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Abstract—It is widely recognized today that there is an
alarming rise of lifestyle-induced chronic diseases (e.g., type
II diabetes) in our society. Therefore, a strong need exists for
cost-effective and non-invasive devices that can measure blood
pressure (BP) to monitor, diagnose and follow-up patients at risk,
but also healthy population in general. One promising method
for arterial BP estimation is to measure a surrogate marker of
it, such as, Pulse Transit Time (PTT) and derive pressure values
from it. However, current methods for measuring PTT require
complex sensing and analysis circuitry and the related medical
devices are expensive and inconvenient for the user to wear.
In this paper, we present a new smartphone-based method to
estimate PTT reliably and subsequently BP from the baseline
sensors on smartphones. This new approach involves determining
PTT by simultaneously measuring the time the blood leaves
the heart, by recording the heart sound using the standard
microphone of the phone and the time it reaches the finger, by
measuring the pulse wave using the phone’s camera. Moreover,
we also describe algorithms that can be executed directly on
current smartphones to obtain clean and robust heart sound
signals and to extract the pulse wave characteristics using
smartphones. We also present methods to ensure a synchronous
capture of the waveforms, which is essential to obtain reliable
PTT values with inexpensive sensors. Our experiments show that
the computational overhead of the proposed two-phase processing
method is minimum, with the ability to reliably measure the PTT
values in a fully accurate (beat-to-beat) fashion using directly
state-of-the-art smartphones as medical devices.

I. INTRODUCTION AND RELATED WORK

Our modern society is today threatened by an incipient
health care delivery crisis caused by the current demographic
and lifestyle trends. As a matter of fact, according to the World
Health Organization (WHO), cardiovascular diseases (CVD)
account for one third of the total deaths in the world. More
than 50% of CVD related deaths arise from complications
of hypertension and 40% of adults aged 25 and above were
diagnosed with hypertension worldwide in 2008 [1]. In this
endemic scenario, prevention and early diagnosis are key to
reduce the economic and social costs related to hypertension.
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(grant no. 2171-13-9), and by the ObeSense (no. 20NA21 143081) RTD
project evaluated by the Swiss NSF and funded by Nano-Tera.ch with Swiss
Confederation financing.

During the last decades, ambulatory measurement of ar-
terial blood pressure (BP) has been prescribed to patients
suspected to suffer from hypertension [2] in an attempt to mit-
igate the problem. Current devices for non-invasive measure-
ment of blood pressure (NIBP), nevertheless, are cumbersome
equipments based on mechanical or oscillometric recordings
and require a pressure cuff to be placed on the patient’s
upper arm or wrist. The periodic inflation of the cuff, usually
every 20 minutes, is uncomfortable and noisy, disturbing the
patient sleep and interfering with the BP measures themselves.
Moreover, those devices cannot be used to obtain continuous
beat-to-beat recording of BP changes, as they require a gap
of 2-3 minutes between subsequent recordings. It is, therefore,
clear that there is a strong need for new NIBP methods to
monitor, diagnose and follow-up patients at risk, as well as
for healthy people for early diagnosis.

Several recent works have presented novel ways of mea-
suring BP using different sensors [3], [4], [2], [5], [6], [7],
[8], [9]. The most promising ones measure the pulse transit
time (PTT) differences between different waveforms, such
as the electrocardiogram (ECG), photo-plethysmogram (PPG),
phonocardiogram (PCG), impedance cardiogram (ICG), elec-
trical impedance tomography (EIT) or a combination of them.
In fact, the use of PTT to derive BP variations has been
explored over the last several decades. For example, the Casio
BP-100 [10] was a pioneering consumer watch that could
measure pulse and ECG (by touching the watch from the other
hand) and derive the PTT based BP variations.

In [2] a chest sensor is proposed to assess PTT based on
ECG, PPG, and ICG. In all the cases, the underlying principle
is that arterial stiffness increases with BP in a predictable
manner, also affecting the pulse wave velocity (PWV) along
the arterial tree. Hence, by measuring the time the pulse wave
takes to travel from one point of the arterial tree to another, it is
possible to calculate the PWV and estimate BP using elasticity
based models of the blood vessels.

