548 research outputs found

    Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension

    Get PDF
    Elevated blood pressure (BP) is a major cause of death, yet hypertension commonly goes undetected. Owing to its nature, it is typically asymptomatic until later in its progression when the vessel or organ structure has already been compromised. Therefore, noninvasive and continuous BP measurement methods are needed to ensure appropriate diagnosis and early management before hypertension leads to irreversible complications. Photoplethysmography (PPG) is a noninvasive technology with waveform morphologies similar to that of arterial BP waveforms, therefore attracting interest regarding its usability in BP estimation. In recent years, wearable devices incorporating PPG sensors have been proposed to improve the early diagnosis and management of hypertension. Additionally, the need for improved accuracy and convenience has led to the development of devices that incorporate multiple different biosignals with PPG. Through the addition of modalities such as an electrocardiogram, a final measure of the pulse wave velocity is derived, which has been proved to be inversely correlated to BP and to yield accurate estimations. This paper reviews and summarizes recent studies within the period 2010-2019 that combined PPG with other biosignals and offers perspectives on the strengths and weaknesses of current developments to guide future advancements in BP measurement. Our literature review reveals promising measurement accuracies and we comment on the effective combinations of modalities and success of this technology

    ์ปคํ”„๋ฆฌ์Šค ๋ฐฉ์‹์˜ ์ฐฉ์šฉํ˜• ์—ฐ์† ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2019. 2. ๊น€ํฌ์ฐฌ.๊ณ ํ˜ˆ์••์˜ ์กฐ๊ธฐ ์ง„๋‹จ๊ณผ ๊ณ ํ˜ˆ์•• ํ™˜์ž์˜ ํ˜ˆ์•• ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ผ์ƒ์ƒํ™œ์—์„œ์˜ ์ง€์†์ ์ธ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์ด ์ค‘์š”ํ•˜๋‹ค. ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ (Pulse transit time, PTT) ๊ธฐ๋ฐ˜์˜ ํ˜ˆ์•• ์ถ”์ • ๋ฐฉ์‹์ด ์ด๋ฅผ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€์žฅ ๊ฐ๊ด‘ ๋ฐ›๊ณ  ์žˆ์ง€๋งŒ, ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ฌ๋Ÿฌ ์ธก์ • ์žฅ์น˜๋“ค์ด ํ•„์š”ํ•˜์—ฌ ์ผ์ƒ ์ƒํ™œ์—์„œ์˜ ์‚ฌ์šฉ์— ์ œ์•ฝ์ด ์žˆ์œผ๋ฉฐ, ๋˜ํ•œ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ ๋งŒ์„ ์ด์šฉํ•œ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••(Systolic blood pressure, SBP) ์ถ”์ • ๋Šฅ๋ ฅ์€ ๋ถ€์กฑํ•จ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฒซ ๋ฒˆ์งธ ๋ชฉ์ ์€ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ ์ธก์ • ์‹œ์Šคํ…œ์„ ์ฐฉ์šฉํ˜•์œผ๋กœ ๊ฐœ๋ฐœํ•˜์—ฌ ๊ฐ„ํŽธํ•˜๊ฒŒ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ์œผ๋กœ์จ ์ผ์ƒ ์ƒํ™œ ์ค‘ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„์„ ์ด์šฉํ•œ ์—ฐ์†์ ์ธ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์ด ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ด‘์šฉ์ ๋งฅํŒŒ (Photoplethysmogram, PPG) ์™€ ์‹ฌ์ง„๋„ (Seismocardiogram, SCG)๋ฅผ ๋™์‹œ์— ์ธก์ •ํ•˜๋Š” ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ๋‹จ์ผ ์žฅ์น˜๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ, ์‹ฌ์ง„๋„๋กœ๋ถ€ํ„ฐ ๋Œ€๋™๋งฅ ํŒ๋ง‰์˜ ์—ด๋ฆฌ๋Š” ์‹œ์ ์„, ๊ด‘์šฉ์ ๋งฅํŒŒ๋กœ๋ถ€ํ„ฐ ๋งฅํŒŒ์˜ ๋„์ฐฉ ์‹œ์ ์„ ํŠน์ •ํ•˜์—ฌ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ ๋‚ฎ์€ ์ „๋ ฅ ์†Œ๋ชจ์™€ ์†Œํ˜•์˜ ๊ฐ„ํŽธํ•œ ๋””์ž์ธ์„ ํ†ตํ•ด 24์‹œ๊ฐ„ ๋™์•ˆ ์—ฐ์†์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ธก์ •๋œ ์ƒ์ฒด์‹ ํ˜ธ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ ๋ฐ ๊ธฐํƒ€ ํ˜ˆ์•• ๊ด€๋ จ ๋ณ€์ˆ˜๋“ค์ด ๊ธฐ๊ธฐ์˜ ๋ฐ˜๋ณต ์ฐฉ์šฉ์—๋„ ๋ณ€ํ•˜์ง€ ์•Š์Œ์„ ๊ธ‰๊ฐ„๋‚ด์ƒ๊ด€๊ณ„์ˆ˜(Intra-class correlation, ICC) ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๊ณ  (ICC >0.8), ๋˜ํ•œ ๋ณธ ์‹œ์Šคํ…œ์—์„œ ์‚ฌ์šฉ๋œ ์‹ฌ์ง„๋„๊ฐ€ ๋Œ€๋™๋งฅ ํŒ๋ง‰์˜ ์—ด๋ฆฌ๋Š” ์‹œ์ ์˜ ๋ ˆํผ๋Ÿฐ์Šค๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š”์ง€๋„ ์‹ฌ์ €ํ•ญ์‹ ํ˜ธ(Impedancecardiogram, ICG)์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค(r=0.79ยฑ0.14). ๋‘˜์งธ๋กœ, ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ๊ธฐ์กด์˜ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„๋งŒ์„ ์ด์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ๋ฐฉ์‹์„ ๋ณด์™„ํ•˜์—ฌ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ์ถ”์ • ๋Šฅ๋ ฅ์ด ํ–ฅ์ƒ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์‹ฌ์ง„๋„์˜ ์ง„ํญ๊ณผ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„์„ ๊ฐ™์ด ์‚ฌ์šฉํ•˜๋Š” ๋‹ค๋ณ€์ˆ˜ ๋ชจ๋ธ์„ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์ถ”์ •์„ ์œ„ํ•ด ์ œ์•ˆํ•˜์˜€๊ณ , ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์œ ๋„๋œ ํ˜ˆ์•• ๋ณ€ํ™” ์ƒํ™ฉ์—์„œ, ๊ธฐ์กด์˜ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ ํ˜น์€ ๋งฅํŒŒ๋„๋‹ฌ์‹œ๊ฐ„ (Pulse arrival time, PAT) ๋งŒ์„ ์ด์šฉํ•œ ๋ชจ๋ธ๊ณผ ๊ทธ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ๋ชจ๋ธ์ด ๊ฐ„๋‹จํ•œ ๊ต์ •์ ˆ์ฐจ๋ฅผ ํ†ตํ•ด ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์—๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์‚ดํŽด๋ณด์•˜๊ณ  ๋” ๋‚˜์•„๊ฐ€ ์ผ์ƒ ์ƒํ™œ์—์„œ์˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด์„œ๋„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋กœ ์ œ์•ˆ๋œ ๋ชจ๋ธ์€ (1) ๊ธฐ์กด์˜ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„ ํ˜น์€ ๋งฅํŒŒ๋„๋‹ฌ์‹œ๊ฐ„ ๋งŒ์„ ์ด์šฉํ•œ ๋ชจ๋ธ๋ณด๋‹ค ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์ถ”์ • ๋Šฅ๋ ฅ ์ธก๋ฉด์—์„œ ๋” ์šฐ์ˆ˜ํ•˜์˜€๊ณ , (๊ฐ๊ฐ์˜ ํ‰๊ท ์ ˆ๋Œ€์˜ค์ฐจ๋Š” 4.57, 6.01, 6,11 mmHg ์˜€๋‹ค.) (2) ๊ฐ„๋‹จํ•œ ๊ต์ •์ ˆ์ฐจ๋งŒ์„ ํ†ตํ•ด์„œ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์—๊ฒŒ ์ ์šฉ ๋˜์—ˆ์„ ๋•Œ์˜ ์ถ”์ • ๋Šฅ๋ ฅ์ด ๊ตญ์ œ ๊ธฐ์ค€์— ๋ถ€ํ•ฉํ•˜์˜€์œผ๋ฉฐ, (3) ์ผ์ƒ ์ƒํ™œ์—์„œ๋„ ์‚ฌ์šฉ์ž์˜ ์•„๋ฌด๋Ÿฐ ๊ฐœ์ž…์ด๋‚˜ ์ œ์•ฝ ์—†์ด ์ง€์†์ ์ธ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๋Š” ์ฐฉ์šฉํ˜• ์—ฐ์† ํ˜ˆ์•• ์ธก์ • ์‹œ์Šคํ…œ์€ ๊ฐ€์Šด์— ๋ถ€์ฐฉํ•˜๋Š” ๋‹จ์ผ ๊ธฐ๊ธฐ ํ˜•ํƒœ๋กœ ๊ทธ ์‚ฌ์šฉ์ด ๊ฐ„ํŽธํ•  ๋ฟ ์•„๋‹ˆ๋ผ ์ผ์ƒ์ƒํ™œ ์ค‘์—์„œ ๋งฅํŒŒ์ „๋‹ฌ์‹œ๊ฐ„๊ณผ ์‹ฌ์ง„๋„์˜ ์ง„ํญ์„ ์ด์šฉํ•˜์—ฌ ํ–ฅ์ƒ๋œ ์ˆ˜์ค€์˜ ์—ฐ์† ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜์˜€๋Š”๋ฐ”, ์ด๋ฅผ ์ด์šฉํ•œ ๋ชจ๋ฐ”์ผ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.Continuous blood pressure (BP) monitoring is needed in daily life to enable early detection of hypertension and improve control of BP for hypertensive patients. Although the pulse transit time (PTT)-based BP estimation represents one of most promising approaches, its use in daily life is limited owing to the requirement of multi systems to measure PTT, and its performance in systolic blood pressure (SBP) estimation is not yet satisfactory. The first goal of this study is to develop a wearable system providing convenient measurement of the PTT, which facilitates continuous BP monitoring based on PTT in daily life. A single chest-worn device was developed measuring a photoplethysmogram (PPG) and a seismocardiogram (SCG) simultaneously, thereby obtaining PTT by using the SCG as timing reference of the aortic valve opening and the PPG as timing reference of pulse arrival. The presented device was designed to be compact and convenient to use, and to last for 24h by reducing power consumption of the system. The consistency of BP related parameters extracted from the system including PTT between repetitive measurements was verified by an intra-class correlation analysis, and it was over 0.8 for all parameters. In addition, the use of SCG as timing reference of the aortic valve opening was verified by comparing it with an impedance cardiogram (r = 0.79 ยฑ 0.14). Secondly, the algorithm improving the performance of the SBP estimation was developed by using the presented system. A multivariate model using SCG amplitude (SA) in conjunction with PTT was proposed for SBP estimation, and was compared with conventional models using only PTT or pulse arrival time (PAT) in various interventions inducing BP