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Associate Lúısa Bastos
Doctor José Morgado
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Pedro Almeida for their support, and in particular João Correia, Joel Gomes, Eduardo
Oliveira, Rui Caldeira, Filipe Ferreira, Bruno Terra, Filipe Costa Ferreira, Joel Cardoso,
and Sérgio Ferreira for their friendship, support, and assistance.

I gratefully acknowledge the support of the Portuguese Air Force Academy, specially
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ABSTRACT

Perpetual Flight in Flow Fields
by

Ricardo Ayres Gomes Bencatel

Chair: Fernando Lobo Pereira

In this work we study the problem of flight in flow fields, i.e., with air flow currents and
flow velocity variations. The main goal is to enable aircraft, and in particular UAVs, to
perform very long flights and in the extreme perpetual flight using as energy source only
the atmospheric air flow phenomena, also called flow field phenomena. That would allow
the aircraft to fly without the need to land to refuel or recharge the propulsion batteries,
depending on the propulsion system.

UAVs have become an important tool for military operations. There is also large poten-
tial for the use of UAVs in civilian applications. UAVs are specially useful for dull, dirty or
dangerous missions. Large UAVs, as the Heron TP and the Global Hawk, have endurances
greater than 36 hours. These endurances are due to the good airframe aerodynamic effi-
ciency, but even more to the large fuel capacity. Small UAVs reduced form factor yields
many advantages, as in terms of handling and required support facilities. Nevertheless,
their reduced form factor also yields less aerodynamic efficiency and reduced fuel or battery
capacity. This reduces small UAVs endurance.

Atmospheric flow field phenomena, such as thermal updrafts, wind shear, and gust,
hold large amounts of energy. Aircraft may harvest some of this energy by executing static
and dynamic soaring flight paths. These paths usually require good flight maneuverability.
Most small UAVs present better maneuverability than larger UAVs and many other aircraft.
Thereby, they are able to execute the required maneuvers to harvest energy from the flow
field phenomena.

This work discusses the flow field phenomena characteristics, analyzes the necessary
conditions to achieve perpetual flight with the different flow field phenomena and shows
how these phenomena can be observed. We study and develop detailed flow field models
and their interactions with the aircraft dynamics. For thermal updrafts we created a new
Bubble Thermal model, including its movement and its interactions with the surrounding
flow field. We also extended an existing Chimney Thermal model to include movement and
interactions with the surrounding flow field. In terms of wind shear we created three models
for the Layer Wind Shear phenomenon and a model for the Ridge Wind Shear phenomenon.
These models serve as inputs to the inference methods used to localize and characterize the
air flow phenomena.

Further, we analyze what is the required balance between each flow field phenomenon’s
characteristics and the aircraft aerodynamic characteristics to enable perpetual flight. The
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result is intuitive, showing that it is easier to perform perpetual flight with more efficient
aircraft and when each phenomenon presents stronger effects, as an updraft or a flow gra-
dient.

To enable the flow field energy exploitation, most control methods require an estimate of
the exploited phenomenon parameters. We show that the flow field phenomena parameters
are observable and derive methods to estimate these parameters. These methods are based
on Particle Filters, coping well with the nonlinear nature of the phenomena models and the
non-Gaussian probability distributions. The test results are very promising, showing good
estimation performance and requiring low processing power.

We noticed a lack of experimental validation of existing phenomena models. As such, we
developed control methods that would allow us to use UAVs to collect spatially distributed
data to enable the validation of the phenomena models. We studied collision avoidance
and formation flight methods and implemented them to allow safe environment sampling
and also collaborative flight. The developed algorithms are based on hybrid systems and
sliding mode control. The formation flight controller presented a good performance, with
good path tracking and, even more importantly, maintaining a safe distance among the
formation aircraft throughout the flight.
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Voo Perpétuo com Correntes Atmosféricas
por

Ricardo Ayres Gomes Bencatel

Orientador: Fernando Lobo Pereira

Resumo

Este trabalho debruça-se sobre o problema do voo com correntes atmosféricas e
com variações da velocidade das mesmas. O objectivo principal é criar a capacidade
de fazer voos muito longos, e no limite perpétuos, com aviões, e em particular VANTs
(Véıculos Aéreos Não Tripulados - UAVs), usando como fonte de energia fenómenos
atmosféricos. Tal capacidade permitiria que um avião voasse sem necessidade de ater-
rar, para reabastecer ou recarregar as baterias, dependendo do sistema de propulsão.

Os UAVs tornaram-se uma importante ferramenta para operações militares. Também
existe um enorme potencial na aplicação de UAVs em aplicações civis. Os UAVs são
especialmente úteis em missões entediantes, sujas ou perigosas. UAVs de grande
porte, como o Heron TP e o Global Hawk, têm autonomias superiores 36 horas. Es-
tas autonomias devem-se à boa eficiência aerodinâmica das aeronaves, mas ainda mais
à enorme capacidade de combust́ıvel. Os UAVs pequenos oferecem muitas vantagens
devido às suas dimensões reduzidas, tal como o seu manuseamento ou as instalações
de suporte necessárias. No entanto, a dimensão reduzida também provoca a redução
da eficiência aerodinâmica e reduz a capacidade para combust́ıvel ou baterias para a
propulsão. Tal reduz a autonomia dos UAVs pequenos.

Os fenómenos de correntes atmosféricas, como as ascendentes térmicas, gradientes
de vento e rajadas, contêm enormes quantidades de energia. Os aviões podem recolher
alguma desta energia executando trajectos ao longo destes fenómenos, como voo
planado estático e dinâmico. A execução destes trajectos normalmente requer que o
avião tenha boa manobrabilidade. A maioria dos UAVs pequenos apresentam melhor
manobrabilidade que os UAVs de grande porte e muitos outros aviões. Assim, a
maioria dos UAVs pequenos são capazes de executar as manobras necessárias para
recolher energia dos fenómenos de correntes atmosféricas.

Este trabalho discute as caracteŕısticas dos fenómenos de correntes atmosféricas,
analisa as condições necessárias para alcançar voo perpétuo com os diferentes fenómenos
e mostra como estes fenómenos podem ser observados e estimados. Para tal, estu-
damos e desenvolvemos modelos detalhados para os fenómenos em foco e a sua in-
teracção com a dinâmica dos aviões. Para as ascendentes térmicas criamos um novo
modelo de Térmica-Bolha, inclúıdo o seu movimento e as suas interacções com as cor-
rentes envolventes. Também extendemos o modelo de Térmica-Chaminé, para incluir
movimento e as interacções com as correntes envolventes. Em termos de gradientes de
vento, criamos três modelos para o fenómeno de Gradiente entre Camadas e um mod-
elo para o fenómeno de Gradiente de Crista. Estes modelos servem de base para os
métodos de estimação usados para localizar e caracterizar os respectivos fenómenos.

Também analisamos qual é o equiĺıbrio necessário entre as caracteŕısticas dos
fenómenos atmosféricos e as caracteŕısticas aerodinâmicas das aeronaves, de forma
a possibilitar a realização de voos perpétuos. O resultado é intuitivo, mostrando
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que é mais simples executar voos perpétuos se a aeronave for mais eficiente e se os
fenómenos atmosféricos forem mais intensos, apresentando uma correntes ascendente
mais forte ou um gradiente mais intenso.

De modo a permitir a exploração da energia existente nas correntes atmosféricas,
a maior parte dos controladores de voo requerem uma estimativa dos parâmetros do
fenómeno em questão. Nós mostramos que os parâmetros dos fenómenos estudados
são observáveis e apresentamos métodos para os estimar. Estes métodos baseiam-se
em Filtros de Part́ıculas, que lidam bem com a natureza não linear dos modelos dos
fenómenos e com distribuições de probabilidade não Gaussianas. Os resultados dos
testes executados são promissores, mostrando uma boa performance de estimação e
requerendo um poder computacional baixo.

Durante o estudo desta temática notamos a falta de dados experimentais para
validação dos modelos dos fenómenos estudados. Porquanto, desenvolvemos métodos
de controlo de voo que nos permitem usar UAVs para recolher dados espacialmente
distribúıdos que permitissem a validação dos modelos estudados. Para tal, estu-
damos e implementamos métodos que evitassem colisões e que controlassem voos em
formação, para tornar seguros os voos de amostragem dos fenómenos e também a
execução de outros voos colaborativos. Os algoritmos desenvolvidos baseiam-se em
Sistemas Hı́bridos e controlo Sliding Mode. O controlador de voo em formação apre-
senta uma boa performance, com bom seguimento do trajecto solicitado e, ainda mais
importante, mantendo uma distância de segurança entre as aeronaves em formação
ao longo do trajecto de voo.
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CHAPTER I

Introduction

1.1 Motivation & Background

This thesis focuses on the problem of flight over time-varying flow fields. As
such, we investigate flow field models and methods to detect, explore and exploit
them. The main goal is to make Unmanned Aerial Vehicle (UAV) operations more
sustainable and increase flight endurance, while either avoiding the need for any fuel
or reducing its consumption rate substantially. Longer endurance means enhanced
flight productivity, by reducing the operational overhead time, i.e., the flight time
spent on the transitions between the airfield and the target operation area. The
reduction in fuel consumption will make UAVs more environmentally friendly and
reduce both the operation costs and the airplane detection signature.

The use of aircraft, and particularly UAVs, has been steadily increasing, both in
civilian and military contexts. Both the US Army and the US Air Force reached
the milestone of a million flight hours with UAVs each [10], which means that a lot
of fuel could be saved by using air flow energy. If the energy gain was only 50%,
systems similar to the ScanEagle could fly almost 50 hours, with a range of about
2500 nautical miles (NM) and consuming only 0.0031 L/NM (1060 miles/gal).

We focus on airplanes (fixed wing aircraft) as these, unlike rotary wing aircraft,
can idle or shutdown the propulsion system and still can take advantage of the flow
field energy, saving more fuel. Further, we study the specific advantages that UAVs
may take from flow fields, as a special kind of airplane that include avionic packages
capable of autonomously controlling the flight dynamics and the flight path. We
assume such an avionics package includes a position sensor, as a GPS receiver, an
Inertial Measurement Unit (IMU), with accelerometers and gyroscopes, and airprobes,
sensing the dynamic and static air pressures.

Edwards [11] achieved a 48.6 km flight with no engine and only 143 meters of initial
height over Edwards Air Force Base in California. This means that the air energy
harvesting strategy saved 96% of the total energy required for the whole flight. The
useful flight time (path following) was about 79%. He also reported a 113.5 km (70.5
miles) unpowered flight in a cross-country soaring competition [12], which shows that
long soaring flights over different terrain types is feasible with UAVs.

We now analyze the coastal patrolling case as just an example of an operational
scenario where the use of UAVs that harvest airflow energy would improve operational
time and cost efficiency. Data from Portuguese Air Force patrol sorties provided by
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sergeants Teixeira and Gomes [13] reveals that flights are limited to an average of
2.8 hours with 71% of useful time. Further, the fuel consumption is 1.4 L/NM (1.9
miles/gal), summing up to 140 thousand liters for 2009, just for one of the patrol
squadrons, and just for Portugal. With UAVs using air harvested energy, the sorties
flight time could easily reach 10 hours, increasing the useful flight time to 72,5%, and
the range by at least 26%. Several UAVs may be needed to replace each of these
manned aircraft. The fuel consumption would be reduced by 93.4% for a similar
payload weight, saving about 130 thousand liters per year of fuel, only on these
patrol missions, in Portugal. Most of these patrol missions were along the national
coast. This allows us to extrapolate the fuel savings to other countries or regions. The
Portuguese coastline length is 2830 kilometers (1528 NM) [14]. The United States
coastline length is 133 thousand kilometers (72 thousand NM)[14], yielding possible
savings above 6.1 million liters per year. This is a very conservative estimate if we
consider the area-to-coastline factor for the US is a lot bigger than for Portugal.
The European and world coastline length are about 326 thousand kilometers (176
thousand NM) and 1.6 million kilometers (883 thousand NM), respectively. This
indicates that the possible savings are above 15 million liters for Europe and 75
million liters world wide. This may amount to more than 100 million euros of yearly
savings.

One of the fields where UAVs are showing their invaluable capabilities is meteo-
rology. They are more controllable and have higher ranges than blimps, executing
precise surveys. Further, they pose a good alternative for manned aircraft, executing
dull missions with superior trajectory tracking precision. Another advantage is the
reduction in risk cost, allowing researchers to gain knowledge over more dangerous
phenomena [15], like hurricanes, or with riskier operation concepts, like formation
flight [16]. NASA has been involved in several programs aimed at improving meteo-
rologic models and survey meteorologic phenomena. The Global Hawk UAV has been
used in several studies and there are also initiatives to create smaller UAVs tailored
for meteorologic surveys [17]. Reuder et al. used a small UAV to estimate meteoro-
logical profiles [18, 19]. Ramana et al. were only able to study the atmospheric solar
absorption in a risk and cost controlled manner resorting to three UAVs flying in a
vertical formation [16].

Furthermore, aquatic vehicles are also subject to flow fields. This means that some
of the conclusions of the current work for UAVs can easily be extended to Autonomous
Underwater Vehicles (AUVs) and Autonomous Surface Vehicles (ASVs). The Wave
Glider is a good example of exploitation of unsteady flow fields [20]. The use of
different fluid flow shear (Wind/Water) is also a potential alternative [21]. Water
density is almost a thousand times larger than the air density, meaning that aquatic
flow gradients may present a very powerful energy source. As such, aquatic flow field
exploitation could be a strong alternative to some of the current methods based on
buoyancy variation, used by AUV gliders.

1.2 Existing Work

The first theories on soaring mechanics appeared in the 19th century. Peal [1] re-
ported his observations of birds soaring, including pelicans, adjutants, vultures, cyrus
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and other large birds (fig. 1.1). Rayleigh [22] proposed a theoretical explanation for
the dynamic soaring mechanism, based on a vertical gradient of the horizontal wind.
This was corroborated by Manley’s observations [23] of gradient energy harvesting
by kites. More recently, Sachs described how Albatross use the wind shear near the
ocean surface to support their almost flap-less flight [8]. Further, Sachs et al. [24, 25]
obtained measurements of Albatross flights, some extending more than 25,000 km in
43 days. Weimerskirch et al. [26] report on Frigatebird flights lasting up to 94 hours,
meaning that night soaring is also feasible.

Figure 1.1: Observations of soaring birds by S. E. Peal (Illustration from [1])

In most of the flight control literature, the flow field is considered as a disturbance,
which has to be compensated for. Some authors propose methods to harvest energy
from air flow fields such as thermals [27, 28, 3, 29, 30, 11], wind shear [3], and gusts
[9].

Thermals are updrafts (rising air masses) created by temperature variations (fig. 1.2).
Wind shear is an air layer which presents a flow gradient (fig. 1.3). It appears between
fluid masses moving with different speeds or in different directions.

There are several studies about the required conditions to achieve perpetual flight
with wind shear [6, 8, 7] and gusts [9, 31]. For thermals, we were not able to find
similar studies, although there are lots of reports of day long manned-glider flights
and of long UAV-glider flights [12].

Wharington [27] was the first to propose thermal soaring control for UAVs. An-
dersson and Kaminer [29] proved the stability of a flight control algorithm which
centered the flight on a thermal avoiding the need to map the thermal itself, by us-
ing the aircraft energy balance derivatives. Klesh et al. [30] showed the similarities
between the thermals mapping problem and the general exploration problem. The
authors used an intensity grid mapping of vertical disturbances for multi-vehicle mea-
surements. Lawrance and Sukkarieh [3] presented an energy based method for soaring
path planning. This method is suitable for static and dynamic soaring, i.e., in ther-
mals, wind shear and other flow fields. As such, this method extends the favorable
soaring conditions.

Hazen [32] describes a cooperative thermal soaring scheme using a thermal cen-
tering scheme similar to Andersson and Kaminer [29]. First, the operation area is
divided in search blocks among the team UAVs. When an UAV detects a thermal all
the other UAVs converge to that position, unless they find other thermals on the way.
The information exchanged is the position of the UAV that detected a thermal. The
thermal center is not explicitly localized as in [29]. One of the most interesting results
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Figure 1.2: Column thermal updraft 3D representation.

was the comparison among the distribution of the maximum soaring flight times for
different team sizes. As expected, this showed an improvement, i.e., increased flight
time, with the number of UAVs, although the largest difference was from a single
UAV to pair of UAVs. Andersson et al. [33] describe a similar approach where they
use a thermal localization technique based on Allen’s work [28]. They also present
an analytical study about the relation between the thermal detection probability and
the UAV team size. The derivation results confirm the simulation results obtained
by Hazen [32]. Although an explicit thermal center localization method is used, this
is only able to localize thermals that are encircled by the flight path. Further, the
localization method runs independently on each vehicle, making no use of the extra
information provided by the cooperation.

Most of the methods developed to exploit thermals and wind shear require the
estimation of the thermal position or at least of the flow field over an array of spatially
distributed points. There exist several estimators for thermals more or less capable
of tracking the center thermal position (sec. 4.3). Allen [34] presented and flight-
tested a centroid-based method to dynamically estimate the localization of a thermal
center. The tests revealed problems of the algorithm, yielding poor quality estimates
[11]. Edwards [11] combined Allen’s method with a neural-network based locator [27].
Flight tests revealed that the estimation quality was good enough to allow highly ef-
fective thermal energy harvesting. Both methods assumed the estimation of a single
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Figure 1.3: Surface Wind Shear 3D representation

thermal at each time and a simplified 2D thermal model. Both simplifications limit
the advantages a team of UAVs could benefit from by cooperating in the exploitation
of thermals and the estimation of thermals’ parameters. Other estimation solutions
as the Gaussian process (GP) regression presented by Lawrance and Sukkarieh [35]
describe the flow field over spatially distributed points. This method is model inde-
pendent, being able the estimate a general flow field. As such, it assumes nothing
relative to the atmospheric phenomena number or three dimensional structure. This
makes it capable of characterizing any flow field phenomena and, theoretically, al-
lows a team of UAVs to exploit the information in a more advantageous manner.
That said, the estimate uses a quantity of variables that would be very heavy on any
communication system being used to synchronize the cooperating UAVs.

There are models for several of the phenomena discussed (sec. 2.5) which support
operation simulations and many of the estimation algorithms. For thermals, there
are simple models based on a Gaussian curve [27, 9] and more detailed models de-
scribing Chimney Thermals [4] and Bubbles Thermals [3]. The studied atmospheric
phenomena models are derived mainly from bird flight observations, human pilot’s
observations and fluid dynamics theory. It is important that models are compared
to real airflow data to validate their accuracy. As described in section 2.5.2.9, in the
case of updrafts, there are studies presented by Lenschow and Stephens [36] and Allen
[4] with real updraft measurements about some of the external parameters governing
the thermal strength, size, and appearance. Other than those, we have not found
any experimental studies validating the flow field details described by the phenomena
models.

Most methods to harvest flow field energy gather the surplus energy as potential
energy, i.e., gaining height. An alternative could be the use of electric motors installed
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on motor gliders as generators with variable pitch propellers. Grenestedt and Spletzer
describe how an UAV equipped with a ram air turbine could generate electric power
for the control electronics and payload while soaring through the Jet-stream [37].

1.3 Technical Approach

1.3.1 Perpetual Flow Field Flight

The main goal of the thesis is to define how UAVs may stay aloft perpetually
or at least extend their endurance by harvesting energy from the atmospheric air
flow phenomena. We analyze the necessary conditions for perpetual flight. These
conditions depend on the flow field short and long-term parameters and the aircraft
performance parameters. We study several atmospheric air flow phenomena as their
spatial distribution is not even, and to execute a mission an UAV may have to use
different phenomena available over its path. For example, updrafts tend to be abun-
dant in some regions (mountains and plains) and rare in others (swamps). Surface
Wind Shear appears over all water or terrain surfaces, but is usable only over the
ocean, wide rivers or plains.

The current work develops better phenomena estimation methods for flight over
partially/locally observed flow fields. The estimation methods rely on the aircraft
sensor data. The inference methods implemented to fuse this data, take into account
the nonlinear nature of the phenomena, can handle non-Gaussian probability dis-
tributions, and are more suitable for multi-vehicle collaborative inference. We also
study the observability requirements and constraints for the different phenomena.
This allows us to define a minimum set of required sensor data and informative flight
paths.

Thermals have been studied by several authors, in terms of localization and ex-
ploitation. We extend their work with estimation methods that are capable of es-
timating the thermal 3D parameters, and which are more suitable for collaborative
localization. Further, we adapt some of the existing thermal models and present new
ones to better capture the thermal shape and dynamics.

Some authors presented methods to exploit wind shear. These methods usually
require some knowledge of the flow field. We present a localization method for wind
shear which, as the thermal localization methods, is more suitable for collaborative
estimation.

1.3.2 Standard UAVs

The current approach is applicable to standard UAVs. The energy is harvested
through flight path control, avoiding the need to integrate special components such
as solar panels. Further, the inference methods which feed the control system require
only measurement data available in standard autopilots, i.e., autopilots equipped
with an IMU, a Global Navigation Satellite System (GNSS) receiver, and an airspeed
probe.
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1.3.3 Control Tools

1.3.3.1 Atmospheric Spatial Sampling - Formation Flight

As stated before, we have not found any experimental studies which validated
the existing atmospheric phenomena models. UAVs may be used to measure several
environmental characteristics, including the air flow velocity. The air flow may be
computed by most UAVs’ navigation systems. This make the UAVs themselves an
useful tool for characterizing the space they move in.

To validate the air flow phenomena models in terms of shape, flow field, and
dynamics, we need to obtain a set of air flow samples distributed in space and time.
In particular, to verify the flow field, we need to collect spatially distributed samples
simultaneously. Multiple UAVs flying simultaneously may execute this task. However,
the atmospheric phenomena studied are sized on the order of tens to hundreds of
meters. As such, to obtain good spatial samples we need the UAVs to fly close
together. To maintain several aircraft flying closely, we envisioned that the best
choice would be to control them with a formation flight control system. This has
the advantages of facilitating collision avoidance and maintaining a well defined and
nearly constant spatial distribution of the samples.

1.3.3.2 Collision Avoidance

Before implementing the formation flight control with collision avoidance we stud-
ied the collision avoidance problem by itself. This is important not only for the for-
mation flight control but also to implement collaborative flight strategies safely. As
an example, if there is a team of UAVs tracking several atmospheric phenomena in
the same area, such as thermals, they need a Collision Avoidance System (CAS).

1.4 Original Contributions

The original contributions of this thesis are as follows.

1.4.1 Flight Perpetuity Requirements

Flight perpetuity with thermals Necessary condition for sustainable flight, relat-
ing the updraft average strength, the thermals’ appearance rate and the aircraft
aerodynamic parameters.

Flight perpetuity with wind shear Necessary condition for perpetual flight, re-
lating the gradient function with altitude and the aircraft aerodynamic param-
eters.

1.4.2 Flow Field Phenomena Localization

Phenomena models This work improves on several of the proposed models for
thermals. We included modeling features for the interaction of the phenomenon
with wind and the resulting 3D structure. Further, we present new models for
Bubble Thermals, Layer Wind Shear, and Ridge Wind Shear.
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Thermal phenomenon observability Observability study of the nonlinear ther-
mal models.

Column and Bubble Thermal locators Development, implementation and vali-
dation of two Particle Filter estimators which handle the nonlinear Column and
Bubble Thermal models.

Wind vector observability Observability study of the horizontal wind vector com-
ponents.

Surface Wind Shear estimators Development, implementation and validation of
a Particle Filter estimator which handle the nonlinear Surface Wind Shear mod-
els.

1.4.3 Control Tools

Close proximity collision avoidance system Hybrid Systems controller for heli-
copter collision avoidance in close proximity operation.

Formation flight with collision avoidance Sliding mode controller for safe for-
mation flight of fixed wing aircraft.

1.5 Scenario - Team Cooperation with Flow Field Supported Flight

We describe a potential UAV operational scenario, where a team of UAVs would
use methods developed in the thesis to take advantage of the flow field energy to
improve the operation efficiency and effectiveness.

In this scenario we define three different UAV types:

Mission UAV is the UAV carrying the necessary payload to accomplish the mission
goal. Preferably, it would have somewhat better soaring performance than av-
erage aircraft. It would harvest air energy when necessary or during the mission
fulfillment, if both activities were compatible.

Spotters are the UAVs designed for soaring flight, which continuously survey a re-
gion of interest for updrafts and wind shear, and maintain long flight endurance
by harvesting air energy.

Communication relays are the UAVs that soar on the spotted updrafts or wind
shear, establishing a communication network from the ground station(s) to the
Mission UAV.

The scenario is a search and surveillance mission. In this scenario the UAV team is
constituted by two Mission UAVs, three Spotters and one Communication relay UAV.
During the deployment and recovery legs, i.e., the paths to and from operation area,
the Mission UAVs and the Communication relay UAV fly in formation increasing
their individual efficiency. The Spotters fly ahead and around to localize on-way
hopping (high flow field energy) spots.

When one of these hopping spots is localized the UAV team converges to it to
gather energy. The UAVs remain at the hopping spot until the operator commands
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them to proceed with the mission or an energy threshold is reached. As the Spotters
soar more efficiently, some of them will reach the threshold sooner and will leave to
search for other hopping spots.

The Communication relay UAV leaves the formation when the team crosses a
mountain range, and starts relaying the communications. One of the Spotters re-
mains with it to help with the localization of Ridge Lift or thermals. Once they
localize one of these phenomena they gather energy in the form of altitude. When
the Spotter has enough energy it leaves to search for more phenomena so that the
Communication relay UAV may use them later. It only returns to one of the detected
phenomena when its altitude reaches a lower limit.

When the rest of the UAVs reach the mission target area, the Spotters maintain
the search for useful phenomena in and around the operational area. They head to
one of the localized phenomena only when they reach the lower energy limit. The
Mission UAVs start the search for the goal target. When their energy reaches a lower
threshold they head to the nearest localized phenomenon. They stay there until they
harvest enough energy to return to the mission. Each of the Mission UAVs may
switch between the goal search mode and the energy harvesting mode independently,
as they may have different energy levels and use different phenomena.

When the goal target is found, the team decides if there is a phenomenon near
enough to the target so that a Mission UAV may be harvesting energy while main-
taining the target under surveillance. If this is not possible one of the Mission UAVs
maintains the target under surveillance while the other harvests energy. They switch
whenever one of them reaches the lower or upper energy threshold, respectively.

1.6 Thesis Organization

The remainder of the thesis is organized in five chapters: Models (II), Perpetual
Flight Conditions (III), Flow Field Estimation (IV), Control (V), and finally the
Conclusions (VI).

The Models chapter introduces all models used throughout the thesis. We start
be defining the reference frames (2.2), the aircraft describing parameters (2.3), and
several aircraft dynamics models (2.4). The Environment Models section (2.5) is one
of the most important parts of this thesis. It describes several flow field phenomena
models, some already presented by other authors, others adapted from existing ones,
and some developed during the work in this thesis. These models describe wind shear
layers (2.4.9), updraft flows (2.5.2), including thermals, and gusts (2.5.3).

In the Perpetual Flight Conditions chapter we study how several aircraft and
environmental parameters relate, and how these relations affect the capability to
perform perpetual flight. In the beginning we introduce several definitions about the
aircraft energy (3.2) and the perpetual flight terminology (3.3). Then we describe the
necessary conditions to perform perpetual flight with thermals (3.4), wind shear (3.5)
and gusts (3.6).

The Flow Field Estimation chapter describes estimation methods to determine the
parameters of thermals and wind shear. The chapter is initiated with the description
of a method to study the observability of nonlinear systems (4.2). We show thermals
are observable and present a Particle Filter (PF) thermal estimator (4.3). Then we
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study the wind components observability and present a PF estimator for the Surface
Wind Shear parameters (4.4).

The Control chapter presents two control systems: a Collision Avoidance System
(CAS) for helicopters (5.2) and a formation flight controller with collision avoidance
for fixed wing aircraft (5.3). The CAS controller is defined in the framework of
hybrid systems and allows us to understand the problem of checking the collision
avoidance capabilities of a controller. The formation flight controller was created to
enable aircraft to fly safely in close proximity. This allows us to measure the flow
field in several points simultaneously, enabling an accurate characterization. In order
to fly safely in close proximity the airplane formation controller includes a collision
avoidance that took into account the lessons learned with the CAS controller for
helicopters.

To finish we present the conclusion of the thesis studies. As part of those conclu-
sions we also describe the problems that remain unsolved and propose some steps to
improve the knowledge of flow fields and the methods to exploit their energy.

10



CHAPTER II

Models

2.1 Introduction

This chapter describes the models used throughout the thesis. There are two main
sets of models: Unmanned Aerial Vehicle (UAV) models and flow field models. The
UAV models describe aircraft dynamics with varying detail (2.4). The environment
models define the flow fields in which the vehicles move and by which they are affected.
The described models are: the wind shear (2.4.9), which is a phenomenon that appear
in between the atmosphere layers; the updrafts (2.5.2), with more focus on thermals
which appear in the lower layer of the atmosphere and are characterized by an updraft
limited to a radius from 100 to 1000 meters; and the gusts (2.5.3), which are mainly
the result of turbulence. The nomenclature and frames lay down the basis for the
described models.

2.2 Frames

In this work we use the standard reference frames for aircraft. The aircraft body
frame has the xB axis pointing to the nose, the yB axis pointing to the right wing
tip, the zB axis pointing down, and the origin at the mass center of the aircraft. The
subscript B stands for Body frame. The ground reference frame, also assumed to
be an inertial frame, is centered at the ground origin, with the xG axis pointing to
North, the yG axis pointing to East, and the zG axis pointing to the center of the
Earth . The ground origin is a point on the Earth surface, e.g., an operation ground
station. The subscript G stands for ground frame.

The body frame origin is translated [x, y, z]G in the ground frame relative to the
latter’s origin. From now on we will drop the subscript G on when referring to a
position relative to the ground frame origin, which will be also referred to as the
UAV position.

The rotation between the frames is defined by the 3-2-1 Euler angles [φ, θ, ψ]
(fig. 2.1). ψ is the yaw angle, which sets the rotation about the zG axis. θ is the pitch
angle, which is the angle between the xB axis and the horizontal plane. φ is the roll
angle, also referred to as bank, which defines the rotation about the xB axis. The
rotation matrix which transforms a vector expressed in the inertial frame to a vector
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Figure 2.1: Euler rotation angles (illustration from [2])

in the body frame is

RGB =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 =

=

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


(2.1a)

xB = RGBxG. (2.1b)

2.3 Aircraft

Here we describe some of the most common parameters for aircraft.
All forces are assumed to act on the center of gravity CG. This is assumed to be
the same as the Center of Mass (CM). As such, the aircraft is represented as a mass
point with mass m and inertia characterized by the matrix:

I =

 Ix Ixy Ixz
Iyx Iy Iyz
Izx Izy Iz

 . (2.2)

Most aircraft are symmetric about the vertical-longitudinal plane XZ, yielding Ixy =
Iyx = Iyz = Izy = 0.

In addition to the Euler angles, there are two important angles: the angle-of-attack
α and the side-slip angle β (fig. 2.2). Both are important to set the aerodynamic
coefficients. The Angle-of-Attack (AOA) is the angle between the aircraft body XY
plane and its airspeed vector va, as defined in (2.3a) . The side-slip angle is the angle
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between va and the aircraft’s XZ plane.

α = tan−1
(w
u

)
(2.3a)

β = sin−1

(
v

Va

)
, (2.3b)

where the surge (u), sway (v), and heave (w) are the body frame components of the
airspeed vector (va), and Va is the airspeed norm.

Figure 2.2: Velocity vector diagram (illustration from [2])

The wing main geometric parameters are the span b, area S, mean chord c̄, aspect
ratio AR, taper ratio λ, and incidence angle αw. These also apply to the horizontal
and vertical stabilizers: bH , SH , c̄H , ARH , λH , αH , bV , SV , c̄V , ARV , and λV . All these
lifting surfaces are characterized by an aerodynamic center position, about which the
aerodynamic pitching moment is approximately constant relative to α. xW is the
distance from the wing aerodynamic center horizontal to the CM. The stabilizers are
also characterized by their stabilization arms lH and lV . These are the longitudinal
distances between the stabilizers’ aerodynamic center and the aircraft’s CM [2].

The main forces actuating on the aircraft are the aerodynamic lift, the aerody-
namic drag, the propulsion thrust, and the gravity force, represented in figure 2.3 and
defined as:

L = L (xB sinα− zB cosα) (2.4a)

D = −D (xB cosα + zB sinα) (2.4b)

T = TxB (2.4c)

mg = mgzG (2.4d)

va = Va (xB cosα− zB sinα) . (2.4e)

The equations for the aerodynamic forces are:

L = ρ
V 2
a

2
S · CL (2.5a)

D = ρ
V 2
a

2
S · CD, (2.5b)
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Figure 2.3: Aircraft forces diagram. In this illustration the pitch angle θ is represented by
ϑ.

where ρV
2
a

2
= Q is the dynamic pressure, ρ is the air density, S is the wing area, and

CL and CD are the lift and drag coefficients. CL may be considered linear for some
ranges of α, and approximated by:

CL ≈ CL0 + CLαα, (2.6)

where CL0 and CLα = dCL
dα

are characteristic parameters of the aircraft. CD is some-
times approximated by a quadratic function of α:

CD ≈ CD0 + kD/L · C2
L. (2.7)

where CD0 is the zero-lift drag coefficient and kD/L is a characteristic constant of the
aircraft. kD/L is usually defined for a wing as

kD/L =
1

πARε
. (2.8)

where AR is the wing aspect ratio and ε is the Oswald efficiency factor, which char-
acterizes the deviation of the real wing shape relative to the elliptical case. Another
definition for kD/L is that from [38],

kD/L =
1

4E2
maxCD0

, (2.9)

where Emax is an aerodynamic efficiency factor.

When the AOA is beyond the stall limits the aerodynamic coefficients converge
to those of the ”flat plate” model, where:

CL = 1.2 sin (2α) (2.10a)

CD = 2 sin |α| , (2.10b)

As such, the aerodynamic coefficients for the whole AOA range (fig. 2.4) may be
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Figure 2.4: Aerodynamic coefficients through the full range of the AOA.

approximated by:

CL =


CL0 + dCL

dα
α ⇐ α ≤ αstall(

CL0 + dCL
dα
α
)
λ+ 1.2 sin (2α) (1− λ) ⇐ αstall < α ≤ αplate

1.2 sin (2α) otherwise

(2.11a)

CD =


CD0 + kD/LC

2
L ⇐ α ≤ αstall(

CD0 + kD/LC
2
L

)
λ+ 2 sin |α| (1− λ) ⇐ αstall < α ≤ αplate

2 sin |α| otherwise

(2.11b)

with λ = 1 + 2

(
|α| − αstall
αplate − αstall

)3

− 3

(
|α| − αstall
αplate − αstall

)2

,

where αstall is the stall AOA and αplate is the angle at which the airfoil enters in the
”flat plate” flow regime.

Aircraft are controlled through deflections of the control surfaces or adjustments
on the propulsion thrust δp. The usual controls are the elevator deflection δe, the
ailerons deflection δa, the thrust change δp, and the rudder deflection δr. Other
possible surfaces are the flaps δf and canards δc.

2.4 UAV Dynamic Models

This section describes several aircraft dynamic models. The different models
present varying Degrees-of-Freedom (DOF) and detail levels, which means different
complexity, computation costs, and modeling accuracy. Simpler models often provide
clearer insight about the system behavior. Further, the computation cost reduction of
simpler models is an important advantage, when response delays and other dynamics
are irrelevant. More complex models provide a more accurate representation of the
real aircraft dynamics, which may be important to check system performance and
stability in the presence of more complex responses, in particular control delays.

In this work we use holonomic models to simulate helicopter UAVs. A helicopter
can force a movement in any direction. This control is not constrained either by the
direction of movement or by the aircraft yaw angle (ψ).
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Airplanes are non-holonomic vehicles. This means that the vehicle state depends
on the path executed until the current moment. Further, the feasible path depends
on the aircraft’s current state, as forces cannot be imposed in every direction. The
two main control forces of the aircraft are the lift and the thrust. Thrust magnitude is
controlled directly through the motor power. Lift magnitude is controlled indirectly
through the aircraft AOA (α) and the aircraft airspeed. We use several non-holonomic
models to simulate airplane dynamics. The 2D motion models assume the vehicle is
constrained to move on the horizontal plane (XY ). All the other models simulate the
vehicle behavior in a 3D space.

2.4.1 Holonomic Models

The holonomic model for helicopters is constrained to the horizontal plane (XY ).
The first model is a perfect holonomic vehicle, modeled by the simplest possible
dynamics, a single integrator: {

ẋi = vi

vi = vcmdi
, (2.12)

where xi =

[
xi
yi

]
and vcmdi =

[
ui
vi

]
. In this model the available control is in the

form of velocity which is not realistic, but enables some kinematic analysis.
A more realistic holonomic model is the double integrator:{

ẋi = vi

v̇i = acmdi
, (2.13)

where xi =

[
xi
yi

]
, vi =

[
ui
vi

]
, and acmdi = ka (vcmdi − vi). In this model the

control input affects the accelerations. This model is more realistic, because vehicles
can generate forces, and by Newton’s second law, accelerations.

2.4.2 2D 3DOF Kinematic Model

The 2D 3DOF motion model simulates an airplane, in which the autopilot forces
coordinated turns (zero side-slip) at constant altitude. The planar motion of the
airplane is simulated by a simple 3 DOF kinematic model. The model described next
is an extension of a unicycle model [39].

ẋ = Va,cmd · cos (ψ) +Wx = Vg · cos (χ) (2.14a)

ẏ = Va,cmd · sin (ψ) +Wy = Vg · sin (χ) (2.14b)

ψ̇ = ω =
g · tan (φcmd)

Vg
, (2.14c)

where φ and Va are the controlled variables. Va and Vg are the air-relative and
ground-relative velocities, also designated as airspeed and ground speed, respectively.
χ is the course angle, i.e., the direction the aircraft is actually following. Wx and Wy

are the wind velocity components on x and y axis.
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2.4.3 2D 4DOF Kinematic Model

The 2D 4DOF motion model is yet a further extension of the unicycle model.
In this model the autopilot also forces coordinated turns at constant altitude, but
the vehicle responds to the controls with some delay. The airspeed (Va) and roll (φ)
are regarded as the autopilot pseudo-controls, with first-order responses. Further, we
assume the dynamics and effects of the AOA are negligible. The planar motion of
the airplane is simulated by a simple 4 DOF kinematic model:

ẋ = Va · cos (ψ) +Wx = Vg · cos (χ) (2.15a)

ẏ = Va · sin (ψ) +Wy = Vg · sin (χ) (2.15b)

ψ̇ = ω =
g · tan (φ)

Vg
(2.15c)

V̇a =
Va − Va,cmd

TV
(2.15d)

φ̇ =
φ− φcmd

Tφ
, (2.15e)

where Va and Vg are the air-relative and ground-relative velocities, also designated
as airspeed and ground speed, respectively. χ is the course angle, i.e., the direction
the aircraft is actually following. Wx and Wy are the wind velocity components on
x and y axis. φ and ψ are the aircraft roll and yaw angles. Va,cmd and φcmd are the
controller outputs. TV and Tφ are the controls’ response times.

This model represents the fixed wing aircraft horizontal motion more accurately
than the 2D 3DOF model (sec. 2.4.2). The difference is noticeable only if the short
term dynamics of roll and speed are important, as is the case of close proximity
operation, e.g., formation flight and collision avoidance. Yet the mathematical and
computational complexity are lower than some of the following models, providing a
good basis for controller synthesis and state propagation in real time.

2.4.4 3D 4DOF Kinematic Model

The 3D 4DOF motion model is another extension of the unicycle model by the
addition of altitude dynamics. In this model the autopilot still forces coordinated
turns, but the altitude may change. The airspeed (Va), roll (φ), and vertical rate (ḣ)
are regarded as the autopilot pseudo-controls, effecting instantly:

ẋ = Va,cmd · cos (ψ) +Wx = Vg · cos (χ) (2.16a)

ẏ = Va,cmd · sin (ψ) +Wy = Vg · sin (χ) (2.16b)

ψ̇ = ω =
g · tan (φcmd)

Vg
(2.16c)

ḣ = ḣcmd, (2.16d)

where Va,cmd, φcmd, and ḣcmd are the controlled variables, and, as before, Va and
Vg are the airspeed and ground speed, χ is the course angle, Wx and Wy are the
wind velocity components, and φ and ψ are the aircraft roll and yaw angles. Notice
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that this is same model as the 2D 3DOF model (sec. 2.4.2), except for the altitude
variation.

2.4.5 3D 5DOF Kinematic Model

The 3D 5DOF motion model is a merge of the 2D 4DOF and the 3D 4DOF
models, with a delay on the vertical rate dynamics. This model still assumes that the
autopilot forces coordinated turns. The airspeed (Va,cmd), the vertical rate (ḣcmd), and
roll (φcmd) are regarded as the autopilot pseudo-controls, with first-order responses:

ẋ = Va · cos (ψ) +Wx = Vg · cos (χ) (2.17a)

ẏ = Va · sin (ψ) +Wy = Vg · sin (χ) (2.17b)

ψ̇ = ω =
g · tan (φ)

Vg
(2.17c)

V̇a =
Va − Va,cmd

TV
(2.17d)

ḧ =
ḣ− ḣcmd

Tḣ
(2.17e)

φ̇ =
φ− φcmd

Tφ
, (2.17f)

where TV , Tḣ, and Tφ are the control response times.

2.4.6 3D Stabilized Motion Model

The 3D stabilized motion model simulates an airplane complete 6 DOF model.
It is an important model for the aircraft energy dynamics analysis, developed in
section 3.2. In this model, as in the previous ones, it’s assumed that there is an
autopilot controlling the low level dynamics. The velocity equation is:

~V =

 ẋ
ẏ
ż

 =

 ẋa
ẏa
ża

+ w = Va

 cosψ cos γa
sinψ cos γa

sin γa

+

 Wx

Wy

Wz

 (2.18)

where ~V = [ẋ, ẏ, ż]T is the velocity vector, [ẋa, ẏa, ża]
T is the velocity vector relative

to the air (flow field), and [Wx,Wy,Wz]
T is the wind velocity vector. All these vectors

are projected on the ground reference frame. Va is a scalar representing the total air
relative speed. The air-climb angle (γa - fig. 2.5) is defined as,

γa = arctan
żV −Wz√

(ẋV −Wx)
2 + (ẏV −Wy)

2
. (2.19)
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Figure 2.5: Wind reference frame (illustration from [3])

If we differentiate equation 2.18, we obtain, ẍ
ÿ
z̈

 = V̇a

 cosψ cos γa
sinψ cos γa
− sin γa

+ Vaψ̇

 − sinψ cos γa
cosψ cos γa

0

−
− Vaγ̇a

 cosψ sin γa
sinψ sin γa

cos γa

+

 Ẇx

Ẇy

Ẇz

 . (2.20)

If we assume a static flow field the flow velocity derivatives may be simplified to: Ẇx

Ẇy

Ẇz

 = JW

 ẋ
ẏ
ż

 , (2.21)

where JW is the Jacobian of the wind speeds:

JW =


∂Wx

∂x
∂Wx

∂y
∂Wx

∂z
∂Wy

∂x

∂Wy

∂y

∂Wy

∂z
∂Wz

∂x
∂Wz

∂y
∂Wz

∂z

 . (2.22)

The angle-of-attack is important for this model and is defined by:

α = θ − γa. (2.23)

As the autopilot is assumed to control the low level dynamics, including the reg-
ulation of the side-slip, we assume that β ≈ 0o.