Nonetheless, recent research has shown that reliable BP
measurements with PTT based methods require, at least, an
initial calibration to model the individual PTTxBP relation-
ship [3], or even a periodic calibration process to compensate
for intra-patient variations, specially due to the vasomotion
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phenomenon. Hence, a standard BP measurement device based
on mechanical or oscillometric recordings is used during the
calibration step to feed the model with the required parameters.
In particular, [5] details a system to estimate BP at the
femoral artery using an ECG and a PPG sensor placed on
the patient’s thumb to calculate PTT. The system includes a
brachial pressure cuff to perform periodic calibrations (every
4-8 hours) to compensate for inter and intra-patient variations
of the PTTxBP relationship, which shows the feasibility of
meeting FDA standards for medical grade devices.

Alternatively, research on the calibration step using differ-
ent points of the patient is presented in [8], where BP monitor
consisting of twin in-line PPG sensors that measure the pulse
arrival time (PAT) using the wrist and little finger is described.
Then, PTT is calculated by subtracting one PAT from another.
The calibration procedure is performed by a set of wrist
movements that change the external pressure applied by a band
placed on the patient’s wrist, but the results do not assess the
precision of the calibration procedure. Similarly, [11] proposes
the use of hydrostatic pressure changes, but no consistent
experimental results have validated this approach so far. Also,
[4] uses smartphones to measure PTT and estimate differential
blood pressure using two different setups. The first one uses
two smartphones synchronized via a self-designed bluetooth
synchronization protocol. One device records the PPG using
the camera while the other is used to record the sounds
from the heart. Due to this synchronization procedure, the
smartphones must be rooted (i.e., user applications needs to be
given permission to run privileged commands), replacing their
stock configuration. The second setup uses one smartphone
and a customized external microphone to record heart sounds,
which outlines the capabilities of smartphones sensors for PTT
measurements. However, methods are still missing to perform
reliable PTT calibration in wearable devices for BP estimation.

Beyond the concern on calibration methodologies for PTT,
the reality is that a large set of works have evaluated the
use of PTT as a surrogate marker for BP. We refer the
interested reader to Henning and Patzak [12], which provides
a complete summary of most of the relevant works, and
comes to the conclusion that PTT is suitable for continuous
monitoring of BP. The authors state that previous works
results are encouraging enough for further clinical evaluation
of PTT-based BP measurement methods. However, the major
challenge of using PTT to estimate BP is the high degree
of exactness and precision required in the acquisition and
delineation steps. Usually, this is achieved by using expensive
high-precision sensors and heavy signal processing techniques.
However, to deliver an ambulatory solution for continuous
NIBP measurements, low cost and ease of use are key factors.

In this work we describe new on-board methods to obtain
clean and robust heart sound signals and to extract the pulse
wave characteristics using just baseline sensors of smartphones
with stock configuration. We also present methods to ensure
a synchronous capture of the waveforms, which is essential
to obtain reliable PTT values with inexpensive sensors. The
rest of the paper is structure as follows. In Section II we
present the overview of the proposed solution and how all
the subsystems work together. Then, Section III describes in
detail the signal acquisition and processing steps for both PPG
and PCG recordings. Experimental results are presented next

in section IV followed by the conclusions in Section V.

II. BACKGROUND AND METHOD OVERVIEW

PTT calculation involves the acquisition of the pulse arrival
time (PAT) at two different points of the arterial three. Once the
PATs are computed, the PTT can be calculated by the formula
presented in equation 1.

PTT = PAT1 − PAT0 (1)

The first point on the arterial tree, which corresponds to
PAT0, is usually called proximal point, and the point used to
determine PAT1 is called distal point. The method we describe
in this section uses the smartphone’s internal microphone and
camera to reliably compute the PATs at the proximal and distal
point, respectively, and then estimate BP.

Differently from most of the previous works, here PAT0 is
computed from the heart sounds instead of the R-peak of the
ECG wave. During the cardiac cycle, vibrations caused by the
heart mechanical activity propagate through the chest, origi-
nating sounds that physicians have been using for centuries to
assess the health of the heart. At least two heart sounds are
very discernible on a healthy person. These sound events are
usually referred as S1 and S2. S1 is believed to include four
major components [13]: 1) The initial contraction of ventricles,
which increases the ventricular pressure and accelerates the
blood towards the atria; 2) The momentum of the moving
blood as it forces the closure of the atrioventricular valves;
3) The oscillation of blood during the opening of aortic and
pulmonary valves; and 4) The turbulence caused by the blood
flowing through the Aorta. On the other hand, S2 includes two
components that signals the closing of aortic and pulmonary
valves. Figure 1 shows a representation of the heart sounds S1
and S2 and their major components.

