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Abstract: We design an autonomous soaring controller for an unpowdgdin a nonlinear MPC
framework. The UAV is controlled with the aim of extractirfgetmaximum amount of potential/kinetic
energy from the environment’'s updrafts. We focus on conmddeasibility at this stage and make
the realistic assumption that the UAV obtains updraft infation only along the flight trajectory. The
surrounding updraft distribution is then recursively estied (online) by combining the measurements
from the optimal trajectory with a heuristic search, if nesay. A variation of the standard grid search
is used such that the grid spacing is altered depending ampith&ft information along the UAV's flight
path. Results from both standard and adaptive grid seammtoaghes are presented. In abstract terms,
this work can be viewed as finding optimal paths in uncerteitor fields.

1. INTRODUCTION distributions or behavior of a thermal and the model is hence
not portable.

- ; This study attempts to combine the use of nonlinear Model Pre
A current area of keen interest is that of endurance of Un;. : : N
manned Aerial Vehicles (UAVs). Because UAVs do not have thg'Ct!Ve Control (MPC) with an online estimation of the upiira
constraints of human endurance in determining their tiroé,al enwronme;]nt (W'FhOlft assuming ahpredeflnhed updraft model) t
the limitations to a UAV’s flight time are often determined byc?mputet (e otptlrtnal tra{jeckt_or);_tc; farve.;gt etmaxm;]um arl-nnoun
its altitude, fuel or batteries. The normal mission purpofka of energy (potential and Kinetic) from the atmosphere.  or
UAV involves loitering over a target area of interes?. Tﬁe der to obtain information about the surrounding atmospleere

i . O : : . heuristic search is executed when various conditions dre fu
any ability to improve this loiter time by optimally extrémg .. ; . .
energy from the environment would be highly beneficial. Thg"(ad In ord%r tc; improve the chances of the UAV converging to
energy could be used to gain altitude, reduce fuel paylaad, a® strong updraft.
even recharge batteries. Rising masses of air, which foymaffhe in-house Imperial College London Optimal Control Soft-
reasons naturally occur within the lower atmosphere, isaine ware (ICLOCS, Falugi et al. [2010]) is used in conjunctiomhwi
the more accessible forms of energy waiting to be captureMIATLAB. While alternative programs with their respective
Presently, this energy is only exploited by soaring birdd animplementation such as ACADO and CasADi are available,
glider pilots (Akos et al. [2010], Shannon et al. [2002]). ICLOCS was chosen because of its ease-of-use coupled with

NASA has conducted work regarding control of soaring UAVétS in-house characteristic and code accessibility via MAIB.
(Allen and Lin [2007]) by assuming a model of the so-calledh brief introduction to the layout of the paper is as follows.
‘thermals’ (rising masses of air generated from the uneven Section 2, the problem setup is laid out. In Section 3,
surface heating). In that study, a set of algorithms used the simulation results are presented for three cases: @hwh
detect thermals for energy gain were flight tested. Parasetgull updraft knowledge is passed to the UAV, (ii) when full
such as updraft velocity, radius and position were estithateupdraft knowledge is withheld from the UAV, and (iii) when
However, no optimal control was used. A significant amourd systematic search is used. In Section 4, we undertake a
of work done regarding energy extraction from thermals hagiscussion of the results and examine further directions th
revolved around thermal centering methods (Fonseka [200%Work can take.

Wharington [1998]). Often a model of the thermal is assumed

(Kahveci et al. [2008], Qi and Zhao [2005]) and a maximum- 2. PROBLEM SETUP

likelihood picture of the thermal is estimated.