Let us now take the simpler case where the UAV is flying with the wings leveled
and constrained to the x-z plane, with ψ = 0, φ = 0 and ψ̇ = 0. Let us also consider
that α is small enough to approximate T · [cos θ, sin θ]ᵀ by T · [cos γa, sin γa]

ᵀ. The
equations of motion governing the UAV are (fig. 2.5):

mẍ = −L sin γa + (T −D) cos γa (2.24a)

mz̈ = −L cos γa − (T −D) sin γa +mg, (2.24b)

where L and D are the aerodynamic lift and drag, T is the propulsion thrust, m is
the aircraft mass, and g is the acceleration of gravity. If we differentiate ẋV and żV
from (2.18), we obtain,[

ẍ
z̈

]
= V̇a

[
cos γa
− sin γa

]
− Va

[
sin γa
cos γa

]
γ̇a +

[
Ẇx

Ẇz

]
. (2.25)
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Combining (2.25) with the equations of motion (2.24):(
V̇a −

T −D
m

)[
cos γa
− sin γa

]
+

[
Ẇx

Ẇz

]
=

(
Va −

L

m

)[
sin γa
cos γa

]
γ̇a +

[
0
g

]
(2.26)

Solving for dVa
dt

yields,

V̇a =
T −D
m

− g sin γa −
[

cos γa
− sin γa

]ᵀ [
Ẇx

Ẇz

]
. (2.27)

This expression will enable us to evaluate the kinetic energy gain.
Extending this derivation for turning maneuvers, we may still consider the UAV x̂B
axis instantaneously coincident with the x-z plane, i.e., without loss of generality,
ψ = 0. The equations of motion are:

mẍ = −L sin γa + (T −D) cos γa (2.28a)

mÿ = L cos γa sinφ+ (T −D) sin γa sinφ (2.28b)

mz̈ = −L cos γa cosφ− (T −D) sin γa cosφ+mg, (2.28c)

Combining (2.20) with (2.28) yields a similar result to (2.27) with the addition of

the ψ̇ equation:

V̇a =
T −D
m

cosφ− g sin γa −
[

cos γa
− sin γa

]ᵀ [
Ẇx

Ẇz

]
+
Lγ̇a
m

tan γa (cosφ− 1)

(2.29a)

ψ̇ =
L

mVa
sinφ+

T −D
mVa

tan γa sinφ− 1

Va cos γa
Ẇy. (2.29b)

2.4.7 Full 3D Dynamics Model

The full 3D dynamics model is a 6 DOF model. It represents the complete dy-
namics of a rigid body airplane. In the context of this work it is used to run higher
fidelity simulations and to support the development of some of the estimation algo-
rithms, such as the aircraft parameter identification and the flow field observer. It
includes full rotation dynamics and accounts for wind gradient induced rotations.

In this section, we extend the models of [40] and [41] in order to incorporate the
effects of wind. Most models used for aircraft stability and control disregard the
flow field, assuming it is null for the equations derivation. As this work is about the
interaction between the aircraft and the flow field, we take into account the aircraft
velocity relative to the airflow va and the airflow velocity wG to define the aircraft
dynamics. As such, the linear velocity and acceleration equations are:

ẋ = va + w (2.30a)

ẍ =
d

dt
va +

d

dt
w (2.30b)
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where
d

dt
vBa = v̇Ba + ωB × vBa (2.31)

where vBa = [u, v, w]ᵀ.
We will now describe the equations governing the forces and moments, followed by

their effect on linear and angular accelerations. Next we present the equations describ-
ing the position and attitude evolution, using the ground frame velocities

[
ẋG, ẏG, żG

]ᵀ
or the wind-relative speed and angles [Va, α, β]ᵀ. To finish we present the aerodynamic
coefficients relations and decomposition, which are commonly referred to as stability
derivatives.

If we group the forces and accelerations (2.30), we obtain the aircraft linear dy-
namics equation: X + T

Y
Z

+mRGB

 0
0
g

 = m

 u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu

+ ẇB

 , (2.32)

where X, Y , and Z are the aerodynamic force vectors in the body axis x̂B, ŷB, and
ẑB, defined by their coefficients through:

X = CX ·Q · S (2.33a)

Y = CY ·Q · S (2.33b)

Z = CZ ·Q · S, (2.33c)

mg is the gravity force, T is the propulsion thrust force, and ẇB is the vector of flow
field velocity derivatives transformed to the body frame:

ẇB =

 ẆB
x

ẆB
y

ẆB
z

 = RGBẇG, (2.34)

and wG is the vector of flow field velocity derivatives on the ground reference frame.
If we rearrange (2.32) we obtain the force equations:

u̇ = rv − qw +
QS

m
CX − g sin θ +

T

m
− ẆB

x

v̇ = pw − ru+
QS

m
CY + g cos θ sinφ− ẆB

y (2.35a)

ẇ = qu− pv +
QS

m
CZ + g cos θ cosφ− ẆB

z .

where CX and CZ are:

CX = CL sinα− CD cosα (2.36a)

CZ = −CL cosα− CD sinα, (2.36b)
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with CL and CD defined in detail further below, in (2.43). An alternative form of
the force equations (2.35) are the wind-axes force equations:

V̇a = −QS
m
CDW +

T

m
cosα cos β −

 cosα cos β
sin β

sinα cos β

ᵀ  ẆB
x

ẆB
y

ẆB
z

+ ...

...+ g (cosφ cos θ sinα cos β + sinφ cos θ sin β − sin θ cosα cos β) (2.37a)

α̇ = − QS

mVa cos β
CL + q − tan β (p cosα + r sinα)− T sinα

mVa cos β
+ ...

...+
g

Va cos β
(cosφ cos θ cosα + sin θ sinα) +

ẆB
x sinα− ẆB

z cosα

Va cos β
(2.37b)

β̇ = − QS

mVa
CYW + p sinα− r cosα +

g

Va
sin β sinφ cos θ + ...

...+
sin β

Va

(
g cosα sin θ − g sinα cosφ cos θ +

T cosα

m

)
+

1

Va

 cosα sin β
cos β

sinα sin β

ᵀ  ẆB
x

ẆB
y

ẆB
z


(2.37c)

where CDW and CYW are defined as:

CDW = CD cos β − CY sin β (2.38a)

CYW = CY cos β + CD sin β, (2.38b)

with CY defined in detail further below, in (2.43).

For the rotation dynamics we have similar equations, the moment equations:

ṗ− Ixz
Ix
ṙ =

QSb

Ix
Cl −

Iz − Iy
Ix

qr +
Ixz
Ix
qp (2.39a)

q̇ =
QSc̄

Iy
Cm −

Ix − Iz
Iy

pr − Ixz
Iy

(
p2 − r2

)
+
Ip
Iy

Ωpr (2.39b)

ṙ − Ixz
Iz
ṗ =

QSb

Iz
Cn −

Iy − Ix
Iz

pq − Ixz
Iz
qr − Ip

Iz
Ωpq, (2.39c)

with Cl, Cm, and Cn defined in detail further below, in (2.43).

To obtain the position evolution we just need to integrate the linear velocities:

 ẋ
ẏ
ż

G = RᵀGB

 u
v
w

+

 Wx

Wy

Wz

G (2.40)

which can also be derived in terms of the wind-relative speed and angles, denominated
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the navigation equations:

ẋG = Va [cosα cos β cosψ cos θ + sin β (cosψ sin θ sinφ− sinψ cosφ) + ...

...+ sinα cos β (cosψ sin θ cosφ+ sinψ sinφ)] + ẆG
x (2.41a)

ẏG = Va [cosα cos β sinψ cos θ + sin β (sinψ sin θ sinφ+ cosψ cosφ) + ...

...+ sinα cos β (sinψ sin θ sinφ− cosψ sinφ)] + ẆG
y (2.41b)

ḣ = Va [cosα cos β sin θ − sin β cos θ sinφ− sinα cos β cos θ cosφ]− ẆG
z (2.41c)

Finally, the attitude can be obtained by integrating the kinematic equations:

φ̇ = p+ tan θ (q sinφ+ r cosφ) (2.42a)

θ̇ = q cosφ− r sinφ (2.42b)

ψ̇ =
q sinφ+ r cosφ

cos θ
(2.42c)

The aerodynamic force and moment coefficients (CL, CD, CY , Cl, Cm, and Cn)
are represented by a series of derivatives, called stability derivatives:

CL = CL0 + CLV
∆V

V0

+ CLα∆α + CLα̇
α̇c̄

2V0

+ CLq
qc̄

2V0

+ CLδe∆δe (2.43a)

CD = CD0 + CDV
∆V

V0

+ CDα∆α + kD/L · C2
L + CDq

qc̄

2V0

+ ...

...+ CDδe∆δe + CDδa∆δa + CDδr∆δr (2.43b)

CY = CY0 + CYβ∆β + CYp
pb

2V0

+ CYr
rb

2V0

+ CYδa∆δa + CYδr∆δr (2.43c)

Cl = Cl0 + Clβ∆β + Clp
pb

2V0

+ Clr
rb

2V0

+ Clδa∆δa + Clδr∆δr + ClWy
ẆB
y (2.43d)

Cm = Cm0 + CmV
∆V

V0

+ Cmα∆α + Cmα̇
α̇c̄

2V0

+ Cmq
qc̄

2V0

+ Cmδe∆δe + ...

...+ CmWx
ẆB
x + CmWz

ẆB
z (2.43e)

Cn = Cn0 + Cnβ∆β + Cnp
pb

2V0

+ Cnr
rb

2V0

+ Cnδa∆δa + Cnδr∆δr + CnWy
ẆB
y (2.43f)

where kD/L is defined by (2.8) or (2.9), ClW (.)
, ClW (.)

, CnW (.)
are the coefficients of
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rotational response to the airflow variation, and:

CaV = V0
∂Ca
∂V

∣∣∣∣
0

(2.44a)

Caα =
∂Ca
∂α

∣∣∣∣
0

(2.44b)

Caα̇ =
2V0

c̄

∂Ca
∂α̇

∣∣∣∣
0

(2.44c)

Caq =
2V0

c̄

∂Ca
∂q

∣∣∣∣
0

(2.44d)

Caδe =
∂Ca
∂δe

∣∣∣∣
0

(2.44e)

with a = L,D,m,

Caβ =
∂Ca
∂β

∣∣∣∣
0

(2.45a)

Cap =
2V0

b

∂Ca
∂p

∣∣∣∣
0

(2.45b)

Car =
2V0

b

∂Ca
∂r

∣∣∣∣
0

(2.45c)

Caδa =
∂Ca
∂δa

∣∣∣∣
0

(2.45d)

Caδr =
∂Ca
∂δr

∣∣∣∣
0

(2.45e)

with a = Y, l, n.

2.4.7.1 Simulation Equations

The full 3D dynamics simulations for this thesis are based on two sets of param-
eters. The simplest is based directly on the stability derivatives (2.44) and (2.45).
If the stability derivatives for an aircraft are not known, we use geometry based
equations and parameters. These are referenced by Nelson [2].

2.4.8 Propeller/Motor Propulsion Model

This model describes the dynamics of a propulsion system combining a motor with
a fixed pitch propeller. This is the most common propulsion system in small UAVs,
as it is well suited for low speed and low fuel consumption.

In general aviation it is more common to use variable pitch propellers. These
provide better efficiency for a wide range of flight speeds. Fixed pitch propellers
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provide the maximum efficiency only at a specific flight speed, usually selected to be
the aircraft cruise speed. Their advantage is in their integration and maintenance
simplicity.

The propeller blades work like small wings (fig. 2.6). The propeller thrust results
from the aerodynamic lift and the aerodynamic drag results in the resistant torque.

a

Va

T

LD

xB

r.w

B

qP

qF

Figure 2.6: Propeller forces and torque diagram. T is the propeller thrust, B is the resistant
torque, L and D are the aerodynamic lift and drag forces, ϑP is the propeller advance angle,
ϑF = tan−1 (Va/rω) is the flow advance angle, αP = ϑP−ϑF is the propeller angle-of-attack,
r is the a radius over the propeller blade, ω is the propeller angular rate, Va is the aircraft
air speed, and xB is the body frame longitudinal axis.

Each section of the propeller blades contributes to the overall thrust and resistant
torque. These may be computed by integrating the lift and drag contributions along
the blades:

T = NB

RP∫
0

CTρ
V 2
a + ω2r2

2
c (r) dr (2.46a)

BP = NB

RP∫
0

rCBρ
V 2
a + ω2r2

2
c (r) dr, (2.46b)

where NB is the number of propeller blades, RP is the propeller blade radius, c (r)
is the blade section chord, and with

CT = CL cosϑF − CD sinϑF (2.47a)

CB = CD cosϑF + CL sinϑF (2.47b)

α = ϑP − tan−1 Va
ωr

(2.47c)

cosϑF =
ωr

V 2
a + ω2r2

(2.47d)

sinϑF =
Va

V 2
a + ω2r2

, (2.47e)
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yielding:

T =
ρNB

2

RP∫
0

(CLωr − CDVa)
√
V 2
a + ω2r2c (r) dr (2.48a)

BP =
ρNB

2

RP∫
0

r (CDωr + CLVa)
√
V 2
a + ω2r2c (r) dr. (2.48b)

Propellers usually present an advance angle (ϑP ) variable with the blade section
radius. It increases for smaller radius to compensate the decreasing section speed
(ωr) and maintain an near constant angle-of-attack. Fixed pitch propellers are usually
classified by Pitch and diameter: D × Pitch. Pitch is defined as the distance the
propeller would advance in a complete rotation if it was slicing through a ”solid”
material. As such, the propeller advance angle can approximated by:

ϑP = tan−1 Pitch

2πr
(2.49)

We first approximated (2.48) by a summation of the forces from several section
partitions. We assumed a propeller with elliptical section chords and no flow inter-
ference between propeller blades.

T =
ρNB

2

N∑
i=1

RP

N

(
CLω

i− 0.5

N
RP − CDVa

)√
V 2
a +

(
ω
i− 0.5

N
RP

)2

c (r)

(2.50a)

BP =
ρNB

2

N∑
i=1

i− 0.5

N2
R2
P

(
CDω

i− 0.5

N
RP + CLVa

)√
V 2
a +

(
ω
i− 0.5

N
RP

)2

c (r)

(2.50b)

c (r) = cmax

√
1−

(
i− 0.5

N

)2

, (2.50c)

where cmax is the maximum chord, near the propeller hub. The aerodynamic coef-
ficients throughout the blade sections were defined as in (2.11). As figures 2.7 and
2.8 illustrate, this approximation method is consistent even for a small number of
partitions. The results remain almost the same for any number of partitions above
8.

Another approximation to (2.48) is to assume that there is a representative sec-
tion of the blades at an effective radius REf , that may be different for the thrust
approximation and the torque approximation. The section aerodynamic forces may
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(a) Propeller thrust (b) Propeller torque

Figure 2.7: Propeller thrust and torque curves with the airspeed, for a set of angular rates.
The illustrated angular rates range from 0 to 10000 RPM. The solid lines represent the
thrust and torque predictions of (2.50) with 100 section partitions, which should represent
(2.48) quite accurately. The dashed lines use the same approximation but with only 4
partitions.

(a) Propeller thrust (b) Propeller torque

Figure 2.8: Propeller thrust and torque curves with the angular rate (in RPM), for a set of
airspeeds. The illustrated airspeeds range from 0 to 100 m/s. The solid lines represent the
thrust and torque predictions of (2.50) with 100 section partitions, which should represent
(2.48) quite accurately. The dashed lines use the same approximation but with only 4
partitions.
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(a) Propeller thrust (b) Propeller torque

Figure 2.9: Propeller thrust and torque curves with the airspeed, for a set of angular rates.
The illustrated angular rates range from 0 to 10000 RPM. The approximated model (2.51)
is illustrated in dashed lines.

be approximated by the lift and drag equations (2.6) and (2.7). This results in:

T = ρkP (CLωREf − CDVa) (2.51a)

BP = ρkP (CDωREf + CLVa)REf (2.51b)

CL = CL0 +
dCL
dα

α (2.51c)

CD = CD0 + kD/LC
2
L (2.51d)

α = tan−1 Pitch

2πREf

− tan−1 Va
ωREf

, (2.51e)

In our work the effective radius to approximate the thrust was very similar to the
one used for the torque approximation. For the thrust approximation the error was
mostly constrained to less than 1% for an effective radius of 65% of the propeller
radius. The torque approximation error was mostly smaller than 1% for an effective
radius of 64% of the propeller radius.

We will now define the motorization model. To generate thrust the propeller needs
a driving motor to overcome the resistant torque. Small UAVs usually have Internal
Combustion (IC) engines, also called reciprocating engines, or electric motors. The
power and torque curves for both motorizations are quite different. IC engines show a
near-constant torque for most of the useful RPM regimes (fig. 2.10). Electric motors
provide a linearly decreasing torque with the RPM, generating the maximum torque
when still (fig. 2.11).

An IC engine’s torque and power may be approximated by:

BM ≈ Bmax − kω
(

ω

ωBMax

− 1

)2

(2.52a)

P = Bω. (2.52b)

where Bmax is the maximum torque, kω defines the deviation from the constant
torque curve and ωBMax is the RPM value at which the torque is maximum.
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(a) IC engine power (b) IC engine torque

Figure 2.10: IC engine power and torque curves, with useful RPM range, i.e., from engine
stall to the maximum achievable RPM in level flight.

(a) Electric motor power (b) Electric motor torque

Figure 2.11: Electric motor power and torque curves, with useful RPM range, i.e., from
null RPM to the maximum achievable RPM in level flight.
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(a) Torque time evolution with a pro-
peller/motor pair

(b) Angular rate time evolution with a pro-
peller/motor pair

(c) Thrust time evolution with a pro-
peller/motor pair

(d) Thrust generated by a propeller/motor pair
over varying airspeed at different throttle settings.

Figure 2.12: Dynamics of a propeller/motor pair.

An electric motor’s torque and power curves are better approximated by:

BM ≈ Bmax − kωω (2.53a)

P ≈ Bmaxω − kωω2. (2.53b)

where kω is the proportion with which the torque decreases with increasing RPM.
The element connecting both the propeller and the motor is the angular rate

dynamics, which are governed by the excess torque, i.e., the difference between the
generated and the resistant torque, damped by the propeller inertia IP :

ω̇ =
BM −BP

IP
. (2.54)

Figure 2.12 illustrates the dynamics of a motor/propeller pair. As expected, the
angular rate grows (fig. 2.12b) until the torque excess is null (fig. 2.12a). During the
transitory state the angular rate presents a first-order response (fig. 2.12b), while the
thrust presents a second-order response (fig. 2.12c).

2.4.9 Simplified Propulsion Model

This propulsion model is a simplification of the propeller/motor propulsion sys-
tem. The necessity for this simpler model comes from the propulsion parameter
identification algorithm. From figure 2.12 it is clear that for some velocity ranges the
thrust can be approximated by a linear function without introducing large errors:

T = KT δT −KV
∆Va
Va,ref

δT , (2.55)

30



where δT is the throttle setting, Va,ref is the airspeed reference value, usually the cruise
speed, ∆Va = Va − Va,ref is a velocity variation, and KT and KV are the propulsion
model parameters.

2.5 Environment Models

An important issue for aircraft operation is the energy consumption. Aircraft
can use updrafts, gusts and wind gradients to diminish fuel consumption. Small
Unmanned Air Vehicles (UAVs) in particular, can take great benefits from these
phenomena, due to their low flight airspeeds and good maneuverability.

In this work the flow field is the spatial characterization of the air velocity vector.

Definition II.1. A flow field is defined at a given position x = [x, y, z]ᵀ by the air
flow velocity vector w and gradient matrix JW :

w :=

 Wx

Wy

Wz

 (2.56a)

JW :=


∂Wx

∂x
∂Wx

∂y
∂Wx

∂z
∂Wy

∂x

∂Wy

∂y

∂Wy

∂z
∂Wz

∂x
∂Wz

∂y
∂Wz

∂z

 . (2.56b)

Unless stated otherwise, the flow field variables will be written in the ground
reference frame, meaning that Wx is the flow velocity component towards the North,
Wy is the flow velocity component towards the East, Wz is the downward flow velocity
component.

We will refer to the flow field horizontal velocity vector as the wind vector.

Definition II.2. The wind vector is the flow field horizontal velocity vector at a
given position:

wH :=

[
Wx

Wy

]
x

(2.57)

Further, we will refer to the flow field vertical velocity as updraft or downdraft,
for a negative or positive vertical air flow, respectively.

Definition II.3. An updraft is the flow field vertical velocity at a given position:

wUpd := −wz = −Wz|x (2.58)

2.5.1 Wind Shear

Wind shear is the atmospheric phenomenon which occurs on thin layers separating
two regions where the predominant air flow is different. This difference can be either
in speed, in direction, or in both speed and direction. The air layer between these
regions is usually under 100 meters thick, resulting in a persistent gradient in the flow
field. This gradient may be exploited by UAVs [3, 9, 42] as it is by birds [8, 24, 25].
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Generally, the wind shear phenomena can be classified by directionality as hor-
izontal or vertical shear. Horizontal wind shear is a variation of the air flow with
altitude. It exists near a surface (ground or water) [8, 24, 25], over inversion layers,
on the limits of the jet stream [37] and over geographic obstacles [42]. Vertical wind
shear is a variation of the air flow with the horizontal position [x, y]. It appears across
weather fronts, near the coast, and in the vicinity of mountain ranges.

We will focus on horizontal wind shear, as surface, inversion, and jet stream shear
are quite steady phenomena [43, 8, 7]. In horizontal wind shear we distinguish Surface,
Layer and Ridge Wind Shear, as the flow gradient is different for each phenomenon.
The first two phenomena take place over large areas, which makes them difficult to
characterize as a whole. For that reason our approach is to simplify the phenomena
to uniaxial (z) wind vector variations. The Ridge Wind Shear depends greatly on the
distance to the ridge crest, and so its model is defined over the plane perpendicular
to the ridge.

For the sake of simplicity, and because in this section we regard only the horizontal
flow, we will refer to the wind vector as w and to its total speed as W .

2.5.1.1 Surface Wind Shear

Surface Wind Shear is a special case of horizontal shear where instead of two air
mass regions we have one air mass region and a surface. The surface is usually still or
moving at very low speeds relatively to the general air mass, as is the case of water
surfaces. Surface Wind Shear enables albatross to fly thousands of kilometers over
the ocean almost without flapping their wings [24, 25]. Surface Wind Shear is also
known in the aviation community mainly by its effects on aircraft landing and take-
off operations. The reduction of flow speed towards the ground causes the aircraft
airspeed to decrease in the same amount, if no compensation is applied. This effect
can induce stall, leading to possibly catastrophic results. The wind shear layer starts
at the ground level and may be modeled by [8, 44]:

Figure 2.13: Surface Wind Shear profile

W = Whref

ln (h/h0)

ln (href/h0)
, (2.59)
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where W is the total wind speed and Whref , href , and h0 are reference values. Whref is
the reference wind speed at a reference altitude href away from the surface. h0 defines
the shape of the flow gradient, reflecting the surface properties, like irregularity,
roughness and drag. In the Military Specification MIL-F-8785C [44]:

href = 6m

h0 =

{
0.15 for Category C flight phases

2.0 otherwise

, (2.60)

if 1m ≤ h ≤ 300m. Category C flight phases are the terminal flight phases, which
include takeoff, approach, and landing, as defined in reference [44].

2.5.1.2 Layer Wind Shear

Layer Wind Shear is the most general wind shear type. It can represent both
a horizontal or a vertical wind shear, although in this work we will focus on the
horizontal shear. Two of the most common atmospheric phenomena associated with
Layer Wind Shear are the Inversion Layer and the Jet Stream. An Inversion Layer
is characterized by, as the name indicates, an inversion of the temperature gradient
with altitude. Often the Convective or Mixed-Layer, the lowest in the atmosphere, is
separated from the upper Troposphere layers by an Inversion Layer. If the Inversion
Layer is thin enough and the flow of the separated air masses is different enough, the
generated gradient may be strong enough to provide aircraft the energy necessary to
maintain flight. The Jet Stream phenomenon is characterized by a region of high-
speed winds. The regions between the Jet Stream core and slower wind currents
exhibit a wind gradient [7]. Glider pilots observe Layer Wind Shear sometimes above
3 knots per 1000 feet [43].

Sachs and da Costa [7] defined a model for the Layer Wind Shear observed below
Jet Stream regions. The model presents a constant wind gradient, with the wind
speed converging to the Jet Stream speed:

(a) Wind speed profile (b) Wind speed gradient

Figure 2.14: Sach-daCosta Layer Wind Shear model.
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W (h) = WJetStream +
∆WLWS

∆h
(h− hJetStream) , (2.61)

where WJetStream is the Jet Stream speed, hJetStream is the lower boundary of the Jet
Stream core, and ∆WLWS

∆h
is the wind shear vertical gradient. This model does not

represent the wind gradient over the transition regions, i.e., the regions where the
wind speed stabilizes (fig. 2.17).

We now present a simple model for the Layer Wind Shear with gradient transition
regions. We approximate the wind gradient with a Gaussian. This model shows the
expected convergence to the boundary wind speeds both over the lower and top layer
limits. The model wind speed profile is illustrated in figure 2.15a and defined by:

w (h) = w (hmin) +
∆wLWS

2

[
1 + erf

(
4
h− hLWS

∆hLWS

)]
, h ∈ [hmin, hmax] , (2.62)

where hmin and hmax are the wind shear layer limit altitudes, w (h) is the wind vector
due to the wind shear phenomenon at an altitude h, and:

∆wLWS = w (hmax)−w (hmin) (2.63a)

hLWS =
hmax + hmin

2
(2.63b)

∆hLWS = hmax − hmin. (2.63c)

(a) Wind speed profile (b) Wind speed gradient

Figure 2.15: Gaussian Layer Wind Shear model.

The wind gradient is illustrated in figure 2.15b and modeled by:

δwLWS

δh

∣∣∣∣
h

=
4 ‖∆wLWS‖
∆hLWS

√
π
e
−
(

4
h−hLWS
∆hLWS

)2

. (2.64)

An alternative model for the Layer Wind Shear is an approximation by a quadratic
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function:

w (h) =



w (hmin) h ≤ hmin

w (hmin) + 2∆wLWS

(
h−hmin
∆hLWS

)2

h ∈
(
hmin, hLWS

]
w (hmax)− 2∆wLWS

(
hmax−h
∆hLWS

)2

h ∈
(
hLWS, hmin

)
w (hmax) h ≥ hmax.

(2.65a)

δwLWS

δh

∣∣∣∣
h

=


0 h ≤ hmin

4∆wLWS
h−hmin
∆h2

LWS
h ∈

(
hmin, hLWS

]
4∆wLWS

hmax−h
∆h2

LWS
h ∈

(
hLWS, hmin

)
0 h ≥ hmax.

(2.65b)

As the Gaussian model, the quadratic model converges to the boundary wind
speeds at the limits (fig. 2.16a). Its advantages over the Gaussian model are the
easier computation and smooth transitions at the layer limits.

(a) Wind speed profile (b) Wind speed gradient

Figure 2.16: Quadratic Layer Wind Shear model.

Both the Gaussian and the quadratic models for the Layer Wind Shear include
regions representing a gradient transition in the bottom and the top of the wind shear,
and an almost constant gradient region at the center of the wind shear. Sach and
da Costa [7] report the existence of large regions with a constant vertical gradient.
We now extend the quadratic Layer Wind Shear model to include a linear part.
This linear section of the wind shear represents a variable sized region with constant
vertical gradient. Further, this model allows a definition of gradient transition regions
with different sizes (fig. 2.17).
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(a) Wind speed profile (b) Wind speed gradient

Figure 2.17: Linear and quadratic Layer Wind Shear model.

w (h) =



w (hmin) h ≤ hmin

w (hmin) +
(
δw
δh

)
max

(h−hmin)2

2∆hLWS,Bot
h ∈ (hmin, hLWS,Bot)

w (hLWS,Bot) +
(
δw
δh

)
max

(h− hLWS,Bot) h ∈ [hLWS,Bot, hLWS,Top]

w (hmax)−
(
δw
δh

)
max

(hmax−h)2

2∆hLWS,Top
h ∈ (hLWS,Top, hmin)

w (hmax) h ≥ hmax.

(2.66a)

δwLWS

δh

∣∣∣∣
h

=



0 h ≤ hmin(
δw
δh

)
max

h−hmin
∆hLWS,Bot

h ∈ (hmin, hLWS,Bot)(
δw
δh

)
max

h ∈ [hLWS,Bot, hLWS,Top](
δw
δh

)
max

hmax−h
∆hLWS,Top

h ∈ (hLWS,Top, hmin)

0 h ≥ hmax,

(2.66b)

where
(
δw
δh

)
max

is the maximum vertical gradient of the wind shear, hLWS,Bot is the
maximum altitude of the bottom gradient transition region, hLWS,Top is the minimum
altitude of the top gradient transition region, ∆hLWS,Bot is the thickness of the bottom
gradient transition region, ∆hLWS,Top is the thickness of the top gradient transition
region, and w (hLWS,Bot) = w (hmin) +

(
δw
δh

)
max

∆hLWS,Bot/2.

2.5.1.3 Ridge Wind Shear

The Ridge Wind Shear is a special case of the Layer Wind Shear, which appears
on the leeward side of a mountain. It is generated when the free moving air finds
a large obstacle (the ridge) and, while flowing over it, is not capable of accelerating
instantaneously the air mass behind the ridge. This wind shear type is the most used
by radio controlled gliders, as it is strong enough, maintains a constant position and
the trajectory required to use it is safe enough to avoid ground collisions [42]. From
Parle’s wind velocity measurements [42] it is clear that the vertical gradient appears

36



over the leeward side of the ridge. An hypothetical model which approximately fits
Parle’s data is defined as:

wRWS = w∞e
− λx
W∞ +

(
1− e−

λx
W∞

)
· wLWS (h)| hmin = hRidge

hmax = hRidge + k1x
w (hmin) = k2w∞
w (hmax) = w∞

, (2.67)

where wLWS (h) is the Layer Wind Shear gradient model. In this model the gradient
strength varies as a first order response with the spatial coefficient λ. The gradient
thickness is modeled as proportional (k1) to the distance from the ridge crest. The
gradient bottom wind speed is proportional (k2) to the undisturbed wind speed (w∞).
Note that this model has 3 degrees-of-freedom: λ, k1, and k2. k1 should be similar
to the terrain slope on the windward side of the ridge. λ should depend on the ridge
abruptness. A sharp ridge should yield a larger λ. k2 probably depends mainly on
the terrain slope on the ridge leeward side.

(a) Wind speed profile (b) Wind speed gradient

Figure 2.18: Variation of wind speed over a Ridge Wind Shear with altitude and distance
to the ridge crest.

Figure 2.18 illustrates the wind speed variation within the Ridge Wind Shear.
Notice the decrement of the minimum wind speed with the distance to the ridge
crest, modeled by the first order response. It is also clear that the wind gradient is
stronger closer to the ridge, indicating that this is the best area to harvest energy, as
experienced by the radio controlled glider pilots.

2.5.1.4 Generic Wind Shear

Zhao [6] proposed a wind shear model that is able to represent a linear gradient,
as well as an exponential-like gradient or a logarithmic-like gradient. This model
defines a quadratic wind speed profile with an average slope (∆W

∆h
) over an altitude

range ([0, hmax]):

W =
∆W

∆h

[
Υ · h+

1−Υ

∆h
· h2

]
, (2.68)
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where ∆h = hmax − hmin and Υ defines the profile shape. Υ is required to remain
within [0, 2], to keep the wind profile variation within [0,∆W ]. Υ = 1 results in a
constant vertical gradient. 0 ≤ Υ < 1 yields an exponential-like wind profile. And
1 < Υ ≤ 2 yields a logarithmic-like wind profile.

This model may be extended to a 2D wind vector profile with an average variation
of ∆w

∆h
over an altitude range ([hmin, hmax]):

w = w (hmin) +
∆w

∆h

[
Υ (h− hmin) +

1−Υ

∆h
(h− hmin)2

]
, (2.69)

(a) Wind speed profile (b) Wind speed gradient

Figure 2.19: Zhao Generic Wind Shear quadratic model.

This model may approximate a Surface Wind Shear with 1 < Υ ≤ 2. It may also
approximate the linear region of a Layer Wind Shear with Υ = 1 and the transition
regions with 0 ≤ Υ < 1.

2.5.1.5 Wind Shear Models Comparison

We now summarize the main similarities and differences among the presented wind
shear models. The models diverge in the vertical gradient variation with altitude, the
bounding altitudes and the definition of a horizontal gradient.

Table 2.1: Wind Shear Models Comparison

Model WS type1? Vert. grad.2? Low. alt. bound3? Spatial def.4?

Surface WS [44] SWS5? Logarithmic Surface 1D

Sachs-daCosta LWS9? LWS6? Linear Air flow layer 1D

Bencatel G. LWS10? LWS6? Gaussian Air flow layer 1D

Bencatel LQ. LWS11? LWS6? Lin. & Quad. Air flow layer 1D

Bencatel RWS12? RWS7? Quadratic Ridge 2D

Zhao WS13? S/LWS8? Quadratic Any14? 1D

1? Type of wind shear represented.
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2? Function type of the vertical gradient.

3? Lower altitude bound of the wind shear phenomenon.

4? Wind shear spatial definition: Only over the vertical axis (1D) or with a defined vertical and horizontal

gradient (2D).

5? Surface Wind Shear.

6? Layer Wind Shear.

7? Ridge Wind Shear.

8? Surface Wind Shear or parts of a Layer Wind Shear.

9? Sachs-daCosta Linear Layer Wind Shear.

10? Bencatel Gaussian Layer Wind Shear.

11? Bencatel Linear and Quadratic Layer Wind Shear

12? Bencatel Ridge Wind Shear

13? Zhao Wind Shear

14? Surface or air flow layer

2.5.2 Updraft

Updrafts are upward moving air masses. These air masses can be small upward
gusts, created by turbulence and ranging from centimeters to a few meters. Updrafts
can also be the result of huge rising air mass bodies, ranging from 50 meters to
kilometers. These originate from terrain topography or from thermal flows. The first
type, called orographic updrafts, are generated when the wind hits a terrain slope,
creating strong updrafts above the terrain. The thermal flows are generated by hot
spots on the ground. These create a thermal gradient, heating the surrounding air.
The density of the heating air decreases, forcing an upward movement. Thermal
updrafts don’t depend as much on topography or on wind as orographic updrafts.

Thermals are part of the convection flows that develop in the mixing-layer of the at-
mosphere, the lowest atmospheric layer, also called convective layer. A thermal model
may be characterized by three types of parameters: the atmosphere parameters, the
internal parameters, and the terrain distribution. The atmosphere parameters char-
acterize the regional environment characteristics. These concern the variables that
are slow varying and very similar in adjacent flight areas. The internal parameters
are individual to each thermal. These parameters define the spatial effects of each
specific thermal, and may be distinct for different adjacent thermals. The terrain dis-
tribution concerns the sparsity among thermals, which affects the rate of appearance
of thermals in the aircraft flight path.

There are several types of thermals. Chimney Thermals, also designated as Col-
umn Thermals, are continuous columns of rising air that extend from the ground
surface right up to the mixing-layer maximum altitude. Bubble Thermals are closed
shells [45] of rising air. They are formed near the ground when the temperature dif-
ferences are large enough to create buoyancy, like in a balloon. These shells then rise
and depart from the ground. Cone [45] describes them as rising vortex rings, where
there is a circulatory flow generated by strong core updraft. This core updraft is fed
by the buoyant air. When this air leaves the bubble core, it starts to cool down,
becoming less buoyant. The cooled air then moves downward on the outside of the
vortex ring, completing the cycle.
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The main model features of a thermal are its position, the updraft field, represent-
ing how the vertical airspeed varies with the position relative to the thermal center,
and its radius, defining where the updraft speed is null or almost null. The model
we will present next differ on three main modeling features: the effect of altitude
variation, the representation of the thermal skirt downdraft, and the interdependence
among the updraft field and thermal radius.

2.5.2.1 Thermals

The most used thermal model is based on a scaled 2D Gaussian, for its simplicity
[29, 11]. This is a simple model where the center of the thermal is the center of the
Gaussian [27] (fig. 2.20):

w (r) = Wz.max · e−(r/RT )2

(2.70)

Figure 2.20: Thermal updraft Gaussian model

The Gaussian is scaled so that its maximum matches the maximum updraft (core
updraft). Furthermore, the Gaussian variance is adjusted so that an almost null
velocity is found at the thermal outer radius. Therefore, this model does not include
the exterior downdraft and the thermal radius altitude dependence. However, the
model is good enough to represent the thermal core at close altitudes.

Gedeon’s Thermal model [9] is an extension of the Gaussian model. He adjusted
the updraft function so that it presented a negative speed outside the thermal radius
and a null speed at the thermal radius (fig. 2.21):

w (r) = Wz.max · e−(r/RT )2

·
[
1− (r/RT )2] (2.71)

This model only represents the thermal in the horizontal dimensions, because it
does not present any dependency of the thermal diameter with the altitude. As such,
it is a more realistic model of a thermal at close altitudes than the Gaussian model.

There are some references which argue that the bell-shape changes according to
the size and strength of the thermal [46, 47, 48]. Observations lead to the hypothesis
that there are two more prevalent thermal shape types [46, 47, 48], one with a pro-
nounced maximum (type ”b”) and another with several maxima (type ”a”), almost
as a plateau (fig. 2.22). According to the same source, type ”b” thermals appear
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Figure 2.21: Thermal updraft Gedeon model

more frequently in lower energy environments. Type ”a” is observed more frequently
when the temperature gradient is larger, and seems to be the result of a merge be-
tween several type ”b” thermals. Furthermore, Lenschow and Stephens [36] state that
the magnitude of vertical velocity variation within a thermal may be larger than the
magnitude of the overall mean updraft velocity.

Figure 2.22: Updraft velocity magnitude

Lawrance and Sukkarieh [3] present a toroidal model as an hypothesis for a Bubble
Thermal flow structure. It represents the vortex ring proposed by Cone [45] in all
three dimensions. Further, the model represents the flow field in every direction
instead of only the vertical flow.

Figure 2.23: Bubble Thermal

Allen [4] presents a detailed updraft model developed at NASA Dryden Flight
Research Center with real flow measurements. This model represents a continuous
Chimney Thermal in all three dimensions. It relates the atmospheric parameters with
their effect on the vertical flow at different altitudes. There is no prediction on the
horizontal flow velocity, but the predicted vertical flow respects the mass conservation
along any horizontal plane.

Thermals will lean or drift with the prevalent direction of the wind [43]. The
organization in chimney or bubbles is affected by the existing wind shear. The fraction
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between the thermal strength and the wind shear plays an important role on the
organization definition [43].

There are different thesii about which is the most prevalent type of thermals,
Chimney (fig. 2.24) or Bubbles (fig. 2.23). [43] states that the Chimney Thermal
type is the most prevalent kind of thermals, indicating that Bubbles appear when
the heating is slow or intermittent. This may happen due to the radiated surface
properties or due to moving cloud shadows. On the other side, Cone [45] defends that
Bubble Thermals are the most frequent. This thesis is sustained by predictions of the
vortex theory and experiments that attested to the formation of rising vortex rings.
Furthermore, continuous Chimney Thermals would require a continuous air supply
near the ground, which would be sensed as a continuous ground wind. However,
the appearance of thermals is not usually associated with sustained wind. A more
common phenomenon is sudden wind gusts, that can be associated with the formation
of a Bubble Thermal. Groups of soaring birds take off in what seems like a reaction
to these sudden gusts. Another observation that sustains the prevalence of Bubble
Thermals is the fact that birds usually cluster in a short altitude range when soaring.
Birds below the main cluster frequently have to flap their wings to reach the soaring
group.

2.5.2.2 Chimney Thermal - Allen Model

Figure 2.24: Chimney Thermal representation with mixing-layer thickness (zi) (illustration
from [4])

Allen [4] developed a thermal model which represents the updraft strength in
all three dimensions. His model defines the radius and the updraft field at each
altitude as a function of two atmospheric parameters: the mixing-layer thickness
and the convective velocity scale. The mixing-layer thickness (zi) is the mixing-layer
maximum altitude (fig. 2.24), where the convection flows appear. As such, zi is
also the maximum altitude for the thermal activity. This depends on the ground
temperature TS and on the predawn air temperature profile [4] (fig. 2.25):

zi = f (TS, P redawn air temperature profile) . (2.72)

The mixing-layer thickness (zi) varies slowly with the location, presenting a low
spatial variation frequency. The thickness is usually 0 at dawn, rises to the day
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Table 2.2: Yearly convective lift statistical properties (from reference [4])

Description w?, m/s µzi − σzi , m µzi , m µzi + σzi , m

µw? − 2σw? 0.46 25.6 53.6 97.4

µw? − σw? 1.27 150 210 1007

µw? 2.56 767 1401 2319

µw? + σw? 4.08 2134 2819 3638

µw? + 2σw? 5.02 2913 3647 4495

maximum at late afternoon [46] and returns to 0 during the night. Therefore, the
regional variation time constant should be high, on the order of hours.

The convective velocity scale (w?) is a reference which indicates the predicted
velocity magnitudes in and around a thermal. Again reference [4] shows that this
velocity is a function of the mixing-layer thickness (zi), the surface virtual potential
temperature flux (QOV ), the ground temperature TS, and the static pressure at ground
level (p) [4]. Further, the virtual potential temperature flux is a function of the net
radiation at the surface (QS), the air relative humidity (rh), the saturated vapor
pressure (es), and the ground temperature TS.

w? seems to have a spatial and temporal dependency similar to zi. The only extra
factor is the wind speed, which seems to disrupt any thermal if blowing above 12.87
m/s (in the Mojave Desert [4]), but also favors organized thermal convection if above
5 m/s [43].

