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ABSTRACT 

A Study on the Wearable and Cuffless 

Continuous Blood Pressure Monitoring 

System 

 
Jonghyun Park 

Interdisciplinary Program in Bioengineering 
The Graduate School 

Seoul National University 
 

Continuous blood pressure (BP) monitoring is needed in daily life 

to enable early detection of hypertension and improve control of 

BP for hypertensive patients. Although the pulse transit time 

(PTT)-based BP estimation represents one of most promising 

approaches, its use in daily life is limited owing to the 

requirement of multi systems to measure PTT, and its 

performance in systolic blood pressure (SBP) estimation is not 

yet satisfactory.  

The first goal of this study is to develop a wearable system 

providing convenient measurement of the PTT, which facilitates 

continuous BP monitoring based on PTT in daily life. A single 

chest-worn device was developed measuring a 
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photoplethysmogram (PPG) and a seismocardiogram (SCG) 

simultaneously, thereby obtaining PTT by using the SCG as 

timing reference of the aortic valve opening and the PPG as 

timing reference of pulse arrival. The presented device was 

designed to be compact and convenient to use, and to last for 24h 

by reducing power consumption of the system. The consistency 

of BP related parameters extracted from the system including 

PTT between repetitive measurements was verified by an intra-

class correlation analysis, and it was over 0.8 for all parameters. 

In addition, the use of SCG as timing reference of the aortic valve 

opening was verified by comparing it with an impedance 

cardiogram (r = 0.79 ± 0.14).  

Secondly, the algorithm improving the performance of the SBP 

estimation was developed by using the presented system. A 

multivariate model using SCG amplitude (SA) in conjunction with 

PTT was proposed for SBP estimation, and was compared with 

conventional models using only PTT or pulse arrival time (PAT) 

in various interventions inducing BP changes. Furthermore, we 

validated the proposed model against the general population with 

a simple calibration process and verified its potential for daily 

use. The results suggested that (1) the proposed model, which 
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employed SA in conjunction with PTT for SBP estimation, 

outperformed the conventional univariate model using PTT or 

PAT (the mean absolute errors were of 4.57, 6.01, and 6.11 for 

the proposed, PTT, and PAT models, respectively); (2) for 

practical use, the proposed model showed potential to be 

generalized with a simple calibration; and (3) the proposed model 

and system demonstrated the potential for continuous BP 

monitoring in daily life without any intervention of users or 

regulations.  

In conclusion, the presented system provides an improved 

performance of continuous BP monitoring in daily life by using a 

combination of PTT and SA with a convenient and compact single 

chest-worn device, and thus, it can contribute to mobile 

healthcare services. 

  

Keywords: Blood pressure, Continuous blood pressure monitoring, 

Mobile healthcare, Wearable device, Pulse transit time, 

Photoplethysmogram, Seismocardiogram. 

Student number: 2015-31046  
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General Introduction 
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1.1. BLOOD PRESSURE  

Blood pressure (BP) is the pressure of circulating blood on the 

vessel wall. As the circulation of the blood is not constant but 

variable owing to the pulsatile function of the heart, BP is a 

function of time. BP is normally expressed by two values, the 

systolic blood pressure (SBP) and diastolic blood pressure 

(DBP), which are the maximum and minimum blood pressures 

during one cardiac cycle, respectively, and it is measured by 

various methods. 

The first measurement of BP was performed by Hales by 

inserting a tube into an artery, and it is regarded as the most 

direct and precise measurement method until now, albeit it is 

invasive (1). As a non-invasive means, the auscultatory method 

is widely accepted as a standard clinical method, which measures 

BP by detecting Korotkoff sounds when occluding and releasing 

an artery with an inflating and deflating cuff (2). Similarly, the 

oscillometric method is the most popular method, widely used in 

homes and clinics, which measures BP by automatically analyzing 

the oscillation in an artery when occluding and releasing it by a 

cuff, as in the auscultatory method (3). The volume clamping 
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method is also available and often used for research purposes, 

as it provides instantaneous BP by using a cuff that continuously 

varies its pressure via a fast servo-control system (4).  

BP is one of the vital signs, along with the heart rate (HR), 

respiratory rate, and body temperature, as the BP value can 

represent the condition of the hemodynamic system of the body, 

and further indicate the wellness of the overall cardiovascular 

system. A BP that is consistently high means hypertension, 

which is an important public-health challenge worldwide (5). 

High BP usually does not cause pains or symptoms, but long-

term high BP, which is diagnosed as hypertension, is a major risk 

factor for  coronary artery disease, stroke, heart failure, atrial 

fibrillation, peripheral vascular disease, vision loss, chronic 

kidney disease, and dementia (6–9). Hypertension is wide-

spread in the US and is the major factor of cardiovascular disease, 

which was the leading cause of the death in the US in 2014 (10–

13). It was reported in a 2002 WHO report that about 62% of 

strokes and 49% of heart attacks are attributed to hypertension 

(14).  
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In order to prevent such critical events by cardiovascular 

disease, hypertension should be detected and properly managed 

in an early stage, yet a considerable number of people are 

ignorant of their BP especially in low resource settings. Thus, 

they are not labeled as hypertensive, which causes much of the 

disease burden (15). Although it is crucial to be aware of one’s 

BP status, measurement of BP is mostly performed in a clinical 

setting with a conventional inflatable cuff-type device that 

provides only a single or a few BP values, which is not reliable 

and could even be misleading in representing one’s BP status 

(13). One of reasons for this is the time-varying nature of BP, 

which shows enormous variability even during a day (16, 17). 

Pickering et al. pointed out that the correlation between a single 

measurement of BP and the BP mean during a day is of only 0.5–

0.7 (18). In addition, BP can be affected psychologically 

depending on the situation. When a patient visits a clinical setting, 

one’s BP can be above the normal range and can be falsely 

diagnosed as hypertension, which is a well-known phenomenon, 

called the “white coat syndrome” (19). Therefore, the American 

Heart Association (AHA), American Society of Hypertension 

(ASH), and Preventive Cardiovascular Nurses Association 
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(PCNA) recommended the ambulatory BP measurement (ABPM) 

in 2008 (13) or, in other words, continuous BP monitoring in 

daily life, which prevents the “white-coat syndrome” effect and 

enables more frequent BP measurement. Current devices 

employed for ABPM are usually based on the oscillometric 

method, which has to be used with an inflating cuff during 

measurement. However, although many current devices are 

developed for home and self-use with a simple control, the 

discomfort of inflating a cuff is a fundamental drawback of cuff-

based devices, and the bulky device, which generally consists of 

an inflating cuff and an air control unit, hinders its frequent use. 

Particularly, when measurement during sleep is required, a cuff-

based device is not a favorable option for users.  

If a compact wearable device is designed with a new cuffless 

modality, which reduces the burden of the inflating cuff, the 

ultimate goals of continuous, not one-time, BP monitoring, not in 

a clinical setting but in daily life, will be within reach. As one of 

the promising cuffless modalities, the pulse transit time (PTT)-

based approach has gained popularity and is attracting wide 

attention. 
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1.2. PULSE TRANSIT TIME 

PTT is the time delay for the BP wave to propagate between 

two arterial sites (Fig. 1.1). Thus, PTT is in inverse relationship 

with pulse wave velocity (PWV), which is the velocity of the BP 

wave propagating along the wall of arterial vessels and is 

typically faster than the blood flow (20). PWV is known to be 

closely associated with arterial elastance, which is commonly 

modeled by Moens–Kortewerg equation assuming an artery as an 

elastic tube, as follows (21–24): 

  =  ℎ2  (1) 

where E is the arterial elastance, h is thickness of the vessel wall, 

r is radius of the vessel, and ρ is density of blood. By this model, 

PTT is inversely related to arterial elastance.  

The arterial elastance was empirically modeled by the Hughes 

equation (25) as follows: 

  = 	 (2) 
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Figure 1.1 Conceptual diagram of PTT–BP relationship. (a) PTT is the 

time delay for the BP wave to propagate between the proximal arterial 

site and distal arterial site. (b) PTT is often related to BP. 

*The plot in (b) is cited from the review paper by Mukkammala et al. 

(26) 
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where E is the artery elastance,  is the base elastance,  is a 

model coefficient, and P is BP. Hughes found out by 

experimentation that BP is logarithmically related to arterial 

elastance.  

Consequently, combining the two equations above results in 

the relationship between BP and PWV or PTT, which is written 

as follows: 

  = ℎ2  (3) 

Squaring both sides and taking the log of each side yields 

  = 1 ln + 2 ln 2ℎ (4) 

where the relationship between BP and PWV is explicitly 

expressed.  

Therefore, BP can be theoretically estimated by PWV or PTT 

based on the equation, and extensive studies have utilized this 

relationship for continuous and cuffless BP monitoring (see 

references in the thesis). 
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Despite a variety of studies attempting to employ the 

PTT–BP relationship for cuffless BP monitoring, most studies 

have used the pulse arrival time (PAT) instead owing to its 

simplicity in measurement (27–32). They measure PAT by 

employing the R-peak in an electrocardiogram (ECG) as 

proximal timing reference (timing when the BP pulse begins) and 

the early rise point of a photoplethysmogram (PPG) as distal 

timing reference (timing when the BP pulse arrives), and by 

calculating the time difference between them (Fig. 1.2). The R-

peak in an ECG does not represent the beginning of the BP pulse, 

as a considerable time delay between the R-peak in an ECG and 

the ejection of blood from the left ventricle (LV) exists (Fig. 1.2). 

However, it has been widely used to serve as proximal reference 

as it is thought that the simplicity of using the ECG outweighs 

the possible issue of including the time delay between the 

electrical activation of the heart and the mechanical ejection of 

blood from the LV. In previous studies, this time delay nearly 

overlapping with the pre-ejection period (PEP), which is defined 

as the time delay between the Q-peak in the ECG and the aortic 

valve opening (AO) time and has different mechanisms of 

responding to a BP change, has been reported to show a 
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significant adverse effect in using the PTT–BP relationship (26, 

33, 34). Therefore, recently, efforts to eliminate the portion of 

PEP by using different bio-signals other than the ECG have been 

made (35–38). However, most of the attempted approaches are 

questionable in terms of practicality as the systems are bulky, 

consisting of multi modules or requiring intervention of the user, 

which may deter frequent measurement.   

Additionally, even the PEP-excluded PTT has not been 

providing satisfactory results of BP estimation. While PTT has 

shown good correlation with the diastolic blood pressure (DBP) 

or mean blood pressure (MBP), it has showed less satisfying 

results in terms of relationship with the systolic blood pressure 

(SBP) (33, 38, 39).  PAT has often exhibited a better 

correlation with SBP compared to PTT (38); therefore, it is often 

believed that PAT is a better surrogate marker of BP, leading to 

the claim that PEP should be included (40).  
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Figure 1.2 Diagram illustrating the relative timing of the ECG and 

PPG with respect to pressure change in left ventricle (LV) and aorta. 

Aortic valve opens when LV pressure rises above aortic pressure, 

and blood begins to be ejected to aorta through the aortic valve. PAT 

is the time delay between R-peak in ECG (2) and early rise point of 

PPG (4). PTT is the time delay between beginning of BP pulse (3) 

and arrival of BP pulse (4). PEP is the time delay between the Q-

peak in ECG (1) and the AO time (3).  
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1.3. THESIS OBJECTIVE 

While the modalities proposed so far to serve as proximal 

timing reference instead of ECG seem to be not adequate for 

continuous BP monitoring, the seismocardiogram (SCG), the 

precordial vibration of cardiac movement, has gained wide 

attention as an alternative signal to provide proximal timing 

reference. It was shown by previous works that a particular 

feature point of the SCG waveform coincides with the opening of 

the aortic valve (41, 42). In addition, SCG can be measured very 

simply by a tiny accelerometer on the precordial site, compared 

to the impedance cardiogram (ICG) or ECG, which requires multi 

electrodes. As the technology in accelerometers advances in 

terms of size and precision, SCG becomes an appreciable 

modality to serve as proximal timing reference.  

