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ABSTRACT OF THE DISSERTATION

Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning
by

Stephen W. Tyree
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2014

Professor Kilian Q. Weinberger, Chair

Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practition-

ers to choose simpler, less powerful models, e.g. linear models, in order to process more

training examples in a limited time. In this work, we introduce parallelism to the training of

non-linear models by leveraging a different tradeoff—approximation. We demonstrate var-

ious techniques by which non-linear models can be made amenable to larger data sets and

significantly more training parallelism by strategically introducing approximation in certain

optimization steps.

For gradient boosted regression tree ensembles, we replace precise selection of tree splits

with a coarse-grained, approximate split selection, yielding both faster sequential training

and a significant increase in parallelism, in the distributed setting in particular. For metric

learning with nearest neighbor classification, rather than explicitly train a neighborhood

structure we leverage the implicit neighborhood structure induced by task-specific random

forest classifiers, yielding a highly parallel method for metric learning. For support vector

machines, we follow existing work to learn a reduced basis set with extremely high parallelism,

particularly on GPUs, via existing linear algebra libraries.
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We believe these optimization tradeoffs are widely applicable wherever machine learning is

put in practice in large scale settings. By carefully introducing approximation, we also intro-

duce significantly higher parallelism and consequently can process more training examples

for more iterations than competing exact methods. While seemingly learning the model with

less precision, this tradeoff often yields noticeably higher accuracy under a restricted training

time budget.
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Chapter 1

Introduction

Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practition-

ers to choose simpler, less powerful models, e.g. linear models, in order to process more

training examples in a limited time. In this work, we introduce parallelism to the training

of non-linear models by resorting to a different tradeoff—approximation. We demonstrate

various techniques by which non-linear models can be made amenable to larger data sets and

added parallelism by strategically introducing approximation in certain optimization steps.

In practice, the combination of increased non-linear model power and the ability to train

on more data counteract the loss of precision due to approximation. The result is higher

accuracy in training time which is competitive with less powerful methods.

For gradient boosted regression tree ensembles, we consider trading off the precise selection

of tree splits in favor of a coarse-grained, approximate split selection. This opens the door

to both faster sequential training and a significant increase in parallelism, in the distributed

1



setting in particular. While the consequence is a small loss in accuracy, boosted tree ensem-

bles are shown to be highly resilient to this approximation and significantly more parallel as

a result. We leverage this method for both large scale regression (e.g. learning to rank) and

non-linear metric learning.

For metric learning with nearest neighbor classification, it is common to learn a metric

which explicitly produces some desired neighborhood structure. However, this is often both

computationally expensive and limited in parallelism. In this work, we opt out entirely from

the optimization of an explicit neighborhood structure. Instead, we leverage the implicit

neighborhood structure induced by task-specific random forest classifiers. In doing so, we co-

opt the highly parallel random forest training procedure to metric learning. The result is an

accurate metric for nearest neighbor classification and an additional layer of interpretability

for random forest predictions.

For support vector machines, previous work has shown that adopting a carefully selected

reduced basis set, instead of learning weights for all support vectors, can maintain high

accuracy while significantly reducing training time and model size. We leverage this existing

work and demonstrate that this training also presents extremely high parallelism, particularly

on GPUs. Further, the method suffers little loss in accuracy under additional approximation

by choosing the basis vector set with only minor supervision or even randomly. The result is

the fastest publicly-available kernel SVM training code released to date for either multicore

or GPU architectures.

2



We believe these optimization tradeoffs are widely applicable wherever machine learning

is put in practice in large scale settings. By carefully introducing approximation, we also

introduce significantly higher parallelism and consequently can process more data examples

for more iterations than competing exact methods. While seemingly learning the model

with less precision, this tradeoff often yields higher accuracy under a restricted training time

budget.

In the remainder of this chapter, we introduce the general problem of learning predictors

from data, along with several common methods for learning non-linear predictors. Finally, we

consider a variety of settings for parallel and distributed computing which will be leveraged

throughout this dissertation.

1.1 Learning from Data

With many complex tasks, it is remarkably challenging to precisely describe how to accom-

plish the task, e.g. in a computer program. For example, it would be very difficult to write

a computer program which takes as input the image of a handwritten digit and returns the

value of the digit represented in the image. (Indeed, it is hard to convey the same task to

young humans.)

Yet, for many complex problems, it is almost trivial to accumulate examples of the success-

fully completed task. For the handwritten digit recognition task, with a little time it is quite

3



straightforward to collect numerous examples of handwritten digits with the identity of the

digit written in each. Indeed, far more humans are capable of creating or collecting such

examples than have sufficient skills to write complex computer code.

With this setup, we no longer want to write a digit recognition program by hand. Rather, if

we could leverage a more general, existing program—a pattern recognition method—we could

present our collection of task examples and allow the general program to learn the pattern

behind the examples in order to repeat the task on new examples. Then, the handwritten

digit task becomes a data collection and labeling problem rather than a challenging reasoning

and programming task!

Supervised learning. Supervised machine learning is concerned with designing pattern

recognition methods. We assume we are presented with examples of the inputs to and

outputs from a function of unknown form. Examples of functions of interest may include:

• the identity of a handwritten digit in an image;

• whether an email message is or is not spam; and

• the relevance of a document to a web search query string.

In each case, these functions are hard to characterize directly, yet it may be quite simple to

gather examples of input/output pairs. For the previously cited examples, one could acquire

a set of examples by:

4



• recruiting several hundred subjects and asking each to write the digits 0-9;

• recording which emails are marked spam by users of a web-based email service; and

• examining click-through rates and human evaluator scores on web search results.

Data and learning problems. In the machine learning context, a set of input and output

pairs constitutes a training set. A machine learning algorithm attempts to approximate the

unknown function underlying the training data, capturing a model for the function. When

presented with a previously unseen input, referred to as a test input, the model is used to

predict the function’s output.

We assume training data D = {(xi, yi)}ni=1 are in the form of n samples from some input

distribution. The samples are captured as feature vectors xi ∈ X ⊆ Rd in a d-dimensional

vector space. We denote the value of feature j of sample i by the notation [xi]j. Each sample

xi is associated with a label yi ∈ Y , an observed output of the function to be learned when

queried with input xi. This label yi indicates the property we would like to automatically

predict about unlabeled instances.

When the set of label values is an ordered subset of the real numbers (Y ⊆ R), we refer to

the problem as a regression problem. When the set of label values is discrete and unordered

(Y ∈ {1, 2, ..., c}), we refer to the discrete labels as classes and the problem as a classification

problem. Classification problems may be binary (|Y| = 2) or multiclass (|Y| > 2), but

5



multiclass problems can be (and often are) solved as a series of binary classification problems

[69, 151].

Learning as optimization. The goal is to learn a function h : X → Y such that h(xi) ≈

yi. We choose our predictor h from some restricted class of functionsH. A common approach

is to optimize the predictor h with respect to a cost function C(h), selecting the function ĥ

which minimizes the mis-prediction cost on the available training instances:

ĥ = argmin
h∈H

C(h).

For many cost functions, this optimization is intractable. This includes, for example, the

most straightforward classification error measure, the mis-prediction count:

C(h) =
n∑
i=1

[h(xi) 6= yi],

where [·] denotes the Iverson bracket. Mis-prediction counts are non-continuous in the space

of predictor functions, as a small change in predictor output may induce large changes in

the cost function. Without a well-behaved error measure, function selection can become a

combinatorial optimization problem.

6



One solution is to optimize h with respect to a well-behaved surrogate cost function C(h)—

continuous, at least once differentiable, and (ideally) convex. Surrogate cost functions com-

monly upper bound the desired error measure. With such a function, learning predictors in

many function classes is a numerical minimization problem amenable to well-studied first- or

second-order mathematical optimization methods, including gradient descent and Newton’s

method. One typical well-behaved cost function for regression problems is the squared-loss,

C(h) =
n∑
i=1

(h(xi)− yi)2.

Several cost functions are common for learning classification models, including the logistic,

exponential, and hinge loss functions.

1.2 Non-Linear Machine Learning Methods

Machine learning is extremely effective for a wide variety of data analysis and prediction

tasks. For many complex problems, non-linear models have proven essential to achieving

high prediction accuracy. In this context, non-linearity refers to the ability to capture effects

which cannot be modeled as a linear combination of features in the input space X . Consider

a version of the “XOR-problem” as depicted in Figure 1.1(a). No linear combination of the

two features, [x]1 and [x]2, can define a rule for separating the two classes. However, as

7



(a) XOR Dataset (b) Decision Tree

(c) k-Nearest Neighbors (d) Kernel Support Vector Machine

Figure 1.1: A simple noisy “XOR” dataset with two classes (red and blue dots), and the
decision boundary (red and blue shading) of (a) the underlying noiseless “XOR” distribution,
(b) a decision tree, (c) the k-nearest neighbors decision rule (k = 3), and a kernel support
vector machine (C = 1, γ = 1).

depicted in Figure 1.1(b-d) and discussed in the following paragraphs, models learned from

a variety of non-linear function spaces can easily produce reliable predictors.

Learning non-linear models often presents significant computational challenges, particularly

when paired with large-scale training sets. The work in this dissertation encompasses several

methods to leverage approximation in concert with parallel and distributed hardware systems

8



to effectively speed up and scale up machine learning with non-linear models. Here we discuss

three categories of non-linear models which will be referenced in subsequent chapters.

Decision trees and tree ensembles. Decision tree models operate by recursively parti-

tioning the feature space using axis-aligned splits. This input space partitioning is captured

in a binary tree structure. The tree’s internal nodes denote single-feature partitioning rules

of the form [x]j ≤ θ, where j is an index in feature vector x and θ is a split threshold.

Leaf nodes in the tree indicate prediction labels, with one constant label value correspond-

ing to each input space partition. Trees are denoted classification or regression trees based

on whether leaf predictions are class labels (or distributions over classes) or real numbers,

respectively.

A prediction is made for a sample x by descending the tree. Following the branching rule at

each internal node, the left child node is chosen when the rule evaluates true, otherwise the

right child is chosen. Upon reaching a leaf node, the leaf’s label is returned as the prediction.

Trees naturally capture non-linear decision boundaries, are invariant to feature scaling, and

readily incorporate a variety of input spaces including categorical features. Tree training is

typically accomplished via a top-down procedure which greedily chooses splits to minimize

prediction error at the next level of the tree. Construction of each level of nodes typically

involves a sequential pass over the training samples, considering the effect of each potential

split threshold at each node. Since splits are axis-aligned, individual trees lack the ability to

9



easily capture smooth decision boundaries and, due in part to the greedy training procedure,

can easily “overfit” to specific patterns in the training set.

Tree ensemble models use a collection of subtly varying trees to learn powerful and easily

configured classifiers for many problems. Merging many trees supports smooth decision

boundaries. Fitting the trees to varying views of the training dataset helps to alleviate

overfitting. When trained by gradient boosting, trees in the ensemble are learned sequentially

to correct errors made by previous trees. In random forests, a collection of “random” trees are

learned from different random samples from the training set and their predictions averaged.

When attempting to scale to large training sets, the sequential training of gradient boosting

places the burden of parallelization on the construction of individual trees. Leveraging special

properties of boosted tree models, particularly short tree depth and weak assumptions on

the accuracy of any individual tree, we present an extremely flexible approximate method to

parallelize tree learning in both distributed and multi-core settings. Random forest training

is naturally parallel as individual trees are learned on different independent samples from

the training set. We leverage parallelism in these methods to perform regression and metric

learning (as discussed in the next paragraph) on medium and large scale problems.

Nearest neighbor methods and metric learning. Nearest neighbor methods produce

arguably the simplest and most interpretable non-linear classification models. Predictions

are made by querying a training set for the labeled training instances which are most similar

10



to the unlabeled test instance, and constructing a prediction from the labels of the similar

examples.

For the case of 1-nearest neighbor classification (1NN), the predicted label yt for a test point

xt is the label yi of the nearest training instance xi ∈ D:

yt = argmin
(xi,yi)∈D

D(xt,xi),

for some distance functionD : X×X → R+, effectively capturing inverse similarity. Common

choices for D(·) are the Euclidean distance for general vector data and the χ2 distance for

histograms or probability-vectors. In the general case of k-nearest neighbor classification

(kNN), for some k ≥ 1, classification predictions are made by a vote among the labels of the

k neighbors, while regression predictions are commonly produced by some form of averaging.

The accuracy of nearest neighbor models relies heavily on the choice of similarity metric

for determining which neighbors are indeed “nearest” for both the sample input space and

the prediction task at hand. Metric learning optimizes task-specific similarity metrics to

minimize kNN error under the metric. It is often to useful to reframe the metric learning

problem as learning a transformation φ(·) of the input feature space under which a standard

metric, such as Euclidean or χ2, yields good kNN performance:

yt = argmin
(xi,yi)∈D

Dφ(xt,xi) = argmin
(xi,yi)∈D

D(φ(xt), φ(xi)).
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In its simplest form, φ(·) is a linear transformation parameterized by matrix L: φ(x) =

Lx. Learning linear transformations presents computational advantages, however for some

problems the feature space cannot be adequately reshaped by simple linear manipulations.

In these cases, non-linear metric learning approaches, often corresponding to learning non-

linear transformations, can yield significant increases in accuracy. In this dissertation, we

introduce two novel non-linear metric learning approaches, each leveraging a parallel tree

ensemble approach for scalable training. Each approach yields highly competitive accuracy

with no significant parameters to tune and scalability to medium and large scale training

sets.

Kernel support vector machines. Support vector machines (SVM) learn a classifier

with a large “margin” between a linear hyperplane separating the two classes of samples and

the nearest training samples from each class. In the linear formulation, the SVM optimization

minimizes the hinge loss with respect to a linear hyperplane parameterized by weights w,

min
w,b

1

2
||w||22 + C

n∑
i=1

max(0, 1− yi(w>xi + b)).

A maximum margin is enforced by L2-regularization on the hyperplane with tradeoff C.

The “kernel trick” provides a natural non-linear extension to SVMs, implicitly learning a

hyperplane in a high (or even infinite) dimensional projection of the input space. In the

kernel SVM setting, we make a non-linear transformation of the input space, x→ φ(x), akin
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to the non-linear transformations discussed for metric learning. It is costly (or impossible

in the case of projections into infinite-dimensional feature spaces) to explicitly represent the

feature transformation and then proceed with SVM training. However, some transformations

have corresponding kernel functions, permitting closed-form solutions for inner products in

the transformed space, k(xi,xj) = φ(xi)
>φ(xj). By solving the SVM optimization in the

dual [150] or by leveraging the Representer Theorem for primal optimization [47], training

samples are accessed only in inner product computations with other training samples, per-

mitting powerful non-linear projections by simply substituting a kernel function. As a result

of the kernel substitution, the hyperplane is represented as coefficients on kernel function

evaluations between training samples and a test sample. Training samples corresponding to

non-zero coefficients are called “support vectors.”

Quadratic model complexity and limited parallelism in typical SVM optimization procedures

have prevented the application of SVMs to many medium and large datasets. We review

the literature of SVM solvers seeking an SVM formulation and optimization method more

conducive to parallelism on modern multi-core and GPU hardware. By adopting a previously

published sparse SVM approximation, we successfully implement SVM training for multi-

core CPUs and GPUs, achieving significant speedup over existing approaches.
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1.3 Parallel and Distributed Systems

Training speed is vital for practical machine learning settings. In many real-world appli-

cations, models are not simply trained once and reused ad infinitum. Rather, models are

frequently retrained as new labeled data are acquired. In adversarial settings or systems

whose behavior drifts over time, such as spam filtering or web search ranking, retraining

may occur at a daily or even hourly frequency to account for the changing environment.

Further, development and evaluation of new input features is a common process which also

requires model retraining.

Initial model training can exhibit some trivial parallelism when there are hyper-parameters to

tune. However, after hyper-parameter selection, a single training phase is typically engaged

using the full training set. Additionally, recent developments in Bayesian hyper-parameter

tuning [178] limit the need for broad searches over grids or random selections of hyper-

parameters. These observations solidify the need for fast, highly parallel training.

In conjunction, trends in computer architecture have been moving toward increasingly par-

allel hardware. Indeed the major speedups in hardware have been almost exclusively from

introducing more parallel cores rather than increasing the processing speed of individual

cores. In this dissertation, we explore parallelizations of a variety of non-linear learning

methods on a range of platforms.
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Thread and process level parallelism is supported in multiprocessing architectures, where

multiple processing cores are engaged simultaneously. In shared memory architectures, these

cores are tightly coupled, having access to the same memory bus, and perhaps residing in the

same socket and sharing some level of the cache hierarchy. Communication among processors

is extremely fast, but system memory is limited by the amount of RAM configurable in a

single machine.

An extreme example of shared memory multiprocessing is found in general-purpose graph-

ics processing units (GPUs). GPUs were originally developed for real time rendering of

complex visual scenes from underlying 3-D shape models. As such, they have many hun-

dreds of lightweight compute cores. Unlike traditional shared memory multi-core systems,

GPUs are optimized for high throughput. GPUs are based on a “same instruction multi-

ple data” (SIMD) architecture, which requires all threads within one block to execute the

exact same instructions, whereas multi-core CPUs have much fewer threads with no such

restriction. Efficient GPU memory access patterns are restricted to batch memory accesses

made cooperatively by multiple threads. Fast thread switching is used hide latency in mem-

ory accesses, but requires many simultaneously executing threads. These restrictions can

make coding for GPUs, and more importantly optimizing execution performance on GPUs,

a significant challenge. Reuse of existing patterns can lighten this development burden and

significantly increase both performance and code resiliency across multiple generations of

GPU architectures.
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In distributed memory (or cluster) systems, computing cores are located in physically dis-

tinct machines and communication is directed through network connections. In this setting,

interaction is distinctly slower and limited by network bandwidth. However the amount of

system memory is practically unlimited and no longer bound by what is feasible to install on

a single computer. This volume of memory permits tackling of significantly larger problems

than are manageable with shared memory systems. However, programmability can suffer

as additional considerations are introduced, including data distribution patterns, inter-node

communication, and tolerance against node or network failure.
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Chapter 2

Parallel Boosted Tree Ensemble

Construction

Tree-based classifiers are a popular and powerful set of supervised-learning methods applica-

ble to a wide variety of learning problems. Tree classifiers incorporate natural non-linearity

and present few important hyper-parameters, two factors which yield powerful out-of-the-

box performance. With ensembling, tree models often reach state-of-the-art accuracy on a

variety of problems, including some which are particularly difficult for other methods (e.g.

many categorical features or features with widely-varying scales).

Boosting is an ensemble method in which a single strong classifier is iteratively constructed

from a sequence of “weak learners.” Most commonly the weak learners are depth-limited tree

classifiers. The weak learners are trained in sequence, each correcting the prediction errors

made by the collection of weak-learners learned previously in the sequence. Boosted tree
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classifiers have proven remarkably effective for many industrial scale problems in machine

learning, including web search ranking [48] and recommender systems [123].

The sequential nature of boosted tree learning—training one tree at a time on a potentially

very large training set—places the full computational burden on the tree learning procedure.

Tree learning is expensive as the entire set of training data must be scanned repeatedly during

the process of constructing each tree. Further, tree learning in general is non-trivial to paral-

lelize as any parallelization strategy requires some combination of frequent synchronization

or repeated data re-distribution.

Surprisingly, while both boosting and tree learning are challenging to parallelize in general,

the specific combination presented by boosted regression trees is highly amenable for both

parallel and distributed learning. This is due in large part to the strictly limited tree depth

imposed commonly imposed in boosted tree learning.

In this chapter, we study methods for speeding up training of boosted tree ensembles by

parallelizing the special case of learning depth-limited trees. We first examine the common

exact method for split evaluation, which in conjunction with a feature-wise data distribution

is well-suited for medium scale data. Subsequently, we present a novel approximate method

which supports arbitrary data distribution strategies, including a more natural instance-wise

distribution, and can scale to much larger datasets in distributed cluster and cloud settings.

This method uses data compression in the form of histograms to efficiently synchronize split

selection among distributed nodes. To our knowledge, this was the first work to explicitly
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parallelize regression tree construction specifically tuned for the purpose of gradient boosting.

The approximate method demonstrates speedups of up to 40× on 48 shared memory cores

and up to 25× on 48 distributed cluster cores, while resulting in no significant loss in accuracy.

Section 2.1 provides an introduction to gradient boosting ensembles and regression tree learn-

ing. Section 2.3 details a feature-wise data distribution strategy, particularly in conjunction

with exact split selection. Section 2.4 presents an approximate tree learning method sup-

porting an instance-wise data distribution via histogram synchronization. Section 2.5 gives

an experimental evaluation.

2.1 Gradient Boosted Regression Trees

In this section we first review gradient boosting [81] as a general meta-learning algorithm

for function approximation. We follow this with a description of regression trees [24], tree

learning procedures, and considerations for parallelization of the learning procedure.

2.1.1 Notation

We assume the data are in the form of samples D = {(xi, yi)}ni=1 consisting of feature

vectors xi ∈ Rd and labels yi ∈ R. The notation [xi]j denotes the jth feature of sample xi.

For example, consider a sample corresponding to a user search query and a website which
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may or may not closely match the query. (This example of a web search ranking problem

will be carried throughout this chapter.) The feature vector xi captures characteristics of

the query (e.g. language, number of words), the website (e.g. PageRank [146], language,

last update time), and both parts jointly (e.g. the number of times the query terms appear

in the website). Some of these features may be numerical (e.g. word counts), while others

are categorical (e.g. language). In this example, the label of interest yi is the relevance of

document to its query, ranging from “irrelevant” (if yi = 0) to “perfect match” (if yi = 4).

