concave sampling.

Journal of Machine Learning Research, 23(270):1–63, 2022.

[WSJ22] Guoming Wang, Sukin Sim, and Peter D Johnson. State preparation

boosters for early fault-tolerant quantum computation. arXiv preprint

arXiv:2202.06978, 2022.

[WTFX07] Raymond Chi-Wing Wong, Yufei Tao, Ada Wai-Chee Fu, and Xiaokui

Xiao. On efficient spatial matching. In Proceedings of the 33rd Inter-

national Conference on Very Large Data Bases (VLDB 2007), pages

579–590, 2007.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious

lwe sampling. IACR Cryptol. ePrint Arch, 2020:1042, 2020.

[WY14] Ryan Williams and Huacheng Yu. Finding orthogonal vectors in

discrete structures. In Proceedings of the 25th annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 2014), pages 1867–1877.

SIAM, 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare

programs under lwe. In 2017 IEEE 58th Annual Symposium on Foun-

dations of Computer Science (FOCS), pages 600–611. IEEE, 2017.

[WZ20] David P Woodruff and Amir Zandieh. Near input sparsity time kernel

embeddings via adaptive sampling. In ICML, 2020.

[WZL+22] Zongqi Wan, Zhijie Zhang, Tongyang Li, Jialin Zhang, and Xiaoming

Sun. Quantum multi-armed bandits and stochastic linear bandits

enjoy logarithmic regrets, 2022. arXiv:2205.14988.

1608

https://arxiv.org/abs/2205.14988

[XLG03] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on

non-negative matrix factorization. In Proceedings of the 26th annual

international ACM SIGIR conference on Research and development in

informaion retrieval, pages 267–273, 2003.

[XSS21] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the

linear iteration cost barrier for some well-known conditional gradient

methods using maxip data-structures. Advances in Neural Informa-

tion Processing Systems (NeurIPS), 34, 2021.

[YAG12] Man-Hong Yung and Alán Aspuru-Guzik. A quantum–quantum Metropo-

lis algorithm. Proceedings of the National Academy of Sciences, 109(3):754–

759, 2012. arXiv:1011.1468.

[Yao93] A Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993

IEEE 34th Annual Foundations of Computer Science, pages 352–361.

IEEE, 1993.

[Ye20] Guanghao Ye. Fast algorithm for solving structured convex programs.

Undergraduate thesis, University of Washington, 2020.

[YGL+13] Xiaohui Yan, Jiafeng Guo, Shenghua Liu, Xueqi Cheng, and Yanfeng

Wang. Learning topics in short texts by non-negative matrix factor-

ization on term correlation matrix. In proceedings of the SIAM Inter-

national Conference on Data Mining (ICDM), pages 749–757. SIAM,

2013.

[YGS+21] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer,

and Michael Mahoney. Adahessian: An adaptive second order opti-

mizer for machine learning. Proceedings of the AAAI Conference on

Artificial Intelligence, 35(12):10665–10673, May 2021.

1609

https://arxiv.org/abs/1011.1468

[YHD+12] Zhirong Yang, Tele Hao, Onur Dikmen, Xi Chen, and Erkki Oja.

Clustering by nonnegative matrix factorization using graph random

walk. Advances in Neural Information Processing Systems (NeurIPS),

25:1079–1087, 2012.

[YN76] David B Yudin and Arkadi S Nemirovski. Evaluation of the informa-

tion complexity of mathematical programming problems. Ekonomika

i Matematicheskie Metody, 12:128–142, 1976.

[YTF+19] Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and

Volkan Cevher. Scalable semidefinite programming, 2019.

[YZT23] Changhao Yi, Cunlu Zhou, and Jun Takahashi. Quantum phase es-

timation by compressed sensing. arXiv preprint arXiv:2306.07008,

2023.

[Zal98] Christof Zalka. Simulating quantum systems on a quantum com-

puter. Proceedings of the Royal Society of London. Series A: Mathe-

matical, Physical and Engineering Sciences, 454(1969):313–322, 1998.

arXiv:quant-ph/9603026.