Therefore, the first objective of this thesis is to develop 

a wearable system realizing cuffless and continuous BP 

monitoring based on the PTT–BP relationship by measuring SCG 

and PPG on the chest with a single device. For this objective, we 

specialize the conventional PPG measurement system to be 

utilized on the chest and integrate it with the SCG measurement 
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system. Furthermore, we consider the power consumption of the 

system and attempt to reduce it, which will facilitate long-term 

continuous monitoring, which is recommended for diagnosing 

hypertension (Chapter 2). 

The second objective of this thesis is to analyze the 

current poor relationship between PTT and SBP and improve the 

performance of the BP estimation. For this objective, we assess 

the PTT–BP relationship along with PAT in opposite situations 

and introduce a potential covariate to complement the PTT–BP 

relationship. Furthermore, we validate the proposed system 

against the general population and in daily life to demonstrate its 

potential to real use (Chapter 3). 
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CHAPTER 2 

Development of the Wearable Blood 

Pressure Monitoring System 
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2.1. INTRODUCTION 

As mentioned in Chapter 1, the modalities to measure the PTT 

proposed so far are questionable in terms of practicality, not to 

mention their lack of potential to be utilized in daily life. Most of 

the previous studies have mainly focused on validating efficacy 

of PTT in relatively static circumstances or in surgery, which 

are mostly controlled settings. Efforts to measure PTT in 

previous research have yielded various bulky system designs. 

Dual-channel of PPG system attached to both finger and toe sites 

was proposed and measured the time difference of PAT at each 

site (35). The use of a combination of ICG and PPG was often 

proposed to measure PTT (36, 37). A combination of 

ballistocardiogram (BCG) and PPG was also studied (38). 

However, although those systems could provide the means of 

measuring PTT, both BCG and ICG are difficult to measure in a 

wearable device to enable daily monitoring.  

Recently, SCG, precordial vibration of the cardiac movement, 

has attracted wide interest as a signal that provides rich 

information with regard to cardiac motions (41, 43–45). It was 

shown by previous works that a particular feature point of the 
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SCG waveform coincides with the opening of the aortic valve 

simultaneously observed by an echocardiogram (41, 42). 

However, use of the SCG is, owing to the signal source, limited 

in terms of measurement sites. SCG is usually measured on the 

vicinity of the sternum, which hinders its combination with PPG, 

serving distal timing reference, as it is difficult to acquire a high-

fidelity PPG waveform on the chest surface, which lacks of blood 

perfusion compared to other locations, such as the finger-tip, 

toe, and ear.  

 In this chapter, we aim to develop a single wearable device to 

measure PTT by measuring PPG and SCG on the chest. For this 

purpose, we address the difficulty of measuring PPG on the chest 

by specializing the PPG measurement system and lower the 

power consumption of PPG and the whole system to realize 

continuous and long-term BP monitoring.  

In addition, the repeatability of BP-related parameters derived 

by the developed device is tested to verify the possible 

variability when wearing the developed device repetitively. 

Lastly, we examine whether the derived PTT using SCG and PPG 
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truly excludes any portion of the PEP and contains the artery 

information.  

 

2.2. SYSTEM OVERVIEW 

 The core design of the proposed system aims to enable the 

measurement of PPG and SCG on the chest with a single compact 

and light device. Figure 2.1 shows the overall system block 

diagram, consisting of bio-signal sensors, pre-amplification 

analog circuits, digital circuits, power management unit, 

communication unit, and external data acquisition units. Three 

types of sensors were employed. For PPG and SCG 

instrumentation, three pairs of photodiodes and light emitting 

diode (LED), and one analog accelerometer were employed, 

respectively. In addition, ECG electrodes were used for an 

auxiliary purpose: to assist signal processing for its robustness 

against noise, and to compare the reference PEP and the portion 

of PEP obtained by the combination of ECG and SCG, which will 

be explained, respectively, in the following “Signal processing” 

and “Experimental setup” sections.  
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An analog circuit was minimally designed. Only a simple and basic 

analog circuit, such as a trans-impedance inverter (TIA), a 

first-order low pass filter, was used. However, our design 

employs a high resolution analog digital converter (ADC, 

ADS1298, TI, US) to complement resolution problems, as the 

phase distortion by the analog filter is a crucial issue when 

calculating the time difference of signals. Most of the filtering 

and amplification was conducted in the software, as explained in 

the “Signal processing” section. It is noted that a feedback loop 

was constructed for PPG instrumentation consisting of the ADC, 

digital-to-analog converter (DAC), and micro control unit (MCU) 

to increase the PPG signal-to-noise ratio (SNR), which will be 

explained in detail in the following section.  

The system power was delivered by a lithium polymer battery 

(30 mm * 25 mm * 4 mm, 280 mAh) designed to be recharged 

with a micro USB cable, as it is done in a mobile phone, for 

continuous monitoring in daily life.  

The acquired and digitized signal data were transferred via a 

Bluetooth module (BoT-CLE310, Chipsen, South Korea) to an 

external data acquisition system, such as a mobile application and 
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PC software platform, which were also developed for convenient 

and practical use of the system. This is explained in detail in the 

“Software development" section.  
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Figure 2.1 System block diagram. The system consists of bio-signal sensors, pre-amplification analog circuits, digital circuits, 

power management unit, communication unit, and external data acquisition units
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2.3. BIO-SIGNAL INSTRUMENTATION 

In order to measure PPG on the chest, three pairs of optical 

sensors, each consisting of one 850 nm wavelength infrared LED 

(SFH4059, OSRAM, Germany) and two photodiodes (VBP104S, 

Vishay, US), were used to enhance the SNR of the PPG. The 

three optical sensor pairs were placed apart from each other to 

widen the sensing area, as the blood perfusion beneath the skin 

of the chest is not abundant for PPG measurement compared to 

other areas, such as the finger, earlobe, and toe that are 

traditionally used as PPG measurement sites. Each output 

current from the three optical channels was converted to voltage 

using a trans-impedance amplifier (TIA) circuit.  

 In order to boost the SNR of PPG, a DC offset subtraction 

feedback loop was employed. This loop monitored the DC level 

of PPG by MCU, which is directly proportional to the amount of 

light emitted from the LED. Depending on the current DC level, 

the MCU decided the corresponding output of DAC, and thereby 

controlled the offset current using a feedback resistor (Fig. 2.2a), 

which prevents the circuit from the saturation frequently 

occurred by the high intensity of light. Thus, this enabled to use 
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high intensity of light without the worry of saturation, which 

results in a high SNR of the PPG. 

For SCG, the anteroposterior axis output of a low-power analog 

accelerometer (ADXL327, Analog Devices, US) was used. The 

accelerometer was with a full-scale range of ±2g, and this small 

full-scale range may be appropriate for sensing a low level of 

vibration, such as that of the SCG. An internal low-pass filter 

with cutoff frequency of 50 Hz was used to suppress aliasing in 

the ADC process.  

For simple ECG measurement, a widely used two electrode-

configuration was employed with common-mode biased voltage. 

The electrode metals were a copper base coated with platinum 

to increase bio-compatibility, forming a single lead with 5 cm 

distance across the chest. 

In order to prevent the phase shift of signals, which may affect 

the inter-waveform time measurements, all signals were 

digitized using the aforementioned high resolution 24-bit 

analog-to-digital converter (ADS1298, TI, US) without any 

analog filter, with the exception of the internal low pass filter of 

the SCG channel. 
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Figure 2.2 Specialized technique applied to the system. (a) Feedback 

algorithm to maintain proper DC offset level. Depending on whether 

DC offset is saturated or zero, the offset current is regulated. (b) LED 

dimming control scheme to reduce LED power. LED turned on every a 

hundredth of a period (t/T~. ).  
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2.4. POWER MANAGEMENT 

The hardware was designed to reduce power consumption in 

order to enable continuous monitoring in a long-term period. We 

used three LEDs consuming up to 180 mA (60 mA each) in total 

during normal operation to acquire PPG in the chest. However, 

we employed the strategy that controls the dimming frequency 

and timing of the LEDs. As Fig. 2.2b shows, during one period of 

ADC sampling, the LED turned on every a hundredth of a period 

(T) , which lowered the current consumption of the LED down to 

1 % of that in normal operation and enabled to cut down much of 

the power consumption of the whole system. Additionally, using 

a Bluetooth low energy (BLE) module and MCU (ATMEGA168, 

Atmel, US), the whole system consumes less than 10 mA during 

monitoring, enabling more than one day of continuous monitoring 

with a 280 mAh small-sized lithium polymer battery.  
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2.5. PRINTED CIRCUIT BOARD AND CASE 

DESIGN 

Not only the circuit system but also the design of the printed 

circuit board (PCB) and the case were carefully considered to 

improve contact with the curved chest.  

 

 

Figure 2.3 Printed circuit board and case design 
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All analog and digital circuits were implemented on a customized 

PCB comprising three rigid pieces connected by flexible bridges 

to flexibly conform to the curvature of the torso (Fig. 2.3). 

The flexible printed circuit board was encased in a curved hard-

case, which is also capable of flexion depending on the curvature 

of the torso (Fig. 2.3). The developed device measured 40 mm 

in length, 76 mm in width, 18 mm in thickness, and weighed 27.5 

g, including the hard case. (Fig. 2.3). 
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2.6. SOFTWARE DESIGN 

Two types of data acquisition platforms were developed. First, 

mainly for the purpose of validation in in-lab condition, where a 

PC is easily equipped, a PC-based graphical user interface (GUI) 

software was developed (MATLAB 2018a; The MathWorks, MA, 

USA). This collects data from the developed device via a serial 

port and displays the raw waveforms of three signals (PPG, SCG, 

and ECG) and the processed signal in one heart beat period along 

with the reference BP, which is recorded simultaneously for 

validation in the BP estimation stage. The signals and reference 

BP are easily saved by pushing the designated button, and the 

time lapse is also shown in the front to track the recording time 

(Fig. 2.4a) 

The second platform is the mobile application for the purpose of 

daily monitoring. The mobile application is based on Android OS 

and is not supported for the IOS. It automatically pairs with the 

developed device and collects the data in a daily life. It displays 

the raw signals, processed parameters such as PAT, PTT, and 

HR, and the final estimated BP, depending on the user’s choice 

(Fig. 2.4b). By setting the period of trend view longer, users can 
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track one’s BP during a long time, and thus, evaluate one’s BP 

changes in real practice. 
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Figure 2.4 Data acquisition program. (a) A PC-based graphical user interface data acquisition program was developed, which was 

designed to show the processed signal in one heart beat period along with the reference BP. (b) Mobile application based on 

Android OS was designed to auto-connect with the developed device, save received data, and show processed signals, parameters, 

and estimated BP. 
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2.7. SIGNAL PROCESSING 

The acquired raw signals were processed using MATLAB to 

remove noise from the motion artifact, baseline wandering, and 

respiratory signal. The SCG and ECG signal was band-pass 

filtered with cutoff frequencies at 0.3 Hz and 50 Hz. The raw 

PPG signals from three optical channels were low-pass filtered 

with a cutoff frequency of 10 Hz considering the frequency 

characteristic of PPG, and high-pass filtered with a cutoff 

frequency of 0.3 Hz. Digital filters without phase shift were used 

to prevent signal shifting during filtering.  