While the use of a typical thermal model could be useful i2-1 Optimal control problem

online estimation of the thermal environment the UAV encoun

ters, it cannot be used to model other forms of atmospherithe optimal control problem given below is used as the frame-
updrafts such as ridge lift or wave lift (Cutler et al. [20;10] work upon which other model parameters such as the UAV’s
Kagabo [2010]). These forms of updrafts do not have the sareguations of motion, the constraints and the updraft model a
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Parameter (unit) Value States (unit) Lower bound  Upper bound
Mass,m (kg) 300 e (km) -2 2
Wing area,S (m?) 11 ye (km) -2 2
Air density, p (kg-m—3) 1.225 ze (km) 0 00
Gravitational acceleratiom, (m-s—2) 9.81 v (°) -30 30
Table 1. UAV (DG-100 glider) model parameters. x () —00 —o
v (M/s) 15 70
. . . . . a(®) 0 10
inserted. This form is also used within ICLOCS and will be 1) 45 45

used for the purposes of this study:

Table 2. State constraints.
u(t
stid = f(x(t),u(t), Ve [to,ty] (1b) ,
g < gle(t)u() g, VEeltoty]  (10) I o e
o (°ls -
b1 < d(xs) < du (1d) a e 10 1
v Sa(t) <wy, VEE [t ty] (1e) Table 3. Input constraints
up < ult) <uy, Vi€ [to,t] (10 P '
uo =u(to), xo=ux(to), xr=2x(ty). (19)

The effect of the updraft (a vertical wind) is incorporatetbi
the equations by adding the relative motion between thendir a

The cost function is defined as
ty , . L
J(2(),u(),ty) = / L(z(t),u(t)dt + E(zs)  (2) the ground (Patel [2910]) to‘the UAV’s vertical velocit.i.
to Z. =vsiny + w,, (6)

whereE(-) is the cost associated with the boundary conditiongherew., is the updraft velocity that needs to be estimated.
and L(-) is the stage cost function. The cost function is min-
imised overu(t), the time-varying control inputs, anch, the 2.3 Constraints and Cost Function
initial state. Also,g(-) describes the general path constraints
andg(-) imposes the ending boundary conditions for the phasgonstraints are imposed on some states and these are given in
22 Aircraft model Table 2 (as per ICLOCS methodology, boundstab are used
' to denote unconstrained states).

We consider a glider-type UAV. A 3 degree-of-freedom (3DOFYhe UAV is limited to fly within a 4-by-4 kilometer square
representation, which models the aircraft as a point mass irspace and extending from the ground upwards. In addition to
three-dimensional space, is used. Rate constraints dtelett trajectory state bounds, ICLOCS also allows for the specifi-
to ensure it manoeuvres within the envelope of a real aircratation of a terminal state bound. We have imposed a more
and therefore allowing a 3DOF model to be used instead ofrastrictive terminal state bound for the UAV's altitude as

more computationally intensive 6DOF model. 2(tf) € [100, 0] . 7)

The 3DOF model differential equations representing the aiThis ensures that upon termination of control of the flight
craft are given by trajectory, the UAV is not in a precarious position. Conistis

&e = U COS 7Y COS Y (3a) are alsoimposed to the inputs and these are given in Table 3.
Yo = vCosysinx (3b)  We are interested in maximizing the total energy of the UAV
Z. =wvsiny (3c) atthe end of the prediction horizon. Hence, the cost fundso
1 selected to have only a boundary cost defined as
v = W(Fcosu—mgcosv) (3d) v(tg)?
! B(a(ty)) = —  ze(ty) + =2~ )| ®

. 1 . 29
X = —— (F'sinp) (3e) L .

Mv cos 7y and L(z(+),u(:)) := 0. The formulation in (8) is also known
. —1 . as the specific energy height of an aircraft which is the total
U= (D + mgsiny) (3) energy (potential and kinetic) divided by the weight of tire a

craft (Allen and Lin [2007], Qi and Zhao [2005], Chakrabarty
[2010], Zhao [2004]). The minus sign is because problemg(1) i
defined as a minimization problem.

where the horizontal position is given by, andy,, z. is the
altitude,v is the true airspeed, is the flight path angley is the
heading anglel” = 3CpSv? is theliftandD = 1 CppSv? is
the drag. The coefficient of lift i€, = 0.7-2w« wherea is the ] )
aircraft Angle Of Attack (AOA) and the factor of 0.7 is used to2.4 Atmospheric Scenario
discount for the three-dimensional flow effects on a finftars
wing. The coefficient of drag i€'p = 0.01 + 0.02C%. Other The updraft scenario chosen for simulation is shown in Fig. 1
parameters, corresponding to the ones of a DG-100 glider, dthis is a scaled version of MATLAB'peaks function).
given in Table 1. The input vector used to control the UAWnNIike other studies that assume single or multiple updraft
consists of the pitch and roll rates, and is defined as cores or tubes sufficiently distant and beyond the influerice o
wi= (&, ). (4) each other, we have employed a more difficult problem of mul-