[ZCDLP18] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-

Paz. mixup: Beyond empirical risk minimization. In International

Conference on Learning Representations, 2018.

[ZCZG18] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic

gradient descent optimizes over-parameterized deep relu networks. In

arXiv preprint. https://arxiv.org/pdf/1811.08888, 2018.

[ZCZG20] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient

descent optimizes over-parameterized deep relu networks. Machine

learning, 109(3):467–492, 2020.

1610

https://arxiv.org/abs/quant-ph/9603026
https://arxiv.org/pdf/1811.08888

[ZDZ+21] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias

Sulam, and Qing Qu. A geometric analysis of neural collapse with

unconstrained features. Advances in Neural Information Processing

Systems, 34:29820–29834, 2021.

[ZFRK10] Ruicong Zhi, Markus Flierl, Qiuqi Ruan, and W Bastiaan Kleijn.

Graph-preserving sparse nonnegative matrix factorization with appli-

cation to facial expression recognition. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B (Cybernetics), 41(1):38–52, 2010.

[ZG19] Difan Zou and Quanquan Gu. An improved analysis of training over-

parameterized deep neural networks. In NeurIPS, pages 2053–2062,

2019.

[ZGJ+18] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoeck-

lin, Heqing Huang, and Ian Molloy. Protecting intellectual property

of deep neural networks with watermarking. In Proceedings of the

2018 on Asia Conference on Computer and Communications Security,

pages 159–172, 2018.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 2012

IEEE 53rd Annual Symposium on Foundations of Computer Science,

pages 679–687. IEEE, 2012.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice.

In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 408–438. Springer, 2019.

[Zha20] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum de-

coder. Cryptology ePrint Archive, Report 2020/1191, 2020. https:

//eprint.iacr.org/2020/1191.

1611

https://eprint.iacr.org/2020/1191
https://eprint.iacr.org/2020/1191

[ZLDZ07] Zhongyuan Zhang, Tao Li, Chris Ding, and Xiangsun Zhang. Binary

matrix factorization with applications. In Seventh IEEE international

conference on data mining (ICDM), pages 391–400. IEEE, 2007.

[ZLL21] Chenyi Zhang, Jiaqi Leng, and Tongyang Li. Quantum algorithms for

escaping from saddle points. Quantum, 5:529, 2021. arXiv:2007.10253.

[ZLLL18] Zhihui Zhu, Xiao Li, Kai Liu, and Qiuwei Li. Dropping symmetry for

fast symmetric nonnegative matrix factorization. Advances in Neural

Information Processing Systems (NeurIPS), 31:5154–5164, 2018.

[ZMG19] Guodong Zhang, James Martens, and Roger B Grosse. Fast con-

vergence of natural gradient descent for over-parameterized neural

networks. In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

[Zou17] Qing Zou. The q-binomial inverse formula and a recurrence relation

for the q-catalan–qi numbers. J. Math. Anal, 8(1):176–182, 2017.

[ZPD+20] Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and

Sanjeev Arora. Over-parameterized adversarial training: An analysis

overcoming the curse of dimensionality. In NeurIPS. arXiv preprint

arXiv:2002.06668, 2020.

[ZS05] Ron Zass and Amnon Shashua. A unifying approach to hard and

probabilistic clustering. In Tenth IEEE International Conference on

Computer Vision (ICCV), pages 294–301. IEEE, 2005.

[ZSM+93] Zelda B. Zabinsky, Robert L. Smith, J. Fred McDonald, H. Edwin

Romeijn, and David E. Kaufman. Improving hit-and-run for global

optimization. Journal of Global Optimization, 3(2):171–192, 1993.

1612

https://arxiv.org/abs/2007.10253

[Zve97] IE Zverovich. An analogue of the whithey theorem for edge graphs

of multigraphs, and edge multigraphs. Discrete Mathematics and

Applications, 7(3):287–294, 1997.