Fig. 1. Heart Sounds S1 and S2. Adapted from [13].

We are particularly interested in detecting the moment the
blood leaves the heart as this is the genesis of the pulse
pressure wave. This instant is marked by the third and forth
components of S1 and, by correctly delineating S1, it is
possible to precisely compute PAT0. We use the smartphone’s
internal microphone as a low cost phonocardiogram to perform
this task, thus computing the PAT at the proximal point.

The PAT at the distal point is computed using the smart-
phone’s camera as a photo-plethysmogram (PPG) sensor. PPG
is a non-invasive method that uses optics to obtain information
about the subcutaneous blood circulation [2]. PPG sensors
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gather the light transmitted through the living tissue and
use the acquired signal to estimate arterial pulsatility and
blood content. Our method uses the smartphone’s flash light
and camera to mimic a skin reflectance based [14] PPG
sensor. During the measurement, the subject holds his/her
index fingertip over both the camera and the flash light. The
light emitted by the LED is scattered by the living tissue,
reflected by the digital phalange, and finally captured by the
camera. The subtle changes in brightness due to the blood
flow are used to reconstruct the blood pulse-wave signal. All
signal acquisition, processing and delineation of the waveforms
are performed in real-time to provide the user with visual
and audio feedback. During the experiments we noticed that
this feedback is essential to help the user to position the
sensors, specially the microphone, at the right place. Moreover,
audio-visual feedback enriches user experience, making the
application more interactive and appealing.

This real-time feedback, nevertheless, puts an extra burden
on the signal processing algorithms. To provide for a smooth
execution during the real-time processing without negatively
affecting the system robustness, we have split the signal
processing step in two phases. Phase I performs a simple
conventional filtering of the signals and a coarse delineation
of the waveforms. This phase has two objectives: 1) extracting
a clean signal with quality enough to be presented to the user;
and 2) checking if the recorded signals have enough quality
to be delineated in the second phase. During Phase I we just
perform a preliminary analysis of the signals, not ensuring
a perfect synchronization between the waveforms neither a
precise delineation of their fiducial points.

The filtered samples are accumulated in a circular buffer
during Phase I to be processed in the second phase. Once
the required signal quality is met, the algorithms in Phase
II further filter the signals, analysing the entire buffer using
advanced signal processing techniques. These algorithms rely
on the fact that PPG and PCG are time-locked, as they are
triggered by the same bio-event: the pumping of the heart. This
multi-modal approach grants a robust and reliable delineation
of the waveforms even using the inexpensive sensors present
in stock smartphones. In Phase II, the precise fiducial points
of the waveforms are detected and used to calculate PTT.

After computing the PTT, its value is fed to the blood
pressure estimation model. Before starting using the applica-
tion, the user must calibrate the model using a standard BP
device, like the oscillometric based devices largely available
for ambulatory use. The calibration procedure requires the user
to perform a PTT measurement using the smartphone. After
the recording is done, the application asks the user to input a
reference BP value collected with an standard BP device. The
BP reference value is used to calibrate the PTTxBP model.

We employ a multi-point adaptive calibration method,
which requires at least two points with different BP values to
model the PTTxBP relationship. This method compensates for
changes in the user specific PTTxBP relationship by evaluating
and discarding previous calibration points as soon as they are
not valid. Every time the user calibrate the system, a new point
is added to the curve fitting algorithms and the previous points
are evaluated to be discarded. With this approach, the more
the user calibrates the model, the more precise it becomes.

However, even with just a few calibration points, the provided
results are reliably enough to track BP changes.

III. SMARTPHONE BASED SIGNAL ACQUISITION AND

PROCESSING

Enabling cost-effective health care based services on the
mobile phones is the next step on telehealth systems. People
are used to take their mobile phones everywhere, keeping
them all day long in reach of their hands. This ubiquity
make mobile phones perfect to follow-up patients at risk and
to monitor sporadic vital signs deviations from the baseline.
The biggest challenge, however, is how to deliver an effective
health care solution using mobile phones without impacting
neither the battery life nor the user experience due to the
limited processing capabilities.