changes. Furthermore, we validated the proposed model against the general population with a simple calibration process and verified its potential for daily use. The results suggested that (1) the proposed model, which employed SA in conjunction with PTT for SBP estimation, outperformed the conventional univariate model using PTT or PAT (the mean absolute errors were of 4.57, 6.01, and 6.11 for the proposed, PTT, and PAT models, respectively)(2) for practical use, the proposed model showed potential to be generalized with a simple calibrationand (3) the proposed model and system demonstrated the potential for continuous BP monitoring in daily life without any intervention of users or regulations. In conclusion, the presented system provides an improved performance of continuous BP monitoring in daily life by using a combination of PTT and SA with a convenient and compact single chest-worn device, and thus, it can contribute to mobile healthcare services.CONTENTS Abstract i Contents v List of Tables ix List of Figures xi List of Abbreviations xvi Chapter 1 1 General Introduction 1.1. Blood pressure 2 1.2. Pulse transit time 6 1.3. Thesis objective 12 Chapter 2 14 Development of the Wearable Blood Pressure Monitoring System 2.1. Introduction 15 2.2. System overview 17 2.3. Bio-signal instrumentation 21 2.4. Power management 24 2.5. PCB and case design 25 2.6. Software Design 27 2.7. Signal Processing 30 2.8. Experimental setup 34 2.8.1. Repeatability test 34 2.8.2. Verification of SCG-based PEP 35 2.9. Results and Discussion 38 2.9.1. Repeatability test 38 2.9.2. Verification of SCG-based PEP 40 Chapter 3 43 Enhancement of PTT based BP estimation 3.1. Introduction 44 3.2. Method 47 3.2.1. Principle of BP estimation 47 3.2.2. Subjects 49 3.2.3. Study protocol 50 3.2.4. Data collection 56 3.2.5. Data analysis 60 3.2.6. Evaluation standard 64 3.3. Results 67 3.4. Discussion 96 Chapter 4 113 Conclusion 4.1. Thesis Summary and Contributions 114 4.2. Future Direction 116 Bibliography 118 Abstract in Korean 128Docto

    Estimation of Blood Pressure and Pulse Transit Time Using Your Smartphone

    Get PDF
    It is widely recognized today that there is an alarming rise of lifestyle-induced chronic diseases (e.g., type II diabetes) in our society. Therefore, a strong need exists for cost-effective and non-invasive devices that can measure blood pressure (BP) to monitor, diagnose and follow-up patients at risk, but also healthy population in general. One promising method for arterial BP estimation is to measure a surrogate marker of it, such as, Pulse Transit Time (PTT) and derive pressure values from it. However, current methods for measuring PTT require complex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user to wear. In this paper, we present a new smartphone-based method to estimate PTT reliably and subsequently BP from the baseline sensors on smartphones. This new approach involves determining PTT by simultaneously measuring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone and the time it reaches the finger, by measuring the pulse wave using the phoneโ€™s camera. Moreover, we also describe algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics using smartphones. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpensive sensors. Our experiments show that the computational overhead of the proposed two-phase processing method is minimum, with the ability to reliably measure the PTT values in a fully accurate (beat-to-beat) fashion using directly state-of-the-art smartphones as medical devices