Afterwards, we employed the ensemble averaging method to 

extract the averaged signal in one cardiac cycle. In 10 s of signals, 

the ECG R-peaks were identified for the ensemble standard. 

PPG and SCG signals between two consecutive R-peaks were 

segmented and all segments of PPG and SCG between two 

consecutive R-peaks were averaged, which results in one 

waveform for PPG and SCG in a single cardiac beat in 10 s.  

Regarding PPG, as three channels of PPG were used, we obtained 

three PPG waveforms. A single PPG waveform was chosen based 



31 

 

on the developed criteria. Figure 2.5.1 shows the various 

conditions the PPG waveform should meet. These conditions 

were imposed considering the typical PPG waveform and 

morphology variability. Based on the number of conditions that a 

waveform meets, an optimal channel was decided. If no waveform 

could meet more than 5 conditions, no channel was selected.  

After one PPG waveform and one SCG waveform were obtained, 

the characteristic points were detected. In the SCG waveform, 

the maximum peak, named AO according to the designation of 

early works on SCG (44, 45), was detected, the timing of the 

maximum peak was calculated, and the maximum amplitude of 

the SCG waveform (maximum downward peak prior to the AO 

point - maximum peak) was regarded as the SCG amplitude (SA). 

In the PPG waveform, the intersecting tangent (IT) point (46) 

(which is the intersecting point between the tangent to the PPG 

max slope and the tangent to the diastolic minimum) was 

detected. Using the AO point and PPG IT point, SCG-PEP and 

PAT were calculated, respectively, and the time difference 

between those was regarded as SCG-PTT (Fig. 2.6) 



32 

 

 

Figure 2.5 Criteria for assessing quality of PPG waveform. One PPG 

channel was decided by the developed criteria based on morphological 

analysis of PPG waveform. At least 5 conditions should be met.  
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Figure 2.6 Flow chart of signal processing. First, acquired signals were low- and high-band pass filtered with different cutoff 

frequency bands depending on the signal (0.3–10 Hz for PPG, 0.3–50 Hz for ECG and SCG). Then, heart beat was segmented by 

R-peak detection and, using the ensemble averaging technique, PPG and SCG waveforms from each heart beat period were 

averaged, resulting in one waveform of PPG and SCG. A single PPG waveform was chosen based on the developed criteria. 

Afterwards, in SCG waveform, maximum peak and maximum downward peak prior to AO point were detected and SA was 

calculated. In PPG waveform, intersecting tangent (IT) point was detected and PTT was calculated between AO point and PPG 

IT point.
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2.8. EXPERIMENTAL SETUP 

2.8.1 Repeatability test 

In order to assess the repeatability of the calculated BP-related parameters, 

10 subjects wore the developed chest-worn device twice, with 5 min of interval. 

At the first trial, a subject wore the developed device under the guidance of the 

researcher involved in this study. At the second trial, the subject wore it without 

any guidance, as similar as possible to the first trial. The guideline just told the 

subjects that the device should be located approximately 5 cm below the left 

nipple. An elastic strap connected with the device supporting frame, which was 

customized along with the device, was used to hold it. By the benefit of the 

elastic strap, the length of the strap surrounding the chest could be customized 

for each subject, with the result that the contact of the device with the chest 

remained uniform for repetitive wears and measurements. For each trial, 

subjects were seated and asked to remain still for 1 min. Between trials, 

subjects were asked to refrain from excessive movements or activities in order 

to hold the same hemodynamic states, including BP and HR, for each 

measurement, so that only the effect of the repeated measurement could be 

observed. The repeatability of the parameters was evaluated by intra-class 

correlation (ICC), with significance level < 0.5. An ICC > 0.8 generally shows 

that the repeatability of measurements is very good.  
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2.8.2 Verification of SCG-based PEP 

The experiment to verify the measured SCG-based PEP in short-term 

hemodynamic changes was performed. 

In total, 17 males (27.9	±	1.7 year old) subjects, without any previous history 

of cardiovascular conditions, were recruited. Informed consent was obtained 

from all individual participants included in the study. The developed device was 

attached to the skin over the 6th left costal cartilage of each subject. For 

reference, electrodes for ICG (Cardioscreen 1000, Medis, Germany) were 

attached to the neck and torso to detect the true aortic opening time (Fig. 2.7). 

After device placement, all the subjects stood still for 20 s for a rest phase 

recording. Then, to induce hemodynamic changes, they were instructed to form 

a squat posture without upward movement for 100 s, followed by a recovery 

phase in an upright position for 120 s.  

 

Figure 2.7 Setup for PEP comparative study 
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The reference PEP, which is defined as time difference between the Q point in 

ECG and B-point of ICG, was provided by the ICG device 

In order to directly compare SCG-PEP, which is defined in this study as the 

time difference between the R-peak of ECG and AO point in SCG, the Q–R 

interval time in ECG was subtracted from ICG-PEP (Fig. 2.8). 

We compared the group averaged value of ICG-PEP and SCG-PEP from all 

subjects in three periods during the hemodynamic change: 1) rest value of ICG-

PEP and SCG-PEP averaged over 20 s in the early beginning of the rest phase, 

2) extreme value of ICG-PEP and SCG-PEP averaged over 20 s around the 

time when each PEP value dropped to minimum in the exercise phase, and 3) 

recovered value of ICG-PEP and SCG-PEP averaged over the last 20 s of the 

recovery phase. A paired t-test was used to analyze the statistical difference 

between the values of ICG-PEP and SCG-PEP in the three periods. 

In addition, the group average of individual correlation coefficients between 

values of ICG-PEP and SCG-PEP during whole period of hemodynamic change 

was computed. 
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Figure 2.8 Typical waveforms of ECG, ICG, and SCG. PEP is defined as time 

difference between Q point in ECG and B point (zero crossing point) in ICG. In this 

study, in order to directly compare SCG-PEP, which is defined as the time difference 

between R-peak of ECG and AO point in SCG, Q–R interval in ECG was subtracted 

from ICG-PEP. 
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2.9. RESULTS & DISCUSSION 

2.9.1 Repeatability test 

ICC scores of the repetitive measurements were 0.87, 0.83, 0.78, and 0.95 for 

PAT, PTT, PEP, and SA, respectively. P values for each ICC result were <0.001, 

<0.001, <0.05, and <0.001, exhibiting a significant level. All parameters showed 

very good repeatability between measurements (Fig. 2.9). Particularly, SA 

showed excellent agreement between two measurements, even though, in 

general, the bio-signal amplitude can be easily altered by repetitive contacts.  

The possible explanation for this robust consistency might be that the cardiac 

vibration can be transferred relatively and consistently to a large area of the 

chest skin via the chest wall surrounding the heart, which allows the device to 

capture a consistent SCG waveform even in different locations by repetitive 

wears. In addition, the dimension of the developed device enables it to cover a 

large area of the chest skin, which allows to measure SCG consistently, without 

a strict restriction of sensor location.  

Repeatability of the parameters can be of importance for the purpose of daily 

life monitoring. As a user often wears and takes off the device during monitoring 

in daily life, if the parameters are not consistent between repetitive wears, the 

reliability of a BP estimation based on the parameters may not be assured. It is 

viable to require the user not to take off the device during monitoring, but this 

may cause discomfort to the user during the monitoring period, which could 

deter its long-term use. 
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 Figure 2.9 shows that the parameter baseline values are variable between 

individual subjects, especially for SA. As the force of cardiac contraction, how 

the vibration transfers to the measurement site via the chest wall, and the 

tightness of contact of the device to the chest vary by subject, the baseline SA 

can be different for the subjects. Other time parameters also showed individual 

differences, to a lesser degree. However, the baseline differences between 

subjects would not matter if individual calibration, requiring either single or 

multiple measurements, is carried out before use.  

 

Figure 2.9 Test–retest result of parameters. The subjects wore the device twice with 

interval of 5 min. Parameters were extracted for two trials and compared, resulting in 

good repeatability.    
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2.9.2 Verification of SCG-based PEP 

 

The rest values of ICG-PEP and SCG-PEP were 76.51 ± 13.14 ms and 74.09 

± 13.77 ms, respectively, while when the hemodynamic change was maximal, 

the values of ICG-PEP and SCG-PEP were 50.79 ± 9.77 ms and 57.50 ± 10.84 

ms, respectively. In recovery, the values of ICG-PEP and SCG-PEP were 

68.98 ± 14.70 ms and 72.16 ± 13.43 ms, respectively. While two PEPs showed 

nearly identical values in the rest period, the difference between two PEPs was 

relatively larger when they were minimal. After the hemodynamic change was 

considered recovered, the difference between two PEPs was not of the same 

degree compared to the difference in the rest condition. However, in all periods, 

any statistical difference was not found. Figure 2.10 shows a comparison 

between the group trend of ICG-PEP and SCG-PEP during the hemodynamic 

change, which verifies a nearly similar trend of change between two PEPs and 

negligible difference given the standard deviation. In addition, the group 

correlation coefficient was of 0.79 ± 0.14, which suggests a tight correlation 

between two PEPs even under excessive hemodynamic change. 

Previous studies have verified that the SCG-based PEP is equivalent to the 

standard ICG-measured PEP in the resting condition (47) and the PEP 

measured using an echocardiogram (42). However, it was still unclear whether 

this relationship is held during large hemodynamic fluctuations. It was found, 

even in the period when hemodynamic conditions were greatly altered, that the 

SCG-PEP value remained close to ICG-PEP. Further, the high correlation 

values between SCG-PEP and ICG-PEP provide evidence that this relationship 
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remains unchanged throughout the induced cardiovascular change (SCG-PEP 

will be called PEP hereafter). This, in turn, suggests that SCG-PTT, defined as 

the time difference between the AO point in SCG and PPG IT, can truly exclude 

the PEP component in a change of the hemodynamic system (SCG PTT will be 

called PTT hereafter). 

 

 

 

 

 

 
Table 2.1 Comparison between ICG-PEP and SCG-PEP values. Group average of ICG-

PEP, SCG-PEP values in the rest phase, intervention period, and recovery phase for all 

subjects were compared. HR at each phase was calculated to assess hemodynamic 

change during the protocol. A null hypothesis was that difference between two groups 

does not exist, and p value indicates that null hypothesis cannot be rejected for all 

phases. Group average of individual correlation coefficients between ICG-PEP and 

SCG-PEP was also calculated. 
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Figure 2.10 Comparison between the group trend of ICG-PEP and SCG-PEP change during hemodynamic change. For visual 

comparison, ICG-PEP and SCG-PEP were averaged over every 10 s, and in total 20 pairs were acquired for each subject. For 

every pair, mean values of SCG-PEP and ICG-PEP from all subjects were computed, respectively. Dash line represents mean 

± standard deviation for each PEP. 
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CHAPTER 3 

Enhancement of PTT-based BP 

estimation 
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3.1. INTRODUCTION 

Although PTT is the most potential surrogate marker of BP 

as it is firmly based on the PTT-BP relationship, it has not been 

providing promising results, especially for SBP estimation. In 

previous studies, Zhang et al. directly compared PAT and PTT, 

and concluded that PTT was not as effective in SBP estimation 

as in DBP or MBP (33). Nurnberger et al. found that PTT only 

correlated with DBP (39). Kim et al. studied the efficacy of BCG-

based PTT measurement and compared it with conventional PAT. 