Our goal is to learn a function h : Rd → R such that h(xi) ≈ yi. In cases where the label set

is a continuous or ordered subset of the real numbers, we have a regression learning problem.

Otherwise, when labels are drawn from a discrete, unordered set of values, a classification

problem results. Continuing the search query example, we seek to learn a regression function

on the relevance of queries to documents. At test time, a search engine gathers documents

that provide a preliminary match to the query. Subsequently, the engine computes query

specific features for this set of documents {xj}mj=1 and ranks them in decreasing order of

their predicted relevance {h(xj)}mj=1.

A common approach is to optimize the prediction function h with respect to a well-behaved

cost function C(h), selecting the function ĥ which minimizes this mis-prediction cost on the

available training instances,

ĥ = argmin
h
C(h).
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One typical cost function for regression problems is the squared-loss,

C(h) =
n∑
i=1

(h(xi)− yi)2.

We do not restrict ourselves to any particular cost function. Instead we assume that we are

provided with a generic cost function C(·), which is continuous, convex and at least once

differentiable. Particularly pertinent to the web search ranking problem are a number of

ranking specific cost functions [31, 30].

2.1.2 Gradient Boosting

Gradient boosting [81] is an iterative algorithm to find an additive predictor h(·) which mini-

mizes a cost function C(h). The additive classifier h(·) ∈ HT is formed from the combination

of T predictors from some class of base predictors H. At each iteration t, a new function

gt(·) is added to current predictor ht(·), such that after T iterations, hT (·) =
∑T

t=1 αtgt(·),

where αt > 0 is some non-negative learning rate. (Often the learning rate is constant, i.e.

αt = α for all iterations t.)

In iteration t, gradient boosting attempts to find the function g(·) such that C(ht + g) is

minimized,

g = argmin
g∈H

C(ht + g).
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By a first-order Taylor approximation, we obtain

g ≈ argmin
g∈H

[
C(ht) +

〈
∂C

∂ht(·)
, g(·)

〉]
.

By approximating the inner-product between two functions by summing over the products

of known instantiations of the functions, 〈f(·), g(·)〉 =
∑n

i=1 f(xi)g(xi), and dropping the

constant term C(ht), we obtain

g ≈ argmin
g∈H

[
n∑
i=1

∂C
∂ht(xi)

g(xi)

]
. (2.1)

In order to find an appropriate function g(·), we assume the existence of an oracle O. For a

given function class H and a set {(xi, ri)} of pairs of instance vectors xi and target responses

ri, this oracle returns the function g ∈ H, that yields the best least squares approximation

of the response values (up to some small ε > 0):

O({(xi, ri)}) ≈ argmin
g∈H

∑
i

(g(xi)− ri)2. (2.2)
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We expand the squared term in (2.2) and assume the norm of g ∈ H is constant,1 i.e.

〈g, g〉 = c. The two quadratic terms are constants and therefore independent of g, leaving

O({(xi, ri)}) ≈ argmin
g∈H

[∑
i

−ri g(xi)

]
.

The solution of the minimization (2.1) becomes

g ≈ O({(xi, ri)}) where ri = − ∂C
∂ht(xi)

.

In the case where C(·) is the squared-loss, C(h) =
∑n

i=1(h(xi)− yi)2, the target assignment

is the current residual, ri = yi − ht(xi).

Algorithm 1 summarizes gradient boosted regression in pseudo-code. In many domains,

including web search ranking and recommender systems, the most successful and practical

choice for the oracle O(·) in (2.2) is the greedy Classification and Regression Tree (CART)

algorithm [24] with limited tree depth p. In the following section, we review regression trees

and the basic CART algorithm.

1We can avoid this restriction on the function class H with a second-order Taylor expansion in (2.1). We
omit the details of this slightly more involved derivation as it does not affect our algorithmic setup. However,
we do refer the interested reader to [241].
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Algorithm 1 Gradient Boosting
Input: data set D = {(xi, yi)}ni=1

Parameters: continuous & differentiable cost function C(h), learning rate αt, ensemble size T
Initialization: ri = yi, ∀i
h(·) = 0
for t = 1 to T do
gt ← O({(xi, ri})
h(·)← h(·) + αtgt(·)
for i = 1 to n do
ri ← − ∂C

∂ht(xi)

end for
end for
return h

2.1.3 Regression Trees

Decision tree models recursively partition the input feature space, grouping similarly-labeled

input samples into the same regions. Beginning with the full feature space at the root node,

each internal node in the tree applies a binary axis-aligned split, dividing the feature space

into two regions. A full tree of splits results in a set of non-overlapping rectangular regions,

with one region corresponding to each “leaf” node in the tree. A full, balanced, binary tree

model of depth p results in a partition of the input space into 2p axis-aligned regions.

Predictions are made by traversing inputs down the tree. Beginning at the root node, an

input x is navigated to either the left or right child by comparing with a split criterion θ on

feature j at each internal node. Upon reaching a leaf node, the input is assigned a prediction

label.

Partitioning is accomplished by simple decision functions at each branch. Commonly, each

decision function is a “decision stump,” either a threshold on a single numerical feature or
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Figure 2.1: A simple regression tree (a), and the corresponding partitioning and labeling of
the input feature space, x ∈ [0, 1]2 (b).

one category from a single discrete feature. For example, Figure 2.1(a) depicts a regression

tree with two levels of branching nodes. The root branch sends instances to the left child

node when the value of feature 2, [x]2, is less than the threshold θ0 = 0.71, otherwise to the

right child node. Similar numerical decision stumps partition on feature 1 in the second level

of branches.

After descending the tree, data samples have been partitioned into one of several sets, each

set corresponding to a “leaf node” in the tree. Ideally the instances in each set can be

reliably characterized by a common constant label prediction. For example, the decision

tree in Figure 2.1(a) partitions the input space into four rectangular regions. These regions

and the constant predictions made for each are depicted in Figure 2.1(b). For instance, all

samples reaching leaf node 3 given the prediction 2.8.
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Decision tree training. In supervised decision tree learning, the splits at each branch

are chosen to minimize error when making a constant prediction for all samples in each leaf

node region. Decision tree models where each output prediction is selected from a continuous

range are commonly termed “regression trees,” with “classification” trees corresponding to

trees with predictions made in a discrete label space.

Learning an optimal decision tree is in general an NP-complete problem, however greedy

methods are very effective in practice. Here we detail the CART algorithm [24], a simple

and widely-used method for decision tree construction. Throughout, we focus on a discussion

of regression tree training while highlighting issues for learning regression trees from large

training sets. However, we note that classification trees may be learned by nearly identical

methods.

Regression tree construction in CART [24] proceeds by selecting branch splits to greedily

minimize label variance in child nodes. Let us consider how to select a split for an arbitrary

branching node given training samples S ⊆ D. (If this node is the root of the tree, S includes

all input samples in the training data, i.e. S = D.) We wish to select a split (j, θ) on a

single feature [x]j with split criterion θ. For notational simplicity, we assume θ is a threshold

on a numerical feature, corresponding to the binary test [x]j < θ, though splits on discrete

features may be handled with similar simplicity.
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A split (j, θ) induces a partition of the input data into two sets, the first corresponding to

the left child of the branching node,

A(j,θ) = {(xi, yi) ∈ S : [xi]j < θ} ,

and the second corresponding to the right child,

B(j,θ) = S −A(j,θ) = {(xi, yi) ∈ S : [xi]j ≥ θ} .

The set of candidate split features j is determined by the input dimensionality d, i.e.

j ∈ {1, ...d}. The set of thresholds θ is seemingly infinite, even for bounded features,

however a finite training set only supports meaningful evaluation of a finite set of split

thresholds. Given the set of unique values for a feature j, Qj = {[xi]j ∀i}, there exist only

|Qj| − 1 unique partitions A(j,θ) and B(j,θ), as all thresholds between consecutive feature

values,
{
θ : Q(k)

j < θ < Q(k+1)
j

}
, induce the same partition. It is common in practice to

use candidate thresholds chosen to be the values half-way between each consecutive feature

value, i.e. {
Q(k)
j +Q(k+1)

j

2

}|Qj |−1
k=1

.
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Using this construction of candidate thresholds, a full set of candidate splits is

P =

(j, θ) : θ ∈

{
Q(k)
j +Q(k+1)

j

2

}|Qj |−1
k=1


d

j=1

.

Given a set of candidate splits P , we select the split (ĵ, θ̂) ∈ P which minimizes the label

variance in the two child sets, A and B,

(ĵ, θ̂) = argmin
(j,θ)∈P

|A| var(A) + |B| var(B), (2.3)

where

var(S) =
1

|S|
∑

(xi,yi)∈S

(yi − ȳS)2 and ȳS =
1

|S|
∑

(xi,yi)∈S

yi.

Solving (2.3) once corresponds to branching a single tree node into two child nodes. To build

a full regression tree, we begin with the root node and recursively split by (2.3), terminating

recursion whenever a child node violates a pre-specified stopping criterion, e.g. maximum

tree depth or minimum number of training instances per node (|S|).

A constant prediction is assigned to every terminal (leaf) node. Given a leaf node with input

data S ⊆ D, a common predictor is the average label value of input samples in S, previously

denoted ȳS . It is straight-forward to show that ȳS minimizes the squared loss among all
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possible constant predictors for a set S:

ȳS = argmin
q∈R

∑
(xi,yi)∈S

(yi − q)2.

Dynamic programming for split evaluation. Evaluating the objective function in (2.3)

for a single split (j, θ) is O
(
n
)

complexity as every training sample must be assigned to

either the left or right child set. Evaluating a set of splits on a single feature, Pj, can also

be accomplished in O
(
n
)

by a simple dynamic programming schemes [24].

To demonstrate this, we begin by substituting the definition of sample variance into (2.3),

expanding the quadratic terms, and dropping the constant term
∑

(xi,yi)∈A y
2
i +
∑

(xi,yi)∈B y
2
i ,

yielding,

argmin
(j,θ)∈P

|A|ȳ2A − 2ȳA
∑

(xi,yi)∈A

yi

+

|B|ȳ2B − 2ȳB
∑

(xi,yi)∈B

yi

 .

Simplifying further by recalling the definitions of predictors ȳA and ȳB, we have

argmin
(j,θ)∈P

− 1

|A|

 ∑
(xi,yi)∈A

yi

2

− 1

|B|

 ∑
(xi,yi)∈B

yi

2

. (2.4)

Rewritten in this way, the optimization depends only two quantities computed from each

split-induced set, A and B: the number of samples in each set, |A| and |B|; and the sum of

the sample labels in each set,
∑|A|

i=1 yi and
∑|B|

i=1 yi.

29



A simple dynamic programming scheme begins with training samples stored feature-wise in

memory with each feature sorted independently. (We offer some implementation details of

this scheme in Section 2.3.) In a one-time preprocessing step per tree, we count the number

of samples, |S|, and the sum of the labels,
∑|S|

i=1 yi, for all training samples S before branching

at the root node. To evaluate splits for a feature j, we initialize with all samples taking the

right branch, i.e. A = ∅ and B = S. We have |B| = |S| and
∑

(xi,yi)∈B yi =
∑|S|

i=1 yi from

preprocessing.

We make a sequential pass through the sorted feature values,
{

[x(1)]j, [x(2)]j, ..., [x(n)]j
}

. As

each sample [x(k)]j is figuratively moved from the right side of the branch, B, to the left,

A, we update sample counts and label sums for both sets. We stop whenever a new feature

value is encountered, i.e. [x(k)]j < [x(k+1)]j. At such points, A and B correspond to the sets

induced by a split (j, θ), where [x(k)]j < θ < [x(k+1)]j. We compute the objective in (2.4)

using the current label sums and set sizes, recording the current split parameters if the split

yields a new minimum objective value.

The remainder of this chapter focuses on repeatedly solving (2.4) in the context of learning

many short trees. We consider efficient implementations leveraging either parallel or dis-

tributed architectures and computing both exact and approximation solutions. In Section

2.3, we describe a feature-wise parallelization scheme which directly uses the basic dynamic
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programming split evaluation described here. In Section 2.4, we introduce a novel approxima-

tion scheme for evaluating (2.4) on an instance-wise parallelization of the training samples,

a setup very amenable to large scale distributed learning.

2.2 Related Work

Here we present a sample of previous work on parallel methods related to our work. This

related work falls into two categories: parallel decision trees and parallelization of boosting.

Parallel decision tree algorithms have been studied for many years, and can be grouped

into two main categories: task-parallelism and data-parallelism. Algorithms in the task-

parallelism category [64, 181] divide a tree into sub-trees, which are constructed on different

workers, e.g. after the first node is split, the two remaining sub-trees are constructed on

separate workers. There are two downsides of this approach. First, each worker should

either have a full working copy of the data or a large amount of data must be communicated

to workers after each split. This scheme is infeasible for distributed training with large data

sets, especially if the entire data set does not fit in each worker’s local memory. Second,

small trees, such as those commonly used in boosting approaches, are unlikely to achieve

much speedup since they can only utilize as many workers as the number of nodes in a single

level of the tree.
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The algorithms presented in this chapter fall under the second approach [3], data-parallelism,

where the training data are divided among different workers. Data can be partitioned by

features [79], by samples [166] or both [232]. Distributing by feature requires workers to

coordinate which inputs fall into which tree nodes during the construction process, since the

individual workers do not have enough information to compute branching decisions using

features stored by other workers. This requires communication of O(n) bits for each level of

the tree. We detail our approach to this method (and our open-source implementation) in

Section 2.3.

Distributing the training data by samples [166] avoids this communication problem. How-

ever, in order to obtain an exact solution, all workers are required to aggregate their eval-

uations of each potential split point [232]. This motivates our approximate instance-wise

distributed method. This approach distributes the data by samples, avoiding O(n) com-

munication and allowing significant scaling potential, particularly in distributed settings.

We deliberately only approximate the exact split, making use of histograms to synchronize

split evaluation across processing nodes, yielding a communication requirement which is

independent of the data set size.

Two sample-partitioning approaches bear similarities to our work. PLANET [147] selects

splits using exact, static histograms constructed in a two stage process. Implemented in

the MapReduce framework, PLANET first samples histogram bin boundaries to achieve

approximately uniformly-sized bins, then tallies exact data counts and label sums for each
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bin. Initially we implemented a similar scheme, but later achieved better accuracy with a

single stage process and our dynamic regression-oriented histograms.

Further, unlike PLANET, our implementations specifically avoids use of the MapReduce

framework which is ill-suited to iterative computation. In näıve implementations of MapRe-

duce, the internal states of the distributed “mapper” processes are not preserved between iter-

ations. Instead, significant setup and teardown costs are incurred during each re-initialization.

While this yields simplicity and robustness to node or link failures, this attribute renders

many MapReduce implementations extremely inefficient for highly iterative algorithms such

as tree learning. In the case of boosted tree construction, a different MapReduce iteration

is required for learning of each level of nodes in each tree in the ensemble. This com-

monly amounts to several thousand iterations over the course of ensemble training, which in

MapReduce could entail reloading the input data from disk at each iteration.

Our approximate instance-wise algorithm is most similar to Ben-Haim and Yom-Tov’s work

on parallel approximate construction of decision trees for classification [15]. Our histogram

methods were largely inspired by their publication. However, our approach differs in several

ways. First, we use regression trees instead of classification – requiring us to interpolate label

values within histogram bins instead of computing one histogram per label. Further, our

method explicitly parallelizes gradient boosted regression trees with a fixed small depth. The

communication required for workers to exchange the feature-histograms grows exponentially

with the depth of the tree. In our experiments, for trees with depth p ≥ 15 (consisting of over
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65,535 tree nodes), we saw a slowdown (instead of speedup) due to increased communication.

This drastically reduces the benefit of parallelization of full decision or regression trees on

large data sets, since the required tree depth grows with increasing data set size. In contrast,

our framework deliberately fixes tree-depth to a small value (e.g. p between 4 and 6 with 63

to 255 tree-nodes). Unlike other tree methods, boosting addresses larger data sets by opting

for additional boosting iterations rather than deeper trees, precisely fitting our approach.

We will show that our approach obtains more speed-up on larger data sets, as the parallel

scan of the data to construct histograms takes a larger fraction of the overall running time.

Most of the previous work on parallelizing boosting focuses on parallel construction of the

weak learners [147] or on the original AdaBoost algorithm [127, 203] instead of gradient

boosting. MultiBoost [213] combines bagging with AdaBoost, which can be performed in

parallel, but inherits AdaBoost’s sensitivity to noise.

2.3 Feature-wise Distribution

Parallelizing by features is perhaps the simplest approach for large scale tree learning [79].

In this setting, features in the training set are partitioned among the available processing

nodes. As each processing node has access to an entire feature across all training samples,

we can directly implement the efficient dynamic programming approach for split evaluation

(2.4) described in Section 2.1.3.
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Parallel execution proceeds as follows: Each processing node k loads and sorts a subset

of the training features, {[xi]j} for j ∈ Jk. Tree construction operates breadth first, as

every processor k independently computes the best branch parameters (jk, θk) for the root

node based on its locally-stored features Jk. The best local splits are exchanged among the

processors and the split with minimal global cost is selected and added to each processor’s

local copy of the tree.

Before proceeding to compute the next level of branching nodes, the previous splits must be

applied to the training data, navigating each training sample to either the left or right child

of its current node. Due to the feature-wise data distribution, only one processor will have

on hand the globally-best splitting feature for each new branch, necessitating another round

of communication. We assign every training instance a single bit in a n-length bit-vector.

Processors with a local copy of a splitting feature will set the bit for a training sample to 1 if

the sample should be assigned to the right child, 0 otherwise. After this assignment vector is

distributed, each local processor updates its local node assignments and proceeds to expand

the next layer of the tree.

Implementing the exact split evaluation requires O
(
n log n

)
preprocessing time, including

sorting each feature. In practice, this time is roughly equivalent to learning a few small

boosting trees. Further, it requires 2n memory, as the sample index must be stored alongside

each feature value for every feature to navigate samples through each new branching node

and identify the label value for each sample.
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Advantages and Drawbacks. A feature-wise data distribution, as described here, has

the distinct advantage of supporting both exact and approximate evaluation of splits. The

following section describes an instance-wise distribution method, but efficient evaluation

in that setting requires approximations for most problems. Meanwhile, the approximation

scheme may also be applied in the feature-wise setting for added speedup.

The drawbacks of a feature-wise distribution are apparent in three areas: feature storage,

communication, and robustness. First, data must be stored (or redistributed) by feature,

which in many cases is the transpose of the most natural format (storing each sample vec-

tor contiguously) and could require significant communication to achieve in a distributed

storage setting. Second, while communication is constant with respect to tree depth and

the number of features, it scales linearly with the number of training samples (requiring one

bit per sample). Third, implementations may be vulnerable to two difficulties specific to

the distributed setting. High variance may be observed in processing time observed among

different features if features vary significantly in the number of candidate splits. This results

in a problem termed the “curse of the last reducer,” where most processing nodes must idle

while a small number of nodes complete their computations. Further, feature-wise distribu-

tions are significantly affected by compute node or communication link failures, potentially

meaning the loss of entire features from training.

Finally, electing for exact split evaluations also present drawbacks when applied to large

training sets. Preprocessing (with O
(
n log n

)
complexity for sorting) and additional storage
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are required to accommodate the necessary feature sorting. Further, while the training

procedure can linearly scan feature values in memory, simultaneously a random memory

access is needed to access the label and tree node index for the sample corresponding to each

feature value. Unpredictable memory accesses such as these are extremely unfriendly to the

caching schemes in modern memory architectures.

2.4 Instance-wise Distribution with Histograms

In this section, we introduce and analyze a novel method for learning gradient boosted

regression trees. The method is motivated by the distributed data setting, in which individual

data instances are partitioned across nodes in a cluster or cloud computing system. Learning

in this setting is challenging as no individual computing node has access to all data instances,

or even all instances for a particular feature.

The method introduced here is inspired by Ben-Haim and Yom-Tov’s work on parallel con-

struction of decision trees for classification [15]. We use adaptive histograms to summarize

local data distributions during tree construction. This method is optimized to learn depth-

limited regression trees on large datasets, making the method ideal for learning boosted

regression trees in large-scale settings, such as those found in learning web ranking func-

tions.
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In our approach, the algorithm works incrementally, constructing one layer of the regression

tree at a time. The data are partitioned among a set of worker nodes/processors whose

efforts are organized by a master node.2 At each step, the workers compress their portion

of the data into small histograms and send these histograms to the master. The master

aggregates the histograms and uses them to approximate the tree split optimization in (2.4)

and compute the next layer in the regression tree. It then communicates this layer to

the workers, allowing them to compute the histograms for constructing subsequent layers.

Construction stops when a predefined depth is reached.

This master-worker approach with bounded communication has several advantages. First,

it can be generalized to numerous platforms and implementation schemes: multicores and

shared memory machines (e.g. OpenMP, MPI), clusters (e.g. MPI, MapReduce) and clouds

(e.g. Amazon Elastic MapReduce [4]) with relatively little effort. Second, the data samples

are partitioned among workers instance-wise and each worker only accesses its own partition

of the data. Third, the amount of communication between processors is independent of the

size of the distributed training set and is tunable, allowing an increase in the compression

ratio, possibly at the expense of accuracy. In the distributed memory setting, this allows

practically unlimited scaling in the size of the training set.