Allen [4] describes the yearly and monthly statistics for w? and zi in Desert Rock,
Nevada. Table 2.2 show the yearly statistics. The inference process described in
chapter IV will take these table statistics as a prior belief.

The internal parameters are: the outer radius, and the vertical flow field, with:

wT ∼ w∗ (2.73a)

r2 ∼ zi (2.73b)

The outer radius varies from thermal to thermal, and inside the thermal with the
height above the ground. Lenschow and Stephens [36] state that the thermal radius

Figure 2.25: Example of zi calculation (illustration from [4])
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Figure 2.26: Updraft outer radius (r2) function of zi (illustration from [4])

Figure 2.27: Updraft velocity trapezoidal model (illustration from [4])

average at a certain height is a direct function of the mixing-layer thickness (zi), by
(fig. 2.26):

r2 = max

[
10, 0.2513

(
z

zi

) 1
3
(

1− 0.25
z

zi

)
· zi

]
(2.74)

Note that multiplier 0.2513 is different from the one used to by Allen [4], as this
author corrected the calculations later on.

The equation governing the vertical velocity is [4]:

w = wpeak

 1

1 +
∣∣∣k1

r
r2

+ k3

∣∣∣k2
+ k4

r

r2

+ wD

(1− we
wpeak

)
+ we (2.75)

The constants k1, k2, k3, and k4 are defined in table 2.3.
The variables wpeak, wD, we, and r1 are defined next. We first define the average

updraft speed function (fig. 2.29):

w = w?
(
z

zi

) 1
3
(

1− 1.1
z

zi

)
(2.76)

Now, the radius for which the updraft speed is almost constant (r1) comes from

r1

r2

=

{
0.0011r2 + 0.14 r2 < 600

0.8 otherwise
(2.77)
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Figure 2.28: Updraft velocity bell-shape model (illustration from [4])

Table 2.3: Shape constants for bell-shaped vertical velocity distribution [4]

r1
r2

k1 k2 k3 k4

0.14 1.5352 2.5826 -0.0113 0.0008

0.25 1.5265 3.6054 -0.0176 0.0005

0.36 1.4866 4.8354 -0.0320 0.0001

0.47 1.2042 7.7904 0.0848 0.0001

0.58 0.8816 13.972 0.3404 0.0001

0.69 0.7067 23.994 0.5689 0.0002

0.80 0.6189 42.797 0.7157 0.0001

Figure 2.29: Average updraft velocity at different altitudes (illustration from [4])
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The maximum updraft speed (wpeak) is defined as

wpeak = w
3r2

2 (r2 − r1)

r3
2 − r3

1

(2.78)

The skirt downdraft speed (wD) is computed by

wD =


w5π
12

(
z
zi
− 0.5

)
sin
(
πr
r2

) r ∈ (r1, 2r2)

∨
z
zi
∈ (0.5, 0.9)

0 otherwise

(2.79)

To maintain a null regional net vertical velocity, we have to define the natural sink
speed (we) as:

we = −w Nπr2
2

Areg −Nπr2
2

·

{[
1− 2.5

(
z
zi
− 0.5

)]
z
zi
∈ (0.5, 0.9)

1 otherwise
, (2.80)

where Areg is the affected region.

2.5.2.3 Chimney Thermal - Interaction with the Wind

There are three main effects the wind may have in Chimney Thermals. Wind
seams to be fully disruptive for the thermals if blowing faster than 13 m/s. If it is
slower, it may lean the thermal, move it, or both. The thermal drift depends both on
the wind speed and on the terrain radiating properties. The drift velocity generally
follows the prevailing wind, but not always [4]. If the terrain radiating properties
are very uneven there is a tendency for the thermal to stay anchored to the most
radiating points, usually called hot-spots, such as rocks, building roofs, asphalt, etc.
When the thermal source, the lowest section of the thermal, is anchored to a hot
spot or moves slower than the wind speed, the thermal has the tendency to lean to
the leeward direction (fig. 2.30). During a thermal soaring flight thermal leaning is
sometimes wrongly perceived as a drift by the whole thermal.

As such, the movement dynamics of a Chimney Thermal may be captured by:

ẋT = uT = VT cosψT (2.81a)

ẏT = vT = VT sinψT (2.81b)

VT ∼ N (µVT , σVT ) , µVT ∈ [0, ‖w‖] (2.81c)

ψT ∼ N (µψT , σψT ) , (2.81d)

where xT and yT are the Chimney Thermal source position coordinates, uT and vT
are the Chimney Thermal source drift velocities, µVT and σVT are the thermal drift
speed mean and standard deviation and µψT and σψT are the thermal drift direction
probability parameters.
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Figure 2.30: Leaning Chimney Thermals. Effect of wind on the shape of the thermal flow
field.

The Chimney Thermal leaning may be characterized by the change in the updraft
core center for different altitudes:

xt (H) ≈ xT +

H∫
0

W x (h)− uT
W T,z (h)

dh (2.82a)

yt (h) ≈ yT +

H∫
0

W y (h)− vT
W T,z (h)

dh, (2.82b)

where xt (H) represents the updraft core center coordinates at an altitude above the
ground H, W x (h) and W y (h) are the mean wind velocities away from the thermal
at each altitude h, and W T,z (h) = w is the updraft mean speed at each altitude h.
From this equation it is clear that the thermal will not lean if the source is moving
at the same velocity as the wind. As stated before, and because Chimney Thermal
movements depend on the terrain, the thermal will present some leaning associated
with some drift.

2.5.2.4 Bubble Thermal - Lawrance Model

Lawrance [3] developed a Bubble Thermal model. Unlike the Chimney Ther-
mal model developed by Allen, this model describes an unsteady upward moving

47



phenomenon. In this model the hotter air mass rises in a bubble like structure, dis-
connected from the ground or the inversion layer. The model described in [3] defines
a toroidal 3D flow field at a given instant (Fig. 2.31). The flow field model created

(a) 2D flow field (b) 3D flow field

Figure 2.31: Flow field in a Lawrance Bubble Thermal. The vortex is noticeable around
the thermal radius (100m) at the mean altitude (400m).

by Lawrance is defined by:

wx = −wz
z

(dH −R) · k2

x

dH
(2.83a)

wy = −wz
z

(dH −R) · k2

y

dH
(2.83b)

wz =


wcore x = 0
cos(1+ πz

k·R)
2

R·wcore
πdH

sin
(
πdH
R

)
dH ∈ (0, 2R]

0 otherwise

, (2.83c)

(2.83d)

where dH =
√
x2 + y2, wcore is the bubble core updraft speed, R is the distance which

limits the updraft area, i.e., the area around the bubble center where the flow moves
upwards, x, y, and z are positions relative to the bubble center, and k is the bubble

eccentricity factor, i.e., k =
∆zflow

2R
, where ∆zflow is the bubble height.

2.5.2.5 Bubble Thermal - Conservative Flow Model

The Lawrance Bubble Thermal model is not mass conservative, does not include
any effects of the interaction with the prevailing wind, and does not present the pos-
sibility to represent an updraft core plateau described by some authors. Figure 2.32
illustrates some of the models we developed to try and overcome some of these issues.
The bubble flow is only conservative if the whole bubble region can be described by
streamlines, i.e., the lines ”followed” by air particles in the absence of disturbances.
The first two models are adaptations of the toroid streamline model on which the
Lawrance model is also based. The first model (fig. 2.32a) presents sharp flow di-
rection changes which are not realistic at all, as they would require infinite flow
acceleration at those points. The second model (fig. 2.32b) presents more realistic
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(a) 1st streamline hypothesis. Presents sharp
flow direction changes.

(b) 2nd streamline hypothesis. Lacks any flow
near the top and the bottom of the bubble.

(c) 3rd streamline hypothesis. Presents no flow
near the bubble axis, when away from the cen-
tral plane.

(d) Final streamline hypothesis.

Figure 2.32: Sequence of streamline models for a conservative flow Bubble Thermal model.

streamlines. The two main handicaps are the complex computation of some of the
parameters, when taking a relative position as an input, and the lack of flow near the
top and the bottom of the bubble. In the next streamline models we drop the con-
straint for all the streamlines to be centered at the toroid center, i.e., at the updraft
outer radius on the mean bubble altitude plane. Instead, we define the streamlines’
center to tend to the toroid center as they approach it. The third model (fig. 2.32c)
presents nice properties in terms of parameter computation, when taking a relative
position as an input, but presents no flow near the bubble axis, when away from the
central plane. The final model (fig. 2.32d) presents a flow tending to vertical near the
bubble axis, a vortex around the updraft outer radius, and is conservative in terms of
mass exchange. The computation of the streamline parameters requires an iterative
process when the input to define those parameters is a relative position to the bubble
center. This will be shown below in equation (2.84).

The final model presents a flow tending to vertical near the bubble axis, as we
define that the streamlines center should tend to infinite as those approach the bubble
axis. We also define that the streamlines direction should be perpendicular to a circle
at a distance RT from the bubble center (fig. 2.33), where RT is the Bubble Thermal
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Figure 2.33: Streamline parameters definition.

updraft outer radius. The streamline parameters are then defined as:

rmax =
R2
T

rmin
(2.84a)

rctr =
rmax + rmin

2
=

RT

cos ξ
(2.84b)

Rstream =
rmax − rmin

2
= RT tan ξ (2.84c)

dH = rmax −∆z tan ζ (2.84d)

∆z = (dH − rmin) tan ζ (2.84e)

R2
T

rmin
+ rmin =

∆z2 + d2
H +R2

T

dH
, (2.84f)

where rmin and rmax are the minimum and maximum distances of the streamline to
the Bubble Thermal axis, rctr is the streamline center distance to the Bubble Thermal
axis, Rstream is the streamline radius, dH =

√
∆x2 + ∆y2 is the horizontal distance

of a point to the Bubble Thermal axis, ∆x, ∆y, and ∆z are the coordinates of the
relative position to the Bubble Thermal center, ξ is the ”exit” angle of the flow at
a distance RT from the bubble center, and ζ is the angle of a point relative to the
streamline center (fig. 2.34). The parameter iteration need arises from rmin being

Figure 2.34: Random point definition on a streamline.

defined by the implicit function (2.84f).
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We may also define the streamlines such that the flow is perpendicular to an
ellipse, which crosses the bubble horizontal plane at the updraft outer radius RT .
The streamline parameter may then be computed by solving:

rmax =
R2
T

(
1− e2 sin2 ξ

)
rmin

. (2.85)

To define the flow speed over each streamline, such that it presents a mass con-
servative flow, the volume rate has to be constant through each streamline:

V̇ = cst = vrπdA⇔ v1r1 = v2r2, (2.86)

where V̇ is the volume rate, v is the flow total speed, and dA is an infinitesimal area
on the r − z plane centered at radius r(.). This yields a flow speed over a streamline
defined by:

W2 = W1
dH,2
dH,1

, (2.87)

where W(.) are total flow speeds at points 1 and 2 with horizontal distances dH,(.)
from the bubble central axis. Combining (2.87) with the streamline orientation at
each point from (2.84), the flow velocity vector at each point may be defined as:

w = Wz,rmin,∆z=0
rmin
dH

 sin ζ∆x
dh

sin ζ∆y
dh

cos ζ

 . (2.88)

To solve (2.88) and define completely the Bubble Thermal flow field one just needs
to define an updraft field at the bubble mean altitude (Wz,rmin,∆z=0). We considered
three different hypotheses. The first is based on the flow field defined by Lawrance
[3], constrained to dH ∈ [0, RT ] and ∆z = 0:

Wz,dH ,∆z=0 =

wcore dH = 0

wcore
π

(
RT
dH

)δFlat
sin

(
π
(
RT
dH

)δFlat)
dH ∈ (0, RT ]

, (2.89)

where wcore is a positive value defining the maximum updraft speed and δFlat regulates
the flatness of the updraft core and the abruptness of the updraft reduction towards
to outer radius, as shown on figure 2.35.

The second model is based on the Gedeon updraft field [9], also constrained to
dH ∈ [0, RT ] and ∆z = 0:

Wz,dH ,∆z=0 = wcoree
−(dH/RT )2δF lat ·

[
1− (dH/RT )2δFlat

]
, (2.90)

where wcore and δFlat are the same as in the first model.
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(a) Vertical flow field with δFlat = 0.5 (b) Vertical flow field with δFlat = 0.75

(c) Vertical flow field with δFlat = 1 (d) Vertical flow field with δFlat = 0.4

Figure 2.35: Vertical flow field based on Lawrance updraft field, with an updraft outer
radius of 100m.

(a) Lawrance vertical flow field model (b) Gedeon vertical flow field model

(c) Plateau Updraft vertical flow field model
with RT = 100

(d) Plateau Updraft vertical flow field model
with RT = 400

Figure 2.36: Comparison between vertical flow field models. Lawrance and Gedeon updraft
models yield very similar results. The Plateau Updraft model presents an extra modeling
degree-of-freedom.
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The last model, Plateau updraft, is an extension of the second, with a core updraft
plateau:

Wz,dH ,∆z=0 =

{
wcore dH ≤ RPlat

wcoree
−δR · [1− δR] dH ∈ (RPlat, RT ]

(2.91a)

with δR =

(
dH −RPlat

RT −RPlat

)2δFlat

(2.91b)

where RPlat is the core updraft plateau radius. This may be defined as in the Chimney
model by equation (2.77):

RPlat

RT

=

{
0.0011RT + 0.14 RT < 600

0.8 otherwise
(2.92)

Figure 2.36 illustrates all three models showing that there is almost no difference
between the Lawrance and the Gedeon models. It also shows that the plateau size
control on the last model gives the user an extra degree-of-freedom, possibly allowing
a better match between the model and real observations.

(a) 2D flow field (b) 3D flow field

Figure 2.37: Flow field in a Bubble Thermal conservative model. The vortex is noticeable
around the thermal updraft outer radius (100m) at the mean altitude (400m).

The resulting Bubble Thermal flow field is depicted in figure 2.37. It is very clear
that the flow closest to the bubble axis is almost vertical, while near the updraft outer
radius it turns into a vortex. The continuous nature of this model is also apparent.
Figure 2.38 illustrates the main components of the Bubble Thermal, including the
core updraft and the surrounding vortex, as proposed by Cone [45].

As Bubble Thermals are usually completely detached from the ground they are
more affected by the prevailing wind than the Chimney Thermals. The Bubble Ther-
mals center velocity is defined as:

ẋT = uT = VT cosψT (2.93a)

ẏT = vT = VT sinψT (2.93b)

żT = wT (2.93c)

VT ∼ N (µVT , σVT ) , µVT = ‖w‖ (2.93d)

ψT ∼ N (µψT , σψT ) , (2.93e)
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(a) 2D diagram (b) 3D diagram

Figure 2.38: Bubble Thermal conservative model structure diagram. The vortex is illus-
trated by red arrows around the updraft outer radius. The blue arrows illustrate the updraft
flow which birds and gliders usually take advantage of.

where xT , yT , and zT are the Bubble Thermal center coordinates, uT , vT , and wT
are the Bubble Thermal center drift velocities, µVT and σVT are the thermal drift
speed mean and standard deviation and µψT and σψT are the thermal drift direction
probability parameters.

(a) 2D flow field (b) 3D flow field

Figure 2.39: Flow field in a leaning Bubble Thermal. It is clear that the flow crosses the
bubble center at a certain angle, which depends both on the bubble and the wind velocity.
In the 3D picture the strongest flow is depicted in red.

If the Bubble Thermal moves with a difference velocity from the prevailing wing
its structure leans. The combined flow field from a Bubble Thermal and the prevailing
wind is defined by:

w = Wz,rmin,∆z=0
rmin
d′H

 sin ζ ′∆x
′

d′H
+ lx cos ζ ′

sin ζ ′∆y
′

d′H
+ ly cos ζ ′

cos ζ ′

+

 W x

W y

0

 . (2.94)
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where

lx =
uT −W x

wT − wcore
(2.95a)

lx =
vT −W y

wT − wcore
, (2.95b)

and the streamlines are defined by:

∆x′ = ∆x− lx∆z (2.96a)

∆y′ = ∆y − ly∆z (2.96b)

d′H =
√

∆x′2 + ∆y′2 (2.96c)

d′H = rmax −∆z tan ζ ′ (2.96d)

∆z = (d′H − rmin) tan ζ ′ (2.96e)

R2
T

rmin
+ rmin =

∆z2 + d′H
2 +R2

T

d′H
, (2.96f)

2.5.2.6 Thermal Models Comparison

We now summarize the main similarities and differences among the presented
thermal models. The models described above have some important similarities - the
updraft speed is maximized at the thermal core and updraft field presents a bell-
like shape. The main differences among the models are the manner in which the
flow field changes with altitude, the main parameters governing the bell-like shape of
the updraft speed, the dependencies on the thermal outer radius, the thermal core
movement, and how the thermal flow field leans with the wind. Table 2.4 summarizes
these differences among models, which are explained in more detail next.

Table 2.4: Thermal models comparison

Model Dim Downdraft Flat core Mix. layer1? Type

Gaussian [27] 2D No No Independent No type

Gedeon [9] 2D Constrained3? No Independent No type

Allen [4] 3D Extended4? Yes Dependent Chimney

Bencatel Mov. Chimn.6? 3D Extended4? Yes Dependent Chimney

Lawrance [3] 3D Constrained3? No Independent Bubble

Bencatel Cons. Bubb.7? 3D Extended4? Choice5? Independent Bubble

Model Flow Field2? Conservative Leaning Movement

Gaussian [27] Vertical No No No

Gedeon [9] Vertical No No No

Allen [4] Vertical Yes No No

Bencatel Mov. Chimn.6? Vertical Yes Yes Yes

Lawrance [3] 3D No No No

Bencatel Cons. Bubb.7? 3D Yes Yes Yes
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1? Mixing layer parameters - Thermal flow field dependence on the Mixing layer parameters.

2? Flow Field representation: Only vertical component or full 3D flow field representation.

3? Downdraft constrained to the thermal rim.

4? Downdraft extended to the thermal surrounding area, beyond the thermal rim.

5? The user can choose if there is a flat plateau and/or the flatness/abruptness of the whole bell-shape

updraft.

6? Bencatel Moving Chimney

7? Bencatel Conservative Bubble

Altitude handling - Both Chimney Thermal and Bubble Thermal models incorpo-
rate variation with altitude. By contrast, the Gaussian and the Gedeon models
are invariant with altitude, as shown in figure 2.40. The Allen model simulates
a Chimney type thermal, where the thermal extends from the ground to the top
of the mixing-layer (fig. 2.40a). In figure 2.40a it is possible to see the updraft
speed and outer radius dependence over the altitude range. In the Bubble Ther-
mal models the updraft region is limited to the mixing-layer, but may not reach
either the ground or the top of the mixing layer (fig. 2.40b). In the Allen Chim-
ney Thermal model, the updraft speed depends on the altitude. By contrast,
the Lawrance Bubble Thermal model defines a fixed outer radius. The conser-
vative Bubble Thermal models present a variable outer updraft radius, but this
variation is distinctly different from the one defined by the Allen model.

Bell-like shape - All models present a Bell-like shape with some differences. Then
Allen Chimney Thermal model (fig. 2.41a) presents an updraft core with skirt
downdrafts. In volumetric terms, the updraft and downdraft cancel each other,
presenting a conservative airmass flow. Further, it shows a flat core for large di-
ameter thermals. This shape is based on real observations as described by Irving
[49]. The maximum updraft is not constant, decreasing as the outer diameter
increases. The Lawrance Bubble Thermal model (fig. 2.41b) also presents a
central updraft and exterior downdrafts. Unlike the downdrafts from the other
models, in this model the negative vertical flow is constrained to a distance twice
the outer radius. Moreover, the flow is only conservative at the bubble mean
altitude, no flat core is modeled, and the maximum updraft only varies with alti-
tude and not with the outer diameter. The conservative Bubble Thermal models
present a mass conservative flow, with the downdraft extending to infinite, but
decreasing with the distance to the bubble center. The core updraft also changes
with altitude, although it covers different radii for both models. The conserva-
tive Bubble Thermal model with a Lawrance updraft field (fig. 2.41c) shows no
flat core, while the one with the Plateau updraft (fig. 2.41d) defines a near flat
core. The Gaussian-shape and Gedeon models are simplifications which present
the core updraft. The only difference between these two models is the presence
of skirt downdraft on the Gedeon model. These two models are not flow con-
servative and their maximum updraft is always constant, with respect to the
altitude and outer diameter.
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(a) Allen Chimney Thermal model - The
outer diameter varies with the altitude as
well as with the updraft speed.

(b) Lawrence Bubble Thermal model - The
updraft speed varies with the altitude, but
not with the outer diameter.

(c) Conservative Bubble Thermal model,
with Lawrance updraft field - The outer di-
ameter varies with the altitude as well as
with the updraft speed.

(d) Conservative Bubble Thermal model,
with Plateau updraft field - The outer di-
ameter varies with the altitude as well as
with the updraft speed.

(e) Gaussian Thermal model - The altitude
doesn’t affect the outer radius or the up-
draft speed.

(f) Gedeon Thermal model - The altitude
doesn’t affect the outer radius or the up-
draft speed.

Figure 2.40: Differences on altitude dependence of the different models.

Outer radius - For most of the models the outer radius represents the distance to
the core where the vertical flow is inverted, turning from updraft to downdraft.
That is the case for the Bubble Thermal models and the Gedeon model. Further,
in the Bubble Thermal models the outer radius at the Bubble mean altitude also
indicates the center for the toroid vortex. Both the Allen and the Conservative
Bubble Thermal models have the mean updraft strength as a function of the
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outer radius, and outer radius a function of the altitude. In the Allen model
the flow field at the outer radius is almost null, but not quite. In the Gaussian
model the outer radius is just a measure of the radial spread of the updraft.

(a) Allen Chimney Thermal model -
Presents a constant updraft speed at the
core for large diameter thermals. Further,
the updraft speed is inversely correlated
with the thermal diameter.

(b) Lawrance Bubble Thermal model -
Presents a maximum updraft speed con-
stant with the altitude and no flat core for
large diameter thermals.

(c) Conservative Bubble Thermal model,
with Lawrance updraft field - Presents a
correlation between the updraft speed and
the thermal diameter.

(d) Conservative Bubble Thermal model,
with Plateau updraft field - Presents an al-
most constant updraft speed at the core for
large diameter thermals and a correlation
between the updraft speed and the thermal
diameter.

(e) Gaussian Thermal model - Presents a
constant maximum updraft speed and no
flat core for large diameter thermals.

(f) Gedeon Thermal model - Presents a con-
stant maximum updraft speed and no flat
core for large diameter thermals.

Figure 2.41: Updraft function shape among the different models.
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(a) Allen Chimney Thermal model. (b) Lawrance Bubble Thermal model.

(c) Conservative Bubble Thermal model, with
Lawrance updraft field.

(d) Conservatibe Bubble Thermal model, with
Plateau updraft field.

(e) Gaussian Thermal model. (f) Gedeon Thermal model

Figure 2.42: Differences in outer radius dependence of the different models. The outer radius
presents a null updraft speed for most of the models. The exceptions are the Allen Chimney
Thermal model, where the updraft is almost null at the outer radius, and the Gaussian
model, which always presents a positive updraft speed, about 37% of the maximum updraft
speed at the outer radius.

We may extend the Gaussian and the Gedeon models into more realistic Chimney
models, if we use the Allen model’s outer radius function (2.74) and core updraft
function (2.78). This would make the outer radius a function of altitude and the
updraft speed a function of both altitude and outer radius (fig. 2.43). Even so, these
models would remain non conservative in terms of air mass exchange.
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(a) Allen-Gaussian Thermal model (b) Allen-Gedeon Thermal model

Figure 2.43: Adaptation of the Gaussian shape and Gedeon models to simulate a chimney
type thermal - The altitude affects the outer radius and the maximum updraft speed in the
same manner as in the Allen model.

2.5.2.7 Thermals Development and Fading

Individual thermals’ appearance rate may be modeled by a Poisson distribution.
Based on Lenschow and Stephens data collected over the ocean [36], the average
number of thermals encountered over a path of length s, normalized by the Mixed-
Layer altitude zi, is

NT ≈
1.2s

zi
, z ∈

[
0.1zi, zi

]
, (2.97)

where z is the measurement altitude. As such, the resulting Poisson distribution is

PThermal (s) = 1− e−λT ·s, λT ≈
1.2

zi
. (2.98)

Thermals present different strengths and sizes, even if they are developed in the
same region with the same environmental conditions. The size probability distribution
of an ensemble of thermals follows a Gamma distribution [5, 50]. Vulf’son and Borodin
derived analytically the distribution of spontaneous convective jets and compared the
results with several sets of empirical data. First they derived an invariant relation
between the thermal diameter and its average vertical velocity, at each level h:

ŵ =
3gθT
16αR

D. (2.99)

where g is the gravity acceleration, θT is the environment temperature excess and
αR = 0.1. The size and strength probability density function (pdf) was then defined
as:

Nw

N0

=
a

Γ (a) ŵ2

[
aŵ2

ŵ2

]a−1

e
−aŵ2

ŵ2 (2.100a)

ND

N0

=
a

Γ (a)D

[
aD

D

]a−1

e
−aD
D , (2.100b)

(2.100c)
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Figure 2.44: Diameter pdf with a− 1 = 5/3 (illustrations from [5])

where ŵ2 and D are the average strength and diameter among all thermals, Nw/N0

and ND/N0 are the fraction of thermals with strength or diameter in the interval[
ŵ2, (ŵ + dŵ)2] or [D,D + dD], N0 is the total number of thermals, and a is the pdf

shape parameter (fig. 2.44). The pdf differs greatly from the surface layer to the rest
of the Mixed-Layer. The surface layer extends from the ground to 100-300 meters.
At these altitudes the size distribution is characterized by a− 1 = 1.67, while in the
above layer the distribution shape is characterized by a− 1 = 2.13 [5, 50].

After the development of a thermal, it may fade after some time or merge with
nearby thermals, forming a bigger thermal that will itself fade away after some time.
Thermal lifespan can range from 5 to 30 minutes [46, 4, 28], with 20 minutes as the
mean lifespan.

2.5.2.8 Orographic Updrafts

Ridge lift - Ridge or slope lift appears along the windward side of mountain ridges.
It is generated when the flowing air mass collides with the mountain side and is
forced to climb to overcome the obstacle. Langelaan described a general model
for the ridge flow field based on a semi-cylindric obstacle over a flat surface [51]
(fig. 2.45):

w = w∞x̂− w∞
R2

r2
(cos ηr̂ + sin ηη̂) (2.101a)

wx = w∞

[
1− R2

r2

(
cos2 η − sin2 η

)]
(2.101b)

wz = 2w∞
R2

r2
cos η sin η, (2.101c)

The updraft is generated if the general wind direction is within 30o to 40o to the
perpendicular to the ridge line [43]. Unlike thermals, the ridge updraft maintains
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a stable position, endures as long as the wind conditions are favorable, and can
cover large areas, allowing long upward soaring legs. The main limitation of the
ridge lift is that it is constrained to a limited altitude above the ridge crest.

(a) Ridge flow approximation by a semi-cylindrical ob-
stacle. In the picture xi, zi, ri, and ηi correspond to
x̂, ẑ, r̂, and η̂ , respectively.

(b) Ridge flow stream-lines.

Figure 2.45: Ridge updraft flow field model.

Wave lift - Wave lift is another effect of mountainous terrain. It develops after the
air mass has passed over the undulating terrain at high altitudes. ”This lift is
part of a large scale deflection of air mass, which is known as “lee wave” lift,
first recognized in the 1930s and explored scientifically in the early 1950s” [52].
The lee wave flow field structure is similar to a sinusoidal wave (fig. 2.45b). ”Lee
wave field structures the air mass sink rates in parallel bands having high cross-
stream coherence” [53]. The wave length λW of this phenomenon depends on
the atmospheric conditions, in particular the atmosphere stability. ”In the at-
mosphere, [...] λW ∼ O (10n.mi.) for hydrostatic lee waves or λW ∼ O (1n.mi.)
for nonhydrostatic lee waves” [53]. Wave lift development depends greatly on
the presence of relatively high winds and stable atmosphere conditions.

2.5.2.9 Experimental Verification of Flow Field Models

An important issue in models is their verification as representative of the reality.
In the case of thermals and orographic updrafts one of the most important features
is their internal flow field structure. We have not found any study referring to airflow
data collected inside thermals or orographic updrafts that could be useful for the
validation of these features. The studies we found referring to real data from thermals
are from Lenschow and Stephens [36] and from Allen [4].

Allen [4] studied the distribution of two environmental parameters that influence
the thermal size and strength, in Desert Rock, Nevada. These parameters are the
maximum altitude a thermal may reach, i.e., the atmosphere mixing-layer altitude,
and the convection intensity in the mixing-layer (zi), represented by the convective
velocity scale (w?), which is related to the thermals’ updraft speed.
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Figure 2.46: Wave flow.

Lenschow and Stephens’s work [36] provides the best data to relate the altitude
with the average thermal horizontal size and the updraft speed. The data was col-
lected from a thermal field over the ocean, flying long lines and averaging the airflow
data among all detected thermals at each altitude. This method is good to obtain
the general relations between altitude and thermal size and strength. However, it is
not good enough to evaluate the evolution of the thermal diameter within individ-
ual thermals. That would be important to evaluate the 3D shape of the thermals,
identifying them as Chimney or Bubble Thermals and allowing the validation of the
models presented in section 2.5.2.1. Furthermore, the averaging of the thermal airflow
observations makes it impossible to validate the internal thermal flow field predicted
by any thermal model.

2.5.3 Gust Models

Several models are used to simulate gust turbulence. The simplest model is a
Gaussian noise model, where the mean wind is complemented by deviations generated
from a Gaussian distribution:

Wx = W x + ∆W cosψG (2.102a)

Wy = W y + ∆W sinψG (2.102b)

∆W ∼ N (0, kG ‖w‖) (2.102c)

ψG ∼ U (0, π) , (2.102d)

where W x and W y are the mean wind velocities. ∆W is the total velocity variation
and ψG is the velocity variation direction; they are generated by the Normal distri-
bution N (0, kG ‖w‖), with standard deviation proportional to the total wind speed
σG = kG ‖w‖, and the Uniform distribution U (0, π).

A more realistic model is the Gauss-Markov process random noise model. In this
model each generated wind deviation doesn’t only affect the wind at the generation
moment, but its effect is also extended to the next moments by a decaying function.
This yields a smoother and also more realistic wind variation. The deviations are still
generated from a Gaussian distribution, but those are added to a decaying function
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from past deviations:

Wx = W x + ∆Wx (2.103a)

Wy = W y + ∆Wy (2.103b)

∆Wx = ∆W ′
x (1− τG∆t) + ∆W+ cosψG+ (2.103c)

∆Wy = ∆W ′
y (1− τG∆t) + ∆W+ sinψG+ (2.103d)

∆W+ ∼ N (0, kG+ ‖w‖) (2.103e)

ψG+ ∼ U (0, π) , (2.103f)

where W x and W y are the mean wind velocities. ∆Wx and ∆Wy are the wind
variation velocities. ∆W ′

x and ∆W ′
y are the past wind variation velocities. τG is

the decay time constant. ∆W+ is the total velocity extra variation and ψG+ is the
velocity extra variation direction; they are generated by the Normal distribution
N (0, kG+ ‖w‖), with standard deviation proportional to the total wind speed σG+ =
kG+ ‖w‖, and the Uniform distribution U (0, π). The extra wind variation standard
deviation (σG+) is computed by the combination of the decay time constant (τG) and
the overall wind standard deviation (σG):

σG+ = σG

√
2

τG
(2.104)

The Military Specification MIL-F-8785C [44] defines three gust models. The sim-
plest model is the ”1-cosine” shape model. The more realistic and most accepted
models for aircraft simulation are the von Karman and the Dryden gust fields.

The models presented are well suited for open area flow simulation. However
they don’t capture well complex flow environments, as an urban grid. Models with
more detail simulate those kind of environments better. For that, Cybyk et al [54]
implemented a real-time physics-based simulation tool to study UAV dynamics in a
urban environment.

2.6 Conclusions

In this chapter we present models for aircraft dynamics and for atmospheric air
flow phenomena dynamics and flow fields. We present aircraft dynamics models with
increasing complexity and realism. The simpler models present lower computational
complexity. As such, they are useful for path planning, preliminary studies of ma-
neuver controllers, and to study simple interactions with the air flow phenomena.
The more realistic models allow the development of better performing maneuver con-
trollers and the testing of those controllers with more accurate performance results.

The presented atmospheric air flow models describe updraft phenomena, with
emphasis on thermals, several wind shear phenomena, and gusts. We present several
models described in the literature and several new models The new Chimney Thermal
model improves the modeling of the thermal center dynamics and the interaction of
the whole updraft column with the prevailing wind. The new Bubble Thermal model
improves the realism of the vortex flow field. It also incorporates dynamics and
interactions with wind, similar to those implemented in the Chimney Thermal.
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The wind shear models describe the air flow velocity gradient generated by the
interactions between atmospheric layers or between the prevailing wind and a water
or ground surface. We present new models for both the Layer Wind Shear and the
Ridge Wind Shear.

We also present several models for wind gusts. As with the aircraft models, the
simpler gust models are suitable for simulations demanding less realism. The more
complex gust models allow the simulation of more realistic wind conditions, yielding
more accurate performance evaluations of flight maneuver controllers.

The models presented in this chapter will be used throughout the thesis. The
next chapter will evaluate the necessary conditions to perform perpetual flight by
combining the aircraft and the air flow phenomena models. The Flow Field Estimation
chapter studies the estimation of the flow field phenomena taking into account the
combination of the aircraft dynamics and the flow field phenomena models. The
Control chapter makes use of several aircraft models in the synthesis and testing of
the collision avoidance and formation flight controllers.
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CHAPTER III

Perpetual Flight Conditions

3.1 Introduction

This chapter is central to this thesis. Our main goal is to show that aircraft may
use the energy of the flow field to dramatically extend their flight endurance. For that
we define the minimum atmospheric conditions and aircraft aerodynamic parameters
that would allow perpetual flight. Further, we evaluate these conditions in the light
of the reality.

We start by laying out the energy balance equations in section 3.2. These support
the derivation of conditions for perpetual flight and the estimation methods developed
in chapter IV. In section 3.3 we define perpetual flight, as well as several other terms
which are important to the clarity of the rest of the chapter. In sections 3.4, 3.5, and
3.6 we derive the minimal conditions necessary for perpetual flight in thermal fields,
wind shear, and gusts.

3.2 Energy Dynamics

While flying, airplanes may use several sources of energy which are used mainly
to overcome its drag. The energy state can be analyzed either within the airmass
or relative to a ground reference. As the forces and moments acting on the aircraft
depend mainly on the airspeed, most of the analysis will consider the airmass-relative
energy.

For the total energy (E) balance we take into account only the potential energy
(EP ) and the kinetic energy (EK). We do not regard the fuel tank or the battery
in the aircraft total energy, unless we explicitly define it otherwise. In the subse-
quent equations we regard the possibility of a motor energy input (T ) for the sake of
the generality of the equations. This is regarded as an external energy input and is
important for the Estimation chapter (IV). In the perpetual flight minimum condi-
tions analysis, developed in the next sections of this chapter, this energy input is not
regarded, as we use the energy conveyed by the airflow (sec. 3.2.4).
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3.2.1 Airmass-relative Energy

For an airplane the total energy relative to the airmass is

E = EP + EK = −mgz +
mV 2

a

2
(3.1)

The time derivative yields:

Ė = −mgż +mVaV̇a = mg (Va sin γa −Wz) +mVaV̇a (3.2)

We may now substitute the term V̇a by the equations developed in section 2.4.6 for
the leveled wings and turning flight cases. A remark to note that both cases allow
ascending or descending flight. In the case of wings leveled flight we substitute V̇a
from (2.27) in (3.2), leading to the cancellation of the altitude-airspeed energy transfer
terms, resulting in:

Ė = −mgWz + Va (T −D)−mVa
[

cos γa
− sin γa

]ᵀ [
Ẇx

Ẇz

]
(3.3)

In the case of turning flight we substitute V̇a from (2.29) in (3.2), yielding:

Ė = mgWz + Va cosφ (T −D)−mVa
[

cos γa
− sin γa

]ᵀ [
Ẇx

Ẇz

]
+ VaLγ̇a tan γa (cosφ− 1)

(3.4)

3.2.2 Goal-relative Energy

If the airplane aims to reach a specific target ([xT , yT ]) in the horizontal plane,
the energy evaluation equation should be derived using the velocity aligned with the
target direction. The energy and the energy rate are:

E = −mgz +
mVT |VT |

2
(3.5a)

Ė = −mgż +m |VT | V̇T . (3.5b)

with the target aligned velocity (VT ):

VT =

[
cosχT
sinχT

]ᵀ [
ẋ
ẏ

]
(3.6a)

V̇T =

[
cosχT
sinχT

]ᵀ [
ẍ
ÿ

]
+ χ̇T

[
− sinχT
cosχT

]ᵀ [
ẋ
ẏ

]
, (3.6b)
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where the direction relative to the target (χT ), its time derivative (χ̇T ), and the
distance to the target (dT ) are defined by,

cosχT =
∆xT
dT

(3.7a)

sinχT =
∆yT
dT

(3.7b)

χ̇T =
∆x2

T

∆x2
T + ∆y2

T

∆ẏT
∆ẋT

(3.7c)

dT =
√

∆x2
T + ∆y2

T (3.7d)

∆xT = xT − x (3.7e)

∆yT = yT − y. (3.7f)

3.2.3 Airplane Nominal Power

For airplanes, the nominal power, which depends on the propulsion setting and
the airplane attitude, is Pn = Ėn = Va (T −D). The motor contribution may be
defined in terms of its power (P ) or thrust (T ). The energy dissipation is caused by
the drag, which is usually represented by its coefficient (CD), yielding:

Ėn = P − ρV 3
a

2
S · CD = T · Va −

ρV 3
a

2
S · CD (3.8)

3.2.4 Flow Conveyed Power

Assuming there is no other power source than the aircraft motor, the power con-
veyed by the airflow to the aircraft is simply the aircraft total power (Ė) reduced by
the aircraft nominal power (Ėn):

Ėa = Ė − Ėn. (3.9)

3.3 Perpetual and Sustainable Flight Definitions

Definition III.1 (Perpetual Flight). A flight is perpetual if the aircraft, starting
with an initial altitude hi and speed Vi, is able to fly always above or at a safety
altitude hmin for infinite time.

Definition III.2. A perpetual flight initial energy is:

Ei := mghi +m
V 2
i

2
, (3.10)

Definition III.3. A perpetual flight minimum energy is:

Emin := mghmin +m
V 2
min

2
, (3.11)

where hmin is the safety altitude and Vmin is the minimum velocity required to main-
tain sustained flight, i.e., the stall speed at hmin.
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Definition III.4 (Safe Flight). A flight is safe if the aircraft altitude is always greater
or equal to the safety altitude hmin,

h ≥ hmin,∀t. (3.12)

Definition III.5 (Sustainable Flight). A flight is sustainable if the aircraft final total
energy (Ef ) is greater or equal to its initial total energy (Ei). That also implies that
the average of the aircraft total energy rate must be positive or null,

Ė ≥ 0, t ∈ [ti, tf ] . (3.13)

Lemma III.6. If a flight is perpetual it is sustainable.

Proof. From definitions III.1 and III.3 the energy variation along a perpetual flight is:

∆E ≥ Emin − Ei. (3.14)

The mean energy rate is

Ė :=

∫ tf
ti
Ėdt∫ tf

ti
dt

=
∆E

∆t
. (3.15)

As ∆t =∞ and Emin − Ei is bounded, Ė ≥ 0.

Definition III.7 (Flight Cycle). A flight cycle is a partition of a flight where one
or more of the aircraft state or energy variables present the same final value as the
initial and the same trend at the beginning and the end of the partition:

κi = κf (3.16a)

κ̇f = aκ̇i, a ≥ 0. (3.16b)

Remark III.8. For thermal soaring cycles the cyclic variable is usually the total energy,
while for wind shear soaring cycles the cyclic variables are usually the course, the
bank, and the pitch angles.

Definition III.9 (Sustainable Flight Cycle). A sustainable flight cycle is a partition
of a sustainable flight, with:

Ėj ≥ 0, (3.17)

where j is the cycle index.

Lemma III.10. If a flight is only composed by an infinite sequence of flight cycles,
it is a sustainable flight if all the cycles are sustainable (III.9).

Proof. If a flight is only composed by sustainable and safe cycles, the whole flight
mean energy rate will be

Ė =

∑N
i=1 Ėi

N
, (3.18)

where N is the number of cycles. From its definition (III.9) a sustainable and safe

cycle will have a null or positive mean energy rate (Ėi ≥ 0), yielding Ė ≥ 0.
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Definition III.11 (Sustainable and Safe Flight Cycle). A sustainable and safe flight
cycle is a partition of a perpetual flight. It respects the sustainable flight cycle condi-
tion (III.9) and is safe by flying above the above the safety altitude hmin, yielding:

Ėj ≥ 0 (3.19a)

h ≥ hmin,∀t, (3.19b)

where j is the cycle index.

Lemma III.12. If a flight is only composed by an infinite sequence of flight cycles,
it will be a perpetual flight if all the cycles are sustainable and safe (III.11).

Proof. If a flight is only composed by sustainable and safe cycles, the whole flight
altitude will be greater or equal to the safety altitude, as each cycle altitude respects
h ≥ hmin. This condition extends for infinite time, as the flight is composed only by
the infinite sequence of sustainable and safe cycles.

3.4 Perpetuity Conditions in Thermal Fields

In this section we discuss the necessary conditions to achieve perpetual flight in
thermal fields. In the literature there are some studies about the optimal flight set-
tings for flight inside and between thermals. Two good examples are the MacCready
Speed-to-Fly theory [55] and Cochrane’s [56] extension to uncertain thermal activity
and operation altitude limits. That said, we couldn’t find any study about the neces-
sary conditions to fly perpetually, with a neutral energy balance, or just to fly during
a day, from morning to late afternoon.