    ๋Œ€๊ทœ๋ชจ ์ธ๊ตฌ ๋ชจ๋ธ๊ณผ ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. ๊น€ํฌ์ฐฌ.์ตœ๊ทผ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋น„์นจ์Šต์  ์—ฐ์† ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์ ์ฐจ ๋Œ€๋‘๋˜๋ฉด์„œ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„, ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ๋˜๋Š” ๊ด‘์šฉ์ ๋งฅํŒŒ์˜ ํŒŒํ˜•์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๋‹ค์–‘ํ•œ ํŠน์ง•๋“ค์„ ์ด์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์ด ์ „์„ธ๊ณ„์ ์œผ๋กœ ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋“ค์€ ๊ตญ์ œ ํ˜ˆ์•• ํ‘œ์ค€์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๋งค์šฐ ์ ์€ ์ˆ˜์˜ ํ”ผํ—˜์ž๋“ค ๋งŒ์„ ๋Œ€์ƒ์œผ๋กœ ์ฃผ๋กœ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํ•˜๊ฒŒ ๊ฒ€์ฆ๋˜์ง€ ๋ชปํ–ˆ๋‹ค๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๊ณ , ๋˜ํ•œ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•œ ์ƒ์ฒด ์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋ถ€๋ถ„ ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ํ•„์š”๋กœ ํ•˜๋ฉด์„œ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋“ค์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํžˆ ๊ฒ€์ฆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1376๋ช…์˜ ์ˆ˜์ˆ  ์ค‘ ํ™˜์ž๋“ค์˜ ์•ฝ 250๋งŒ ์‹ฌ๋ฐ• ์ฃผ๊ธฐ์— ๋Œ€ํ•ด ์ธก์ •๋œ ๋‘ ๊ฐ€์ง€ ๋น„์นจ์Šต์  ์ƒ์ฒด์‹ ํ˜ธ์ธ ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ํ™œ์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ๋ฐฉ์‹๋“ค์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ์‹ฌ๋ฐ•์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์–‘ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํŒŒํ˜• ํ”ผ์ฒ˜๋“ค์„ ํฌํ•จํ•˜๋Š” ์ด 42 ์ข…๋ฅ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ”ผ์ฒ˜ ์„ ํƒ ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, 28๊ฐœ์˜ ํ”ผ์ฒ˜๋“ค์ด ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฒฐ์ •๋˜์—ˆ๊ณ , ํŠนํžˆ ๋‘ ๊ฐ€์ง€ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค์ด ๊ธฐ์กด์— ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฐ€์žฅ ์ฃผ์š”ํ•˜๊ฒŒ ํ™œ์šฉ๋˜์—ˆ๋˜ ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„๋ณด๋‹ค ์šฐ์›”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์„ ์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ํ˜ˆ์••์˜ ๋‚ฎ์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ธ๊ณต์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๋†’์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ˆœํ™˜์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋ง ํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.05 ยฑ 6.92 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ -0.05 ยฑ 3.99 mmHg ์ •๋„์˜ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ ๋‹ค๋ฅธ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ถ”์ถœํ•œ 334๋ช…์˜ ์ค‘ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋ธ์„ ์™ธ๋ถ€ ๊ฒ€์ฆํ–ˆ์„ ๋•Œ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํš๋“ํ•˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์  ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์ด 1000๋ช… ์ด์ƒ์˜ ๋‹ค์–‘ํ•œ ํ”ผํ—˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ ์ƒํ™œ ์ค‘ ์žฅ๊ธฐ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ๊ฐ€๋Šฅํ•œ ๋‹จ์ผ ์ฐฉ์šฉํ˜• ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์€ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์ƒ์ฒด์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ตฐ๋ฐ ์ด์ƒ์˜ ์‹ ์ฒด ์ง€์ ์— ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋“ฑ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ๋™์‹œ์— ์—ฐ์†์ ์œผ๋กœ ์ธก์ •ํ•˜๋Š” ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ๋””๋ฐ”์ด์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ๊ฐœ๋ฐœ๋œ ๋””๋ฐ”์ด์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด 25๋ช…์˜ ๊ฑด๊ฐ•ํ•œ ํ”ผํ—˜์ž๋“ค๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์™€ ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ๊ฐ„ ํŒŒํ˜•์˜ ํŠน์„ฑ์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์—์„œ ์ถ”์ถœ๋œ ํ”ผ์ฒ˜๋“ค์„ ๋Œ€์‘๋˜๋Š” ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค๋กœ ํŠน์„ฑ์„ ๋ณ€ํ™˜ํ•˜๋Š” ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. 