In this section we detail the acquisition and processing of
PPG and PCG using the smartphones’ baseline sensors. We
focus on the Android operating system as it detained 82%
of the market share in 2014 [15]. Most of the techniques
presented here, nevertheless, are generic enough to be applied
to other operating systems with little to no modification.

A. Photo-plethysmography Acquisition

The proposed system uses the smartphone’s camera as a
PPG sensor to monitor the pulse waveform. Other mobile
applications use the same principle to measure the subject’s
heart rate (HR), like the Azumio’s Instant Heart Rate app [16].
Usually, the PPG signal is reconstructed from the individual
frames of the camera and fed to a Fast Fourier Transform
(FFT) algorithm that extracts the HR value. Frequency domain
analysis, like FFT, may be robust enough to extract HR, but it
is not sufficient for PTT calculation. In order to estimate blood
pressure, we need to detect the exact moment the pressure
pulse reaches the distal point (i.e. the fingertip), which requires
the PPG signal to be precisely reconstructed and delineated in
the time domain.

A major problem for PPG reconstruction arises when
standard smartphones are used to capture the signal, specially
Android based ones. There is little hardware standardization
among Android devices and the operating system lacks of
support for frame temporization. Constant frame rates are
not supported by the vast majority of devices and, as a
consequence, the PPG reconstruction and delineation algorithm
must take into account variable frame rates, specially those due
to automatic exposure adjustment, and to restricted processing
capabilities.

Automatic exposure (AE) allows the smartphone’s camera
to automatically determine the correct exposure time for com-
pensating for poor lighting during recordings. Despite desirable
in normal use, this feature may distort the PPG signal when
the pulse waveform is being acquired. Dynamic adjustment of
exposure has two effects on the recorded PPG signal: 1) it
changes the frame rate during the acquisition, distorting the
signal time reference; and 2) it constantly changes the image
brightness, distorting the amplitude of the signal. Hence, to
get a non-distorted PPG signal, which is essential to correctly
determining the fiducial points, the exposure time must be
locked during the recordings.

175



We adopted a solution to prevent the AE feature to affect
the measurements. After the user covers the lens to start the
measure, we allow the AE feature to adjust the exposure for a
few seconds and, then, lock the exposure to get a clean signal
thereafter.

With respect to the restricted processing capablilities, we
used a frame buffer to guarantee that no frames are dropped by
the operating systems during the demanding tasks and adopted
a thread based solution to take advantage of the multicore
architectures whilest also preventing the user interface from
hanging while during the computations. The PPG value is
therefore computed frame by frame by a handler thread, using
the mean brightness in the red channel of the image. This value
is then passed to the phase I algorithms for filtering and coarse
delineation.

B. Phonocardiogram Acquisition

Differently from the camera, Android audio recordings
have a constant sample rate, which is set via software before
starting the acquisition. We use a sample rate of 44100 Hz as,
according to the Android 4.4 Compatibility Definition [17],
this is currently the only sample rate guaranteed to work
on all devices. However, we downsample the recording to
900 Hz before processing to reduce the required amount
of computation. To guarantee we receive the raw samples
from the microphone, we disabled the device’s automatic gain
control and noise reduction features.

PCG acquisition in Android systems, nevertheless, is not
at all issue-free. First, all read operations involving the audio
device are blocking and, hence, a working thread must be
set up to prevent the system from hanging during recordings.
Last, but not least, the Android’s compatibility document only
suggests that the hardware manufacturers reduce the audio
latency, but does not require them to do it. Again, according
to the Android 4.4 Compatibility Definition [17], the latency
to get the first audio sample should be lower than 100 ms
while in the rest of the recording, latency should be lower
than 45 ms. These latency figures are just recommendations,
not mandatory.

To circumvent the latency problem (and also to control
the number of samples in the circular buffer during the first
phase of the signal processing) we mark each sample with a
timestamp that is relative to the moment the sampling started,
not the moment we start to receive the samples. The premise
of this solution is that the sample rate of the audio channel is
constant and the latency happens just for delivering the audio
data, not for the hardware to start sampling. By doing this, we
were able to achieve sufficient synchronization between audio
samples and video frames to calculate the PTT reliably.