We will focus on gliding flights to define the necessary conditions to fly perpetually
in thermal fields. In a gliding flight the aircraft does not use the propulsion system
to energize its flight. From here on, we will refer to a gliding aircraft as a glider.
When the glider is flying inside a thermal it is propelled up by the thermal updraft,
climbing. If it is flying outside any thermal it maintains the necessary speed to fly by
losing altitude. To study the flight through thermal fields, also called thermaling, we
need to take into account thermals’ constraints, both in time and in space. We define
the main factors and constraints to the problem of energy harvesting flight through
a thermal field from the thermals’ properties and dynamics described in the thermal
models (sec. 2.5.2.1). The main factors affecting the ability to achieve sustainable
flight are:

• The thermal field average updraft speed;

• The thermal field appearance rate;

• The thermals’ average lifespan;

• The aircraft efficiency ( L
Dmax

and RCmax),

while the most relevant constraints to the energy harvesting process are the:

• Thermal lifespan (tT );
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• Thermal maximum altitude, i.e., the mixed-layer thickness zi;

• Ground altitude.

As the thermal existence is limited to a finite lifespan, the glider is required to execute
thermaling cycles, i.e., a sequence of climbs inside thermals intertwined with descents
searching for active thermals. That is why we need to study the energy balance of
flight cycle to define the necessary conditions to achieve perpetual flight.

We introduce some general assumptions about the flight settings and environmen-
tal conditions affecting the thermaling cycle, before analyzing conditions for perpetual
flight in a thermal field:

Assumption III.13. The wind horizontal speed is null or the thermal’s drift is the
same as the wind horizontal velocity.

Assumption III.14. During the thermaling cycle we assume the flight settings and
flight path result in:

1. The airplane airspeed while it circles inside a thermal is fixed as V |RCmax, mean-
ing that the vertical speed relative to the air is RCmax,

Va = V |RCmax (3.20a)

ḣ = RCmax; (3.20b)

2. The air-climb angle γa is small enough to allow the approximations:

cos γa ≈ 1 (3.21a)

sin γa ≈ γa (3.21b)

Vx ≈ Va; (3.21c)

3. The airplane airspeed while in transit between thermals is fixed as V |L/Dmax,

meaning that the ratio between the lift and drag forces will be L/Dmax, which
with (3.21) yields:

Va = V |L/Dmax (3.22a)

ḣ =
Va

L/Dmax

; (3.22b)

Assumption III.15. As proposed in section 2.5.2.7, the thermal appearance proba-
bility is defined by

1− e−λT ·s, (3.23)

where λT is the thermal appearance rate, the inverse of the average distance among
thermals, and s is the traveled distance since the last observed thermal.
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Furthermore, the thermal height and the ground altitude add altitude constraints
to the energy harvesting process. These constraints, together with the stochastic na-
ture of the thermal searching process, the thermal updraft strength, and the thermal
lifespan, result in a stochastic process. This process is a chain of stochastic events,
which include finding thermals at random altitudes, leaving thermals with a random
gained altitude, and land-outs, i.e., unwanted landings, when no thermal is found
before reaching the ground altitude. That means that the general thermaling process
is quite complex to analyze. Therefore, we will analyze the simpler case of sustainable
flight, to define necessary conditions for perpetual flight. Below, we present the further
assumptions for the sustainable flight case analysis:

Assumption III.16 (Gaussian Thermal Lifespan). The thermal lifespan is a Gaus-
sian:

tT ∼ N (µt, σt) ; (3.24)

Assumption III.17. The thermal has no altitude bounds, zi or ground altitude.

Assumption III.18 (Updraft Daily Variation). w∗ daily variation is given by,

w∗ ≈ w∗max
2

[
1− cos

(
2π
td − td0

tDay

)]
, (3.25)

where w∗max is the day maximum w∗, td is the time of day, td0 is the time of day when
there is no convective activity (dawn), and tDay is the time-length of a day.

With these assumptions we may define the necessary conditions for sustainable
flight through a thermal field.

Theorem III.19 (Necessary Conditions for Sustainable Thermaling). It is only pos-
sible to perform a sustainable flight through a thermal field if:

λTµt

(
RCmax +

wmax
2

)
L/Dmax ≥ 1, (Conditions for Sustainable Thermaling)

where λT is the mean spacing among thermals, µt is the mean thermal lifespan ex-
perienced by aircraft, wmax is the day maximum of mean updraft speed (w), RCmax
is the aircraft minimum sink rate, and (L/D)max is the aircraft efficiency, i.e., the
maximum ratio between the lift and drag forces.

Note that closer thermals (↑ λT ), longer lifespans (↑ µt), increased strength (↑
wmax), lower aircraft sink rate (↑ RCmax), or higher aircraft efficiency (↑ (L/D)max),
lead to improved conditions for perpetual flight.

We proved theorem III.19 both through an altitude variation analysis and an
energy balance analysis. In the next sections we present both derivations.

3.4.1 Altitude Hold Derivation

We may prove theorem III.19 by analyzing altitude variation during a thermaling
cycle. As stated before, the thermaling cycle is composed by climb phase, inside a
thermal, and a sink phase, while searching for other thermals. In order for an airplane
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to stay aloft the average sink (∆hS) should be compensated by the average thermaling
climb (∆hT ): ∆hT ≥ −∆hS, with

∆hT =
N∑
i=1

∫ tT1

tT0
ḣdt

N
=

N∑
i=1

∆hT
N

,N →∞ (3.26a)

∆hS =
N∑
i=1

∫ tS1

tS0
ḣdt

N
=

N∑
i=1

∆hS
N

,N →∞, (3.26b)

where tT0 and tT1 are the time interval limits for each climb phase and tS0 and tS1

are the time interval limits for each sink phase. Taking into account (3.20) from
assumption III.14 and the fact that while on a thermal the aircraft vertical speed
(RC) sums to the thermal updraft speed, the gained height is,

∆hT = ḣ∆tT = (RCmax + w) ∆tT , (3.27)

where ∆tT = tT1 − tT0. Given the independence between w and ∆tT , the average
climb may also be defined as,

∆hT = (RCmax + wd)µt, (3.28)

where wd is the updraft daily average.
From the Updraft Daily Variation assumption (III.18) and because the thermal

average updraft is,
w ∝ w∗. (3.29)

the daily updraft average (wd) is defined by,

w∗ =
w∗max

2
⇒ wd =

wmax
2

, (3.30)

where wmax is the day maximum for w.
When in transit between thermals, the aircraft may lose an altitude of:

∆hS = s · RC
Va

, (3.31)

where s is the flown distance relative to the air. Equation (3.22), in assumption III.14:

L

Dmax
=

Va
RC

, (3.32)

which means that lost altitude during the gliding phase is:

∆hS = − s

L/Dmax

. (3.33)

From assumptions III.13 and III.15, the average sink may now be defined as,

∆hS = − s

L/Dmax

= − 1

λTL/Dmax

(3.34)
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resulting in, (
RCmax +

wmax
2

)
µt ≥

1

λTL/Dmax

⇔

⇔ λTµt

(
RCmax +

wmax
2

)
L/Dmax ≥ 1, (3.35)

and proving theorem III.19.

3.4.2 Energy Balance Derivation

Let us now prove theorem III.19 through the energy balance analysis of the ther-
maling cycle. We will first define the energy balance in terms of the relation between
the power source and power dissipation. Then we will define in more detail both the
power source and power dissipation functions. To finish, we need to define the time
spent in each power setting to evaluate the energy balance.

An unpowered aircraft can only maintain a sustainable flight if it harvests the
same or more energy from the flow field then needed to stay aloft, i.e., if the overall
energy variation is positive (def. III.9),

∆E =

tf∫
t0

PTotal ≥ 0, (3.36)

where tf is the final thermaling time and PTotal = Pin − Pout. In this case,

tf →∞ (3.37a)

Pin = PFF (3.37b)

Pout = PFly, (3.37c)

where PFF is the power harvested from the flow field and PFly is the dissipated power
needed to keep the aircraft aloft.

Now we will explain and define the power dissipation process. To stay aloft the
aircraft needs to produce lift. In the particular case of airplanes, lift is created by
the interaction between the air flow and the wing. To produce enough lift to stay
aloft the aircraft needs to fly faster than a minimum airspeed, the stall speed. The
interaction of the air flow with the wing also produces aerodynamic drag. Therefore,
to maintain the airspeed the aircraft spends energy to overcome the drag force. For
constant airspeeds the power required to keep the aircraft aloft is the power needed
to overcome the aerodynamic drag force:

PFly = VaD = CDρS
V 3
a

2
, (3.38)

where CD is the drag coefficient, ρ is the air density, S is the aircraft wing area and
Va is the aircraft airspeed. In unaccelerated flight the aircraft forces are all balanced
(fig. 3.1), and so:

0 = L sin γ +D cos γ (3.39a)

mg = L cos γ −D sin γ, (3.39b)
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Figure 3.1: Forces affecting an aircraft (illustration from [3])

Taking into account (3.21) from assumption III.14 and because for the flight settings
under analysis L cos γ >> D sin γ, the dissipated power may be approximated by,

PFly ≈ −Vamg sin γ. (3.40)

The dissipated power can then be defined in terms of the vertical velocity, RC =
Va sin γ, as

PFly = −RCmg. (3.41)

Note that in unpowered flight, i.e., gliding, γ is always negative, and so the required
power is positive.

Similarly to the power dissipation, the power source is a function of a vertical
velocity. In this case, where the energy is provided by the updraft, the power source
is a function of the vertical airflow (w),

PFF = wmg. (3.42)

To conclude the definition of the power functions we now define the aircraft vertical
velocity for each flight setting. If we consider the thermaling cycle, i.e., a search &
climb flight path, we may assume the power to fly is constant for each of the two
settings. As defined in (3.20) from assumption III.14 the search setting maximizes
the flight range, with the maximum lift-over-drag ratio (L/D) and the corresponding
CD. The thermal climb setting maximizes the endurance, with the minimum CD, i.e.,
minimum sink rate (−RCmax), also defined in assumption III.14 by (3.22). These
settings yield,

RCCDmin = RCmax = −CDminρS
V 3
aCDmin

2mg
(3.43a)

RCL/Dmax ≈ −
VaL/Dmax
L/Dmax

. (3.43b)

resulting in,

PTotal =

{
PFF − PFly = wmg +RCmaxmg Climb

−PFly = −
VaL/Dmax
L/Dmax

mg Search
(3.44)

Now that we have the power functions we need to define the time spent in each
flight setting, to finish the energy balance derivation. The condition ∆E ≥ 0 means
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that

tT (PFF − PFly)− tSPFly ≥ 0⇔

⇔ tTwmg ≥ −tTRCmaxmg + tS
VaL/Dmax
L/Dmax

mg, (3.45)

where tT and tS are respectively the sum of all the time spent climbing on a thermal
and the sum of all the time spent sinking, searching for new thermals. The expected
value of tT for NT exploited thermals is:

E (tT )NT = µtNT . (3.46)

tS is the sum of all time flying between thermals, which is also the ratio between
the distance between thermals and the search speed:

tS =

∑
sT

VaL/Dmax
≈ NT

λTVaL/Dmax
, (3.47)

If we rearrange equation (3.45) with (3.46) and (3.47), we get:

µtNTw ≥ −µtNTRCmax +
NT

λTL/Dmax

⇔

⇔ λTµtL/Dmax (w +RCmax) ≥ 1. (3.48)

When we substitute the daily average of the updraft speed (w) from (3.30) in (3.48),
we obtain the same necessary conditions for a sustainable flight (3.49) as in section
3.4.1:

λTµtL/Dmax

(
RCmax +

wmax
2

)
≥ 1, (3.49)

further proving theorem III.19.

3.4.3 Discussion

If we consider a specific aircraft the aerodynamic parameters RCmax and (L/D)max
are constant. The lifespan distribution may also be considered constant for anywhere
in the world. This is because we assume it independent of the thermal strength.
This assumption holds if we also assume soft wind shear, as the thermal’s disruption
depends on the ratio between the thermal strength and wind shear [4].

According to Schuemann [57], the typical condition in terms of thermal updraft
speed for the eastern U.S. is about 430 ft/min (2.2 m/s). A model glider like the SB-
XC presents an L

Dmax
= 27 and RCmax = −0.58m/s [9, 31]. The thermals’ lifespan

mean is usually around 20 minutes [46, 4, 28]. If we take wmax = 2.2m/s, we have:

λT ≥
1

1200 · 27
(

2.2−0.58
2

) = 5.9 · 10−5m−1. (3.50)

Taking the data for Desert Rock in Nevada shown in table 2.2, the thermals height
is likely to be in the interval from 150m to 3.638m. By (2.98), the appearance rate
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(λT ) is then likely to be in the interval from 3.3 · 10−4m−1 to 8.0 · 10−3m−1, which is
well above 5.9 · 10−5m−1. According to theorem III.19 this means that a sustainable
flight would be possible in that area with this model glider with a very good margin.

This does not assure a perpetual flight is possible, because the sustainable flight
relates only to the energy and disregards the altitude constrains. This is a necessary
condition for perpetual flight, meaning that if this condition is not met, it wont be
possible to achieve a perpetual flight. Moreover, if the aircraft is able to harvest
energy and collect it internally (batteries) instead of in potential energy (altitude), a
sustainable flight condition could also be a lower bound condition for perpetual flight.

3.5 Perpetuity Conditions in Wind Shear

By lemma III.10, a perpetual flight is possible if the necessary conditions to perform
a sustainable and safe flight cycle are present. As such we may state that:

Proposition III.20. The main factors affecting the ability to achieve a sustainable
and safe flight cycle by harvesting wind shear energy, and therefore enabling the pos-
sibility to perform a perpetual flight, are:

• The wind shear top and bottom altitudes;

• The wind shear gradient magnitude;

• The aircraft efficiency ( L
Dmax

).

Figure 3.2: Minimum required wind gradient for basic soaring pattern (illustration from

[6]). ρ = ρg2

2(mg/S) dWx
dz

2 is an adimensional value, representing the wind shear gradient, the

wing loading, the air density and the gravity. Emax = L/Dmax is the best lift over drag
ratio and CD0 is the minimum drag ratio.

Zhao [6] studied several optimal soaring cyclic trajectories. Those trajectories
minimized the cycle time, maximized the gained altitude or minimized the required
wind shear gradient required to maintain flight (fig. 3.2). This latest provides one
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of the most important results from the study, the minimum required conditions to
maintain a perpetual flight by harvesting energy from a linear wind shear gradient.

Taking the results illustrated in figure 3.2, we can approximate the inequality
defining the minimum conditions necessary to perform sustainable and safe flight
cycles in wind shear:

dWx

dz

2

≥ ρg2

(mg/S)

CD0(
0.0644− 1.12 · 10−4 L

Dmax

)
L
Dmax

≈ ρg2

(mg/S)

CD0

0.059 L
Dmax

, (3.51)

where dWx
dz

is the average wind shear gradient, ρ is the air density, g is the gravity
acceleration, CD0 is the minimum drag ratio, L/Dmax is the best lift over drag ratio,
which defines the aircraft aerodynamic efficiency, and mg

S
is the wing loading (m is

the aircraft mass and S is the wing area).
In the case of Layer Wind Shear (sect. 2.5.1.2) the phenomenon gradient is almost

constant throughout the shear layer and its magnitude is defined by the wind velocity
vector at the top and bottom altitudes of the layer. The wind shear top and bottom
altitudes depend on the phenomenon which originated the shear, as inversion layers
and the Jet Stream.

Sachs and Costa [7] present some results for the minimum required wind shear
gradient below the Jet Stream to allow sustainable and safe flight cycles (fig. 3.3).
In this example they take into account the air density variation with the altitude, as
the wind shear layer thickness is quite large. Further, the flight path optimization
respected constrains to the lift coefficient (CL) and the load factor (n).

Figure 3.3: Minimum required wind gradient (dVwdh min
= dWz

dz min
) for dynamic soaring

over the wind shear below the Jet Stream, with the lift and load factor constrained to
CL,max = 1.5 and nmax = 4.5G. (illustration from [7])

These results are consistent with (3.51), where the minimum required wind shear
gradient (dWz

dz min
) grows with decreasing aerodynamic efficiency (L/Dmax) or wing

loading mg
S

.
In the case of Surface Wind Shear (sect. 2.5.1.1) the phenomenon gradient is

defined by the wind velocity at the reference altitude, for the average wind speed
gradient, and by the roughness altitude, for the gradient steepness near the surface.
The wind shear is only limited below by the surface altitude, but because the gradient
gets almost null above the reference altitude, we can take this as an upper gradient
limit.
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Sachs [8] computed the minimum wind velocity required to generate a strong
enough flow gradient to propel the albatross flight (fig. 3.4). He concluded that
albatross would require a wind of ‖wH‖ = 8.6m/s, at a reference altitude (hRef ) of
10m, if they could control the lift coefficient optimally, or ‖wH‖ = 8.9m/s, if they
would hold a constant lift coefficient. In these computations the estimated albatross
wing aerodynamic parameters were:

L

Dmax
= 20 (3.52a)

mg

S
= 128N/m2 (3.52b)

CD0 = 0.033. (3.52c)

(a) Dynamic soaring optimal path with variable
lift coefficient. To propel the albatross flight, the
minimum wind speed required is ‖wH‖ = 8.6m/s.

(b) Dynamic soaring optimal path with fixed lift
coefficient. To propel the albatross flight, the min-
imum wind speed required is ‖wH‖ = 8.9m/s.

Figure 3.4: Dynamic soaring optimal path for Surface Wind Shear. (Illustrations from [8])

3.6 Perpetuity Conditions in Gusts

Proposition III.21. The main factors affecting the ability to achieve perpetual flight
by harvesting gust energy are:

• The gust magnitude and wavelength;

• The aircraft efficiency ( L
Dmax

).

Langelaan [9, 31] studied the possibility of harvesting energy from wind gusts. One
of his results shows clearly that harvesting gust energy is possible with a controller
designed accordingly. Figure 3.5 shows the energy balance of flights over a sinusoidal
gust field with a normal controller, i.e., regulating the velocity to be one that provides
maximum L/D with steady wind, and a controller specifically synthesized to harvest
gust energy. These controllers are tested with 3 sets of sinusoidal wind gust wave-
lengths (25m, 50m and 100m). As expected both controllers perform similarly when
no gusts are present. Although, for non-null gusts the normal controller loses more
energy, while the controller designed to exploit the gusts gains energy. In fact, the
flight energy balance becomes positive for gusts above 2 m/s for all gust wavelengths,
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in the presented simulations. As a note, the simulations used the parameters of a
SB-XC model glider with L

Dmax
= 27 and mg

S
= 98N/m2 [9, 31].

Figure 3.5: Comparison of energy balance of two different flight controllers, with different
gust conditions. (illustration from [9])

The main conclusion we may take from the example above is that the main factors
which affect the capacity to perform perpetual flight are: the gusts’ magnitude and
wavelength, the aircraft efficiency ( L

Dmax
), and of course the flight controller. The

aircraft efficiency defines the starting point for the energy balance, i.e., the energy
loss without gusts. The harvested energy grows with the gusts’ magnitude, but the
growth rate seems to depend on the gusts’ wavelength. This may be due to resonant
dynamics, which would make the aircraft mass, the pitch damping, the response to the
elevator deflection and the response to the gusts important factors in the conditions
for perpetual flight with gusts.

3.7 Conclusions

This chapter defines the necessary conditions for perpetual flight. An interesting
and intuitive conclusion from the perpetuity flight conditions analysis is that the
aircraft aerodynamic efficiency is a key factor in the conditions to achieve perpetual
flight with any of the three described phenomena. Another key factor is the magnitude
of each phenomena strength, i.e., the updraft speed in thermals, the flow gradient in
wind shear, and the gust magnitude in gusts. Both these conclusions make a lot
of sense, as a more efficient aircraft loses less energy and a stronger phenomenon is
capable of conveying more energy.

All the studied phenomena harvest energy in a cyclic manner. The gust phe-
nomenon has cycles that can last a few seconds at most. An energy harvesting flight
cycle in wind shear may last for a few minutes. Thermals may last half an hour and
the search flight to find other thermals tens of minutes, so it is long cycle, but still
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a cycle. Therefore, the concept of sustainable and safe flight cycle is central to the
study of perpetual flight.

Because of the short cycle length and the required maneuverability, the exploita-
tion of gusts and wind shear may be limited to smaller aircraft, as small Unmanned
Aerial Vehicles (UAVs). Thermals are usable by any aircraft that is able to stay in-
side its updraft core, as gliders do. As such, if there is controller prepared to exploit
these phenomena, the aircraft exploiting the phenomena is efficient and maneuver-
able enough, and the phenomenon itself is strong enough, it is possible to execute
perpetual flight.
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CHAPTER IV

Flow Field Estimation

4.1 Introduction

This chapter describes the estimation processes developed to allow the tracking
and characterization of the studied flow field phenomena. The studied estimation
methods assume that the flow field observations are taken by an aircraft, through
the sensors that compose its avionics suite. The information collected about these
phenomena allows us to optimize the flight trajectories through the flow field. In this
work we are mainly focused on the energy harvesting optimization, increasing the
flight endurance or reducing required energy storage for the same flight endurance.
But the gathered information may also improve other performance variables, such as
in-route time.

There are path control methods that use implicit localization to guide the aircraft.
These methods use a direct feedback from the flow field measurements, or its energy, to
control the flight path. One such method is the thermal centering controller presented
by Andersson and Kaminer [29] and the gust exploration described by Langelaan
[9, 31]. In the case of gusts the direct feedback may be the only feasible method
due to the transitory and random nature of turbulence, which is the main factor in
gusts. In the case of phenomena that exist almost unchanged for longer periods,
such as thermals and wind shear, the explicit estimation enables a better and wider
exploration, i.e., an optimization of the flight path over the surrounding region. As
stated before, an explicit estimation enables an optimized path control, mitigating the
effects of the random perturbations in the phenomena flow or energy measurements
and enabling the use of path planing strategies. Furthermore, the explicit estimation
process may also enable the optimization of the estimation itself, by the identification
of flight paths that yield the most informative measurements. But maybe even more
important, the explicit estimation allows a team of aircraft to share that information,
extending the potential for energy harvesting by the whole team.

The estimation methods described in this chapter use the aircraft as a sensor,
providing inputs to the estimators. The estimators use data such as the vertical
flow measurement or the difference between the airspeed and the ground-speed in
different directions. Because of that, the estimators input data depends on the aircraft
dynamics. As the aircraft dynamics are nonlinear (sec. 2.4), the relation between the
estimators input data and the main variables driving the aircraft motion is nonlinear.
Moreover, we intend to verify whether it is possible to estimate the parameters of a
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flow field phenomenon by checking if these are observable with the available input
data. As such, we describe the method for checking the observability of nonlinear
systems (sec. 4.2). We then apply this method to the problems of observing thermals
(sec. 4.3) and wind shear (sec. 4.4).

The Thermal Estimation section (4.3) first deals with the observability of thermal
parameters (sec. 4.3.1), such as the center position and speed, and the updraft
flow field parameters. Further, it describes a Particle Filter estimator for Chimney
Thermals and the estimation results (sec. 4.3.2). To finish this section we describe
the problems associated with estimating Bubble Thermals (sec. 4.3.4).

The Wind Shear Estimation section (4.4) starts by the study of the observability
conditions to estimate the wind components (sec. 4.4.1) and then focuses on a Particle
Filter estimator for wind shear and its estimation results.

4.2 Observability of Nonlinear Systems

In this section we present the method to study the flow field phenomena ob-
servability. Because the phenomena will be observed by an aircraft, the relation
between the driving variables, i.e., the main variables of the aircraft dynamics, and
the observed parameters is nonlinear. Therefore, to test the observability of the phe-
nomena’s parameters we cannot use the same methods as for linear systems, such as
the Grammian rank matrix test [58]. However, for these nonlinear systems we can
determine local weak observability [59] using Lie derivatives [60]. Similarly to linear
systems, we build an observability matrix and check its rank to test the observability
of a nonlinear system. The Lie derivatives are the rows of this observability matrix.

Let us consider a dynamic system described by:{
ẋ = f (x,u)

y = h (x)
(4.1)

where f (x,u) is the process function and h (x) is the measurement function.
By convention the zeroth-order derivative satisfies:

L0h = h, (4.2)

The first-order Lie derivative of a scalar function h with respect to f is the inner
product of f with the function (h) gradient:

L1
fh = ∇h · f =

∂h

∂x1

f1 + ...+
∂h

∂xN
fN , (4.3)

where∇ is the gradient operator and f = [f1, ..., fN ]ᵀ. The higher order Lie derivatives
are first-order Lie derivatives applied over lower order Lie derivatives:

Llfh = ∇Ll−1
f h · f = L1

f

(
Ll−1

f h
)

= L1
f

(
L1

f

(
...
(
L1

fh
)))

. (4.4)

For example, the second order Lie derivative is

L2
fh = L1

f

(
L1

fh
)

= ∇L1
fh · f . (4.5)
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The observability matrix rows are the increasing order Lie derivatives of the ob-
servation function (h = [h1, ..., hm]ᵀ),

O :=



∇h1
...
∇hm
∇L1

fh1
...

∇L1
fhm

∇L2
fh1
...

∇L2
fhm
...


=


∇h

∇ḣ

∇ḧ
...

 . (4.6)

When the process function (f) can be divided in independent parts fi, i = 1, ..., n
excited by each component of the control vector (u), the dynamic system may de-
scribed by: {

ẋ = f0 (x) + f1 (x, u1) + f2 (x, u2) + ...+ fN (x, uN)

y = h (x)
(4.7)

where f0 is the zero-input process function. With the dynamic system (4.7), there is
an nth-order Lie derivative for each fi [61]. Therefore the first-order Lie derivatives
of the function h with respect to fi are the inner products of fi with the function (h)
gradient:

L1
fi
h = ∇h · fi =

∂h

∂x1

fi1 + ...+
∂h

∂xN
fiN , (4.8)

where fi = [fi1, ..., fiN ]ᵀ. As for the general case described above, the higher order
Lie derivatives are first-order Lie derivatives applied over lower order Lie derivatives:

Llfifj ...fkh = ∇Ll−1
fj ...fk

h · fi = L1
fi

(
Ll−1

fj ...fk
h
)

= L1
fi

(
L1

fj

(
...
(
L1

fk
h
)))

(4.9)

where fi, fj, and fk, with i, j, k = 1, ..., n, may be the same part of the process function
or not.

As such, the observability matrix is,

O :=
{
∇Llfi...fjhk : i, j = 1, ..., n; l ∈ N

}
. (4.10)

This matrix can now be used to study the observability of the wind state and the
thermal state and parameters.

4.3 Thermal Estimation

Some thermal soaring controllers require the knowledge of the thermals localiza-
tion. Updraft effects can be detected by aircraft. Both the vertical airflow and the
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energy balance can be computed through the aircraft sensing data. The energy bal-
ance allows us to quantify how much airflow energy is being harvested by the aircraft,
particularly in the vertical axis (sec. 4.3.2.7). As such, the aircraft can be regarded
as a sensor, and the thermals as the objects whose parameters and state have to be
estimated. This is a global localization problem. Further, the nonlinear nature of the
problem is emphasized by the necessity to estimate the thermal shape and strength.
Thermal characterization encompasses position, size, shape, vertical speed gradient,
dynamics, number, etc. This characterization depends on the underlying model. To
characterize the position we can assume the flow has a geometric center, which can
be localized. The shape can be modeled as a circle or an ellipse on the horizontal
plane. On the vertical plane, the thermal radius is a function of the altitude above
the ground. The vertical speed usually varies from the highest upward speed in the
center of the thermal to a downward speed on the skirts, and a slight downward ve-
locity in the area between thermals. Furthermore, thermal spots can change, moving
around, shrinking or enlarging, becoming stronger or fading. These dynamics depend
on the terrain characteristics (plain or rough, hot spot type, etc.), the wind, the sun,
the cloud coverage, etc. Section 2.5.2.1 describes in more detail the models used to
develop the thermal estimators.

Also important are the number and relative position between thermal spots (sec.
3.4). Updrafts are only useful to an aircraft if they are spread around the desired
path.

The process of localizing thermals is sometimes compared to the localization of
hydrothermal vents, which create a hydrothermal plume. But, unlike hydrothermal
vents [62], thermal updrafts are fairly large features, with a diameter between 100m
and 1000m [63]. Further, the thermal energy or flow manifestations are mostly con-
tained within the thermal itself. Cumulus clouds created above a thermal can be
identified from larger distances, but the computation of imagery data for this pur-
pose is not trivial. As such, to localize thermals we need to observe the air flow inside
the updraft itself.

Allen [34] presented a centroid-based method for dynamic localization of thermal
centers. The developed system was demonstrated in real flight tests over Edwards Air
Force Base. The algorithm had performance problems due to filtering delays, resulting
in considerable thermal center localization errors [11]. Edwards [11] extended Allen’s
approach, mixing it with Wharington’s [27] neural-network based locator. The flight
results were quite good, demonstrating highly effective thermal energy harvesting.
Both methods assumed the estimation of a single thermal at each time.

4.3.1 Thermal Observability

In this section we study the observability of thermals by aircraft flying through
the updraft and measuring it. We will start by the simplest 2D localization. Next we
will study the observability of more detailed models and conclude with the study of
the complete thermal model parameters observability (sec. 2.5.2.1).

The main characterizing parameters of the updraft flow field over a horizontal
plane are the mean strength or mean vertical velocity (w), the peak strength (wpeak),
the thermal radius (r2), also designated outer radius, and the inner radius (r1). These
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variables are related by the equations (2.77) and (2.78), which we rewrite here:

r1

r2

=

{
0.0011r2 + 0.14 r2 < 600

0.8 otherwise
(4.11a)

wpeak = w
3r2

2 (r2 − r1)

r3
2 − r3

1

. (4.11b)

Figure 4.1: Updraft velocity trapezoidal model (illustration from [4])

For sake of simplicity in the next analysis we will use the trapezoidal shape model
(fig. 4.1) to describe the updraft flow field over a horizontal plane,

w =


r2 ≥ d ≥ r1 δwd (d− r2)

d ≤ r1 wpeak
d ≥ r2 0

(4.12a)

δwd = − 3w

r2 (1− k3
r)

(4.12b)

This trapezoidal updraft model presents the most significant updraft field features
of the thermal models (sec. 2.5.2.1). It presents a positive updraft gradient from the
thermal skirts to the core and a constant core updraft.

From (4.12a) it is easy to notice that the local observability problem should be
divided according to d. In the two cases where d ≤ r1 and d ≥ r2 the thermal center
coordinates are unobservable, as the observation w is constant for any flight trajectory,
yielding a rank deficient observability matrix (4.10). Therefore, we will focus on the
case where the aircraft is flying through a varying updraft (w = δwd (d− r2)⇐ r2 ≥
d ≥ r1).

4.3.1.1 2D Thermal Center Localization

The 2D localization is the sole observation of the thermal center coordinates
(xT , yT ). This does not include the characterization of the updraft flow field. As
such, the 2D localization is only possible if the aircraft measuring the updraft is
flying at a constant radius from the thermal center. That is due to the fact that
there is no knowledge about the updraft field, and so the variation of the updraft
measurement cannot be interpreted. Only the measurement of a constant updraft
speed is meaningful, as it means that the aircraft is flying at a constant radius from
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the thermal center. Then, it is possible to observe the thermal position from the
flight path curvature. In this context the thermal centering controller presented by
Andersson and Kaminer [29] may be interpreted as an implicit thermal localization
algorithm. It does not explicitly estimate the thermal center, but it uses constant
updraft measurement to identify a constant radius to the thermal center.

To enable the localization of a thermal center with paths not centered on the
thermal we need to characterize the updraft flow field, i.e., the updraft outer radius
and radial gradient. The 2D localization and characterization is the estimation of
the thermal center coordinates (xT , yT ) and the updraft flow field parameters over
a horizontal plane, also called updraft flow field plane parameters. The relevant
equations are then:

Figure 4.2: Updraft observation function.

w = −δwd (r2 − d) (4.13a)

δwd = − 3w

r2 (1− k3
r)

(4.13b)

d =
√

∆x2 + ∆y2 (4.13c)

kr =
r1

r2

=

{
0.0011r2 + 0.14 r2 < 600

0.8 otherwise
, (4.13d)

where d is the aircraft distance to the thermal center, and ∆x and ∆y are the thermal
position coordinates relative to the aircraft:[

∆x
∆y

]
=

[
x− xT
y − yT

]
= d

[
cos γ
sin γ

]
, (4.14)

where x and y are aircraft position coordinates, and γ is the relative azimuth, i.e.,
the angle of the thermal center relative to the aircraft position. When the aircraft is
measuring the updraft speed (w), equations (4.13) present seven unknown variables
(δwd, r2, w, d, ∆x, ∆y, and kr). Most of these variables are illustrated in figure 4.2.
This means that we need to observe three of the variables to fully define the state.

Considering (4.14) and the aircraft kinematics described in section 2.4.2, the kine-
matic equations for the thermal/aircraft system are:[

∆u
∆v

]
=

[
Va cos (ψ) +Wx − uT
Va sin (ψ) +Wy − vT

]
=

[
∆V cos (ϕ)
∆V sin (ϕ)

]
, (4.15)
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where uT and vT are the thermal center velocity components, Wx and Wy are the
wind velocity components, Va is the aircraft airspeed, ψ is the aircraft heading, ∆V is
the norm of the relative velocity and ϕ is the relative course. Notice that the thermal
velocity influences the kinematic equations exactly as an offset of the wind velocity.

For the observability study we define the relevant state vector and observation
function (fig. 4.2) as:

x =

 d
γ
r2

 (4.16a)

h (x) = w = δwd (d− r2) , (4.16b)

yielding the process function defined below,

ẋ =

 ḋ
γ̇
ṙ2

 =

 ∆V cos (ϕ)
∆V sin (ϕ) /d

0

 . (4.17)

Therefore, the observability matrix is:

O =

 ∇h∇ḣ
∇ḧ

 = δwd

 1 0 − d
r2

0 dγ̇ − ḋ
r2

−γ̇2 ḋ (ϕ̇− 2γ̇) − d̈
r2

 . (4.18)

The determinant is,

det (O) = δw3
d

γ̇3d2 − ϕ̇ḋ2

r2

. (4.19)

Theorem IV.1. The thermal position and all the updraft flow field plane parame-
ters (4.13) are locally weakly observable by an aircraft flying trajectories with ϕ̇ 6=
γ̇ tan2 (ϕ− γ), as long as the trajectory is included in the area defined by r2 ≥ d ≥ r1.
This holds for the trapezoidal model (Fig. 4.1, eq. (4.12a)).

Proof. For d ≥ r2 and d ≤ r1 wW is constant producing a rank deficient observability
matrix. This means that the full state xT can’t be observed if d > r2 or d < r1.

When r2 ≥ rV ≥ r1 the observability matrix determinant (4.19) is not null if:

γ̇3d2 6= ϕ̇ḋ2 (4.20a)

δwd 6= 0 (4.20b)

r2 6=∞. (4.20c)

The last two conditions are true by the definition of thermals in the area defined
by r2 ≥ d ≥ r1, as the radius is limited and there is an updraft speed variation
with the distance to the thermal center. The first condition (4.20a) is equivalent to

ϕ̇ 6= γ̇ tan2 (ϕ− γ), as γ̇2d2 = ∆V 2 sin2 (ϕ− γ) and ḋ2 = ∆V 2 cos2 (ϕ− γ).

From theorem IV.1 we can define the necessary flight conditions for the observ-
ability of the thermal position and the updraft flow field plane parameters:

88



The aircraft cannot fly at a constant distance from the thermal center. This
condition is easily verified as ḋ = 0 would zero all rows but the first of the ob-
servability matrix (4.18). It is also intuitive that the aircraft should need to
sweep different distances from the thermal center to be able to estimate the flow
field shape.

The aircraft should be flying around the thermal or turning This is also in-
tuitive, as the aircraft needs to observe several points around the thermal to be
able to estimate its center. If it is not circling around the thermal (γ̇ = 0), but
it is turning (ϕ̇ 6= 0), the condition γ̇ = 0 will only be true for an instant.

4.3.1.2 2D Thermal Center Tracking and Characterization

The thermal planar tracking and characterization is an extension of the previ-
ous problem. By that we denote the estimation of the thermal center and speed
(xT , yT , uT , vT ) and the estimation of the updraft flow field parameters over the hor-
izontal plane.

The relevant state is:

xT =


xT
yT
uT
vT
r2

 . (4.21)

We divide this problem into two parts: the first is the observability of xT , yT , r2,
and the second is observability of uT , vT . The first part is solved by theorem IV.1. The
second part is an observability problem where we can consider xT , yT as observations,
and so:

x =

[
uT
vT

]
(4.22a)

h =

[
xT
yT

]
. (4.22b)

Lemma IV.2. If a system can estimate a position of a point, it can also observe the
velocity of the same point.

Proof. The observability matrix for (4.22b) is:

O = ∇


xT
yT
uT
vT

 = C


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , (4.23)

which is full rank, proving lemma IV.2.

We now may extend theorem IV.1 to moving thermals.
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Theorem IV.3. The thermal position, velocity and updraft flow field planar pa-
rameters (4.21) are locally weakly observable by an aircraft flying trajectories with
ϕ̇ 6= γ̇ tan2 (ϕ− γ), as long as the trajectory is included in the area defined by
r2 ≥ d ≥ r1. This holds for the trapezoidal model (Fig. 4.1, eq. (4.11)).

Proof. Theorem IV.3 together with lemma IV.2 prove theorem IV.1.

4.3.2 Chimney Thermal Estimator

When flying over a thermal, an aircraft is affected by the thermal local vertical
flow. As such, it may estimate the thermal state through its energy measurements.
If we compare this problem with the widely studied robot localization problem, we
may interpret the thermal as the agent being localized and the aircraft as the sensor.

Due to the global localization nature of the problem and the nonlinear nature
of the thermal model (sec. 2.5.2.2) we choose to implement a Particle Filter. We
present four Particle Filter (PF) versions (sec. 4.3.2.1, 4.3.2.2, 4.3.2.3, and 4.3.2.4)
to estimate the thermal parameters, and the respective Propagation and Observation
models (sec. 4.3.2.6 and 4.3.2.7).

The aircraft is regarded as the sensor. It is assumed that it has an avionics suite
which will provide a pose estimate to localize the energy measurements. The pose
estimate,

pUAV = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]ᵀ , (4.24)

is a vector with the position and velocity, in the ground reference frame, and the Euler
angles and angular rates (sec. 2.3). This estimation is obtained by fusing data from
a Global Navigation Satellite System (GNSS), an Inertial Measurement Unit (IMU),
and a Pitot pressure probe, which tends to yield low relative error in the short term.
Because of that, and because we are not trying to enhance the aircraft position
estimate, we will consider that estimate as ground truth for the flow measurements.
In addition to the pose, several other aircraft measurements or parameters are used
to compute the air flow energy rate.

We will now deduce the measurement equation in terms of the aircraft on-board
sensor measurements. We define Ėa as the aircraft energy rate variation caused by
the air flow, i.e., the difference between the total energy rate (3.2) and the predicted
nominal energy rate (3.8):

Ėa := −mgżV +mVaV̇a − P +
1

2
ρV 3

a S · CD. (4.25)

We may approximate the speed rate of change, by V̇a ≈ ẍB cosα, if the rate of
change of the wind speed is small, and because the sideslip-angle (β) is assumed
null. ẍB is the acceleration in the UAV x axis. Now, the measurement of Ėa may be
computed directly from

Ėa,UAV = m (VaẍB cosα− gż)− P +
1

2
ρV 3

a S · CD. (4.26)

This equation provides the aircraft measurement of the thermal updraft effect. It
will be further developed with the Observation Model (sec. 4.3.2.7).
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4.3.2.1 Particle Filter (PF)

The thermal estimation is implemented through a Particle Filter. The belief
distribution at each estimation step is represented by particles with 6 state variables
(xt = [xT , yT , uT , vT ]ᵀ ,yt = [zi, w

?]ᵀ):

Bel (xt,yt) = P
(

xt,yt|x1:t−1,y1:t−1, Ėa1:t

)
, (4.27)

where xT and yT are the thermal center coordinates, uT and vT are the respective ve-
locity components, and zi and w? are the mixing-layer state parameters (sec. 2.5.2.2).

Each particle is a hypothesis of the current state. At each step, particles are
propagated, evaluated and resampled, to create a new estimate. The particles are
propagated through the propagation model described in section 4.3.2.6. The obser-
vation model, also presented in section 4.3.2.7, provides a measurement of likelihood
of the hypothesis represented by each particle. The resampling prunes the unlikely
particles (hypotheses).

In this implementation, the standard particle filter suffers from degeneracy prob-
lem, i.e., the particles converge to a hypothesis that is not the correct one. This
happens due to the small number of particles used to represent the initial belief
distribution, when compared to the state size.

4.3.2.2 Adaptive Particle Filter (APF)

Thrun et al. [64] present an adaptive version of the Particle Filter (in section
8.3.5). This version is able to cope with the global localization problem. It uses a
combination of resampled particles and random particles at each update step. In
this work, the method is used to increase the sample diversity when the quality of
the estimate decreases. It is assumed that the particles’ average likelihood evaluates
the estimation quality at each step. This is used as a driver to set the relation
between resampled and random particles. The implemented algorithm (Appendix A,
lines 10 to 13 and 18) uses the average likelihood to set how many of the particles
are resampled or randomly generated. Decreasing likelihoods lead to more random
particles. No random particles are generated when the filter converged to a likely
estimate.

4.3.2.3 Regularized Particle Filter (RPF)

Ristic et al. [65] describe the Regularized Particle Filter (in section 3.5.3). This
method was developed to reduce the degeneracy problem. The RPF does not resample
directly from the propagated particle set, which is a discrete approximation of the
prior probability distribution. RPF resamples from a continuous approximation of the
posterior probability distribution, by actively jittering the resampled particle values:

x
[i]?
t = x

[i]
t + hopt ·Dtεi (4.28)

where εi is a sample from a Gaussian distribution, Dt is such that DtD
ᵀ
t = St, St

is the empirical covariance matrix, and hopt =
[

4
(nx+2)N

] 1
nx+4 is the optimal Gaussian
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kernel bandwidth, function of the state dimension (nx) and the number of particles
N . On the current implementation (Appendix A, lines 15 to 22) the kernel bandwidth

was set to h = kB ·
[

1
2NRSpl

]0.1

. The tuning gain kB (= 0.15) was needed to guarantee

the estimation convergence, as the initial distribution of particles was leading to a
divergence of the filter.

4.3.2.4 Regularized Adaptive Particle Filter (RAPF)

The current implementation mixes both Regularized and Adaptive methods (Ap-
pendix A). The regularization increases sample diversity, allowing a smaller genera-
tion of random particles by the adaptive part. This leads to a stronger convergence,
yet enables the filter to avoid wrong convergences, i.e., the convergence of the particle
positions to one far from the real position.