The state vector consists of the six states in the equatibnstg) le updraft cores with different magnitudes and radii e

. ; : ) .~ have overlapping regions of influence. As a result, therstexi
motion together with the AOA and roll angle. It is defined as: multiple local optima. Downdraft areas have also been i
€Ti= (IC7Z/c,Zc,’Y,X7U70¢7M)~ (5)

to see if the controller can successfully negotiate thesasar



2000 Parameter (unit) Value

1500 | Safe altitude (m) 300
RMSE threshold (m/s) 1

1000 |- Reasonable updraft strength (m/s) 25
Heuristic search time (s) 60

500 Table 4. Heuristic search parameters.
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Fig. 1. Contour plot of the atmospheric updraft scenarice Th

units of the contourA direction) are m/s.
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In addition, in order to examine the performance of the samul ~ -1000
tion, the global updraft distribution has been chosen shah t
on average, a purely random flight will result in the UAV en-  ~1500¢
countering a downdraft as opposed to an updraft (the exgpect

vertical wind is negative). This is on top of the natural rate 200000 ~1500 -1000 -560 6 560 1600 15:00 2000
sink that the unpowered glider-type UAV experiences. x coordinate (m)

_ ' o Fig. 2. UAV trajectory using a control horizon of 60 s. In this
2.5 Updraft Velocity Online Estimation plot, as in the following similar ones, the numbers next to

the path are seconds along the path.

‘RMSE threshold’ or the maximum measured updraft
value is less than a ‘reasonable updraft strength’, then
execute the heuristic search

(3) generate a reference direction for the UAV to fly for a set
time (‘heuristic search time’).

As the UAV does not have full updraft distribution informati

a method of estimating the updraft environment is requifed.
two-layer Generalized Regression Neural Network (GRNN) is
used to regress the gathered updraft velocity data thatAve U
obtains along its flight path. A ‘picture’ of the surroundiaty
mospheric updraft is created and used to solve the optiinizat
problem. Table 4 lists the heuristic search parameters that were. used
. . S Therefore, the heuristic search model ensures that the UAV
Unlike other studies where the UAV is either assumed to CORzattles’ on a updraft only when it has obtained a reasonably

tain special equipment, such as forward-sensing infrared t ood fit of the updraft environment, and the updraft is of &isuf
mal cameras (Kagaho [2010]) or where the UAY is directly feLgiently high strepngth given the ave’rage surroﬂnding camTust

the actual updraft environment in its accurate entiretywile g g

e . ; Furthermore, the heuristic search ensures that the UAVngin
czuk and Olinski [2011]), we have restricted the UAV'S knewl ;. in ot threat of landing while performing a search byisgtt
edge to the measured updraft velocities along its flight path a ‘safe altitude’

the respective time instants only. This makes the problememo

difficult but reflective of reality. Should the prOjeCt eVBﬂuy 3. SIMULATION RESULTS AND DISCUSSION

be implemented on a real aircraft, the ability of the aldoritto '

wgl)IrIEW|ctjhogt gfpelndllng %” Ia” gnreahstlchplec% of equ;;plm}eqthe simulation that will follow are closed-loop results aibed
will be desirable. It also helps increase the robustnessi®! te., 1, implementing the optimal controller (solution to (1))a

solution. By achieving a method that can work under ver ; ; ; S
restrictive conditions, any subsequent methods that geoad- Yeceding horizon strategy with a sampling time of 2 s.

ditional information would only serve to improve perfornean 3 1 gy Updraft Knowledge

2.6 Heuristic Search Model In the first set of simulations, the UAV is simulated with the
o _ full environmental updraft information being available ttee
A heuristic search model is employed to ensure that: controller. The UAV is released adjacent to and pointinchia t

general direction of the strongest environmental downdraf
the global distribution. In the first case, with a controlilaon

of 60 s, it is observed that the UAV successfully engages in
a bank (turn) and negotiates away relatively quickly froma th
The heuristic model works as follows: nearby downdraft area (Fig. 2). However, it converges to the
nearby local optimum. This is despite having full knowledge
€hat a stronger, globally optimum updraft exists.