While adapted from [15], where a similar method is demonstrated for learning single, full-

depth classification trees, this approach is a very natural fit for gradient boosting for two

2While useful conceptually, the role of the master node may be distributed among the workers in actual
implementation.
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reasons. First, the communication between processors at each step is proportional to the

number of leaves in the current layer. Therefore, it grows exponentially with the tree depth,

which is a significant drawback for full decision trees. However, regression trees used for

boosting are typically very small. Second, while inaccuracies from approximate splits may

be detrimental to a single tree model, in the boosting setting, the minor inaccuracies can be

compensated for through a relatively small increase in the number of boosting iterations or

by slightly deeper trees (which are still much too small for inter-processor communication

to have a noticeable effect).

2.4.1 Setting

In this section, we describe our approach for parallelizing the construction of gradient boosted

regression trees using an instance-wise data distribution and approximation of split selection.

In this approach, the boosting still occurs sequentially, as we parallelize the construction of

individual trees. Two key insights enable our parallelization. First, in order to evaluate a

potential split point during tree construction we only need cumulative statistics about all

data left and right of the split, but not the individual data instances themselves. Second,

boosting does not require the weak learners to be particularly accurate. A small reduction

in accuracy of the regression trees can potentially be compensated for by using more trees

without affecting the accuracy of the cumulative boosted regressor.
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In our method, we have a master processor and P workers. Workers may be separate

compute nodes (each with one or more cores) in a distributed cluster or cloud environment

or individual cores on a shared memory processor. We assume that data are partitioned by

instance into P disjoint subsets, each possibly stored in a different physical location. Each

worker p has access one of these subsets, Dp, such that
⋃P
p=1Dp = D, Dp ∩Dq = ∅ for p 6= q

and |Dp| ≈ |D|/P .

The master processor guides construction of a regression tree layer by layer. We proceed

layer-wise (rather than node-wise, for instance) to optimize memory access patterns. When

learning balanced trees by layer, each training instance is assigned to exactly one node

and instances may be scanned in-order and in-place during the data compression phase,

merely noting the node containing each instance. This procedure avoids repeatedly copying

to coalesce instances by tree node or making scattered memory accesses to read just the

instances belonging to a single node.

At each iteration, a new layer is constructed as follows: Each worker compresses its share

of the data using histograms (as in [15]) and sends them to the master processor. The

histograms capture the distribution of labels at each current tree node under the ordering

of each feature. The master collects and merges the histograms, using them to approximate

the best splits for each branching node, thereby constructing a new layer. The master sends

the splits for this new layer (features j and thresholds θ) to each worker, and the process

repeats as workers construct histograms for the new layer.
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The communication consists entirely of the workers sending histograms to the master and

the master sending the splits for a new layer of the tree to the workers. The amount of com-

munication is related only to the number of nodes in the current layer, the dimensionality of

the feature vectors, and granularity of the histograms (number of bins)—and is independent

of the number of training instances. The size of communication does increase with the depth

of the tree, but since the depth of the regression trees for gradient boosting is bounded and

very small, the amount of communication is also bounded and reasonable.

To explain the details of this algorithm, we first identify the cumulative statistics that are

sufficient for regression tree training. Second, we describe how we can construct histograms

with a single pass over the data and use them to approximate these cumulative statistics and,

consequently, approximate the best tree splits. Finally, we describe the algorithms that run

on the master and workers and how we overlap computation and communication to achieve

good parallel performance.

2.4.2 Cumulative Statistics

We wish to build trees from compressed summaries of distributed data. In other words,

we wish to evaluate the splitting criterion (2.3) using cumulative statistics about the data

set. To begin, we have a subset S ⊆ D of training inputs and a branching node which

dictates a split (j, θ) on feature j with split criterion θ (assumed for notational convenience

to be a real-valued threshold). This partitions the input set S into disjoint sets A(j,θ) =
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{(xi, yi) ∈ S : [xi]j < θ} and B(j,θ) = S−A(j,θ) = {(xi, yi) ∈ S : [xi]j ≥ θ}. For convenience,

we will generally refer to this sets simply as A and B, with the parameters of the split

considered only implicitly.

Let `S denote the sum of all labels and mS the number of inputs within a set of inputs S:

`S=
∑

(xi,yi)∈S

yi and mS = |S|. (2.5)

With this notation, the constant least squares predictors ȳA and ȳB, for the left and right

subsets respectively, can be expressed as

ȳA =
`A
mA

and: ȳB =
`A
mA

=
`S − `A
mS −mA

. (2.6)

We apply the notation from (2.5) and (2.6) to simplified split evaluation of (2.4):

(j∗, θ∗) = argmin
(j,θ)∈P

−(`A(j,θ))2

mA(j,θ)

− (`S − `A(j,θ))2

mS −mA(j,θ)

. (2.7)

Since `S and mS are constants for a set S, in order to evaluate a split point on S, we only

require the values `A(j,θ) and mA(j,θ) on the set A(j,θ).

Here we deviate from the previous exact approach which relied on the linear time dynamic

programming evaluation with sorted features. Given a procedure to efficiently estimate

`A(j,θ) and mA(j,θ) for arbitrary splits (j, θ), we need not exhaustively consider all possible
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splits P (at a considerable computational savings for many features) nor require a scan

of sorted feature values. In the following sections, we introduce a novel histogram-based

method for compressing training samples and efficiently estimating the cumulative statistics

for evaluation of arbitrary splits.

2.4.3 Histograms

The traditional GBRT algorithm, as described in Section 2.1.3, spends the majority of its

computation time evaluating split points during the creation of regression trees. We speed

up and parallelize this process by summarizing label and feature-value distributions using

histograms. Here we describe how a single split is selected using histogram summaries of the

raw input data.

Ben-Haim and Yom-Tov [15] introduce a parallel histogram-based decision tree algorithm

for classification. A histogram Hj summarizes the jth feature of a data set S. The histogram

is a set of b tuples Hj ={(p1,m1), ..., (pb,mb)}, where each tuple (pk,mk) summarizes a bin

Bk ⊆ S containing mk = |Bk| inputs around a bin center pk = 1
mk

∑
(xi,yi)∈Bk [xi]j. In this

original setting, each processor summarizes its data by generating one histogram per label.

Unlike [15], we are working in a regression setting, so we cannot have a different histogram

for each label. Instead, our histograms contain triples, (pk,mk, rk), where rk =
∑

(xi,yi)∈Bk yi

is the cumulative label value of the kth bin and pk and mk as defined previously.
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Construction. A histogram Hj can be built over a data set S in a single pass. For each

input (xi, yi) ∈ S, a new bin ([xi]j, 1, yi) is added to the histogram. If the size of the

histogram exceeds a predefined maximum value b∗ then the two nearest bins, Bk1 and Bk2

where

k1, k2 = argmin
k′1,k

′
2

|pk′1 − pk′2|, (2.8)

are merged and replaced by the bin

(
mk1pk1 +mk2pk2

mi +mk2

, mk1 +mk2 , rk1 + rk2

)
. (2.9)

Entire histograms may be merged by sequentially inserting the bins of one histogram into

the other and applying the same merging rule. By this method, distributed subsets of a data

set may be compressed in parallel, followed by a constant time merging operation to capture

the entire data set.

Interpolation. Given the compressed information from the merged histogram

Hj = {(pk,mk, rk)}bk=1 ,

we would like to approximate the values needed to evaluate a split threshold (j, θ) as defined

in (2.7). These values are the number of points “left” of the split, mA, and the sum of the

labels “left” of the split, `A. If θ = pk for some 1 ≤ k ≤ b, i.e., we are evaluating a split
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exactly at a centroid of a bin, we assume the points and label “mass” are evenly distributed

the bin centroid. In other words, half of the points, mk/2 and half of the total label sum,

rk/2, lie on each side of pk. The approximations then become:

mpk ≈
k−1∑
k′=1

mk′ +
mk

2
and `pj ≈

k−1∑
k′=1

rk′ +
rk
2
. (2.10)

If a candidate split threshold θ is not at the center of a bin, i.e. pk < θ < pk+1, we interpolate

the values of mA and `A. Let us consider `A first. As we already have `pk , all we need to

compute is the remaining relevance ∆ = `A−`pk =
∑

pk≤[xi]j<θ rk, so `A = `pk +∆. Following

our assumption that the points around bins k and k + 1 are evenly distributed, there is a

total relevance of R = rk+rk+1

2
between the bin centers pk and pk+1. We assume this total

relevance is evenly distributed within the area under the histogram curve between [pk, pk+1].

Let a(θ) =
∫ θ
pk
h(x)∂x be the area under the curve within [pk, θ]. The sum of relevance within

[pk, θ] is then proportional to a(θ)/a(pk+1). We use the trapezoid method to approximate

the integral a(θ) and interpolate `A:

`A = `pk +
ar(θ)

ar(pk+1)
R, (2.11)

where:

ar(θ) ≈
(rk + rθ)(θ − pk)

2
and

rθ = rk +
rk+1 − rk
pk+1 − pk

(θ − pk).
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The interpolation of mA is analogous to (2.11), except that mx are substituted for all rx.

Now that we can interpolate cumulative statistics `A and mA from histograms for arbitrary

split points θ, there are potentially infinite number of candidate split points. We select the

set of candidate split points P positioned uniformly on the distribution of [xi]j ∈ S. These

uniformly distributed points may be estimated by the Uniform procedure described in [15].

The use of histograms (even on a single CPU) speeds up the GBRT training time significantly,

as it alleviates both the need to sort the features and the need to identify and evaluate all

possible split thresholds.

In addition to an inherent speedup in tree construction, histograms allow the construction

of regression trees to proceed in parallel. Worker nodes compress distributed subsets of the

data into small histograms. These, when merged, represent an approximate, compressed

view of an entire data set, and can be used to compute the split points. We now explain our

distributed algorithm in more detail.

Distributed GBRT. A layout in pseudo-code for the master and worker are depicted

in Algorithms 2 and 3. As mentioned above, the data are partitioned into P sets, one for

each worker. The workers are responsible for constructing histograms and the master is

responsible for merging the histograms from all workers and finding the best split points.

Initially, the tree consists of a single root node. At each step, the master finds the best

split for all the current leaf nodes, generating a new layer of branching nodes, and sends
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Algorithm 2 Parallel CART Master
Parameter: maximum depth p, number of workers P
T ← ∅: initialize tree as empty node
while depth(T) < p do

for j = 1 to d do
for l = 1 to breadth(T ) do
{Hjl}: instantiate an empty histogram for each feature j and leaf l
for k = 1 to P do

receive({Hjkl}): initiate non-blocking receive for each worker k’s histograms
end for

end for
end for
while ∃ incomplete({Hjkl}) do

waitany({Hjkl}): wait for some receive to complete
Hjl ← merge(Hjl,Hjkl): merge received histogram

end while
for l = 1 to breadth(T ) do
T ← T ∪ split({Hjl}): update best splits for each leaf l

end for
broadcast(T ): send next layer of leaves to each worker

end while
return tree T

this new layer to the workers. The workers first evaluate each data point in their partition

on the new branches, navigating it to the correct leaf node. The workers then initialize

an empty histogram per feature per leaf and summarize their respective data partition in

these histograms. The master collects and merges these histograms to create another layer

of branches.

The number of histograms generated per iteration is proportional to the number of features

times the number of leaves, O(d × 2p−1), where p is the current depth of the tree. As p

increases, this communication requirement may become significant and overwhelm the gains

made from parallelization. However, for small depth trees and sufficiently large data sets,

we achieve drastic speedups since the majority of computation time is spent by the workers
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Algorithm 3 Parallel CART Worker
Input: data set D = {(xi, yi)}ni=1

Parameter: maximum depth p
T ← ∅: initialize tree
while depth(T) < p do
{vi = T (xi) : (xi, yi) ∈ D}: navigate training data D to leaf nodes v
for j = 1 to d do
{Hjk : k ∈ {1, ...,breadth(T )}} : instantiate an empty histogram for each leaf k
for (xi, yi) ∈ D at leaf vi do

merge(Hjvi , ([xi]j , 1, yi))
end for
send({Hjk}): initiate non-blocking send for histograms for feature j and all leaves k

end for
T ←receive(T ): receive next layer of tree from master

end while

in compressing the data. In addition, notice that the number of histograms does not depend

on the size of the data set. Communication volume is tunable by the compression parameter

b∗ which sets the maximum number of bins in each histogram. At a possible sacrifice of

accuracy, smaller histograms may be used to limit communication.

When using such master/worker message passing algorithms, it is important to consider two

objectives in order to achieve good performance. First, the computation and communication

should be overlapped so processors do not block useful computation while waiting for com-

munication. Second, the number of messages sent should not be excessive since initializing

communication carries some fixed cost. Our implementation is designed to carefully bal-

ance these two objectives. In order to overlap communication and computation, the workers

compute histograms feature by feature, sending these histograms to the master while they

move on to the next feature. In order to allow this with just one pass over the data, we

store our data feature-wise in local memory, that is, the values of a particular feature for

48



all instances are stored contiguously. To avoid generating unnecessarily small messages, all

the histograms corresponding to a particular feature, across all leaves, are sent as a single

message. That is, instead of sending one message per histogram, the worker generates one

message per feature. Therefore, the number of messages does not increase with depth, even

though the size of messages does increase.

Advantages and Drawbacks. We consider three properties of the instance-wise dis-

tributed method which lend themselves to scalability in training on large datasets. First,

while communication increases exponentially with tree depth, it is constant with respect to

the number of training samples. In the GBRT setting, tree depth is constant and small,

while training sets in distributed settings may be very large, allowing significant scaling.

Second, the instance-wise distribution strategy is both a more natural configuration for

distributed data and enables significantly more robustness than a feature-wise distribution.

In the event of sporadic failure of compute nodes or communication links, training may

proceed on the remaining processors. The failures represent the loss of only a small fraction of

the training samples, rather than the omission of entire features. This also reduces the impact

of the “curse of the last reducer” effect since processors are unlikely to have significantly

varying workloads, assuming roughly uniformly-sampled data sets at each processor. Further,

it should be noted that the approximation strategy can easily be applied data samples which
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stored feature-wise or with a mixture of feature- and instance-wise distribution, making this

approach significantly more flexible than previous methods.

Third, in addition to the elimination of the feature-wise sorting preprocessing and the ad-

ditional memory usage entailed therein, training samples may be compressed in a single

in-order linear pass without the need for out-of-order accesses to sample labels and node

indices, as encountered during the dynamic programming procedure for computing exact

splits. These sequential memory access patterns are well suited to the optimizations present

in modern memory hierarchies.

The primary disadvantage of this procedure is the approximation itself, which may lead to

sub-optimal splits and weaker regression trees. As noted previously, this could be a significant

disadvantage for learning single decision trees. However, in the gradient boosted ensemble

setting, sub-optimal splits are mitigated in part by the boosting procedure, as errors are

corrected with each iteration. With subtle modifications, including marginal increases in

the number of boosting iterations or tree depth, we demonstrate no significant impact on

accuracy due to the approximation.

2.5 Experimental Results

In this section, we describe the empirical evaluation of our parallel and distributed GBRT

methods using two publicly available web search ranking data sets. We see impressive
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speedups on both shared memory and distributed memory machines. In addition, we found

that, while the individual regression trees are weaker using our approximate instance-wise

method (as expected), with appropriate parameter settings, the final gradient-boosted en-

sembles lose little or no accuracy compared to those trained with an exact implementation.

2.5.1 Web Search Ranking

We focus our evaluation on problems from the web search ranking domain due to the

widespread success of gradient boosted tree ensembles in this area as well as the avail-

ability of several large-scale, real-world data sets. Here we provide a brief background on

web search ranking from a machine learning perspective.

Document retrieval was traditionally based on manually designed ranking functions. How-

ever, in recent years, web search ranking has been recognized as a supervised machine learn-

ing problem [28, 241], where each query-document pair is represented by a high-dimensional

feature vector and its label indicates the document’s degree of relevance to the query.

Fueled in part by the publication of real-world data sets from large corporate search en-

gines [134, 48], machine learned web search ranking has become one of the great success

stories of machine learning. Researchers have applied many different learning paradigms

to web-search ranking data, including neural networks [28], support vector machines [116],

random forests [22, 142] and gradient boosted regression trees [241]. Among these various
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approaches, gradient boosted regression trees arguably define the current state-of-the-art:

In the Yahoo Labs Learning to Rank Challenge 2010 [48], the largest web-search ranking

competition to date, all eight winning teams (out of a total of 1055) used approaches that

incorporated GBRT.

A web ranking data set consists of a set of web documents and user queries. Each query-

document pair is represented with a set of features which are generated using properties of

both the query and the document. In addition, each pair is labeled, indicating how relevant

the document is to the query. Using this data, the goal is to learn a regressor so that given

a new query we can return the most relevant documents in decreasing order of predicted

relevance. (Our algorithmic setup is not affected by the number of queries. Therefore, to

simplify notation, we assume that all documents belong to a single query throughout the

following sections. However, the techniques work for training sets with multiple queries, as

are our evaluation data sets, and for boosting cost functions which optimize ranking within

a query.)

For an instance (xi, yi), the label yi indicates how relevant document is to its query, ranging

from “irrelevant” (if yi = 0) to “perfect match” (if yi = 4). A document is represented by a

d dimensional vector of features xi computed from the document and the query. This vector

typically consists of three parts:
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Query-feature vector consists of features that depend only on the query and have the same

value across all the documents in the document set. Examples of such features are the

number of terms in the query, whether or not the query is the name of a person, etc.

Document-feature vector consists of features that depend only on the document and have

the same value across all the queries in the query set. Examples include the number

of inbound links pointing to the document, the amount of anchor-text (in bytes) for

the document, the language of the document, etc.

Query-document feature vector consists of features that depend on the relationship between

the query and the document. Examples are the number of times each term in the query

appears in the document, the number of times each term in the query appears in the

anchor-text of the document, etc.

Our goal is to learn a regressor h : Rd → R such that h(xi) ≈ yi. At test time, the search

engine ranks the documents {xj}mj=1 of a new query in decreasing order of their predicted rel-

evance {h(xj)}mj=1. The quality of a particular predictor h(·) is measured by specialized rank-

ing metrics. The most commonly used metrics are Expected Reciprocal Rank (ERR) [45],

which is based on a simple probabilistic model of user behavior, and Normalized Discounted

Cumulative Gain (NDCG@k) [114], which heavily emphasizes accuracy on the k leading

results. (we use NDCG@10 throughout the evaluation, which we denote simply as NDCG.)

However, these metrics can be non-convex, non-differentiable or even non-continuous. Al-

though some recent work [235, 184, 46] has focused on optimizing these ranking metrics
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directly, the more common approach is to optimize a well-behaved surrogate cost function

C(h) instead, assuming that this cost function mimics the behavior of these other metrics.

In general, the cost functions C can be put into three categories of ranking: pointwise [81],

pairwise [104, 241] and listwise [37]. In pointwise settings the regressor attempts to approx-

imate the label yi of a document xi directly, i.e. h(xi) ≈ yi. A typical loss function is the

squared-loss,

C(h) =
n∑
i=1

(h(xi)− yi)2.

The pairwise setting is a relaxation of pointwise functions, where pairs of points are con-

sidered. It is no longer important to approximate each relevance score exactly, rather the

partial order of any two documents should be preserved. An example is the cost function of

GBRANK [241],

C(h) =
∑

(i,j)∈Q

max(0, 1− (h(xi)− h(xj)))
2,

where Q is the preference set of all document pairs (i, j) belonging to the same query, where

i should be preferred over j. Listwise approaches [37] are similar to the pairwise approach,

but focus on all the documents that belong to a particular query and tend to have slightly

more complicated cost functions. Related research [130] also focuses on breaking the ranking

problem into multiple binary classification tasks.
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Yahoo LTRC MSLR MQ2008 Folds
Training Set Set 1 Set 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Features 700 700 136 136 136 136 136
Documents 473,134 34,815 723,412 716,683 719,111 718,768 722,602

Queries 19,944 1266 6000 6000 6000 6000 6000
Avg. Doc per Query 22.7 26.5 119.6 118.4 118.9 118.8 119.4

Test Set Set 1 Set 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Documents 165,660 103,174 241,521 241,988 239,093 242,331 235,259
Queries 6983 3798 6000 6000 6000 6000 6000

Avg. Doc per Query 22.7 26.2 119.8 120.0 118.5 120.2 116.6

Table 2.1: Statistics of the Yahoo and Microsoft Learning to Rank data sets.

2.5.2 Data Sets

For our empirical evaluation, we use the two data sets from Yahoo! Inc.’s Learning to Rank

Challenge 2010 [48], and the five folds of Microsoft’s LETOR [134] dataset. Each of these sets

come with predefined training, validation and test sets. Table 2.1 summarizes the statistics

of these data sets. The training sets range in size from ∼ 35,000 to ∼ 725,000 samples and

incorporate between 136 and 700 features.

2.5.3 Experimental Setup

We conducted experiments on a parallel shared memory machine and a distributed memory

cluster. The shared memory machine is an AMD Opteron 1U-A1403 48-core SMP machine

with four sockets containing AMD Opteron 6168 Magny-Cours processors. The distributed

memory cluster consists of 8-core, Nehalem based computing nodes running at 2.73GHz.
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Each node has 24GB of RAM. For our experiments, we used up to 6 of these nodes (for a

total of 48 cores).

We implemented the algorithm using MPI [177], which has the advantage of supporting

efficient operation in both shared memory and distributed systems with the same library.

We make the code available3 under an open source license. We compare accuracy against

the exact GBRT implementation4 described in [142].

We opt not to use the somewhat simpler Map/Reduce framework [147] as the framework is

often not well suited to highly iterative computations. In most implementations, “mapper”

processes are instantiated and destroyed between iterations, which in our case would require

expensive reading of the training set between each level of the tree. Rather, with MPI we

are able to maintain the internal state of each process throughout training.