4.3.2.5 Particle Generation

Figure 4.3: Particle generation

When a thermal is first detected, e.g., by the observation of an updraft, the PF is
initialized. As the thermal localization is a global localization problem, no initial state
can be assumed. As such, a particle generation function was developed (Appendix
A, line 23) to generate an initial estimate with random particles. Three rules define
the particle generation. The new particles’ position (xT , yT ) distribution is uniform
on a bounded radius around the aircraft. The drift velocity (uT , vT ) distribution is
also bounded by the drift speed constraint. The mixing-layer altitude (zi) and the
convective velocity scale (w?) are sampled from Gamma distributions, derived from
table 2.2 data. Figure 4.3 illustrates the typical particle generation distribution.

4.3.2.6 Propagation Model

The thermal center motion dynamics are described by:

ẋT = A · xT + εT (4.29)

where εT is the thermal center disturbance vector. The dynamics can be discretized
in time, yielding

xT,t = At · xT,t−1 + εT (4.30)
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with

At =


1 0 1

∆t
0

0 1 0 1
∆t

0 0 1 0
0 0 0 1

 (4.31a)

εT =


0
0
εuT
εvT

 (4.31b)

√
ε2
uT + ε2

vT ∼ N
(
0, δ2

Drift

)
, (4.31c)

where εT is the thermal center disturbance vector and δDrift is the drift velocity rate
of change.

The mixing-layer dynamics are described by:

ẏT = εM (4.32)

where εM is the mixing-layer disturbance vector. The dynamics can be discretized in
time, yielding

yT,t = yT,t−1 + εM (4.33)

with

εM = [εzi , εw∗]
ᵀ (4.34a)

εzi ∼ N
(
0, δ2

zi

)
(4.34b)

εw∗ ∼ N
(
0, δ2

w∗
)
, (4.34c)

where εM is the mixing-layer disturbance vector, δzi and δw∗ are the mixing-layer
altitude and convective velocity scale rates of change, respectively.

4.3.2.7 Observation Model

The aircraft can observe the thermal through its unexpected energy variation. The
estimate of the aircraft energy variation depends on the engine model, the drag at
the current speed and attitude, the aircraft acceleration, and the altitude variation.

The updraft energy rate observation (Ėa) may be described by

Ėa = Ė − Ėn ≈ h (xT ,yT ,pUAV ) + εĖ. (4.35)

This is derived from (3.2) and (3.8). It follows that,

h (xT ,yT ,pUAV ) = −mgWz −mVa
[

cos γa
− sin γa

]ᵀ
JW

[
ẋ
ż

]
. (4.36)

This equation constrains the movement to the XZ plane. The expansion to the
general 6DOF case is done by expanding x to the XY plane. Similar to what was
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discussed in section ??, the flow field Jacobian matrix is now:

JW =


∂Wx

∂x
∂Wx

∂y
∂Wx

∂z
∂Wy

∂x

∂Wy

∂y

∂Wy

∂z
∂Wz

∂x
∂Wz

∂y
∂Wz

∂z

 . (4.37)

So, the expansion of (4.36) yields:

h (xT ,yT ,pUAV ) = −mgWz −mVa

 cosψ cos γa
sinψ cos γa
− sin γa

ᵀ JW

 ẋ
ẏ
ż

 . (4.38)

The vertical wind velocity is the thermal updraft speed (Wz = w) calculated from
equations (2.76), (2.77), (2.78), (2.79), and (2.80). To compute this speed we need to
define d, the distance to the thermal center:

d =

√
(xT − x)2 + (yT − y)2, (4.39)

and the aircraft altitude in the thermal (z). In this case we are considering constant
horizontal wind speed, yielding:

JW =

 0 0 0
0 0 0

∂Wz

∂x
∂Wz

∂y
∂Wz

∂z

 , (4.40)

and so

h (xT ,yT ,pUAV ) = mVa sin γa

 ∂Wz

∂x
∂Wz

∂y
∂Wz

∂z

ᵀ  ẋ
ẏ
ż

−mgWz. (4.41)

The observation uncertainty (εĖ) has two components. The component due to
thermal updraft variability has a similar magnitude to that of h, when the UAV is
inside the thermal:

εĖ,Thermal ∼ N (0, kU · h (xT ,yT , z)) (4.42)

In addition to this, the uncertainty depends on the aircraft sensing noise and the
wind disturbances:

εĖ,Sens+Wind ∼ N (0, kSW ) . (4.43)

As such we can model εĖ as:

εĖ = εĖ,Thermal + εĖ,Sens+Wind ∼ N (0, kU · h (xT ,yT ,pUAV ) + kSW ) . (4.44)

4.3.2.8 Simulation Results

A simulator was built to test the thermal estimator. The simulation includes
an Unmanned Aerial Vehicle (UAV) measuring the vertical flow speed. The UAV
motion was simulated by a standard unicycle model (sec. 2.4.2). In the simulation
the UAV is not commanded to circle inside the thermal, but rather to execute random
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passes inside the thermal from time to time. This shows that the estimator doesn’t
require the UAV to be inside the thermal permanently nor any constrained trajectory.
The waypoint controller randomly selects waypoints in a grid moving with the center
of the simulated thermal. This grid was a square with 100 by 100 meters. The
thermal simulation included noise in the drift direction and speed. The mixing-layer
parameters (Zi and w∗) noise was simulated by a Random Walk. Additionally, the
updraft speed was also affected by a gain factor, which was set by a Scalar Gauss-
Markov Process. No other measurement noise was added.

Table 4.1: Estimators performance

Localization error Strength error Update time

Filter (µerr ± σerr) (µerr ± σerr) (µT ± σT )

PF ∞ - -

APF (600part) 102± 16 m 17, 9± 1, 9 W 0, 038± 0, 0012 s

APF (2000part) 40± 12 m 12, 7± 1, 2 W 0, 152± 0, 0154 s

RPF (600part) 127± 97 m 26± 11 W 0, 044± 0, 0028 s

RPF (2000part) 27± 17 m 13± 7, 5 W 0, 184± 0, 0096 s

RAPF(600part) 14.6± 9, 7 m 9.7± 3, 5 W 0, 042± 0, 0013 s

Filter Quality

PF Converges to a wrong solution

APF (600part) Produces an unstable solution

APF (2000part) Produces an unstable solution

RPF (600part) Sometimes converges to a wrong solution

RPF (2000part) Converges to a good solution

RAPF(600part) Converges to a good solution

Figure 4.4: RAPF convergence

Table 4.1 compares the performance of the various filters. As indicated the stan-
dard Particle Filter (PF) is not a good solution for this problem since, with a reason-
able number of particles, it presents unreliable convergence. The Adaptive Particle
Filter (APF) is not a good alternative, although its estimates are closer to the true
state than the standard Particle Filter (PF) estimates. The average estimation error
is close to the average thermal radius, providing poor information. Further, the es-
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timate is very unstable, jumping all around the true state. The Regularized Particle
Filter (RPF) is a better solution. With a low quantity of particles (600) it is not very
reliable, often suffering from the same problems as the standard PF. With more par-
ticles the confidence level on a correct lock-on is also higher, showing good reliability
with 2000 particles. The Regularized Adaptive Particle Filter (RAPF) is the best
choice. It converges on a good solution and is stable as illustrated in figure 4.4. The
regularization enables a good convergence and the adaptive part allows it to identify
and exit erroneous convergence processes. The reliability is a lot higher than RPF for
the same number of particles. The required computation time is smaller than for any
of the simpler Particle Filters (PFs), because fewer particles are needed for a good
convergence, as illustrated by the last line of table 4.4. It may also be adjusted to
the computation capacity at hand, affecting primarily the convergence time and not
the final estimation error.

Figure 4.5: RAPF estimation performance

Figure 4.5 shows some performance evaluation plots over a simulated flight. The
top plot illustrates an initial convergence of the thermal center position estimate
towards the real position. This is followed by strong divergence after which the es-
timator converges to the correct solution, with a position error below 25 m. The
thermal radius and mixing-layer altitude (Zi) estimates (3rd and 4th plots) also show
the same behavior. The convection velocity scale (w∗, last plot) shows a stable con-
vergence throughout the simulation. The energy rate prediction (2nd plot) is quite
close to the measured one, providing a good input for a future trajectory controller.

Good estimation results were obtained with a 5Hz update rate, although lower
rates may be used with low estimation degradation. Table 4.1 also shows that the
RPF and RAPF results were obtained with a computation time quite suitable for real
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time estimation (≈ 1
5

of the update time, in MatLab R©, on a Intel R© Core
TM

2 Duo
CPU, T9300 @ 2.5GHz).

4.3.3 Flight Results

The thermal estimator requires the knowledge of the lift, drag, and thrust forces.
To estimate these forces we implemented an aircraft parameter identification system.
This identification system observes the parameters of the full 6 Degrees-of-Freedom
(DOF) model (sec. 2.4.7), using a time domain recursive least-squares observer,
described in [40].

The preliminary flight tests showed that the system needs to be improved as the
lift, drag, and thrust estimates are too noisy for the thermal estimator. The poor
performance is probably due to lack of a sensor for the Angle-of-Attack (AOA). One
solution described by Morelli [66] requires the implementation of an extra estimation
layer for the air flow angles, i.e., the AOA and the side-slip angle. The solution
described is based on a frequency domain observer, which by itself yields less noisy
and more accurate results. We intend to improve our aircraft parameter identification
system with this solution and then continue with the thermal estimator flight tests.

4.3.4 Bubble Thermal Estimation

To localize and estimate the parameters of Bubble Thermals we implemented a
similar system to the one described above. The propagation and observation models
are quite similar to the ones described for the Chimney Thermals estimator (sec.
4.3.2.6 and 4.3.2.7), with some adaptations based on the Bubble Thermal model (sec.
2.5.2.5). However, the results were not as good as for the Chimney Thermals. The
Bubble Thermal Particle Filter version requires a lot more particles than the Chimney
Thermal Particle Filter, for similar results, or even convergent estimation processes.
The number of required particles is higher due to the increased complexity of the
Bubble Thermal model. Therefore, a similar implementation to one for the Chimney
Thermals is not suitable for real time estimation, as the larger number of particles
with more model state variables requires a lot more processing time.

A future solution for the estimation of Bubble Thermals is the use of two combined
estimators. The nuclear one is a Regularized Adaptive Particle Filter (RAPF) to
estimate the 2D thermal updraft parameters. This estimator was tested and yields
localization results similar to those of the Chimney Thermal RAPF, with slightly
more error when the aircraft changes altitude. Its main task would be to provide
preliminary information to allow the aircraft to maintain a flight path around the
thermal, and also to the more complex 3D estimator. With the data from the 2D
estimator, the complete 3D Bubble Thermal estimator would run with a slower update
rate, using measurements batches, i.e., sets of measurements accumulated between
updates. Its output should improve the overall estimation predictions of the Bubble
vertical motion and shape.
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4.4 Wind Shear Estimation

This section deals with the estimation of wind shear phenomena. We focus on
vertical wind shear, as surface, inversion, and jet stream shear are quite steady phe-
nomena. Birds learn how to use these phenomena. UAVs may be programmed to
do the same. The main requirements are: knowing the wind shear characteristics
and controlling the aircraft to execute an energy harvesting flight path. The con-
trol methods developed by Lawrance and Sukkarieh [3, 67, 35] require knowledge of
the surrounding flow field. These phenomena occur over large areas, which makes it
difficult to characterize them as a whole.

Lawrance and Sukkarieh’s solution for this characterization is a Gaussian pro-
cess (GP) regression that describes the flow field over spatially distributed points.
The approach we propose is a model-based estimation, requiring few characteriza-
tion parameters. As such, we simplify the phenomena to uniaxial (z) wind vector
variations, i.e., define the wind vector as a function of the altitude only. We further
distinguish the vertical wind shear phenomena in Surface and Layer Shear Wind, as
the flow gradient is different for each phenomenon.

To estimate the wind shear parameters we developed a Particle Filter. Parti-
cle Filters handle nonlinearities well and may be extended to simultaneously localize
several different wind shear layers. We describe the adequate propagation and the ob-
servation models for Surface and Layer Wind Shear phenomena to use with Bayesian
filters. These models are based on the wind shear models described in 2.5.1. We then
present a Particle Filter estimator for Surface Wind Shear, which is similar to the
simpler Particle Filter version presented above for thermals estimation. Further, we
describe the estimator mechanics and the results obtained, which are quite promising.

As in the case of thermals, the fact that an aircraft is affected by the air flow
makes it a potential source of information about the wind shear. The aircraft may
estimate the flow field state through its sensor measurements. This estimate is usually
obtained through a flow field observer. If we regard the aircraft with its sensors and
a flow field observer as a single system, this can now be considered as a sensor for the
wind shear phenomena.

In this context, the relevant aircraft measurements are the local wind vector w =
[Wx,Wy]

ᵀ and the aircraft position vector xAC = [x, y, h]ᵀ, where h is the altitude
above ground level. It is assumed the aircraft can estimate its position with good
enough accuracy to take it as ground truth for the wind shear estimator. We prove
next that the wind components are observable so that these can be used to estimate
the wind shear.

4.4.1 Wind Observability

The wind estimation is essential for wind shear estimators. In this section we
prove that it is possible to build a wind observer.
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Let us consider the aircraft kinematic equations described in section 2.4.3,

ẋ = Va cosψ +Wx (4.45a)

ẏ = Va sinψ +Wy (4.45b)

ψ̇ = ω (4.45c)

V̇a = ax, (4.45d)

where Wx and Wy are the wind velocity components, Va is the aircraft airspeed, ψ
is the aircraft heading, and ax is longitudinal acceleration, i.e, the acceleration over
the axis that results from the projection of the aircraft body longitudinal axis (xB)
onto the the horizontal plane (XYG).

Assumption IV.4. The aircraft avionics include a GNSS localization system, an
IMU, and a Pitot pressure probe, which can output ẋ, ẏ, Va, ω, and ax.

If we have a heading sensor, such as a magnetometer, the equations in (4.45)
are enough to compute Wx and Wy. If there is no explicit heading sensor we have to
estimate Wx, Wy, and ψ. Therefore we define the relevant state and the measurement
function as:

x =

 Wx

Wy

ψ

 (4.46a)

h =

[
ẋ
ẏ

]
. (4.46b)

The observability matrix is then:

O = ∇


ẋ
ẏ
ẍ
ÿ

 =


1 0 −Va sinψ
0 1 Va cosψ
0 0 −ax sinψ − Vaω cosψ
0 0 ax cosψ − Vaω sinψ

 , (4.47)

and the determinant of OᵀO is:

det (OᵀO) = det

 1 0 −Va sinψ
0 1 Va cosψ

−Va sinψ Va cosψ a2
x + V 2

a (1 + ω2)

 = a2
x+V 2

a ω
2. (4.48)

Theorem IV.5. The wind components are locally weakly observable by an aircraft as
long as its kinematics observe (4.45), and its sensors can measure ẋ, ẏ, Va, ω, and
ax. Further, the aircraft needs to be turning (ω 6= 0) or accelerating forward (ax 6= 0).

Proof. From (4.48) it is easy to verify that the observability matrix is full rank either
if the aircraft is accelerating forward (ax 6= 0), or if it is turning ω 6= 0, as the aircraft
must have a minimum velocity (Va ≥ VStall > 0) to fly.
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4.4.2 Wind Shear Propagation Models

We now describe the Surface and Layer Wind Shear propagation models, used
with the Bayesian estimators. The models are based on wind shear models described
in 2.5.1. In these models we also define the phenomena state vectors that are used in
the observation models.

4.4.2.1 Surface Wind Shear

The Surface Wind Shear state vector is xSWS = [WSWS,6, ψSWS, hSWS,0]ᵀ, where
WSWS,6 is the wind speed at 6 meters above ground level due to the Surface Wind
Shear, as specified in the Military Specification MIL-F-8785C [44]. ψSWS is the Sur-
face Wind Shear mean direction, which we assume constant from the ground level
to the reference altitude, 6 meters in this case. hSWS,0 is roughness altitude, which
defines the Surface Wind Shear gradient shape. The gradient dynamics are described
by:

ẋSWS = εSWS, (4.49)

where εSWS is a disturbance vector. The dynamics can be discretized in time, yielding

xSWS,t = xSWS,t−1 + εSWS, (4.50)

with εSWS ∼ N
(

0,
[
δ2
WSWS,6

, δ2
ψSWS

, δ2
hSWS,0

]ᵀ)
and δ(·) are the horizontal wind ve-

locity, the wind shear direction, and roughness altitude rates of change, respectively.
These rates of change account for the parameters’ time variation and for the spatial
variation of the aircraft position.

An alternative propagation model for the Surface Wind Shear is one which allows
the reference altitude to vary from that of the MIL-F-8785C [44]. The state vector
would then be xSWS = [hSWS,ref ,WSWS,ref , ψSWS, hSWS,0]ᵀ, where hSWS,ref is the gra-
dient reference altitude, WSWS,ref is the average horizontal wind velocity at hSWS,ref ,
ψSWS is the Surface Wind Shear main direction, and hSWS,0 is roughness altitude.
The gradient dynamics are now described by:

hSWS,ref,t = hSWS,ref,t−1 + εhSWS,ref
(4.51a)

WSWS,ref,t = WSWS,ref,t−1
ln (hSWS,ref,t/hSWS,0,t−1)

ln (hSWS,ref,t−1/hSWS,0,t−1)
+ εWSWS,ref

(4.51b)

ψSWS = ψSWS,t−1 + εψSWS
(4.51c)

hSWS,0,t = hSWS,0,t−1 + εhSWS,0
(4.51d)

(4.51e)

with εhSWS,ref
∼ N

(
0, δ2

hSWS,ref

)
, εWSWS,ref

∼ N
(

0, δ2
WSWS,ref

)
, εψSWS

∼ N
(
0, δ2

ψSWS

)
,

and εhSWS,0
∼ N

(
0, δ2

hSWS,0

)
. δ(·) are the Surface Wind Shear reference altitude, the

horizontal wind velocity, the wind shear direction, and the roughness altitude rates
of change, respectively.
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4.4.2.2 Layer Wind Shear

The Layer Wind Shear state vector is xLWS =
[
hLWS,∆hLWS,wLWS,∆wLWS

]ᵀ
,

where hLWS is the mean altitude of the wind shear layer, ∆hLWS is wind shear layer
height, wLWS and ∆wLWS are the horizontal wind vector mean and the variation
vector over the wind shear layer. As with the Surface Wind Shear, this is only a
correct representation of the Layer Wind Shear if we assume a constant wind gradient
direction. The gradient dynamics are described by:

ẋLWS = εLWS, (4.52)

where εLWS is a disturbance vector. The dynamics can be discretized in time, yielding

xLWS,t = xLWS,t−1 + εLWS, (4.53)

with εLWS ∼ N
(

0,
[
δ2
hLWS

, δ2
∆hLWS

, δ2
µW,LWS

ᵀ
, δ2

∆WLWS

ᵀ
]ᵀ)

and δ(·) are the rates of

change of all the Layer Wind Shear state parameters, respectively. As with the
Surface Wind Shear parameters, these rates of change account for the parameters’
time variation and the change with spatial variation of the aircraft position.

4.4.3 Wind Shear Observation Models

We now describe the Surface and Layer Wind Shear observation models, to use
with Bayesian estimators. As the propagation models, these are based on wind shear
models described in 2.5.1.

The horizontal wind vector observation (wH) may be described by

wH = [Wx,Wy]
ᵀ ≈ h (xWS,xAC) + εWH

, (4.54)

where Wx and Wy are estimated with a wind observer.
The observation uncertainty (εWH

) is caused mainly by gusts, but also by the
aircraft sensing noise, i.e., the wind observer errors. As such, it may be defined as:

εWH
= εWH,Gust

+ εWH,Sens
(4.55a)

εWH ,Gust ∼ N
(
0, kGust · ŵH

)
(4.55b)

εWH ,Sens ∼ N (0, σWObs) , (4.55c)

where ŵH is the estimate of the average horizontal wind, σWObs is the wind observer
uncertainty vector, and kGust is a dimensionless ratio relating the wind variation with
the wind average:

kGust =

√
E

[(
‖wH‖ − ‖wH‖

)2
]

‖wH‖
. (4.56)

4.4.3.1 Surface Wind Shear

The Surface Wind Shear observation model is derived from (2.59):

ŵH = h (xSWS,xAC) = WSWS,ref
ln (h/hSWS,0)

ln (hSWS,ref/hSWS,0)

[
cosψSWS

sinψSWS

]
. (4.57)
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Figure 4.6: Surface Wind Shear profile (sec. 2.5.1.1).

4.4.3.2 Layer Wind Shear

The Layer Wind Shear observation model is derived from (2.62):

ŵH = h (xLWS,xAC) = whmin,LWS +
∆wLWS

2

[
1 + erf

(
4
h− hLWS

∆hLWS

)]
, (4.58)

where whmin,LWS = wLWS − ∆wLWS

2
.

(a) Wind speed profile (b) Wind speed gradient

Figure 4.7: Layer Wind Shear Gaussian model.

4.4.4 Particle Filter (PF)

We now describe the Particle Filter implemented to estimate the Surface Wind
Shear parameters. The belief distribution at each estimation step is represented by
particles defined by the state vector xSWS. Each particle is a hypothesis of the current
state. At each step, particles are propagated, evaluated and resampled to create a
new estimate. The particles are propagated through the propagation model described
in section 4.4.2. This step allows the filter to track the state evolution and represent
the uncertainty. The observation model, presented in section 4.4.3, generates the
expected observation for each particle. This is combined with the aircraft observation
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to provide a likelihood measurement of the hypothesis represented by each particle.
The resampling prunes the unlikely particles (hypothesis).

4.4.4.1 Particle generation

Figure 4.8: Surface Wind Shear ”roughness” altitude distribution generated

The estimation particles are generated when the aircraft is low enough to mea-
sure the effect of the Surface Wind Shear. The current application of Particle Filter
assumes a fixed reference altitude as specified in MIL-F-8785C [44]. The generated
particles represent the distribution of the ”roughness” altitude as illustrated in figure
4.8. The reference wind vector distribution is centered on the current wind measure-
ment adjusted for the reference altitude (2.59), with a Gaussian distribution. Figure
4.9 illustrates the typical particle generation distribution, in terms of wind vector.

Figure 4.9: Particle generation

4.4.4.2 Simulation Results

The results presented next were obtained through multiple simulations of aircraft
flights sweeping the wind shear altitude. The aircraft was simulated by an extended
unicycle model, which included altitude variations (sec. 2.4.4). In the simulation the
aircraft is commanded to sweep a range of altitudes, including those affected by wind
shear phenomena. The wind simulation summed the wind shear effects to gusts. The
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gusts were generated by a Gauss-Markov process, which simulates well the kind of
sensing noise the system would be subject to in reality.

Figure 4.10: Surface Wind Shear Particle Filter cycle run time with the number of estima-
tion particles.

(a) Reference wind vector estimation error (b) ”Roughness” altitude estimation error

Figure 4.11: Surface Wind Shear parameters estimation error as a function of the number
of particles in the PF. The higher variances and maxima for the test sets with less than 200
particles result from convergence instability presented by the estimator, due to the deficient
representation of the probability distributions by the particle sets.

We run the 20 independent simulations with each particle quantity choice to sta-
tistically characterize the developed Particle Filters. As expected the time required
by the Particle Filter for each estimation cycle grows almost linearly with the number
of particles (fig. 4.10). However the estimation quality doesn’t improve linearly with
the number of particles. In fact, for the Surface Wind Shear the estimation quality
is almost the same for 200 estimation particles or more (fig. 4.11). In MatLab R©,

on a Intel R© Core
TM

2 Duo CPU, T9300 @ 2.5GHz, a Particle Filter estimation cycle
takes less then 5 × 10−3s. Further, the Particle Filter doesn’t need to run at more
than 5Hz to obtain good quality estimations. This means that this Particle Filter
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with 200 particles can run in real time, with almost no extra load to the processor,
and good quality estimates.

The average wind prediction error (fig. 4.12) is mostly under half a meter per
second. This error is mostly due to the gusts, as the filter is estimating the effect of
the steady wind shear and not the gusts.

Figure 4.12: Wind prediction error of Surface Wind Shear Particle Filter with the number
of estimation particles.

4.5 Conclusions

We showed that it is feasible to estimate the relevant parameters of the flow field
phenomena, in particular: thermals, wind, and wind shear. We proved that the
phenomena parameters are observable and developed estimation methods based on
Particle Filters. The Particle Filter estimation methods simulation showed processing
times that allow a real time estimation. The computation requirements seem quite
suitable for small UAVs with low computational power, as was intended. This is
important to these UAVs as it enables them to harvest energy from the observed
phenomena.

The Chimney Thermal estimator presented in section 4.3.2 is capable of localizing
and characterizing atmospheric thermal flows in real time. The global localization
nature of the problem and the nonlinear nature of the model pointed to the Particle
Filters as the most suited estimators. The implemented Particle Filter uses a detailed
thermal updraft model that provides a better position tracking. From the four Particle
Filter versions presented and tested, the Regularized Adaptive Particle Filter (RAPF)
yielded the best performance, running in real time with very good reliability.

The Surface Wind Shear estimator developed in section 4.4.4 also presented very
promising performance. We showed that a simple Particle Filter with 200 particles
is very well suited for real time estimation of the Surface Wind Shear parameters.
We were able to estimate and track the Surface Wind Shear effects using a Particle
Filter with only three parameters. This avoids the need to maintain a time history
of the observed flow field or a spatially distributed characterization of it.
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CHAPTER V

Control

5.1 Introduction

This chapter describes two control tools developed to support the study of flow
fields. We identified the need for airflow data to characterize the flow field in indi-
vidual thermals, and verify the internal flow field models described in section 2.5.2.1.
We have not found any study referring to airflow data collected inside thermals that
could be useful for this validation. As mentioned in section 2.5.2.9, the studies we
found referring to real data from thermals are from Lenschow and Stephens [36] and
from Allen [4], and can’t provide any information on the thermal’s internal flow field
structure.

Figure 5.1: Spatially distributed data collection of a thermal updraft airflow.

To acquire useful data to validate the different thermal models we envisioned a
system that could observe the flow field in several spatially distributed points simul-
taneously. We may use several Unmanned Aerial Vehicles (UAVs) to observe the
airflow in several points simultaneously. Small UAVs fly slowly enough to maneuver
inside individual thermals and to obtain a dense spatial sampling. As we need to
characterize the flow field vertically but also horizontally, we need the UAVs to be
able to fly safely in close proximity at the same altitude (fig. 5.1).

We study and implement algorithms that control a safe flight in close proximity.
We started by studing Collision Avoidance Systems (CASs) and the challenges in-
volved (sec. 5.2). We implemented a CAS control system in an indoor testbed with
helicopters and studied how to prove the system safety. With the experience gained
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with initial CAS implementation, and taking into account that we wanted to have
fixed wing UAVs flying at the same altitude, we decided to design a formation flight
controller with collision avoidance (sec. 5.3).

5.2 Collision Avoidance System for Close Proximity Operations

5.2.1 Related Work

Airborne aircraft collision avoidance is a current and challenging control topic.
Bicchi and Pallottino presented a tutorial at ICRA 2006 with an extensive overview
of collision avoidance methods [68]. The Traffic Alert and Collision Avoidance Sys-
tem (TCAS) was created to avoid aircraft collisions, acting only as a last resort system
[69]. A common research approach was the use of the optimal control formulation
framework which allowed researchers to gain valuable insight into the problem struc-
ture and possible solutions [70, 71, 72, 73, 74]. The biggest handicap of these methods
is the centralized formulation and its scalability. Jardin presents an optimal control
method to guide two aircraft and avoid collisions between them [75]. This method
should maintain near optimal paths even in the presence of collision avoidance ma-
neuvers, which disturb the individual aircraft paths. In reference [76], Borrelli et al.
describe distributed Receding Horizon Control (RHC) as a feasible solution even for
a large number of aircraft. Tomlin et al. [77] studied multiagent conflicts under a
hybrid systems framework. They describe a method based on the Hamilton-Jacobi-
Isaacs PDE to generate conflict resolution trajectories that are provably safe for two
aircraft. This method computes the reachable set of the hybrid system accounting for
nonlinear dynamics of the vehicles and the intent uncertainty of one of the aircraft.
Hoffmann and Tomlin developed and demonstrated decentralized collision avoidance
algorithms for Vertical Takeoff and Landing (VTOL) vehicles [78]. They present
one algorithm for two vehicles and another for more vehicles. These algorithms have
proven safety and low computational cost. Real tests were performed with STARMAC
[79]. Pallottino et al. address the problem of complex hybrid automata verification
for decentralized control systems [80]. The authors use probabilistic verification, as
classical approaches are difficult to apply. The goal is to prove safety and liveness
properties, assuring collision avoidance and goal completion.

Another approach to collision avoidance is the application of SoftWalls. This type
of methods was proposed by Edward Lee in response to the September 11, 2001 terror-
ist attacks with airline aircraft [81]. The goal was to create a flight control system to
prevent aircraft from entering no-fly zones. Cataldo presents a comprehensive study
on this topic as well as an implementation for “half world” no-fly zones [82]. This
method can also be applied to moving objects.

5.2.2 General Problem

The system under analysis [83] is a pair of autonomous helicopters flying on the
same horizontal plane, referred to as UAVs from here on. A CAS was implemented to
prevent collisions between both vehicles. The CAS controls each UAV through a lower
level Flight Control System (FCS). The CAS is composed of a Path Deconflicting Al-
gorithm (PDA) and by a Close Proximity Collision Avoidance Algorithm (CPCAA).
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The PDA detects probable conflicting trajectories and generates alternative collision
free ones, if needed. The CPCAA detects if the UAVs are too close to each other and
forces the separation.

This system can be described mathematically by

.

C = f (C) + u (C) , (5.1)

where C = {x1,x2} ∈ R4 is the system state, with x1 = {x1, y1} and x2 = {x2, y2}.
f (C) models the system natural dynamics and u (C) introduces the effects of the
controls.

The goal of this work was to create and describe a control system which would
enable the operation of two vehicles in close proximity while avoiding any collision.
The CAS methods are formally described in section 5.2.6. Section 5.2.7 describes the
hybrid automata modeling the whole system dynamics. These models differ in the
motion and control dynamics. We complete these models with the proofs of safety
and liveness in appendix B. These proofs cover some of the dynamic models, such
as single integrator or double integrator dynamics, and double integrator dynamics
with control delays.

Although the goal of this work is to prove that the CAS avoids any and every
collision, history tells us that such a constraint should sometimes be relaxed. The
deconfliction method for British bombers in the World War II allowed an average
of 1 collision among 1000 bombers during the bombing stage, reducing the average
shutdown of aircrafts [84]. As such, we should evaluate very carefully the hard con-
straints we impose on our systems, “else we could someday do the equivalent of what
the British pilots [from WWII] were about to do; avoid accidents and die in the process
due to another problem” [84].

5.2.3 Nomenclature

xi - Position of UAV i

xWPi - Position of current UAV i waypoint

∆xij - Relative position between the two UAVs (xj − xi)

∆xi WP - Relative position between the UAV i and its current waypoint (xWPi−xi)

∆xi WP
ij - Relative position between the two UAVs, in the reference frame attached

to xi WP

∆xi WP
j WP - Relative position between the UAV j and its current waypoit, in the refer-

ence frame attached to xi WP

vi - Velocity of UAV i

vcmd,i - Commanded velocity of UAV i

∆vij - Relative velocity between the two UAVs (vj − vi)

Vai - Avoidance maneuver speed of UAV i
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Vci - Cruising speed of UAV i

rci - Collision radius of UAV i

rDi - Deconflicting radius of UAV i

rsi - Safety radius of UAV i

dWPi - Arrival assessment distance (from UAV i to the target waypoint)

5.2.4 Mathematical Background

5.2.4.1 Temporal Logic

Temporal logic is a logical basis for proving system properties [85, 86, 87]. To
implement this logic we use immediate and temporal assertions. To assert a state we
make use of Propositional Logic (PL) and First-Order Logic (FOL) primitives and
add Temporal Logic (TL) primitives.

Immediate assertions: sk |= p (t) - p has the value true for state sk at time t : p (t)

holds for sk, or sk satisfies p (t). As an example, sk |= x =
(

[1, 0.5]T
)

(10)

means that for state sk the vector x components are x1 = 1 and x2 = 0.5 at
time 10.

Temporal assertions: σ |= p (t) - p has the value true for the string of states σ.
Furthermore, σ |= p (t) IFF s0 |= p (t), where s0 is the initial state of σ.

Propositional logic primitives:

∼ - not

∧ - and

∨ - or

⇒ - implies

⇔ - equivalent

First-order logic primitives:

∀ - for all

∃ - there exists

Temporal logic primitives

(�p) (t0)⇔ ∀t ≥ t0, p (t) - “p is true now and forever” (always)

(♦p) (t0)⇔ ∃t ≥ t0, p (t) - “p is true now or in the future” (eventually)

(◦p) (t0)⇔ p
(
t+0
)

- “p is true at the next instant”

(µq, p) (t0)⇔ ∃t ≥ t0, q (t) ∧ ∀τ ∈ [t0, t) , p (τ) - “p is true until q is true”
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Derived relations (in reference [85])

1. � and ♦ are duals of each other by

♦P ≡∼ � ∼ P (5.2)

2. (p→ q) (t) ≡ (� (p⇒ ♦q)) (t) - p (t) leads to q (t)

3. If sk |= p (t) ,∀sk ∈ Q and Q is the state space of the system S, then S |= p (t)

4. S |= p (t)⇒ S |= (�p) (t)

5. (� (p⇒ q)) (t)⇒ (p→ q) (t)

6. (� (p ∧ q)) (t) ≡ (�p ∧�q) (t)

7. (♦ (p ∨ q)) (t) ≡ (♦p ∨ ♦q) (t)

8. (�p ∨�q) (t)⇒ (� (p ∨ q)) (t)

9. (�p ∧� (p⇒ q)) (t)⇒ (�q) (t)

10. (♦p) (t) ∨ (� ∼ p) (t)

11. ((p→ q) (t) ∧ (q → r) (t))⇒ (p→ r) (t)

12. ((p→ r) (t) ∧ (q → r) (t))⇒ ((p ∨ q)→ r) (t)

13. ((p ∧�q)→ r) (t)⇒ ((p ∧�q)→ (r ∧�q)) (t)

5.2.4.2 Other Definitions

Definition V.1 (Internal Product). The internal product of any two vectors u ∈ Rn

and v ∈ Rn is represented here by 〈u |v〉 and is defined as:

〈u |v〉 = uT · v =
n∑
i=1

ui · vi (5.3)

Definition V.2 (Parallel Projection). The parallel projection of vector v ∈ Rn onto
a vector u ∈ Rn is represented here by 〈u‖v〉 and is defined as:

〈u‖v〉 = 〈û |v〉 =
〈u |v〉
‖u‖

=
〈u |v〉√
〈u |u〉

(5.4)

Definition V.3 (Perpendicular Projection). The perpendicular projection of vector
v ∈ R2 onto a vector u ∈ R2 is represented here by 〈u ⊥ v〉 and is defined as:

〈u ⊥ v〉 =

〈[
0 −1
1 0

]
u

∥∥∥∥v

〉
(5.5)

The perpendicular projection is a parallel projection applied to a vector rotated
90 degrees from the original.
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Definition V.4 (Absolute Perpendicular Projection). The absolute perpendicular
projection of vector v ∈ R2 onto a vector u ∈ R2 is represented here by |u ⊥ v| and
is defined as:

|u ⊥ v| = |〈u ⊥ v〉| (5.6)

Definition V.5. Property is something that is proven true for every possible execu-
tion.

Definition V.6 (Safety). The safety property ensures that nothing “bad” happens
to the system ([88]), meaning that the system never enters an unacceptable state. On
the current case the system has the safety property if the distance between vehicles
is always larger than the collision distance,

(� ‖∆x12‖ > dc12) (t) (5.7)

Definition V.7 (Liveness). The liveness property ensures that something “good”
eventually happens to the system ([85, 88]), which means that the system enters a
desirable state in a finite time horizon. Liveness is proved for the current case if the
UAV gets within a certain distance from the target waypoint,

(♦ ‖∆xi WP‖ ≤ dWPi) (t) (5.8)

5.2.5 System Definitions

Figure 5.2: Radial layers

Definition V.8 (Collision radius). rc is the largest horizontal distance from any
component of the UAV to its Center of Mass (CM) x (fig. 5.2). That means that a
collision can occur only if

‖∆xij‖ ≤ dcij = rci + rcj , (5.9)
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Definition V.9 (Safety radius). rs is the distance from an UAV center to any other
object (fig. 5.2) above which it is considered a safe operation state. Therefore, rs
should be such that

rsi =: rci · ai, ai > 1, ai ∈ R, (5.10)

and so the safety distance between UAVs is: dsij = rsi + rsj .

Definition V.10 (Deconflition radius). rD sets the arc at which any other UAV will
try to pass tangently, if the deconfliction is required (fig. 5.2). rD should be such
that

rDi =: rsi · bi, bi ≥ 1, bi ∈ R, (5.11)

and so: dDij = rDi + rDj .

Figure 5.3: Operating areas

Definition V.11 (Collision Area). As stated before a collision can occur if ‖∆xij‖ ≤
dcij (fig. 5.3). Therefore, the definition of the UAV i Collision Area (relative to UAV
j ) is:

CollAreaij :=
{
x : ‖x− xi‖ ≤ dcij ,x ∈ R2

}
. (5.12)

Definition V.12 (Safety area). The UAVs enter in each other’s Safety Area if
‖∆xij‖ ≤ dsij(fig. 5.3). Therefore, the definition of the UAV i Safety Area (rela-
tive to UAV j ) is:

SafeAreaij :=
{
x : dcij < ‖x− xi‖ ≤ dsij ,x ∈ R2

}
. (5.13)

Definition V.13 (Frontal Area). The Frontal Area of UAV i consists of all points in
front of the UAV, within a distance dsij of the line connecting its CM to the waypoint,
and outside the Safety Area (fig. 5.3). Therefore, the definition of the UAV i Frontal
Area (relative to UAV j ) is:

FrontAreaij := {x : 〈xWPi −∆xij ‖x−∆xij 〉 > 0 ∧ ...
... ∧ |xWPi −∆xij ⊥ x−∆xij| ≤ dsij ∧ ‖x− xi‖ > dsij ,x ∈ R2

}
. (5.14)
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Definition V.14 (Buffer Area). The Buffer Area of UAV i consists of all points
within a distance dDij of its CM or the line connecting its CM to the waypoint, and
outside the safety and the Frontal Area (fig. 5.3). Therefore, the definition of the
UAV i Buffer Area (relative to UAV j ) is:

BuffAreaij :=
{
x : ‖x− xi‖ < dDij∨ ...

... ∨
(
|∆xi WP ⊥ x− xi| < dDij ∧ 〈∆xi WP ‖x− xi 〉 > 0

)
, ...

... x ∈ R2\ {CollAreaij ∨ SafeAreaij ∨ FrontAreaij}
}
, (5.15)

or

BuffAreaij :=
{
x :
(
dsij < ‖x− xi‖ < dDij ∧ 〈∆xi WP ‖x− xi 〉 < 0

)
∨ ...

... ∨
(
dsij < |∆xi WP ⊥ x− xi| < dDij ∧ 〈∆xi WP ‖x− xi 〉 > 0

)
,x ∈ R2

}
. (5.16a)

Definition V.15 (Deconfliction Area). The Deconfliction Area of UAV i consists of
all points outside CollAreaij, SafeAreaij, FrontAreaij and BuffAreaij (fig. 5.3).
Therefore, the definition of the UAV i Deconfliction Area (relative to UAV j ) is:

DeconflAreaij :=
{
x : x ∈ R2\ {CollAreaij ∨ SafeAreaij∨ ...

... ∨FrontAreaij ∨BuffAreaij}} (5.17)

or

DeconflAreaij :=
{
x :
(
‖x− xi‖ > dDij ∧ 〈∆xi WP ‖x− xi 〉 < 0

)
∨ ...

... ∨ |∆xi WP ⊥ x− xi| > dDij ,x ∈ R2
}
. (5.18)

Definition V.16 (Conflict Area). The Conflict Area of UAV i consists of all points
within a distance dDij of its CM, its current waypoint, and the line connecting its
CM to the waypoint (fig. 5.9):

ConflAreaij :=
{
x : ‖x− xi‖ ≤ dDij ∨ ‖x− xWPi‖ ≤ dDij∨ ...

... ∨
(
|∆xi WP ⊥ x− xi| ≤ dDij∧ ...

... ∧0 <

〈
∆xi WP

∥∥∥∥ x− xi
‖∆xi WP‖

〉
< 1

)
,x ∈ R2

}
. (5.19)

Definition V.17 (Close Frontal Area). The Close Frontal Area of UAV i consists of
all points within the triangle formed by the points xCF , yCF1, yCF2 from figure 5.4
and out of the Safety Area. The definition of the UAV i Close Frontal Area (relative
to UAV j ) is:

CloseFAreaij := {x : 〈xi CF − yi CF1 ⊥ x− (xi + yi CF1)〉 ≥ 0 ∧ ...
... ∧ 〈xi CF − yi CF2 ⊥ x− (xi + yi CF2)〉 ≤ 0 ∧ ...
... ∧ 〈yi CF2 − yi CF1 ⊥ x− (xi + yi CF1)〉 < 0 ∧ ‖x− xi‖ > dsij ,x ∈ R2

}
, (5.20)

where,
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Figure 5.4: Close Frontal Area

xi WP
i CF =

[
1
0

]
dsij

sin ηij
⇒ xi CF =

∆xi WP

‖∆xi WP‖
dsij

sin ηij
(5.21a)

yi WP
i CF1 =

[
sin ηij
− cos ηij

]
dsij ⇒ yi CF1 = Ri WP · yi WP

i CF1 (5.21b)

yi CF2 =

[
sin ηij
cos ηij

]
dsij ⇒ yi CF2 = Ri WP · yi WP

i CF2 (5.21c)

ηij = arctan

(
Vcj
Vci

)
(5.21d)

This area is important, because if the PDA method is active and the follower UAV
for some reason falls in the leader’s Close Frontal Area, the UAVs behavior would lead
them to each other’s Safety Areas, which is not desirable:

PDA ∧ xF ∈ CloseFAreaLF ⇒ (♦ ‖∆x12‖ ≤ ds12) (t) , (5.22)

and so the CPCAA should be activated.

Definition V.18 (Avoidance Area). The Avoidance Area of UAV i consists of all
points included in the Safety and Close Frontal Areas :

AvoidAreaij := {x : x ∈ SafeAreaij ∨ CloseFAreaij} . (5.23)

5.2.6 Collision Avoidance Control

To solve the problem at hands, we created a collision avoidance system (CAS)
with a hybrid control automaton. Figure 5.5 shows a simplified illustration of this
automaton. The natural state is the WP tracking, where each vehicle tracks its own
waypoint. If a future conflict is predicted, the Path deconfliction state is activated,
giving right-of-way to one of the vehicles and commanding the other to avoid the first,
going around it. If the vehicles are too close to each other the system switches to the
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Figure 5.5: Hybrid automaton

Collision avoidance state. This state has priority over all other states, to avoid any
collision.