[ZWA13] Zhong-Yuan Zhang, Yong Wang, and Yong-Yeol Ahn. Overlapping

community detection in complex networks using symmetric binary ma-

trix factorization. Physical Review E, 87(6):062803, 2013.

[ZWD+20a] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-

Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu,

et al. Quantum computational advantage using photons. Science,

370(6523):1460–1463, 2020.

[ZWD+20b] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, and Li-

Chao Peng et al. Quantum computational advantage using photons.

Science, 370(6523):1460–1463, 2020. arXiv:2012.01625.

[ZWJ22] Ruizhe Zhang, Guoming Wang, and Peter Johnson. Computing

ground state properties with early fault-tolerant quantum computers.

Quantum, 6:761, 2022.

[Zyg02] Antoni Zygmund. Trigonometric series, volume 1. Cambridge uni-

versity press, 2002.

1613

https://arxiv.org/abs/2012.01625

Vita

Ruizhe Zhang was born in Shandong, China, in April 1996. He received his

Bachelor of Science degree in Computer Science from Fudan University in 2018. He

was admitted to the Department of Computer Science at the University of Texas at

Austin in August 2018, where he began his graduate studies. Ruizhe’s primary re-

search interests lie in theoretical computer science, quantum computing, and machine

learning. He received the University Graduate Continuing Fellowship in 2022.

Address: 2501 Lake Austin Blvd
Austin, TX 78703

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

1614

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Organization
	Our Contributions in Quantum Computing
	Quantum algorithms for optimization and machine Learning
	New approaches to quantum complexity theory

	Our Contributions in Optimization
	Semi-definite programming
	Sparse Fourier signal reconstruction
	Dynamic distance estimation

	Our Contributions in Machine Learning
	Over-parameterized neural network training
	Classical protection for private training data
	Quantum protection for copyrights of machine learning models

	Our Contributions in Concentration and Discrepancy
	Hyperbolic-extensions of concentration and discrepancy
	Higher-order random walk on expanding posets

	Part I Quantum Computing
	Chapter 2: Quantum Speedups of Log-concave Sampling
	Introduction
	Preliminaries
	Quantum Algorithm for Log-Concave Sampling
	Quantum Algorithm for Estimating Normalizing Constants
	Quantum Lower Bound
	Related Work
	Classical MCMC methods
	Quantum methods for sampling and partition function estimation

	Tools from Classical MCMC Algorithms
	ULD and ULD-RMM
	Annealing for estimating the normalizing constant
	Annealing Markov chains are slowly varying

	Basic Facts about Quantum Walk
	Definitions and spectral properties of quantum walk
	Efficient implementation of quantum walk

	Quantum Algorithm for Log-Concave Sampling: Details
	Quantum inexact ULD and ULD-RMM
	Quantum MALA

	Quantum Algorithm for Estimating Normalizing Constants: Details
	Quantum MALA and annealing
	Quantum multilevel Langevin algorithms

	Proof of the Quantum Lower Bound

	Chapter 3: Quantum Speedups of Approximately Convex Optimization
	Introduction
	Preliminaries
	Quantum computing in continuous space
	Classical and quantum walks
	Hit-and-Run walk

	Quantum Algorithm for Optimizing Approximately Convex Functions
	Quantum Algorithm for Zeroth-Order Stochastic Convex Bandits
	Classical Approach for Optimizing Approximately Convex Functions
	Low level: Hit-and-Run for approximate log-concave distributions
	Mid level: rounding into isotropic position
	High level: simulated annealing

	Quantum Speedup for Optimizing Approximately Convex Functions
	Quantum speedup for low-level
	Non-destructive rounding in the mid-level
	Proof of Theorem 3.1

	Chapter 4: Early Fault-Tolerant Ground-State Energy Estimation
	Introduction
	Previous methods for ground state energy estimation
	Summary of main results
	Technical overview
	Future directions

	Estimating ground state energy via Gaussian derivative filtering
	Convolving the spectral measure with a Gaussian derivative filter
	Basic strategy for ground state energy estimation
	Gaussian derivative filters with bounded band-limits

