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Abstrakt

Hlavním cílem této práce je nalezení nové metodiky pro měření kontinuálního neinvazivního
krevního tlaku na základě rychlosti šíření pulzní vlny v krevním řečišti. Práce se opírá o rešerši
zabývající se základním modelem pro stanovení kontinuálního neinvazivního krevního tlaku
na základě měření zpoždění pulzní vlny a jeho rozšířením. Z informací získaných z rešerše
se upravila metodika měření doby zpoždění pulzní vlny / rychlosti šíření pulzní vlny, aby
bylo možné docílit přesnějších výsledků a omezit tak lidský faktor, který způsobuje význam-
nou nepřesnost vlivem nedokonalého rozmístění senzorů. Rešerše se rovněž podrobně zabývá
modely pro stanovení kontinuálního neinvazivního krevního tlaku a jejich úprav zajištujících
zvýšení přesnosti. Mezi úpravy modelů zejména patří vstupní parametry popisující krevní
oběh - systémový cévní odpor, elasticita cév, tuhost cév. Práce se taky zabývá úpravami stá-
vajícího modelu krevního řečiště pro bližší přizpůsobení fyzického modelu k reálnému cévnímu
systému lidského těla. Mezi tyto úpravy patří i funkce baroreflexu či simulace různé tvrdosti
stěny umělých cévních segmentů. Protože se jedná o simulační model krevního řečiště, důleži-
tým krokem je také měření tlakové a objemové pulzní vlny, kde není možné využít konvenční
senzory pro fotopletysmografii kvůli absenci částic pohlcující světlo. Na základě experimen-
tálního měření pro různé nastavení modelu krevního řečiště bylo provedeno měření pulzní
vlny pomocí tlakových a kapacitních senzorů s následným zpracováním měřených signálů a
detekcí příznaků charakterizující pulzní vlnu. Na základě příznaku byly stanoveny predikční
regresní modely, které vykazovaly dostatečnou přesnost jejich určení, a tak následovaly dvě
metody pro získání parametru o tvrdosti cévní stěny na základě měřitelných parametrů. První
metodou byl predikční regresní model, který vykazoval přesnost 74,1% a druhou metodou byl
adaptivní neuro-fuzzy inferenční systém, který vykazoval přesnost 98,7%. Tyto stanovení rych-
losti pulzní vlny bylo ověřeno dalším přímým měřením pulzní vlny a výsledky byly srovnány.
Výsledkem disertační práce je určení rychlosti šíření pulzní vlny s využitím pouze jednoho
pletysmografického senzoru bez nutnosti měření na dvou různých místech s přesným měřením
vzdálenosti a možnosti aplikace v klinické praxi.

Hlavní přínosy disertační práce jsou následující:

1. Simulační fyzický model krevního řečiště.

2. Senzory pro měření tlakové a objemové pulzní vlny.

3. Nalezení vztahu mezi příznaky pulzní vlny a její rychlosti šíření.

4. Získání hodnoty rychlosti pulzní vlny s využitím pouze jednoho pletysmografického sen-
zoru.

5. Budoucí aplikace v klinické praxi pro zkvalitnění diagnostiky patologií cévní soustavy.
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Abstract

The main objective of this work is to find a new methodology for measuring continuous non-
invasive blood pressure based on the pulse wave velocity in the vascular system. The work
is based on the literature research of the basic model for the determination of non-invasive
continuous blood pressure based on the measurement of pulse transit time. From the infor-
mation obtained from the review, the methodology of measuring the pulse transit time/pulse
wave velocity was modified in order to achieve more accurate results and to reduce the hu-
man factor that causes significant inaccuracy due to imperfect sensor placement. The review
discusses in detail the models for continuous non-invasive blood pressure estimation and their
modifications to ensure increased accuracy. In particular, model modifications include in-
put parameters describing blood circulation - systemic vascular resistance, vascular elasticity,
and vascular stiffness. The thesis deals with modifications to the existing physical vascular
model to more closely mimic the real vascular system of the human body. These modifica-
tions include the baroreflex function or the simulation of different wall hardness of artificial
arterial segments. As this is a simulation model of the vascular system, the measurement
of pressure and volume pulse wave is also an important step, where it is not possible to use
photoplethysmography method due to the absence of light absorbing particles. Based on the
experimental measurements for different settings of the vascular model, pulse wave measure-
ments were performed using pressure and capacitive sensors with subsequent processing of
the measured signals and detection of the pulse wave features. Predictive regression models
were established based on the pulse wave features and showed sufficient accuracy in their
determination, followed by two methods for obtaining the parameter on the hardness of the
vascular wall based on the measurable parameters. The first method was a predictive regres-
sion model, which showed an accuracy of 74.1%, and the second method was an adaptive
neuro-fuzzy inference system, which showed an accuracy of 98.7%. These pulse wave velocity
determinations were verified by further direct pulse wave measurements and the results were
compared. The dissertation results in the determination of pulse wave propagation velocity
using only one plethysmographic sensor without the need for measurements at two different
locations with accurate distance measurements and the possibility of application in clinical
practice.