(1) the UAV finds acceptably/sufficiently strong updrafts
(2) the UAV flies a path to obtain sufficient information for
the estimation model to produce accurate results.

(1) ensure that the UAV is at or higher than a ‘safe altitud
before considering any heuristic search

(2) if either the Root Mean Squared Error (RMSE) betweein the next case, a control horizon of 120 sis used in ordegdo s
the measured and estimated updraft is larger than d#rthe UAV would attempt to converge to the strongest updraft
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Fig. 3. UAV trajectory using a control horizon of 120 s. Fig. 5. UAV trajectory overlaid upon the actual updraft eon-
ment.
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differing control horizons — 60 s (red) and 120 s (blue). Fig. 6. L_JAV trajectory overlaid against the estimated uftdra

environment.

From Fig. 3 we observe that this is indeed the case and the o )
UAV performs the same aggressive avoidance manoeuvre of t& Onlne Estimation Without Full Updraft Knowledge
downdraft and tracks for the global optimum. This highlght
the classic problem in nonlinear MPC of the need to select dn the next set of simulations, the environmental updraft in
appropriate control horizon. formation is withheld from the UAV and with 120s control
horizon. The updraft information is estimated using the GRN
@nd an optimal trajectory is flown at each step using only the
&hown information up to that point in time.

On the way to the global optimum, the UAV does not tak
the closest Euclidean distance. Instead, it is skewed te p
through the intermediate updraft, thereby increasingdlitsiele

and hence potential energy. In a sense, the UAV has taken Méen the conditions for a heuristic search are met and the
shortest energy distance to the global optimum. heuristic search is enabled, a randomly-generated cosrse i

For the first 40 s, the energies and trajectories of both s;imuIaSSIgned to the UAV for the duration of the random search.

tions were largely similar. After 40 s however, the UAV withFrom Fig. 5 we can see the UAV searching for more than 350 s
the shorter control horizon proceeded to loiter at low spedukfore it converges on the global maximum updraft. By the
within the intermediate updraft. From Fig. 4 we can observend of the trajectory, it had estimated an updraft picturésof

its energy increasing very slowly. This is because the dpdrasurroundings as shown in Fig. 6 .

in the region is just over 1 m/s while the UAV’s minimum sink

rate is approximately 0.62 ms. In the 600-second simulation horizon, the UAV has gained 220

m of specific energy. The UAV required 210 s (35% of the
The UAV with the longer control horizon increased its speetbtal simulation time) before it was aware of the large ufidra
by decreasing its AOA. In the process, it traded potentidystem. Thereafter, it required another 140 s (23% of the)tim
for kinetic energy and lost more altitude than the first UAVto probe the bounds and character of the updraft structure.
However, this allowed it to reach the strongest updraft ¢ope  Finally, 560 s after release, the UAV effectively mappedamut

to 4 m/s) more quickly (in approximately 100 s). The result is accurate structure of the largest updraft system and welsgr
much higher energy state at the end of 200 s as seen in Fig. 4round the strongest core.
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Fig. 7. UAV trajectory with systematic search.

Fig. 8. UAV trajectory with systematic search overlaid agai

. . ) the estimated updraft environment.
This compares against the 90 s and the 150 m of maximum

specific energy loss for the UAV with full updraft knowledge t
converge to the global optimum (Fig. 3 and 4).

3.3 Online Estimation Without Full Updraft Knowledge With
Systematic Search

Combining the knowledge gained from the results of the rar
dom heuristic search and the fact that in the real world tr

optimal updraft could be within any grid space with almos:

equal probability, a systematic procedure for searchiegetin
vironment could prove to be more robust.

