2,094 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm

    Get PDF
    BACKGROUND: Life processes are determined by the organism's genetic profile and multiple environmental variables. However the interaction between these factors is inherently non-linear [1]. Microarray data is one representation of the nonlinear interactions among genes and genes and environmental factors. Still most microarray studies use linear methods for the interpretation of nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to analyze three independent large Affymetrix high-density oligonucleotide microarray data sets. RESULTS: Isomap discovered low-dimensional structures embedded in the Affymetrix microarray data sets. These structures correspond to and help to interpret biological phenomena present in the data. This analysis provides examples of temporal, spatial, and functional processes revealed by the Isomap algorithm. In a spinal cord injury data set, Isomap discovers the three main modalities of the experiment – location and severity of the injury and the time elapsed after the injury. In a multiple tissue data set, Isomap discovers a low-dimensional structure that corresponds to anatomical locations of the source tissues. This model is capable of describing low- and high-resolution differences in the same model, such as kidney-vs.-brain and differences between the nuclei of the amygdala, respectively. In a high-throughput drug screening data set, Isomap discovers the monocytic and granulocytic differentiation of myeloid cells and maps several chemical compounds on the two-dimensional model. CONCLUSION: Visualization of Isomap models provides useful tools for exploratory analysis of microarray data sets. In most instances, Isomap models explain more of the variance present in the microarray data than PCA or MDS. Finally, Isomap is a promising new algorithm for class discovery and class prediction in high-density oligonucleotide data sets

    Nonlinear Dimension Reduction for Micro-array Data (Small n and Large p)

    Get PDF

    Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualization of DNA microarray data in two or three dimensional spaces is an important exploratory analysis step in order to detect quality issues or to generate new hypotheses. Principal Component Analysis (PCA) is a widely used linear method to define the mapping between the high-dimensional data and its low-dimensional representation. During the last decade, many new nonlinear methods for dimension reduction have been proposed, but it is still unclear how well these methods capture the underlying structure of microarray gene expression data. In this study, we assessed the performance of the PCA approach and of six nonlinear dimension reduction methods, namely Kernel PCA, Locally Linear Embedding, Isomap, Diffusion Maps, Laplacian Eigenmaps and Maximum Variance Unfolding, in terms of visualization of microarray data.</p> <p>Results</p> <p>A systematic benchmark, consisting of Support Vector Machine classification, cluster validation and noise evaluations was applied to ten microarray and several simulated datasets. Significant differences between PCA and most of the nonlinear methods were observed in two and three dimensional target spaces. With an increasing number of dimensions and an increasing number of differentially expressed genes, all methods showed similar performance. PCA and Diffusion Maps responded less sensitive to noise than the other nonlinear methods.</p> <p>Conclusions</p> <p>Locally Linear Embedding and Isomap showed a superior performance on all datasets. In very low-dimensional representations and with few differentially expressed genes, these two methods preserve more of the underlying structure of the data than PCA, and thus are favorable alternatives for the visualization of microarray data.</p

    Single Cell Proteomics in Biomedicine: High-dimensional Data Acquisition, Visualization and Analysis

    Get PDF
    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions

    Identification of Cell Types in scRNA-seq Data via Enhanced Local Embedding and Clustering

    Get PDF
    Identifying specific cell types is a significant step for studying diseases and potentially leading to better diagnosis, drug discovery, and prognosis. High-throughput single-cell RNA-Seq (scRNA-seq) technologies have advanced in recent years, enabling researchers to investigate cells individually and understand their biological mechanisms. Computational techniques such as clustering, which are categorized in the form of unsupervised learning methods, are the most suitable approach in scRNA-seq data analysis when the cell types have not been characterized. These techniques can be used to identify a group of genes that belong to a specific cell type based on their similar gene expression patterns. However, due to the sparsity and high-dimensional nature of scRNA-seq data, classical clustering methods are not efficient. Therefore, the use of non-linear dimensionality reduction techniques to improve clustering results is crucial. We introduce a pipeline to identify representative clusters of different cell types by combining non-linear dimensionality reduction techniques such as modified locally linear embedding (MLLE) and clustering algorithms. We assess the impact of different dimensionality reduction techniques combined with the clustering of thirteen publicly available scRNA-seq datasets of different tissues, sizes, and technologies. We evaluate the intra- and inter-cluster performance based on the Silhouette score before performing a biological assessment. We further performed gene enrichment analysis across biological databases to evaluate the proposed method\u27s performance. As such, our results show that MLLE combined with independent component analysis yields overall the best performance relative to the existing unsupervised methods across different experiments

    Unsupervised Algorithms for Microarray Sample Stratification

    Get PDF
    The amount of data made available by microarrays gives researchers the opportunity to delve into the complexity of biological systems. However, the noisy and extremely high-dimensional nature of this kind of data poses significant challenges. Microarrays allow for the parallel measurement of thousands of molecular objects spanning different layers of interactions. In order to be able to discover hidden patterns, the most disparate analytical techniques have been proposed. Here, we describe the basic methodologies to approach the analysis of microarray datasets that focus on the task of (sub)group discovery.Peer reviewe
    corecore