For simplicity, we used the squared-loss as our cost-function C(·) in all experiments, though

our methods are easily adaptable to other continuous and differentiable loss functions. Our

algorithm has four parameters: The depth of the regression trees p, the number of boosting

iterations m, the step-size α and the maximum number of bins b in the histograms. We

perform experiments on the sensitivity of these parameters on both Yahoo Set 1 and 2, as

these span two different ranges of data set sizes (Set 1 is almost one order of magnitude

larger than Set 2).

3http://research.engineering.wustl.edu/~tyrees/
4http://research.engineering.wustl.edu/~amohan/
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Figure 2.2: ERR and NDCG for Yahoo Set 1 (top) and Yahoo Set 2 (bottom) on approximate
parallel (pGBRT) and exact (GBRT) implementations with various tree depths p. The
NDCG plot for Set 1 (top right) shows nicely that pGBRT with a tree depth of p+ 1 leads
to results similar to the exact algorithm with depth p.

2.5.4 Prediction Accuracy

As a first step, we investigate how much the ranking performance, measured in ERR [45] and

NDCG [114], is impacted by approximate construction of the regression trees. Figure 2.2

shows the ERR and NDCG of the approximate, instance-wise implementation (“pGBRT”)

and of the exact algorithm (“GBRT”) as a function of the number of boosting iterations on
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ERR Yahoo LTRC MSLR MQ2008 Folds
method Set 1 Set 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

GBRT (p=4) 0.461 0.458 0.361 0.358 0.355 0.367 0.373
pGBRT (p=4) 0.458 0.459 0.346 0.341 0.342 0.343 0.357
pGBRT (p=5) 0.460 0.460 0.355 0.348 0.355 0.353 0.367
pGBRT (p=6) 0.461 0.460 0.355 0.354 0.357 0.363 0.367

NDCG Yahoo LTRC MSLR MQ2008 Folds
method Set 1 Set 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

GBRT (p=4) 0.789 0.765 0.495 0.493 0.484 0.498 0.500
pGBRT (p=4) 0.782 0.743 0.474 0.469 0.466 0.473 0.479
pGBRT (p=5) 0.785 0.754 0.483 0.479 0.479 0.484 0.491
pGBRT (p=6) 0.785 0.760 0.486 0.484 0.482 0.491 0.495

Table 2.2: Results in ERR and NDCG on the Yahoo and Microsoft data sets. The number
of boosting iterations is selected with the validation data set. On both Yahoo sets, pGBRT
matches the result of GBRT with p = 4 when the tree depth is increased. For the Microsoft
sets, the ranking results tend to be slightly lower.

the Yahoo Set 1 and 2 under varying tree depths. For the approximate parallel implementa-

tion, we used b = 25 bins for Set 2 and b = 50 for the much larger Set 1. The step-size was

set to α = 0.06 in both cases.

As expected, the histogram approximation reduces the accuracy of the weak learners. Con-

sequently, with equal depth and iterations, pGBRT has lower ERR and NDCG than the

exact GBRT (higher scores are better). However, we can compensate for this effect by either

running additional iterations or increasing the depth of the regression trees. In fact, it is

remarkable that on Set 1 (Figure 2.2) the NDCG curves of pGBRT with p = 6 and p = 5

align almost perfectly with the curves of GBRT with p = 5 and p = 4, respectively. For Set

2 the lines are mostly shifted by approximately 200 iterations. We will see that additional
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computation required by either of these approaches (increasing p or m) is more than com-

pensated for by the increase in parallel or distributed performance afforded by the histogram

method. (For small depths p ≤ 10 – while the computation is dominated by computation –

the running time increases roughly linearly with increasing p. On the Yahoo Set 1, training

pGBRT with m = 6000 trees on 16 CPUs and depth p = 5 was only a factor 1.34 slower

than p = 4 and a depth of p = 6 slowed the training time down by a factor of 1.75.)

Table 2.2 shows the test set results on all data sets for GBRT with p = 4 and pGBRT for

p = 4, 5, 6. The number of trees m was picked with the help of the corresponding validation

data sets. As the table shows, for all data sets, the difference between pGBRT with p = 6

and GBRT with p = 4 is in the third significant digit for all data sets. For the two Yahoo

data sets, pGBRT provides slightly better accuracy, while for the Microsoft data sets, the

exact algorithm is slightly better. The Microsoft data sets were run with parameters α = 0.1,

b = 100 and m ≤ 5000. We increased the number of bins since the data set is larger.

We also evaluated the sensitivity of the algorithm to the number of histogram bins b and

the number of processors. Figure 2.3 shows several runs (α = 0.05, p = 5) with varying

numbers of histogram bins assessed by quality measures which have been scaled by the best

observed accuracy for each measure. For each run we report the best result as selected

on the validation data set. We see that while the prediction accuracy increases slightly

as the number of bins increases, it converges quickly at about 15 bins, and the differences

thereafter are insignificant. In a similar experiment (not shown) we measured prediction
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accuracy while varying the number of processors. Despite more histograms being inexactly

merged with each additional processor, we did not observe any noticeable drop in accuracy

as the number of processors increased.

To demonstrate that our algorithm is competitive with the state-of-the-art, we selected the

parameters m, p, and b by cross-validation on the validation sets of both Yahoo data sets (for

simplicity we fixed α = 0.06, as GBRT is known to be relatively insensitive to the step-size).

This yielded test set ERR of 0.4614 on Set 1 (m = 3926, p = 7, b = 100) and 0.4596 on

Set 2 (m = 3000, p = 5, b = 50). Both results are almost identical to the best results of

the exact GBRT algorithm (under slightly different optimized settings). The ERR score of

Set 1 would have placed our result 15th (and 14th for Set 2) on the leaderboard of the 2010

Yahoo Learning to Rank Challenge5 out of a total of 1055 competing teams. This result

– despite our simple squared-loss cost function – is only 1.4% below the top scoring team,

which used an ensemble of specialized predictors and fine-tuned cost functions that explicitly

approximate the ERR metric [31].

2.5.5 Performance and Speedup

For performance measurements, we trained pGBRT for m = 250 trees of depth p = 5 using

histograms with b = 25 bins. Figure 2.4 shows the speedup of our pGBRT algorithm on

both the Yahoo and the LETOR Fold 1 while running on the shared memory machine. For

5http://learningtorankchallenge.yahoo.com/ leaderboard.php
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Figure 2.3: Ranking performance of pGBRT on the Yahoo Set 1 and 2 as a function of
varying number of histogram bins b. With b ≥ 20 both metrics are less than a factor 0.004
away from the best value.

the smaller data set (Set 2), we achieve speedup of up to 10× on 13 cores. For the larger

data set (Set 1), we achieve much higher speedups, up to 33× on 41 processors, reducing

the training time on Set 1 from over 11 hours to merely 21 minutes. On the Microsoft

data (almost twice as many samples as Yahoo Set 1), we see the speedup of up to 42× on

48 cores, and there is potential for more speedup on more cores since the curve has yet to

asymptote. We see more speedup on the Microsoft data since it has fewer features (requiring

less communication per iteration) and more documents (increasing the fraction of time spent

on histogram construction). While Yahoo Set 1 and LETOR are among the largest publicly

available data sets, proprietary data sets are much larger, and we would expect further

speedup with larger scales.
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Figure 2.4: The speedups of pGBRT on a multicore shared memory machine as a function of
cpu cores. The speedup increases with data set size and is almost perfectly linear for Yahoo
Set 1 and the Microsoft LETOR data set. The latter set could potentially obtain even higher
speedup with more cores.

Figure 2.5 shows the speedup of our parallel GBRT on both the Yahoo and the LETOR

datasets while running on the cluster. As expected, the speedup is smaller on this distributed

memory setup due to communication latency. However, we still see speedup of about 20×

with Yahoo! Set 1 and about 25× with the Microsoft data on 32 cores, after which point

the performance flattens out.6 This result demonstrates the generality of our parallelization

methods in that the same strategy (and even the same code) can provide impressive speedups

on a variety of parallel machines.

All speed-up results are reported relative to the sequential pGBRT version (1 helper CPU).

We do not report speedup compared to the exact algorithm, since this codebase uses different

data structures and timing results might not be representative. In general, however, the

6We see some performance irregularities (in the form of zigzags) for the LETOR data set. We suspect
these are due to caching and memory bandwidth effects.
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Figure 2.5: The speedups of pGBRT on a distributed memory cluster as a function of CPU
cores. We observe up to 25× speedups in this distributed setting for the Microsoft LETOR
data set.

speed-up with respect to the 1-CPU pGBRT runs understate the speedup over the exact

algorithm, since the exact algorithm available to us is considerably slower than pGBRT,

even on a single processor. For comparison, “sequentially” (1 helper CPU), our approximate

parallel algorithm completes execution in 3178s on Yahoo Set 2 and 43,189s on Set 1, both

with depth p = 5. Even with a smaller depth p = 4, the exact GBRT implementation takes

5940s on Set 2 and 259,613s on Set 1. Particularly for Set 1, the exact algorithm is about

6× slower than the approximate algorithm even when running with a smaller depth.7

7Exact implementations with clever bookkeeping [88] may be faster – however, no large-scale implemen-
tations were openly available. We expect, nonetheless, that our algorithm can be optimized to perform, on
a single CPU, comparably or faster than optimized exact implementations, since it does not require feature
sorting and evaluations significantly fewer candidate splits.
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2.6 Discussion

We have presented parallel algorithms for training gradient boosted regression trees. To our

knowledge, this is the first work that explicitly parallelizes the construction of regression trees

for the purpose of gradient boosting. Our approach utilizes the facts that gradient boosting

is known to be robust to the classification accuracy of the weak learners and that regression

trees are of strictly limited depth. We have shown that our approximate approach provides

impressive (almost linear) speedups on several large-scale web-search data sets without any

significant sacrifice in accuracy.

Our approximate instance-wise method applies to both multicore shared-memory systems

and distributed setups in clusters and clouds (e.g. Amazon EC2) using the same imple-

mentation. The distributed setup makes our method particularly attractive to real-world

settings with very large data sets. Since each processor only needs enough physical mem-

ory for its partition of the training set, and communication is strictly bounded, this allows

the training of machine-learned ranking functions on web-scale data sets with standard, off-

the-shelf computer hardware and readily available cloud computing solutions (e.g. Amazon

EC2). Further, unlike feature-wise parallelizations, the histogram binning method method

can be applied to data samples distributed by instance, feature, or both without requiring

redistribution. As such, we can now reasonably take our algorithm to the training data,

rather than demanding that the data first be reshaped or regrouped to accommodate the

algorithm.
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This work can potentially extend in several directions. First, when scalability is more

paramount than training time, workers could be situated in more loosely connected cloud

environments, rather than dedicated clusters. Latency would increase, but added flexibil-

ity and cost-effectiveness could result. Second, a more aggressive speed/accuracy tradeoff

can be pursued in the computation of the splits based on stochastic approximations of the

histograms or static histogram binning strategies. Third, more efficient use of communica-

tion bandwidth could result from local split evaluations, wherein histograms for only the

most promising splits are shared among distributed nodes. Further, if distributed merging

were adopted in place of the master/worker paradigm, partially merged histograms could be

dropped or held up if they seem unlikely to yield the best split. Such strategies could be

most beneficial in cluster and cloud environments.

Given the current trend toward multicore processors, parallel computing and larger data

sets, we expect our algorithm to increase in both relevance and utility in the foreseeable

future.
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Chapter 3

Parallel Non-Linear Metric Learning

with Boosted Tree Ensembles

Similarity metrics are critical to achieving high accuracy with nearest neighbor classifiers and

other distance-based machine learning approaches. Much work has been done in learning

linear feature transformations to improve similarity metrics. Limited work in non-linear

metric learning has shown noticeable improvements in accuracy for many problems, but the

solutions are often difficult to train for medium and large scale datasets.

In this chapter, we examine two novel methods for learning non-linear similarity metrics.

Both methods are built on parallel tree ensembles, inheriting the natural nonlinearity of tree

models. The first technique, presented in Section 3.2, is a natural extension to the popular

Large Margin Nearest Neighbor (LMNN) metric using gradient boosted regression trees for

non-linearity. This method leverages the parallel gradient boosted tree learning speedups
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detailed in the previous chapter. The second method, described in Section 3.3, extracts a

metric from a trained tree ensemble model, in this case a random forest model, quantifying

similarity in predictions made by the individual trees in the random forest. By eschewing an

explicit neighborhood optimization in favor of an implicit notion of similarity, this method

adapts an existing, highly parallel supervised learning technique to the purpose of metric

learning.

3.1 Introduction

Defining similarity between examples is a fundamental problem in machine learning, under-

lying numerous learning methods including nearest neighbor classification and clustering.

If an algorithm could perfectly determine whether two examples were semantically similar

or dissimilar, many subsequent machine learning tasks would become trivial (i.e., a nearest

neighbor classifier will achieve theoretically optimal results).

Similarity is commonly addressed by computing a distance between examples in a feature

vector space and using the distance as a measure of dissimilarity. A common choice for

dissimilarity measure is an uninformed norm, such as the Euclidean distance, where Dij =

||xi − xj||2 is the Euclidean dissimilarity between examples xi and xj. Although convenient

and easy-to-use, the “true” semantic meaning of similarity is both data and task dependent

and therefore may not be easily captured by such uninformed distance metrics.
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One data-dependent factor that may prevent an uninformed norm from rendering a useful

measure of similarity is feature scaling. Suppose a feature corresponds to the height of an

individual. If the feature is changed from units of meters to millimeters then the effect of

differences in height on dissimilarity between individuals is significantly more pronounced.

Furthermore, similarity is often task-dependent. Consider the problem of clustering a set

of text documents. One analyst may desire to group documents by characteristics of the

writing, e.g. fiction or nonfiction; prose, poetry or play; verbose or succinct style; comedic

or dramatic approach. Another may wish to cluster by topic, e.g. love, war, philosophy or

science. Given the orthogonal nature of their respective tasks, each should use a different

metric to measure document similarity, despite operating on the same data.

The prevalence of similarity-based machine learning techniques motivated a surge of research

in metric learning. Much of this work focuses on learning Mahalanobis metrics [66, 90, 92,

171, 217, 224]. The Mahalanobis metric can be viewed as a generalized Euclidean metric,

Dij = DL(xi,xj) = ‖L(xi − xj)‖2, (3.1)

parameterized by a linear transformation matrix L ∈ Rd×d. Mahalanobis metric learning

optimizes the matrix L such that the distance Dij under the metric better represents sim-

ilarity in the target domain. One significant benefit of Mahalanobis metrics is the linear
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transformation x→Lx yields an explicit feature representation under which the Euclidean

distance corresponds to the learned metric.

The resulting Mahalanobis-based methods greatly improve the performance of metric depen-

dent algorithms and have gained popularity in many research areas and applications both

within and beyond machine learning. Reasons for this success include the out-of-the-box us-

ability and robustness of several popular methods, computationally efficient solvers to learn

these linear metrics, and the explicit representation which results.

However, linear transformations are limited by their inability to capture complex non-linear

relationships within the data. Numerous non-linear approaches to metric learning have

been proposed [54, 113, 196, 216]. These have demonstrated improved accuracy for super-

vised similarity-based tasks. However, existing non-linear approaches have not managed to

replicate the success of the popular linear approaches. Although more expressive, the corre-

sponding optimization problems are often expensive to solve and plagued by sensitivity to

many hyper-parameters.

Approaches based on kernels [113, 196] and locally-linear metrics [216] only provide dis-

tances, while lacking a naturally corresponding data representation—making the algorithms

inapplicable as generic pre-processing tools in many applications. Ideally, we would like to

develop easy-to-use black-box algorithms that learn new data representations for the use of

established metrics.
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In this chapter, we introduce two novel non-linear metric learning approaches. The ap-

proaches robustly learn non-linear similarity measures using tree ensembles. In part by

leveraging the approaches of the previous chapter, these methods are highly parallel and

fast to train and evaluate on a variety of hardware platforms. Further, as tree-based meth-

ods, they enjoy natural non-linearity, insensitivity to feature scaling, and straightforward

handling of discrete features.

The first non-linear approach is an extension to the popular Large Margin Nearest Neighbors

(LMNN) framework [217]. Gradient boosted LMNN (GB-LMNN) employs a non-linear

mapping combined with a traditional Euclidean distance function. It is a natural extension

of LMNN from linear to non-linear mappings. By training the non-linear transformation

directly in function space with gradient boosted regression trees (GBRT) [84] the resulting

algorithm inherits the positive aspects of GBRT—robustness against overfitting, speed, and

parallelism in both training [201] and evaluation.

The second approach extracts a measure of similarity from a trained random forest of decision

trees. This method meets two objectives. First, it produces a highly competitive similarity

measure which often replicates the high classification accuracy of the random forest while

training with trivial parallelism. Further, it renders random forest classifiers more inter-

pretable by returning “certificates” with each test prediction — training instances treated

similarly to the test instance by the random forest.
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3.2 Nonlinear LMNN with Gradient Boosting

In this section, we introduce a novel non-linear extension to the Large Margin Nearest Neigh-

bors (LMNN) framework [217]. Gradient boosted LMNN (GB-LMNN) learns a non-linear

mapping in combination with a traditional Euclidean distance function. It is a natural

extension of LMNN from linear to non-linear mappings. By training the non-linear trans-

formation directly in function space with gradient-boosted regression trees (GBRT), [84]

the resulting algorithm inherits the positive aspects of GBRT—its insensitivity to hyper-

parameters, robustness against overfitting, speed and natural parallelism in both training

[201] and evaluation.

GB-LMNN scales naturally to medium-sized data sets, can be optimized using standard

techniques and only introduces a single additional hyper-parameter. Its efficacy is demon-

strated on several real-world data sets. We observe that GB-LMNN (with default settings)

achieves state-of-the-art k-nearest neighbor classification errors with high consistency across

all of our evaluation data sets. For learning tasks where non-linearity is not required, it

reduces to LMNN as a special case. On more complex data sets it reliably improves over

linear metrics and matches or out-performs previous work on non-linear metric learning.
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3.2.1 Background

Let {(xi, yi)}ni=1⊆Rd × Y be labeled training data with discrete labels Y = {1, . . . , c}. The

k-nearest neighbors (kNN) [60] classification rule relies heavily on the underlying metric,

since a test input is classified by a majority vote among the labels of its k nearest neighbors.

Performance of kNN on classification tasks is therefore a good indicator of the quality of the

metric in use.

Large margin nearest neighbors (LMNN) [216, 217] is an algorithm to learn a Mahalanobis

metric specifically to improve the classification error of kNN. The Mahalanobis metric can

be viewed as a straightforward generalization of the Euclidean metric,

DL(xi,xj) = ‖L(xi − xj)‖2, (3.2)

parameterized by a matrix L ∈Rd×d, which in the case of LMNN is learned such that the

linear transformation x → Lx better represents similarity in the target domain. In the

remainder of this section we briefly review the necessary terminology and basic framework

behind LMNN and deferring to [217] for more details.

Local neighborhoods. LMNN identifies two types of neighbor relationships between an

input xi and other inputs xj in the data set: As a first step, k dedicated target neighbors

are identified for each xi prior to learning. These are the inputs which should ideally be

the actual nearest neighbors after applying the transformation (we use the notation j i to
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indicate that xj is a target neighbor of xi). A common heuristic for choosing target neighbors

for a given xi is picking the k closest inputs xj (according to the Euclidean distance) which

share the same class, i.e. yi = yj.

The second type of neighbors are impostors. These are inputs that should not be among the

k-nearest neighbors of xi — defined to be all inputs from a different class that are within

the local neighborhood, i.e. among the k inputs nearest to xi.

LMNN optimization. The LMNN objective has two terms, one for each neighbor rela-

tionship: First, it reduces the distance between an instance and its target neighbors, thus

pulling them closer and making the input’s local neighborhood smaller. Second, it moves

impostor neighbors (i.e. differently labeled inputs) farther away so that the distances to

impostors should exceed the distances to target neighbors by a large margin. Weinberger et.

al [217] combine these two objectives into a single unconstrained optimization problem:

min
L

∑
i

∑
j:j i

DL(xi,xj)
2︸ ︷︷ ︸

pull target neighbor xj closer

+ µ
∑

k : yi 6=yk

[
1 +DL(xi,xj)

2 −DL(xi,xk)
2
]
+
.︸ ︷︷ ︸

push impostor xk away, beyond target neighbor xj by a large margin `

(3.3)

The parameter µ defines a trade-off between the two objectives and [x]+ is defined as the

hinge-loss [x]+ = max(0, x). The optimization (3.3) can be transformed into a semidefinite

program (SDP) [217] for which a global solution can be found efficiently. The large margin

in (3.3) is set to 1 as its exact value only impacts the scale of L and not the resulting kNN

classifier.
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Dimensionality reduction. As an extension to the original LMNN formulation, [196, 216]

show that with L∈Rr×d with r<d, LMNN learns a projection into a lower-dimensional space

Rr that still represents domain specific similarities. While this low-rank constraint breaks

the convexity of the optimization problem, significant speed-ups [216] can be obtained when

the kNN classifier is applied in the r-dimensional space — especially when combined with

special-purpose data structures [233].

3.2.2 Related Work

There have been some previous attempts to generalize learning linear distances to nonlinear

metrics. A nonlinear mapping x→ φ(x) can be implemented with kernels [51, 85, 113, 196].

These extensions have the advantages of maintaining computational tractability as convex

optimization problems. However, they do not learn an explicit representation of the data

and their utility is limited by the sizes of kernel matrices. Weinberger et. al [216] propose

M2-LMNN, a locally linear extension to LMNN. They partition the space into multiple

regions, and jointly learn a separate metric for each region—however, these local metrics do

not give rise to a global metric and distances between inputs from different regions are not

well-defined.