In our systematic search simulations, the environmentss di
sected into grid squares (600-by-600 m) and a systematictsea
of the space surrounding the UAV is conducted (Lee [2012]
An optimum route for search is computed as the UAV explore
its environment and the problem is in many ways similar ti

the Travelling Salesman Problem (Stone [1975], Castandn a.
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Sandell [1979],.Stromquist and Stone [198_1], Raphael arfdg. 9. Trajectory with systematic search and adaptive. grid
Smith [2000]). Fig. 7 shows the case for a typical UAV releasesiZe used here ranges from between 400-by-400 to 800-by-

Because the UAV had lost too much altitude and breached tB80 m.
safe altitude of 300 m at approximately 500 s, the systemalig, g gpqs the UAV's trajectory for the same release condi-

search dwgst O‘t’ﬁ"igdin aij aff?l%t”g 5dzlg S- ;I'r:jereaf;er, (tjhe_ Ul’gggns as in Fig. 7. At 255 s, the UAV traversed and experienced
proceeded to In€ best updrat it had Xnowledge ot and CIFCIeR ,qratt greater than the heuristic search conditionsofis.

around the suboptimal updraft as seen in Fig. 7 . The UAV$y oo aier it proceeded to terminate the heuristic seanch
limited knowledge of the environment can be observed i

Fio. 8 felied upon its online estimation of the environment to gaté
9. ©. towards the globally optimal updraft.

3.4 Online Estimation Without Full Updraft Knowledge WithNot only has the adaptive grid enabled the UAV to locate the
Systematic Search and Adaptive Grid best updraft area, but it has done so more quickly, enabling a

much higher ending specific energy state as seen in Fig. 10.
afote that, under the same conditions, the UAV with the non-
%Iaptive grid search (Fig. 7) would have been forced to land
eventually as it was unable to extract sufficient energy ftioen
\Amvironment (Fig. 10).

With this understanding of the search dynamics of the U
an adaptive grid search method was implemented in order
increase the probability of discovering the best updrafiisth
at the same time expediting the search in areas where

observed to avoid losing excessive altitude. 4. DISCUSSIONS AND EUTURE WORK

The adaptive grid search works by increasing (coarsenirey) t

grid spacing when the UAV’s observed updraft gradient oert In the exploration of the surrounding updraft picture ambun
past 20 s is low or negative. Conversely, the grid space isa@fi the UAV, a random search direction could possibly yield good
when the trailing 20-second history of the updraft gradisnt results. However, utilizing a systematic search promiedset
strong and positive. This allows the UAV to promptly negt#ia more robust in the real world where the probability of the
updraft and downdraft gradients, while not sacrificing detaoptimum updraft could be anywhere in the absence of any a
when mapping out suitably strong updrafts. The adaptivé grpriori knowledge or forward-sensing equipment.
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Itis observed that using an adaptive grid spacing for thiegys
atic search expedites exploration of the UAV’s surrounding
vironment whilst retaining adaptability to changing ges.
This in turn promises better results at converging to a geon
updraft within a potentially shorter time.

E.

W

In the online estimation of the updraft environment, the-cur
rent implementation equally considers every observedafpdr N,
data point along the UAV’s trajectory. Realistically howev
recently-gathered information will have higher infornaatal
value compared to that observed further in the past. A plassib
method for this could be to implement a schedule of decrgasiz.
weights.

Moving forward, an implementation of the code in altern
tive programs such as ACADO and CasADi could be petp'
formed with the intention to ultimately transit toward reizhe, s
hardware-in-the-loop simulations and actual implemémtat
Current solution times are of the order of the sampling time;

a 2-second control step requires approximately 2 s to solve f
However, optimizing the code, alternative implementatiand R
faster methods (e.g. using non-uniform hold constraint;as
Longo et al. [2011]) would be expected to decrease this tirm;
dramatically and will be the subject of future work. :

a_

5. CONCLUSION B.

This paper has shown the advantages of using constrainied o&t
mal control techniques on glider-type UAVs for the explbda .
of energy from atmospheric updraft currents (vertical wind
Aircraft can take advantage of this atmospheric energyrfor i
proving endurance, loiter time and increasing fuel efficien

M.

M.

C. Qi and Y.J. Zhao.
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