20,499 research outputs found

    Data-driven modelling and monitoring of industrial processes with applications in nuclear waste vitrification

    Get PDF
    PhD ThesisProcess models are critical for process monitoring, control, and optimisation. With the increasing amount of process data and advancements in computational hardware, data-driven models are a good alternative to mechanistic models, which often have inaccuracies or are too costly to develop. One problem with data-driven models is the difficulty in ensuring that the models perform well on new data and produce accurate predictions in complex situations, which are frequently encountered in the process industry. Within this context, part of this thesis explores developing better data-driven models through using a latent variable technique, known as slow feature analysis, as a pre-processing step to regression. Slow feature analysis extracts slow varying features that contain underlying trends in the data, which can improve model performance through providing more meaningful information to regression, reducing noise, and reducing dimensionality. Firstly, the effectiveness of combining linear slow feature analysis with a neural network is demonstrated on two industrial case studies of soft sensor development and is compared with conventional techniques, such as neural networks and integration of principal component analysis with a neural network. It is shown that integration of slow feature analysis with neural networks can significantly improve model performance. However, linear slow feature analysis can fail to extract the driving forces behind data in nonlinear situations such as batch processes. Therefore, using kernel slow feature analysis with a neural network is proposed to further enhance process model performance. A numerical example was used to demonstrate the effective extraction of driving forces in a nonlinear case where linear slow feature analysis cannot. Model generalisation performance was improved using the proposed method on both this numerical example, and an industrial penicillin process case study. Dealing with radioactive nuclear waste is an important obstacle in nuclear energy. Sellafield Ltd have a nuclear waste vitrification plant which converts high-level nuclear waste into a more stable, lower volume glass form, which is more appropriate for long term storage in sealed containers. This thesis presents three applications of data-driven modelling to this nuclear waste vitrification process. A predictive model of the pour rate of processed nuclear waste into containers, an early detection system for blockages in the dust scrubber, and a model of the long-term chemical durability of the stored glass waste. These applications use the previously developed slow feature analysis methods, as well as other data-driven techniques such as extreme learning machine and bootstrap aggregation, for enhancing the model performance.Engineering and Physical Sciences Research Council (EPSRC) and Sellafield Lt

    Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning

    Full text link
    In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Robust fractional order PI control for cardiac output stabilisation

    Get PDF
    Drug regulatory paradigms are dependent on the hemodynamic system as it serves to distribute and clear the drug in/from the body. While focusing on the objective of the drug paradigm at hand, it is important to maintain stable hemodynamic variables. In this work, a biomedical application requiring robust control properties has been used to illustrate the potential of an autotuning method, referred to as the fractional order robust autotuner. The method is an extension of a previously presented autotuning principle and produces controllers which are robust to system gain variations. The feature of automatic tuning of controller parameters can be of great use for data-driven adaptation during intra-patient variability conditions. Fractional order PI/PD controllers are generalizations of the well-known PI/PD controllers that exhibit an extra parameter usually used to enhance the robustness of the closed loop system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems
    corecore