Neural network-based approaches offer the flexibility of learning arbitrarily complex nonlin-

ear mappings [54]. However, they often demand high computational expense, not only in
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parameter fitting but also in model selection and hyper-parameter tuning. Of particular rel-

evance to our GB-LMNN work is the use of boosting ensembles to learn distances between

bit-vectors [8, 167]. Note that their goals are to preserve distances computed by locality

sensitive hashing to enable fast search and retrieval. Ours are very different: we alter the

distances discriminatively to minimize classification error.

3.2.3 Non-linear Transformations with Gradient Boosting

Affine transformations preserve collinearity and ratios of distances along lines — i.e., inputs

on a straight line remain on a straight line and their relative distances are preserved. This

can be too restrictive for data where similarities change locally (e.g., because similar data lie

on non-linear sub-manifolds). Chopra et al. [54] pioneered non-linear metric learning, using

convolutional neural networks to learn embeddings for face-verification tasks. Inspired by

their work, we propose to optimize the LMNN objective (3.3) directly in function space with

gradient boosted CART trees [84]. Combining the learned transformation φ(x) : Rd → Rd

with a Euclidean distance function has the capability to capture highly non-linear similarity

relations. It can be optimized using standard techniques, naturally scales to large data sets,

while only introducing a single additional hyper-parameter in comparison with LMNN.
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Generalized LMNN. To generalize the LMNN objective (3.3) to a non-linear transforma-

tion x→ φ(·), we denote the Euclidean distance after the transformation as

Dφ(xi,xj) = ‖φ(xi)− φ(xj)‖2, (3.4)

which satisfies all properties of a well-defined pseudo-metric in the original input space. To

optimize the LMNN objective directly with respect to Dφ, we substitute Dφ for DL in (3.3).

The resulting unconstrained loss function becomes

L(φ) =
∑
i

∑
j: j i

‖φ(xi)−φ(xj)‖22 + µ
∑

k: yi 6=yk

[
1 + ‖φ(xi)−φ(xj)‖22 − ‖φ(xi)−φ(xk)‖22

]
+
.

(3.5)

In its most general form, with an unspecified mapping φ, (3.5) unifies most of the existing

variations of LMNN metric learning. The original linear LMNN mapping [217] is a special

case where φ(x)=Lx. Kernelized versions [51, 85, 196] are captured by φ(x)=Lψ(x), pro-

ducing the kernel K(xi,xj)=φ(xi)
>φ(xj)=ψ(xi)

>L>Lψ(xj). The embedding of Globerson

and Roweis [91] corresponds to the most expressive mapping function φ(xi)=zi, where each

input xi is transformed independently to a new location zi to satisfy similarity constraints

— without extension to out-of-sample data.

GB-LMNN. The previous examples vary widely in expressiveness, scalability, and general-

ization, largely as a consequence of the mapping function φ. It is important to find the right
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non-linear form for φ, and we believe an elegant solution lies in gradient boosted regression

trees.

Our method, termed GB-LMNN, learns a global non-linear mapping. The construction

of the mapping, an ensemble of multivariate regression trees selected by gradient boosting

[84], minimizes the general LMNN objective (3.5) directly in function space. Formally, the

GB-LMNN transformation is an additive function φ= φ0 + α
∑T

t=1 ht initialized by φ0 and

constructed by iteratively adding regression trees ht of limited depth p [24], each weighted

by a learning rate α. Individually, the trees are weak learners and are capable of learning

only simple functions, but additively they form powerful ensembles with good generalization

to out-of-sample data. In iteration t, the tree ht is selected greedily to best minimize the

objective upon its addition to the ensemble,

φt(·) = φt−1(·) + αht(·), where ht ≈ argmin
h∈T p

L(φt−1 + αh). (3.6)

Here, T p denotes the set of all regression trees of depth p. The (approximately) optimal

tree ht is found by a first-order Taylor approximation of L. This makes the optimization

akin to a steepest descent step in function space, where ht is selected to approximate the

negative gradient gt of the objective L(φt−1) with respect to the transformation learned at the

previous iteration φt−1. Since we learn an approximation of gt as a function of the training

data, sub-gradients are computed with respect to each training input xi, and approximated
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Figure 3.1: GB-LMNN illustrated on a toy data set sampled from two concentric circles of
different classes (blue and red dots). The figure depicts the true gradient (top row) with
respect to each input and its least squares approximation (bottom row) with a multi-variate
regression tree (depth, p=4).

by the tree ht(·) in the least-squared sense,

ht(·) = argmin
h∈T p

n∑
i=1

(gt(xi)− ht(xi))2, where: gt(xi)=
∂L(φt−1)

∂φt−1(xi)
. (3.7)

Intuitively, at each iteration, the tree ht(·) of depth p splits the input space into 2p axis-

aligned regions. All inputs that fall into one region are translated by a constant vector — con-

sequently, the inputs in different regions are shifted in different directions. We learn the trees

greedily with a modified version of the public-domain CART implementation pGBRT [201]8.

8We slightly modified the implementation described in Chapter 2 to optimize multi-variate regression by
learning trees with vector outputs.
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Optimization details. Since (3.5) is non-convex with respect to φ, we initialize with a

linear transformation. In this case, we learned an initial transformation with LMNN, φ0 =Lx,

making our method a non-linear refinement of LMNN. The only additional hyperparameter

to the optimization is the maximum tree depth p to which the algorithm is not particularly

sensitive (we set p=6).9

Figure 3.1 depicts a simple toy-example with concentric circles of inputs from two different

classes. By design, the inputs are sampled such that the nearest neighbor for any given

input is from the other class. A linear transformation is incapable of separating the two

classes. However GB-LMNN produces a mapping with the desired separation. The figure

illustrates the actual gradient (top row) and its learned approximation (bottom row). The

limited-depth regression trees are unable to capture the gradient for all inputs in a single

iteration. But by greedily focusing on inputs with the largest gradients or groups of inputs

with the most easily encoded gradients, the gradient boosting process additively constructs

the transformation function. At iteration 100, corresponding to a boosted ensemble with 100

trees, the gradients with respect to most inputs vanish. This indicates that a local minimum

of L(φ) is almost reached. We observe that inputs from the two classes are separated by a

large margin.

Dimensionality reduction. Like linear LMNN, it is possible to learn a non-linear trans-

formation to a lower dimensional space, φ(x) : Rd→Rr, r≤ d. Initialization is made with

9Here, we set the step-size, a common hyper-parameter across all variations of LMNN, to α=0.01.
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the rectangular matrix output of the dimensionality-reduced LMNN transformation, φ0 =Lx

with L∈Rr×d. Training proceeds by learning trees with r- rather than d-dimensional outputs.

3.2.4 Experimental Results

We evaluate our non-linear metric learning algorithm against several competitive methods.

The effectiveness of learned metrics is assessed by kNN classification error. The open-source

implementation of GB-LMNN is available the most recent version of LMNN at http://www.

cse.wustl.edu/~kilian/code/lmnn/lmnn.html.

We compare the non-linear global metric learned by GB-LMNN to three linear metrics: the

Euclidean metric and metrics learned by LMNN [217] and Information-Theoretic Metric

Learning (ITML) [66]. Both optimize similar discriminative loss functions. We also compare

to the metrics learned by Multi-Metric LMNN (M2-LMNN) [216]. M2-LMNN learns |Y|

linear metrics, one for each input label.

We evaluate these methods and GB-LMNN on several medium-sized data sets: ISOLET,

USPS and Letters from the UCI repository [78]. ISOLET and USPS have predefined test

sets, otherwise results are averaged over 5 train/test splits (80%/20%). A hold-out set

of 25% of the training set10 is used to assign hyper-parameters and to determine feature

10In the case of ISOLET, which consists of audio signals of spoken letters by different individuals, the
hold-out set consisted of one speaker.
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isolet usps letters dslr webcam amazon caltech

n=7797 n=9298 n=20000 n=157 n=295 n=958 n=1123
d=617 d=256 d=16 d=800 d=800 d=800 d=800

Euclidean 8.4±0.0 6.2 6.0±0.2 60.6±3.1 43.8±1.7 33.7±0.7 53.8±1.3
ITML 5.3±0.0 5.7 6.0±0.2 25.0±3.0 12.4±1.6 31.6±1.2 52.2±2.1
LMNN 1.5±0.1 2.6 3.8±0.3 28.9±1.6 15.8±3.0 31.8±1.4 50.9±1.4
M2-LMNN 1.4±0.1 2.5 3.8±0.2 27.4±2.1 15.7±3.2 31.2±1.1 51.5±1.5
GB-LMNN 1.4±0.0 2.5 1.9±0.1 22.9±2.7 12.4±0.9 29.6±1.7 49.8±1.0

Table 3.1: kNN classification error (in %, ± standard error where applicable) for linear and
nonlinear metric learning methods. Best results up to one standard error in bold. Datasets
are ordered by increasing number of training examples.

pre-processing (i.e., feature-wise normalization). We set k=3 for kNN classification, follow-

ing [217].

Table 3.1 reports the means and standard errors of each approach (standard error is omitted

for data with pre-defined test sets), with numbers in bold font indicating the best results up

to one standard error.

On all three datasets, GB-LMNN outperforms methods of learning linear metrics. This

shows the benefit of learning nonlinear metrics. On Letters, GB-LMNN outperforms the

second-best method M2-LMNN by significant margins. On the other two, GB-LMNN is as

good as M2-LMNN.

We also apply GB-LMNN to four smaller datasets with histogram data. The results are

displayed on the right side of the table. These datasets are popularly used in computer

vision for object recognition [159]. Data instances are 800-bin histograms of visual codebook

entries. There are ten common categories to the four datasets and we use them for multiway

classification with kNN.
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None of the methods evaluated here is specifically adapted to histogram features. Especially

linear models, such as LMNN and ITML, are expected to fumble over the intricate similarities

that such data types may encode. As shown in the table, GB-LMNN consistently outperforms

the linear methods and M2-LMNN.

isolet usps dslr webcam amazon caltech

r=10 PCA 26.2 10.1 42.8±3.7 32.7±1.6 49.1±2.2 63.8±1.1
LMNN 4.2±0.1 6.0 56.1±2.0 38.1±2.5 43.6±4.6 54.6±2.1

M2-LMNN 4.3±0.2 5.2 56.1±2.0 38.4±2.7 42.8±1.7 55.0±2.2
GB-LMNN 3.7±0.0 5.3 46.7±7.4 34.6±2.6 41.6±2.7 55.8±2.1

r=20 PCA 15.1 6.6 46.1±3.7 27.3±1.7 43.9±1.1 59.9±0.5
LMNN 2.1±0.1 3.8 53.3±2.8 34.0±2.9 39.9±1.5 55.4±1.7

M2-LMNN 2.1±0.2 3.3 53.3±2.8 34.3±2.6 40.3±1.3 55.5±1.5
GB-LMNN 2.0±0.1 3.8 50.0±3.4 33.0±2.8 38.7±0.8 53.7±1.3

r=40 PCA 11.0 6.0 46.7±3.0 29.2±2.2 43.1±1.6 57.7±0.5
LMNN 1.5±0.0 3.2 51.7±0.7 36.8±2.0 39.4±1.0 56.1±1.5

M2-LMNN 1.2±0.1 3.2 51.7±0.7 36.2±1.3 39.4±1.3 56.1±1.6
GB-LMNN 1.4±0.1 2.9 50.0±2.1 31.7±1.3 39.3±1.3 53.3±1.4

r=80 PCA 9.4 6.1 39.4±1.8 39.4±1.8 46.0±1.1 69.4±3.9
LMNN 1.6±0.1 3.2 51.1±2.4 36.5±2.8 43.4±0.9 60.3±0.8

M2-LMNN 1.6±0.0 1.8 51.1±2.4 35.9±2.7 43.4±1.0 54.4±1.5
GB-LMNN 1.6±0.1 2.4 50.0±1.9 27.3±3.5 41.1±1.2 54.1±1.3

Table 3.2: kNN classification error (in %, ± standard error where applicable) with dimen-
sionality reduction to output dimensionality r. Best results up to one standard error in
bold.

Dimensionality reduction. GB-LMNN capable of performing dimensionality reduction.

We compare with three dimensionality reduction methods (PCA, LMNN, and M2-LMNN)

on the histogram datasets and the larger UCI datasets. Each dataset is reduced to an output

dimensionality of r= 10, 20, 40, 80 features. As we can see from the results in Table 3.2, it

is fair to say that GB-LMNN performs comparably with LMNN and M2-LMNN (We do
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not apply dimensionality reduction to Letters as it already lies in a low-dimensional space

(d=16).)

Hyperparameter Sensitivity. One of the most compelling aspects of the GB-LMNN

method is that it introduces only a single new hyper-parameter to the LMNN framework,

regression tree depth p. In the previous experiments, we use a fixed tree depth p = 6. Here

we explicitly examine its effect on the learned metric. Figure 3.2 compares depths 4−7 for

several of the datasets evaluated previously. The figure depicts the ratio of kNN classification

error for each depth setting to the kNN error of linear LMNN. GB-LMNN appears to be

largely insensitive to tree depth within this range.
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Figure 3.2: Sensitivity of GB-LMNN to the tree depth parameter. Bar height represents the
ratio between GB-LMNN error and LMNN error (lower is better).
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3.2.5 Discussion

In this section, we introduced GB-LMNN, a non-linear extension to LMNN. This method

leverages the parallel GBRT training methods developed in the previous chapter to yield a

fast, scalable non-linear metric learning algorithm. GB-LMNN significantly improves over

the original (linear) LMNN metric and matches or out-performs existing non-linear algo-

rithms.

The high consistency with which GB-LMNN obtains state-of-the-art results across diverse

data sets is very encouraging. In fact, the use of ensembles of CART trees [24] not only

inherits all positive aspects of gradient boosting (robustness, speed and insensitivity to hyper-

parameters) but is also a natural match for metric learning. Each tree splits the space into

different regions and translates inputs within these regions along different directions. In

contrast to prior work, such as M2-LMNN [216], this splitting is fully automated, results

in new (discriminatively learned) Euclidean representations of the data and gives rise to

well-defined pseudo-metrics.

3.3 Random Forest Ensemble Metrics

In this section, we consider the application of another tree ensemble method—random

forests—to metric learning. This work extracts a similarity metric from a trained random
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forest classifier. For distance-based methods (e.g. nearest neighbor classification and clus-

tering), the metric produces a powerful non-linear similarity measure which is also highly

parallel both to learn and to evaluate. Additionally, from the random forest perspective,

this metric yields predictions with similar accuracy to those of random forests but with

straightforward interpretability.

Interpretability. As machine learning makes its way into more and more high-impact

applications and decision-making processes, interpretability is becoming an important crite-

rion when selecting a machine-learning algorithm. In many domains, among several options

which each produce highly accurate predictions, the method that yields the most insight

into its decision will likely be most valuable to practitioners. Interpretability allows the

user to understand the reasons for a prediction. Interpretable predictions are particularly

paramount for hard problems, where even the best machine learning methods may frequently

be inaccurate.

Consider an example from a medical domain. Suppose a system is designed to predict when

a hospital patient may require transfer to intensive care [9]. The system may accurately

convey advanced warning of a decline in the patient’s condition, but this prediction may

be of little value to the physician if not accompanied with insights that can lead to an

appropriate treatment plan. However, if the system were to return the profiles of similar
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patients while highlighting the relevant predictive attributes, the physician would be more

informed to make relevant interventions to forestall the decline in condition.

Nearest neighbor classifiers (kNN; [60]) provide this type of interpretability with unparalleled

simplicity. The kNN decision rule classifies an instance by a majority vote of the k most

similar labeled instances. These k neighbors can be returned alongside the predicted label

as “certificates”, efficiently explaining the decision.

Metric learning. The k neighbors are chosen as the closest instances under some metric,

often defaulting to the Euclidean metric. Achieving high accuracy from a kNN predictor

requires this metric to reflect the underlying semantic similarity for the problem at hand.

When instances are described by a diverse set of features, there arise issues of feature scaling,

discrete features, and non-linear feature interactions.

In the last decade, learning metrics for kNN classification has yielded substantial improve-

ments in kNN accuracy for many problems. Much of this work has focused on learning Ma-

halanobis metrics [92, 66, 217], corresponding to learning a linear transformation of the input

feature space. Linear metrics are often insufficient for problems with complex feature interac-

tions, motivating the development of many non-linear metrics [163, 160, 51, 85, 113, 119]. Al-

though successful in accuracy, many of these non-linear approaches often lack the same com-

pelling simplicity of corresponding Mahalanobis metric learning algorithms. Further, they

tend to easily overfit [216] or be sensitive to kernel or hyper-parameter selection [119, 196].
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While work on metric learning has significantly improved the state-of-the-art for kNN classi-

fication, its accuracy still often lags behind, for instance, ensemble classifiers such as random

forests (RF; [22]). RFs are invariant to feature scaling, naturally handle discrete features,

and learn non-linear feature interactions to yield very accurate classifiers. Moreover, RFs are

easy to train as they have no significant hyperparameters and are very robust against over-

fitting. This leaves practitioners with the dilemma of choosing between the interpretability

of kNN and the higher accuracy and usability of methods like RF.

In this section, we propose a (pseudo-)metric designed to leverage both—replicating the high

accuracy and ease to train of RFs, while yielding interpretable predictions under the kNN

decision rule. From a practical standpoint our Random Forest Ensemble Metric (RFEM) is

extremely straightforward: distances between instances are measured by the average simi-

larity of their predictions as made by each tree in the RF. Yet in this simple design lies a

powerful metric. In our evaluation on a diverse group of eleven datasets, RFEM achieves

the best accuracy on eight, beating existing (non-)linear metric-learning algorithms. RFEM

inherits the benefits of RFs: unparalleled insensitivity to hyperparameters, invariance to

feature scaling, straightforward handling of discrete features, natural non-linearity, and no

requirement for a “seed” metric to set target neighbors (as required by e.g. [119]). We take

advantage of specific RFEM properties to prove bounds for fast neighbor search.
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Figure 3.3: Random forest schematic showing posterior label predictions (histograms pt(xi))
made at each tree t.

3.3.1 Background and Related Work

This section provides some background notation and terminology. We first review random

forests – the ensemble classifier we use for our metric. Next, we briefly review a number of

histogram distances that we will use.

Notation. Training data {(xi, yi)}ni=1 consist of n vectors of dimensionality d, xi ∈ Rd,

where scalar [xi]j is the jth feature of the i-th instance. The features [xi]j may be real-

valued, [xi]j ∈ R, or discrete, [xi]j ∈ {1, . . . , f}. Labels corresponding to each instance are

selected from a set of classes yi ∈ Y = {1, . . . , c}.

Random Forests. A random forest [22] is an ensemble of T decision trees [24]. To con-

struct a decision tree, the input space is repeatedly partitioned using axis-aligned feature

threshold splits at each node. The feature threshold split at a node is chosen to maximize
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the purity—the fraction of inputs with the same label—of that node’s children. Eventually,

inputs reach a leaf node when either some specified maximum depth or full purity is achieved.

During training, the tth random forest tree is learned independently on a “bootstrapped”

training set, which consists of a set of n instances subsampled with replacement from the

original training set [212]. Each split is picked greedily, but is restricted to a reduced set of e

candidate features, uniformly selected from all d available features. The randomness yields

a forest of subtly varying trees with strong generalization and robustness to overfitting.

Figure 3.3 depicts two trees in a random forest. Random forests have only two hyper-

parameters, the number of trees T and the number of features selected for each split, e.

In general T should always be set as large as permitted (subject to CPU and runtime

constraints). A good “rule of thumb” is to set e=d
√
de, which we follow throughout.

Given an instance x, the tth tree in a random forest returns a probability distribution pt(y|x)

over the label y of an instance x. This distribution is simply the histogram of the labels of

training samples in the leaf node to which x is assigned. For full trees, the leaf nodes are

(nearly) pure, so these distributions have very low variance. For limited-depth trees, leaves

are much less pure and the distributions have higher variance.
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The random forest itself can be considered to return a probability distribution P (y|x) over

the label of a test point by averaging over the distribution of each tree,

P (y|x) =
1

T

T∑
t=1

pt(y|x). (3.8)

A classification decision can then be rendered using the mode of this distribution,

H(x) = argmax
y

P (y|x).

Histogram Distances. Histogram distances will form a useful tool to compare and con-

trast the predicted distributions returned by the random forest trees. Consider two his-

tograms p and q, each with c bins. In our case, since they represent probability distributions,

histograms values are nonnegative and sum to one:

∀k : pk≥0,∀k : qk≥0, and
c∑

k=1

pk=
c∑

k=1

qk=1.

The squared Euclidean distance is a simple metric between two histograms, which grants

equal impact to all pairwise differences between bins:

SE(p,q) =
1

2

c∑
k=1

(pk − qk)2.
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The chi-squared (χ2) distance [149] assigns higher importance to differences in low-probability

entries than to differences in high-probability entries:

χ2(p,q) =
1

2

c∑
k=1

(pk − qk)2

pk + qk
.

The earth mover’s distance (EMD) [136, 157, 62] measures the minimum amount of proba-

bility mass that must be redistributed among the bins of one histogram p to yield another

histogram q and is solvable as a linear program.

The cosine distance measures the cosine of the angle between two vectors:

cos(p,q) =
p · q
||p|| ||q||

.

The Hamming distance counts the number of elements that differ between two vectors:

Hamming(p,q) =
c∑

k=1

[pk 6= qk],

where [·] denotes the Iverson bracket.

Related Work. Much prior work has focused on learning metrics for kNN classification.