Definition V.19 (CPCAA). The Close Proximity Collision Avoidance Algorithm is
activated if the UAVs are in each other’s Safety Area (fig. 5.6):

‖∆x12‖ ≤ ds12 ⇒ {active CPCAA} . (5.24)

Further, it is activated if one UAV is in the other’s Close Frontal Area, to keep the
UAVs from reaching each other’s Safety Areas :

xi ∈ CloseFAreaij, i 6= j, i, j = 1, 2⇒ {active CPCAA} . (5.25)

This means that the CPCAA is activated whenever one UAV is in the other’s
Avoidance Area:

xi ∈ AvoidAreaij, i 6= j, i, j = 1, 2⇒ {active CPCAA} . (5.26)

CPCAA forces the UAVs’ commands to be

Figure 5.6: Close proximity detection

{active CPCAA} ⇒

{
vcmd1 = − ∆x12

‖∆x12‖ · Va1

vcmd2 = − x21

‖x21‖ · Va2 = ∆x12

‖∆x12‖ · Va2

, (5.27)

as shown in figure 5.7.
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Figure 5.7: Collision avoidance commands

Definition V.20 (PDA). The Path Deconfliction Algorithm should maintain a sep-
aration distance larger than dD12 between the UAVs. This algorithm was introduced
to create smoother and more efficient paths for conflict resolution. The situations
detected by the PDA are the UAVs’ predicted path interceptions (fig. 5.8) or the in-
trusion of one UAV in the other’s Conflict Area (fig. 5.9). An intersection detection
occurs when the two lines drawn from each UAV’s virtual point to its virtual waypoint
intercept. The virtual points extend the detected interception range, allowing the de-
tection of possible conflicting paths, related with the area occupied by the vehicle,
which otherwise would not be detected. The virtual points are defined by:

Figure 5.8: UAVs’ path interception

{
pi := xi − ∆xi WP

‖∆xi WP ‖
· dD12

pWPi := xWPi + ∆xi WP

‖∆xi WP ‖
· dD12

, i = 1, 2. (5.28)
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The formal definition for the interception detection is:

Interception⇐∼ {(〈∆x1 WP |∆x2 WP 〉 = 0∧ ∼ 〈∆x1 WP ⊥ ∆x12〉 = 0) ∨ ..
... ∨ sign (〈∆x1 WP ⊥ p2 − p1〉) = sign (〈∆x1 WP ⊥ pWP2 − p1〉) ∨ ...
... ∨sign (〈∆x2 WP ⊥ p1 − p2〉) = sign (〈∆x2 WP ⊥ pWP1 − p2〉)} . (5.29)

The first verification excludes all cases where the paths are parallel and not coin-

Figure 5.9: UAVs’ Conflict areas

cident. The last two verifications detect the existing interceptions. When a path
interception is detected the UAV closest to the interception will be designated the
leader (UAVL) with right-of-way, not changing its course. The other UAV is desig-
nated the follower (UAVF ). The distance from each UAV to the interception point is
calculated by:

d1Int = x1 WP
12 + y1 WP

12

(
−x

1 WP
2 WP

y1 WP
2 WP

)
(5.30a)

d2Int = y1 WP
12

√
1 +

(
x1 WP

2 WP

y1 WP
2 WP

)2

, (5.30b)

where

∆x1 WP
12 = R1 WP ·∆x12 (5.31a)

∆x1 WP
2 WP = R1 WP ·∆x2 WP (5.31b)

R1 WP =
1

‖∆x1 WP‖

[
x1 WP y1 WP

−y1 WP x1 WP

]
, (5.31c)
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That being, the role attribution function is:

L = arg min
i=1,2

diInt (5.32a)

F = i : i = 1, 2, i 6= L, (5.32b)

Figure 5.10: Basic deconfliction path

The follower will target the leader’s rear tangent arc until the desired path in-
terception ceases to exist, if it is in the leader’s deconfliction or Buffer Area. If the
follower is in the leader’s Frontal Area, it will move away from the leader’s path,
perpendicularly to its course. If the follower UAV is in the leader’s deconfliction area,
the deconflicting velocity command is defined by:

vrefF =

[
cos γ κ sin γ
−κ sin γ cos γ

]
xFL
‖xFL‖

· VcF , κ = −1, 1. (5.33)

where sin γ = dD
dij

. An option, represented by κ, is selected as a function of the position

of the tangency points (xtgWP ):

xtgWP =

[
− sin γ κ cos γ
−κ cos γ − sin γ

]
xFL
‖xFL‖

· dD. (5.34)

These points have to be in the rear quadrant of the leader, and so

〈∆xL WP |xtgWP 〉 ≤ 0⇔
〈

∆xL WP

∣∣∣∣[ − sin γ κ cos γ
−κ cos γ − sin γ

]
xFL

〉
≤ 0⇔

⇔

〈
∆xL WP

∣∣∣∣∣∣∣∣
 − dD

d12
κ

√
1−

(
dD
d12

)2

−κ
√

1−
(
dD
d12

)2

− dD
d12

xFL

〉
≤ 0. (5.35)
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If both options are valid, the one presenting the maximum 〈∆xF WP |vrefF 〉 is chosen:

Opt = arg max
κ=−1,1

〈∆xF WP |vrefF 〉 . (5.36)

Therefore, the option selection function is

CmdOpt =


1 ⇐



〈
∆xL WP

∣∣∣∣∣
[
− sin γ cos γ

− cos γ − sin γ

]
xFL

〉
≤ 0 ∧Opt = 1

∨〈
∆xL WP

∣∣∣∣∣
[
− sin γ − cos γ

cos γ − sin γ

]
xFL

〉
> 0


−1 otherwise

,

(5.37)
resulting in:

vcmd,F =

{
vrefF |κ=1 ⇐ CmdOpt = 1

vrefF |κ=−1 otherwise
. (5.38)

If the follower UAV is in the leader’s Buffer Area, the deconflicting velocity command

Figure 5.11: Buffer waypoint

will bring it to the Deconfliction Area. To achieve smoothness on the interface with all
other operation areas, the commanded course has to match the commanded courses
in those areas over the interface. This means that the commanded course has to
be tangent to the Deconfliction Area if interfacing with this area, and it has to be
outwards perpendicular to the frontal or Safety Area if interfacing with those areas.
One solution is to aim to a buffer waypoint as depicted in figure 5.11, where

sinσ =
ds
dij
, (5.39)
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and the distance between the leader position and the buffer waypoint (dBuff ) is,

dBuff =
d2
D

ds
= ds · b2. (5.40)

By definition,

xBuffWP := xL +

[
− sinσ κ cosσ
−κ cosσ − sinσ

]
xFL
‖xFL‖

· dBuff , κ = −1, 1. (5.41)

Therefore, the commanded velocity options are:

vrefF =
xBuffWP − xF
‖xBuffWP − xF‖

· VcF = ...

... =

xFL +

[
− sinσ κ cosσ
−κ cosσ − sinσ

]
dBuff
‖xFL‖

· xFL√
(‖xFL‖+ dBuff )

2 − 2 ‖xFL‖ dBuff (1 + sin σ)
· VcF . (5.42)

To simplify the notation we can say that

xFL +

[
− sinσ κ cosσ
−κ cosσ − sinσ

]
dBuff
‖xFL‖

· xFL√
(‖xFL‖+ dBuff )

2 − 2 ‖xFL‖ dBuff (1 + sin σ)
=

[
cos γ κ sin γ
−κ sin γ cos γ

]
xFL
‖xFL‖

,

(5.43)

with γ = π − arctan
(

dBuff cosσ

dBuff sinσ−d12

)
, and the commanded velocity options,

vrefF =

[
cos γ κ sin γ
−κ sin γ cos γ

]
xFL
‖xFL‖

· VcF . (5.44)

In this case, the option selection function is

CmdOpt =


1 ⇐



〈
∆xL WP

∣∣∣∣∣
[
− sinσ cosσ

− cosσ − sinσ

]
xFL

〉
≤ 0 ∧Optm = 1

∨〈
∆xL WP

∣∣∣∣∣
[
− sinσ − cosσ

cosσ − sinσ

]
xFL

〉
> 0


−1 otherwise

,

(5.45)
and so,

vcmd,F =

{
vrefF |κ=1 ⇐ CmdOpt = 1

vrefF |κ=−1 otherwise
. (5.46)

If the follower UAV is in the leader’s Frontal Area, the deconflicting velocity com-
mand will bring it to the Buffer Area. In this case, the commanded velocity options
are:

vrefF =

[
0 −κ
κ 0

]
∆xL WP

‖∆xL WP‖
· VcF , (5.47)
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Only one of these options is valid, the one pointing away from the leader’s path.
That is verified by:

〈κ∆xL WP ⊥ xFL〉 ≥ 0, (5.48)

and so,

vcmd,F =

{
vrefF |κ=1 ⇐ 〈κ∆xL WP ⊥ xFL〉 ≥ 0

vrefF |κ=−1 otherwise
. (5.49)

The intrusion detection formal definition is:

Intrusion⇐ {xj ∈ ConflAreaij, i 6= j, i, j = 1, 2} (5.50)

When an intrusion of one UAV in the other’s conflict area is detected, the intruding
UAV is designated the leader and the other is the follower. The commanded actions
are the same as for the path interception detection, ceasing with the end of the
intrusion.

5.2.7 System Models

We now describe the system behavior under increasingly demanding and realistic
assumptions.

5.2.7.1 Model 1 - Single Integrator

In Model 1 we assume the UAVs are perfect holonomic vehicles modeled by the
simplest dynamics, namely single integrators:{

ẋi = vi
vi = vcmdi

, (5.51)

where

xi =

[
xi
yi

]
(5.52a)

vcmdi =

[
ui
vi

]
. (5.52b)

We used three hybrid automatons as a formal definition for the complete system
dynamics, including control. They are defined next.

Definition V.21 (Main automaton). (Fig. 5.12)

CAS =
{
Q,R6, f,Φ

}
(5.53)

Q = {TrackWP,CPCAA,PDA} (5.54)

C = {x1,x2, L, F} ∈ R6, x1 = {x1, y1} ,x2 = {x2, y2} (5.55)
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Figure 5.12: Main automaton - holonomic vehicles (single integrator)

Ċ =


f (TrackWP, C) ⇒ ẋi = ∆xi WP

‖∆xi WP ‖
· Vci , i = 1, 2

f (CPCAA, C) ⇒ ẋi = − ∆xij
‖∆xij‖ · Vai , i 6= j, i, j = 1, 2

f (PDA, C) ⇒

{
ẋL = ∆xL WP

‖∆xL WP ‖
· VcL

ẋF = vcmd,F

(5.56)

Φ (q,X ) =



(CPCAA, C) ⇐

 x1 ∈ AvoidArea21

∨
x2 ∈ AvoidArea12


PDA, C =


x1 = x1

x2 = x2

L = 1

F = 2

 ⇐ x1 ∈ ConflArea21 ∨


Interception

∧
1 = arg min

i=1,2
diInt


PDA, C =


x1 = x1

x2 = x2

L = 2

F = 1

 ⇐ x2 ∈ ConflArea12 ∨


Interception

∧
2 = arg min

i=1,2
diInt


(TrackWP, C) ⇐ otherwise

(5.57)
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Figure 5.13: Velocity automaton

Definition V.22 (Velocity automaton). This automaton is active only if the main
automaton state is PDA - Fig. 5.13

V eloc =
{
P ,R3, g,Ψ

}
(5.58)

P = {Deconfl p,Deconfl n,Buff p,Buff n, Front p, Front n} (5.59)

D = {vcmd,F , γ} ∈ R3, vcmd,F = {uF , vF} (5.60)

123



Ḋ =



g (Deconfl p,D) ⇒


vcmd,F =

[
cos γ sin γ

− sin γ cos γ

]
xFL
‖xFL‖

· VcF

γ = arcsin
(
dD
d12

)
g (Deconfl n,D) ⇒


vcmd,F =

[
cos γ − sin γ

sin γ cos γ

]
xFL
‖xFL‖

· VcF

γ = arcsin
(
dD
d12

)
g (Buff p,D) ⇒


vcmd,F =

[
cos γ sin γ

− sin γ cos γ

]
xFL
‖xFL‖

· VcF

γ = π − arctan
(

dBuff cosσ

dBuff sinσ−d12

)
g (Buff n,D) ⇒


vcmd,F =

[
cos γ − sin γ

sin γ cos γ

]
xFL
‖xFL‖

· VcF

γ = π − arctan
(

dBuff cosσ

dBuff sinσ−d12

)
g (Front p,D) ⇒ vcmd,F =

[
0 −1

1 0

]
∆xL WP

‖∆xL WP ‖
· VcF

g (Front n,D) ⇒ vcmd,F =

[
0 1

−1 0

]
∆xL WP

‖∆xL WP ‖
· VcF

(5.61)

Ψ (q,X ) =



(Deconfl p,D) ⇐ xF ∈ DeconflAreaLF ∧ CmdOpt = 1

(Deconfl n,D) ⇐ xF ∈ DeconflAreaLF ∧ CmdOpt = −1

(Buff p,D) ⇐ xF ∈ BuffAreaLF ∧ CmdOpt = 1

(Buff n,D) ⇐ xF ∈ BuffAreaLF ∧ CmdOpt = −1

(Front p,D) ⇐ xF ∈ FrontAreaLF ∧ 〈∆xL WP ⊥ xFL〉 ≥ 0

(Front n,D) ⇐ xF ∈ FrontAreaLF∧ ∼ 〈∆xL WP ⊥ xFL〉 ≥ 0

(5.62)

Definition V.23 (Waypoint automaton). (Fig. 5.14)

Figure 5.14: Waypoint automaton

GenWP =
{
O,R4, h,Υ

}
(5.63)

O = {TargetWP} (5.64)
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E = {xWP1,xWP2} ∈ R4, xWP1 = {xWP1, yWP1} ,xWP2 = {xWP2, yWP2} (5.65)

Υ (q,X ) =



(
TargetWP, E =

{
xWP1 (t) = NewWP

xWP2 (t) = xWP2 (t−)

)
⇐ Reach (x1,xWP1)(

TargetWP, E =

{
xWP1 (t) = xWP1 (t−)

xWP2 (t) = NewWP

)
⇐ Reach (x2,xWP2)

,

(5.66)
where NewWP is the waypoint generation function andReach (xi,xWPi) is the boolean
function containing the reach assertion logic for UAV i and the respective waypoint.

For this system we are able to prove that it presents both the Safety and Liveliness
properties.

Theorem V.24. The overall system satisfies the Safety property, if we assume single
integrator holonomic vehicles, if the CPCAA is part of the control system, and if
(‖∆x12‖ ≥ ds12) (t0) holds true.

Theorem V.25. The overall system satisfies the Liveness property, if we assume
single integrator holonomic vehicles, if the PDA and TrackWP states are part of the
control system, and if (‖∆x12‖ > ds12 ∧ xF /∈ CloseFAreaLF ) (t0) holds true:

(xF (t) /∈ {SafeAreaLF ∨ CloseFAreaLF} ⇒ ...

...⇒ {♦ ‖∆x1 WP‖ ≤ dWP1 ∧ ♦ ‖∆x2 WP‖ ≤ dWP2}) (t) . (5.67)

The proofs for these theorems are shown in the appendix B.1.

5.2.7.2 Model 2 - Double Integrator

In this second model we assume the UAVs are holonomic vehicles modeled by a
double integrator: {

ẋi = vi
v̇i = acmdi

, (5.68)

where

xi =

[
xi
yi

]
(5.69a)

vi =

[
ui
vi

]
(5.69b)

acmdi = ka (vcmdi − vi) . (5.69c)

We use similar hybrid automatons to the ones in model 1. The only difference is
in the main automaton.

Definition V.26 (Main automaton). (Fig. 5.15)

CAS =
{
Q,R10, f,Φ

}
(5.70)

Q = {TrackWP,CPCAA,PDA} (5.71)
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Figure 5.15: Main automaton - holonomic vehicles (double integrator)

C = {x1,x2,v1,v2, L, F} ∈ R10,x1 = {x1, y1} ,x2 = {x2, y2} ,v1 = {u1, v1} ,v2 = {u2, v2}
(5.72)

Ċ =



f (TrackWP, C) ⇒

{
ẋi = vi

v̇i = ka

(
∆xi WP

‖∆xi WP ‖
· Vci − vi

) , i = 1, 2

f (CPCAA, C) ⇒

{
ẋi = vi

v̇i = ka

(
− ∆xij
‖∆xij‖ · Vai − vi

) , i 6= j, i, j = 1, 2

f (PDA, C) ⇒


ẋi = vi, i = 1, 2

v̇L = ka

(
∆xL WP

‖∆xL WP ‖
· VcL − vL

)
v̇F = ka (vcmd,F − vF )

(5.73)
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Φ (q,X ) =



(CPCAA, C) ⇐

 x1 ∈ AvoidArea21

∨
x2 ∈ AvoidArea12


PDA, C =


x1 = x1

x2 = x2

L = 1

F = 2

 ⇐ x1 ∈ ConflArea21 ∨


Interception

∧
1 = arg min

i=1,2
diInt


PDA, C =


x1 = x1

x2 = x2

L = 2

F = 1

 ⇐ x2 ∈ ConflArea12 ∨


Interception

∧
2 = arg min

i=1,2
diInt


(TrackWP, C) ⇐ otherwise

(5.74)

For this system we prove that it presents the Safety property.

Theorem V.27. The overall system satisfies the Safety property, if we assume double
integrator holonomic vehicles, if the CPCAA is part of the control system, and if the
following restrictions hold true,

(‖∆x12‖ ≥ ds12) (t0) (5.75a)

ds12 > dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+
Vc2 + Vc1

ka
(5.75b)

The proof for this theorem is shown in the appendix B.2.
The Liveness property conditions should be similar to the ones defined for theorem

V.25.

5.2.7.3 Model 3 - Control Delays

In this third model the control system is discrete and has delays. We use the
same dynamics model as in model 2, but with acmdi = ZOH (vcmdi , t,∆t)− vi. The
ZOH (v, t,∆t) is piecewise-constant function holding the value of v (tk) until t =
tk + ∆t:

ZOH (v, t,∆t) = {v (tk) : t = [tk, tk + ∆t) , t ∈ R} (5.76)

Both the velocity automaton and the waypoint automaton remain the same. The
main automaton is described next.

Definition V.28 (Main automaton). (Fig. 5.16)

CAS =
{
Q,R10, f,Φ

}
(5.77)

Q = {TrackWP,CPCAA,PDA} (5.78)

C = {x1,x2,v1,v2, L, F} ∈ R10,x1 = {x1, y1} ,x2 = {x2, y2} ,v1 = {u1, v1} ,v2 = {u2, v2}
(5.79)
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Figure 5.16: Main automaton - holonomic vehicles (control delays)

Ċ =



f (TrackWP, C) ⇒

{
ẋi = vi

v̇i = ka

(
ZOH

(
∆xi WP

‖∆xi WP ‖
· Vci , t,∆t

)
− vi

) , i = 1, 2

f (CPCAA, C) ⇒

{
ẋi = vi

v̇i = ka

(
ZOH

(
− ∆xij
‖∆xij‖ · Vai , t,∆t

)
− vi

) , i 6= j, i, j = 1, 2

f (PDA, C) ⇒


ẋi = vi, i = 1, 2

v̇L = ka

(
ZOH

(
∆xL WP

‖∆xL WP ‖
· VcL , t,∆t

)
− vL

)
v̇F = ka (ZOH (vcmd,F , t,∆t)− vF )

(5.80)
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Φ (q,X ) =



(CPCAA, C) ⇐

 x1 ∈ AvoidArea21

∨
x2 ∈ AvoidArea12


PDA, C =


x1 = x1

x2 = x2

L = 1

F = 2

 ⇐ x1 ∈ ConflArea21 ∨


Interception

∧
1 = arg min

i=1,2
diInt


PDA, C =


x1 = x1

x2 = x2

L = 2

F = 1

 ⇐ x2 ∈ ConflArea12 ∨


Interception

∧
2 = arg min

i=1,2
diInt


(TrackWP, C) ⇐ otherwise

(5.81)

For this system we prove that it presents the Safety property.

Theorem V.29. The overall system satisfies the Safety property, even with control
noise, if we assume double integrator holonomic vehicles, if the CPCAA is part of
the control system, and if the following restrictions hold true,

(‖∆x12‖ ≥ ds12) (t0) (5.82a)

ds12 ≥ dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+ (Vc2 + Vc1)

(
∆t+

1

ka

)
(5.82b)

The proof for this theorem is shown in appendix B.3.
As for the previous model, the Liveness property conditions should be similar to

the ones defined for theorem V.25.

5.2.7.4 Model 4 - Control Disturbances

Model 4 extends model 3 introducing control disturbances. The difference to
model 3 is that the velocity is no longer certain, but rather bounded on a set of
velocities:

vi = viRef +Bδv (0, 0) = Bδv (viRef ) (5.83)

where δv is the norm of the maximum velocity error,

δv = ‖viRef − vi‖ (5.84)

and Bδv (v) is the closed ball centred on v and with radius δv. Both the velocity
automaton and the waypoint automaton remain the same. The main automaton is
described next.

Definition V.30 (Main automaton). (Fig. 5.17)

CAS =
{
Q,R10, f,Φ

}
(5.85)
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Figure 5.17: Main automaton - holonomic vehicles (control disturbances)
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Q = {TrackWP,CPCAA,PDA} (5.86)

C = {x1,x2,v1,v2, L, F} ∈ R10,x1 = {x1, y1} ,x2 = {x2, y2} ,v1 = {u1, v1} ,v2 = {u2, v2}
(5.87)

Ċ =



f (TrackWP, C) ⇒


ẋi = vi
vi = Bδv (viRef )

v̇iRef = ka

(
ZOH

(
∆xi WP

‖∆xi WP ‖
· Vci , t,∆t

)
− vi

) , i = 1, 2

f (CPCAA, C) ⇒


ẋi = vi
vi = Bδv (viRef )

v̇iRef = ka

(
ZOH

(
− ∆xij
‖∆xij‖ · Vai , t,∆t

)
− vi

) , i 6= j, i, j = 1, 2

f (PDA, C) ⇒


ẋi = vi
vi = Bδv (viRef )

v̇LRef = ka

(
ZOH

(
∆xL WP

‖∆xL WP ‖
· VcL , t,∆t

)
− vL

)
v̇FRef = ka (ZOH (vcmd,F , t,∆t)− vF )

, i = L, F

(5.88)

Φ (q,X ) =



(CPCAA, C) ⇐

 x1 ∈ AvoidArea21

∨
x2 ∈ AvoidArea12


PDA, C =


x1 = x1

x2 = x2

L = 1

F = 2

 ⇐ x1 ∈ ConflArea21 ∨


Interception

∧
1 = arg min

i=1,2
diInt


PDA, C =


x1 = x1

x2 = x2

L = 2

F = 1

 ⇐ x2 ∈ ConflArea12 ∨


Interception

∧
2 = arg min

i=1,2
diInt


(TrackWP, C) ⇐ otherwise

(5.89)

5.2.7.5 Model 5 - Unicycle

Model 5 extends model 1 to non-holonomic vehicles. The aircraft dynamics are
now modeled by a simple 3 Degrees-of-Freedom (DOF) kinematic model:

ẋ = V · cos (χ)
ẏ = V · sin (χ)

χ̇ = ω = g·tan(φ)
V

(5.90)

where φ = kω (ẋ · vRef − ẏ · uRef ) and V = ‖vRef‖. As in all previous problems, both
the velocity and the waypoint automaton remain the same. The main automaton is
described next.
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Figure 5.18: Main automaton - non-holonomic vehicles
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Definition V.31 (Main automaton). (Fig. 5.18)

CAS =
{
Q,R8, f,Φ

}
(5.91)

Q = {TrackWP,CPCAA,PDA} (5.92)

C = {x1,x2, χ1, χ2, L, F} ∈ R8, x1 = {x1, y1} ,x2 = {x2, y2} (5.93)

Ċ =



f (TrackWP, C) ⇒



ẋi =

[
cos (χi)

sin (χi)

]
· Vi

χ̇i = g·tan(φi)
Vi

Vi = Vci
φi = kω (ẋi · viRef − ẏi · uiRef )
viRef = ∆xi WP

‖∆xi WP ‖
· Vci

, i = 1, 2

f (CPCAA, C) ⇒



ẋi =

[
cos (χi)

sin (χi)

]
· Vi

χ̇i = g·tan(φi)
Vi

Vi = Vai
φi = kω (ẋi · viRef − ẏi · uiRef )
viRef = − ∆xij

‖∆xij‖ · Vai

, i 6= j, i, j = 1, 2

f (PDA, C) ⇒



ẋi =

[
cos (χi)

sin (χi)

]
· Vi

χ̇i = g·tan(φi)
Vi

Vi = Vci
φi = kω (ẋi · viRef − ẏi · uiRef )
vLRef = ∆xL WP

‖∆xL WP ‖
· VcL

vFRef = vcmd,F

, i = L, F

(5.94)

Φ (q,X ) =



(CPCAA, C) ⇐

 x1 ∈ AvoidArea21

∨
x2 ∈ AvoidArea12


PDA, C =


x1 = x1

x2 = x2

L = 1

F = 2

 ⇐ x1 ∈ ConflArea21 ∨


Interception

∧
1 = arg min

i=1,2
diInt


PDA, C =


x1 = x1

x2 = x2

L = 2

F = 1

 ⇐ x2 ∈ ConflArea12 ∨


Interception

∧
2 = arg min

i=1,2
diInt


(TrackWP, C) ⇐ otherwise

(5.95)
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5.2.8 Flight Results

This Collision Avoidance System was implemented on the University of Michigan
Aerospace & Robotic Controls Laboratory indoor testbed. Figure 5.19 depicts the

Figure 5.19: Data flow

data flow of the whole control system. The operator interacts with a desktop computer
where all the control automatons run (waypoint generator, CAS, and FCS). The
vehicles are model helicopter with infrared reflectors. The Vicon system is a motion
capture system which provides position and attitude data to the control computer.
It locates the helicopter through cameras which detect the infrared reflection dots on
each vehicle.

During flight tests, although the helicopters sometimes got quite close, the system
was able to avoid any collision. The proximity reached by the helicopter is probably
due to the delay in the data exchange system and the controller running on MatLab.

5.3 Formation Control

We now present a formation flight control strategy featuring a collision avoidance
scheme. The control algorithm is based on a Sliding Mode controller. The controller
sliding surfaces account for aircraft maneuvering limitations, restricting the required
velocities to a feasible set. Further, the relative position between vehicles affects the
sliding surfaces shape, enabling the collision avoidance property. The control method
derivation is based on an extended unicycle model, resulting on a controller adequate
for fixed wing aircraft. Further, the control strategy handles static formations as
well as dynamic. This makes it a very flexible tool which may be used by the UAV
operators for several flight stages and tasks.

Formation flight is an interesting topic in aircraft control as it presents the chal-
lenge of interconnected systems [89]. Some applications include air refueling, forest
fire mapping [90], radar deception, distributed sensing [16], fuel saving [91, 92], trans-
portation [93, 94], communication networks [95], and more. For atmospheric data
sampling [16] in particular, formation flight allows us to gather spatially distributed
measurements simultaneously and control the geometric distribution of the samples.
This is even more important when we need close samples at the same altitude.

NASA has been involved in a series of flight trials with automatic formation con-
trol. Vachon et al. [91] described in 2002 the performance benefits obtained in a
formation of two F/A-18B. It was demonstrated that the formation flight allows per-
formance improvements, reducing up to 20% of the follower’s drag and saving up to
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18% in fuel. Similar tests were extended to Unmanned Air Vehicles (UAVs) in Febru-
ary 21st 2003, demonstrating a formation flight with an X-45A and an F/A-18B, and
in in August 1st 2004 with two X-45A vehicles. These flights were part of the X-45A
vehicles flight trials in the Joint Unmanned Combat Air System (J-UCAS) program
[96].

5.3.1 General Problem

The formation flight control problem is dominated by the issue of forcing a relative
position among aircraft. Further, there are two other important issues in formation
control: bringing the formation together and avoiding any collision.

5.3.2 Literature Review

Zheng et al. [97] derive a Sliding Mode controller for a leaderless formation and ap-
plied it to a group of holonomic vehicles. This method is tested with ground robots
with good results. Sharifi et al. [98] present a decentralized sliding mode control
method for a leader formation with communication delays. This study shows how
the decentralized controller on one vehicle predicts other vehicles’ dynamics and how
this improves formation stability. Fowler and D’Andrea [92] describe the benefits of
distributed control synthesis when compared to a centralized controller. The synthe-
sized controllers are demonstrated on a special wind tunnel apparatus. Gu et al. [99]
present a leader formation control method.Two YF-22 models were used to test the
method in real flight. The control scheme is divided into an innerloop and an outer-
loop controller. The innerloop and the altitude outerloop are linear controllers and the
horizontal position controller is based on Nonlinear Dynamic Inversion. Tests show
that the follower is able to track its formation position safely. The main requirements
are that the flight condition remains near the one used for the controller parameters
estimation and that the system starts from the same quadrant as the desired position
relative to the leader, achieved by a pre-positioning maneuver executed by a human
pilot. Bayraktar et al. [100] describes an UAV system with an Hybrid model. Under
this framework they develop a control system to guide UAVs in mapping and surveil-
lance flights. In this work the authors also describe a formation control scheme and
the flight trial results with two UAVs. The SMAVNET project proved the feasibility
of safe formation flight up to 10 aircraft. The collision avoidance system is described
by Leven et al. in [101].

Borrelli et al. [76] describe the distributed Receding Horizon Control (RHC)
as a feasible solution even for a large number of aircrafts. It uses Mixed Integer
Linear Programming (MILP) to ensure near optimum controllers [102, 103]. Waydo
et al. [104] implemented and tested a formation control system based on receding
horizon control (RHC) supervised by a high level controller. The control scheme was
simulated and flight tested with the X-35A avionics mounted on an adapted T-33
jet trainer, following an F-15 fighter jet. The whole control protocol was provably
safe. This was achieved as the aircraft dynamics, RHC dynamics, and the supervisor
controller were described and specified with temporal logic, which allowed the authors
to prove the desired properties. Stipanovi’̧ et al. [70] describe the application of
overlapping control to formation with constrained communications. Each vehicle only
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has access to the state of leader and vehicle in front of it. The method is decentralized
taking advantage of the loose coupling induced by the communications. To compute
the control variables, this method expands the interconnected system state dynamic
equations using the inclusion principle, and defines the feedback control through the
application of convex optimization.

Aircraft collision avoidance is a complex problem in normal flight as well as in
formation flight. Most authors address each problem separately, aiming to regulate
the formation aircraft relative position or to enforce a minimum distance among
aircraft. Furthermore, most collision avoidance algorithms are not scalable, dealing
only with the problem of a single pair of vehicles.

The formation stability problem was addressed by Swaroop et al. in [105]. It was
proved that interconnected systems are stable in the vicinity of the equilibrium point if
they are loosely coupled and the individual systems are exponentially stable. Parallel
to the determination of performance benefits [91] NASA has been also studying the
problem of string stability of their F/A-18 formation control system. Allen et al. [106]
concluded that although the control system was string unstable it was applicable to
a bounded number of aircraft as the position oscillation was limited by an acceptable
range.

5.3.3 Current Approach

This work extends the formation Sliding Mode Controller (SMC) presented by
Zheng et al. [97]. This study is constrained to the horizontal plane for simplicity.
However, it is applicable to 3D formations with few adjustments. The main contribu-
tions are the inclusion of a collision avoidance scheme in the control system definition,
the use of an extended unicycle dynamic model for the SMC derivation, and the in-
corporation of maneuvering restrictions on the sliding surfaces. The SMC derivation
based on the extended unicycle model (section 2.4.2) creates a controller with dy-
namics adequate for fixed wing aircraft control. The SMC is defined for each aircraft
and includes a set of two sliding surfaces for each of the other interacting aircraft
(section 5.3.4). The sliding surfaces shapes and magnitudes restrict the maximum
commanded velocities to the aircraft limits. Further on each set of sliding surfaces,
one of those has a shape which drives the controller to command a maximum velocity
in the opposite direction to other aircraft if they get to close.

In this work we distinguish static from dynamic formations. By static formations
we mean formations where the vehicles’ relative positions remain unchanged. The
example of a static formation is one which maintains its frame constantly aligned
with the Ground frame as described in section 5.3.9.1. In dynamic formations the
vehicles may present relative velocities with respect to each other and the reference
frame. A formation with its frame fixed to the leader or the path is dynamic, as
the formation rotates with the leader or the path, inducing non-null inter-vehicle
velocities (section 5.3.9.2).

In the solution presented by Zheng et al., there was a gain which controlled relative
importance between the formation shape and each vehicle position error in the for-
mation. The present solution has a similar gain which defines the relative importance
between the formation shape and leader-relative position error, i.e., the deviation
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from each vehicle desired position relative to the leader (section 5.3.8).

We implemented some logic to force the collision avoidance dynamics, which is
described by sections 5.3.5.2, 5.3.6.1, and 5.3.7.

This method was developed to be implemented on fixed wing Unmanned Air
Vehicles (UAVs). The formation controller may be divided in two main modes: Leader
formation and Leaderless formation. In the first method one of the team’s aircraft
is designated as the leader. This aircraft follows a predefined path or the flight
commands defined by an operator. The follower aircraft are commanded by the
formation controller to track a desired position relative to the leader. As the leader is
not controlled by the formation controller, it does not try to avoid any of the followers.
In the Leaderless formation method all aircraft are commanded by the formation
controller to track a desired position relative to a virtual leader. This virtual leader
is commanded to follow a predefined flight plan. Its dynamics are simulated by the 4
DOF model described in section 2.4.3. Because all real aircraft are controlled by the
formation controller, they all act to avoid collisions. The leader, be it real or virtual,
flies as if it were alone, defining the formation path through its speed and turn rate.
Its speed and turn rate are limited to a range conducive to feasible paths by every
aircraft in the formation. Currently, the method does not account for fixed obstacles
or adversaries.

In terms of communications (section 5.3.10.1), this method requires that all in-
teracting aircraft broadcast their horizontal position and velocity vectors, as well as
their airspeed, roll, and yaw.

5.3.4 Sliding Mode Control

In this approach to formation flight we extend the formation Sliding Mode Con-
troller presented by Zheng et al. [97]. In a formation with N UAVs, each UAV has
N − 1 inter-UAV reference frames (fig. 5.20). Each inter-UAV reference frame is
centered on UAV i CM, with the x̂ij axis pointing to UAV j’s CM, and the ŷij axis
is rotated clockwise in the horizontal plane. ψij is the deviation of x̂ij from the fixed
frame x̂f axis. Two sets of sliding surfaces are implemented. Each sliding surface
implements a different strategy on each inter-UAV frame axis (fig. 5.20). A MaxVel
strategy is applied on the ŷij axis to regulate the position error on that same axis.
This strategy gets its name from the full speed command with large position errors.
A CAS strategy is applied on the x̂ij axis for collision avoidance and to regulate the
position error on that axis.

x̂ij = [cos (ψij) sin (ψij)]
ᵀ (5.96a)

ŷij = [− sin (ψij) cos (ψij)]
ᵀ (5.96b)

ψij = tan−1

(
yj − yi
xj − xi

)
(5.96c)
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Figure 5.20: Inter-UAV relative frame

5.3.5 Formation Controller - Kinematic Derivation

5.3.5.1 MaxVel Sliding Surface

The MaxVel surface equation is presented here,

S = v + c1 · sgn (x)− c2

x+ c3 · sgn (x)
(5.97a)

c1 = Vmax

Ṡ = v̇ +
c2 · ẋ

(x+ c3 · sgn (x))2 . (5.97b)

c1 is set such that the commanded velocity doesn’t exceed the maximum allowed
velocity. The constants c2 and c3 are calibration variables and will be defined below.

Figure 5.21: Standard position tracking sliding surface

5.3.5.2 Collision Avoidance Sliding Surface

On the x̂ij axis, which ”connects” both UAVs, a repelling behavior is desired:
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• If the UAVs are at a distance ∆x ≤ rmin, the velocity of each UAV should be
maximum in the opposite direction relative to the other UAV, where rmin is the
safety distance.

• If the UAVs are at a distance ∆x ≤ rd ⇒ vx ∈ [−Vmax, 0], where rd is the
relative desired distance. This means that the UAVs’ relative distance should
still increase.

• If the UAVs are at a distance ∆x ≥ rd ⇒ vx ∈ [0, Vmax], which means that the
UAVs’ relative distance should decrease. This also implies that the commanded
velocity will not exceed Vmax when the UAVs are far away.

We defined the sliding surface as an offset inverse function of velocity error vs position
error. The desired behavior is implemented by the following sliding surface:

Figure 5.22: Collision avoidance sliding surface

S = v + c1 −
c2

x− c3

(5.98a)

c1 = Vmax ∧ c2 = 2Vmax (rd − rmin) ∧ c3 = 2 (rd − rmin)

Ṡ = v̇ +
c2 · ẋ

(x− c3)2 (5.98b)

5.3.5.3 Inter-vehicle Position Controller

The complete system behavior can be obtained by a weighted sum of the individual
sliding surfaces projected on the Ground frame. This is defined by an x̂f axis pointing
North and a ŷf axis pointing East, centered on a fixed point over the ground surface.

si,F =
N∑
j 6=i

sij (5.99)

sij =

[
ėx,ij + c1 −

c2

ex,ij + c3

]
x̂ij+

+

[
ėy,ij + c1 · sgn (ey,ij)−

c2

ey,ij + c3 · sgn (ey,ij)

]
ŷij (5.100)
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Figure 5.23: Position error vector with the projection on the inter-UAV frame.

where ex,ij and ey,ij are the position errors projected on the inter-UAV frame (fig.
5.23), as

eij = xi − xj −∆xd,ij (5.101a)

ex,ij = eij · x̂ij (5.101b)

ey,ij = eij · ŷij (5.101c)

Rψij =

[
x̂ᵀij
ŷᵀij

]
=

[
cos (ψij) sin (ψij)
− sin (ψij) cos (ψij)

]
(5.101d)

Rψij is the rotation matrix from the Ground frame to the inter-UAV frame, ∆xd,ij =
xd,i − xd,j, and ‖∆xd,ij‖ = rd. The formation desired positions for each vehicle i are
defined by the system operator through the vector xFd,i = [xi,F , yi,F ]ᵀ in the formation
reference frame (defined in sections 5.3.9.1 and 5.3.9.2).

With the definitions in (5.101) we may simplify (5.100) by merging ėx,ijx̂ij and
ėy,ijŷij into ėij, resulting in:

sij = ėij +

[
c1 −

c2

ex,ij + c3

]
x̂ij+

+

[
c1 · sgn (ey,ij)−

c2

ey,ij + c3 · sgn (ey,ij)

]
ŷij (5.102)

As the control vector has no direct effect in (5.99) we derive it:

si,F =
N∑
j 6=i

[
ėij +

(
c1 −

c2

ex,ij + c3

)
x̂ij+

+

(
c1 · sgn (ey,ij)−

c2

ey,ij + c3 · sgn (ey,ij)

)
ŷij

]
(5.103)

ṡi,F =
N∑
j 6=i

(ëij + εij) , (5.104)
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where εij is the pseudo error rate, defined as:

εij :=

(
c2 · ėx,ij

(ex,ij + c3)2 − c1 · ψ̇ij · sgn (ey,ij) +

+
c2 · ψ̇ij

ey,ij + c3 · sgn (ey,ij)

)
x̂ij+

+

(
c2 · ėy,ij

(ey,ij + c3 · sgn (ey,ij))
2 +

+c1 · ψ̇ij −
c2 · ψ̇ij
ex,ij + c3

)
ŷij, (5.105)

From equation (5.101) we can derive,

ėij = vi − vj −∆vd,ij (5.106a)

ëij = ai − aj −∆ad,ij (5.106b)

ėx,ij = ėij · x̂ij + eij · ŷijψ̇ij (5.106c)

ėy,ij = ėij · ŷij − eij · x̂ijψ̇ij (5.106d)

ψ̇ij =
(vj − vi) · ŷij
‖∆xij‖

(5.106e)

The desired acceleration, by derivation of (2.14), is

ai =

[
V̇a · cos (ψ)− Va · ψ̇ · sin (ψ) + Ẇx

V̇a · sin (ψ) + Va · ψ̇ · cos (ψ) + Ẇy

]
i

= ...

... =

[
cos (ψi) −Va.i · sin (ψi)
sin (ψi) Va.i · cos (ψi)

] [
V̇a.i
ψ̇i

]
+ ...

...+

[
Ẇx

Ẇy

]
i

= Aiνi + ẇi, i = 1, ..., N, (5.107)

where νi is the ith aircraft control vector and ẇi is the ith aircraft local flow variation.
Merging equations (5.104) and (5.107) and rearranging, we obtain:

ṡi,F =
N∑
j 6=i

(Aiνi + ẇi −Ajνj − ẇj −∆ad,ij + εij) . (5.108)

We can select νi such that the known terms are canceled,

ν̃i =
N∑
j 6=i

(Aiνi −Ajνj −∆ad,ij + εij) (5.109a)

νi =
A−1
i

N − 1

[
N∑
j 6=i

(Ajνj + ∆ad,ij − εij) + ν̃i

]
, (5.109b)
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where ν̃i is the ith aircraft pseudo control vector, and yielding:

ṡi,F = ν̃i +
N∑
j 6=i

(ẇi − ẇj) . (5.110)

To force the system to converge to the sliding surface we define a Lyapunov func-
tion candidate of the form V = S2, yielding V̇ = 2SṠ. To ensure formation stability
about the desired positions, V̇ needs to be negative definite, and so SṠ < 0:

si,F · ṡi,F = si,F ·

[
ν̃i +

N∑
j 6=i

(ẇi − ẇj)

]
. (5.111)

If the uncertainty of ẇ is bounded we can assume a worst-case scenario:

‖ẇi‖ ≤ ẇmax, i = 1, ..., N (5.112a)

ẇi − ẇj ≤ 2ẇmaxsgn (si,F ) (5.112b)

sgn (si,F ) =
si,F
‖si,F‖

(5.112c)

si,F · ṡi,F ≤ si,F · [ν̃i + 2 (N − 1) ẇmaxsgn (si,F )] . (5.112d)

As we need to assure si,F · ṡi,F < 0, we force si,F · [ν̃i + 2 (N − 1) ẇmaxsgn (si,F )] < 0
with:

ν̃i = −
[
Λsat

(si,F
Φ

)
+ 2 (N − 1) ẇmaxsgn (si,F )

]
, (5.113)

where

sat
(si,F

Φ

)
=

{ si,F
Φ

‖si,F‖ < Φ
si,F

‖si,F‖ otherwise
. (5.114)

si,F · ṡi,F ≤ −si,F · Λsat
( si,F

Φ

)
< 0 is guaranteed if Λ is a positive definite matrix.