	Complexity of Evaluating the convolution
	Evaluating the convolution via Hadamard tests
	Application to Gaussian derivative filters

	Main Theorem
	Comparison to the Approach of [LT22]

	Chapter 5: Early Fault-Tolerant Ground-State Property Estimation
	Introduction
	Ground State Property Estimation Problem
	An Overview of the Low-Depth Ground State Energy Estimation
	Algorithm for Commutative Case
	Step 1: estimate the initial overlap
	Step 2: estimate the O-weighted CDF
	Putting it all together

	Algorithm for General Unitary Observables
	2-d O-weighted density function and CDF
	Estimating the 2-d ACDF
	Putting it all together

	Handling Non-Unitary Observables
	Applications
	Charge density
	Quantum linear system solver

	Discussion and Outlook

	Chapter 6: QAOA for Network-Flow Optimization
	Introduction
	Quantizing Network Flow Problems
	Constraints in flow problems
	The edge-disjoint path problem
	The single source shortest path problem

	From QAOA to Lattice QED
	Lattice QED Hamiltonian
	QED-mixer for network flow problems
	Algorithm description

	Numerical Simulation of Algorithm Performance
	Comparing mixers
	Mixer comparison on SSSP problems
	EDP on undirected graphs

	Discussion

	Chapter 7: Quantum Fine-Grained Complexity
	Introduction
	Proof overview

	Preliminaries
	Quantum query model
	Quantum subroutine for unstructured searching and minimum finding
	Problem definitions
	Fine-grained complexity
	The framework for quantum walk search

	Quantum Fine-Grained Complexity
	Quantum fine-grained reduction and QSETH
	Lower bounds for CP, OV, and BCP in higher dimensions under QSETH
	Quantum lower bound for BCP in nearly-constant dimensions under QSETH

	Closest Pair in Constant Dimension
	Radix tree for at most one solution
	Single-shot quantum walk with complicated data structure
	Multiple-trial quantum walks with simple data structure
	Quantum lower bound for CP in constant dimensions

	Bichromatic Closest Pair in Constant Dimensions
	Quantum algorithm for xi-BCP
	Quantum algorithm for solving BCP exactly
	Quantum lower bound for BCP in constant dimensions

	Orthogonal Vectors in Constant Dimensions

	Chapter 8: Quantum Meta-Complexity
	Introduction
	The classical MCSP and its connections to other problems
	Main results and technical overview
	Discussion and open questions

	Preliminaries
	Quantum complexity classes
	Nonuniform quantum circuit complexity classes

	Minimum Quantum Circuit Size Problems
	Problem definitions
	Upper bounds for MQCSP
	Hardness of quantum MCSP

	Connections Between MQCSP and Other Problems
	Cryptography and MQCSP
	Learning theory
	Circuit lower bounds
	Fine-grained complexity

	MCSP for Quantum Objects
	Reductions for UMCSP and SMCSP
	Applications of SMCSP and UMCSP

	Proof for the Hardness of MQCSP
	Learning Theory
	PAC learning
	Quantum learning

	Proofs in Section 8.4.3
	Proof for Theorem 8.26
	Proof of Quantum Antichecker Lemma
	Quantum Impagliazzo-Wigderson generator

	Quantum Fine-Grained Hardness Based on QETH
	Proofs for Corollary 8.47
	Quantum Circuit Class
	MQCSP and prBQP

	Part II Optimization
	Chapter 9: Faster Classical Semi-Definite Programming Solver
	Introduction
	An Overview of Previous Techniques
	The Robust SDP Framework
	Our Techniques
	Low rank update of Hessian
	Computing Hessian inverse efficiently
	General amortization method

	Solving SDP With Hybrid Barrier
	Related Work
	Preliminary
	Notations
	Tools: Woodbury identity
	Tools: Properties of matrix operations
	Tools: Fast matrix multiplication

	Our Algorithm and Result
	Correctness
	Approximate slack maintenance
	Approximate Hessian inverse maintenance

	Time Analysis
	Initialization cost
	Cost per iteration
	Property of low rank update
	Amortized analysis