25๋ช…์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ๋ฐ์ดํ„ฐ์— ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ์ ์šฉ์‹œํ‚จ ํ›„ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.54 ยฑ 7.47 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.29 ยฑ 4.33 mmHg๋กœ ๋‚˜ํƒ€๋‚˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋กœ ์žฅ๊ธฐ๊ฐ„ ์ผ์ƒ ์ƒํ™œ์ด ๊ฐ€๋Šฅํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๋‹ค์ˆ˜์˜ ๋ฐ์ดํ„ฐ์…‹์„ ๋Œ€์ƒ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ๊ณ ํ˜ˆ์•• ์กฐ๊ธฐ ์ง„๋‹จ ๋ฐ ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ๋ชจ๋ฐ”์ผ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.As non-invasive continuous blood pressure monitoring (NCBPM) has gained wide attraction in the recent decades, many studies on blood pressure (BP) estimation using pulse transit time (PTT), pulse arrival time (PAT), and characteristics extracted from the morphology of photoplethysmogram (PPG) waveform as indicators of BP have been conducted. However, most of the studies have used small homogeneous subject pools to generate models of BP, which led to inconsistent results in terms of accuracy. Furthermore, the previously proposed modalities to measure BP indicators are questionable in terms of practicality, and lack the potential for being utilized in daily life. The first goal of this thesis is to develop a BP estimation model with clinically valid accuracy using a large pool of heterogeneous subjects undergoing various surgeries. This study presents analyses of BP estimation methods using 2.4 million cardiac cycles of two commonly used non-invasive biosignals, electrocardiogram (ECG) and PPG, from 1376 surgical patients. Feature selection methods were used to determine the best subset of predictors from a total of 42 including PAT, heart rate, and various PPG morphology features. BP estimation models were constructed using linear regression, random forest, artificial neural network (ANN), and recurrent neural network (RNN), and the performances were evaluated. 28 features out of 42 were determined as suitable for BP estimation, in particular two PPG morphology features outperformed PAT, which has been conventionally seen as the best non-invasive indicator of BP. By modelling the low frequency component of BP using ANN and the high frequency component using RNN with the selected predictors, mean errors of 0.05 ยฑ 6.92 mmHg for systolic blood pressure (SBP), and -0.05 ยฑ 3.99 mmHg for diastolic blood pressure (DBP) were achieved. External validation of the model using another biosignal database consisting of 334 intensive care unit patients led to similar results, satisfying three international standards concerning the accuracy of BP monitors. The results indicate that the proposed method can be applied to large number of subjects and various subject phenotypes. The second goal of this thesis is to develop a wearable BP monitoring system, which facilitates NCBPM in daily life. Most previous studies used two or more modules with bulky electrodes to measure biosignals such as ECG and PPG for extracting BP indicators. In this study, a single wireless chest-worn device measuring ECG and PPG simultaneously was developed. Biosignal data from 25 healthy subjects measured by the developed device were acquired, and the BP estimation model developed above was tested on this data after applying a transfer function mapping the chest PPG morphology features to the corresponding finger PPG morphology features. The model yielded mean errors of 0.54 ยฑ 7.47 mmHg for SBP, and 0.29 ยฑ 4.33 mmHg for DBP, again satisfying the three standards for the accuracy of BP monitors. The results indicate that the proposed system can be a stepping stone to the realization of mobile NCBPM in daily life. In conclusion, the clinical validity of the proposed system was checked in three different datasets, and it is a practical solution to NCBPM due to its non-occlusive form as a single wearable device.Abstract i Contents iv List of Tables vii List