The control vector is then,

νi =
A−1
i

N − 1

[
N∑
j 6=i

(Ajνj + ∆ad,ij − εij)− Λsat
(si,F

Φ

)
−

−2 (N − 1) ẇmaxsgn (si,F )] , (5.115)

where

A−1
i =

[
cos (ψi) sin (ψi)

− sin(ψi)
Va.i

cos(ψi)
Va.i

]
(5.116)

5.3.6 Formation Controller - Corrections for Aircraft Dynamics

During the implementation and test of the strategies described in the previous
section (5.3.5), we came to the conclusion that the system could not follow the ideal-
ized sliding surfaces. The reason for that was that the maximum achievable velocity
differential between the controlled UAV and any of the other team UAVs was usually
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a lot smaller than the Vmax which limited the sliding surfaces. The velocity differen-
tial on the x̂ij axis is ∆Vx.ij = (vi − vj) · x̂ij and is similar for the ŷij axis. As such,
the limit differential velocities are:

∆Vx.ij.max = Vi.max − vj · x̂ij (5.117a)

∆Vx.ij.min = −Vi.max − vj · x̂ij (5.117b)

∆Vy.ij.max = Vi.max − vj · ŷij (5.117c)

∆Vy.ij.min = −Vi.max − vj · ŷij, (5.117d)

where Vi.max is the maximum velocity UAV i can achieve.
Next we present the redefined CAS and MaxVel sliding surfaces, including the

relative velocities and the acceleration constrains.

5.3.6.1 Collision Avoidance Sliding Surface

The CAS strategy is implemented on the x̂ij axis, which ”connects” both UAVs.
The following behavior is desired:

• If the UAVs are at a distance |∆x| ≤ rmin, the velocity of each UAV should be
maximum in the opposite direction relative to the other UAV. rmin is the safety
distance.

• If the UAVs are at a distance |∆x| ≤ rd ⇒ vx ∈ [∆Vx,min, 0], where rd is the
relative desired distance. This means that the UAVs’ relative distance should
still increase.

• If the UAVs are at a distance |∆x| ≥ rd ⇒ vx ∈ [0,∆Vx,max], which means
that the UAVs’ relative distance should decrease. This also implies that the
commanded relative velocity should be bounded by ∆Vmax when the UAVs are
far away.

• The desired acceleration and relative velocity should be feasible.

The maximum and minimum relative velocities in the x̂ij axis are:

∆Vx,max,ij = Vmax,i − vj · x̂ij (5.118a)

∆Vx,min,ij = −Vmax,i − vj · x̂ij, (5.118b)

where Vmax,i is the UAV i maximum speed, and vj is the UAV j velocity vector. The
maximum acceleration in the x̂ij axis is:

ax,max,ij = |x̂B,i · x̂ij| aBx,max + |ŷB,i · x̂ij| aBy,max, (5.119)

where a(.),max are the maximum accelerations in both UAV i ’s longitudinal (x̂B,i) and
lateral body axes (ŷB,i).

We defined the sliding surface as an offset inverse function of velocity error vs
position error (fig. 5.24). The desired behavior is implemented by the following sliding
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Figure 5.24: Collision avoidance sliding surface

surface:

Sx̂ := ėx̂ − c1 −
c1c2

ex̂ − c2

= ėx̂ −
ex̂c1

ex̂ − c2

(5.120a)

c1 = ∆Vx,max,ij

Ṡx̂ = ëx̂ +
c1c2ėx̂

(ex̂ − c2)2 . (5.120b)

c2 is defined by either an acceleration limit or a positional error limit:

c2 = max

[
4 (1 + cs) c

2
1

27ax,max,ij
,−2ex,∆V min,ijVmax,i

∆Vx,min,ij

]
, (5.121)

where cs is a safety factor and ex,∆V min,ij is the proximity error margin:

ex,∆V min,ij := {ex,ij : ėx,ij = Vx,min,ij ∧ Sx̂ = 0} , (5.122)

5.3.6.2 MaxVel Sliding Surface

The MaxVel sliding surface is applied on the x̂ij axis. Its behavior should respect
all the points defined above for the CAS strategy except for the first, i.e., the upper
positional error limitation. We defined the sliding surface as a composition of two
offset inverse functions of velocity error vs position error (fig. 5.25), one valid for
positive positional errors and the other for negative positional errors.

The sliding surface equation is:

Sŷ := ėŷ −
eŷc3

eŷ − c4

(5.123a)

c3 =

{
Vy,max,ij eŷ < 0

Vy,min,ij otherwise

c4 =

{
4(1+cs)c23

27ay,max,ij
eŷ < 0

− 4(1+cs)c23
27ay,max,ij

otherwise

Ṡŷ = ëŷ +
c3c4ėŷ

(eŷ − c4)2 . (5.123b)
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Figure 5.25: Standard position tracking sliding surface

The maximum and minimum relative velocities in the ŷij axis are:

∆Vy,max,ij = Vmax,i − vj · ŷij (5.124a)

∆Vy,min,ij = −Vmax,i − vj · ŷij. (5.124b)

The maximum acceleration in the ŷij axis is:

ay,max,ij = |x̂B,i · ŷij| aBx,max + |ŷB,i · ŷij| aBy,max. (5.125)

5.3.6.3 Inter-vehicle Position Controller

As in section 5.3.5.3 the inter-vehicle formation behavior is obtained by a weighted
sum of the individual sliding surfaces projected on the Ground frame. With the
adjusted sliding surface equations we now have:

si,F =
N∑
j 6=i

[
ėij −

ex,ijc1

ex,ij − c2

x̂ij −
ey,ijc3

ey,ij − c4

ŷij

]
(5.126)

ṡi,F =
N∑
j 6=i

(ëij + εij) , (5.127)

with the pseudo error rate (εij) defined as:

εij :=

(
c1c2 · ėx,ij

(ex,ij − c2)2 +
ey,ijc3

ey,ij − c4

ψ̇ij

)
x̂ij +

(
c3c4 · ėy,ij

(ey,ij − c4)2 −
ex,ijc1

ex,ij − c2

ψ̇ij

)
ŷij.

(5.128)

5.3.7 Collision Avoidance Logic

The collision avoidance logic generates a deconflicting path, which drives conflict-
ing UAVs to go around each other. This is activated if an UAV’s path (to reach a
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Figure 5.26: Collision avoidance logic. rD and rmin are the deconfliction radius and safety
distance, respectively. eij,temp is the positional error to the temporary desired position,
which changes with the UAVs’ relative position.

desired position) intercepts the Deconfliction Area of another UAV. The Deconflic-
tion Area is the area centered on an UAV position and bounded by the deconflition
radius (rD):

DeconfAreaj := BrD (xj) =
{
x : ‖x− xj‖ ≤ rD = rmin + c2,x ∈ R2

}
(5.129)

The collision avoidance logic is defined by:

e′x,ij :=

{
ex,ij ex,ij ≥ rD − ‖∆xij‖
rD − ‖∆xij‖ otherwise

(5.130a)

e′y,ij :=

{
ey,ij ex,ij ≥ rD − ‖∆xij‖ ∨ ‖ey,ij‖ > rD
rDsgn (ey,ij) otherwise

, (5.130b)

e′x,ij and e′y,ij are use instead of ex,ij and ey,ij in all calculations leading to (5.115).

5.3.8 Global Position Control

To drive the vehicles to a desired inertial position we implemented a Leader for-
mation and a Leaderless formation scheme. The user may tune the shape-position
balance, i.e., the balance between the formation shape stiffness and the regulation of
the inertial position error.

The Leader formation scheme shape-position balance is controlled through an
additional gain on the leader component, transforming (5.99) and (5.115):

si,F := (1 + (N − 1) kL) · sil +
N∑
j 6=i,l

sij (5.131a)

νi =
A−1
i

1 + kL

[(
1

N − 1
+ kL

)
· (Alνl + ∆ad,il − εil) +

N∑
j 6=i,l

(Ajνj + ∆ad,ij − εij)
N − 1

−

−Λsat
(si,F

Φ

)
− 2 (1 + kL) ẇmaxsgn (si,F )

]
, (5.131b)

where l is leader vehicle index and kL the leader additional gain.
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For the Leaderless formation scheme an additional pair of sliding surfaces needs
to be added. These regulate directly the inertial position error. This error is defined
with the desired inertial position computed from a virtual leader position. The sliding
surfaces are both similar to the one described for the MaxVel strategy, as no collision
avoidance with the virtual leader is needed. The main difference is that the projection
axes are the inertial frame axes and xFd,Lead = [0, 0]ᵀ, yielding:

ei := xi − xLead − xd,i (5.132a)

ėi := vi − vLead − vd,i (5.132b)

ëi := ai − aLead − ad,i (5.132c)

ex,i = ei · x̂G, ey,i = ei · ŷG (5.132d)

ėx,i = ėix̂G, ėy,i = ėiŷG (5.132e)

The sliding surface equation for inertial position regulator is:

si :=

[
ėx,i −

ex,ic5

ex,i − c6

]
x̂G +

[
ėy,i −

ey,ic7

ey,i − c8

]
ŷG (5.133)

[c5, c6] =


[
Vx,max,

4(1+cs)c25
27ax,max

]
ex,i < 0[

Vx,min,−4(1+cs)c25
27ax,max

]
otherwise

[c7, c8] =


[
Vy,max,

4(1+cs)c27
27ay,max

]
ey,i < 0[

Vy,min,−4(1+cs)c27
27ay,max

]
otherwise

,

with the maximum and minimum relative velocities in the x̂G and ŷG axes:

∆Vx,max = Vmax,i − Vx,Lead (5.134a)

∆Vx,min = −Vmax,i − Vx,Lead (5.134b)

∆Vy,max = Vmax,i − Vy,Lead (5.134c)

∆Vy,min = −Vmax,i − Vy,Lead, (5.134d)

where V(.),Lead are the virtual leader speeds on the inertial frame axes. The maximum
feasible accelerations are:

ax,max = |x̂B,i · x̂G| aBx,max + |ŷB,i · x̂G| aBy,max (5.135a)

ay,max = |x̂B,i · ŷG| aBx,max + |ŷB,i · ŷG| aBy,max, (5.135b)

Adding the virtual leader component (5.133) to (5.115), with a gain to tune the
balance between the formation shape tracking and the desired inertial position track-
ing, yields:

si,F := (N − 1) kLsi +
N∑
j 6=i

sij (5.136a)

νi =
A−1
i

1 + kL

[
kL (aLead + ad,i − εi) +

N∑
j 6=i

(Ajνj + ∆ad,ij − εij)
N − 1

− Λsat
(si,F

Φ

)
−

− (2 + kL) ẇmaxsgn (si,F )] , (5.136b)
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where kL is the virtual leader gain and εi defined as in (5.128), but with the parameters
of (5.133).

5.3.9 Formation Definition

Next we introduce several formation types. For each type we describe the defini-
tion of the desired positions, velocities, and accelerations of the formation vehicles.

5.3.9.1 Ground-aligned Formation Frame

Figure 5.27: Ground-aligned formation frame. Cross shaped formation.

When the formation frame is permanently aligned to the Ground frame (fig. 5.27)
the desired positions are defined by:

xGd,i = xFd,i − xFd,Lead + xGLead, (5.137)

where the superscripts G and F indicate if the vectors are described in the Ground
or Formation frames, respectively. xLead and xd,Lead are the leader current position
and desired formation position. As the formation frame doesn’t rotate, the desired
relative positions remain constant and ∆ẋd,ij = ∆ẍd,ij = ψ̇ij = 0. The equations in
(5.106) can be simplified to

ėij = ẋi − ẋj (5.138a)

ëij = ẍi − ẍj (5.138b)

ėx,ij = ėij · x̂ij (5.138c)

ėy,ij = ėij · ŷij (5.138d)

This kind of formation produces the same path for every UAV with a constant
positional offset. This may be useful to maintain a constant spatial sampling span
over time.

5.3.9.2 Path-aligned Formation Frame

Most aircraft formations align their frame with the flight path. The most simple
implementation maintains a constant formation shape, rotating it with the path di-
rection (fig. 5.28). In these formations the shape coordinates defined by the operator
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Figure 5.28: Path-aligned formation frame with fixed formation frame. Arrow shaped
formation.

(xFd,i) are rotated with the path heading and serve as inputs for the formation internal
velocities and accelerations:

vGF.i = R−1
ψF

[
−yi,F
xi,F

]
ψ̇F (5.139a)

aGF.i = −R−1
ψF

xFd,iψ̇
2
F (5.139b)

The formation may also adapt to the required kinematics instead of maintaining
fixed formation positions, i.e., when the trajectory is curved the user defined Cartesian
coordinates are transformed to polar coordinates (fig. 5.29). The alignments in x cease
to be straight lines to become curves followed by the UAVs. In the same way, the y
alignments are still straight lines, but not parallel to each other. All y alignment lines
now cross the path’s center of rotation. The user defined coordinates are transformed
to new coordinates x′Fd,i in the formation reference frame. These are defined by three
new polar coordinates: the formation radius of curvature rF , defined in this case by
the leader radius of curvature and its position on the formation, the UAV i radius of
curvature ri, and the UAV heading differential ψi.F ,

rL =
V 2
L.g

g tanφL
(5.140a)

rF = rL + yL.F (5.140b)

ri = rF − yi,F (5.140c)

ψi.F =
xi,F
rF

. (5.140d)

These result in the subsequent velocities and accelerations relative to the formation
frame:

x′
F
d,i =

[
ri sin ∆ψi.F

yi,F + ri (1− cos ∆ψi.F )

]
(5.141a)

vGFi = R−1
ψF

[
−y′i.F
x′i.F

]
ψ̇F (5.141b)

aGFi = −R−1
ψF

x′
F
d,iψ̇

2
F . (5.141c)
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Figure 5.29: Path-aligned formation frame with adapting formation frame. Arrow shaped
formation.

5.3.10 Distributed Controller

In order to have a reliable control system for close formation flight, every aircraft
in the formation group should be able not only to compute its own controls, but also
to know the leader state and to obtain the best state estimate of the other formation
aircraft. If we had a perfect communication channel, the state update of any and
every aircraft in the formation would be synchronized as soon as each aircraft had a
state update. The reality of communications presents bandwidth constrains, latency,
delays and information losses or corruption. If we have access to a reliable and fast
enough communication channel, we can regard it as perfect. However, in our work
we assume the communication channel is not perfect.

The communication issues led us to outline a system in which every aircraft is
able to predict the group behavior with bounded and acceptable error margin, for
a bounded communication latency or delay. To achieve this, we stated that every
aircraft should be able to propagate a base reference, common to all other aircraft,
and independently of the communications. We set this base reference to be the leader
state. This is not possible with the Leader formation scheme, i.e., a real aircraft as
the source for the leader state. That is because the base reference state may evolve
arbitrarily/unpredictably, e.g., with wind disturbances, preventing the follower from
predicting the leader state evolution, and obtaining a reliable leader state update only
with the communication synchronizations. As such, we chose to use the Leaderless
formation scheme, as the virtual leader state can be propagated in the same manner
by all aircraft, maintaining a common reference.

5.3.10.1 Communications

The information needed for the formation controller may be divided in State up-
dates and formation Parameters. The Parameters are set by the operator, and remain
unchanged for long periods, when compared to the State updates. This means that
their synchronization may be executed with low frequency. These parameters are:

xFd,i - Desired positions in the formation (formation shape)

Formtype - Formation type identifier (Ground-aligned, Path-aligned with fixed for-
mation frame, or Path-aligned with adapting formation frame)
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Λ - Convergence gains matrix

Φ - Sliding surface boundary layer parameter

kL - Shape-Position balance gain

ẇmax - Wind maximum acceleration

φmax,L - Leader maximum bank command (maneuvering constrain)

The State of UAV i is composed of:

xi - Position

vi - Velocity

φi, ψi - Roll and Yaw (heading) angles

Va,i - Airspeed

wi - Average wind velocity

5.3.10.2 State Propagation

To cope with the communication latency and delays, each aircraft control com-
puter propagates an estimated state of every formation aircraft. This propagation
takes the last synchronized state (alg. 1, line 8) as the initial condition and applies the
4 DOF model (alg. 1, line 11) and the formation control method (alg. 1, line 15) to
generate an estimate of the group state evolution. It is important that, between syn-
chronizations, every aircraft state is propagated with the dynamic model (4 DOF),
even the state of the aircraft where the computation happens. As such, the team
state propagation will be similar on every aircraft. This also allows each aircraft to
measure how far its state is from the estimate the other aircraft have, and implement
safety/emergency procedures, if needed.

In the Leaderless formation mode, the virtual leader motion is simulated on each
formation aircraft with the 4 DOF model. At the initial synchronization moment
the formation flight plan is uploaded and activated on every aircraft, with a common
initial state. From there on, each aircraft control computer propagates the virtual
leader state, using the same 4 DOF model (alg. 1, line 3) and flight path control
method (alg. 1, line 4), in order to generate an identical virtual leader path on every
formation aircraft.

The formation controller computes the aircraft commands, taking as inputs the
propagated virtual leader state and the most recent team state estimate (alg. 1,
line 17).

5.3.11 Preliminary Simulation Results

5.3.11.1 Simulation Setup

To do the preliminary tests to the formation control method we used an extended
unicycle aircraft model in a 3 DOF simulation (sec. 2.4.2). In these tests, the forma-
tions are composed of a leader aircraft and any number of followers. The simulated
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StateUpdate:
(
Xi (t) ,XL (t′) ,uL (t′) , X̂i (t′) , ûi (t′) , t, t′, Sync, j, ∀i ∈ N

)
1 if t− t′ = ∆t then

2 //Virtual leader state propagation
3 XL (t) = StateProp4DOF (XL (t′) ,uL (t′) ,∆t);
4 uL (t) = WPTracker (uL (t));

5 for i = 1 to N do
6 if Sync then

7 //State synchronization

8 X̂i (t) = Xi;

9 else

10 //State propagation

11 X̂i (t) = StateProp4DOF
(
X̂i (t′) , ûi (t′) ,∆t

)
;

12 end

13 end
14 for i = 1 to N do

15 ûi (t) = FormCtrl
(
X̂i,∀i∈N (t) ,XL (t) ,uL (t)

)
;

16 end

17 uj (t) = FormCtrl
(
Xj (t) , X̂i,∀i∈N,i6=j (t) ,XL (t) ,uL (t)

)
;

18 end

return : uj (t) ,XL (t) , X̂i,∀i∈N (t) ,uL (t) , ûi,∀i∈N (t)

Algorithm 1: Team state estimate update

UAVs are restricted to a range of speeds between 18 and 25 meters per second, and
to a maximum bank angle of 25 degrees. The controller parameters are set to control
UAVs with a wingspan of 2.5 meters, with a safety distance of 5 meters. As the safety
distance is set between the aircraft CMs, this would result in a distance of 2.5 meters
between the aircraft wing tips.

We tested static and dynamic formations, with shapes like crosses, arrows, and
in-line formations. We simulated several initial conditions. The simplest scenario
featured every aircraft starting at their intended formation positions, to test the
formation position tracking. In another scenario the aircraft started at positions
symmetric relative to the desired ones. This tested the formation form-up feature
and how well the system handled challenging initial aircraft positions.

The simulation incorporates perturbations as wind and positional errors. The wind
is simulated with steady flow and gusts, i.e., air flow speed and direction variations
about the steady flow. These variations are simulated by a Gauss-Markov Process
(sec. 2.5.3). All the simulation results shown below include wind perturbations,
with 16-knots of mean wind and gusts up to 8-knots. Every aircraft was subject to
the same steady wind and completely independent gusts, to simulate a worst case
scenario.
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(a) Formation position error.

(b) Minimum distance among all aircraft in the formation.

Figure 5.30: Simulation data where the follower aircraft start at a opposite positions to the
desired ones relative to the leader

The positional perturbations were always applied to a single aircraft. We chose
this to be the follower furthest ahead in the formation, to create a string perturbation
on all the aircraft behind.

5.3.11.2 Results

The simulations show that the system performs well, even with wind and positional
perturbations. The formations commanded had minimum distances among UAVs of
20 meters, which presented an additional challenge to the control system. The UAVs
converge to the desired formation even if in the initial condition their positions are
shuffled. Figure 5.30a shows the position convergence of a simulation where the
follower aircraft started at symmetric positions relative to the ones desired around
the leader, i.e., xInitial.Folli − xInitial.Lead = xd,Lead − xd,Folli . The illustration shows
the aircraft settling in the desired formation positions after 30 seconds. Figure 5.30b
illustrates the minimum distance evolution in the same simulation. For most of the
time the minimum distance among UAVs is larger than 10 meters. It was driven below
10 meters only when the initial conditions had the aircraft shuffled. The minimum
distance very rarely went below the safety distance of 5 meters, which only happened
when the UAVs were started in very close positions and with conflicting headings.

After forming up the position error is kept low. It only grows slightly if the
leader turns too tightly. As such, the minimum distance among the aircraft rarely
decreases below one meter from the commanded. When the aircraft converge to their
formation positions the average positional error is 0.76 meter with 0.41 meters of
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(a) String stability - The UAVs were set on an in
line formation.

(b) Mesh stability - The UAVs were set on an arrow
shaped formation.

Figure 5.31: String and mesh stability - Attenuation of perturbations from UAV 2 to the
other UAVs. UAV 2 had a sinusoidal motion perturbation. UAVs 3 to 6 show perturbations
with reduced amplitude when compared to UAV 2.

standard deviation, even with independent air flow perturbations. If we take away
the wind variation compensation (5.112), i.e., set ẇmax = 0m/s2, the positional error
is still small, with an average of 1.27 meters and 1.40 meters of standard deviation.

The string and mesh stability about the desired formation positions was tested
by the generation of step and sinusoidal positional perturbations. The results show
that the motion perturbation is attenuated among the formation. Figure 5.31 shows
the positional errors of all the follower UAVs with a sinusoidal perturbation of UAV
2’s position. UAV 2 presents the largest positional errors, demonstrating good string
perturbation attenuation. Figure 5.31a shows the results of an in line sinusoidal
perturbation on an in line formation, demonstrating string stability. Figure 5.31b
shows the results of a diagonal sinusoidal perturbation on an ”arrow” formation,
demonstrating mesh stability.

Figure 5.43 (at the end of the chapter) illustrates the positional evolution of an
arrow formation during the form-up phase.

5.3.12 Simulation Results - Leaderless Formation

After the results of the preliminary tests we decided that the safest approach for
the real world implementation would be to use the Leaderless Formation method.
That way all UAVs would try to avoid each other and there would not be a special
sensitivity to a single UAV state data.

The subsequent tests incorporated the corrections to account for the aircraft dy-
namics constrains, described in section 5.3.6. The simulation realism was also in-
creased, starting with the 3 DOF simulation (sec. 2.4.2) and then testing the system
with a 4 DOF simulation (sec. 2.4.3) and a 6 DOF simulation (sec. 2.4.7).

We now describe formation the controller tuning process and its results. To con-
clude the simulation results, we analyze the formation controller performance under
several environment perturbations and initial conditions.
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5.3.12.1 Controller Tuning

After the preliminary tuning of the upgraded controller with the 3 and 4 DOF
simulations, we focused on fine tuning the formation control parameters with a more
realistic 6 DOF simulation. This was executed in the same setup created for the initial
tests with real UAVs (sec. 5.3.13). Due to some issues with the data dissemination
latency we simulated one UAV with the Piccolo 6 DOF simulator [107, 108] and the
other with the 4 DOF simulator. With this setup we have a more realistic data flow
behavior, with Comunications delays and errors, as well as realistic dynamics for the
one UAV. This UAV is the focus of the controller tuning analysis.

The first formation control parameters to be tuned were the tracking parameters,
i.e., the tracking gain matrix ∆ and the saturation boundary layer thickness Φ, in
(5.136b). To have homogeneous control over the North and East axes we make

∆ = kP

[
1 0
0 1

]
, (5.142)

where kP is the tracking gain. To tune kP and Φ, we reduced the formation to a
single UAV, tracking the virtual leader. We tested the tracking performance with
weak wind (2 m/s), strong wind (8 m/s), and weak wind (2 m/s) with position
reference disturbances. The formation is commanded to follow a circular trajectory
with a 250m radius. The position reference disturbances were first order responses to
a 100m impulse (fig. 5.32).

Figure 5.32: Position reference disturbance of 100 meters.

(a) Performance with weak wind (2 m/s). (b) Performance with strong wind (8 m/s).

Figure 5.33: Tracking gain and boundary layer effect on the position tracking performance
with different wind conditions.
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To tune the tracking parameters we evaluated the performance through the po-
sition error and the control load. The control load was evaluated from the bank
variation and the mean bank rate. Figure 5.33 shows that the controller tracks well
in both wind conditions with ∆ ∈ [0.8, 1.1] and Φ ∈ [6, 12]. For stronger winds,
lower tracking gains and larger boundary layers yield poorer results, due to the lack
of control authority (fig. 5.33b). Higher tracking gains and tighter boundary layers
lead to instability, no matter the wind conditions, which also reduce the tracking
performance (fig. 5.33). Figure 5.34 shows that the control load increases with the

(a) Bank variation with weak wind (2 m/s). (b) Bank variation with strong wind (8 m/s).

(c) Bank variation with weak wind (2 m/s) and
position reference disturbances (100 m).

(d) Mean bank rate with strong wind (8 m/s).

Figure 5.34: Tracking gain and boundary layer effect on the control load with different wind
conditions and position reference disturbances.

tracking gain and with tighter boundary layers, as expected. The controller behaves
similarly when it is subjected to position reference disturbances (fig. 5.34). From the
illustrated performance (fig. 5.33 and 5.34) we may conclude that a good setting has:

∆ ∈ [0.8, 1] (5.143a)

Φ ∈ [10, 12] . (5.143b)

After the tracking parameters we tuned the leader gain kL, in (5.136b). This
gain defines the relative importance of the inertial position regulation in the control
equation regarding the formation shape, i.e., the balance between the regulation of
the global position error and the position error relative to the other formation UAVs.

To test the leader gain we used a 5 UAV ground-aligned formation with a cross
shape (fig. 5.35). The formation is commanded to follow a circular trajectory with a
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250m radius. The test formations set the closest UAVs at distances of 80 m and 50
m, testing the system behavior in loose and tight formations. As before, we tested
the controller performance with weak wind (2 m/s), with strong wind (8 m/s) and
with position reference disturbances.

Figure 5.35: Ground-aligned formation with a cross shape.

The formation dynamics become more coupled with lower leader gains. This
means that higher leader gains lead to formations that present better string or mesh
stability [89]. That effect is apparent in figure 5.36, where lower leader gains yield
poorer tracking performance. The control load, reflected in the bank variation (fig.
5.37), is only very mildly affected by this gain. The minimum distance reached by
any UAV pair, over the simulation runs, suggests that a good kL is around 2.5 (fig.
5.38)

(a) Tracking performance with weak wind (2 m/s).
Minimum commanded distance among formation
UAVs of 80 m.

(b) Tracking performance with strong wind (8 m/s).
Minimum commanded distance among formation
UAVs of 80 m.

(c) Tracking performance with weak wind (2 m/s)
and position reference disturbances (20 m). Mini-
mum commanded distance among formation UAVs
of 80 m.

(d) Tracking performance with strong wind (8 m/s)
in a tighter performance. Minimum commanded dis-
tance among formation UAVs of 50 m.

Figure 5.36: Leader gain effect on the position tracking performance with different wind
conditions and position reference disturbances. The plots show the mean (blue), the maxi-
mum (red), and the minimum (pink) of several simulations average tracking error for each
of the controller gain settings.
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(a) Bank variation with weak wind (2 m/s). Mini-
mum commanded distance among formation UAVs
of 80 m.

(b) Bank variation with strong wind (8 m/s). Min-
imum commanded distance among formation UAVs
of 80 m.

(c) Bank variation with weak wind (2 m/s) and posi-
tion reference disturbances (20 m). Minimum com-
manded distance among formation UAVs of 80 m.

(d) Bank variation with strong wind (8 m/s) in
a tighter performance. Minimum commanded dis-
tance among formation UAVs of 50 m.

Figure 5.37: Leader gain effect on the bank variation with different wind conditions and
position reference disturbances. The plots show the mean (blue), the maximum (red), and
the minimum (pink) of several simulations bank standard deviation for each of the controller
gain settings.

(a) Overall minimum distance with weak wind (2
m/s). Minimum commanded distance among for-
mation UAVs of 80 m.

(b) Overall minimum distance with strong wind (8
m/s). Minimum commanded distance among forma-
tion UAVs of 80 m.

(c) Overall minimum distance with weak wind (2
m/s) and position reference disturbances (20 m).
Minimum commanded distance among formation
UAVs of 80 m.

(d) Overall minimum distance with strong wind (8
m/s) in a tighter formation. Minimum commanded
distance among formation UAVs of 50 m.

Figure 5.38: Leader gain effect on the overall minimum attained distance, with different
wind conditions and position reference disturbances.
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5.3.12.2 Performance Evaluation

The upgraded controller performance was tested with a 4 DOF simulation. To
analyze the controller performance we needed a dataset that was representative of the
distribution of the performance measurements. To generate that dataset we ran a very
large number of simulations, automatically sweeping several environment conditions.
The feasibility of the large number of simulation runs lead us to choose the 4 DOF
simulation for the performance tests, instead of the 6 DOF simulation, that didn’t
allow us to automate the environment conditions sweep. Even so, the performance
results are meaningful, as we used the same formation controller parameters and
the formation behavior is similar in both simulations. The main difference between
both simulations is the position error magnitude, which is about twice in the 6 DOF
simulation when compared with the 4 DOF simulation results, in the same conditions.

As for the previous tests (sec. 5.3.11), the controller parameters are set to control
UAVs with a wingspan of 2.5 meters, with a safety distance of 5 meters, resulting in
a safety distance between the aircraft wing tips of 2.5 meters. The test conditions
were the same as for the preliminary tests, yielding promising results.

The simplest scenario featured every aircraft starting at their intended formation
positions. This tested the formation position tracking with perturbations such as wind
and positional errors. The positional perturbations were intended to test the string
and mesh stability of the formation control. We applied sinusoidal perturbations to a
single aircraft and observed the reaction of the other formation aircraft. The forma-
tion aircraft show a positional perturbation strongly attenuated when compared with
the one shown by the directly perturbed aircraft. Figure 5.39 shows an attenuation
to less than 1/3 of the original perturbation for every formation aircraft. Further,
the system shows no sign of perturbation build up over time. The formation aircraft
perturbation remains proportional to the directly perturbed aircraft over time.

(a) String stability - The UAVs were set on an in-
line formation.

(b) Mesh stability - The UAVs were set on an arrow
shaped formation.

Figure 5.39: String and mesh stability - Attenuation of perturbations from UAV 2 to
the other UAVs. UAV 2 presented a sinusoidal motion perturbation. UAVs 3 to 6 show
perturbations with reduced amplitude when compared to UAV 2.

To test the system’s accommodation of wind perturbations we simulated a range
of wind conditions. This tests the system in steady state, i.e., with UAV positions
starting and remaining close to the reference ones. In each simulation every aircraft
was subject to the same steady wind and completely independent gusts, to simulate
a worst case scenario. We simulated strong turbulence, generating several gusts with
more than 50% of simulated steady wind speed. We tested the formation control over
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(a) Formation position mean tracking error. The
mean tracking error was evaluated for each for-
mation UAV from several simulation runs. The
thicker curve represents the average among all
UAVs. The top and bottom thinner curves are
the mean tracking error of the worst and best per-
forming UAVs.

(b) Minimum distance among UAVs. UAVs are
kept safely apart even for strong winds.

Figure 5.40: Wind compensation by the formation controller. The solid curves represent the
performance of the formation controlled without the wind variation compensation (5.112)
and the dashed lines with it. The formation error increases with wind, however it is small
even for strong winds.

several simulation runs with each test wind speed (fig. 5.40). The formation control
was tested with and without the wind variation compensation (5.112), allowing us to
evaluate its benefits. The results show that the wind variation compensation seems
to yield better results only for the very strong winds. Moreover, it generates more
variable control references, resulting in a wobbly flight. This leads to the conclusion
that the system behaves better without the wind variation compensation. In general,
the tests show that the system compensates for the wind perturbations well, main-
taining the mean position error below 15 meters even for strong winds. Maybe even
more important are the results in terms of minimum distance maintained among all
UAVs. Figure 5.40b shows that, in steady state, the formation controller is able to
maintain a distance among all aircraft quite close to the commanded and well above
the safety distance.

(a) UAVs’ position error - The initial convergence
and the final settling around the commanded for-
mation positions is shown clearly.

(b) Minimum distance among all formation aircraft
- The minimum distance does not go below 20 me-
ters and converges to the intended one, 35 meters
in this case.

Figure 5.41: Formation convergence - UAVs start in positions defined by an enlarged version
of the commanded formation. The strong simulated wind (16 kts) leads to an overshoot
after the initial convergence.

We tested the system convergence by initializing every aircraft in an enlarged
version of the commanded formation. Figure 5.41 illustrates the correct convergence
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of the formation. After the initial convergence there is a momentary divergence due to
the fact that the simulation featured a 16 kts wind, which lead to an initial overshoot.
The strong wind speed is also the reason for the final jittery position error.

To test the form-up control, we also tested a scenario where the aircraft started
on positions symmetric relative to the desired ones (fig. 5.43a). This tested how
well the system handled challenging initial aircraft positions. The system behaves as
expected, driving all aircraft to their intended formation positions while keeping a
safety distance when the UAVs need to cross paths (fig. 5.42).

(a) UAVs’ position error - Initially the system con-
verges. When the UAVs get closer they start to in-
teract in order to reposition themselves. The repo-
sitioning interaction leads some aircraft to diverge
before the final convergence, when all are close to
their intended relative directions.

(b) Minimum distance among all formation aircraft
- At the end of the initial convergence the UAVs
are quite close to each other, but never get closer
than 5 meters. In fact they rarely get closer than
10 meters.

Figure 5.42: Formation convergence - UAVs start in positions defined by an enlarged version
of the commanded formation with their positions symmetric to the intended ones on both
formation axes (fig. 5.43a).

5.3.13 Flight Results

At the moment this thesis is being written, we initiated the formation controller
real flight tests. For now we tested a formation with only one real aircraft and the
rest simulated. These tests served to check that the formation followed the intended
trajectory, observe the system’s gust compensation, and reveal some points that could
improve the controller performance.

The tests were executed with a testbed developed in the PITVANT project [109].
The testbed implements a ground control, i.e., the controller runs on MatLab on a
laptop that receives telemetry and sends flight commands through a ground-station.
The autopilot system is a Piccolo II [110], which receives airspeed and bank commands
from Dune, a control software developed at the Underwater Systems and Technology
Laboratory from University of Porto. Formation trajectory, i.e., the virtual leader
trajectory, was controlled by path following controller developed by Oliveira and
Encarnação [111, 112].

The best results yet presented a mean position error of 15.9 m, with an average
wind speed of 3m/s. The gain and boundary layer thickness that yielded the best
performance were:

∆ = 0.9 (5.144a)

Φ = 10, (5.144b)
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which fall in the tuning intervals predicted by the simulations (5.143). These results
are very good if we take into account that the controller was running off-board and had
to cope with communication delays that were worse than those present in the 6 DOF
simulation. The transition of the controller to C++ and an on-board implementation
should also improve the system performance.

5.4 Conclusions

We developed a Collision Avoidance System for indoor helicopters and a forma-
tion flight controller with collision avoidance for fixed wing aircraft. The formation
control system handles the air flow perturbations and the formation vehicles’ posi-
tional perturbations well. The individual vehicle positional error is attenuated over
the formation, showing good string and mesh stability. Furthermore, the controller
handles every phase of the formation maneuver including the initial position conver-
gence (form-up) and the formation shape tracking. The controller includes a collision
avoidance feature which allows a safe form-up. Further, this feature allows a safe
control of close formations, as shown by the results. During tests, the algorithm was
setup to control UAVs with wingspan of approximately 2.5 meters. The results show
that with such setup the UAVs very rarely come closer than 10-meters and never
closer than the 5-meters safety distance. This means that the formation controller
can support the acquisition of spatially distributed samples of airflow data simultane-
ously, by flying an array of UAVs. The controller seems to be capable of maintaining
the UAVs close enough that several of them are inside a thermal simultaneously.

The Collision Avoidance System for helicopters was developed to gain experience
with this kind of systems. We created a system featuring a Path Deconflicting Algo-
rithm and Close Proximity Collision Avoidance Algorithm so that the system would
have the benefits of both methods, i.e., path smoothness and better time efficiency
provided by the PDA and safety enforcement provided by the CPCAA. We proved
that the system is safe and able to reach its goals, with some of the presented dynamic
models. One of the lessons learned was that a larger number of switching conditions
in the controller introduces added complexity to prove the safety and liveliness prop-
erties.
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(a) Aircraft initial positions. (b) Aircraft positions after 5 seconds.

(c) Aircraft positions after 10 seconds. (d) Aircraft positions after 15 seconds.

(e) Aircraft positions after 20 seconds. (f) Aircraft positions after 30 seconds.

Figure 5.43: Formation form-up illustration sequence. The follower aircraft start at sym-
metric positions to the desired ones relative to the leader, both in the x and y axes. The
desired formation positions are shown as thin red aircraft. The real current aircraft positions
are the blue arrows inside the circles. The circles represent the collision and safety zones of
each vehicle. In this simulation the leader (clear aircraft) is always moving eastward at 20
m/s.

163



CHAPTER VI

Conclusions

6.1 Conclusions

This work studies the possibility to extend aircraft flight endurance through the
exploitation of flow field energy. To exploit the flow field energy the aircraft needs to
have enough maneuverability, and a suitable exploitation controller with an estimator
for the phenomenon.

In chapter III we discussed the necessary conditions to perform perpetual flight
by harvesting energy from the flow field phenomena: thermals, wind shear and gusts.
We concluded that with every phenomena the aircraft efficiency and the exploited
phenomenon strength are crucial to enable perpetual flight. For thermals the condi-
tional parameters are the mean spacing among thermals, the mean thermal lifespan,
the day maximum of mean updraft speed, the aircraft minimum sink rate, and the
aircraft best lift over drag ratio. For wind shear the conditional parameters are the
average wind shear gradient, the air density, the aircraft minimum drag ratio, the air-
craft best lift over drag ratio, and the aircraft wing loading. For gusts the conditional
parameters are the gusts’ magnitude and wavelength, and the aircraft efficiency.

We also addressed the problem of estimating the flow field phenomena parame-
ters, such that these can be used by an exploitation controller. We showed thermals
and wind are observable, and that thermals and wind shear parameters can be es-
timated. The developed estimators provide independent estimation capabilities, i.e.,
without prior knowledge on the flight area characteristics or the phenomena’s prior
states, but may also incorporate these data. That is because the estimators are Par-
ticle Filter (PF) estimators, which are capable of global estimation, i.e., estimation
with an unknown initial state. Further, the Particle Filters may use and represent
any probability distribution, allowing the representation of non-Gaussian probabil-
ity distributions, displayed by many of the phenomena representative parameters, the
representation of multiple phenomena, or even the incorporation of prior information.
The implemented estimators, a Chimney Thermal Regularized Adaptive Particle Fil-
ter (RAPF) locator [113] and a Surface Wind Shear PF estimator [114], perform well
in simulation. The results are very good both in terms of estimation accuracy, and
in terms of processing load. The processing load requirements are compatible with
small computer capabilities for use in small UAVs, as intended.

To support the estimator development and the simulation of UAV flight through
the studied flow field phenomena we studied several existing models. Further, we im-
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proved some of those models and created new ones to better capture some important
features. The used models represent the phenomena’s 3D shape, the interaction with
the steady wind flow, and the dynamics. For thermals we presented 2D models, but
more importantly models for Chimney and Bubble Thermals. The Bubble Thermal
model is new and is based on the vortex shell hypothesis by Cone [45]. The extended
Chimney Thermal model is based on the Allen model [4], and includes the thermal
core movement and thermal interactions with the surrounding flow field, e.g., its lee-
ward leaning when there is wind. In terms of wind shear we presented an existing
model for the Surface Wind Shear, and new models for the Layer and the Ridge Wind
Shear.

Most of the presented models lack the verification of how well they represent the
reality. As such, we felt the need to get airflow data that was representative of the flow
field phenomena and could be compared with the models’ predictions, validating or
rejecting them. As UAVs can be used to measure the airflow through which they are
moving, they may be regarded as tools to collect the needed validation airflow data.
Therefore, we developed a flight controller which enables the collection of airflow data
at several distributed spatial points simultaneously. It is a formation flight controller
which features a collision avoidance logic [115], allowing safe flight of several UAVs
in and around the phenomenon of interest. Simulations and initial flight tests yield
promising results in terms of performance and safety, providing good perspectives for
the use of this method to validate the phenomena models.

6.2 Future Work

There is still plenty of work to do about flow field energy harvesting by aircraft.
There is interest in using the techniques described in this work in the PITVANT
project (Portuguese Research & Technology Project on UAVs [116, 117, 118, 119,
120]), that supported part of this work. It is envisioned that these techniques will en-
able the use of UAVs by the Portuguese Air Force to execute a permanent surveillance
of the large Portuguese exclusive economic zone (fig. 6.1).

Figure 6.1: Portuguese exclusive economic zone

This thesis leaves several important questions unanswered. We outline some of
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those questions next. The current work also developed several algorithms that need to
be validated in real world conditions, becoming useful tools. We describe what steps
we envision for the verification of the developed methods and possible improvements
for those. Further, we point to some other systems that would augment the current
methods or that would be required for the functioning of the developed methods.

6.2.1 Open questions

Can a flow field exploitation controller be introduced in a UAV operation?

This is perhaps the most important question we came to face. We showed it is possible
to largely extend the UAV flight endurance, but to do so the UAV needs to follow
an exploitation trajectory. Most of the current operational scenarios have the UAVs
flying to a target zone, executing its task, and coming back to the base airfield. In
most of the operational situations, the activation of the exploration controller would
require a more complex flight trajectory, sometimes increasing the time to reach
the target zone, and always augmenting the path footprint, both in altitude and in
horizontal area. Can the UAV missions accommodate such changes to the modus
operandi? Which missions have the necessary flexibility? How can the exploration
controller reduce its impact on the main mission goal execution?