C. Phase I

As previously stated, the first objective of Phase I is to
extract a clean signal, with quality enough to be presented to
the user. Thus, during this first phase, the PPG and PCG input
samples are filtered before storing them in a circular buffer.
Filtering the acquired signals is fundamental for correctly ex-
tracting their fiducial points. However, filtering usually incurs
in a phase difference between the input and output signals.
Sometimes, the filter phase response is non-linear (the phase

TABLE I. FILTERS SPECIFICATIONS

Name Type Order
Sample
Frequency
(Hz)

Cut
Low
(Hz)

Cut
High
(Hz)

PPG Signal Bandpass
IIR

6 30 0.5 20

PCG
Downsampling

Lowpass
FIR

559 44100 450 •

PCG Signal Bandpass
IIR

2 900 20 250

PCG Envelope Lowpass
IIR

2 900 20 •

shift is not directly proportional to the frequency) which may
result in distortions that have an impact on the accuracy of the
fiducial points detection. Here, we use two types of digital
filters: Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) [18]. In the case of linear phase FIR filters,
the phase difference from the input signal can be easily
compensated by subtracting a constant value from the sample
timestamp. IIR filters, on the other hand, usually have non-
linear phase response, which causes distortions in the signal.
However, IIR filters are computationally more efficient then
FIR filters which is a significant advantage when processing
capability is restricted.

We opted to use IIR filters whenever possible to reduce the
processing requirements of the system. The distortions caused
by the phase non-linearity do not have significant impact on
the user feedback and, hence no effort was made to eliminate
them during Phase I. In Phase II, nevertheless, the distortions
may affect the PTT calculation and then we use techniques
that sacrifice the real-time processing for linearity, as it will
be presented in the next subsection. Table I shows the design
parameters for the filters used in phase I and phase II. All
filters were designed using Matlab’s filter toolbox [19].

Two circular buffers were defined for storing the values
of each bio-signal (two for PPG and two for PCG). The first
buffer (view buffer) holds the data that will be presented to
the user in real-time during Phase I. The second buffer (data
buffer) contains the data used to calculate PTT in phase II.
This separation between view and data buffers improves the
real-time data processing, since the data presented to the user
does not require to be precise, but just representative enough to
give the user a quality feedback. The real-time processing over
the view buffer is efficient specially because of two factors:

1) the view buffer is smaller than the data buffer, since
just a few heart cycles are sufficient to provide the
user with audio-visual feedback;

2) all filtering, except for the PCG Downsampling, is
performed by causal IIR filters, since light distortions
in the user feedback do not interfere with usability.

Every time a new PPG sample is calculated from the
camera frames, a pair <value, timestamp> is inserted into
the PPG data and view buffers. The value added to the data
buffer is inserted without any filtering or processing, while the
value inserted into the view buffer is filtered using the PPG
Signal filter presented in table I. Since it is an IIR filter, the
data will be lightly distorted, but without impacting the PTT
calculation, which uses the data buffer in Phase II.
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1 FUNCTION Phase_I
2 TRIGGER: A new sample is inserted into
3 the PPG buffer
4 BEGIN
5 if (PPG dataBuffer is full) then
6 align PPG and PCG data buffers
7 delineate PPG view buffer
8 if (PPG delineation is good enough) then
9 delineate PCG view buffer guided by PPG
10 if (PCG delineation is good enough) then
11 call Phase_II
12 endif
13 endif
14 endif
15 END

Listing 1. Phase I Algorithm

The samples from the audio device, on the other hand, are
downsampled in real-time using the PCG Downsampling filter
before being inserted into the buffers. The PCG Downsampling
filter has a linear phase and downsamples the audio signal
from 44100 Hz to 900 Hz, while also works as a lowpass
filter, attenuating components above the Nyquist Frequency at
the same time. Before being inserted into the view buffer, the
PCG samples are further processed to create an envelope that
allows the user to identify the heart sounds S1 and S2. First,
the view samples are filtered by the PCG Signal filter. Then, the
samples are normalized to the interval [0.00, 1.00] and used to
calculate the energy, using the formula presented in equation
2. Finally, the samples are filtered using the PCG Envelope
filter, which creates an envelope of the signal.

E(t) = −x(t)2. log(x(t)2) (2)

Where E(t) is the energy at time t and x(t) is the filtered
sample value at time t.

Besides filtering and inserting data into the buffers, Phase
I also coarsely delineates and analyzes the signals to trigger
the execution of Phase II algorithms. Listing 1 presents a high
level algorithm for this task.