of Figures viii Chapter 1 General Introduction 1 1.1 Need for Non-invasive Continuous Blood Pressure Monitoring (NCBPM) 2 1.2 Previous Studies for NCBPM 5 1.3 Issues with Previous Studies 9 1.4 Thesis Objectives 12 Chapter 2 Non-invasive Continuous Arterial Blood Pressure Estimation Model in Large Population 14 2.1 Introduction 15 2.1.1 Electrocardiogram (ECG) and Photoplethysmogram (PPG) Features for Blood Pressure (BP) Estimation 15 2.1.2 Description of Surgical Biosignal Databases 16 2.2 Feature Analysis 19 2.2.1 Data Acquisition and Data Pre-processing 19 2.2.2 Feature Extraction 25 2.2.3 Feature Selection 35 2.3 Construction of the BP Estimation Models 44 2.3.1 Frequency Component Separation 44 2.3.2 Modelling Algorithms 47 2.3.3 Summary of Training and Validation 52 2.4 Results and Discussion 54 2.4.1 Feature Analysis 54 2.4.1.1 Pulse Arrival Time versus Pulse Transit Time 54 2.4.1.2 Feature Selection 57 2.4.2 Optimization of the BP Estimation Models 63 2.4.2.1 Frequency Component Separation 63 2.4.2.2 Modelling Algorithms 66 2.4.2.3 Comparison against Different Modelling Settings 68 2.4.3 Performance of the Best-case BP Estimation Model 69 2.4.4 Limitations 75 2.5 Conclusion 78 Chapter 3 Development of the Single Chest-worn Device for Non-invasive Continuous Arterial Blood Pressure Monitoring 80 3.1 Introduction 81 3.2 Development of the Single Chest-worn Device 84 3.2.1 Hardware Development 84 3.2.2 Software Development 90 3.2.3 Clinical Trial 92 3.3 Development of the Transfer Function 95 3.3.1 Finger PPG versus Chest PPG 95 3.3.2 The Concept of the Transfer Function 97 3.3.3 Data Acquisition for Modelling of the Transfer Function 98 3.4 Results and Discussion 100 3.4.1 Construction of the Transfer Function 100 3.4.2 Test of the BP Estimation Model 101 3.4.3 Comparison with the Previous Study using the Single Chest-worn Device 104 3.4.4 Limitations 106 3.5 Conclusion 108 Chapter 4 Thesis Summary and Future Direction 109 4.1 Summary and Contributions 110 4.2 Future Work 113 Bibliography 115 Abstract in Korean 129 Acknowledgement 132Docto

    Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors

    Get PDF
    Hypertension is known to affect around one third of adults globally and early diagnosis is essential to reduce the effects of this affliction. Todayโ€™s Blood Pressure (BP) monitoring cuffs are obtrusive and in- convenient for performing regular measurements, and continuous non-invasive blood pressure devices are too complex and expensive for ambulatory use. Hence, there is a strong need for affordable systems that can measure blood pressure (BP) variations throughout the day as this will allow to monitor, diagnose and follow-up not only patients at risk, but also healthy population in general for early diagnosis. A promising method for arterial BP estimation is to measure the Pulse Transit Time (PTT) and derive pres- sure values from it. However, current methods for measuring this surrogate marker of BP require com- plex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user. In this paper, we present new methods to estimate PTT reliably and subsequently BP, from the baseline sensors of smartphones. This new approach involves determining PTT by simultaneously mea- suring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone, and the time it reaches the finger, by measuring the pulse wave using the phoneโ€™s camera. We present algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpen- sive sensors. Additionally, we combine Autocorrelation and Fast Fourier Transform (FFT)-based methods for reliably estimating the user heart rate (HR) from his/her heart sounds, and describe how to use the calculate HR to compensate for the camera frame rate variations and to improve the robustness of PTT estimation. Our experiments show that the computational overhead of the proposed processing meth- ods is minimum, which allows real-time feedback to the user, and that the PTT values are fully accurate (beat-to-beat), thereby enabling state-of-the-art smartphones to be used as affordable medical devices