This work has commonly focused on learning global linear metrics corresponding to a Ma-

halanobis distance. This is equivalent to learning a linear transformation x → Lx such
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that distances in the transformed space better represent similarity in the problem domain.

Information-theoretic metric learning (ITML; [66]) learns a linear metric constrained by an

input set of similar and dissimilar points. Large-margin nearest neighbors (LMNN; [217])

minimizes the number of training points which have points of another class among their

nearest neighbors after transformation.

Learning nonlinear metrics, often equivalent to learning the transformation x→ φ(x), has

also been a recent topic of research. Much work has utilized kernels for learning global

nonlinear metrics [51, 85, 113, 196], however these do not scale well in the size of the training

set. [119] propose to optimize the LMNN objective with a non-linear transformation φ(x)

of gradient boosted regression trees. This method still requires a “seed” metric to identify

target neighbors. [102] use kernel density estimation on each feature independently to learn

a discriminative representation that gives rise to a non-linear metric.

Two existing approaches utilize random forests for learning similarity. [23] propose comput-

ing proximity in a random forest (RFP) by counting the number of leaf nodes in common

between two points across all trees in the forest. Random forest distance (RFD; [226]) trains

a regression forest on a set of similar and dissimilar instances to return a similarity value for

a pair of inputs.
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3.3.2 Methods

While often highly accurate, random forest predictions lack the interpretability of nearest-

neighbor classifiers, where the resulting neighbors may be informative about the reasons

underlying the classification. Here, we propose a simple metric arising naturally from a

trained random forest. When deployed in a nearest neighbor classifier, the metric can achieve

the same high accuracy as a random forest—sometimes even outperform it—while yielding

interpretable “certificates” in the form of the neighbors selected.

We use a simple intuition to design this metric. The individual trees in a random forest

recursively partition the space into regions that are predictive of the same label—thus are

semantically similar. Each tree splits in slightly different ways and the individual tree dis-

tributions are therefore much more nuanced than their averaged prediction. Consider two

instances x and z which may or may not be semantically similar. Each individual tree t

within a random forest classifier will output predictions, pt(y|x) and pt(y|z). A histogram

distance between these two distributions, dH(pt(y|x), pt(y|z)), reflects some aspects of se-

mantic dissimilarity captured by this particular tree.

Analogous to the random forest classifier, which averages the predictions of all trees, we

define the Random Forest Ensemble Metric (RFEM) as the average histogram distance of
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all trees in the ensemble,

DT (x, z) =
1

T

T∑
t=1

dH(pt(y|x), pt(y|z)). (3.9)

In the limiting case, two points x and z fall into the same leaf node in each tree, and have

identical label predictions. This is captured in the aforementioned random forest proximity

distance [23]. However, the random forest proximity distance is unnecessarily restrictive in

requiring each sequence of decision-stump splits to be in exact agreement.

Instead of holding so tightly to the outcomes of the brittle splits made at each node, RFEM

examines the local leaf neighborhoods carved out by each random tree. Each leaf corresponds

to a d-dimensional “box” in the space of the training set. Each box contains a set of training

instances that are assigned the same label distribution pt(y|x) — in other words, they share

predictive similarity. RFEM considers two points to be similar when their leaf neighborhoods

consistently share a similar structure, regardless of whether they ever shared the same leaf

node.

As such, the metric leverages both the predictive power of the random forest and the vari-

ability and imperfection of the individual trees in the forest. Intuitively, if a pair of instances

are similar under the metric, they are likely to share very similar random forest predictions,

allowing the metric to capture the semantics of the random forest decision boundary. (We

formalize this notion later for binary classification.)
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However, the converse does not necessarily hold – sharing similar random forest label distri-

butions P (y|x) does not guarantee similar treatment in individual trees. If there are multiple

distinct modes in a class, a tree is likely to agree on predictions for instances within a mode,

yielding consistently similar label distributions pt(y|x). But between modes, the individual

trees may predict different distributions, which only match the other modes of that class

on average. This gives RFEM the ability to find structure underlying the random forest

predictions.

We should note that whether the distance returned by RFEM is strictly a (pseudo-)metric

depends on the choice of histogram distance. Of the five histogram distances introduced in

the previous section, only three (χ2, EMD, and Hamming) yield (pseudo-)metrics for RFEM.

The remaining two, squared Euclidean and cosine, violate the triangle inequality. However,

all four are examined in our experimental evaluation presented in Section 3.3.3 and perform

well.

Computational Complexity. The training complexity for RFEM matches that of ran-

dom forest. Training a random forest tree on n training instances and feature sampling

parameter e is O(neT log n), assuming roughly balanced trees of depth O(log n) [220].

At test time, computing the RFEM distance requires averaging over the label distributions

distances of T trees, each computed by evaluating a decision stump at O(log n) nodes per

tree. Assuming the distributions for the training set have been precomputed and stored,
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the computation of the RFEM distance for an instance pair is O(cT log n), where c is the

number of classes.

Trees may be pruned by depth (to a single-depth limit set across the random forest to mini-

mize out-of-bag error) to reduce evaluation time. Since each tree in an random forest may be

learned or evaluated independently of the others, both training and testing is embarrassingly

parallel.

Special Case: Binary Problems with Squared Euclidean Distance. Let pt(y|x) be

the label distribution predicted by the tth tree for instance x. When the labels are binary,

y∈{−1, 1}, pt(y|x) can be described entirely by a single value, viz. pt(y = 1|x) = 1− pt(y =

−1|x), which we abbreviate to pt(1|x). Here, the random forest prediction P (1|x) is:

P (1|x) =
1

T

T∑
t=1

pt(1|x).

Rewriting Equation (3.9) with the squared Euclidean histogram distance, we obtain:

D(x, z) =
1

T

T∑
t=1

(pt(1|x)− pt(1|z))2 .
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This is equivalent to computing the squared Euclidean distance between φ (x) and φ (z) after

mapping x and z by:

x→ φ (x) =



p1(1|x)

p2(1|x)

...

pT (1|x)


. (3.10)

Under this special case, we show a useful property of RFEM. If two instances x and z are

close under RFEM, i.e. if D(x, z) is small, their random forest predictions P (1|x) and P (1|z)

are guaranteed to be very similar. To show this, we make use of the explicit mapping of each

instance, φ(x) and φ(z).

Theorem 1. If two instances x and z are nearby under the binary random forest metric,

then the squared difference between their random forest predictions is bounded. Formally, if

D(x, z) < δ, then (P (1|x)− P (1|z))2 < δ.

Proof. If we map x → φ(x) and z → φ(z) as described previously and define ∆ = φ(x) −

φ(z), then we can rewrite the theorem condition as D(x, z) = 1
T
‖∆‖22 < δ. In addition,

given our definition of P (1|x), (P (1|x) − P (1|z))2 = 1
T 2

(∑T
t=1(pt(1|x)− pt(1|z))

)2
. This

is just 1
T 2

(∑T
t=1 ∆t

)2
, or more compactly, 1

T 2 (∆>1)2. By the Cauchy-Schwarz inequality,

1
T 2

∣∣∆>1
∣∣2 ≤ 1

T 2 ‖∆‖22 ‖1‖
2
2, and therefore 1

T 2 (∆>1)2 ≤ 1
T
‖∆‖22. Since 1

T
‖∆‖22 < δ, it follows

that 1
T 2 (∆>1)2 < δ. Therefore, (P (1|x)− P (1|z))2 < δ.

97



This theorem implies that whenever φ(x) and φ(z) are very close, it is likely that the random

forest would make the same prediction for both x and z. (kNN using this RFEM, however,

will classify x using the true label of z rather than the random forest prediction of z, giving

kNN the opportunity to correct random forest errors in some cases.)

Importantly, the converse of the theorem is not guaranteed to be true. This means that the

random forest prediction for z and x can be similar, but the instances can be far apart after

mapping x→ φ(x). If p(x|y) is multimodal and this structure is detected by the random

forest, RFEM can maintain the multimodal structure. This property lends interpretability

to our method, as it has the ability to distinguish clusters within the same class.

Fast Neighbor Search. It is common practice to speed up kNN neighbor search at test

time using data structures such as k-d trees [16], ball trees [133], or vantage point trees [233].

RFEM with the squared Euclidean histogram distance induces a new explicit representation

as given in Equation (3.10). In this new high-dimensional space, the squared Euclidean

distance (divided by the number of trees) is equal to the RFEM distance. This space can be

directly used in kNN search data structures.

However, its high dimensionality—O(Tc) dimensions, where c denotes the number of classes—

may limit the performance of these structures, which are known to perform best in low-

dimensional spaces. In this case, PCA may yield a suitable low-dimensional representation.
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For metric histogram distances that do not induce an explicit representation φ(x) such as

χ2 and EMD, vantage-point trees may be used as these require only pairwise distances.

In addition to these traditional methods for speeding up kNN search, we explore two methods

based on the structure of RFEM itself that allow us to avoid distance computations when

finding nearest neighbors under our metric.

Random Forest Prediction Bound. In binary classification, a simple bound to prune

away distant instances arises from the contrapositive of Theorem 1. The theorem states that

if the RFEM distance between two instances is small, the squared difference between the

random forest label distributions, denoted Pxz, must also be small. The contrapositive of

this theorem is:

Pxz = (P (1|x)− P (1|z))2 > δ =⇒ D(x, z) > δ. (3.11)

Suppose we compute the RFEM distance between a test instance x and a training instance

v, D(x,v). It follows directly from the contrapositive that:

Pxz > D(x,v) =⇒ D(x, z) > D(x,v). (3.12)

As a result, after computing D(x,v), we do not need to compute the RFEM distance between

x and any training point z for which Pxz >D(x,v). Hence, when computing the distance

from x to each training point, we need not consider training points z for which Pxz>D
∗(x),
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where D∗(x) is the smallest distance to a training point we have encountered so far. This

procedure extends naturally to the case where j > 1 by letting D∗(x) be the jth smallest

distance we have computed so far, rather than the minimum.

The procedure described above is efficient because Pxz can be computed very efficiently.

For training instances z, the random forest prediction p(1|z) can be precomputed offline.

Computing P (1|x) for a test instance x requires O(T ) time and must be done only once.

Given P (1|x) and P (1|z), computing Pxz requires only O(1) time. Computing Pxz for all

training data thus requires O(T +n) time, which is asymptotically faster than the O(Tn)

required to compute D(x, z) for each training instance z.

Hoeffding Bound. A probabilistic view suggests that RFEM is the expectation of the

distance between two points under the distribution of trees in the random forest. The trees

(and their predictions) are conditionally independent given the training data. Assuming we

have partially evaluated an RFEM distance between two instances, i.e. we have computed

the sample mean distance over t trees drawn i.i.d. from the ensemble of trees: Dt(x, z) =

1
t

∑t
i=1(pi(1|x) − pi(1|z))2. Exploiting the fact that histogram distances are bounded, 0 ≤

D(xi,xj) ≤ α, we can use Hoeffding’s inequality to bound the probability that the sample

mean distance Dt is more than ε away from the expectation of the RFEM distance:

P (‖Dt − E[D]‖ ≥ ε) ≤ 2 exp

(
−2tε2

α

)
.
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Rearranging terms, we can state with confidence 1− p that:

ε ≤
√
−α log(p/2)

2t
. (3.13)

Using confidence intervals on all distances, we greedily select distances to refine further until

either all but k points have been ruled out as potential nearest neighbors (to some confidence)

or all T trees have been exhausted.

It is worth pointing out that the Hoeffding bound and the Random Forest Prediction bound

are complementary: the Random Forest Prediction bound is useful for one-shot filtering of

the training set with very limited computation, whereas the Hoeffding bound provides a way

to gradually refine the distances.

3.3.3 Experimental Results

We perform classification experiments with kNN classifiers using our RFEM metric on eleven

data sets, comparing its performance to a range of competing metric learning techniques as

well with random forests. Below, we describe the data sets used in our experiments, the

setup of our comparative experiments, and the results of our experiments.

Datasets. The left three columns of Table 3.3 describe the number of training instances

n, the number of features d, and the number of classes c for each dataset. The Scene
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151 dataset comprises of photographs of fifteen types of natural scenes to be distinguished.

Input data consist of GIST and HOG features extracted from the photographs. Yale Faces

(yfaces) is a set of grayscale images of faces for a 38 subjects under varying lighting condi-

tions. Splice2 involves the identification of splice junctions in DNA snippets with discrete

features, while dna3 is another version of the same problem with binary features. Chess2

contains chess endgame settings that are either winnable or unwinnable for the white player.

Spam2 comprises the recognition of spam emails based on a small number of features, such as

the frequencies of certain words and characters. Isolet2 is a collection of sound recordings

of phonemes uttered by 150 subjects; the aim is to identify which phoneme was uttered.

Adult2 aims to predict whether a person’s annual income exceeds $50,000 based on census

data. Yahoo LTRC (Set 2)4 is a set of web search query-document pairs in which document

relevance is predicted based on query-document features. (Yahoo LTRC was made into a

classification task by assigning a binary label indicating if the relevance was greater than or

equal to 3.) W8a3 comprises the categorization of web pages based on keyword attributes.

MNIST5 is a collection images of handwritten digit with the task of recognizing the depicted

digit. The MNIST data set was preprocessed using PCA, preserving the first 300 principal

components.

1http://tinyurl.com/uiuc-cvr
2http://tinyurl.com/uci-ml-data
3http://tinyurl.com/libsvm-data
4http://tinyurl.com/yahoo-ltrc
5http://tinyurl.com/mnist-data
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Characteristics Linear ML Non-Linear ML RF ML
Data set n d c Euclidean ITML LMNN KLMNN GBLMNN RFD RFEM

scene 15 1500 6812 15 41.5 − 41.5 50.2 − 38.1 25.0
dna 1400 180 3 25.4 18.5 6.3 11.2 5.7 11.4 5.2

yfaces 1962 2016 38 30.2 26.7 6.9 96.3 6.5 3.7 2.4
splice 2552 60 3 32.0 29.5 30.9 28.1 14.7 7.1 3.6
chess 2557 36 2 7.8 3.9 2.2 6.6 2.0 3.8 0.5
spam 3681 57 2 17.2 31.3 9.0 22.1 8.0 7.1 5.1

isolet 6238 617 26 11.2 21.4 4.7 10.8 4.7 21.6 9.6
adult 32562 123 2 20.5 20.7 20.1 − 20.4 19.3 19.4
yahoo 34815 700 2 6.8 6.9 6.0 − 6.0 4.7 3.9

w8a 49749 300 2 2.1 1.6 2.1 − 2.1 0.9 2.1
mnist 60000 784 10 2.4 4.2 2.1 − 2.1 10.1 4.0

Table 3.3: Left side: Number of training instances (n), features (d), and classes (c) of the
data sets. Right side: Test error (%) of kNN classifiers using RFEM compared with six
alternative metrics. The lowest errors up to p=0.05 (binomial) significance are boldfaced.

Experimental Setup. In each of our metric-learning experiments, we measure the gener-

alization error of the 1-nearest neighbor classifiers. We compare the performance of RFEM

with that of three linear and three non-linear distances. The three linear (Mahalanobis)

metrics are (1) a Euclidean distance metric; (2) a metric learned by ITML [66]; and (3) a

metric learned using LMNN [217]. The three non-linear metrics are: (1) a linear metric

in a kernel space learned by KLMNN 11 [51]; (2) the GB-LMNN metric [119] described in

Section 3.2; and (3) the random forest distance (RFD ; [226]), which use a regression forest

to predict the similarity between a pair of instances.

In a one set of experiments, we compare RFEM directly with random forest predictions and

further evaluate RFEM using five histogram distances: squared Euclidean, χ2, earth mover’s

distance (EMD), cosine, and Hamming. With the Hamming distance, RFEM is equivalent

11For scalability reasons, KLMNN was only run on datasets with fewer than 10, 000 training instances.
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to the proximity metric proposed by [23], where pairwise distance is defined as the frequency

at which the pair lands in different leaf nodes in the random forest.

When training random forests, the tree depths were limited by enforcing a minimum number

of training instances per leaf. This number was set via cross-validation on out-of-bag training

error and enforced uniformly across the entire forest. All random forests were trained with

T =250 trees and e=d
√
de randomly sampled features (per split).

Results. In Table 3.3, we present the results of our experiments comparing kNN classifiers

using RFEM with the six other metrics. In the table, the best performance on each data set

up to p=0.05 binomial significance is boldfaced. We make two observations on the results

presented in Table 3.3. First, we observe that for most datasets, the use of a non-linear

metric substantially decreases the generalization error of the kNN classifiers. Linear metrics

are among the top performers (within the p = 0.05 significance level) on only four of the

eleven data sets.

Second, we observe the strong performance of RFEM: it obtains best results (up to sig-

nificance) on nine of the eleven data sets considered. On several data sets—including the

challenging Scene 15 task—the performance improvement obtained by RFEM is very sub-

stantial. The strong performance of RFEM comes at little effort: RFEM has no sensitive

hyperparameters and is “embarrassingly” parallel at both training and test time.
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RFEM Distances
Dataset SqEu χ2 EMD Cos Ham RF

scene15 25.0 26.4 35.6 27.2 28.7 26.4
dna 5.2 5.9 6.1 6.1 6.0 5.8

yfaces 2.4 2.7 3.1 2.7 2.4 3.3
splice 3.6 3.3 3.4 3.3 3.1 2.8
chess 0.5 0.5 0.5 0.5 0.8 1.1
spam 5.1 5.1 4.8 4.8 5.7 5.1

isolet 9.6 7.4 17.3 8.9 10.0 9.7
adult 19.4 19.2 18.5 19.7 19.8 15.2
yahoo 3.9 3.9 4.0 4.2 4.1 3.9

w8a 2.1 2.1 2.1 2.1 2.1 0.8
mnist 4.0 4.1 10.3 4.1 3.7 4.2

Table 3.4: Test error (%) with RFEM using five different histogram distances: Squared
Euclidean (SqEu), χ2, Earth Mover’s Distance (EMD), Cosine (Cos), and Hamming (Ham);
and random forests (RF). The lowest error up to statistical significance (p = 5% binomial
significance test) is indicated in bold.

Table 3.4 presents the generalization errors obtained by random forests and by RFEM with

five different histogram distances: squared Euclidean, χ2, EMD, cosine, and Hamming dis-

tance. The results show that the performance of RFEM is quite insensitive to the choice

of histogram distance. Interestingly, the squared Euclidean distance performs very well on

both binary and multi-class problems. This is beneficial since the squared Euclidean distance

yields an explicit representation (for binary classification) and is conducive to traditional

kNN speedup methods.

Table 3.4 also shows that kNN classifiers using RFEM perform on par with the corresponding

random forests on eight of eleven datasets. On a few of the data sets, RFEM even corrects

some mistakes made by the random forest predictor, which lowers the generalization error
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Figure 3.4: Test error of RFEM with a varying number of trees (mean and standard deviation
over 5 runs).

of the predictor. The results imply that RFEM lends interpretability to a random forest

classifier without affecting the classifier’s strong generalization.

Figure 3.4 shows the test error of RFEM (with squared Euclidean distance) on all eleven

data sets while varying the number of trees in the random forests. The figure shows that for

most datasets, the performance of RFEM converges fairly quickly: 128 trees often suffice to

obtain good predictions.
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Test Instance RFEM Neighbor Euclidean Neighbor

Split Frequency Split Disagreement Frequency

(Correct) (Incorrect)

(a) (b) (c) (d) (e) (f)

Figure 3.5: RFEM and Euclidean metrics applied to Yale Faces test instances. Masks
show splitting features encountered by each test instance during tree traversal (b) and the
disagreement of each candidate neighbor (d and f) on those feature splits.

Characteristics of RFEM. We performed three additional experiments to investigate:

(1) to what extent RFEM identifies task-relevant features, (2) how RFEM generalizes to

unseen classes, and (3) to what extent RFEM preserves intra-class structure.

Task-Relevant Features. Figure 3.5 shows four Yale Faces test instances (column a)

which were correctly classified by RFEM (c) but incorrectly classified using Euclidean sim-

ilarity (e). The split frequency mask (b) shows splitting features encountered by the test

instances during random forest tree traversal. These demonstrate which pixels are deemed
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yfaces Unseen Classes
Euclidean ITML LMNN RFEM
21.3 (3.4) 33.1 (16.0) 4.5 (1.1) 2.2 (0.6)

Table 3.5: Mean (and standard deviation of) test error on classes held out during training of
kNN classifiers using four metrics (in %), averaged over five random sets of unseen classes.
The lowest error up to (p=0.05 binomial) significance is boldfaced.

to be discriminative by the random forest. The split disagreement frequency masks (d and

f) show the frequency of disagreeing with the test point on the splits encountered. The

Euclidean neighbors show a higher rate of disagreement than the RFEM neighbors. The

disagreements are centered on face-specific regions rather than the lighting differences which

confuse the Euclidean metric.

Generalization to Unseen Classes. Table 3.5 presents the performance of RFEM on

a face-verification task on the Yale Faces data set: as test data, we only use individuals

who were not present the training set. In this task, the random forest itself is useless for

prediction as it was only trained to identify the individuals in the training set. The results

in the table show that, in contrast, RFEM has captured general properties for distinguishing

faces, which leads to a very strong performance compared to the competing methods on the

verification task. This result highlights the potential of RFEM for one-shot learning [76].