PCG data acquisition is performed precisely at 44100 Hz
and the signal is downsampled to 900 Hz before inserting
into the circular data and view buffers. The PCG data buffer
was designed to hold 14 seconds of samples while the view
buffer is capable of storing 4 seconds. Once filled, the buffers
start discarding the oldest samples every time a new sample is
inserted. PPG, on the other hand, has a variable frame rate and
automatic sample discarding based on the number of samples
is not possible. Hence, before analysing the signals, PPG and
PCG buffers must be synchronized. This task is performed by
the alignment proceedure, executed at line 6 of Listing 1. Since
the sample rate of PCG is much higher than that of PPG, the
synchronization is performed by getting the first timestamp
from the beginning of the PPG buffer and discarding all data
that precedes it in the PCG buffer.

After aligning the PPG and PCG buffers, the PPG signal
stored in the view buffer is delineated (line 7 of Listing 1).
The objective of the delineation phase is to detect the moment
the pulse wave reaches the finger. This moment is marked by

the onset of the PPG pulse waveform and is determined using
the following steps:

1) the minima of the waveform are detected using the
derivative of the signal;

2) the detected minima, so-called feet, are analysed
according to their amplitudes. All points that do
not fall into the valid range (that are determined
experimentally) are discarded;

3) the time difference between two given feet is checked
for significant deviations from the mean. If two
feet are too close from each other, their neighbours
are checked, trying to solve these discrepancies. If
removing one of them solves the deviation, that foot
is discarded;

4) the remaining points are checked for zero-crossing
points between them. All PPG wave feet must be sep-
arated by two zero-crossing points. If this condition
is not met for any given two feet, the one with lower
amplitude is kept and the other one is discarded.

Once the feet of the pulse waves are detected, they are
checked for stability (line 8 of Listing 1). If the longest beat
is greater than 1.5 times the shortest beat, probably the delin-
eation algorithm missed one beat or wrongly detected a pulse
wave onset. Otherwise, the detected points time difference is
stable and the PPG delineation is considered good enough.

The next step is to delineate the PCG signal (line 9 of
Listing 1). PCG signal is significantly more difficult to be
delineated than the PPG because of the noise captured by
the smartphone’s microphone. However, the complexity of this
task is attenuated as we already have information regarding the
individual heart beats, extracted during the PPG delineation.
In a normal condition, an onset in the PPG signal must follow
every S1 sound event in the PCG signal. For the coarse
delineation executed in Phase I, we check for pairs of peaks in
the PCG envelope (S1 and S2) that are way above the average
signal value. If a pair of peaks within a valid time difference
precedes each one of the PPG onsets, the PCG signal has
enough quality to be processed and the second phase of the
analysis is triggered.

D. Phase II

The algorithms in Phase II are very similar to the ones
in Phase I except for the fact that they use the bigger data
buffers instead of the view buffers. There are some important
differences, nevertheless, that significantly improve the quality
of delineation in the second phase.

First, the IIR filters are applied over the data buffers in both
directions during Phase II, using a forward-backward scheme.
This results in a non-causal filter that is realizable just because
all samples have already been acquired and are stored in the
buffers, ready to be processed. Using this technique, the result
is a signal without the phase distortions that would impact on
the fiducial points determination.

Second, we use a more robust technique to delineate the
PPG and PCG signals. The technique is based on ensemble
averaging the signals to remove noise that is unrelated to the
heart beat. This technique rely on the fact that over short time
windows, the PCG and PPG fiducial points may be considered
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time-locked. Solà [2] used ensemble average (EA) to filter the
ICG signal using ECG R-wave peaks as triggers. The author
demonstrated that using EA corresponds to applying a very
narrow band-pass filter with central frequencies defined by the
heart rate frequency and its harmonics. Here we calculate the
EA using the onsets of the PPG signal as trigger points, since
this signal is, in general, less noisy than the PCG.

Let τi be the timestamp of the ith onset of the PPG
wave and N be the number of detected onsets during the
PPG delineation of the data buffer in Phase II. The ensemble
average of the signal, ŝ, is computed over the original signal,
s, using the formula presented in equation 3.

ŝ(t) =
1

N

N∑

i=1

s(t + τi) (3)

where t ∈ [0, T ) and T is the heart beat period. Figure 2
illustrates the computation of the ensemble average.

Fig. 2. PCG filtering using the Ensemble Average Technique

By computing ŝ using equation 3, we obtain a denoised
version of a single heart beat of s, averaged over N heart
beats of that signal. After applying this technique over both
the PPG and PCG, we have two options for calculating PTT:

1) delineate both ŝPPG and ŝPCG and calculate the PTT
using the detected fiducial points;

2) use ŝPPG and ŝPCG as template waveforms to de-
lineate the original signals, sPPG and sPPG, and
calculate N PTTs for the N heart beats.

We use the first option when determining the instantaneous
BP measurement. Using the PTT calculated from the ensemble
averages of the signals, we obtain a more stable PTT that is
robust to noise and to single beat deviations from the baseline
value. On the other hand, option 2 is used to track beat-to-beat
variations of BP, caused by special situations like standing up,
or performing the Valsalva-Weber manoeuvre [20].

IV. EXPERIMENTS

We performed a series of experiments to evaluate the
proposed filtering and delineation algorithms. It is worth noting
that the experiments are not intended to validate the use of

PTT as a surrogate marker for blood pressure as this issue
has been addressed by several previous works. We aim at
validating our solution with respect to three major aspects:
1) the synchronization between PPG and PCG signals; 2) its
capability of tracking beat-to-beat BP changes; and 3) the
accuracy in determining the waveforms fiducial points.

Experiments were performed using a Samsung S4 smart-
phone running Android 4.4 operating system. Data was col-
lected and processed using a hybrid application developed
in Java and C. We opted to use C in the signal processing
algorithms because native code libraries present better time
performance than pure Java applications. Despite all results
presented in this section were obtained using solely the mobile
application, for convenience we used the software Matlab [19]
to create the plottings.

A. Synchronization between PCG and PPG

As the PCG and PPG signals are acquired by different sub-
systems of the smartphone, it is necessary to check whether
they are being generated in perfect synchronization. If the
signals are not correctly aligned in time, the accuracy of the
obtained PTT value would be compromised. A simple pro-
cedure was adopted to evaluate the synchronization between
PCG and PPG: we applied a sequence of tappings on the
smartphone, each tap completely covering the camera lenses
and generating a sound at the same time. If data acquisition
and synchronization are correctly performed by the application,
the generated PPG and PCG waveforms should present a
perturbation around the same time instant.

This experiment was performed several times to make sure
fluctuations on the frame rate and other transitory conditions
do not affect the synchronization between the signals. During
its execution, we have noticed that the camera waveform peak
always happened two frames before of the microphone peak. In
order to synchronize both signals, we added a constant delay
to the time-stamp of each camera sample. The result of the
experiments, after this latency problem correction is presented
in Figure 3. With this correction, the waveforms present
perfect synchronization, therefore showing that the adopted
synchronization scheme is suitable to reliably calculate PTT.

Fig. 3. Synchronization Experiment Results
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B. Tracking of Beat-to-beat BP Changes

In order to evaluate the capability of the developed solution
to track beat-to-beat variations of BP and HR, it is required
that a disturb is induced on the user’s cardiovascular system,
thus generating observable changes on the monitored signals
during the PCG and PPG acquisition. Usually, these changes
in BP and HR are created by submitting the user to a series
of physical exercises. However, the solution we propose in the
present work is not suitable for use during physical activities
as it requires the user to stand still or seat in a specific
position, preferably on a quiet environment. The movement of
the body, during the exercises would add too much noise on the
PCG acquisition, specially due to the microphone-skin friction.
Hence, we opted to employ the Valsalva-Weber maneuver to
produce the changes on the monitored signals.

The Valsalva-Weber maneuver consists in asking the pa-
tient to perform a full inspiration followed by a sustained
forced expiration against the closed glottis, nose, and mouth.
After a few seconds, the expiration restraint is loosened and
the patient should try to breath as normally as possible.

During the execution of Valsalva-Weber maneuver, it is
possible to observe four phases in which acute changes in HR
and BP occur [20], as depicted in Figure 4. During the initial
inspiration (phase I), the HR shortly reduces and a sudden
increase in systolic BP is perceived; As the subject maintain
the expiratory strain (phase II), HR progressively increases,
while Systolic BP decreases in a similar fashion; when breath
is finally released (phase III), HR reaches its peak and BP fall
shortly to its minimum level; the recovering phase (phase IV)
is marked by a progressive reduction of HR, which reaches its
minimum value before returning to the basal state. BP value
also presents a progressive increase, with an overshoot before
returning to pre-maneuver levels.

Fig. 4. Normal Behavior During the Valsalva-Weber Maneuver. Adapted
from [20].

Three subjects were submitted to the Valsalva-Weber ma-
neuver during the experiments: one female (subject 1) and two
male (subjects 2 and 3). Subject 1 does not perform any regular
physical activity, presenting a high basal HR of around 100
bpm. Subject 2 undergoes moderate physical activity twice
a week, and Subject 3 is an active sportsman who performs
intense training regularly. Figure 5 presents the waveforms for
HR and relative (uncalibrated) BP for these subjects. Upon
inspection of that figure, the four expected phases for both HR

TABLE II. DIFFERENCE BETWEEN AUTOMATIC AND MANUAL

DELINEATION

PCG S1
(ms)

PPG Onset
(ms)

PTT
(ms)

Max Mean Max Mean Max Mean Mean Perc.

Subject 1 2.72 1.40 6.67 5.00 8.60 5.61 2.55%

Subject 2 5.49 2.27 13.30 5.14 11.76 5.19 2.04%

Subject 3 13.38 4.04 13.33 4.92 21.61 6.98 3.00%

Average 7.20 2.57 11.10 5.02 13.99 5.93 2.53%

and BP curves are identified. The curves for the three subjects
match the template of figure 4.

Fig. 5. Typical HR and BP Curve Obtained During the Experiments

C. Fiducial Points Classification Accuracy

We have also checked the delineation accuracy of the
proposed methods. For the same three subjects for which the
results were presented in section IV-B, PPG and PCG wave-
forms were delineated both automatically using the proposed
algorithms, and manually by inspecting the raw waveforms
before any processing. Manual PCG delineation was performed
using the template waveform of figure 1 and, as previously
stated, we used the third component of S1 as the proximal
point. PPG manual delineation was performed using the in-
tersecting tangent method [21] which defines the onset of the
pulse wave as the intersection point between a tangent line
through the initial systolic upstroke of the PPG waveform and
a horizontal tangent line passing over the minimum point of
the same wave. The maximum and mean difference between
the manual and automatic determination of the points were
recorded and the results are presented in table II.

During the compilation of table II data, we have noticed
that Subject 2 was presenting a high maximum error for
both PCG and PTT values. Upon careful inspection of the
waveforms, we have found out that this high error figure
was due to a misclassification during the manual analysis of
the data. A spurious sound was captured by the microphone,
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most probably due to an involuntary movement during the
acquisition. This sound was mistaken during the manual PCG
delineation by an S1 event and the subsequent peak, which was
the real S1 peak, was assumed to be an S2 event. The automatic
delineation algorithm, nevertheless, was able to correctly iden-
tify the actual S1 peak as it uses the PPG waveform and the
time intervals to support the delineation. Figure 6 shows the
misclassification and also the correct analysis of the waveform.
After correcting this inspection, the manual delineation was
corrected and the errors were recalculated.

Fig. 6. Misclassification of Manual Delineation

V. CONCLUSION

In this paper, we have presented methods for reliable
estimation of Pulse Transit Time, and hence Blood Pressure,
using only mobile phones with stock configuration. The main
contributions of the present research so far are: 1) a low profile
two step processing method that supports real-time acquisition
and processing of PCG and PPG waveforms, providing the user
with audio-video feedback and enhancing his/her experience
with the mobile application; and 2) a robust method for
filtering PPG and PCG signals using the ensemble average
technique to create a template waveform that is used to guide
the delineation of the less-than-ideal signals acquired using
inexpensive sensors. Besides these two main contributions,
to the best of our knowledge, this is the first time short-
term variations of BP are tracked beat-to-beat based solely
on phono-cardiogram and photo-plethysmogram, both acquired
using inexpensive sensing and analysis circuitry.

We have validated the solution across subjects using the
Valsalva-Weber maneuver to induce acute beat-to-beat vari-
ations of BP and HR. The waveforms obtained during the
experiments match the expected template for both signals (i.e.,
mean errors up to 3%). Thus, these results indicate that our
proposed methods are reliable for ambulatory monitoring of
short-term variations in blood pressure values using just current
smartphone devices.
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