    New methods for continuous non-invasive blood pressure measurement

    Get PDF
    Hlavnรญm cรญlem tรฉto prรกce je nalezenรญ novรฉ metodiky pro mฤ›ล™enรญ kontinuรกlnรญho neinvazivnรญho krevnรญho tlaku na zรกkladฤ› rychlosti ลกรญล™enรญ pulznรญ vlny v krevnรญm ล™eฤiลกti. Prรกce se opรญrรก o reลกerลกi zabรฝvajรญcรญ se zรกkladnรญm modelem pro stanovenรญ kontinuรกlnรญho neinvazivnรญho krevnรญho tlaku na zรกkladฤ› mฤ›ล™enรญ zpoลพdฤ›nรญ pulznรญ vlny a jeho rozลกรญล™enรญm. Z informacรญ zรญskanรฝch z reลกerลกe se upravila metodika mฤ›ล™enรญ doby zpoลพdฤ›nรญ pulznรญ vlny / rychlosti ลกรญล™enรญ pulznรญ vlny, aby bylo moลพnรฉ docรญlit pล™esnฤ›jลกรญch vรฝsledkลฏ a omezit tak lidskรฝ faktor, kterรฝ zpลฏsobuje vรฝznamnou nepล™esnost vlivem nedokonalรฉho rozmรญstฤ›nรญ senzorลฏ. Reลกerลกe se rovnฤ›ลพ podrobnฤ› zabรฝvรก modely pro stanovenรญ kontinuรกlnรญho neinvazivnรญho krevnรญho tlaku a jejich รบprav zajiลกtujรญcรญch zvรฝลกenรญ pล™esnosti. Mezi รบpravy modelลฏ zejmรฉna patล™รญ vstupnรญ parametry popisujรญcรญ krevnรญ obฤ›h - systรฉmovรฝ cรฉvnรญ odpor, elasticita cรฉv, tuhost cรฉv. Prรกce se taky zabรฝvรก รบpravami stรกvajรญcรญho modelu krevnรญho ล™eฤiลกtฤ› pro bliลพลกรญ pล™izpลฏsobenรญ fyzickรฉho modelu k reรกlnรฉmu cรฉvnรญmu systรฉmu lidskรฉho tฤ›la. Mezi tyto รบpravy patล™รญ i funkce baroreflexu ฤi simulace rลฏznรฉ tvrdosti stฤ›ny umฤ›lรฝch cรฉvnรญch segmentลฏ. Protoลพe se jednรก o simulaฤnรญ model krevnรญho ล™eฤiลกtฤ›, dลฏleลพitรฝm krokem je takรฉ mฤ›ล™enรญ tlakovรฉ a objemovรฉ pulznรญ vlny, kde nenรญ moลพnรฉ vyuลพรญt konvenฤnรญ senzory pro fotopletysmografii kvลฏli absenci ฤรกstic pohlcujรญcรญ svฤ›tlo. Na zรกkladฤ› experimentรกlnรญho mฤ›ล™enรญ pro rลฏznรฉ nastavenรญ modelu krevnรญho ล™eฤiลกtฤ› bylo provedeno mฤ›ล™enรญ pulznรญ vlny pomocรญ tlakovรฝch a kapacitnรญch senzorลฏ s nรกslednรฝm zpracovรกnรญm mฤ›ล™enรฝch signรกlลฏ a detekcรญ pล™รญznakลฏ charakterizujรญcรญ pulznรญ vlnu. Na zรกkladฤ› pล™รญznaku byly stanoveny predikฤnรญ regresnรญ modely, kterรฉ vykazovaly dostateฤnou pล™esnost jejich urฤenรญ, a tak nรกsledovaly dvฤ› metody pro zรญskรกnรญ parametru o tvrdosti cรฉvnรญ stฤ›ny na zรกkladฤ› mฤ›ล™itelnรฝch parametrลฏ. Prvnรญ metodou byl predikฤnรญ regresnรญ model, kterรฝ vykazoval pล™esnost 74,1 % a druhou metodou byl adaptivnรญ neuro-fuzzy inferenฤnรญ systรฉm, kterรฝ vykazoval pล™esnost 98,7 %. Tyto stanovenรญ rychlosti pulznรญ vlny bylo ovฤ›ล™eno dalลกรญm pล™รญmรฝm mฤ›ล™enรญm pulznรญ vlny a vรฝsledky byly srovnรกny. Vรฝsledkem disertaฤnรญ prรกce je urฤenรญ rychlosti ลกรญล™enรญ pulznรญ vlny s vyuลพitรญm pouze jednoho pletysmografickรฉho senzoru bez nutnosti mฤ›ล™enรญ na dvou rลฏznรฝch mรญstech s pล™esnรฝm mฤ›ล™enรญm vzdรกlenosti a moลพnosti aplikace v klinickรฉ praxi.The main objective of this work is to find a new methodology for measuring continuous non-invasive blood pressure based on the pulse wave velocity in the vascular system. The work is based on the literature research of the basic model for the determination of non-invasive continuous blood pressure based on the measurement of pulse transit time. From the information obtained from the review, the methodology of measuring the pulse transit time/pulse wave velocity was modified in order to achieve more accurate results and to reduce the human factor that causes significant inaccuracy due to imperfect sensor placement. The review discusses in detail the models for continuous non-invasive blood pressure estimation and their modifications to ensure increased accuracy. In particular, model modifications include input parameters describing blood circulation - systemic vascular resistance, vascular elasticity, and vascular stiffness. The thesis deals with modifications to the existing