They found that BCG-based PTT was correlated well with DBP 

and MBP, but PAT outperformed PTT in SBP (38). Recently, it 

was suggested that the principle of PWV is theoretically more 

applicable to DBP or MBP (26, 39, 50) as arterial elastance is a 

function of blood pressure averaged over a long period of time, 

which can be approximated to MBP or DBP. Furthermore, it is 

evident that PTT, as a single variable, may not be able to track 

two different BPs unless the two targeted values are tightly 

correlated, showing the same movements in both cases. Although 

two BPs are highly correlated in general, it has been reported 
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that the correlation between two BPs decreases in certain cases 

and is not always excellent (48, 49). 

Thus, attempts have been made to independently estimate 

the difference between SBP and DBP, the pulse pressure (PP), 

which causes uncorrelated movements of BP and thereby may 

degrade the performance of the PTT-based approach, and to 

summate the estimated DBP and PP to derive the estimated SBP 

(31, 32). However, those studies were based on PAT, not on 

PEP-excluded PTT.  

As PP depends on cardiac ejection, arterial stiffness, and 

timing of wave reflections (51, 52), the PTT related with arterial 

stiffness may be insufficient to account for changes in PP,  

whereas the arterial stiffness is the major determinant of DBP 

by the vessel wall properties. In addition, the rise in PP is often 

more attributable to an increase in cardiac ejection (52). Hence, 

an indicator of cardiac ejection may help estimate PP along with 

PTT, and thus, complement the SBP estimation previously 

performed with only PTT. 

Recently, SCG has attracted interest for its rich information 

on cardiac movement, and features derived from SCG have been 
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validated for estimating the cardiac ejection (41, 44). Thus, SCG 

could be utilized not only to serve as proximal timing reference 

but also as an indicator of PP. 

Therefore, in this chapter, we aim to propose a new model 

to complement the SBP estimation by incorporating one of the 

SCG parameters, the early peak amplitude of SCG (SA), as a 

potential indicator of PP considering the association between SA 

and cardiac ejection (44, 53–56). For this aim, this chapter 

consists of three stages of study: 1) we validate the proposed 

model against a conventional univariate model using PTT or PAT 

in two contrary situations where PP and DBP dominantly change, 

respectively. Furthermore, beyond the individualized model, 

which requires individual fitting of the model (demanding a BP 

change for the individual to fit the model coefficients, and thus, 

it lacks practical aspects). 2) We generalize the model, which 

only requires single measurements of BPs and BP-related 

parameters, and evaluate its performance according to the recent 

released IEEE standard. Finally, 3) we validate the performance 

of the model in daily life, which is a totally uncontrolled setting, 

so that the robustness of the model can be assessed in arbitrary 

circumstances.  
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3.2. METHOD 

3.2.1 Principle of BP estimation  

In deriving eq. 4 in Chapter 1, BP is originated from 

Hughes equation (25), in which, according to his research,  BP 

indicates the mean arterial blood pressure (MBP). Therefore, 

many research groups consider PTT as a marker of MBP (37, 

50, 57, 58). Other researchers believe that PTT should best 

correspond to DBP because PWV initiates in a diastole state and 

the level of the waveform feet is DBP (26, 34, 38). The author 

of the present thesis will follow here the latter group, and thus, 

estimate DBP using PTT. However, as MBP is more closely 

related to DBP than SBP and it is rare that DBP and MBP move 

in different directions, it is thought that the two approaches 

would not yield great differences in terms of error.  

Rewriting eq. 4, with substitution of BP as DBP, results 

in the following equation: 

  = 1 ln + 2 ln 2ℎ (5) 
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If PWV is substituted with L/PTT, where L is the certain pulse 

travel distance, 

  = − 1 ln + 2 ln 2ℎ + 1 ln  (6) 

On the other hand, PP was approximated by linear modeling 

using SA, based on the potential of SA to reflect stroke volume 

(SV).  

  =  +  (7) 

Where  and  are linear coefficients relating SA with PP. 

Consequently, SBP can be derived by summating DBP and PP, 

estimated by PTT and SA, respectively, as follows: 

  = − 1 ln +  + 2 ln 2ℎ + 1 ln  +  (8) 

Further, SBP and DBP can be rewritten in a simplified form as 

follows: 
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  =  ln  +  +  (9) 

  = ′ ln + ′ (10) 

where a, b, c, a’, and b’ are treated as subject-specific 

parameters.  

 

3.2.2 Subjects 

Under the Institutional Review Board approval obtained from the 

College of Medicine in the Seoul National University and Hospital 

(IRB No. H-1701-111-826), a total of 30 male subjects 

(31.47 	±	7.23 years of age), without any previous history of 

cardiovascular conditions, were recruited. Informed consent was 

obtained from all individual participants included in the study. For 

the first stage of the study, where the proposed model is 

compared with the conventional models in two different 

interventions, 10 male subjects (29.70	±	5.46 years of age) were 

first recruited. One subject was excluded owing to signal 

distortion by excessive motion of the artifact during the protocol. 
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The volunteers were young and healthy, and their BP range was 

in a normotensive range.  

For the second stage of the study, 20 subjects, whose 

demography was relatively more diverse than the subject pool in 

the first study, were recruited afterwards. The detailed 

demography is presented in Table 3.4. 

For the last stage of the study, to monitor BP in daily life, nine 

subjects, who have already taken part in the previous stages, 

volunteered.  

As the subjects were enrolled in different periods depending on 

the purpose of the study, the number of participants and 

demography of the subject pool was different according to the 

study protocol, and this is explained in detail in the “Study 

protocol” section. 

 

3.2.3 Study protocol 

We designed the study protocol for the purpose of this chapter. 

First, in order to validate the efficacy of the model in the contrary 
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interventions, the subjects were asked to wear the developed 

device around the chest as described in Chapter 2 and the 

finger-cuff type reference BP measurement device (Finometer, 

Finapres Medical Systems, Netherlands), which is based on a 

volume-clamp method. We acquired the bio-signal data from the 

developed device and the reference BP while inducing BP 

changes in two ways (Fig. 3.1 and 3.2). The two types of 

intervention employed were cycling and head down/up (HDU) tilt, 

each of which induces dominant changes in PP and DBP, 

respectively. Cycling is one of the widely used interventions to 

perturb BP (40, 62–65), especially because it can greatly 

increase BP with ease. During cycling, the activated sympathetic 

nerve greatly increases HR and SV, and thus, cardiac output (CO), 

while total peripheral resistance (TPR) is decreased owing to 

vascular dilation in the active muscle (66), which results in a 

relatively small increase in DBP and great increase in SBP. 

Therefore, we regarded the cycling test as a PP dominant BP 

change protocol. 
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Figure 3.1 Subject cycling with the developed device and reference 

BP 

 

For the second type of intervention, a HDU change was 

performed. Orthostatic stress occurs when a subject stands up 

quickly, which causes the reduction of venous return due to 

pooling of the blood volume in the lower body by the gravitational 

force (67). In the orthostatic phase, BP drops rapidly and 

instantly within a few seconds due to the lack of venous return 

and the concomitant decrease in SV, and it rebounds to normal 
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owing to the baroreflex mechanism, which initiates 

vasoconstriction and thereby greatly increases the total 

peripheral pressure (TPR) within 10 to 20 s in healthy subjects 

(67, 68). For this rebound of BP, the increase in TPR has much 

greater importance than CO change (69–72), which results in a 

great increase in DBP and relatively small change in PP, thereby 

increasing SBP in almost the same degree as DBP. Therefore, 

we regarded the BP change period when BP rebounds by the 

unloaded baroreceptors, initiating the increase in TPR, as the 

DBP-dominant-BP change. 

 

Figure 3.2 Subject on the tilting machine. First, for 3 min, the subject 

was in (a) head-up position, followed by (b) head-down tilt by −90° 

for 3 min and (c) returned instantly to upright position. 
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In the second stage, to assess the model when generalized to 

new subjects, the group model from the first study was build. 

Then, extra subjects were asked to cycle in the same way as 

done in the first study. There are two reasons for not involving 

the orthostatic stress intervention in this stage. First, as the 

purpose of the second stage is to verify the generalization ability 

of the model, which complements the performance when two BPs 

are not highly correlated, the DBP dominant BP change 

intervention was thought to be not necessary. Secondly, 

orthostatic stress may cause faint and discomfort to certain 

subjects, which lowers their participation and makes it difficult 

to validate the model against the general population, especially 

for subjects who are relatively old.  

At the final stage, the developed device was attached in the 

same way as was done in the indoor studies and, for reference 

BP, the subjects were asked to wear a portable ABPM (ABPM 

7100; Welch-Allyn, US), which consists of a cuff designed to 

wrap around the upper arm, and a main head, which controls the 

cuff and records the data and is designed to hang across the body 

(Fig. 3.3). The ABPM was set to automatically measure BP twice 

per hour during daytime and once per hour during nighttime. The 
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signals, estimated BP, and reference BP were recorded via the 

developed android-base mobile application during a daily activity 

of as long as 24 h, including the sleep period. 

 

Figure 3.3 Setup of daily BP monitoring. Subjects wore the developed 

device and reference oscillometric method-based ABPM, carrying the 

mobile phone that collects the data, shows processed signals, and 

estimated BP online. They were asked to behave freely during a day, 

without particular regulations on any type of activity. 
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3.2.4 Data Collection 

After placement of the device, subjects were instructed to cycle 

(Fig. 3.1) for 10 min with 3 min of rest and 5 min of a recovery 

phase prior to and after the exercise. During cycling, the same 

intensity of the exercise was applied to all subjects, but in some 

cases when the BP change was minimal, the intensity was 

increased by a change in the speed and pedaling load. Following 

the exercise protocol, the subjects were laid on a head-up/down 

tilt machine (Fig. 3.2). In the beginning, the subjects were in 

head-up positions for 3 min, then the machine was tilted down 

to −90° to obtain a subject upside down posture for 3 min. After 

the head-down position, the machines returned to the upright 

position instantly to induce orthostatic stress and were held for 

5 min. During the protocol, PPG, SCG, and ECG from the device 

and reference BP were acquired continuously by the developed 

data acquisition PC program.  

  For data in the first and second stage, we extracted the BP-

related parameters (PAT, PEP, PTT, and SA) as described in 

Chapter 2 for each subject record. Each BP level (SBP, DBP, and 

PP) was calculated in the same length of window (10 s) as 
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performed for other parameters in the “Signal processing” 

section in Chapter 2. In every window of 10 s, sliding by 2 s, the 

highest peaks and lowest troughs of BP waveform were detected 

and averaged, for SBP and DBP, respectively. PP was calculated 

by the difference between the averaged SBP and DBP. For each 

cycling subject, we extracted five pairs of BP-related 

parameters (PAT, PEP, PTT, and SA) and BP values (SBP, DBP, 

and PP) in the rest and exercise phases by evenly segmenting 

the phases and averaging them over the segmented period, 

respectively, to minimize noise. This resulted in a total of 10 

pairs of datasets for each subject in the cycling protocol. In the 

case when BP rose rapidly during the exercise, which often 

caused error in the BP measurement device, and SBP increased 

excessively, exceeding more than 35 mmHg compared to that in 

the rest phase, five pairs were obtained instead in the recovery 

phase, in the same way as in the other phases, before BP 

returned to baseline. For each subject in the HDU protocol, the 

same number of datasets (N=10) from the cycling protocol was 

obtained in the interval between the point when BP dropped to a 

minimum by HDU change and the point when BP returned to 

baseline. Finally, a dataset comprising a total of 20 pairs of BPs 
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and the parameters was obtained from each subject involved in 

the first stage. 

 For the second stage, one calibration point was extracted from 

the first half of recording in the rest phase, and three pairs of 

BPs and BP related parameters were extracted in the rest of the 

rest phase and exercise phase, respectively, in accordance with 

the IEEE standard.  

 For the final stage, the subjects involved in this stage were 

asked to behave freely during a day without particular regulation 

on the type of activity. It was only asked that when the reference 

device measures BP, they should stay as still as possible because 

movements considerably affect the reliability of a reference BP 

value. It was notified that the subjects could take off the device 

as they wanted, such as when they took a shower or did 

excessive exercise (e.g., weight training, running). The time 

when the study began was different by subject depending on 

their preferences. The ABPM was set to automatically measure 

BP twice per hour during daytime and once per hour during 

nighttime. The BP–related parameters calculated as explained in 

Chapter 2 were averaged over 6 min each time the reference BP 
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was measured by the ABPM device (3 min prior to and after BP 

measurement). In 6 min, if less than half of the parameters were 

acquired owing to low signal quality of either PPG, SCG, or ECG, 

a pair of the measured BPs and parameters at that time stamp 

was discarded.  

Pairs of the parameters and reference BPs acquired within an 

hour were averaged to minimize error in the reference BP 

measurement, as it was often measured in a bad posture or with 

motion artifacts, which may increase its unreliability. For 

example, if two pairs of the parameters and reference BPs were 

acquired at 14:00 and 14:30, respectively, they were averaged, 

which resulted in one pair of BP parameters and reference BPs 

for every hour. Because the daily pattern varied between 

subjects, and thereby the number of discarded data pairs owing 

to low quality of signal was different by subject, the number of 

collected datasets per subject was not the same.  
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3.2.5 Data analysis 

First, we assessed the changes in BP-related parameters 

(PAT, PTT, PEP, and SA) and BPs in each protocol. For the 

cycling protocol, five pairs of the parameters and BPs were 

averaged over the rest phase and exercise phase and regarded 

as baseline and perturbed values, and the group average 

difference between the two values was compared. For the HDU 

protocol, the early five pairs and late five pairs were considered 

as perturbed values and baseline values, respectively, and the 

group change was compared. In all these comparisons, the paired 

t-test was used with a significance level of p < 0.05. The 

correlation between time features (PAT and PTT) and BPs (SBP 

and DBP) in each protocol and the two protocols combined for 

each subject were also analyzed in terms of Pearson’s correlation 

coefficient.  

Next, we also calibrated the proposed model and other univariate 

models using PTT or PAT to each reference BP for each subject. 

Then, we computed the mean absolute difference (MAD) and 

correlation between each calibrated BP and reference BP for all 

subjects. The definition of MAD will be explained in the following 
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section. The MAD from the models was compared using the 

paired t-test. We used a significant level of p-value < 0.05. 

Likewise, SA was calibrated to the reference PP, and the MAD 

and correlation was computed. 

 

 

 

 

Table 3.1 Proposed model and other comparative models. The models 

marked with an asterisk (*) are the models for SBP and DBP 

proposed in this study. 
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In order to assess the generalization ability of the model, we 

derived optimal model coefficients from the subject group in the 

first study and applied them to the new subject group. The 

detailed process of deriving optimal models is as follows.  

Using all different combinations of coefficients from 0 to 100 

for b and −100 to 0 for a in eq. 9, we calculated the minimum 

mean squared error for each subject and summated the mean 

squared errors from all subjects. When we calculated the 

minimum mean squared error for each subject, constant c in eq. 

9 was considered a subject dependent variable as c will be 

replaced with a calibrated value in real practice. Thus, c was 

fitted to each subject dataset with the given pair of coefficients. 

We selected the pair of coefficients that minimized the summated 

mean squared errors for all subjects as the optimal model 

coefficients. This work was repeated for the search of the 

optimal model coefficient a’ for DBP in eq. 10. 

The optimal model was applied to the new subjects’ datasets, 

calibrating the model using one extra pair. Further, we calculated 

the MAD and correlation between the estimated and reference 

BP for all datasets from all subjects. In addition, the MAD was 
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calculated for two groups of datasets: the static and dynamic 

groups. The static group dataset consists of the three pairs of 

estimated and reference BPs after calibration and before the 

intervention for each subject, and the dynamic group dataset 

comprises the three pairs of estimated and reference BPs after 

the induced BP change. 

In order to assess the BP estimation performance during a daily 

activity, the BP estimation model equipped with optimal 

coefficients derived in the second stage was applied to each 

subject with one-point measurement for calibration. Among the 

acquired datasets, the data point considered the most reliable and 

measured in the most stable condition was selected for 

calibration. Using the calibrated model, we estimated BPs and 

computed the MAD with reference BPs for each subject and the 

average of MAD values from all subjects was evaluated according 

to the IEEE standard. In addition, the estimated and reference 

BPs from all subjects were pooled and correlation coefficients 

between them were analyzed for SBP and DBP, respectively. 
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3.2.6 Evaluation standard 

The most widely used standards to evaluate the performance of 

BP estimation are the Association for the Advancement of 

Medical Instrumentation (AAMI) standard (73) and the British 

Society of Hypertension (BSH) standard (74). The AAMI 

standard requires a mean error of less than 5 mmHg and a mean 

standard deviation of less than 8 mmHg to pass the standard. The 

BHS standard defines grades in four levels (A/B/C/D), and to 

meet the A grade, more than 60% of the measurement errors 

should be less than 5 mmHg, 85% less than 10 mmHg, and 95% 

less than 15 mmHg. However, those standards may not be 

appropriate for cuffless BP estimation, which is a continuous 

measurement and generally requires a calibration process, as 

they do not cover all aspects needed for the cuffless BP 

measurement technique (75). Given that those conventional 

standards do not require change in BP for an individual, the 

performance of the cuffless BP measurement methodology, 

which at least measures and uses one point of reference BP, may 

be overrated if one’s BP does not vary from the reference BP at 

the calibration point.  
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 Recently, with the emerging developments of cuffless blood 

pressure techniques, there is an increasing need for a valid 

standard for cuffless blood pressure measurement. The IEEE 

Engineering in Medicine and Biology Society has published the 

standard for wearable, cuffless blood pressure measuring 

devices. It is distinguished from other conventional standards in 

that it requires the report of BP change distribution from the 

calibration point and the report of performance by different BP 

change levels. Therefore, one can find whether the BP change is 

not induced sufficiently to cover the requisite range (up to 30 

mmHg for SBP), which might result in overestimation of the 

performance. As a validation criterion, it suggests using MAD. 

Here in the thesis, MAD will be used as the main criterion and is 

calculated as follows: 

 MAD=(∑ | − | )/, (11) 

where  is the estimated or measured BP from the device,  
denotes the reference measurements of BP, and n is the data 

size (75). It grades the performance by MAD in four levels. 

MAD of less than 5 is regarded as grade A, less than 6 as B, 

less than 7 as C, and more than 7 as D. For the initial phase of 
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study, MAD less than 7 is regarded acceptable to move forward 

to a subsequent study. The grade given by the IEEE standard is 

not always corresponding with that determined by the 

conventional standard, depending on the error distribution. For 

details of the comparison with the conventional standards, see 

(75). 
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3.3. RESULTS  

3.3.1. Changes in parameters and BPs in different 

protocols 

Figure 3.4 shows the changes in BP-related parameters and BPs 

with respect to the baseline in each protocol. In cycling, PP 

increased greatly compared to DBP (PP increased by 38.19 	± 

12.76% and DBP increased by 10.71 ± 15.46%). The difference 

in BP between the baseline and perturbed values was significant. 

The BP-related parameters all changed in the opposite direction 

of BP. PTT and PEP decreased by 28.87 ± 16.58% and 18.74 ± 

9.28%, respectively, and PAT, the sum of two, decreased by 

23.78 ±  8.58%. SA showed a marked increase by 99.92 ± 

71.79%. The difference in the parameters between the baseline 

and perturbed values were significant. In the HDU protocol, SBP 

and DBP increased by 9.84 ±  6.56% and 26.58 ±  16.96%, 

respectively, whereas PP slightly decreased by −8.70 ± 6.90%, 

which shows dominant changes in DBP compared to PP. The 

difference between the baseline and perturbed values was 

significant for all BPs. PTT decreased by 12.70 ± 7.65%, as it 
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did in the cycling protocol, while PEP increased by 8.50 ± 5.46%, 

which was a different direction compared to that of the cycling 

protocol. PAT marginally decreased by 3.07 ± 5.07%, and it 

showed the same direction as in the cycling protocol, but its 

amount of change was very different in the two protocols. SA 

showed a slight increase by 5.76 ±  18.76%. The difference 

between baseline and perturbed values was significant in PTT 

and PEP, but insignificant in PAT and SA. It was PTT that 

changed the most consistently with BP in the two protocols. 

Table 3.2 presents the group mean and standard deviation of 

values of the BP-related parameters and BPs in the baseline and 

perturbed states for each protocol.  
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Figure 3.4 Changes in BP-related parameters and BPs. Changes in 

BP-related parameters and BPs with respect to (a) the rest phase in 

the cycling protocol and (b) beginning of the head-down to up 

change. 
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Table 3.2 Comparison of the parameters and BPs in two protocols. The 

group averaged value of the parameters and BPs before exercise (BE) 

and after exercise (AE) was calculated, along with the changes in 

values in AE with respect to BE. The group averaged value of the 

parameters and BPs before reflex (BR) and after reflex (AR) was 

calculated, along with the changes in values in BR with respect to BE. 

The asterisk (*) indicates a significant difference between the two 

states (p < 0.05).  
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3.3.2. Comparison between PTT and PAT 

 Figure 3.5 shows the correlation between time parameters 

(PAT and PTT) and BPs in each protocol and the two protocols 

combined. In the cycling protocol (Fig. 3.5a), the correlation 

coefficients of PTT with DBP and SBP were −0.61 ± 0.28 and 

−0.76 ± 0.20, respectively, while those of PAT with DBP and 

SBP were −0.64 ± 0.29 and −0.94 ± 0.05, respectively. PTT 

and PAT showed a similar correlation with DBP, and no 

significant difference was found, while PAT showed greater 

correlation than PTT for SBP. This may be attributed to the PEP, 

which shows a sensitive response during exercise and moves in 

the same direction with PTT, and thus, causes larger absolute 

changes in PAT than those in PTT. In contrast, for the HDU 

protocol (Fig. 3.5b), when DBP dominated the change in BP, the 

correlation coefficients of PTT with DBP and SBP were −0.73 ± 

0.17 and −0.62 ± 0.20, while those of PAT with DBP and SBP 

were −0.47 ± 0.51 and -0.38 ± 0.47. The correlation of PTT 

with DBP was significantly higher than that of PAT with DBP. 

PTT showed a similar correlation between the two protocols, 

whereas PAT varied greatly in the HDU protocol. PAT often 
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showed a contrary correlation, resulting in great variance in DBP 

and SBP. This may also be attributed to the effect of PEP, which 

showed a different relationship with BP between the cycling and 

HDU protocol. In the HDU protocol, PEP increased when DBP 

and SBP increased, while PTT decreased as it did in the cycling 

protocol. Consequently, the change in PAT was cancelled by the 

sum of contrary changes in PTT and PEP, which resulted in an 

inconsistent relationship of PAT with BPs and greatly lowered 

the correlation coefficient with BPs as compared to PTT.  

Figure 3.5c also shows the correlation for the pooled datasets 

from two different protocols. The correlation coefficients of PTT 

with DBP and SBP were −0.72 ± 0.13 and −0.80 ± 0.11, 

respectively, while those of PAT with DBP and SBP were −0.54 

± 0.25 and −0.81 ± 0.14, respectively. PTT was significantly 

more correlated with DBP than PAT, as it was in the HDU 

protocol. PAT and PTT showed a similar correlation with SBP, 

and the difference was not significant. This may be explained by 

the fact that the BP change was greater in the cycling protocol 

than in the HDU protocol, which may render the relationship 

between PAT and SBP in the cycling protocol more pronounced 

in the pooled datasets. Thus, PAT showed a stronger relationship 
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with SBP than PTT, although PAT often showed an opposite 

relationship with SBP in the HDU protocol, whereas PTT showed 

greater correlation with DBP than PAT because, compared to 

PAT, PTT consistently exhibited a higher correlation with DBP 

in all protocols. 
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Figure 3.5 Correlation between BPs and PTT/PAT. The correlation between time features (PAT and PTT) and BPs was 

compared in the (a) cycling and (b) HDU protocols, and (c) in the two protocols combined. The asterisk (*) indicates a 

significant difference (p < 0.05). 
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3.3.3. Efficacy of the proposed model 

The proposed model (model 5 for SBP and 3 for DBP) was 

calibrated to the reference BP to obtain subject-specific 

coefficients and the difference between the calibrated BPs and 

the reference BP was computed. In the same way, the 

performance of other models, including the widely used linear 

and logarithmic models using PTT or PAT as a sole parameter 

(model 1 ~ 4), was compared. The performance between the 

linear model and logarithmic model was quite similar when using 

the same parameter (between models 1 and 3 and models 2 and 

4). Thus, the proposed model for SBP (model 5) was compared 

to the logarithmic models (3 and 4) for a more equivalent 

condition and model for DBP (model 3) was compared to the 

counterpart PAT model (model 4).  

Figure 3.6 shows the comparison between the proposed model 

and other comparative models using PTT or PAT for the dataset 

from each protocol and for the dataset from the two protocols 

combined. Regarding the performance of the SBP estimation, a 

contrary performance of PTT and PAT in the two different types 

of intervention was clearly found. In the cycling protocol, the 
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MAD when using PTT or PAT was of 7.00 and 6.37, respectively, 

showing better performance of PAT, although it was not a 

significant difference. On the contrary, the MAD of the proposed 

model was 5.09, showing a markedly better performance than 

that of the models using only PTT or PAT (27% and 20% of 

decrease with respect to the two counterparts, respectively). In 

the HDU protocol, the MAD when using PTT or PAT was of 5.01 

and 5.86, respectively, which was a reversed result compared to 

that of the cycling protocol, showing better performance of PTT 

with a significant difference. Meanwhile, the MAD of the 

proposed model was 4.05, showing smaller errors than those of 

the models using only PTT or PAT (19% and 31% of decrease 

with respect to the two counterpart models, respectively). When 

two datasets from the two protocols were combined, the MAD of 

PTT and PAT was of 6.01 and 6.11, respectively, showing a 

similar level without significant difference, whereas the MAD of 

the proposed model was 4.57, showing a superior performance 

than that of the other two counterparts by a great margin (24% 

and 25% of decrease with respect to the two counterpart models, 

respectively). The overall performance of the proposed model 
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met the requirements for grade A (MAD < 5 mmHg) of the IEEE 

standard. 

In terms of the DBP estimation performance, the MAD of PTT 

for the cycling datasets, HDU datasets, and combined datasets 

from the two protocols, was of 6.15, 5.64, and 5.89, respectively, 

and that of PAT was of 6.88, 7.04, and 6.96, respectively. PTT 

showed consistently better results than PAT in all types of 

datasets. The overall performance of the logarithmic model using 

PTT met the requirements for grade B (MAD < 6 mmHg) of the 

IEEE standard. 
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Figure 3.6 Performance comparison between models. The proposed model and other two logarithmic models using PTT or PAT 

for the dataset from (a) the cycling and (b) HDU protocols, and (c) the two protocols combined (mixed) were compared. The 

dash line represents the grade A and grade B level for SBP and DBP, respectively. The asterisk (*) indicates a significant 

difference (p < 0.05). 
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 Figure 3.6 and 3.7 show the correlation and Bland–Altman plots 

for the proposed model versus SBP and DBP. The proposed 

model, incorporating SA into the PTT model, yielded an excellent 

correlation (r = 0.93) with SBP. The DBP estimation model, 

mostly adhering to a theoretical basis, also showed a tight 

correlation with the reference DBP (r = 0.86). The Bland–Altman 

plot verified that the variance of error was not biased, and most 

of the errors were within the limit of agreement, except for a few.  
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Figure 3.7 Correlation plots for estimated BPs by the proposed model 

versus (a) SBP and (b) DBP. 
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Figure 3.8 Bland–Altman plots for estimated BPs by the proposed 

model versus (a) SBP and (b) DBP. 
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Figure 3.8 shows the correlation and Bland–Altman plots for the 

calibrated PP using only SA versus the reference PP in order to 

assess the effect of SA as an indicator of PP. The correlation 

coefficient was 0.91, and most of the errors were also within the 

limit of agreement, which supports the guess that SA can be a 

potential marker of PP.  
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Figure 3.9 Correlation and Bland–Altman plots for the estimated PP by 
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SA versus reference PP. 

 

3.3.4. Generalization ability 

It was found out that the optimal coefficients of a, b for SBP, and 

a’ for DBP for the previous subject group were −20.04, 10.42, 

and −18.24, respectively (Fig. 3.9). Table 3.3 presents the 

overall performance according to the IEEE standard when 

generalized to unseen new subjects. The overall MAD was of 

6.89 for SBP and 3.66 for DBP, which is acceptable level for  

IEEE standard. As the IEEE standard recommends, the accuracy 

at different BP change levels is shown along with the accuracy 

at the static level, where the BP change was not induced. The 

MAD at different BP change levels was greater than the overall 

accuracy, and the static level was lower than the overall one, as 

could be anticipated. Figure 3.10 shows the distribution of the 

induced BP change as the IEEE standard requires. The induced 

SBP change was great, ranging up to 40 mmHg, and it was largely 

distributed between 15 to 35 mmHg. The ratio of number of data 

between 0–15 mmHg of BP changes and 15–30 mmHg of BP 

changes was approximately 56:44, similar to the IEEE standard, 
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while the induced DBP change was narrow and mostly of less 

than 10 mmHg. Thus, it might result that the performance of the 

DBP estimation appears to be relatively better than that of the 

SBP estimation. 

 

Figure 3.10 Optimization of model coefficients. Using all different 

combinations of coefficients from 0 to 100 for b and −100 to 0 for a in 

eq. 20, we found the optimal pair that minimized the overall error of 

SBP estimation for the subject pool in the first study. This work was 

repeated for the search of the optimal model coefficient a’ in eq. 21 

for DBP. 

 

Table 3.4 presents the subject demography. There was one 

subject whose entry BP range was within stage 1 hypertension 

level, 8 pre-hypertensive subjects whose entry SBP were in 

between 120–140 and DBP in between 80–89, and normotensive 

subjects whose entry SBP was less than 120 and DBP less than 
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80. The age of the subjects was relatively more diverse than the 

subject pool for study 1, ranging from 25 to 54, and the 

mean/standard deviation was of 32.35 ± 7.96.  
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Table 3.3 Overall performance according to IEEE evaluation standard. MAD was calculated for different BP levels before and 

after BP change was induced along with mean difference (MD)/ Standard deviation (SD) and Cumulative percentage (CP) of 

5/10/15%, which are criteria by AAMI and BHS, respectively. 
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Table 3.4 Subject demography. 

 

 

Figure 3.11 Distribution of induced BP change. (a) The induced SBP 

change was great, ranging up to 40 mmHg, and was largely distributed 

between 15 to 35 mmHg. (b) The induced DBP change was narrow and 
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was mostly of less than 10 mmHg. 

 

Figure 3.11 and 3.12 show the correlation and Bland–Altman plot 

between the estimated and reference BPs. The correlation 

coefficient between the estimated and reference SBP was 0.88 

and between the estimated and reference DBP was 0.86, which 

showed a tight correlation between the estimated and reference 

BPs, but lower than the correlation when using subject-specific 

coefficients. The correlation of SBP was slightly higher than that 

of DBP, although it may be attributed to the fact that the DBP 

change was smaller than the SBP distribution, which generally 

reduces the correlation coefficient and estimation error (Fig. 

3.11). The Bland–Altman plot indicates that the estimation errors 

were slightly positive-biased for SBP. As SBP increases, the 

errors tended to be more positive-biased, while as SBP 

decreases, the errors tended to be less biased. This tendency 

was not found in DBP, although a few errors were lower than the 

negative line of agreement. Overall, except for a few points, most 

of the errors were within the line of agreement (Fig. 3.12). 
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Figure 3.12 Correlation plots between estimated BPs by the proposed 

model versus reference (a) SBP and (b) DBP. 
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Figure 3.13 Bland–Altman plots for estimated BPs by the proposed 

model versus reference (a) SBP and (b) DBP. 
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3.3.5. Daily monitoring 

Nine subjects participated in the daily monitoring stage. 

However, data from three subjects could not be used as less than 

half of the measurements were acquired, mainly owing to 

connection failure with the mobile application and signal 

degradation from excessive movements. More than 20 h of data 

were acquired from four subjects, and 17 h and 16 h of data were 

acquired for subject 3 and subject 5, respectively.  

Figure 3.14 shows the typical trend of change in the reference 

(green boxes) and estimated (red line) BP by the proposed 

model during a day from subject 2. It should be noted that a 

nocturnal drop and a slight morning surge were captured by the 

proposed BP monitoring system.  

Figure 3.15 shows the correlation and Bland–Altman plot for the 

estimated and reference BP. The correlation coefficients of SBP 

and DBP were 0.77 and 0.67, respectively. These values were 

much lower than the correlation coefficients from previous 

stages of study, which may be attributed to various reasons, 

including the fact that the signal quality in daily life may be 

obviously worse than that in controlled settings and the fact that 
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the BP change was considerably limited in daily life, which lowers 

the correlation coefficient in general. The correlation coefficient 

of DBP was less than that of SBP, which may be explained by the 

fact that the personal variation of DBP was much less than that 

of SBP, which results in a narrow distribution of DBP in the 

pooled datasets.  

Table 3.5 presents the individual and overall performance of BP 

estimation during daily monitoring. The MAD for SBP and DBP 

was of 5.87 and 5.63, respectively, which satisfies grade B 

according to the IEEE standard. During a day, approximately 30 

mmHg of change was found in both SBP and DBP, which 

strengthens the necessity of daily BP monitoring.   
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Figure 3.14 Typical trend of change in the reference and estimated BP during 24 h. The reference BP was indicated by green 

boxes with ± 7 mmHg of difference with the true value. The estimated BP by the proposed model is shown with the red line. 



 

Figure 3.15 Correlation and Bland–Altman plot between estimated BPs 

and reference BPs. 

 

Table 3.5 Individual and overall performance of BP estimation in daily 

monitoring. 

 

 



 

 

3.4. DISCUSSION 

3.4.1. Summary 

In this chapter, we sought to assess the efficacy of the proposed 

model, which incorporates a new indicator into the conventional 

PTT-based model. We compared the proposed and conventional 

models using PTT or PAT in two contrary interventions. 

Furthermore, we validated the proposed model for the general 

population and in daily life to demonstrate its potential of real use. 

The results suggested that (1) the proposed model, which 

employed SA in conjunction with PTT for SBP estimation, 

outperformed the conventional univariate model using PTT or 

PAT (Fig. 3.6), and therefore, enabled independent estimation of 

SBP and DBP, which can often show different movements; (2) 

for practical use, the proposed model showed potential to be 

generalized (Table 3.3) beyond subject-specific model fitting; 

and (3) the proposed model and system demonstrated the 

potential of continuous BP monitoring in daily life (Fig. 3.13) 

without any intervention of users or regulations.  

