9 research outputs found

    Nonlinear predictive control of autonomous soaring UAVs using 3DOF models

    Get PDF
    We design a nonlinear model predictive control (NMPC) system for a soaring UAV in order to harvest the energy from the atmospheric updrafts. Our control framework combines an online estimation with a heuristic search method to obtain the UAV optimal trajectory. To allow for real-time computation of the control commands we solve the optimal control problem using a 3 degrees-of-freedom (DOF) model but apply the inputs to a more realistic 6DOF model. Hence, we design a 3DOF-6DOF model interaction strategy. Simulations show how the control system succeeds in energy extraction in a challenging dynamic atmospheric environment while satisfying its real-time contraints

    UAV energy extraction with incomplete atmospheric data using MPC

    Full text link

    Predictive control for soaring of unpowered autonomous UAVs

    Get PDF
    In this paper we propose an energy-harvesting controller design for a 3 degree-of-freedom glider in a nonlinear MPC framework. The glider is simulated within a generic atmospheric updraft environment with the aim of extracting the maximum amount of energy from the environment. We focus on conceptual feasibility at this stage and we take the realistic assumption that the glider is able to obtain updraft information only along the flight trajectory. The surrounding updraft distribution is then recursively estimated (online) by combining the measurements from the optimal trajectory with a heuristic search, if necessary. A variation of the standard grid search is used such that the grid spacing is altered depending on the updraft information along the glider’s flight path. Results from both standard and adaptive grid search approaches are presented. In abstract terms, this work can be viewed as finding optimal paths in uncertain vector fields

    Perpetual flight in flow fields

    Get PDF
    Tese de Doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    The Unmanned Aerial Vehicle Routing and Trajectory Optimisation Problem, a Taxonomic Review

    Get PDF
    Over the past few years, Unmanned Aerial Vehicles (UAVs) have become more and more popular. The complexity of routing UAVs has not been fully investigated in the literature. In this paper, we provide a formal definition of the UAV Routing and Trajectory Optimisation Problem (UAVRTOP). Next, we introduce a taxonomy and review recent contributions in UAV trajectory optimisation, UAV routing and articles addressing these problems, and their variants, simultaneously. We conclude with the identification of future research opportunities.<br/

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Experimental Investigation of Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts

    Get PDF
    Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor conguration is studied and implemented, that has the potential to oer two key operational benets: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the nal conguration. In order to prevent periodic oscillations in flight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully flight tested in hover with a proportional-integral-derivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and flybarless rotor vehicle was conducted about hover. Controllability metrics were extracted based on controllability gramian treatment for the flybar and flybarless rotor. In edgewise gusts, the shrouded rotor generated up to 3 times greater pitching moment and 80% greater drag than an equivalent unshrouded rotor. In order to improve gust tolerance and control moments, rotor design optimizations were made by varying solidity, collective, operating RPM and planform. A rectangular planform rotor at a collective of 18 deg was seen to offer the highest control moments. The shrouded rotor produced 100% higher control moments due to pressure asymmetry arising from cyclic control of the rotor. It was seen that the control margin of the shrouded rotor increased as the disk loading increased, which is however deleterious in terms of hover performance. This is an important trade-off that needs to be considered. The flight performance of the vehicle in terms of edgewise gust disturbance rejection was tested in a series of bench top and free flight tests. A standard table fan and an open jet wind tunnel setup was used for bench top setup. The shrouded rotor had an edgewise gust tolerance of about 3 m/s while the unshrouded rotor could tolerate edgewise gusts greater than 5 m/s. Free flight tests on the vehicle, using VICON for position feedback control, indicated the capability of the vehicle to recover from gust impulse inputs from a pedestal fan at low gust values (up to 3 m/s)

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore