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Unsupervised algorithms for microarray sample stratification 
Running head: Unsupervised algorithms for microarray sample stratification 

 

Abstract 

The amount of data made available by microarrays gives researchers the opportunity to delve              

into the complexity of biological systems. However, the noisy and extremely high-dimensional            

nature of this kind of data poses significant challenges. Microarrays allow the parallel             

measurement of thousands of molecular objects spanning different layers of interactions. In order             

to be able to discover hidden patterns, the most disparate analytical techniques have been              

proposed. Here, we describe the basic methodologies to approach the analysis of microarray             

datasets that focus on the task of (sub-)group discovery. 

 

Keywords (5-10): microarray; clustering; unsupervised learning; dimensionality reduction; group         

discovery  
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Introduction  

DNA microarrays are a high throughput technology able to profile tens of thousands of different               

molecules at the same time (1, 2). However, a classical transcriptomic experiment is usually              

related to tens of tested samples, making transcriptomics data subject to the curse of              

dimensionality (2, 3). Moreover, microarray data is also known to be affected by technical and               

experimental noise (1–3).  

Unsupervised learning techniques have been widely applied in the analysis of microarray            

experiments to uncover hidden structures in the data. Common unsupervised techniques include            

projection and clustering methodologies. Projection techniques are used for data visualization           

and dimensionality reduction in order to retain useful information and filter out the experimental              

noise. Clustering techniques, on the other hand, are used to categorize the experimental samples              

based on their response across the transcriptomics profile. Indeed, clustering methodologies           

group together samples that are most similar between themselves and most dissimilar with             

respect to the rest.  

Data projection is a universally employed method in the analysis of big data. It consists of                

projecting the data in a low-dimensional space to explore the relationships among tested samples              

for visual inspection and exploratory analyses. In the specific case of biomedical research, data              

projection is arguably utilized in any study where exploratory data analysis is necessary, while              

its use for dimensionality reduction purposes plays a crucial role in pattern recognition,             

classification and clustering.  

https://www.zotero.org/google-docs/?NVwPy3
https://www.zotero.org/google-docs/?u1QFS4
https://www.zotero.org/google-docs/?049EWn
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One of the most widespread applications of unsupervised algorithms is patient stratification for             

complex human diseases (4). Complex or multifactorial diseases are, by definition, pathological            

conditions due to both genetic and environmental perturbations (5). Both of these factors             

contribute to the modification of the genetic and epigenetic makeup of the cells, causing, in turn,                

the expression of a pathological phenotype. Nowadays, the most studied human multifactorial            

disease is cancer. Indeed, a cancerous phenotype is the result of genetic and epigenetic              

alterations leading the transformed cell to the acquisition of novel and non-physiological            

characteristics. Loss of differentiation, increase of cell cycle speed and low rate of cell apoptosis               

are the main characteristics of a cancer cell, leading to an overly variable phenotype within the                

affected population. Such characteristics make cancer one of the most challenging diseases to be              

treated with well-defined pharmacological strategies. For this reason, the classification of a            

complex disease, like cancer, into clinically relevant sub-types may help to identify the             

molecular determinants of the different sub-phenotypes (4) and, therefore, of the different            

outcomes of a specific therapeutic approach. 

Large-scale omics technologies have become cost- and time-effective. This resulted in a growing             

number of publicly available large-scale (multi-)omics datasets in order to address these kinds of              

problems (6). These data usually measure different biological variables for the same samples,             

allowing the integration of complementary information and bringing a deeper insight into the             

same biological process. For instance, multiple layers of omics data for thousands of cancer              

patients, along with clinical data, are publicly accessible at The Cancer Genome Atlas and the               

International Cancer Genome Consortium (7). Such large-scale efforts triggered the development           

of countless methods and algorithms for patient stratification and the identification of disease             

https://www.zotero.org/google-docs/?y1780J
https://www.zotero.org/google-docs/?YX6kvq
https://www.zotero.org/google-docs/?6edopw
https://www.zotero.org/google-docs/?3BVr58
https://www.zotero.org/google-docs/?pBGjJ0
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endotypes. These resources shed light on clinically relevant molecular sub-types for a number of              

cancers, and further resulted in successful tailored pharmacological treatments (8). While sample            

stratification finds its widest use in the identification of cancer endotypes, it is by no means its                 

only application. For instance, unsupervised clustering can be utilized to identify drugs showing             

similar mechanisms of action in large experimental profiling (9). Similarly, sample clustering            

can be applied in toxicity prediction experiments, as reported in (10), where unsupervised             

hierarchical clustering has been employed in order to prepare the data for QSAR modelling. 

The most common clustering methodologies can be categorized in hierarchical, partitive,           

density-based and fuzzy. Also, specific optimization methodologies, called biclustering, that aim           

at grouping both the samples and the features of the omics data at the same time, are available.  

Multiple issues and challenges are connected to the computational analysis of omics data. First, it               

should be noted that each unsupervised algorithm relies on different assumptions on data             

distributions and different input parameters. For example, most of the clustering algorithms take             

as input the number of groups to detect, that is often arbitrarily selected by the user. To address                  

this issue, some methodologies have been developed to estimate the optimal number of clusters              

from the data at hand. Moreover, changing the initial parameters setup of an algorithm can               

change the outcome, leading to potential issues in the stability of the results. This is even more                 

true when different algorithms are applied to the same dataset. Furthermore, since the aim of               

unsupervised algorithms is to group similar objects, the results are strongly dependent on the              

type of distance or dissimilarity measure used in the analysis. These issues can be addressed by                

using consensus clustering methodologies, where the results coming from a pool of different             

algorithms with different experimental setups are merged in order to obtain a more stable and               

https://www.zotero.org/google-docs/?rsrZHM
https://www.zotero.org/google-docs/?ciPZgI
https://www.zotero.org/google-docs/?OZ3jt0
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reliable result. A further concern is related to the evaluation of the goodness of unsupervised               

algorithm solutions. Multiple metrics that evaluate the goodness of the cohesion into the             

groupings or compare the results with some prior knowledge on the distribution of the data are                

available.  

However, there is no one definitive answer on how to choose the best clustering algorithm or                

distance/similarity measures. Some of them are just more suitable for particular dataset structures             

(e.g. continuous or binary data). In order to always pick up the most suitable algorithm, it is                 

important to have a deep understanding of their advantages and disadvantages. 

In this chapter, we describe the basic concepts of distances and similarity metrics, projective and               

clustering algorithms, and their evaluation metrics. Moreover, we discuss the multi-omics           

clustering approaches and provide examples of their application to microarray data analysis. 

Methods 

Metrics for unsupervised learning  

 
Multiple metrics are available to compare expression patterns from microarray data. However,            

the choice of which metric to use for group discovery will affect the results to different extents                 

(11, 12).  

In general, metrics can be divided into distances or similarities. A distance measures how far               

apart two data points and lie in a space. A distance is a               

metric if it is always non-negative as well as i) symmetric, ii) must fulfil the triangle inequality,                 

and iii) must be zero only when measuring the distance of a point from itself.  

 

https://www.zotero.org/google-docs/?GvXxku
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bp%7D%3D%5Cleft(p_1%2C%20%5Cldots%2C%20p_n%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bq%7D%3D%5Cleft(q_1%2C%20%5Cldots%2C%20q_n%5Cright)#0
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Popular distance metrics (for numeric data) are the Euclidean distance, the Manhattan distance             

and the Chebychev distance, all of which are special cases of the parametric Minkowski distance               

(Table 1). The shape of the clusters detected with any Minkowski distances also varies with the                

parameter p, e.g. the Euclidean distance produces spherical clusters, the Manhattan distance            

produces diamond-shaped clusters and the Chebychev distance produces squared clusters. The           

Minkowski distances are influenced by any imbalances in the scale of any component of the data                

points. As the corresponding distance is more and more influenced by the components              

of the data point with the largest scale. To overcome this problem, it is recommended to                

normalize the scale of each component of the data (12). Another distance that is not affected by                 

the scale of the vector components is the Mahalanobis distance (Table 1), a data-driven              

generalization of the Euclidean distance that uses the inverse covariance matrix to             

“whiten” the data. Whitening has the double advantage of scaling each component to have the               

same variance as well as suppressing any correlation among pairs of components. Clustering data              

using the Mahalanobis distance produces ellipsoidal clusters. However, it requires the estimation            

of the inverse of a, usually large, covariance matrix that is a difficult problem of its own (13). 

When all the components of the data points and are binary, commonly used distances are                 

the Jaccard distance (Table 2). An alternative is the Hamming distance (Table 2), defined as the                

number of differing bits in the two binary data points.  

A distance is a semi-metric if it fulfils conditions i and iii, but not necessarily ii. On the other                   

hand, a quasi-metric needs to be always non-negative and fulfil conditions ii and iii but not                

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p%20%5Cto%20%5Cinfty#0
https://www.zotero.org/google-docs/?OSTkGL
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5CSigma%5E%7B-1%7D#0
https://www.zotero.org/google-docs/?YAxZXV
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bp%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bq%7D#0
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necessarily i. This allows for the distance from to to be different with respect to the                  

distance from  to . 

In general, a similarity measures the opposite of a distance, it tries to quantify how “similar” two                 

data points are rather than how far apart they are. Some efforts have been made to provide a                  

formal definition of a similarity (14, 15). As defined by Chen et al. a valid similarity metric                 

should be i) symmetric, ii) fulfil the triangle inequality, iii) the similarity between the same               

object needs to be non-negative, iv) if holds, then and v)             

the similarity between any two different data points cannot be larger than the similarity between               

a data point and itself. 

A simple and often used method to switch between a distance and a similarity (even though it is                  

not guaranteed that the derived distance/similarity satisfies all the requirements to be a proper              

metric) is to take its reciprocal (16) (adding 1 to the denominator avoids numerical               

issues), or for normalized values in ,  can be used.  

Popular similarity measures are the cosine similarity for real values and the Jaccard index or the                

Dice’s coefficient for binary data (Table 2).  

Correlation measures can also be used, which are popular in the analysis of microarray data (17).                

Multiple correlation scores exist that can be categorized into parametric and non-parametric            

(Table 2). In both cases, their values lie in the range , with -1 meaning negative                

proportionality and +1 positive proportionality. A correlation value of 0 means that no linear              

statistical relation between the two data points is present. Parametric scores make an assumption              

on the distribution of the data (e.g. the assumption underlying the Pearson correlation coefficient              

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bp%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bq%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bq%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bp%7D#0
https://www.zotero.org/google-docs/?MFOCSH
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s%5Cleft(%5Cmathbf%7Bp%7D%2C%20%5Cmathbf%7Bp%7D%5Cright)%20%3D%20s%5Cleft(%5Cmathbf%7Bq%7D%2C%20%5Cmathbf%7Bq%7D%5Cright)%20%3D%20s%5Cleft(%5Cmathbf%7Bp%7D%2C%20%5Cmathbf%7Bq%7D%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bp%7D%20%3D%20%5Cmathbf%7Bq%7D#0
https://www.zotero.org/google-docs/?LfKiNT
https://www.zotero.org/google-docs/?rffnLn
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cleft%5B0%2C%201%5Cright%5D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s%3D1-d#0
https://www.zotero.org/google-docs/?XLSg87
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cleft%5B-1%2C%201%5Cright%5D#0
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is that the data are normally distributed), whereas non-parametric scores are less stringent. When              

the assumptions hold, parametric scores have more statistical power than non-parametric ones. In             

the case of gene expression microarray data, the log-ratio measurements are approximately            

normally distributed, thus the assumptions of the Pearson correlation are satisfied. In the case of               

data that are not normally distributed other non-parametric correlation scores, such as the             

Spearman and Kendall correlation, can be used.  

Multiple tests are available to determine the goodness-of-fit of data to a normal distribution, such               

as the Shapiro-Wilk test (18) or the D’Agostino-Pearson omnibus test (19). Moreover, a good              

practice is to visually inspect the empirical distribution (e.g. histograms/density plots,           

quantile-quantile plots) of the data to determine whether it deviates significantly from            

distributional assumptions made. 

Dimensionality Reduction  

 
Microarray technology allows the expression of tens of thousands of biological entities, such as              

mRNA, miRNA or copy numbers to be profiled in parallel. However, it is unfeasible for any                

microarray experiment to collect a comparable number of samples and therefore, this data may              

be subject to the curse of dimensionality. Also, not all the measured genes are relevant for all the                  

experiments: it is common for most genes to be unaffected by the experimental conditions under               

study. In addition, most genes are organized in overlapped functional groups, implying a degree              

of correlation among them. 

As opposed to supervised learning tasks like the classification of samples or regression, in the               

unsupervised setting of (sub-)group discovery, there is no information that can guide the             

https://www.zotero.org/google-docs/?Q68fEF
https://www.zotero.org/google-docs/?ZrSsp1
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detection of relevant genes or the learning of predictive representations. Thus, it is helpful to               

reduce the dimensionality of the data (i.e. discard irrelevant and/or redundant content) without             

losing much information. This preprocessing will favour downstream clustering analyses not           

only reducing the chance of overfitting but also reducing the computational cost (20). 

In the following, we assume that the microarray dataset is represented by the matrix . has                 

dimensions , with , where n is the total number of samples and p is the number                 

of measured entities across the samples, we further assume that is centred, i.e. the columns of                 

 have zero mean. 

 

 

Principal Components Analysis (PCA) 
 
PCA is a dimensionality reduction methodology that estimates a linear transformation W such to              

preserve as much variance of the projected data as possible. The complete             

transformation matrix can have dimensions at most , where . Each            

column of corresponds to a principal component (PC) which is estimated as a weighted               

combination of the contributions of all the original features. To reduce the impact of noise and                

compress the data, it is common to only consider the first  components. 

It can be shown that PCs correspond to the eigenvectors of the covariance matrix of the data                 

sorted according to the proportion of variance of the original data, indexed by their               

respective eigenvalues (21).  

https://www.zotero.org/google-docs/?qkFLsy
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=n%20%5Ctimes%20p#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p%20%3E%3E%20n#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D%3D%5Cmathbf%7BX%7D%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k%20%5Ctimes%20k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k%20%5Cleq%20%5Cmin%5Cleft(n%2C%20p%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=q%20%3C%20k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5CSigma%3D%5Cmathbf%7BX%7D%5ET%5Cmathbf%7BX%7D#0
https://www.zotero.org/google-docs/?IAH26a
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Of particular relevance are the first two PCs, because they usually represent the bulk of variance                

in the data and can be easily plotted and explored interactively. An example of such explorative                

analysis is (22), where gene expression samples from different tissues have been projected onto              

the first two PCs and showed meaningful groupings associated with tissue-specific gene            

signatures.  

A similar approach combined with hierarchical clustering was used in (23) to consistently             

identify four sub-groups of neuroblastoma which were highly correlated with prognostic factors            

across several datasets of gene expression profiles. As a matter of fact, three of the found clusters                 

overlapped largely with known molecular sub-types, however, the fourth cluster was           

considerably different from the others, suggesting a potential unknown new sub-type. Finally, an             

inspection of the PC weights helped to identify a relevant set of 6 discriminant genes.  

PCA can be used as a preprocessing step to reduce the dimensionality of the dataset, as in (24),                  

where it was used to compress the dimensionality of several copy number profiles in cancer               

tissues in order to identify stable sub-populations. 

However, it is not true in general that the information necessary to separate different              

experimental conditions gets captured among the first PCs. In (25) the authors showed with a               

series of synthetic and real data that clustering information can be encoded in non-leading PCs,               

which represent far less variance than the first ones. In some cases, to be able to extract the                  

grouping information, the first and the last PCs were necessary. This effect was further studied in                

(26) and attributed mainly to the effect size of the signal of interest and the number of samples in                   

which it is present. Small variations within a reduced set of genes are hardly represented in the                 

https://www.zotero.org/google-docs/?wglahw
https://www.zotero.org/google-docs/?kgKl14
https://www.zotero.org/google-docs/?N0eAsA
https://www.zotero.org/google-docs/?0YcQVB
https://www.zotero.org/google-docs/?MyNiFK
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first PCs, whereas, different environmental conditions or tissue types that heavily influence            

hundreds of genes are easier to be captured in the leading PCs. 

Non-negative Matrix Factorization (NMF) 
 
NMF is a factorization algorithm that approximates the data matrix with the product of two                

lower rank matrices and , i.e., , where is and is . The                 

rank of the approximation r is chosen so that . Each row of is approximated                

as a linear combination of the rows of weighted by the corresponding row in . The                 

non-negativity induces the matrix to learn a representation space whose components            

correspond to localized and interpretable features. In contrast to PCA where each feature             

contributes to all the components, NMF learns a parts-based decomposition of the data (27). This               

effect is due to the non-negativity constraint that allows only the additive composition of              

features. 

Like PCA, NMF has been employed to reduce the dimensionality of the data and to discover                

sub-groups in several datasets. In (28) and (29) NMF was applied to a leukaemia dataset (30) and                 

three other cancer datasets of gene expression data. The discovered sub-groups learned with             

hierarchical clustering over the representation learned with NMF were correlated to relevant            

phenotypes. In (31) also the copy number data of three cancer types has been analyzed with                

NMF where the groups discovered were highly associated with molecular sub-types with            

different prognosis. In the case of breast cancer, the sub-groups were correlated to the levels of                

the estrogen receptor, a relevant biomarker.  

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BH%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D%20%5Capprox%20%5Cmathbf%7BH%7D%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BH%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=n%20%5Ctimes%20r#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=r%20%5Ctimes%20p#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=(n%20%2B%20p)r%20%3C%20np#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BX%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BH%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
https://www.zotero.org/google-docs/?IpC4Y2
https://www.zotero.org/google-docs/?VW4kxL
https://www.zotero.org/google-docs/?T2eqtw
https://www.zotero.org/google-docs/?5dyQmy
https://www.zotero.org/google-docs/?1uDFZL
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In both analyses, (28) and (29), it is highlighted that the features learned by NMF have the                 

advantage of being easier to interpret due to their parts-based, compositional nature (27). 

Compared to the holistic features learned from PCA, in NMF, each learned feature is influenced               

by just a subset of the original features. In the case of microarray gene expression data, each                 

feature, represented as a row in the matrix , can be considered as a “metagene” which                

summarizes the common pattern of a subset of genes (32). As a consequence, the values in the                 

matrix H can be considered as the expression value of each sample for each metagene. 

Despite its higher computational cost compared to PCA, it is acknowledged that NMF can be               

employed as a substitute for dimensionality reduction and visualization of microarray data.            

When used in conjunction with clustering algorithms for sub-class discovery the resulting group             

separations are consistently sharper than those obtained with PCA (32, 33). 

Isometric Mapping 
 
High dimensional gene expression data is regulated by complex non-linear interactions that can             

be missed by linear dimensionality reduction models like PCA and NMF (34). However, due to               

the regulatory patterns, the distribution of the data may not cover the entirety of the               

high-dimensional space but lie on a manifold (i.e. a surface embedded in higher dimensions)              

characterized by a lower number of variables compared to the number of actual dimensions.              

Thus learning the manifold structure can help in untangling the hidden factors of variation, while               

reducing the dimensionality of the data. 

Moreover, a direct consequence of data distributed on a manifold is that computing the              

Euclidean distance between any two points may be a bad approximation of their geodesic              

https://www.zotero.org/google-docs/?tmNotC
https://www.zotero.org/google-docs/?VlpfXS
https://www.zotero.org/google-docs/?QJH9Yp
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7BW%7D#0
https://www.zotero.org/google-docs/?9c150r
https://www.zotero.org/google-docs/?dVVRoQ
https://www.zotero.org/google-docs/?TW7Bgk
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distance (i.e. the length of the path between the two points on the surface of the manifold),                 

leading to a misinterpretation of similarity between data points. 

Isometric Mapping (Isomap) (34) has been proposed as a non-linear method to learn an              

approximation of the geodesic distance between points on a manifold in order to embed the data                

in a linear low-dimensional space that can be explored visually and further analyzed. 

The first step of Isomap is to learn a weighted neighborhood graph among the               

data points in the original space, where V is the set of nodes, E is the set of edges and d is a                       

distance function among pairs of nodes. A weighted edge belongs to the graph G if                

and are neighbors; the weight of the edge corresponds to their distance in the                

high-dimensional space. Neighborhood relations can be determined in two ways: either connect            

one point to all other points within a fixed distance threshold , or to all its K nearest                  

neighbors. In the second step, the geodesic distance between any pair of points is approximated               

with the length of its shortest path in graph G. 

The third step is to apply classical multidimensional scaling (MDS) (35) to embed the data points                

in a Euclidean lower-dimensional space that preserves as much as possible the geodesic             

distances of the data points. MDS is an embedding methodology that arranges data points in a                

low dimensional space such that the distances between data points in the original space and the                

embedded space are as similar as possible. Isomap is theoretically guaranteed to converge to the               

real structure of the data, however, enough data has to be provided (34). 

An assessment of Isomap was performed in (36), where the model was applied to two rat                

datasets consisting of a multiple tissue gene expression dataset and a collection of samples from               

a study on spinal cord injury and a high-throughput drug screening dataset. In all instances               

https://www.zotero.org/google-docs/?gc0x7h
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=G%3D%5Cleft(V%2C%20E%2C%20d%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=e%20%3D%20%5Cleft(i%2C%20j%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=x_i#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=x_j#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cepsilon_d#0
https://www.zotero.org/google-docs/?NfxaMZ
https://www.zotero.org/google-docs/?78BDWW
https://www.zotero.org/google-docs/?uQSkXm
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Isomap performed remarkably well, highlighting hidden structures in the datasets. In the multiple             

tissue dataset, different regions of the low-dimensional space were populated with consistent            

clusters of samples originated from the same tissues, whereas in the spinal cord injury dataset the                

embedded samples shown strong relationships with experimental variables such as the distance            

of the sample from the location of the injury, the time after which the sample was collected and                  

the severity of the injury. In the drug screening dataset, the authors were able to identify two                 

directions in the embedded space which correlated with the differentiation patterns of leukaemia             

cells exposed to different chemicals. 

Another benchmark was performed in (37) where five different cancer datasets were analysed.             

For all datasets, the authors report well-separated groups of samples corresponding to known             

categories and sub-groups in both two and three dimensions. They also evaluated the             

performance of clustering algorithms applied to the reduced datasets and compared the clustering             

with the known groupings, showing in every case an improvement with respect to performing the               

same clustering on the raw data. 

Both studies also compared the embedding learned by Isomap with the one provided by PCA. In                

both analyses, Isomap provided better visualizations and clustering performances over PCA,           

however, there were some cases in which they provided comparable results (using a higher              

number of PCs, thus, diminishing the advantage of visual inspection). 

Clustering 

 
The problem of clustering is about assigning objects to groups, in a way that maximizes               

(minimizes) the similarities (distances) among the members of the clusters. This general            

https://www.zotero.org/google-docs/?a8wT0e
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description leaves space for interpretation, and in fact different clustering algorithms and            

clustering evaluation metrics focus on different views of the problem, as there is, in general, no                

algorithm that performs significantly better on every problem instance. 

There is a long history of applications of clustering to gene expression data (38–41). The most                

direct approaches consist in clustering the genes with respect to their expression in a set of high                 

throughput samples, or, analogously, to cluster samples with respect to their expression in the              

considered genes. The first option is useful to understand which clusters of genes maintain a               

similar expression in different conditions, while the second allows to cluster together similar             

conditions, for example to identify sub-types of a disease, or drugs having a similar effect. 

Many clustering algorithms have been introduced (42–45), they are extremely variegated and can             

be classified along a number of categorizations. One of these is the type of cluster membership.                

The output of the algorithm may be a partitioning of the input objects so that each object is                  

assigned to exactly one cluster. This is also called hard-clustering. On the opposite when              

membership is not a sharp yes/no value we have soft-clustering, by assigning to each object a                

probability distribution of membership to the groups, or a fuzzy assignment. Among the             

hard-clustering algorithms that are most often applied to microarray data, we find k-means (46),              

Affinity propagation (47), Density-based clustering (48), Spectral clustering (49), and          

Hierarchical Clustering (50).  

Mixture models instead, are soft-clustering techniques that assign to each object a probability             

distribution of belonging to the clusters (51–53). For a list of the main characteristics of these                

algorithms see (3). Hard-clustering is a special case of both probabilistic clustering and fuzzy              

https://www.zotero.org/google-docs/?aWAceO
https://www.zotero.org/google-docs/?ci2If7
https://www.zotero.org/google-docs/?YIZQyD
https://www.zotero.org/google-docs/?yCihST
https://www.zotero.org/google-docs/?DGVyAQ
https://www.zotero.org/google-docs/?iABznn
https://www.zotero.org/google-docs/?vJvthh
https://www.zotero.org/google-docs/?mrt9Nz
https://www.zotero.org/google-docs/?RECj1Z
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clustering, where the belonging of an object is to just one cluster with probability/degree of               

membership equal to 1.  

Generally, it is better to avoid introducing unneeded complexity, hence, it is preferable to use a                

hard-clustering algorithm if it is enough to get the most likely cluster assignment. On the other                

hand, using probabilistic clustering is recommended when assignments that are not the most             

likely are of interest, or fuzzy clustering if the elements are expected to possess a degree of                 

membership, perhaps to more than one cluster. 

Based on the hypothesis and the experimental data at hand, some similarity measures between              

objects may be more suited than others to be used in the clustering. Some algorithms may work                 

on any kind of similarity measures, and are thus more general, while others impose the use of                 

proper distances, satisfying the property of triangle inequality, or even of a specific distance. The               

choice of measure is important, and the most effective measure depends on the data and the                

choice of clustering algorithm and evaluation metric (see next section) (54). In choosing the              

similarity measure, it is possible to leverage prior knowledge, if available. When in doubt              

between more than one choice, it is best to perform objective comparisons using an evaluation               

metric. 

Choosing the number of clusters, k, is clearly important. The optimal number depends on the               

underlying structure of the data, but also on the user preferences. For example, in certain cases a                 

high k fits the data effectively, but may not be practical if intended for visual inspection. Many                 

clustering algorithms require the user to provide k (46, 49). Other clustering algorithms do not               

require k as input, but still k depends indirectly from user choices, like the definition of a                 

similarity or a neighborhood relation (47, 48, 50). 

https://www.zotero.org/google-docs/?DzyS36
https://www.zotero.org/google-docs/?cSiVph
https://www.zotero.org/google-docs/?aS24Du
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The fuzzy paradigm is a generalization of set theory where the degree of belonging to a set is not                   

crisp, i.e. true or false, but is fuzzy, i.e. a value between 0 and 1. For example type-2 diabetes is a                     

disease with a continuous degree of seriousness and the degree to which a person is affected                

from diabetes can be seen as a fuzzy quantity. The fuzzy paradigm can be applied to clustering                 

so that the belonging of an object to a specific cluster is a value between 0 and 1, and for each                     

object a value is specified about its belonging to each of the clusters (55). Fuzzy clustering has                 

been widely applied to microarray data (56, 57). The choice between hard-clustering and fuzzy              

clustering depends on the problem at hand. If the objects can be seen as having degrees of                 

belonging near the borders of clusters, and/or the objects can be seen to belong possibly to more                 

than one cluster, the use of fuzzy clustering is suggested (58). 

In clustering microarray data it is common to face the presence of outliers, objects far from the                 

rest of the samples that cannot be easily categorized in any of the clusters. They can be caused by                   

measurement errors, but this cannot be taken for granted. Various options are available, like              

removing the outliers from the set of objects, substituting them with nearer objects, or assigning               

them a lower weight while running the clustering algorithm (59, 60). 

Consensus Clustering 

In order to improve the stability of an algorithm having a random component, e.g. the initial                

choice of centroids in k-means, consensus clustering can be used to aggregate the results from a                

number of runs. It can also be used in case an ensemble approach is desired (61–63). In ensemble                  

algorithms different clustering algorithms are used then their results are aggregated to produce a              

final single partition of the data. Cluster ensembles are often motivated by the fact that different                

https://www.zotero.org/google-docs/?KKxmeO
https://www.zotero.org/google-docs/?yvcEbu
https://www.zotero.org/google-docs/?GfcTsL
https://www.zotero.org/google-docs/?vBxATd
https://www.zotero.org/google-docs/?d6dQZy
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data is structured in different ways, and different clustering algorithms are more suited to              

identify different kinds of structures. For example, k-means is particularly well suited to identify              

spherical structures. If the user does not possess prior information on the kind of structures that                

characterize the data, an ensemble approach may allow to reach a better result than a single                

algorithm because of the higher probability that a component of the ensemble may recognize the               

structure in the data (64). A drawback is that it must be taken into account that by applying more                   

algorithms there is an increased chance that spurious structures, i.e. structures produced by noise,              

are mistaken as real structures. Consensus clustering has found many applications in analyzing             

gene expression data, like in cancer (65), toxicogenomics (66), or identifying gene subsets (67).              

Specific implementations designed for applying consensus clustering to microarray data exist,           

like clusterCons (68) that is written in the R language, and the web-application ArrayMining              

(69). 

k-means is probably the most used clustering algorithm, but it has been noticed that it can also be                  

used as a basis to compute a consensus between clustering results, so a consensus approach               

based on k-means has been proposed, called k-means-based consensus clustering (KCC). Wu et             

al. (70) provides a unified framework for KCC and suggestions for real-world practical             

applications. 

Among consensus clustering methods an important family is the one of the co-association             

matrix-based methods, where the information from the single partitions is summarized in an             

adjacency matrix with weights that are proportional to the number of times two elements are               

found together in the single partitions. Using the co-association matrix it is possible to express               

https://www.zotero.org/google-docs/?XfkCT3
https://www.zotero.org/google-docs/?R5yeWV
https://www.zotero.org/google-docs/?jazSan
https://www.zotero.org/google-docs/?rKU5EZ
https://www.zotero.org/google-docs/?o3MDJh
https://www.zotero.org/google-docs/?isb5rp
https://www.zotero.org/google-docs/?HwZCqE
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the consensus problem as a community detection problem on a weighted graph (71). While brute               

force approaches starting from the co-association matrix are generally intractable, there are a             

number of approximate methods. Liu et al. (72) propose a spectral clustering approach starting              

from the co-expression matrix. 

In many applications of microarray data, there is no clear boundary between types of readings,               

being them from patients, drugs, or toxic substances, and fuzzy clustering is used to represent               

these types with soft boundaries. As in the case of crisp clustering, ensemble methods may be                

applied also to compute a consensus from fuzzy clusterings. One such methodology is presented              

by Avogadri et al. (73), where first multiple random projections on a lower dimensional space of                

the gene expression data are created, then fuzzy clustering is applied to each of them.               

Afterwards, a consensus is computed on the fuzzy clusterings to obtain a single final result. They                

compared this approach with other algorithms on four microarray datasets. While the comparison             

cannot be considered conclusive, the experiments show that ensemble fuzzy clustering can            

produce good results when applied to microarray data. 

Subspace clustering 
 
Even though with microarrays it is possible to measure thousands of variables at the same time                

for different experimental conditions, it is likely that only a small subset of the genes are                

relevant, and considering all available genes (i.e. the whole data space) could lead to noisy or                

misleading results. Therefore, clustering the samples only on a subset of relevant genes (i.e. a               

subspace) can lead to a more accurate clustering with respect to the posed task. 

https://www.zotero.org/google-docs/?uLa6i9
https://www.zotero.org/google-docs/?7z8Awo
https://www.zotero.org/google-docs/?4mtEtV
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There are two main groups of subspace clustering algorithms: i) top-down and ii) bottom-up.              

Subspace clustering algorithms following a top-down approach commonly start by estimating           

clusters in the whole data space and then iteratively evaluate every subspace of the identified               

clusters (74, 75). Some examples for top-down subspace clustering algorithms are ORCLUS (76)             

and FINDIT (77). On the other hand, bottom-up subspace clustering algorithms first find clusters              

in a low dimensional space and then iteratively merge them into higher dimensional clusters.              

Some examples of algorithms following a bottom-up subspace clustering approach are CLIQUE            

(78), ISC (75) and CLTree (79). CLIQUE tries to find dense regions, by dividing each dimension                

into a “search grid” where a dense area is defined as a region where there are more data points                   

contained than a set threshold. Dimensions are then merged and dense regions are identified              

based on the same principle. The mentioned concepts and algorithms can be grouped together as               

what has been described as hard subspace clustering algorithms (80), which aim at characterizing              

exact subspaces. 

Parsons et al. (74) suggest that in high dimensional data bottom-up algorithms should perform              

better with respect to computational time, while top-down algorithms should scale well to very              

large datasets. The authors also performed a direct comparison between MAFIA (81), a             

bottom-up algorithm and FINDIT (77), a top-down algorithm. On synthetic data they showed             

that for certain numbers of instances, MAFIA tended to identify all clusters but often was not                

able to determine all significant dimensions. On the other hand, FINDIT seemed to be more               

accurate in the dimensions it identified for determined clusters but struggled to identify all              

clusters, especially with higher instance size (74). 

https://www.zotero.org/google-docs/?ZrVdw2
https://www.zotero.org/google-docs/?0a32JE
https://www.zotero.org/google-docs/?ZMjjmb
https://www.zotero.org/google-docs/?lboqRf
https://www.zotero.org/google-docs/?R2Hwvl
https://www.zotero.org/google-docs/?ayNWH9
https://www.zotero.org/google-docs/?TWWgiI
https://www.zotero.org/google-docs/?pqf7VB
https://www.zotero.org/google-docs/?eaViJA
https://www.zotero.org/google-docs/?sO9iLN
https://www.zotero.org/google-docs/?gZqSvK
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In contrast to the hard subspace clustering methodology there is a more recently described group                

of algorithms - known in literature as soft-subspace clustering, which tries to identify how much               

a dimension contributes to a particular cluster (80). Examples of soft-subspace clustering            

algorithms are WFCM (82) and SCAD (83). For further reading, a detailed classification of              

soft-subspace clustering algorithms in sub-categories has been published by Deng et al. (80). The              

authors further suggest that soft-subspace algorithms have achieved good performance,          

especially for high dimensional data. 

Evaluation metrics 

Various validation methods can be used to assess clustering quality and can help in choosing               

between algorithms and their parameters, such as the number of clusters. We can identify four               

kinds of evaluation: manual, internal, and external.  

In manual evaluation, the clustering is validated by human domain experts.  

The methods for internal validation assign a score to the quality of the clustering that is based                 

solely on the clustering itself and the intrinsic properties of data on which the clustering was                

performed. These measures do not need any external data, but even with high scores, it is not                 

guaranteed that the obtained grouping is correlated to any phenotypic variable. Examples of             

internal measures are the Davies-Bouldin index, the Dunn index, and the silhouette index (84,              

85).  

External quality measures rely on an external, expected grouping and on a similarity measure              

between clusterings to measure the concordance between the output clustering and the optimal             

https://www.zotero.org/google-docs/?3ACqOz
https://www.zotero.org/google-docs/?MENedn
https://www.zotero.org/google-docs/?36KwUv
https://www.zotero.org/google-docs/?GTIXDs
https://www.zotero.org/google-docs/?OawvLQ
https://www.zotero.org/google-docs/?OawvLQ
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one. Approaches to this problem have a long history (86, 87), and examples of similarity               

measures used for external evaluation are the Rand index, the Jaccard index, the Normalized              

Mutual Information, and the F-measure (88–90).  

Different clustering algorithms can produce different results starting from the same input data,             

and even a single algorithm may produce two different results in two different runs if featured                

with a random component. The same similarity measures used for external evaluation may be              

applied to two arbitrary clusterings to quantify their similarity. 

Blindly applying numerous clustering algorithms and then subjectively choosing one result based            

on expectations is a dangerous practice that can lead to cherry picking (91). In order to test more                  

than one clustering algorithm and/or combination of parameters, it is possible to use an objective               

validation measure to choose which solution to use. The suggested procedure consists in a)              

identifying one or more clustering algorithms considered particularly well suited for the specific             

domain of application, based on a priori knowledge, in an analogous way b) identifying the set                

up parameters, like e.g. the number of clusters, and c) a validation measure, d) running the                

clustering algorithms, and finally e) selecting the best clustering with respect to the scores of the                

validation measure. 

Liu et al. (92) compared 11 internal validation measures using 5 different kinds of synthetically               

generated datasets, and found that the S_Dbw validity index was the only one to perform well in                 

all cases. The S_Dbw index is based on the concepts of cluster compactness (intra-cluster low               

variance) and density between clusters (inter-cluster density) (87). Wiwie et al. (93) compared 13              

clustering methods on 24 biological datasets. Based on external evaluation with the F1-score, the              

https://www.zotero.org/google-docs/?mgaseV
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best performers were transitivity clustering, hierarchical clustering, Clusterdp, and partitioning          

around medoids. They found that internal and external quality measures do not correlate well in               

general, and the best correlations were between the silhouette internal score and the F1-score,              

F2-score, FM-index, Jaccard index, and V-measure external scores. This suggests that the            

silhouette score might in most cases be the best internal score to use for choosing the method and                  

the model parameters when applying clustering to biological datasets. When using the silhouette             

score to choose the parameters, the best models were transitivity clustering, hierarchical            

clustering, and partitioning around medoids. 

Biclustering 

 
Biclustering has become a common technique for the study of omics data to identify molecular               

features with similar alteration patterns in different experimental conditions (94). Biclustering           

methodologies aim at identifying sub-groups of measurements that have a similar profile in a              

subset of the samples. The main assumption of the biclustering methodology is that genes are not                

necessarily related to every sample, but they might be important only for a subset of them.                

Moreover, one gene can be assigned to a cluster under certain samples and in another cluster for                 

different samples, depending on their involvement in different biological processes. Thus, it is             

important to simultaneously group both the samples and features (e.g., genes). This problem has              

been shown to belong to the class of NP-hard problems (95) and, consequently, proposed              

approaches for biclustering are based on optimization procedures based on heuristic search            

algorithms.  

https://www.zotero.org/google-docs/?sACxK8
https://www.zotero.org/google-docs/?W5mgBx
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Biclustering has been studied for a long time and proposed solutions for this problem cover               

almost all of the spectra of combinatorial optimization algorithm families (94). Biclustering            

approaches can be mainly divided into two categories based on the usage of an evaluation               

measure guiding the construction of biclusters as proposed in (94). 

Approaches belonging to the first class make use of one or more functions evaluating the quality                

of the solution being built (represented by a possible set of biclusters) and driving the               

construction process. They mainly differ on the strategy used to build and improve the solution               

and are represented by greedy search approaches, stochastic iterative greedy search,           

nature-inspired meta-heuristics and clustering-based approaches. A list of algorithms         

implementing these strategies is provided in Table 3. 

 

Greedy search algorithms work by selecting a local optimum solution at each step in order to                

move closer to a globally optimal solution (124). These algorithms generally work by             

constructing the biclusters starting from the small constituent parts (genes/samples). They do not             

guarantee global optimum solutions but provide good approximations in a reasonable time.  

Nature-inspired meta-heuristics resembling schemas of efficient behaviors derived from the          

natural world have been shown to have good performances in addressing biclustering            

optimization problems (109–119). They are characterized by the use of operators that simulate             

natural phenomena (like natural selection) to improve the solution.  

Clustering-based approaches are based on the usage of a standard one-way clustering approach             

in addition to a strategy to derive the desired 2-dimensional clustering (121–123). 

https://www.zotero.org/google-docs/?uGqsQI
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The other class of approaches for biclustering is constituted by algorithms where the construction              

of the solution is not directly driven by an evaluation measure. This class includes graph-based               

approaches, one-way clustering-based approaches, probabilistic models, linear algebra, and         

optimal reordering of rows and columns (94). 

Biclustering is useful whenever there is a biological reason for expecting sub-structures of genes              

or samples in the data. Cancer is a classical example where biclustering algorithms applied to               

microarray experiments succeeded at identifying several cancer sub-types (125, 126) that one            

way-clustering couldn’t detect (127).  

The choice of the particular approach to be used usually depends on the problem being addressed                

and/or on the trade-off between the available computational time/resources and the quality of the              

solution. 

The quality of a bicluster can be measured by means of technical and/or biological metrics.               

Technical metrics are used by many algorithms to drive their search, such as the variance of the                 

bicluster elements and the Mean Squared Residue (MSR) that measure the coherence of the              

genes and samples in each bicluster. The size of the bicluster is also important, with bigger                

biclusters usually being preferred. Biological metrics are tightly linked to the problem of             

bicluster interpretation: usually, a good bicluster is one where genes do resemble a particular              

molecular function (e.g. some KEGG pathway is enriched for them) and/or samples do constitute              

a biologically meaningful group (e.g. a distinct cancer sub-type). When doing this, it is important               

to take into account that not all genes/samples should always fall in a particular bicluster,               

therefore it must not be expected for all biclusters to be meaningful objects. 

https://www.zotero.org/google-docs/?aUUyIU
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Multi-omics clustering 

 
Biological systems are regulated by a number of interrelated, but different, regulatory layers.             

Genomic, transcriptomic, epigenomic, proteomic and metabolomic are a non-exhaustive list of           

regulatory entities governing molecular processes (128). 

High-throughput technologies, including DNA microarrays, allow a snapshot of such molecular           

layers (also called “omes”) in one or more biological conditions to be obtained. The integrated               

analysis of such layers allows a thorough characterization of the system under study, in respect               

with the separate analysis of the single layers. In fact, by combining different omics, it is                

possible to pinpoint not only relevant information in single layers, but also complementary and              

integrated inter-omics relationships (128). This strategy empowers enormously the ability of the            

researchers to extract knowledge about the biological condition of interest. Such methodological            

advancements give the possibility to achieve a wide landscape of the molecular profiles, even              

from a single sample (7). In fact, longitudinal studies, often led by big consortia, such as The                 

Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC),         

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) among         

others, aimed at profiling the omes in order to identify molecular determinants of certain              

phenotypic traits. While multi-omics approaches offer an unprecedented opportunity to acquire           

considerable knowledge about complex biological processes, they also increase the complexity           

of the analytical methods. In fact, in order to maximize the knowledge achievable from each of                

the considered omics, integrative analyses of multiple omics layers is required. Indeed, the             

analysis of multiple datasets produced by employing different platforms and experimental           
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procedures is a challenging task, since systematic biases exist due to technological platforms,             

laboratories and analysis methods (7). Multi-omics integrated approaches combine individual          

molecular layers in order to understand the interplay among molecules (129). They help in              

assessing the flow of information from one omics level to the other and thus help in bridging the                  

gap from genotype to phenotype.  

Clustering multi-omics data techniques primarily differ on the adopted strategy to integrate data             

from different layers. These strategies are adopted to solve the problem of integrating different              

types of information about the same sample and/or the same feature characterized by different              

subjects, different representations, different cardinality and different relationships. 

Integration strategies can be broadly categorized in three groups (130): i) early, ii) intermediate              

and iii) late integration strategies. 

In early integration strategies multiple data types from the different omics are fused together by               

concatenating data matrices into a single comprehensive matrix on which clustering is            

performed. The advantage of this approach is the relative ease of applying statistical methods to               

any final data matrix. However, this method does suffer from problems related to the differences               

in scaling of the blocks of concatenated data, the inherent biases of each data type, the fact that it                   

ignores the different distributions of values in different omics and, finally, from the fact that the                

integrated dataset might have too many (often dependent) variables to be used in the clustering               

phase. Normalization techniques can be used to ensure that data of different orders of magnitude               

are scaled to be in the same range. Also, data dimensionality can be reduced by using                

supervised/unsupervised feature selection and reduction. Among the tools for early integration of            

different omics we have TW-k-means. It is a variant of the k-means clustering, which uses a                
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double weighting scheme to assess the relevance of each single feature as well as the relevance                

of a whole data layer (131). 

In intermediate integration strategies each dataset is first converted into a common intermediate             

form (e.g. a “graph” or a “kernel matrix”), then integration is performed at the level of                

transformed data and clustering is finally performed onto the integrated model. This approach             

has the advantage of preserving and gives the possibility to virtually combine any data structure               

applying the appropriate transformations. The main challenge of intermediate integration resides           

in the difficulty to interpret the relationship between the original features and obtained clusters.              

A widely used implementation of this approach is Similarity Network Fusion (SNF) (6) and its               

derivatives such as Affinity Network Fusion (ANF) (132) and Integrative Network Fusion (INF)             

(133). 

In late integration strategies separate clusters are generated for each omics layer and successively              

integrated to produce a final data-driven clustering. The advantage is that with this approach it is                

possible to combine models coming from various groups of samples for which different data              

sources have been analyzed. As a downside, this approach can miss important interactions             

existing among different data types. MVDA (134) is an example of late integration that has been                

successfully applied in identifying disease sub-groups. 

Although more and more data integration algorithms yielding better performances are being            

developed, they have to still face some unsolved challenges. Often, the main reason is that data                

integration approaches were designed to deal with single data layers, and only later they have               

been adapted to work with multiple types of data. For instance, network-based methods may fail               

to derive information about the connectivity among different networks representing different           
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data layers, and thus, failing to capture their biological significance (135). Further improvements             

are still needed to overcome this and many other challenges posed by data integration. 

Conclusions 

 
Unsupervised learning is a challenging task because, for the most part, both practitioners and              

algorithms cannot exploit any collateral information other than the dataset itself. In the case of               

(sub-)group discovery, where no predefined class labeling is available, additional care must be             

taken to discard results due to noise from the relevant patterns hidden in the data. On top of that,                   

the peculiar characteristics of microarray data, namely, the high number of variables compared to              

the number of samples, their complex regulatory interactions, and the mixture of biological and              

technical noise signals, pose remarkable challenges to the development of reliable analytic            

models. 

In this chapter we explored the basic building blocks of an unsupervised analysis focused on               

group discovery. In particular, we described different measures to evaluate the degree of             

similarity of pairs of samples, methodologies to reduce the effects of the curse of dimensionality               

and compressing the data to a handful of informative features (down to 2 or 3 dimensions for                 

visual exploration). Finally, we showed several methodologies for discovering groups and           

different criteria to evaluate the findings both numerically and based on domain knowledge.             

Moreover, we also mentioned the case when multiple -omics measurements are available for the              

same samples, the challenges this setting poses and some successful approaches.  

Where possible, we tried to focus our discussions on relative advantages and disadvantages of              

each methodology as well as reporting comparisons, results and case studies from the literature,              
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hoping that this will help practitioners to make more informed decisions even though there are               

no hard rules about when to choose an approach over another. 
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Table Captions 

Table 1: Distances between two data points and . is            

the -dimensional vector space over real numbers. is the -dimensional vector space             

over binary numbers. 

Table 2: Similarities between two data points and . is            

the -dimensional vector space over real numbers. is the -dimensional vector space             

over binary numbers. 

Table 3: Collection of Biclustering algorithms grouped according to the class of algorithm used. 
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Tables 

Distance Formula Domain Notes 

Minkowski 

 

 Parametric distance; 
When , 

 is a metric; 
when  

 is a 
semi-metric 

Euclidean 

 

 Equal to Minkowski 
 when  

Manhattan 

  

 Equal to Minkowski 
 when  

Chebychev 
 

 Equal to Minkowski 

 in the limit 

  

Mahalanobis 
 

  

Jaccard 

, 
 is the number of     

components equal to 1    

in both data points,     

and are the number     
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of components that are    

equal to in and      

 respectively 

Hamming    

Similarity Formula Domain Note 

Cosine 
similarity  

  

Dice 
Coefficient  

  

Jaccard Index    

Pearson 
Correlation  

 Parametric, 
assumes 
normal 
distribution, 

 is the 
covariance, 
and  is 
the standard 
deviation of 

 

Spearman 
Correlation 

 

 Non-parame
tric, rank 
based, 
assumes a 
monotonic 
dependency 
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http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s_%7Br%7D%5Cleft(%5Cmathbf%7Bp%7D%2C%20%5Cmathbf%7Bq%7D%5Cright)%20%3D%20%5Cfrac%7B%5Cmathrm%7BCov%7D%5Cleft(%5Cmathtt%7Br%7D%5Cleft(%5Cmathbf%7Bp%7D%5Cright)%2C%20%5Cmathtt%7Br%7D%5Cleft(%5Cmathbf%7Bq%7D%5Cright)%5Cright)%7D%7B%5Csigma_%7B%5Cmathtt%7Br%7D%5Cleft(%5Cmathbf%7Bp%7D%5Cright)%7D%20%5Ccdot%20%5Csigma_%7B%5Cmathtt%7Br%7D%5Cleft(%5Cmathbf%7Bq%7D%5Cright)%7D%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbb%7BR%7D%5En#0
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between 
variables. 

 are 
the ranks of 
variable  

Kendall 
Correlation 

 

 Non-parame
tric, rank 
based, 
assumes a 
monotonic 
dependency 
between 
variables. 

 is 
the sign of 

.  is 
the number 
of subsets of 
size 2 of a 
set of n 
elements. 

Class Algorithm Acronym Reference 

Iterative greedy search Direct Clustering DC (96) 

Cheng and Church CC (97) 

SMSR-based Biclustering SMSR-CC (98) 

HARP Algorithm HARP (99) 

Maximum Similarity Bicluster 
Algorithm 

MSB (100) 

Weighted Fuzzy-Based 
Maximum Similarity Bicluster 
Algorithm 

WF-MSB (101) 

Biclustering by Iteratively 
Sorting with Weighted 

BISWC (102) 

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathtt%7Br%7D%5Cleft(%5Cmathbf%7Bp%7D%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbf%7Bp%7D#0
https://www.codecogs.com/eqnedit.php?latex=s_%7B%5Ctau%7D%5Cleft(%5Cmathbf%7Bp%7D%2C%20%5Cmathbf%7Bq%7D%5Cright)%20%3D%20%5Cfrac%7B%5Csum_%7Bi%20%3C%20j%7D%20%5Cmathrm%7Bsgn%7D%5Cleft(p_i%20-%20p_j%5Cright)%20%5Ccdot%20%5Cmathrm%7Bsgn%7D%5Cleft(q_i%20-%20q_j%5Cright)%7D%7B%7B%7Bn%7D%5Cchoose%7B2%7D%7D%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathbb%7BR%7D%5En#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cmathrm%7Bsgn%7D%5Cleft(x%5Cright)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=x#0
https://www.codecogs.com/eqnedit.php?latex=%7B%7Bn%7D%5Cchoose%7B2%7D%7D#0
https://www.zotero.org/google-docs/?d8HR32
https://www.zotero.org/google-docs/?MeNLUQ
https://www.zotero.org/google-docs/?8Zztbm
https://www.zotero.org/google-docs/?4eRXzI
https://www.zotero.org/google-docs/?tzE2nN
https://www.zotero.org/google-docs/?elof77
https://www.zotero.org/google-docs/?djXn3d
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Coefficients 

Bic. by Correlated and Large 
number of Individual Clustered 
seeds 

BICLIC (103) 

Intensive Correlation Search ICS (104) 

Stochastic iterative greedy search FLexible Overlapped 
biClustering 

FLOC (105) 

Random Walk Biclustering RWB (106) 

Reactive GRASP Biclustering RGRASP-B (107) 

Pattern-Driven Neighborhood 
Search 

PDNS (108) 

Nature-inspired meta-heuristics Simulated Annealing 
Biclustering 

SA-B (109) 

Crowding distance based 
Multi-Objective PSO 
Biclustering 

CMOPSOB (110) 

Multi-Objective 
Multi-Population Artificial 
Immune Network 

MOM-aiNet (111) 

Bleuler Alg. Bleuler-B (112) 

SEquential Evolutionary 
BIclustering 

SEBI (113) 

Biclustering via a Hybrid 
Evolutionary Algorithm 

BiHEA (114) 

Condition-Based Evolutionary 
Biclustering 

CBEB (115) 

EVOlutionary Biclustering based 
in EXpression PAtterns 

EvoBexpa (116) 

Mitra & Banka Alg. M&B (117) 

Multi-Objective GA-based 
Biclustering 

MOGAB (118) 

Multi-Objective Fuzzy 
Biclustering 

MOFB (119) 

https://www.zotero.org/google-docs/?sj0dVF
https://www.zotero.org/google-docs/?CpX8bC
https://www.zotero.org/google-docs/?PB5mDK
https://www.zotero.org/google-docs/?b6cBwI
https://www.zotero.org/google-docs/?MoHyXy
https://www.zotero.org/google-docs/?fSYW1r
https://www.zotero.org/google-docs/?Q2EPw2
https://www.zotero.org/google-docs/?AbpRTA
https://www.zotero.org/google-docs/?mv7FJJ
https://www.zotero.org/google-docs/?KbAJUW
https://www.zotero.org/google-docs/?OT2Mc8
https://www.zotero.org/google-docs/?K39CUU
https://www.zotero.org/google-docs/?CCTZIw
https://www.zotero.org/google-docs/?uhvtmU
https://www.zotero.org/google-docs/?G4jOUj
https://www.zotero.org/google-docs/?kWq8Us
https://www.zotero.org/google-docs/?lGxo3r


44 

 

 

Sequential Multi-Objective 
Biclustering 

SMOB (120) 

Clustering-based approaches Biclustering based on related 
genes and conditions extraction 

RGCE-B (121) 

Possibilistic Spectral Biclustering PSB (122) 

Biclustering with SVD and 
Hierarchical Clustering 

SVD&HC-B (123) 

https://www.zotero.org/google-docs/?CeUU0k
https://www.zotero.org/google-docs/?DkgUDK
https://www.zotero.org/google-docs/?tp4k82
https://www.zotero.org/google-docs/?AYRerR