physical vascular model to more closely mimic the real vascular system of the human body. These modifications include the baroreflex function or the simulation of different wall hardness of artificial arterial segments. As this is a simulation model of the vascular system, the measurement of pressure and volume pulse wave is also an important step, where it is not possible to use photoplethysmography method due to the absence of light absorbing particles. Based on the experimental measurements for different settings of the vascular model, pulse wave measurements were performed using pressure and capacitive sensors with subsequent processing of the measured signals and detection of the pulse wave features. Predictive regression models were established based on the pulse wave features and showed sufficient accuracy in their determination, followed by two methods for obtaining the parameter on the hardness of the vascular wall based on the measurable parameters. The first method was a predictive regression model, which showed an accuracy of 74.1 %, and the second method was an adaptive neuro-fuzzy inference system, which showed an accuracy of 98.7 %. These pulse wave velocity determinations were verified by further direct pulse wave measurements and the results were compared. The dissertation results in the determination of pulse wave propagation velocity using only one plethysmographic sensor without the need for measurements at two different locations with accurate distance measurements and the possibility of application in clinical practice.450 - Katedra kybernetiky a biomedicรญnskรฉho inลพenรฝrstvรญvyhovฤ›

    Development, Validation, and Clinical Application of a Numerical Model for Pulse Wave Velocity Propagation in a Cardiovascular System with Application to Noninvasive Blood Pressure Measurements

    Get PDF
    High blood pressure blood pressure is an important risk factor for cardiovascular disease and affects almost one-third of the U.S. adult population. Historical cuff-less non-invasive techniques used to monitor blood pressure are not accurate and highlight the need for first principal models. The first model is a one-dimensional model for pulse wave velocity (PWV) propagation in compliant arteries that accounts for nonlinear fluids in a linear elastic thin walled vessel. The results indicate an inverse quadratic relationship (R^2=.99) between ejection time and PWV, with ejection time dominating the PWV shifts (12%). The second model predicts the general relationship between PWV and blood pressure with a rigorous account of nonlinearities in the fluid dynamics, blood vessel elasticity, and finite dynamic deformation of a membrane type thin anisotropic wall. The nonlinear model achieves the best match with the experimental data. To retrieve individual vascular information of a patient, the inverse problem of hemodynamics is presented, calculating local orthotropic hyperelastic properties of the arterial wall. The final model examines the impact of the thick arterial wall with different material properties in the radial direction. For a hypertensive subject the thick wall model provides improved accuracy up to 8.4% in PWV prediction over its thin wall counterpart. This translates to nearly 20% improvement in blood pressure prediction based on a PWV measure. The models highlight flow velocity is additive to the classic pressure wave, suggesting flow velocity correction may be important for cuff-less, non-invasive blood pressure measures. Systolic flow correction of the measured PWV improves the R2 correlation to systolic blood pressure from 0.81 to 0.92 for the mongrel dog study, and 0.34 to 0.88 for the human subjects study. The algorithms and insight resulting from this work can enable the development of an integrated microsystem for cuff-less, non-invasive blood pressure monitoring
    • โ€ฆ
    corecore