	The Robust Interior Point Method Framework For SDP
	Definitions
	One step error analysis
	 move
	 move
	Integral under local norm
	Approximate dual optimality
	Our main result

	Hybrid Barrier-Based SDP Solver
	Basic facts on the hybrid barrier
	Efficient implementation via robust SDP framework
	Approximation to Q
	S move in hybrid barrier
	Property of low rank update for the hybrid barrier
	Our result

	Chapter 10: High-Accuracy Quantum SDP Solver
	Introduction
	Quantum Barrier with Existing Algorithms
	Related Work
	Technical Overview
	Block encoding-based interior point method
	Overcoming the quantum barriers

	Preliminary
	Quantum linear algebra toolbox

	Revisit of Robust Newton Step
	Quantum Second-Order SDP Solver
	Slack matrix
	Gradient
	Update the changes of the dual
	Combine

	Well-Conditioned SDP Instances

	Chapter 11: A Unified Approach to Fourier Set-Query
	Introduction
	Our results

	Technical Overview
	A general framework for Fourier set query-type problems
	Our techniques for signal estimation algorithms
	Our techniques for discrete Fourier set query

	Definitions of Semi-Continuous Fourier Set Query and Interpolation
	Formal definitions of Fourier set query
	Formal definitions of semi-continuous Fourier interpolation

	Preliminaries
	Tools and inequalities
	Basics of Fourier transformation
	Facts about lattices
	Facts about importance sampling

	Energy Bounds for Fourier Signals
	Energy bound for one-dimensional signals
	Energy bound for high-dimensional signals
	Energy bound for discrete Fourier signals
	Energy bounds imply concentrations

	Oblivious Sketching Fourier Sparse Signals
	Weighted oblivious sketching one-dimensional signals
	Oblivious sketching high-dimensional signals
	Oblivious sketching discrete signals
	eps-net for sparse Fourier signals

	Fast Implementation of Well-Balanced Sampling Procedure
	Randomized BSS implies a WBSP
	Fast implementation of WBSP
	Trade-off between preprocessing and query

	Sketch Distillation for Fourier Sparse Signals
	Sketch distillation for one-dimensional signals
	Sketch distillation for high-dimensional signals
	Sketch distillation for discrete signals

	One-Dimensional Signal Estimation
	Sample-optimal reduction
	High-accuracy reduction

	High-dimensional Signal Estimation
	Sample-optimal reduction
	Bounding the sparsity
	High-accuracy reduction

	Discrete Fourier Set Query in One Dimension
	Sample-optimal set query algorithm
	Composition of two WBSPs

	High Dimensional Reduction Under Noiseless Assumption
	Fourier basis is linear independent on randomly sampled points
	Reduction

	Semi-continuous Approximation
	Properties related to Gaussians
	Continuous Fourier transform
	Semi-continuouse approximation of Fourier-sparse signals
	Fast optimal-sparsity Fourier sparse recovery
	Semi-continuous approximation with a constant frequency gap

	Chapter 12: Quartic Samples Suffice for Fourier Interpolation
	Introduction
	Related works

	Technical Overview
	High-level approach
	Our techniques for frequency estimation
	Our techniques for Fourier interpolation

	Organization
	Preliminaries
	Energy Bounds of Fourier Sparse Signals
	Filter in Frequency Domain
	Frequency domain filter construction
	Frequency domain covering

	Hashing the Frequencies
	HashToBins procedure
	Frequency isolation
	Large offset event

	Filter in Time Domain
	Time domain filter construction
	Normalization factor of the filter
	Fluctuation bound
	Energy preserving of the time domain filter

	Ideal Filter Approximation
	Swap the order of filtering
	Approximation error bounds

	Concentration Property of the Filtered Signal
	Energy Bound for Filtered Fourier Sparse Signals
	Energy bound for untruncated ideally filtered signals
	Energy bound for filtered signals
	Technical claim

	Local-Test Signal
	Ideal local-test signal
	Ideal post-truncated local-test signal
	Energy bound for local-test signals