In particular, the main contributions of the dissertation thesis are as follows:

1. Simulation physical model of the vascular system.

2. Sensors for measuring pressure and volume pulse wave.

3. Finding the relationship between pulse wave features and pulse wave velocity.

4. Estimation of pulse wave velocity values using only one pulse wave sensor.



5. Future applications in clinical practice to improve the diagnosis of vascular pathologies.
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systemic vascular resistance; continuous noninvasive blood pressure; pulse transit time; pulse
wave velocity; physical vascular model;



Acknowledgement

I would like to thank my supervisor prof. Ing. Martin Černý and especially the supervisor
specialist prof. Norbert Noury for professional guidance of research and writing of this, for
their motivation and all other colleagues for their support and perceptive comments. Last
but not the least, I would also like to thank my family.



Contents

List of symbols and abbreviations 9

List of Figures 11

List of Tables 15

1 Introduction 17
1.1 Effect of Systemic Vascular Resistance on Blood Pressure Measurement . . . . 17
1.2 Doctoral Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Noninvasive Continuous Blood Pressure Estimation Methods 23
2.1 Fundamental Model of Blood Pressure Estimation . . . . . . . . . . . . . . . . 23
2.2 Methods of Pulse Transit Time Measurement . . . . . . . . . . . . . . . . . . . 24
2.3 Evaluation of Recent NICBP Models and their Calibration Procedures . . . . . 30
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Physical vascular model 46
3.1 Physical Vascular Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Digitally Controllable Vascular Model Parameters . . . . . . . . . . . . . . . . 50
3.3 Artificial Arterial Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Pulse Wave Sensors 54
4.1 Pressure Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Optical Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Capacitive Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Validation Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7



4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Experiment 69
5.1 Methods of Pulse Wave Velocity estimation . . . . . . . . . . . . . . . . . . . . 69
5.2 Analysis of experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Artificial Artery Hardness Estimation . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Hardness to elasticity conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Pulse Wave Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Future direction 94

Bibliography 95

List of own publication activities and other outcomes 121
Publications and Outcomes Related to Thesis . . . . . . . . . . . . . . . . . . . . . . 121
Publications and Outcomes Not Related to Thesis . . . . . . . . . . . . . . . . . . . 121

List of Projects 124

8



List of symbols and abbreviations

AC – alternating current
ADC – analog to digital converter
ANFIS – adaptive neuro fuzzy inference system
ANOVA – analysis of variance
BCG – ballistocardiography
BP – blood pressure
CCD – charge coupled device
CO – cardiac output
CT – crest time
DBP – diastolic blood pressure
DC – direct current
ECG – electrocardiography
FDM – fused deposition modeling
FPGA – field programmable gate array
HR – heart rate
I2C – inter integrated circuit
ICG – impedencecardiography
IQR – interquartile range
MAP – mean arterial pressure
NIBP – noninvasive blood pressure
NICBP – noninvasive continuous blood pressure
PAT – pulse arrival time
PC – personal computer
PCB – printed circuit board
PCG – phonocardiography
PEP – pre-ejection period
PID – proportional integral derivative controller
PIR – pulse intensity ratio

9



PLA – polylactic acid
PP – pulse pressure
PPG – photoplethysmography
PSD – power spectral density
PTT – pulse transit time
PWV – pulse wave velocity
PWVF – fuzzy pulse wave velocity
PWVM – measured pulse wave velocity
PWVR – regresion pulse wave velocity
PWVT – theoretical pulse wave velocity
RMSE – root mean squared error
SBP – systolic blood pressure
SCG – seismocardiography
ShA – hardness ShoreA
SLA – stereolithography
sps – samples per second
ST – systole time
SV – stroke volume
SVR – systemic vascular resistance
TAG – tonoarteriography
UART – universal asynchronous receiver transmitter
W – wall thickness