Preservation of Intra-Class Structure. To investigate whether RFEM preserves mul-

timodal intra-class structure, we visualized four of our (test) data sets using t-SNE [204] in
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Figure 3.6. The figure presents the visualizations obtained from running t-SNE using Eu-

clidean distance (left), LMNN distance (middle), and RFEM distance (right). The results

show that RFEM obtains better class separation on all four data sets. In particular, the

Isolet visualization highlights the ability of metric learning to improve class separation while

maintaining intra-class structure: ellipses in the figure highlight a few data regions whose

proximity is maintained in LMNN and RFEM, while the class separation is improved.

3.3.4 Discussion

In this section we presented a novel (pseudo-)metric, called Random Forest Ensemble Metric

(RFEM), that allows kNN classifiers to take advantage of the compelling aspects of random

forests. These include high accuracy, the ability to deal with discrete and continuous inputs,

robustness to hyper-parameters, invariance to feature scaling, and robustness against over-

fitting. Most importantly, with RFEM, kNN maintains its ability to provide interpretable

decisions.

Theoretical Properties. We derived theoretical results that link the similarity of two

instances under the RFEM metric to the similarity of the ensemble prediction for both

instances, and we have derived two bounds (an exact and an approximate one) to speed up

the nearest neighbor classification using our method, making it practical on large data sets.
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Using experiments, we demonstrate that RFEM performs well (providing high accuracy and

interpretable results) on a variety of classification tasks.

Simplicity. The most striking aspect of RFEM is its simplicity. This is in strong contrast

to much more involved prior work on non-linear metric learning [119, 196]—yet, we show that

RFEM clearly outperforms these more complicated algorithms with impressive consistency

across many diverse data sets. This demonstrates that, although prior work might be more

interesting from an algorithmic point of view and may involve more challenging optimization

problems, sometimes the best results can be achieved with simple algorithms. Because of

its simplicity, we believe that RFEM may become a useful technique in the toolchest of

machine-learning practitioners.

While our treatment of the RFEM has focused on obtaining metrics from trained random

forests, it should be noted this approach can be used with any classifier ensemble in which

the individual experts output a distribution over classes (such as logistic regressors, discrim-

inative RBMs, and naive Bayes classifiers). Such extensions of our metric-learning approach

may prove fruitful as future work.
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Figure 3.6: t-SNE visualization of four test data sets using Euclidean distance, LMNN
distance, and RFEM distance. In the Isolet figures, circles highlight regions where metric
learning improves class separation while preserving intra-class structure.
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Chapter 4

Multi-Platform Parallelism for

Support Vector Machines

In this chapter, we discuss the problem of learning kernel support vector machine (SVM)

models across a range of parallel systems, from highly multi-threaded GPUs to shared mem-

ory multi-core systems. Despite the popularity of SVMs in practice, parallel and distributed

implementations of SVM training software have yet to find widespread adoption.

We discuss some of the difficulties that SVMs have presented to parallelization. These

challenges include limited inherent parallelism in the most popular solver methods and the

tendency to produce tedious parallel code. These difficulties are most pronounced in GPU

implementations, where coders must operate in a restrictive, highly multi-threaded environ-

ment.
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This motivates a different approach to constructing a parallel SVM solver. In contrast to

existing “explicitly” parallel approaches, we adopt an “implicitly” parallel approach built on

an approximate reformulation of the SVM training problem. We adopt the SVM formula-

tion of Keerthi et al. [121]. By leveraging an approximate reduced basis set in exchange for

the full space of support vectors, this approach expresses an SVM solver almost entirely in

matrix multiplication and other dense linear algebra operations. These dense linear algebra

functions yield a high degree of parallelism, and finely-tuned libraries exist for a wide range of

platforms, including multi-cores and GPUs. Furthermore, as hardware evolves rapidly—as is

the case with NVIDIA GPUs—software written with these libraries evolves correspondingly.

Meanwhile, explicitly parallel approaches often require tedious updates or thorough re-writes

to take advantage of new features or to fit changing paradigms. We demonstrate that adopt-

ing the right SVM reformulation yields significant parallelism and robust implementations

on both shared memory and GPU systems using the same code-base.

4.1 Introduction

Kernel support vector machines are among the most established machine learning algorithms.

SVMs capture complex, nonlinear decision boundaries with good generalization to previously

unseen data. Numerous specialized solvers exist [43, 117, 176], which take advantage of the

sparseness inherent in the optimization and are known to be effective on a large variety of

classification problems.
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Recently, trends in computer architecture have been moving toward increasingly parallel

hardware. Most CPUs feature multiple cores, and general purpose graphics processing units

(GPUs) can execute thousands of parallel threads on their hundreds of throughput-optimized

cores. Both parallel frameworks offer enormous raw power, and have the potential to provide

huge speedups. However, to utilize each type of parallel thread effectively, algorithms must be

carefully decomposed and optimized in fundamentally different ways. For example, GPUs

are based on a “same instruction multiple data” (SIMD) architecture, which requires all

threads within one block to execute the exact same instructions, whereas multi-core CPUs

have much fewer threads with no such restriction.

On a high level, there are two different approaches to parallelizing algorithms, which we

term here the explicit approach and the implicit approach, respectively. In the explicit ap-

proach, an algorithm is parallelized by hand—that is, the programmer finds the independent

components of the algorithm which can be run in parallel and encodes this parallelism using

some appropriate explicitly parallel language or library such as OpenMP (for multicores),

MPI (for clusters), CUDA or OpenCL (for GPUs). In the implicit approach, the algorithm is

expressed as a series of operations which are known to be highly parallel and for which highly

optimized parallel libraries already exist for most platforms. Examples include libraries for

dense linear algebra operations—such as PLASMA [2] and Intel’s MKL [112] for multicores;

MAGMA [2], Jacket [1], and CuBLAS [145] for GPUs—and PDE solvers such as PETSc [10].
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Both approaches have advantages and disadvantages. The explicit approach can be applied

to most algorithms; therefore, in particular, it can probably be applied to the exact algorithm

of one’s choice. However, it often requires a significant engineering effort and a fine-tuned

tradeoff between parallel work and induced overhead—which needs to be calibrated specifi-

cally for any particular algorithm and parallel architecture.

The implicit approach is only applicable if the algorithm in question can be formulated as

operations of some well-optimized library (in our case, linear algebra operations), which may

not always be possible or may require approximation or relaxation of the problem, potentially

leading to a loss in accuracy. If it is possible, however, the implicit approach has two ad-

vantages. First, since researchers and engineers have carefully designed and optimized these

linear algebra libraries for peak performance [2, 145], they typically provide great speedups

as long as they are called on sufficiently large problems. Therefore, if we can express an algo-

rithm in terms of linear algebra operations of large-enough granularity, implicit algorithms

can provide great parallel speedups, often more so than explicit algorithms. Second, these

libraries are maintained and ported to new hardware as it becomes available; therefore, there

is no need to rewrite an implicit algorithm for each new generation. In light of these two

options, we investigate the following question: Given recent changes in hardware design, is

there a reformulation or approximation of kernel SVM training which yields efficient implicit

parallelism?
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To our knowledge, all existing (competitive) parallel SVM implementations for multi-core or

GPU systems [7, 39, 41, 43, 59] use the explicit parallelization approach on dual decompo-

sition methods, such as the SMO algorithm [150]. Although implicit parallelization comes

naturally for e.g. deep neural nets [124], it does not initially fit the SVM formulation and

until this work there were no comparable SVM implementations of implicit parallelization.

However, there exist at least three publications that reduce the kernel SVM optimization to

dense linear algebra operations. Sha et al. [165] introduce a multiplicative update rule for

the exact SVM optimization problem, which uses large matrix-vector multiplications in each

iteration. Chapelle [47] proposes a primal formulation for the least squares hinge loss [183]

which results in matrix-matrix and matrix-vector operations, and Keerthi et al. [120] ap-

proximates this approach by restricting the support vectors to a smaller subset (for reduced

test-time complexity).

One advantage of the implicitly parallel approach is that, if done correctly, the algorithm

spends almost all of its execution time in highly optimized routines and very little time

in the remainder of the program, which therefore can be written in a high level language

like MATLAB or Python. This enables us to implement implicit parallel versions of all three

approaches, which naturally work on both multi-core and GPU systems, by linking against

appropriate algebra libraries [112, 145].

We apply an empirical approach and compare the various implementations with each other

on several medium-sized classification data sets on GPU and multi-core architectures and
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arrive at an interesting conclusion: Although the multiplicative update rule [165] and the

primal optimization [47] do not scale to our data set sizes due to their quadratic memory

complexity, Keerthi’s [121] sparse primal optimization appears to be an excellent compro-

mise. Our MATLAB implementation tends to consistently outperform all highly optimized

explicitly parallel algorithms and generally suffers no or little decrease in accuracy due to

the problem relaxations.

In this chapter we make two contributions: 1. We provide the first detailed empirical analysis

of both explicit and implicit SVM parallelization for multi-core CPUs and GPU architectures;

2. We observe that implicit parallelization unveiled by approximation can be a far more

efficient approach. We believe that these insights are valuable to the machine learning

community, which has so far focused almost entirely on explicit parallelism, and encourage

further research into implicit approaches to parallelism.

Throughout this chapter we type vectors in bold (xi), scalars in regular (C or b), matrices

in capital bold (K) and sets in cursive (J ) font. Specific entries in vectors or matrices are

scalars and follow the corresponding convention, i.e. the ith, jth entry of matrix K is written

as Kij and the ith dimension of vector x is xi. In contrast, depending on the context, xi

refers to the ith vector within some ordered set x1, . . . ,xn and ki refers to the ith column in

a matrix K.
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Kernelized SVMs. When training a support vector machine, we are given a training

dataset D = {(xi, yi)}ni=1 of feature vectors xi ∈ Rd with class labels yi ∈ {−1,+1}. The

goal of the optimization is to find a maximum margin hyperplane separating the two classes.

(Binary classifiers can easily be extended to multiclass settings through pairwise coupling

or similar approaches [164].) The primal formulation of the SVM optimization problem [57]

learns a hyperplane parameterized by weight vector w with a scalar offset b:

min
w,b

1

2
||w||2 + C

n∑
i=1

max(0, 1− yi(w>xi + b)). (4.1)

The simple linear case can be solved very efficiently with special purpose algorithms [74]. In

this chapter we focus on non-linear SVMs, which map the inputs into a new feature space

xi → φ(xi) prior to optimizing, where φ(xi) is a nonlinear feature-space transformation of

xi. This mapping is generally to a higher (possibly infinite) dimensional representation.

As inputs are only accessed through pairwise inner products in the dual formulation of the

optimization, the mapping can be computed implicitly with the kernel-trick [164] through

a positive semi-definite kernel function k(xi,xj) =φ(xi)
>φ(xj). The (dual) optimization to

find the large-margin hyperplane becomes

max
C≥αi≥0

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) +
n∑
i=1

αi, (4.2)

where a Lagrange multiplier variable αi corresponds to each training input. At the end of the

optimization, only some variables αi are nonzero, which are referred to as support vectors.
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(For convenience, henceforth, we omit the bias term b, which can be solved for in a straight-

forward fashion from the solution of (4.2) [164]. Throughout this chapter we will speak

primarily on the Radial Basis Function (RBF) kernel: k(xi,xj) = e−γ||xi−xj ||
2
. Its explicit

feature representation φ(xi) is infinite dimensional and can at best be approximated [153] for

explicit use in the primal formulation. The RBF kernel is particularly interesting because of

its universal approximation properties [164] and its wide-spread application. However, this

work extends beyond the RBF kernel to any kernel without a corresponding low-dimensional

explicit feature representation φ(xi).

Although solving the SVM optimization in the dual formulation (4.2) avoids the explicit

feature computation φ(xi), it is still significantly slower than solving the linear formulation.

In particular, it requires either precomputing the kernel matrix K where Kij = k(xi,xj),

requiring O(n2) space, or recomputing k(xi,xj) as it is needed, with space or time complexity

that is too great for ever increasing data set sizes. This motivates the adoption of SVM-

specific optimization procedures.
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4.2 Parallelism for GPUs and Multicores

4.2.1 Explicitly Parallel SVM Optimization

To our knowledge, all competitive implementations of parallel SVMs (for multi-core CPUs or

GPU architectures) are based on explicit parallelization of dual decomposition approaches.

Dual decomposition methods, which include Sequential Minimal Optimization (SMO) [150],

are among the most efficient sequential algorithms for solving the dual formulation. They

operate on a small working set of Lagrange multiplier variables in each iteration, holding

others constant. For example, in each iteration, SMO heuristically selects two dual variables,

αi and αj, and optimizes them analytically. LibSVM, a very popular tool for training

SVMs, implements a variant of this method [43]. In general, any small number of dual

variables may be optimized at once with working set size representing a tradeoff between

work per iteration and number of iterations required. Explicit parallelization approaches

parallelize the computation within each iteration as well as parallelizing kernel computations.

Due to their fine grained iterative nature, these approaches are not a natural fit for highly

parallel hardware. Nevertheless, there exist a variety of implementations that parallelize the

individual iterations and the kernel computations on GPUs and multi-core architectures. A

common theme among explicitly parallel methods is high code complexity, making it hard

to verify correctness or port the code to new or updated hardware platforms.
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Multi-core. There are several parallel implementations of dual decomposition-based SVM

solvers targeted toward multi-cores. Some methods attempt to extract existing parallelism

from SMO-based approaches [67, 71], including a simple modification to LibSVM that com-

putes kernel matrix entries in parallel with OpenMP. Other approaches attempt some re-

structuring of the problem. Increasing the working set size (originally two variables in

SMO) exposes additional parallelism, as several dual variables are optimized at each iter-

ation [27, 70, 236], as does optimizing over nested working sets [239]. Another common

approach is to partition the training set, optimize over the partitions in parallel, and com-

bine the resulting solutions [35, 56, 95, 101, 238]. We were only able to obtain source code

for two of these methods — namely LibSVM with OpenMP and PSVM[243]. We only report

the results of the former, since the latter was not designed for multi-core CPUs and con-

sumed an infeasible amount of memory for medium-scale datasets. However, a comparison

of published training times (with consideration of the various architectures) makes us believe

that most other approaches are comparable or (more often) less competitive in practice.

GPU. Likewise, all previous attempts to accelerate the training of kernelized SVMs on

GPUs have been direct implementations of a dual decomposition method such as SMO. GPU

SVM [41] offloads computation of kernel matrix rows to the GPU using the CUBLAS library

and computes KKT condition updates on the GPU with explicitly parallelized routines. A

similar approach and results were demonstrated by CUSVM [39]. GTSVM [59] takes the

strategy of increasing the working set size of dual variables to 16 to better utilize GPU
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resources. The method features built-in support for both multi-class SVMs and sparse

training vectors. GTSVM achieves the best previously published kernel SVM training times

of which we are aware. Other GPU implementations include solvers especially optimized for

multi-class problems [144] and a specialized implementation in R [231]. The most successful

GPU implementations of dual decomposition generally require algorithmic modifications and

significant customized CUDA code just to leverage the full capability of the GPU. We seek

an algorithm that lends itself more gracefully to a parallel implementation.

4.2.2 Implicitly Parallel SVM Optimization

As an alternative to explicitly parallelized SMO-type optimization methods, we also inves-

tigate algorithms that are amenable to implicit parallelization; that is, algorithms where

the majority of the work can be expressed in few iterations with dense linear algebra com-

putations, which can then be performed using optimized libraries. We identify three re-

formulations of the SVM problem that lend themselves to this approach, while noting that

none of these methods were explicitly developed for increased parallelism. (It is important

to point out that in all formulations in this section, the linear algebra computations are

dense irrespective of the sparsity of the data, as they operate on the dense kernel matrix,

e.g. computing Hessian updates.)

A key factor in the implicit approach is that it can readily engage approximation—making

a reformulation or relaxation of the SVM optimization in (4.2). While this can impact
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accuracy and memory efficiency, compared with decomposition methods, we will show that

it also has the capacity to unlock significant parallelism.

Multiplicative update. Sha et al.[165] propose the multiplicative update rule, which

updates all dual variables αi in each iteration, to solve the dual optimization (4.2). This

approach relies on matrix-vector multiplication which can be readily parallelized; the authors

remark in their original publication that the algorithm could potentially be used for paral-

lel implementations. While our implementation demonstrated some speedups when linked

against parallel libraries, the method was ultimately not competitive (and is not included

in our experimental section) for two reasons: 1. The entire kernel matrix must be stored in

memory at all times, which renders the method infeasible for typical medium-sized data sets;

and 2. the convergence rate of the multiplicative update is too slow in practice, requiring

too many iterations.

Primal optimization. Chapelle introduces a method for solving a kernel SVM optimiza-

tion problem in the primal [47]. The SVM classifier can be expressed as h(x)=w>φ(x) + b,

where w =
∑n

i=1 αiyiφ(xi) (and with bias b). After the transformation x → φ(x), solving

(4.1) with respect to w directly is impractical or impossible, due to the high (possibly infi-

nite) dimensionality of φ(x). However, after a change of variable, with βi=αiyi and β ∈ Rn,
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(4.1) can be rewritten as follows:

min
β,b

1

2
β>Kβ +

C

2

n∑
i=1

max(0, 1− yi(β>ki + b))2 (4.3)

where ki is the kernel matrix row corresponding to the ith training example. Notice that

there are two relaxations: 1. the βi are unconstrained, in contrast to αi in (4.2), which

must satisfy 0≤αi≤C; and 2. the squared hinge loss is used in place of the more common

absolute hinge loss. These changes allow the use of second order optimization methods. In

particular, Newton’s method yields very fast convergence with computations expressed as

dense linear algebra operations. As noted in [47], the squared hinge loss leads to almost

identical results as the absolute hinge loss—a claim that we confirm in our experimental

results. Similar to the multiplicative approach, this method requires the computation of the

entire kernel matrix, which renders it impractical for larger data sets. We therefore do not

include it in our experimental results section, which focuses on data sets with prohibitively

large sizes.

Sparse primal optimization. Keerthi et al. propose a method to reduce the complexity

of Chapelle’s primal approach by restricting the support vectors to some subset of basis

vectors J ⊂ {1, . . . , n} so that j /∈ J ⇒ βj = 0. With the approximation, equation (4.3)

then becomes:

min
β,b

1

2
β>KJJβ +

C

2

n∑
i=1

max(0, 1− yi(β>kJ i + b))2. (4.4)

124



Here, β has been restricted to contain only those βj with j ∈ J . KJJ is the kernel matrix

between only basis vectors, and kJ i is the kernel row of the ith training example with all

basis vectors (i.e., the vector k(xk,xi) for each k ∈ J ).

As the set J is originally unknown, Keerthi et al. propose to grow J with a heuristic.

Initially, J is empty and the algorithm then has two distinct stages that are cycled. Basis

vector selection: A small subset of the training set is randomly sampled, and then a heuristic

is used to estimate the reduction in loss from adding each input to J . The highest scoring

point is then greedily added to J to get J ′
. Reoptimization: After a certain number of

basis vectors have been added to J ′
, (4.4) is optimized using J ′

as the basis vector set.

This whole process of gradually selecting basis vectors and then re-optimizing repeats until

a stopping criterion is met. The resulting algorithm performs only a few iterations in total,

each of which make use of intensive linear algebra computation. This method still requires

the kernel matrix of basis vectors with all training examples, requiring O(|J |n) space. In

practice, |J | � n; however, this may still be a concern, particularly on GPUs where memory

availability is more limited than RAM.

4.2.3 Implementing Sparse-Primal SVM

In this section, we provide details of SP-SVM, focusing on the aspects that relate to parallel

implementation. In particular, we observe which steps are expressed using linear algebra
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operations and can be easily accelerated using modern parallel machines such as GPUs and

CPUs.

Newton Optimization. Suppose we begin with a pre-chosen set of basis vectors J . The

optimization (4.4) may be solved by Newton steps on β. Let indices

I =
{
i : 1− yiβ>KJ i ≥ 0

}
⊆ D

correspond to training instances which contribute to the loss in the objective function. These

are the points that violate the margin, whether they fall on the wrong side of the hyper-

plane or are merely within a unit distance. Note that the bias term b is omitted from the

following equations for convenience, but may be easily included as shown in [47] and has

been incorporated in our implementation.

Gradient: Taking the gradient of (4.4) with respect to β, we obtain the vector g ∈ R|J |,

g = KJJβ − CKJI(yI − β>KJI). (4.5)

The gradient is the sum of two matrix-vector products. The first of these products, the

multiplication KJJβ between a |J | × |J | matrix and a vector of length |J |, captures the

regularization of β. The second multiplication accounts for margin violations.
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Observations for Optimization: While the matrix-vector multiplication of the gradient cal-

culation is a linear algebra operation, we do not offload it to the GPU since each matrix row

is used just once, and the memory access latency and the transfer latency from DRAM to

GPU memory can not be effectively hidden. However, on the CPU, we do use linear algebra

libraries for the efficient execution of this step.

Hessian: Differentiating again with respect to β, we have the Hessian H ∈ R|J |×|J |, where

H = KJJ + CKJIKJI
>. (4.6)

Typically, for smooth, unconstrained minimization problems on CPUs, it is more efficient

to use quasi-newton methods [26, 242], which approximate the Hessian matrix and avoid its

costly computation at the price of slower convergence. In our case, as we can express the

Hessian matrix entirely in terms of dense matrix matrix multiplications (4.6), we can obtain

massive speedups through parallel hardware, and the exact Newton method becomes very

attractive.

The Hessian is the sum of two |J | × |J | matrices. The first matrix KJJ captures partial

second derivatives of the regularization term. The second matrix is the outer product matrix

between a |J | × |I| kernel submatrix and itself.