 



 

 

3.4.2. Comparison between PTT and PAT 

PAT is the sum of PEP and PTT, which are affected by different 

cardiovascular mechanisms. PTT, which is the pure vascular 

transit time, is the one associated with BP based on the vessel 

wall property. In contrary, PEP is affected by various factors, 

including cardiac contractility, preload, and afterload (76, 77). 

Thus, if PTT and PEP show conflicting movements in cases such 

as when there is an increase in afterload expressed by an 

increase in DBP, which accordingly shortens PTT and at the 

same time increases PEP (77), the change in PAT could be 

cancelled out by the different direction of change in PTT and PEP, 

and thereby it would not be well correlated with BP. It was found 

in this study that PEP showed different change with PTT (see 

Fig. 3.4) and the correlation of PAT with BP was highly degraded 

accordingly (see Fig. 3.5) when the afterload was perturbed, a 

result that is consistent with previous studies (34, 78) and the 

theory. However, it was also observed that PAT was 

substantially correlated with SBP (see Fig. 3.5), significantly 

more than PTT in the cycling protocol, which was also often 

reported and has not been well understood in previous studies 



 

 

(38, 63, 64, 79-81). This may result from two reasons. The first 

explanation is overestimation of the metric when a larger data 

range of two variables is compared (82). As PAT is the sum of 

PTT and PEP, when PTT and PEP change in the same direction, 

the change in PAT becomes larger than PTT and PEP, thus 

yielding higher correlation with SBP. This can explain the 

consistently higher correlation of SBP compared to that of DBP 

in both PTT and PAT in the cycling protocol (see Fig. 3.5), as 

SBP changes much more than DBP. Another possible explanation 

is that PEP can better respond to hemodynamic changes than 

PTT in a dynamic exercise such as cycling (40). As the dynamic 

exercise tends to increase SBP dominantly compared to DBP 

(66) , the change in PTT can also be restricted. On the contrary, 

a decrease in PEP can be consistent owing to the increased 

cardiac contractility that instantly responds to activation of the 

sympathetic nerve during exercise in general (83), which 

accordingly results in a consistent decrease in PAT. The higher 

standard deviation of change in PTT than that of change in PEP 

and PAT in exercise (see Table 3.2) can support this explanation.  

 Overall, the consistent correlation of PTT with BP compared to 

that of PAT in all protocols confirms the theory and previous 



 

 

results (36, 38) and provides reliable tracking of BP in all cases. 

However, although PAT often shows better correlation with SBP, 

the use of PAT should be sublated since the inconsistent 

relationship of PAT with both BPs could estimate a change in BP 

in a different direction from the true BP. 

In the pooled datasets, the correlation of PTT and PAT with BPs 

was approximately averaged between the two protocols, which 

was within a range similar to those reported in previous studies, 

such as −0.8 for PTT with SBP (34), −0.83 for PAT with SBP 

(63). −0.66–−0.8 for PTT with DBP (34, 38), and −0.4 ± 0.35  

for PAT with DBP (84), where the correlation was computed in 

pooled datasets from multiple interventions. Note that the 

correlation of PAT with BPs (r = −0.81 and r = −0.54 for SBP 

and DBP) in the pooled dataset is relatively higher than those 

reported from previous studies. This may be attributed to the 

fact that a strong correlation in exercise is pronounced in the 

pooled dataset, as the change in BP in exercise was larger than 

that in the HDU protocol, which implies that depending on the 

types of intervention and the degree of changes in BP, the 

correlation of parameters with BP may vary. Therefore, the 

magnitude of correlation should be interpreted with caution, 



 

 

considering the types of intervention and how datasets were 

pooled from each intervention.  

In this study, a different change in PEP with PTT was found in 

the HDU protocol, whereas the previous study induced this 

phenomenon in cold-pressor intervention (34). However, in this 

study, though the detailed results are not included, when the cold 

pressor intervention was performed to induce BP changes, it 

seemed that not only the change in afterload was increased, but 

also the sympathetic nerve was activated depending on the 

subject. This may increase cardiac contractility, thereby 

resulting in frequent decrease in PEP and the failure in showing 

the degradation of PAT performance. 

 

3.4.3. Enhancement of PTT based BP estimation 

Although it is obvious that one variable cannot explain two 

independent targets, as SBP and DBP show a tight correlation in 

general, PTT has been serving as a common surrogate marker 

of both BPs in many previous studies. However, low correlation 

between SBP and DBP is often observed depending on the 



 

 

situation, which was pronounced when a subject cycled in this 

study. Cycling is one of the dynamic exercises where SBP 

generally increases, whereas DBP remains unchanged, compared 

to the static exercise, which increases both BPs (66). During a 

dynamic exercise, the activated sympathetic nerve greatly 

increases HR and SV, and thus, CO, while TPR is generally 

decreased due to vascular dilation in the active muscle(66) in 

general. Depending on the subject and type of exercise, the 

proportion of increase in CO to decrease in TPR varies, which 

results in a relatively small increase in DBP or unchanged DBP, 

as DBP is closely affected by the combination of CO and TPR. On 

the contrary, the great increase in SBP is attributed to the 

increase in PP due to increased SV, which is mostly affected by 

cardiac ejection and arterial elastance. Thus, in the case when 

the change in SBP is dominant compared to that in DBP, the 

performance of BP estimation based on a change in PTT can be 

low owing to the fact that PTT is more associated with DBP, 

according to the theory, and that the change in PTT can be 

blurred by a measurement error when the change in DBP is 

narrow. As the low correlation between BPs can be attributable 

to the effect of PP, whose change is not based on the 



 

 

conventional PTT–BP relationship, an independent indicator of 

PP may complement the BP estimation in particular cases.  

In this study, we incorporated SA as an indicator of PP 

independent of PTT, thereby complementing the SBP estimation 

in conjunction with PTT (Fig. 3.6). The combination of PTT and 

SA allowed the improvement of the SBP estimation when a 

substantial change in SBP was induced compared to DBP by 

exercise, and thus provided independent tracking of SBP and 

DBP. 

 Additionally, the proposed model was compared with HR, which 

is one of popular hemodynamic parameters related with BP, as 

various time features in the bio-signals synchronized with heart 

beat have the possibility of being affected by HR. Figure 3. 16 

shows the correlation of HR with BP in two interventions, along 

with that of the proposed model with BP. In cycling, HR increased 

along with BP, which resulted in a fair correlation, while HR 

exhibited almost no correlation with BP in the HDU protocol. In 

contrast, the proposed model showed a tight correlation with BPs 

in both interventions, which suggests that the proposed model 



 

 

can track BP in the HR–BP coupled situation and in the decoupled 

situation.  

 

 

Figure 3.16 Correlation between HR–BPs and the proposed model–

BPs in the (a) cycling protocol and the (b) HDU protocol. 

 

 



 

 

As we guessed, it was found that SA was very well correlated 

with PP in the pooled datasets from different interventions (r = 

0.78 ± 0.13), and the correlation between the estimation by SA 

and reference PP was markedly high (r = 0.91, see Fig. 3.8) In 

the cycling protocol, when PP dominantly and greatly increases, 

the change in SA was prominent (see Fig. 3.4), resulting in high 

correlation between PP and SA. Accordingly, even in the case 

when PP was slightly decreased or unchanged in the HDU 

protocol, SA did not show change (see Fig. 3.4).  

The relationship between SA and PP resides in the assumption 

that SA can reflect SV based on the genesis of SCG (43, 85). It 

is the recording of acceleration, which is directly generated by 

the force of cardiac vibration. Particularly, the first peak 

amplitude of SCG is mainly caused by the force of cardiac 

contraction as it appears in an isovolumetric contraction period 

when the heart contracts without volume change before the 

cardiac ejection commences, which determines the amount of 

blood ejected to the aorta or, in other words, SV. The main 

factors of SV are the blood volume in LV in the end-diastole 

period, and cardiac contractility, which is the innate ability of the 

heart muscle to change in force. According to the length-tension 



 

 

relationship observed in the cardiac muscle, the increase in the 

blood volume in the LV in diastole stretches the cardiac muscle 

fibers, resulting in an increase in the force of cardiac contraction 

(86). Besides, when cardiac contractility increases, the force of 

cardiac contraction obviously increases accordingly, which 

physiologically backs up the assumption. 

 Some other features in SCG have also potential to track SV, such 

as PEP, and the time delay between the AO point and the aortic 

valve closing point (AC) in SCG, which is known as the left-

ventricle ejection time (LVET) (44). However, PEP requires 

measurement of an additional bio-signal, ECG, which might 

lower the stability of the system as more types of signal 

measurements are required. Although ECG is being measured in 

the current design of the system for the purpose of comparison 

with the reference PEP and robust signal processing, this could 

be excluded in a future version, which will render the system 

more simple and compact (the width of the device was set in the 

current dimension owing to the minimal distance of the two 

electrodes) with an improved signal processing technique using 

SCG AO peak gating instead of ECG R-peak gating. When PEP 

and SA were compared in terms of correlation between the 



 

 

calibrated and reference PP, this study found that the correlation 

of SA with PP was slightly higher than that of PP in pooled 

datasets from two interventions (r = 0.91 and 0.90 for SA and 

PEP, respectively), which supports the advantage of using SA 

over PEP in the current design of the system.  On the other hand, 

LVET, although substantially associated with SV, was difficult to 

be extracted from the SCG waveform, as the detection of the 

second peak of SCG was hardly available, especially in conditions 

where movements were accompanied, which may reduce the 

practicality of the system.  

 

 

 

3.4.4. Generalization 

 The principle of PTT–BP relationship is subject-

dependent as the equations describing the relationship between 

PTT and arterial elastance and between BP and arterial elastance 

depend on subject-specific parameters, such as the property of 

the blood vessel wall, which varies by person. Thus, the majority 



 

 

of the presented works using the PTT–BP relationship have 

shown their performance using a subject-dependent calibration, 

which calibrated the model to the reference BP for each subject. 

However, this process generally requires BP changes and 

measurements of BP and surrogate markers of BP during the BP 

changes, at least twice or more depending on the complexity of 

the model to derive the proportion of changes of the surrogate 

markers of BP to changes of BP for each subject, which is quite 

impractical and burdens a user. In order to alleviate the difficulty 

of the calibration process, we pre-determined the coefficients of 

variates by using a modified least square method, which requires 

only one single measurement of BPs and the parameters within 

1 min, to apply it on a new subject. We derived the pre-

determined model, tested the model for the datasets of different 

subject groups, and found that the group model could be applied 

to new subject group, which was even larger than the subject 

group from which the model was derived, with a fairly small error 

range. It is very appreciable that the performance satisfied the 

IEEE standard, even though the pre-determined model was 

applied to new subjects with just an additional single 

measurement for individual calibration, which suggests that the 



 

 

proposed model using PTT and SA has the potential to be 

generalized and may simplify the calibration process.   

 

 

3.4.5. BP monitoring in daily life 

The conventional BP measurement, usually conducted in clinics 

by cuff, has been criticized for the fact that it cannot provide an 

accurate BP status of a subject owing to many reasons, including 

the variability of BP (18) and terminal digit preferences (87, 88). 