	Empirical Energy Estimation
	Sampling and reweighing
	Energy estimation for Fourier-sparse signals and filtered signals
	Partial energy estimation for filtered signals and local-test signals
	Technical lemmas

	Generate Significant Samples
	Energy estimation for noisy signals
	Significant sample generation for a single bin
	Significant sample generation for multiple bins
	Technical claims

	Frequency Estimation
	Frequency estimation via significant samples
	Simultaneously estimate frequencies for different bins
	Vote distributions in ArySearch

	Signal Reconstruction
	Preliminary
	Heavy cluster
	Fourier set query
	High signal-to-noise ratio band approximation
	Fourier interpolation with constant success probability
	Min-of-medians signal estimator
	Main algorithm for Fourier interpolation

	Structure of Our Fourier Interpolation Algorithm

	Chapter 13: Distance Oracles for Any Symmetric Norm
	Introduction
	Our results

	Technique Overview
	Sparse Recovery Data Structure
	Running Time and Space of Our Algorithm
	Correctness of Our Algorithm
	Conclusion
	Preliminaries
	Notations
	Probability Tools
	Stable Distributions

	Symmetric Norms
	Monotonicity property of symmetric norm
	Concentration property of symmetric norms
	Median of symmetric norm

	Analysis of Layer Approximation
	Layer vectors and important layers
	Approximated layers provides a good norm approximation
	Contributing layers
	Contributing Layers Are Important

	Formal Main Result and Algorithms
	Formal version of our main result
	Sparse recovery tools

	More Details of the Time Complexity
	More Details of the Correctness Proofs
	Correctness of layer size estimation
	Trackability of Layers
	Probability analysis
	From probability estimation to layer size approximation

	Space Complexity
	Lower Bound From Previous Work
	Details About Sparse Recovery Tools
	Our sparse recovery tool
	Lp tail estimation
	Lp norm estimation

	Part III Machine Learning
	Chapter 14: Training Two-Layer Over-Parameterized Neural Networks
	Introduction
	Challenges and Techniques
	Preliminaries
	Problem formulation
	Data structure for Half-Space Reporting
	Sparsity-based characterizations

	Training Neural Network with Half-Space Reporting Data Structure
	Weights preprocessing
	Data preprocessing

	Convergence of Our Algorithm
	Main Classical Results
	Discussion
	Complete Algorithms
	Preliminaries
	Half-space reporting data structures
	Basic algebras

	Sparsity Analysis
	Bounding difference between continuous kernel and discrete kernel
	Handling Hessian if perturbing weight
	Total movement of weights
	Bounded gradient
	Upper bound on the movement of weights per iteration
	Bounding the number of fired neuron per iteration

	Convergence Analysis
	Upper bound the initialization
	Bounding progress per iteration
	Upper bound on the norm of dual Hessian
	Bounding the gradient improvement term
	Bounding the blowup by the dual Hessian term
	Bounding the blowup by the flip-neurons term
	Bounding the blowup by the prediction movement term
	Putting it all together

	Combine
	Bounds for the Spectral Gap with Data Separation
	Quantum Algorithm for Training Neural Network
	More Efficient Data Structures
	Correlation tree data structure
	Training algorithms with correlation tree data structures
	Lower bound for Dynamic Detection of Firing Neurons

	Chapter 15: Training Multi-Layer Over-Parameterized Neural Networks
	Introduction
	Our result
	Related Work

	Preliminaries
	Notations
	Problem setup

	Technique Overview
	Subquadratic time
	Convergence analysis

	Discussion and Future Directions
	Preliminaries
	Complete Algorithm and Its Runtime Analysis
	Low Rank Maintenance and Efficient Computation of the Change
	Low rank maintenance
	Efficient computation of rank-1 decompositions

	Fast Tensor Product Regression
	Approximate J via TensorSketch
	Approximate J via TensorSRHT
	Sketching-based Preconditioner

	Spectral Properties of Over-parametrized Deep Neural Network
	Bounds on the Least Eigenvalue of Kernel at Initialization
	Bounds on the Least Eigenvalue during Optimization