Observations for Optimization: In general, matrix multiplication is very naturally imple-

mented on parallel machines, especially GPUs. However, the matrix multiplication in (4.6)
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presents a special case as KJI quickly grows too large to store on the GPU. To compute

on the GPU, the matrix must be transferred from the CPU and computed on the GPU in

blocks. A naive implementation in which blocks of the kernel are synchronously transferred

to the GPU between computations yields little speedup over computing directly on the CPU.

While the block computations themselves are noticeably faster on the GPU, the transfer la-

tency between CPU RAM and GPU global memory is significant. However, we make use

of multiple asynchronous streams of CPU-to-GPU memory transfers of small blocks with

interleaved matrix multiplication.

Iterative update. To solve for weights β, we take Newton steps of the form

β′ = β −H−1g. (4.7)

In practice, very high accuracy can be achieved with a set of basis vectors that is much

smaller than the set of training instances, |J | � n. This renders the Newton optimization

tractable, even on large problems. Computing H and g is O(n|J |), while H−1g is O(|J |3).

The significant costs are incurred while computing the Hessian and gradient. Both require

|J | rows of the kernel matrix K, and the Hessian involves the costly matrix multiplication

KJIKJI
>.

Generally only a few Newton steps are required for convergence, between which margin

violations I and gradient g must be recomputed, since they are functions of β. Since we
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are using quadratic penalization of errors in (4.4), the Hessian is constant in β and changes

only in response to changes in the set of loss incurring inputs I. Consequently, only small

incremental updates to the Hessian are required between Newton steps.

Adding Basis Vectors. Solving the optimization in practice without an a priori set of

basis vectors requires a two phase approach. Beginning with an empty basis set J 0, basis

vectors are added greedily, J k+1 = J k + {ck+1}. To select each basis vector, a candidate

set C, of some small size e.g. 10, is randomly sampled from the training examples. Each

new basis vector is chosen from a candidate set to minimize the objective (4.4) assuming

the existing weights β ∈ Rk are held constant, which can be computed in closed form. The

candidate with the largest estimated improvement is chosen.

Then all weights (now β ∈ Rk+1) are optimized by Newton steps to minimize (4.4) over the

increased basis set J k+1. The cycle repeats until a maximum number of basis vectors is

reached or a stopping criterion is met.

As the size of the basis set increases, the contribution of each additional vector becomes

smaller. Given also that re-optimizing β with Newton steps becomes more expensive as the

basis vector set grows, in practice, an increasing number of new basis vectors are selected

between subsequent re-optimization steps.

It should be noted that it is not necessary to recompute the Hessian from scratch between

steps. After a set J̃ of new basis vectors is selected, we must account for the changes in
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the KJJ and KJIKJI
> terms in the Hessian computation (4.6), since J must change to

incorporate J̃ . It suffices to compute an update to the Hessian based on the new basis

vectors chosen and the updated set of error vectors I. More details about both the Hessian

update and the basis vector selection heuristics are found in [121].

Observations for Optimizations: There are two ways in which we optimize the candidate

selection process. First, the bulk of the time in the scoring process for each candidate is

in computing the kernel rows KCI for each candidate xC and points violating the margin

xI . The kernel computation itself can be easily performed using existing highly-optimized

code for linear algebra operations on the GPU or CPU. Second, each submatrix KCI is

narrow—just a few rows—but matrix operations generally scale better for larger matrices.

By grouping several candidate sets (between Newton reoptimizations, error vectors I are

held constant), several smaller operations are consolidated into one larger operation with

more square dimensions for better efficiency, especially on GPUs.

Implementation Details. When originally proposed, the sparse primal method lacked a

well-defined stopping criterion, instead relying on a user-specified maximum number of basis

vectors. In SP-SVM, we add basis vectors until the average decrease in training error per

additional basis vector is below a fixed threshold, in this case 10−5.

In the subsequent evaluation of SP-SVM, we implement SP-SVM in MATLAB. For linear

algebra operations on multicores, we use a combination of built-in MATLAB linear algebra
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methods and Intel MKL. For linear algebra operations on the GPU, we use Jacket12, a

MATLAB toolkit for accelerating computations on GPUs. Additionally, we incorporate

the freely available C++/CUDA package CUBLAS [145] in cases where Jacket proves to

be inefficient or lacks desired functionality. We have subsequently released an optimized

C++ version of SP-SVM, called WU-SVM, for both multicore and GPU architectures. It is

available for download at http://tinyurl.com/wu-svm.

4.3 Experimental Results

This section presents an empirical evaluation of several of the algorithms described in sec-

tions 4.2.1 and 4.2.2 on two modern parallel architectures: multi-core CPUs (MC) and

graphics processing units (GPUs). Running time and accuracy statistics on seven datasets

show the benefits and drawbacks of the approaches included in our evaluation.

Hardware. Experiments are run on a 12-core machine with Intel Xeon X5650 processors

at 2.67 GHz with hyperthreading enabled and 96 GB of RAM. The attached NVIDIA Tesla

C2075 graphics card contains 448 cores and 6 GB of global memory.

12http://www.accelereyes.com/jacket
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Data Set Method Test Error (%) Training Time Speedup
Adult S

C LibSVM 14.9 1m 6s 1×
7MB LibSVM 14.9 10.5s 18×

n=31562, d=123 M
C

SP-SVM 14.8 15.2s 13×
C=1, γ=0.05 [59] GPU SVM 14.9 6s 32×

GTSVM 14.8 1s 190×

G
P
U

SP-SVM 14.8 11.3s 17×
Covertype/Forest S

C LibSVM 13.9 5h 1m 19s 1×
96MB LibSVM 13.9 1h 5m 46s 5×

n=522911, d=54 M
C

SP-SVM 13.7 10m 10s 29×
C=3, γ=1 [59] GPU SVM 13.9 7m 32s 40×

GTSVM 36.8 5m 15s 57×

G
P
U

SP-SVM 13.8 4m 38s 65×
KDDCup99 S

C LibSVM 7.4 3h 0m 29s 1×
970MB LibSVM 7.4 26m 37s 7×

n=4898431, d=127 M
C

SP-SVM 7.9 56s 193×
C=106, γ=0.137 [199] GPU SVM − − −

GTSVM 19.9 1h 15m 39s 2×

G
P
U

SP-SVM − − −
MITFaces S

C LibSVM 5.6† 34m 22s 1×
1.3GB LibSVM 5.6† 4m 8s 8×

n=489410, d=361 M
C

SP-SVM 7.4† 20s 103×
C=20, γ=0.02 [199] GPU SVM 5.7† 33s 61×

GTSVM 5.6† 1m 34s 22×

G
P
U

SP-SVM 7.4† 10s 200×
FD S

C LibSVM 1.4 2h 6m 50s 1×
1.3GB LibSVM 1.4 27m 54s 5×

n=200000∗, d= 900 M
C

SP-SVM 1.5 1m 22s 92×
C=10, γ=1 GPU SVM 1.4 6m 20s 20×

GTSVM 1.5 2m 26s 52×

G
P
U

SP-SVM 1.5 29s 262×
Epsilon S

C LibSVM 10.9 19h 12m 27s 1×
2.4GB LibSVM − − −

n=160000∗, d=2000 M
C

SP-SVM 10.8 8m 10s 141×
C=1, γ=0.125 GPU SVM 10.9 29m 1s 40×

GTSVM 10.9 4m 33s 253×

G
P
U

SP-SVM 10.8 1m 55s 601×
MNIST8M (24GB) S

C LibSVM 1.0 12d 15h 21m 31s 1×
n=8100000, d=784 LibSVM 1.0 1d 23h 12m 8s 6×

C=1000, γ=0.006 [135] M
C

SP-SVM 1.4 2h 37m 50s 115×

Table 4.1: Comparison of test error, training time, and speedup of kernelized SVM training
methods. The first column indicates dataset file size, number of instances, dimensionality,
and SVM hyperparameters C and γ (from cited values, otherwise derived by cross-validation
using GTSVM). Results for SP-SVM are the average of five runs with randomly sampled
candidate sets (see text for standard deviations). Row colors indicate architecture: single-

core (SC), multi-core (MC) , GPU . Red font color indicates poor test error rate. Bold

typeface indicates the best timing results for each dataset and architecture. Symbol †

indicates accuracy metric is (1−AUC)%. Symbol − indicates a data set/method pair that
was unable to be run, as explained in the text.
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Methods evaluated. The single-threaded CPU baseline method is LibSVM [43], a popular

implementation of SMO, which we use as the baseline for classification accuracy. On multi-

cores we evaluate a modified version of LibSVM which performs kernel computations in

parallel with OpenMP13. Further, we evaluate our implementation of SP-SVM in MATLAB with

Intel MKL BLAS functions for matrix operations. For the GPU settings, we compare two

explicitly parallel GPU adaptations of dual decomposition: GPU SVM [41], an adaptation

of LibSVM for GPUs, and GTSVM [59]. We also include the implicitly parallel MATLAB

implementation of SP-SVM, linked against the appropriate libraries for GPU linear algebra

computations. With the exception of SP-SVM, all implementations are written in C/C++ by

the authors of the respective publications.

Datasets. We evaluate all methods on several medium scale data sets, each involving

classification tasks. Medium scale datasets are chosen because parallel runtimes with small

datasets tend to be dominated by overhead while large-scale datasets generally require an ex-

orbitant amount of system memory. The datasets are as follows: Adult14—an annual income

prediction task (greater or less than $50K) based on census data; Covertype/Forest15—a tree

cover prediction task based on geographical and climate features (predicting class 2 versus

the rest); KDDCup9916—a classification task for intrusion detection in network traffic; MIT-

Faces17—a face detection task from raw images (with accuracy presented in (1-AUC)% due to

13http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
14http://archive.ics.uci.edu/ml/datasets/Adult
15http://archive.ics.uci.edu/ml/datasets/Covertype
16http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
17http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
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an extreme class imbalance); Epsilon18—a synthetic classification task from the 2008 PAS-

CAL Large Scale Learning Challenge; FD18—another face detection task (without heavy

class imbalance); and MNIST8M19—a multiclass handwritten digit recognition task based

on label invariant transformations of images from the MNIST data set. We use the one-

versus-one classifier approach to multi-class classification, as also adopted by LibSVM [43].

Features for the datasets Adult, Covertype/Forest, KDDCup99, MITFaces, and MNIST8M

are scaled to [0, 1] before training. In addition, we subsample two of the largest data sets,

Epsilon and FD, uniformly at random from 400,000 to 160,000 and 5,469,800 to 200,000

respectively for two reasons. First, single core algorithms require prohibitively long training

times on the full sets. Second, on GPUs, if the data does not fit into GPU memory the

running time is dominated by memory transfer, which is not the focus of this study.

Hyper-parameters. The left column of Table 4.1 provides details of the size and dimen-

sionality of each data set. In addition, it also indicates the regularization parameter C and

inverse Gaussian kernel width γ used throughout the experiments. These parameters are

derived from cited works for most datasets, as indicated in the table. For Epsilon and FD, a

thorough cross-validation grid search was conducted using GTSVM as it is an exact imple-

mentation and tends to behave identically to LibSVM in terms of hyper parameters but does

not have the large time requirement of cross validating with LibSVM. This approach does

a slight disservice to SP-SVM, however it may be viewed as a fair compromise as LibSVM

18http://largescale.ml.tu-berlin.de/instructions/
19http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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is the gold standard and our main focus is the speedup. Throughout all experiments with

SP-SVM we set the stopping criterion to ε=5×10−6.

Evaluation. Table 4.1 shows test error, training time, and speedup versus single-core

LibSVM for all methods on each of the seven data sets. The training times omit both

loading data from disk and computing test predictions for all methods. As MNIST8M is

multi-class, the times reported are the accumulative time for each one-versus-one classifier

trained individually.20

Since SP-SVM deploys a heuristic based on random sampling of basis vectors, we computed

five runs for each setting and report the average runtime and test error. Standard deviations

on SP-SVM test error are less than 0.001 for all datasets except for the multicore implemen-

tation on KDDCup99 (0.0023). Similarly, standard deviations for SP-SVM training time

are on the order of seconds for each run. (For increased readability, we omit them from the

table.)

Not all algorithms converge on all data sets. GTSVM is the only GPU method that runs on

KDDCup99 (which is 90% sparse). GPU SVM and SP-SVM both store the inputs in dense

format on the GPU, which exceed its memory. The dense MNIST8M data is too large for all

20Shared memory computers, such as multi-core CPUs and GPUs, are arguably less suited for this kind
of multi-class classification, since one-versus-one classifiers are “embarrassingly parallel” for problems with
many classes and can be solved on (cheaper) distributed memory machines (clusters) with near-perfect
speedup.
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GPU algorithms.21 Also, LibSVM with OpenMP failed to converge on Epsilon in less time

than single-core LibSVM.

Accuracy. For most datasets and methods, test errors are remarkably consistent, even

between exact and approximate methods. However there are a few notable exceptions,

highlighted in red in Table 4.1. GTSVM fails on Covertype/Forest and we hypothesize that

this anomaly may be due to a floating point precision error as the method converges when

run on smaller subsets of the training data. On KDDCup99, GTSVM obtains an error rate

of 19.9%, which is not significantly better than a constant predicting the most common

class (no GPU method in our evaluation could successfully learn from this data). SP-SVM

performs slightly worse on KDDCup99 (7.9% vs. 7.4%) and noticeably worse on MITFaces

(7.4% 1-AUC vs. 5.6%) and MNIST8M (1.4% vs. 1.0%). The approximation error may

be more pronounced on MITFaces due to the large class imbalance (a few additional false

positives have a strong effect on the final area under the curve) and also for MNIST8M, where

the approximation error is being aggregated across the many (45) one-versus-one classifiers.

Speedup. The most basic method of speedup is LibSVM on multicores. This involves a

trivial change directly to the source of LibSVM, allowing for the use of OpenMP parallel for-

loops in kernel computations. Because kernel computations account for such a significant

21As GPU memory sizes grow, this limitation will become less important. In addition, GPUs and CPUs
might eventually converge on using a single memory space. For sparse data sets one might also consider
special purpose libraries, such as CUSPARSE (https://developer.nvidia.com/cusparse), for the kernel
computation.

136

https://developer.nvidia.com/cusparse


portion of LibSVM’s runtime, this baseline improvement results in a 5 − 8× speedup on

twelve cores.

GPU SVM achieves 20− 40× speedups over single-core LibSVM by performing kernel com-

putations and KKT condition updates directly on the GPU. GTSVM achieves the largest

speedups among the dual decomposition methods, by also increasing the working set size to

16 (compared to 2 used by LibSVM and GPU SVM), leading to 2.5 − 6.5× speedup over

GPU SVM, and 2 − 250× speedup over LibSVM. This highlights the correlation between

speedup and the amount of handcrafted parallelism that is included in the algorithm design

for the explicit parallel approaches.

In comparison to single core LibSVM, SP-SVM achieves 13× to 193× speedup on multi-cores,

and 17× up to 601× speedup on GPUs. On both architectures, the speedup of SP-SVM

tends to increase with data set size, which reflects the increasing time spent inside parallelized

library operations. The smallest speedup for both architectures is on the smallest data set,

Adult—however, by a mere 11s or 15s compared to the fastest algorithm (GTSVM). It is

surprising just how effective the parallelism derived from the dense linear algebra in SP-

SVM proves to be on both architectures. SP-SVM is particularly effective on GPUs where it

outperforms all other GPU methods by 1.5× to 5× on all but Adult, and achieves a 1.3−4.3×

speedup over multi-core SP-SVM. However even on multi-cores, SP-SVM outperforms GPU

SVM and GTSVM significantly on MITFaces and FD. SP-SVM requires only 11 minutes on
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average across all binary classification datasets, compared to the several hours often required

by LibSVM.

4.4 Discussion

One trend clearly follows from our study: massive speedups are possible when the paral-

lelism of modern hardware is leveraged. Explicit parallelization is by far the most common

approach to SVM parallelization. Our results demonstrate the significant benefits of implicit

parallelization. By adopting an appropriate SVM relaxation, we leverage existing, highly ef-

ficient libraries for parallel linear algebra. This approximation, by heuristically or randomly

choosing a reduced basis vector set, unlocks dramatic parallel speedups with very limited

loss of accuracy.

We believe that the community can benefit from our findings in two ways: First, practitioners

obtain an easy to use implementation of SP-SVM with unprecedented training speed which

can be readily used on or adapted to most platforms with BLAS compatible libraries. Second,

researchers working on parallel machine learning algorithms may reconsider spending days

in agony on C/C++ programming of parallel code and may instead focus on designing

reformulations or approximations to their algorithms which rely more heavily on dense linear

algebra routines. Similar to relaxing optimization problems into convexity, as has been

common practice for years, we predict that relaxations into implicit parallelization may
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become increasingly important as multi-cores and GPUs establish themselves as the common

computing platforms.

This suggests general principles that can help us in both deciding which specific algorithms

should be targets for parallelization and designing new algorithms specifically for parallel

architectures such as GPUs. First, coarse-grained iterative algorithms—algorithms that per-

form a large amount of computation on each step and then take a smaller number of steps,

are generally better than fine-grained iterative solutions.

This hints at what may be an important principle for the design of algorithms meant for

machines with a very large number of cores. There are often many ways of solving any

given machine learning problem. For years, researchers have been focusing on sequential

performance and developing algorithms that minimize the amount of work—roughly, the

total number of instructions executed by the program. As hardware is developed with 100’s

or 1000’s of cores, we must consider another parameter, namely the critical path length—

roughly, the longest chain of dependent instructions. When we consider machines with 100’s

or 1000’s of cores, we must design algorithms that minimize the critical path length even at

the cost of increasing the work by some small factor.
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Chapter 5

Conclusions

Improving the feasibility of learning large-scale non-linear machine learning models is an

area of active research. Ever-increasing parallel and distributed computing resources hold the

promise of enhanced scalability. However, efficiently transferring sequential implementations

of popular non-linear methods to parallel platforms has not proven to be a straightforward

task. Rather, the result is parallel implementations with tedious code, limited speedup, and

difficult transferability to new or updated platforms.

In this work, we have taken an approach driven by approximation to achieve significant

parallel speedup and scalability for three classes of non-linear models. We replace exact

methods with strategically relaxed algorithms for boosted tree learning, metric learning,

and support vector machines. Our parallel and distributed implementations demonstrate

scalability to larger datasets and faster execution time than previously possible. Further,
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the code produced readily bridges multiple parallel platforms and leverages existing, highly-

optimized parallel libraries, improving both performance and transferability.

Approximation will be an important trend moving forward, as parallelism, scalability, and

model power remain vitally important attributes of novel machine learning algorithms. With

larger training sets and ubiquitous parallel computing resources, exact optimizations will

continue to give way to the strategic use of approximation and randomness in the non-

essential sections of learning procedures, trading precision for more data and greater model

complexity.
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[114] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[115] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant
documents. In ACM Special Interest Group in Information Retrieval (SIGIR), pages
41–48. New York: ACM, 2002.

[116] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the
ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM, 2002.

[117] Thorsten Joachims. Advances in kernel methods. chapter Making large-scale support
vector machine learning practical, pages 169–184. MIT Press, Cambridge, MA, USA,
1999.

[118] I.T. Jolliffe and MyiLibrary. Principal component analysis, volume 2. Wiley Online
Library, 2002.

[119] D. Kedem, S. Tyree, K.Q. Weinberger, F. Sha, and G. Lanckriet. Non-linear metric
learning. In NIPS, pages 2582–2590, 2012.

[120] S Sathiya Keerthi and Dennis DeCoste. A modified finite Newton method for fast
solution of large scale linear SVMs. Journal of Machine Learning Research, 6(1):341,
2006.

[121] S.S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with
reduced classifier complexity. Journal of Machine Learning Research, 7(7):1493–1515,
2006.

150

http://software.intel.com/en-us/intel-mkl/


[122] George S Kimeldorf and Grace Wahba. A correspondence between bayesian estima-
tion on stochastic processes and smoothing by splines. The Annals of Mathematical
Statistics, pages 495–502, 1970.

[123] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documen-
tation, 81, 2009.

[124] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
25, pages 1106–1114, 2012.

[125] K. Kurihara, M. Welling, and Y. W. Teh. Collapsed variational Dirichlet process
mixture models. In Proceedings of the International Joint Conference on Artificial
Intelligence, volume 20, 2007.

[126] G. Latouche, V. Ramaswami, and VG Kulkarni. Introduction to matrix analytic meth-
ods in stochastic modeling. Journal of Applied Mathematics and Stochastic Analysis,
12(4):435–436, 1999.

[127] A. Lazarevic and Z. Obradovic. Boosting algorithms for parallel and distributed learn-
ing. Distributed and Parallel Databases, 11(2):203–229, 2002.

[128] G. Lebanon. Metric learning for text documents. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(4):497–508, 2006.

[129] W. S. Lee, X. Zhang, and Y. W. Teh. Semi-supervised learning in reproducing kernel
Hilbert spaces using local invariances. Technical Report TRB3/06, School of Comput-
ing, National University of Singapore, 2006.

[130] P. Li, C. Burges, and Q. Wu. McRank: Learning to rank using multiple classification
and gradient boosting. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 21, pages 897–904. MIT Press,
Cambridge, MA, 2008.

[131] Yisheng Liao, Alex Rubinsteyn, Russell Power, and Jinyang Li. Learning random
forests on the gpu.

[132] Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction.
In Proceedings of KDD Cup and Workshop, 2007.

[133] T. Liu, A.W. Moore, A. Gray, and K. Yang. An investigation of practical approxi-
mate nearest neighbor algorithms. Advances in neural information processing systems
(NIPS), 2004.

151



[134] T.Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research
on learning to rank for information retrieval. In Proceedings of SIGIR 2007 Workshop
on Learning to Rank for Information Retrieval, pages 3–10, 2007.
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