In addition, the prevalence of the white-coat syndrome, which 

masks the real BP status and may lead to a misdiagnose of 

hypertension, can be as high as 30% (89). Therefore, numerous 

studies have demonstrated the importance of 24-h ABPM (65, 

87, 90–98), which can not only exclude the white-coat 

hypertension but also provide independent clinical values, 

pointing out that ABPM is a better predictor of morbidity than the 

conventional BP measurements in clinics (90–97). Furthermore, 

the circadian change of BP during a day has attracted wide 

attention since the nocturnal drop of BP, called dipping, was 



 

 

found to be a strong risk indicator of cardiovascular disease in 

such way that a diminished nocturnal BP decline can be 

associated with higher risk of cardiovascular events (93, 99–

103). However, the current cuff-type devices providing ABPM 

are limited to their use by particular subjects who already have 

been diagnosed in a clinic and are paying attention to their BP 

status owing to its highly discomforting aspect, especially during 

sleep. The results of the study by the proposed system design 

and model can provide ABPM more continuously than the 

conventional cuff-type ABPM, which is limited to use with 

intervals as short as approximately 15 min (65) without any 

requirement of a subject to intervene. Furthermore, as Fig. 3.14 

demonstrates, this system can provide a way to assess the 

nocturnal drop without the discomfort of inflating and deflating a 

cuff, which could not be achieved by other recent studies of 

cuffless BP monitoring that require the subject to behave in a 

particular posture such as standing or sitting on a specialized 

apparatus (31, 38) and touching on a device with the finger-tip 

(104–106). Therefore, the proposed system could expand the 

use of ABPM not only for subjects who are already on the risk 



 

 

of cardiovascular disease, but also for pre-hypertensive and 

normotensive subjects. 

 

 

3.4.6. Limitation and future work  

 This study has a few limitations that should be addressed in a 

future study.  

Firstly, the model validation was conducted only in a limited 

population of young and healthy male subjects. A future study 

should validate the proposed model against a more diverse 

population, including hypertensive and female subjects. It should 

be noted that, in the generalization, we derived the group model 

from subjects who are young and heathy, and applied it to those 

who can be regarded as homogeneous with the model-derived 

subject population. As the characteristic of the blood vessel wall 

could have homogeneity between subjects having similar 

vascular properties, the difference in the PTT–BP relationship 

can be prominent between normotensive and hypertensive 

subjects (107–109) and one’s BP status could alter the PTT–BP 



 

 

relationship. Thus, this group model may not be applicable to a 

different population, with subjects who are relatively older and 

hypertensive. Yet, as the young and normotensive subjects are 

those who lack compliance to daily BP monitoring and are mostly 

ignorant of their BP status, this convenient calibration process 

could increase the participation of this population into daily BP 

monitoring. This could allow early detection of their possible 

unwitting deterioration of the BP status, which otherwise could 

have not been detected. Secondly, the reference BP 

measurement may pose some limitations in the daily BP 

monitoring. Cuff-based BP measurement is influenced by the 

relative position of the arm with respect to the heart level. In 

other words, if the arm position is not aligned with the heart level, 

the measured BP is a sum of BP itself and hydrostatic pressure, 

depending on the height difference between arm and heart. In 

daily monitoring, especially during sleep, the arm position cannot 

be controlled, and thus, the relative position between arm and 

heart can be altered, which might result in an unreliable 

reference BP measurement. Moreover, when measuring the 

reference BP with an oscillometric BP measurement device, it is 

required that the subjects be in stable position when the 



 

 

reference BP is measured, which might prevent from observing 

the dynamic BP variation in daily life. Thirdly, the relationship 

between SA and SV should be more carefully validated with the 

reference SV in various circumstances, given that it is a ground 

for SA to become an indicator of PP. Although SA has a potential 

to reflect the cardiac ejection force, which is likely to reflect a 

possible change in SV determinants, the direct relationship 

between SA and SV should be further studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 4 

CONCLUSION 

 

 

 

 

 

 

 



 

 

4.1. THESIS SUMMARY AND CONTRIBUTIONS 

A single wearable device that can truly measure the PTT using 

SCG and PPG was developed along with a data acquisition 

program in dual platforms. Multi-channels of PPG, equipped with 

a feedback loop preventing saturation by a DC offset of PPG, 

were developed to increase the SNR of PPG in the chest, which 

enables a stable acquisition of the PPG waveform, and thus, the 

calculation of PTT with SCG. Also, the power consumption of 

PPG, which accounts for a large portion of that of the whole 

system, was dramatically cut by implementing a specialized LED 

dimming scheme, which allowed the system to operate for 24 h. 

This realized continuous and long-term monitoring in daily life. 

Furthermore, by the experiments, the repeatability of BP-

related parameters was verified, which showed that the 

parameters, including SA, were not excessively affected by the 

fashion of wearing the device. Lastly, the reference PEP and the 

device-derived PEP were compared, providing evidence of the 

equivalence between two PEPs, even under wide hemodynamic 

changes. This implies in turn that the true PTT is obtained by 

the developed system.  

 



 

 

The current limitation of the PTT–BP relationship was analyzed 

by the contrastive experiment, and the proposed model was 

compared with conventional models using PTT or PAT in two 

contrary interventions. Furthermore, the proposed model was 

generalized to new subjects and the potential of real use of the 

system was demonstrated in daily life. The results showed that 

(1) the proposed model, which employed SA in conjunction with 

PTT for SBP estimation, outperformed the conventional 

univariate model using PTT or PAT, and therefore, enabled 

independent estimation of SBP and DBP, which can often show 

different movements; (2) for practical use, the proposed model 

showed the potential to be generalized beyond a subject-

dependent model fitting; and (3) the proposed model and system 

demonstrated the potential of continuous BP monitoring in daily 

life, including during sleep, with just a simple calibration and 

without any intervention of users or regulations.  

In conclusion, the developed wearable system will facilitate 

continuous BP monitoring in daily life, including sleep period, 

with enhanced PTT based BP modeling, hence providing a more 

reliable assessment of the BP status and creating the opportunity 

to predict and prevent cardiovascular events in an early stage 



 

 

4.2. FUTURE DIRECTION 

 The developed wearable system providing cuffless BP 

monitoring based on the PTT–BP relationship can be further 

enhanced in some aspects. In terms of system design, the current 

system can still be a burden to the user as it requires a strap 

band around the upper body to firmly establish contact with the 

chest skin. This can be solved by transforming the current design 

of the system into a stand-alone patch-type device, which can 

be readily attached to and detached from the body and, at the 

same time, retain the stable contact with the chest skin. 

Additionally, the power consumption can be lowered by applying 

an advanced power management algorithm which turns on/off the 

whole system by monitoring the activity of the user. For example, 

if the system automatically detects certain circumstances and 

turns off the device, when the subject engages in excessive 

movements, such as running, climbing, and weight training, 

where signal instrumentation is hardly available, an additional 

reduction of power consumption can be obtained. Furthermore, 

benefiting from the sampling method, it can be sufficient to 

measure the signals on an occasional basis, such as 30 s of 



 

 

measurement every 5 or 10 min. This procedure still involves 

higher frequency than that of the conventional cuff-type ABPM 

and is able to reduce the power consumption by 80–90%. This 

kind of methods will provide the opportunity to use a smaller 

battery, which can, in turn, reduce the weight of the system, 

thereby increasing the contact and signal quality of the device. 

 On the other hand, the proposed model should be validated 

against a more diverse population of hypertensive and female 

subjects to reinforce the efficacy of the model. Further, the 

relationship between SA and SV, or SA and PP, should be more 

carefully assessed in various circumstances as the direct 

relationship between SA and SV is not yet well understood. 

Furthermore, as SCG contains rich information of cardiac 

movements, including timing of the second valve closing and the 

concomitant peak amplitude when the aortic valve closes, which 

is also known to be associated with BP (110), additional features 

can complement the model based on the PTT–BP relationship, 

thus increasing its performance.  
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Abstract in Korean 

국문 초록  

커프리스 방식의 착용형 연속 혈압 

모니터링 시스템에 관한 연구 

 

고혈압의 조기 진단과 고혈압 환자의 혈압 관리를 위해서는 

일상생활에서의 지속적인 혈압 모니터링이 중요하다. 맥파전달시간 

(Pulse transit time, PTT) 기반의 혈압 추정 방식이 이를 가능케 

하는 방법으로 가장 각광 받고 있지만, 맥파전달시간을 측정하기 

위해서는 여러 측정 장치들이 필요하여 일상 생활에서의 사용에 

제약이 있으며, 또한 맥파전달시간 만을 이용한 수축기 

혈압(Systolic blood pressure, SBP) 추정 능력은 부족함이 있는 

것으로 알려져 있다.  

본 학위 논문의 첫 번째 목적은 맥파전달시간 측정 시스템을 

착용형으로 개발하여 간편하게 맥파전달시간을 측정할 수 있도록 

함으로써 일상 생활 중 맥파전달시간을 이용한 연속적인 혈압 

모니터링이 가능케 하는 것이다. 이를 위해 광용적맥파 

(Photoplethysmogram, PPG) 와 심진도 (Seismocardiogram, 



 

 

SCG)를 동시에 측정하는 가슴 착용형 단일 장치를 개발하여, 

심진도로부터 대동맥 판막의 열리는 시점을, 광용적맥파로부터 

맥파의 도착 시점을 특정하여 맥파 전달 시간을 측정하였다. 개발된 

시스템은 낮은 전력 소모와 소형의 간편한 디자인을 통해 24 시간 

동안 연속적으로 사용할 수 있도록 설계되었다. 측정된 

생체신호로부터 추출된 맥파전달시간 및 기타 혈압 관련 변수들이 

기기의 반복 착용에도 변하지 않음을 급간내상관계수(Intra-class 

correlation, ICC) 분석을 통해 확인하였고 (ICC >0.8), 또한 본 

시스템에서 사용된 심진도가 대동맥 판막의 열리는 시점의 

레퍼런스가 될 수 있는지도 심저항신호(Impedancecardiogram, 

ICG)와의 비교를 통해 검증하였다(r=0.79±0.14). 

 둘째로, 개발된 시스템을 이용하여 기존의 맥파 전달 시간만을 

이용한 혈압 추정 방식을 보완하여 수축기 혈압의 추정 능력이 

향상된 알고리즘을 개발하였다. 이를 위해, 심진도의 진폭과 맥파 

전달 시간을 같이 사용하는 다변수 모델을 수축기 혈압 추정을 

위해 제안하였고, 다양한 방법으로 유도된 혈압 변화 상황에서, 

기존의 맥파전달시간 혹은 맥파도달시간 (Pulse arrival time, 

PAT) 만을 이용한 모델과 그 성능을 비교하였다. 또한, 제안된 

모델이 간단한 교정절차를 통해 여러 사람에게 적용될 수 있는 

가능성을 살펴보았고 더 나아가 일상 생활에서의 사용 가능성에 

대해서도 검증하였다. 그 결과로 제안된 모델은 (1) 기존의 



 

 

맥파전달시간 혹은 맥파도달시간 만을 이용한 모델보다 수축기 

혈압 추정 능력 측면에서 더 우수하였고, (각각의 평균절대오차는 

4.57, 6.01, 6,11 mmHg 였다.) (2) 간단한 교정절차만을 통해서 

여러 사람에게 적용 되었을 때의 추정 능력이 국제 기준에 

부합하였으며, (3) 일상 생활에서도 사용자의 아무런 개입이나 제약 

없이 지속적인 혈압 모니터링이 가능함을 확인하였다.  

 결론적으로 본 연구에서 제안하는 착용형 연속 혈압 측정 

시스템은 가슴에 부착하는 단일 기기 형태로 그 사용이 간편할 뿐 

아니라 일상생활 중에서 맥파전달시간과 심진도의 진폭을 이용하여 

향상된 수준의 연속 혈압 모니터링 성능을 제공하였는바, 이를 

이용한 모바일 헬스케어 서비스의 가능성을 확인하였다.  

  

핵심어 : 혈압, 연속혈압 모니터링, 모바일헬스케어, 착용형 

장치, 맥파전달시간, 광용적맥파, 심진도 

학  번 : 2015-31046 
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