	Convergence Analysis of Our Algorithm
	Preliminary
	Technical lemmas
	Bounds on initialization
	Bounds on small perturbation
	Putting it all together
	Bounds on the movement of weights

	Bounds on the Intermediate Layer Output with Shifted ReLU

	Chapter 16: Privacy Distributed Learning: A Theoretical Analysis of InstaHide's Security
	Introduction
	Our result
	Comparison to recent attacks

	Summary of the Attack by Carlini et al.
	Preliminaries
	Recovering All Private Images when kpriv=2
	Retrieving Gram matrix
	Remove public images
	Assigning encoded images to original images
	Solving a large system of equations

	Missing proofs for Theorem 16.6
	A graph problem (kpriv=2)
	General case (kpriv>2)

	Computational Lower Bound

	Chapter 17: Symmetric Boolean Factor Analysis with Application to Private Learning
	Introduction
	Our results
	Related work

	Technical Overview
	Bootstrapping the tensor
	Linear independence

	Preliminaries
	Notations
	Basic Definitions
	Discrete probability tools

	Average-Case Algorithm
	Non-intersection probabilities mt well-separated
	Constructing a tensor
	Tensor decomposition
	Linear independence of W
	Putting everything together

	Connections Between BvK-Sum, SSNMF, InstaHide
	Connection to batched k-vector sum
	Similarity oracle
	An improved attack on InstaHide

	Worst-Case Algorithm
	CSP preliminaries
	From factorization to CSPs
	Extension to the Boolean semiring

	Chapter 18: Copyright Protection in the Quantum Era
	Introduction
	This work
	Technical overview
	Other related works
	Concurrent and independent work

	Preliminaries
	Quantum computation
	Quantum oracle algorithm
	Direct-product problem and quantum signature tokens
	Testing quantum programs: measurement implementation

	Learning Game Definitions
	Unlearnability
	Copy-protection
	Copy-detection
	Watermarking primitives with public extraction

	Approximating Threshold Implementation
	Quantum Copy-Protection Scheme
	Correctness and efficiency
	Anti-piracy security

	Quantum Copy-Detection
	Construction
	Efficiency and correctness
	Security

	Part IV Concentration and Discrepancy
	Chapter 19: Hyperbolic Polynomials I: Concentration and Anti-Concentration
	Introduction
	Our results
	Hyperbolic anti-concentration
	Related work
	Technique overview
	Discussion and open problems

	Preliminaries
	Notations
	Basic definitions of hyperbolic polynomials
	Basic properties of hyperbolic polynomials
	Concentration inequalities
	Khinchin-Kahane inequality
	Matrix analysis tools
	Helton-Vinnikov Theorem

	Hyperbolic Chernoff bound for Rademacher Sums
	Preliminaries
	Proof of the Chernoff bound for hyperbolic polynomials
	Expected hyperbolic-2q norm bound

	Hyperbolic Chernoff bound for hyperbolic cone vectors
	Hyperbolic Anti-Concentration Bound
	Our result
	Technical lemmas

	Chapter 20: Hyperbolic Polynomials II: Discrepancy and Kadison-Singer-Type Results
	Introduction
	Our results

	Related work
	Proof Overview
	Hyperbolic discrepancy for high-rank vectors
	Hyperbolic deviations
	Generalization to strongly Rayleigh distributions

	Preliminaries
	Real-stable polynomials
	Hyperbolic polynomials
	Interlacing families
	Barrier method

	High-Rank Hyperbolic Kadison-Singer with Sub-Isotropic Condition
	Formal Statements of Previous Matrix Discrepancy Results
	Hyperbolic Kadison-Singer with relaxed condition
	Technical tools in previous work
	Upper bound for the largest root of the mixed hyperbolic polynomial

	Hyperbolic Spencer Result
	Hyperbolic Extension of Kadison-Singer for Standard Deviations
	Preliminaries
	Defining interlacing family of characteristic polynomials
	From mixed characteristic polynomial to multivariate polynomial
	Applying barrier argument to bound the largest root of multivariate polynomial
	Combining together: proof of Theorem 20.43