How should the exploitation trajectories be combined?

If we want to be able to use all the flow field phenomena, the controller needs to
handle several questions. When should it be exploiting thermals, wind shear, or
gusts? When should it transition from dynamic wind shear soaring to static thermal
soaring?

Can we harvest more energy if we have an electrical regeneration system?

We analyzed the problem of performing perpetual flight assuming the aircraft could
only store the harvested energy in the form of altitude or velocity. There is also the
possibility to have an electrical regeneration system, i.e., an electrical motor and a
generator, to harvest the excess energy. The system would harvest energy through
a propeller-generator, storing it on batteries. When required, an electrical motor
would use the battery energy to propel the aircraft. Could such a system improve the
potential for energy exploitation? Would the overhead and the losses of this system
be compensated by the increase in harvested energy? If this system also provided
the necessary energy for the aircraft electronics, what would be the change in the
necessary conditions for perpetual flight?

Are the presented thermal and wind shear models valid?

As discussed before, most of the studied flow field phenomena models were not vali-
dated against real observation data. This important, because the phenomena models
are the premises under which control algorithms and estimators are developed. If
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the models are incorrect, the estimators that use them should perform poorly. The
controllers created to search for the phenomenon or to exploit it also depend on the
characteristics of the modeled phenomenon.

Are Bubble Thermals more or less frequent than Chimney Thermals?

Or, which are the factors that affect the appearance rates of Chimney Thermals
and Bubble Thermals? This is an example of two thermal models which affect the
premises for the estimators and the controllers. There is no consensus about which
of the thermal types is more common, or if both exist. A controller searching for a
Chimney Thermal would not have to take into account the flight altitude, as long as
the UAV is in the atmosphere mixing-layer. On the contrary, a controller searching
for a Bubble Thermal needs to take into account the 3 dimensional space domain.
The same happens with the estimators and the dependence of their performance on
the estimation path and the observed thermal type.

6.2.2 Future developments

We now present some suggestions for future developments. Most of the suggestions
envision the practical implementation and use of the tools developed in this thesis.

6.2.2.1 Flow Field Observer

Some of the estimation methods presented, in particular for wind shear and gusts,
require the existence of a flow field observer. This observer would be required to
output the airflow vector 3D components and, if possible, the rate of change of these
components. The observer time constant should be small, as that is important to
allow accurate estimates of the wind shear, and even more to detect gusts and enable
a timely control response.

Such an observer needs to take into account the aircraft dynamics. Therefore,
it requires the knowledge of the aircraft full 6 DOF model parameters. From the
tests we performed we concluded that a time domain parameter observer yields poor
results. A promising alternative is the method presented by Morelli [66], for aircraft
parameter estimation in the frequency domain. This method was also specifically
developed for aircraft not equipped with airflow angle sensors, as Angle-of-Attack
(AOA) vanes. That is specially important for standard small UAVs, as these are not
usually equipped with airflow angle sensors.

6.2.2.2 Thermal Estimation and Exploitation

The thermal locators presented may also be improved. The estimation evalua-
tion function used is a function of the thermal Regularized Adaptive Particle Fil-
ter (RAPF) likelihood. We noticed that the likelihood is not always well correlated
with the estimation performance. This makes us believe that there should be a better
estimate evaluation function. With such a function the sensitivity to the number of
particles and to the update rate may be better studied, allowing a better tunning of
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the estimator. Further, during the estimation process an estimate evaluation func-
tion may be considered as an online trust measure, which is most useful for user
information and as input for soaring controllers.

As the thermal RAPF locator was developed to be integrated in UAVs, the method
will only be fully proved when applied to real flight data, providing feedback to a soar-
ing control system. After this system is tested in reality, a logical extension is the
tracking of multiple thermals, allowing the UAV to optimize a soaring flight plan.
It should also be extended to allow cooperative estimation by multiple UAVs, aug-
menting the team estimation performance and maybe more importantly the capacity
to exploit the thermal field energy. As there are different types of thermals, the
system should also be extended to be able to cope with multiple thermal types and
distinguish them.

This work also reveals that a statistical study about regional distribution of ther-
mals and their characteristics would provide very important inputs to flight path
planners. That study could characterize the thermal appearance probability over an
area, including the localization of hot spots, i.e., points over which there is a higher
probability of formation of a thermal. This would allow a global enhancement of
the trajectory energy efficiency. Another important statistical characterization is the
distribution of the thermal updraft strength and size over different regions. This
characterization is very important to assert or refuse some of the perpetual flight
analysis assumptions. Also, if the regional thermal characteristics are well character-
ized, the estimation methods may use prior regional data, instead of relying solely on
the aircraft sensor data.

The thermal localization may be enhanced if the flight controller is designed to
improve the estimation process. The flight path may be defined by taking information
theory into account, generating a more informative flight path.

6.2.2.3 Wind Shear Estimation

From the three wind shear phenomena we described we presented an estimator
only for the Surface Wind Shear. The extension of the estimator for Layer Wind
Shear should be straightforward, and will expand largely the estimator applicabil-
ity. Further, as for the thermal locator, the extension for wind shear collaborative
localization and exploitation should improve the team endurance and the wind shear
estimate quality greatly.

During the present study the only wind shear soaring controllers we found were
off-line flight path planners. As such, a very important development for wind shear
soaring would be the development of a feedback-based flight controller, which would
enable UAVs to use the wind shear in practice.

6.2.2.4 Control in Flow Fields

Most of the information generated by the flow field estimators we discussed in this
work is important only if there are exploitation flight controllers capable of using it.
Such a controller needs to be able to cope with the dynamic and stochastic nature of
the flow field phenomena. The flight controller may define an initial optimized flight
plan, but it should also be able to adapt it with on-route feedback. An example with
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thermal soaring is the definition of the limit altitude at which the aircraft should leave
a thermal and the airspeed it should fly while searching for new thermals. Three of
the competing goals in an optimal flight path definition are the: localization of the
phenomenon, its exploitation, and the global mission goal of the aircraft.

169





APPENDICES

171





APPENDIX A

Thermal RAPF Estimator
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RAPF:
(
χt−1, Ėa,t,M,wslow, wfast, NRSplMin, NRandMin, g

)
1 χt = χt = ∅
2 for m← 1 to M do do

3 x
[m]
t = SampleMotionModel

(
x

[m]
t−1

)
;

4 y
[m]
t = SampleEnvironmentModel

(
y

[m]
t−1

)
;

5 w
[m]
t = MeasurementModel

(
Ėa,t, x

[m]
t , y

[m]
t

)
;

6 χt = χt +
〈
x

[m]
t , y

[m]
t , w

[m]
t

〉
;

7 wavg = wavg +
w

[m]
t
M ;

8 end

9 //Likelihood evaluation for adaptive part
10 wslow = wslow + αslow (wavg − wslow);
11 wfast = wfast + αfast (wavg − wfast);
12 NRand = NRandMin +

⌈
(M −NRSplMin −NRandMin) max

(
1− wfast

wslow
, 0
)⌉

;

13 NRSpl = M −NRandMin

14 //Parameters for regularization
15 Compute the empirical covariance matrix St of χt;

16 Calculate to bandwidth h = g ·
[

1
2NRSpl

]0.1
;

17 //Resampling
18 for m← 1 to NRSpl do do

19 draw i ∈ [1, ...,M ] with probability ∝ w[i]
t ;

20 draw
[
x

[i]∗
t ; y

[i]∗
t

]
∼ N

([
x

[i]
t ; y

[i]
t

]
, h2St

)
;

21 χt = χt +
〈
x

[i]∗
t , y

[i]∗
t , 1

M

〉
;

22 end

23 χ
[NRSpl+1:M]
t = GenerateRandParticle (NRand);

return: χt

Algorithm 2: Regularized Adaptive Particle Filter (RAPF ) pseudo-code
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APPENDIX B

Safety and Liveness Proofs - Collision Avoidance System for
Close Proximity Operations

B.1 Properties proof: Model 1 - Single integrator

Theorem B.1. The overall system satisfies the Safety property, if we assume single
integrator holonomic vehicles, if the Close Proximity Collision Avoidance Algorithm
(CPCAA) is part of the control system, and if (‖∆x12‖ ≥ ds12) (t0) holds true.

Proof. If the desired trajectories for UAV 1 and UAV 2 are such that (� ‖∆x12‖ > ds12) (t),
no collision will occur, because

ds12 = rc1 · a1 + rc2 · a2 > dc12 , (B.1)

proving
(� ‖∆x12‖ > dc12) (t) . (B.2)

Figure B.1: Collision avoidance commands

If on any part of the trajectories ‖∆x12‖ ≤ ds12 , then the CPCAA state is ac-
tivated, forcing v1 = − ∆x12

‖∆x12‖ · Va1 and v2 = ∆x12

‖∆x12‖ · Va2 (fig. B.1), which results
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in,

d ‖∆x12‖
dt

=
〈∆x12 |∆v12 〉
‖∆x12‖

=
〈∆x12 |v2 − v1 〉
‖∆x12‖

= ...

... =

〈
∆x12

‖∆x12‖

∣∣∣∣ ∆x12

‖∆x12‖
· Va2 −

(
− ∆x12

‖∆x12‖
· Va1

)〉
= ...

... =

〈
∆x12

‖∆x12‖

∣∣∣∣ ∆x12

‖∆x12‖
· (Va2 + Va1)

〉
= 〈∆x12 |∆x12 〉

Va2 + Va1

‖∆x12‖2 = ...

... = Va2 + Va1 ≥ 0⇒ d ‖∆x12‖
dt

≥ 0, (B.3)

meaning that:

(‖∆x12‖ ≤ ds12) (t1)⇒
(
d ‖∆x12‖

dt
≥ 0

)
(t) , t ∈ [t1, t2]⇒ ...

...∃t2 > t1 : (◦ ‖∆x12‖ > ds12) (t2) ∴ (� ‖∆x12‖ ≥ ds12) (t) , t > t2. (B.4)

And again, because ds12 > dc12

CPCAA |= (� ‖∆x12‖ > dc12) (t) , (B.5)

proving the safety property.

Lemma B.2. If the CPCAA is activated the system loses the liveness property, with
a single integrator dynamic model.

Proof. If the CPCAA is activated it means that the initially commanded trajectories

result in d‖∆x12‖
dt

< 0. The CPCAA activation enforces d‖∆x12‖
dt

≥ 0. With the single
integrator dynamic vehicle model, the system reacts instantaneously to the commands
of the original state and the CPCAA state. This results in a “livelock” between both
states, which keeps the vehicles from reaching their target waypoints.

Remark B.3. If the initially commanded trajectories result exactly in vcmd,1 = − ∆x12

‖∆x12‖ ·
Va1 and vcmd,2 = −vcmd,1 a “live-lock” would also occur, independently from the in-
stantaneous reactions of the vehicles. However the probability of such a situation is
null, and real vehicles and control systems don’t react instantaneously. That being,
a “live-lock” would never occur, but the resulting saw teeth path would be most
inefficient and undesirable.

Lemma B.4. The overall system satisfies the liveness property, if it stays enough
time in the TrackWP state.

∃tfi : (‖∆xi WP‖ ≤ dwpi) (tfi) ∴ (♦ ‖∆xi WP‖ ≤ dwpi) (t0) (B.6)

Proof. In the TrackWP state all vehicles are commanded to head directly to their
current waypoints, with:

vi =
∆xi WP

‖∆xi WP‖
· Vci (B.7)

Therefore, each vehicle i will reach a position ∆xi WP , where‖∆xi WP‖ ≤ dwpi , in

tfi =
‖∆xi WP ‖−dwpi

‖vi‖ =
‖∆xi WP ‖−dwpi

Vci
time units, proving the lemma.
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We can further extend liveness to situations with less restrictive constraints. To
achieve that we need to prove that the system can always reach the TrackWP state
and never enters the CPCAA state.

Lemma B.5. The system never enters the CPCAA state, if the follower is in the
leader’s Frontal Area and out of the Close Frontal Area.

(� (xF ∈ {FrontAreaLF\CloseFAreaLF} ⇒ ◦ (xF /∈ SafeAreaLF ))) (t) (B.8)

Proof. Suppose the follower start position xF (t0) is in the leader’s Frontal Area, out
of the Close Frontal Area (fig. B.2), and on the right side of the line connecting the
leader to its waypoint. We need to know the minimum possible separation between

Figure B.2: Close Frontal Area

both aircraft before the follower reaches the Buffer Area,

dGMin = min
t≥t0
{‖∆xLF‖ (t) : xF (t) /∈ BuffAreaLF , ...

... xF (t0) ∈ {FrontAreaLF\CloseFAreaLF}} . (B.9)

The derivative of ‖∆xLF‖ is,

d ‖∆xLF‖
dt

=
〈∆xLF |∆vLF 〉
‖∆xLF‖

, (B.10)

where

∆vLF = vcmd,F − vL =

[
0 −1
1 0

]
∆xL WP

‖∆xL WP‖
· VcF −

∆xL WP

‖∆xL WP‖
· VcL = ...

... =

[
−VcL −VcF
VcF −VcL

]
∆xL WP

‖∆xL WP‖
, (B.11)
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resulting in:

d ‖∆xLF‖
dt

=

〈
∆xLF
‖∆xLF‖

∣∣∣∣[ −VcL −VcFVcF −VcL

]
∆xL WP

‖∆xL WP‖

〉
= ...

... =

〈
RL WP ·

∆xLF
‖∆xLF‖

∣∣∣∣RL WP

[
−VcL −VcF
VcF −VcL

]
∆xL WP

‖∆xL WP‖

〉
= ...

... =

〈
∆xL WP

LF

‖∆xLF‖

∣∣∣∣[ −VcLVcF

]〉
=
VcF ·∆yL WP

LF − VcL ·∆xL WP
LF

‖∆xLF‖
, (B.12)

and ‖∆xLF‖ (t) = dGMin only if

d ‖∆xLF‖
dt

= 0 = VcF ·∆yL WP
LF − VcL ·∆xL WP

LF ⇒ ∆yL WP
LF = ±∆xL WP

LF

VcL
VcF

. (B.13)

This means that the global minimum is on the lines drawn from the leader position

with function ∆yL WP
LF = ±∆xL WP

LF
VcL
VcF

, as illustrated in figure B.3 by the black lines.

Moreover, any start position outside the global minimum lines leads the vehicles to
an ever increasing separation. We can call this area the Frontal ejection area,

FEjectAreaij =

{
xj : xj ∈ FrontAreaij ∧

∣∣∆yi WP
ij

∣∣ ≥ ∆xi WP
ij

Vci
Vcj

}
. (B.14)

This results in

min
t≥t0
{‖∆xLF‖ (t) : xF (t) ∈ {FEjectAreaLF}} = ‖∆xLF‖ (t0) > dsLF . (B.15)

Now we must prove a similar result for the rest of the Frontal Area. Let us define
a minimum reachable distance dmin as

dmin =

√
(∆yL WP

LF )
2

+ (∆xL WP
LF )

2
= ∆xL WP

LF

√(
VcL
VcF

)2

+ 1. (B.16)

Figure B.3: Global minimum lines

178



To achieve that minimum distance, because the relative velocity in the leader’s

reference frame is always

[
−VcL
VcF

]
, while the follower is in the Frontal Area, the

follower would have to depart from a position in the lines illustrated in figure B.3 in
blue, defined by:

∆yL WP
LF = ∓∆xL WP

LF

VcF
VcL
± dmin

√(
VcF
VcL

)2

+ 1, ∆xL WP
LF ≥ dmin√(

VcL
VcF

)2

+ 1

, (B.17)

Let us now exclude the points in the Frontal ejection area. If no start position is
in the Close Frontal Area, by definition, all points ∆xLF (t0) on the right side of the
Frontal Area respect

∆xL WP
LF >

dsij
sin ηij

−∆yL WP
LF

VcL
VcF
⇔ ∆yL WP

LF >

(
dsij

sin ηij
−∆xL WP

LF

)
VcF
VcL

, (B.18)

and the ones on the left side of the Frontal Area respect

∆yL WP
LF < −

(
dsij

sin ηij
−∆xL WP

LF

)
VcF
VcL

. (B.19)

If we mix equations B.17 and B.18, for the right side, we end up with,(
dsij

sin ηij
−∆xL WP

LF

)
VcF
VcL

< −∆xL WP
LF

VcF
VcL

+ dmin

√(
VcF
VcL

)2

+ 1⇔ ...

...⇔
dsij

sin ηij

VcF

VcL

√(
VcF
VcL

)2

+ 1

< dmin ⇔
dsij

sin ηij

tan ηij√
(tan ηij)

2 + 1
= dsLF < dmin.

(B.20)

The same procedure can be used for the left side. The equations B.15 and B.20
result in,

dGMin = min
xF (t0)∈{FrontAreaLF \CloseFAreaLF }

t≥t0

{‖∆xLF‖ (t) : xF (t) /∈ BuffAreaLF} > dsLF ,

(B.21)
proving that if the follower is in the Frontal Area and out of the Close Frontal Area,
it will never enter the Safety Area, as intended.

If the follower is in the Frontal Area, the system can only pass to the TrackWP
state if:

1. The follower movement area is near enough to its waypoint, triggering the reach
assertion, and the new trajectory doesn’t conflict with the leader’s one.

2. The leader reaches its waypoint and the new trajectory doesn’t conflict with the
follower’s one.
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Figure B.4: Operating areas

3. The follower can reach the Buffer Area, then the Deconfliction Area and finally
the TrackWP state (fig. B.4).

Lemma B.6. The follower can reach the leader’s Buffer Area, if the follower is in
the leader’s Frontal Area and out of the Close Frontal Area.

(xF ∈ {FrontAreaLF\CloseFAreaLF} → ◦ (xF ∈ BuffAreaLF )) (t) (B.22)

Proof. From the Frontal Area, the follower can only reach the Safety and the Buffer
Area. By lemma’s B.5 conclusions, the follower can only reach the Buffer Area. The
follower’s exit velocity vector is always perpendicular to the boundary between the
Frontal Area and the Buffer Area. As such, the maximum time needed for the follower
to reach the Buffer Area is,

tFtoB max =
dsLF
VcF

, (B.23)

proving that the follower will reach the Buffer Area.

Lemma B.7. The system never enters the CPCAA state, if the follower is on the
leader’s Buffer Area.

(� (xF ∈ BuffAreaLF ⇒ ◦ (xF /∈ SafeAreaLF ))) (t) . (B.24)

Proof. Suppose the follower start position xF (t0) is in the leader’s Buffer Area. To
prove that the system doesn’t enter on CPCAA state, we need to prove that the
distance global minimum is greater than the safety distance,

dGMin = min
t≥t0
{‖∆xLF‖ (t) : xF (t) /∈ {DeconflAreaLF , F rontAreaLF} , ...

... xF (t0) ∈ {BuffAreaLF}} > dsLF . (B.25)
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When the follower is in the leader’s Buffer Area, there are three possible situations
for the valid command options: only the option with κ = 1 is valid, only the option
with κ = −1 is valid, or both are valid, as illustrated in figure B.5.

Figure B.5: Buffer Area - Valid command option regions

Let us assume the follower start position is such that ∆xL WP
LF ≤ 0. Here, the

commanded velocity for the follower will be:

vcmd,F =

[
cos γ ± sin γ
∓ sin γ cos γ

]
xFL
‖xFL‖

· VcF ⇒ vLFcmd,F =

[
− cos γ
± sin γ

]
VcF , (B.26)

where γ = π − arctan
(

dBuff cosσ

dBuff sinσ−d12

)
. The derivative of the distance between both

aircraft is,

d ‖∆xLF‖
dt

=
〈∆xLF |∆vLF 〉
‖∆xLF‖

=

〈
∆xLFLF
‖∆xLF‖

∣∣∣∣[ − cos γ
± sin γ

]
VcF −

[
cosψLF
− sinψLF

]
VcL

〉
= ...

... = − (VcF cos γ + VcL cosψLF ) , (B.27)

where ψLF is the angle between leader’s movement vector and the follower’s relative

Figure B.6: Leader to follower angle
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position (fig. B.6). If we now consider only the points in the leader’s Buffer Area,

γ ∈
(π

2
, π
)
, (B.28)

and if the follower is behind the leader,

ψLF ∈
[
π

2
,
3π

2

]
. (B.29)

This results in,

d ‖∆xLF‖
dt

> 0 : ψLF ∈
[
π

2
,
3π

2

]
∧ γ ∈

(π
2
, π
)
, (B.30)

which means that the velocity command always points away from the leader, if the
follower is behind it, and:

min
t≥t0

{
‖∆xLF‖ (t) : xF (t) /∈ {DeconflAreaLF , F rontAreaLF} ∧∆xL WP

LF ≤ 0, ...

... xF (t0) ∈ {BuffAreaLF}} = ‖∆xLF‖ (t0) > dsLF . (B.31)

Let us now assume that the follower start position is such that ∆xL WP
LF > 0 and

it is on the right side of the Buffer Area. This implies that dsLF < ∆yL WP
LF < dDLF ,

that ψLF ∈
[
0, π

2

)
, and also that

γ ∈
(
ψLF + arctan

(
dBuff − ds
∆xL WP

LF

)
, π

)
. (B.32)

In this region, only the option with κ = 1 is valid and the commanded velocity
for the follower will be:

vLFcmd,F =

[
− cos γ
sin γ

]
VcF (B.33)

If we now take the distance derivative between both aircraft, projected only on
the Y axis of the leader:

d∆yL WP
LF

dt
= 〈∆xL WP ⊥ ∆vLF 〉 =

〈[
cosψLF
− sinψLF

]
⊥ vLFcmd,F

〉
= ...

... =

〈[
sinψLF
cosψLF

] ∣∣∣∣[ − cos γ
sin γ

]
VcF

〉
= ...

... = VcF (cosψLF sin γ − sinψLF cos γ) = VcF sin (γ − ψLF ) . (B.34)

We can minimize this derivative with argument ψLF :

min
ψLF∈[π2 ,π]

d∆yL WP
LF

dt
= min

ψLF∈[π2 ,π]
VcF sin (γ − ψLF ) = ...

... = min
ψLF∈[π2 ,π]

VcF sin

(
ψLF + arctan

(
dBuff − ds
∆xL WP

LF

)
+ w − ψLF

)
(B.35)

182



where w has an infinitesimal value, greater then 0. Thus, resulting in

min
ψLF∈[π2 ,π]

d∆yL WP
LF

dt
= min

ψLF∈[π2 ,π]
VcF sin

(
arctan

(
dBuff − ds
∆xL WP

LF

)
+ w

)
(B.36)

and because dBuff − ds > 0 ∧∆xL WP
LF > 0⇒ arctan

(
dBuff−ds
∆xL WP

LF

)
+ w > 0, then(

�

({
xF : ∆xL WP

LF > 0 ∧ xF ∈ {BuffAreaLF}
}
⇒ min

ψLF∈[π2 ,π]

d∆yL WP
LF

dt
> 0

))
(t)

(B.37)
The same can be proved by symmetry for the left side of the Buffer Area, with
∆yL WP

LF < −dsLF and the option κ = −1, which implies that

min
xF (t0)∈{BuffAreaLF }∧∆xL WP

LF
>0

t≥t0

{‖∆xLF‖ (t) : xF (t) /∈ {DeconflAreaLF , F rontAreaLF}} = ...

... = min
xF (t0)∈{BuffAreaLF }∧∆xL WP

LF
>0

t≥t0

{〈∆xL WP ⊥ ∆xLF 〉 (t0)} > dsLF (B.38)

Equations (B.31) and (B.38) prove the lemma.

Lemma B.8. The follower will never go back to the Frontal Area, once in the leader’s
Buffer Area.

(� (xF ∈ BuffAreaLF ⇒ ◦ (xF /∈ FrontAreaLF ))) (t) (B.39)

Proof. The equation B.37 proves that if the follower is at any point from the Buffer
Area on the interface with the Frontal Area it will move away from the interface.

Lemma B.9. The follower will reach the Deconfliction Area, once in the leader’s
Buffer Area.

(xF ∈ BuffAreaLF → ◦ (xF ∈ DeconflAreaLF )) (t) (B.40)

Proof. Equation B.37 also proves that if the follower is at any point from the Buffer
Area on the interface with the Deconfliction Area and ∆xL WP

LF > 0, it will move away
from the line between the leader and its waypoint, i.e., into the Deconfliction Area.
Furthermore, equation B.30 proves that, if the follower is on the Buffer Area and
∆xL WP

LF ≤ 0, the radial distance between both aircraft always increases. This means
that if the follower is on the interface between the Buffer Area and the Deconfliction
Area, it will move outwards to the Deconfliction Area, proving the lemma.

Lemma B.10. Once the follower is in the leader’s Deconfliction Area it will not
enter the Buffer Area.

(� (xF ∈ DeconflAreaLF ⇒ ◦ (xF /∈ BuffAreaLF ))) (t) . (B.41)
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Figure B.7: Basic deconfliction path

Proof. Let us define the interface between the Buffer and Deconfliction Area (fig.
B.7):

DeconflPath =

xF :


∆yL WP

LF = dDLF ⇐ ∆xL WP
LF > 0 ∧∆yL WP

LF > 0

∆yL WP
LF = −dDLF ⇐ ∆xL WP

LF > 0 ∧∆yL WP
LF < 0

‖xLF‖ = dDLF ⇐ ∆xL WP
LF ≤ 0

 .

(B.42)
Notice that DeconflPath ∈ DeconflAreaLF . If ∆xL WP

LF ≥ 0 ∧∆yL WP
LF > 0,

vcmd,F =

[
cos γ sin γ
− sin γ cos γ

]
xFL
‖xFL‖

· VcF ⇒ ...

...⇒ ∆vL WP
LF = vL WP

cmd,F − vL WP
L =

[
cos γ sin γ
− sin γ cos γ

] [
− cosψLF
− sinψLF

]
VcF −

[
1
0

]
VcL = ...

... =

[
− cos (γ − ψLF )
sin (γ − ψLF )

]
VcF −

[
1
0

]
VcL . (B.43)

At the interface (∆yL WP
LF = dDLF ):

γ = ψLF ⇒ ∆vL WP
LF = −

[
1
0

]
(VcF + VcL) , (B.44)

meaning that the follower would stay on the line ∆yL WP
LF = dDLF . Using the symmetry

for ∆yL WP
LF < 0, we may state that(
�
(
xF ∈ DeconflAreaLF ∧∆xL WP

LF ≥ 0⇒
∣∣∆yL WP

LF

∣∣ ≥ dDLF
))

(t)⇒ ...

...⇒
(
�
(
xF ∈ DeconflAreaLF ∧∆xL WP

LF ≥ 0⇒ ◦ (xF /∈ BuffAreaLF )
))

(t) .
(B.45)
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Now, when ∆xL WP
LF ≤ 0 ⇒ ψLF ∈

[
π
2
, 3π

2

]
, the relative velocity in the leader to

follower reference frame is,

∆vLFLF = vLFcmd,F − vLFL =

[
− cos γ
± sin γ

]
VcF −

[
cosψLF
− sinψLF

]
VcL ⇒ ...

...⇒ d ‖∆xLF‖
dt

= uLFLF = − (VcF cos γ + VcL cosψLF ) (B.46)

Limiting the positions to ‖xLF‖ = dDLF ,

γ =
π

2
⇒ d ‖∆xLF‖

dt
= −VcL cosψLF ⇒

d ‖∆xLF‖
dt

∈ [0, VcL ] , (B.47)

and so, (
�
(
xF ∈ DeconflAreaLF ∧∆xL WP

LF ≤ 0⇒ ‖∆xLF‖ ≥ dDLF
))

(t)⇒ ...

...⇒
(
�
(
xF ∈ DeconflAreaLF ∧∆xL WP

LF ≤ 0⇒ ◦ (xF /∈ BuffAreaLF )
))

(t) ,
(B.48)

proving the lemma.

Lemma B.11. The system will reach the TrackWP, if the follower is in the leader’s
Deconfliction Area.

(xF ∈ DeconflAreaLF → {active TrackWP}) (t) . (B.49)

Proof. There are only two reasons for the Path Deconflicting Algorithm (PDA) state
to be active. There is an interception between both vehicles’ line paths or the leader
UAV is in the follower conflict area.
Let us take the interception case and assume the follower is on the right side of the
leader, ψLF ∈ [0, π]. The interception can only exist if the follower and its waypoint
are on different sides of leader. In this situation, the follower velocity command option
is CmdOpt = 1, resulting in:

vcmd,F =

[
cos γ sin γ
− sin γ cos γ

]
xFL
‖xFL‖

·VcF ⇒ ∆vL WP
LF =

[
− cos (γ − ψLF )
sin (γ − ψLF )

]
VcF−

[
1
0

]
VcL ,

(B.50)

where γ = arcsin
(
dD
d12

)
. When

∆xL WP
LF ≥ 0⇒ ψLF ∈

[
0,
π

2

]
∧∆yL WP

LF ≥ dDLF ∴ γ ∈ (0, ψLF ]⇒ ...

...⇒
{
uL WP
cmdF

∈ [− (VcF + VcL) ,−VcL)
vL WP
cmdF

∈ (−VcF , 0]
, (B.51)

meaning that the follower moves to the back of the leader. And when it crosses
∆xL WP

LF = 0:

∆xL WP
LF < 0⇒ ψLF ∈

(π
2
, π
]
∧ ‖xLF‖ ≥ dDLF ∴ γ ∈

(
0,
π

2

]
⇒ ...

...⇒
{
uL WP
cmdF

∈ [− (VcF + VcL) , VcF − VcL)
vL WP
cmdF

∈ [−VcF , 0)
, (B.52)
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which enforces the monotonic movement towards ∆yL WP
LF = 0, without conflict be-

cause of lemma B.10. So:({
xF : xF ∈ DeconflAreaLF ∧ Interception ∧∆yL WP

LF ≥ 0
}
→ ◦

(
∆yL WP

LF < 0
))

(t)
(B.53)

This proves that the follower will cross ∆yL WP
LF = 0, ceasing the interception. The

same can be proved for the left side, and so:

({xF : xF ∈ DeconflAreaLF ∧ Interception} → ◦ ∼ Interception) (t) (B.54)

Now let us assume that leader is between the follower and its waypoint, and that
the waypoint is again on the left side. This doesn’t force the follower to be on the
right or left side. However, equation B.54 just proved that the follower will eventually
be on the left side (∆yL WP

LF < 0). On the left side the velocity commands are:

vcmd,F =


vcmd,F =

[
cos γ sin γ

− sin γ cos γ

]
xFL
‖xFL‖

· VcF ∆yL WP
LF ≥ −dDLF

vcmd,F =

[
cos γ − sin γ

sin γ cos γ

]
xFL
‖xFL‖

· VcF ∆yL WP
LF < −dDLF

. (B.55)

Taking 0 > ∆yL WP
LF ≥ −dDLF ,

∆xL WP
LF ≤ 0 ∧ ψLF ∈

(
π,

3π

2

]
∧ ‖xLF‖ ≥ dDLF ∴ γ ∈

[
ψLF − π,

π

2

]
⇒ ...

...⇒
{
uL WP
cmdF

∈ (−VcL , VcF − VcL ]
vL WP
cmdF

∈ (−VcF , 0]
. (B.56)

Now with ∆yL WP
LF = −dDLF ,

∆xL WP
LF ≤ 0∧ψLF = π+arctan

(
∆yL WP

LF

∆xL WP
LF

)
∴ γ = ψLF−π ⇒ vL WP

cmd,F =

[
VcF − VcL

0

]
,

(B.57)
showing that the follower converges to the line defined by ∆yL WP

LF = −dDLF . Because
the follower can reach the left side of the leader,((

∆yL WP
LF (t0) > 0 ∧ xWPF ∈

{
x : ∆xL WP ≤ 0 ∨∆yL WP /∈ (−dDLF , 0]

})
→ ...

...→ xL /∈ ConflAreaFL) (t) . (B.58)

To finish, we have to prove that even if the follower’s waypoint position is such that
xWPF ∈

{
x : xL WP > 0 ∧ yL WP ∈ (−dDLF , 0]

}
, the follower will eventually avoid the

leader’s intrusion. Because the leader is tracking its waypoint, it will take a finite time
to reach it. The next waypoint or the subsequent ones will keep the leader tracking the
same direction or a different one. If it is different it can “move” the relative position
of follower waypoint such that xWPF ∈

{
x : xL WP ≤ 0 ∨ yL WP /∈ (−dDLF , 0]

}
,where

equation B.58 is applicable. If, with every subsequent leader waypoints, there is no
direction change or it is such that xWPF ∈

{
x : yL WP ∈ (−dDLF , 0]

}
is still true,
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the leader will at some point surpass the follower waypoint resulting in xWPF ∈{
x : xL WP ≤ 0

}
. Thus, equation B.58 can be extended to,(

∆yL WP
LF (t0) > 0→ xL /∈ ConflAreaFL

)
(t) . (B.59)

The same proof can be applied to the case where the follower’s waypoint is on the
leader’s right side, proving the lemma.

Theorem B.12. The overall system satisfies the Liveness property, if we assume
single integrator holonomic vehicles, if the PDA and TrackWP states are part of the
control system, and if (xi /∈ AvoidAreaij, i 6= j, i, j = 1, 2) (t0) holds true:

(xi /∈ AvoidAreaij, i 6= j, i, j = 1, 2→ {‖∆x1 WP‖ ≤ dWP1 ∧ ‖∆x2 WP‖ ≤ dWP2}) (t) .
(B.60)

Proof. By lemma B.2, the system doesn’t present liveness if it reachs the CPCAA
state. The system can only reach CPCAA state if any vehicle is in the other’s Frontal
or Buffer Area. Lemmas B.5 and B.7 together prove that,

(� (xF ∈ {BuffAreaLF ∨ FrontAreaLF\CloseFAreaLF} ⇒ ...

... ⇒ ◦ (xF /∈ SafeAreaLF ))) (t) . (B.61)

Therefore, CPCAA can’t be activated if xF (t0) /∈ {CloseFAreaLF ∨ SafeAreaLF}.
Now let’s prove that the system can reach its goal. For that we just need to prove
that it eventually reaches the TrackWP state, due to lemma B.4. From lemma B.6,
B.8, and B.9 we can conclude that

(xF ∈ {BuffAreaLF ∨ FrontAreaLF\CloseFAreaLF} → ...

...→ ◦ (xF ∈ DeconflAreaLF )) (t) . (B.62)

Adding the conclusions of lemmas B.10 and B.11:

(xi /∈ AvoidAreaij, i 6= j, i, j = 1, 2→ {active TrackWP}) (t) . (B.63)

Equation B.63 together with lemma’s B.2 conclusions prove the theorem (eq.
B.60).

B.2 Properties proof: Model 2 - Double integrator

Theorem B.13. The overall system satisfies the Safety property, if we assume double
integrator holonomic vehicles, if the CPCAA is part of the control system, and if the
next restrictions hold true,

(‖∆x12‖ ≥ ds12) (t0) (B.64a)

ds12 > dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+
Vc2 + Vc1

ka
(B.64b)
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Proof. If the desired trajectories for UAV 1 and UAV 2 are such that (� ‖∆x12‖ > ds12) (t),
no collision will occur, because

ds12 = rc1 · a1 + rc2 · a2 > dc12 , (B.65)

proving
(� ‖∆x12‖ > dc12) (t) . (B.66)

If on any part of the trajectories ‖∆x12‖ ≤ ds12 , the CPCAA state is activated.
The minimum distance achievable is defined by:

dmin = min
ψ1,ψ2
t≥t0

{
‖∆x12‖ (t) : ‖∆x12‖ (t0) = ds12 , v̇i = ka

(
− ∆xij
‖∆xij‖

· Vai − vi

)
, ...

... i 6= j, i, j = 1, 2} . (B.67)

The minimum is achieved with d‖∆x12‖
dt

= 〈∆x12|∆v12 〉
‖∆x12‖ = ∆v12

12 = 0. Lets assume t0 = 0,

Figure B.8: Relative angle from UAV 2 to UAV 1

∆v12 (t) = v2 +

(
∆x12

‖∆x12‖
· Va2 − v2

)(
1− e−t·ka

)
− ...

...− v1 −
(
− ∆x12

‖∆x12‖
· Va1 − v1

)(
1− e−t·ka

)
= ...

... =
∆x12

‖∆x12‖
(Va2 + Va1)

(
1− e−t·ka

)
+ (v2 − v1) e−t·ka ⇔ ...

...⇔ ∆v12
12 = (Va2 + Va1)

(
1− e−t·ka

)
+ ...

...+ (Vc2 · cos (ψ2 − ψ12)− Vc1 · cos (ψ1 − ψ12)) e−t·ka , (B.68)

or

∆v12
12 = Va2 + Va1 + [(Vc2 · cos (ψ2 − ψ12)− Va2)− (Vc1 · cos (ψ1 − ψ12) + Va1)] e−t·ka ,

(B.69)
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where ψ12 is the relative angle from UAV 2 to UAV 1 (fig. B.8). And now,

∆v12
12 = 0⇒ e−t·ka = − Va2 + Va1

(Vc2 · cos (ψ2 − ψ12)− Va2)− (Vc1 · cos (ψ1 − ψ12) + Va1)
⇔ ...

⇔ tk =
1

ka
ln

(
(Vc1 · cos (ψ1 − ψ12) + Va1)− (Vc2 · cos (ψ2 − ψ12)− Va2)

Va2 + Va1

)
. (B.70)

To minimize ‖∆x12‖ (t) we need to maximize tk:

max tk ⇒ max

{
(Vc1 · cos (ψ1 − ψ12) + Va1)− (Vc2 · cos (ψ2 − ψ12)− Va2)

Va2 + Va1

}
⇒ ...

⇒ max {Vc1 · cos (ψ1 − ψ12)− Vc2 · cos (ψ2 − ψ12)} ⇒
{
ψ2 = π + ψ12

ψ1 = ψ12
.

(B.71)

Agreeing with the intuition that the vehicles will get closer if they start in a
heads-on configuration. Therefore,

dmin = ‖∆x12‖ (tk) = ‖∆x12‖ (t0) +

tk∫
0

∆v12
12

∣∣
ψ2=π+ψ12,ψ1=ψ12

dt, (B.72)

and

tk∫
0

[
Va2 + Va1 − [Vc2 + Va2 + Vc1 + Va1 ] e−t·ka

]
dt = ...

... = (Va2 + Va1) tk −
Vc2 + Va2 + Vc1 + Va1

ka

(
1− e−tk·ka

)
, (B.73)

and from equation B.70:

tk∫
0

∆v12
12dt =

Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
− Vc2 + Vc1

ka
⇒ ...

dmin = ds12 +
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
− Vc2 + Vc1

ka
. (B.74)

Therefore

dc12 < dmin ⇒ ds12 > dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+
Vc2 + Vc1

ka
, (B.75)

proving the theorem.
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B.3 Properties proof: Model 3 - Control delays

Theorem B.14. The overall system satisfies the Safety property, even with control
noise, if we assume double integrator holonomic vehicles, if the CPCAA is part of
the control system, and if the next restrictions hold true,

(‖∆x12‖ ≥ ds12) (t0) (B.76a)

ds12 ≥ dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+ (Vc2 + Vc1)

(
∆t+

1

ka

)
(B.76b)

Proof. This proof is similar to the one for theorem B.13. If the desired trajectories
for UAV 1 and UAV 2 are such that (� ‖∆x12‖ > ds12) (t), no collision will occur,
because

ds12 = rc1 · a1 + rc2 · a2 > dc12 , (B.77)

proving
(� ‖∆x12‖ > dc12) (t) . (B.78)

If on any part of the trajectories ‖∆x12‖ ≤ ds12 , then the CPCAA state is acti-
vated. The minimum distance achievable is defined by:

dmin = min
ψ1,ψ2
t≥t0

{‖∆x12‖ (t) : ‖∆x12‖ (t0) = ds12 , ...

... v̇i = ka

(
ZOH

(
− ∆xij
‖∆xij‖

· Vai , t,∆t
)
− vi

)
, i 6= j, i, j = 1, 2

}
. (B.79)

The minimum is achieved with d‖∆x12‖
dt

= 〈∆x12|∆v12 〉
‖∆x12‖ = ∆v12

12 = 0. Lets assume
t0 = 0,

∆v12 (t) = v2 +

(
ZOH

(
− ∆x12

‖∆x12‖
· Va2 , t,∆t

)
− v2

)(
1− e−t·ka

)
− v1 − ...

...−
(
ZOH

(
− ∆x12

‖∆x12‖
· Va1 , t,∆t

)
− ∆x12

‖∆x12‖
· Va1 − v1

)(
1− e−t·ka

)
. (B.80)

Let us assume the worst case scenario, where the next update of the Zero Or-
der Hold (ZOH) function happens ∆t time after the system entered in the CPCAA
state, and the unupdated commanded velocities directed the aircraft on a heads-on
trajectory,

∆v12 (t) =

{
v2 − v1 0 ≤ t ≤ ∆t

∆x12

‖∆x12‖ (Va2 + Va1)
(
1− e∆t−t·ka

)
+ (v2 − v1) e∆t−t·ka t > ∆t

⇔ ...

...⇔ ∆v12
12 =


Vc2 · cos (ψ2 − ψ12)− Vc1 · cos (ψ1 − ψ12) 0 ≤ t ≤ ∆t

Va2 + Va1 + [(Vc2 · cos (ψ2 − ψ12)− Va2)− ...
... (Vc1 · cos (ψ1 − ψ12) + Va1)] e∆t−t·ka t > ∆t

, (B.81)

where ψ12 is the relative angle from UAV 2 to UAV 1 (fig. B.8). And now,

∆v12
12 = 0⇒ e∆t−t·ka = − Va2 + Va1

(Vc2 · cos (ψ2 − ψ12)− Va2)− (Vc1 · cos (ψ1 − ψ12) + Va1)
⇔

(B.82)
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We can reuse the result from equation B.70, in theorem B.13, and state that:

(∆t− t)|∆v12
12=0 = tk. (B.83)

Furthermore, as in theorem B.13:

dmin = ‖∆x12‖ (tk) = ‖∆x12‖ (t0) +

tk∫
0

∆v12
12

∣∣
ψ2=π+ψ12,ψ1=ψ12

dt, (B.84)

and from equation B.70:

tk∫
0

∆v12
12dt =

Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
− (Vc2 + Vc1)

(
∆t+

1

ka

)
⇒ ...

dmin = ds12 +
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
− (Vc2 + Vc1)

(
∆t+

1

ka

)
. (B.85)

Therefore

dc12 ≤ dmin ⇒ ds12 ≥ dc12 −
Va2 + Va1

ka
ln

(
Vc1 + Vc2
Va2 + Va1

+ 1

)
+ (Vc2 + Vc1)

(
∆t+

1

ka

)
.

(B.86)
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