	Hyperbolic Extension of Kadision-Singer for Strongly Rayleigh
	Preliminaries
	Defining interlacing family of characteristic polynomials
	From mixed characteristic polynomial to multivariate polynomial
	Applying barrier argument to bound the largest root of multivariate polynomial
	Combining together: proof of Theorem 20.54

	Sub-Exponential Algorithms
	Definitions
	Algorithm to approximate the largest root
	Reducing Kadison-Singer to finding leading coefficients of interlacing polynomial
	Sub-exponential algorithm for Theorem 20.10
	Sub-exponential algorithm for Theorem 20.4
	Sub-exponential algorithm for Theorem 20.11

	Examples and Discussions

	Chapter 21: Higher-Order Random Walk and Edge-Expansion on Posets
	Introduction
	Background
	Results
	Related work

	Preliminaries
	Graded posets
	Measured posets and the random walk operators
	Higher order random walks
	Expanding posets and the HD-Level-Set decomposition
	The Grassmann poset and q-eposets

	Approximate Eigendecompositions and Eigenstripping
	Spectra of HD-walks
	Pseudorandomness and the HD-Level-Set Decomposition
	l2-pseudorandomness
	l inf-pseudorandomness

	Expansion of HD-walks
	The Grassmann and q-eposets
	Spectra
	Pseudorandom functions and small set expansion

	Eposet Parameters and Regularity

	Appendix A: Probability Theory Toolbox
	Concentration Inequalities
	Anti-Concentration

	Appendix B: Quantum States, Unitary Transformations, and Quantum Circuits
	Input
	Quantum Process
	Output

	Appendix C: Omitted Materials from Chapter 5
	A Review of Lin-Tong's Algorithm
	Quantum part of the algorithm
	Classical part of the algorithm
	Low Fourier degree approximation of the Heaviside function

	Technical Details of the Hadamard Test of Block-Encoded Observable
	Generalized Hadamard test

	Appendix D: Omitted Materials from Chapter 6
	Proof of the QED-mixer's universality for planar graphs
	Dual ``height-model" formulation

	Appendix E: Omitted Materials from Chapter 9
	Initialization
	From Dual to Primal
	Our Straightforward Implementation of the Hybrid Barrier SDP Solver
	Maintain the Leverage Score Matrix of the Volumetric Barrier
	Basic facts on the leverage score matrix
	Efficient algorithm for the leverage score matrix
	Maintain intermediate matrix
	Amortized running time

	Appendix F: Theoretical Analysis of Sparsely Activated Wide Neural Networks
	Introduction
	Related works

	Preliminaries
	Problem formulation

	Main Theory
	Convergence and sparsity
	Generalization and restricted least eigenvalue
	Key ideas in the proof of Generalization
	Key ideas in the proof of Restricted Eigenvalue

	Experiments
	Discussion
	Convergence
	Difference between limit NTK and sampled NTK
	Bounding the number of flipped neurons
	Bounding NTK if perturbing weights and biases
	Total movement of weights and biases
	Gradient descent convergence analysis
	Bounding the number of activated neurons per iteration

	Bounding the Restricted Smallest Eigenvalue with Data Separation
	Generalization
	Rademacher complexity
	Analysis of radius

	The Benefit of Constant Initialization of Biases

	Appendix G: Omitted Materials from Chapter 18
	Cryptographic Primitives
	Public-key quantum money
	Obfuscation

	Missing Details For Threshold Implementation
	Proof of Theorem 18.6
	Proof of Lemma 18.7

	Generalizing Learning Games
	Generalized unlearnability
	Generalized copy protection
	Generalized copy detection
	Watermarking primitives with public extraction
	Examples of watermarking primitives

	General Copy-Protection Scheme
	General Quantum Copy-Detection
	Construction
	Efficiency and correctness
	Security

	Public-key Quantum Money from Copy Detection
	Security analysis

	Bibliography
	Vita