10



List of Figures

1.1 The state of the art of current noninvasive continuous blood pressure (NICBP)
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Dissertation thesis flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Comparison of methods for PTT calculation [19]. . . . . . . . . . . . . . . . . 26
2.2 Reconstruction of Multiwavelength PPG. (a) Used wavelengths for PPG. (b)

Feature extraction for the layers [54]. . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Methodology of the PTT measurement on hand, (a) sensor placement, (b) IPG

and PPG measurement [123]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Experimental verification of the pulse transit time measurement (PTTm) using

IPG sensor on wrist and PPG sensor on tip of the finger compared with theory.
The measured pulse wave the IPG phase shift (IPGP S) is greater than PPG
phase shift (PPGP S) [123]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Calibration and removal of the phase shift of pulse wave using IPG and PPG
sensor [123]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Group average for BP, impedance and PTT (a) between each period and (b)
error within 95% confidence interval [123]. . . . . . . . . . . . . . . . . . . . . 35

2.7 (a) Relationship between arterial Bp and arterial diameter. (b) Diameter
change during systole and diastole [28]. . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Light absorption due to the different amount of blood [28]. . . . . . . . . . . . 37
2.9 Diagram for derivation of PPG intensity ratio (PIR) [31]. . . . . . . . . . . . . 37
2.10 Diagram of activities during the measurement [31]. . . . . . . . . . . . . . . . 40
2.11 Comparison of different model BP estimation for separate functional test [31]. 41

3.1 Current CNIBP algorithm based on reviewed literature for in vivo measure-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Our modification of CNIBP algorithm based on reviewed literature for in vitro
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Physical vascular model capabilities - configurable parameters. . . . . . . . . . 49

11



3.4 Vascular model diagram with described components [164]. . . . . . . . . . . . . 49
3.5 Vascular model diagram with electrically operated valve to control constant

pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Flowchart of baroreflex function within physical vascular model. . . . . . . . . 51
3.7 Closed and opened 3D printed mold for artificial artery creation. . . . . . . . . 53

4.1 Cross-section of measurement setup using optical sensor with vessel placement
and illustrated outer diameter measurement between edges of vessel’s shadow. . 55

4.2 The printed circuit board as a flexible electrode made from glass-fiber material
with thin copper layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 (a) capacitor plates in real space and (b) capacitor plates in curved space [174]. 58
4.4 The cross-section of rigid capacity probe with the layer types. The active plate

is wired to cable and shield is connected to the shield of the cable. . . . . . . . 59
4.5 Functional block of developed electronic circuit for measuring capacity and

pressure. It is connected via USB (Universal Serial Bus) to PC, where the
measured data is processed. Optical sensor is directly connected to PC. . . . . 60

4.6 Steps of signal processing from measuring to evaluation measured data. . . . . 60
4.7 Comparison of flexible and rigid capacitive sensor and its raw and filtered

waveforms on different stroke volume setup. . . . . . . . . . . . . . . . . . . . . 63
4.8 Measured waveform comparison for each sensor type - measurement sample of

heart rate 40 bpm and stroke volume 20 ml. . . . . . . . . . . . . . . . . . . . . 64
4.9 Power spectral density comparison of used sensors with heart rate values and

frequency obtained from PSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Sensors placement on artificial arterial segment. . . . . . . . . . . . . . . . . . . 69
5.2 Processing flow diagram for measured data. . . . . . . . . . . . . . . . . . . . . 70
5.3 Fiducial points detected on pulse wave. . . . . . . . . . . . . . . . . . . . . . . 71
5.4 The 2 methods used for hardness ShoreA estimation based in input parameters. 72
5.5 Comparison of the capacitive (volume pulse wave) and pressure sensor (pressure

pulse wave) signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Automatic fiducial point detection after corrections. . . . . . . . . . . . . . . . 75
5.7 Systole time dependency on artificial artery hardness (HR=60 bpm, SV=20

ml, W=2 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.8 Visualized regression model for Crest time feature divided by sensor type. . . . 78
5.9 Visualized regression model for Systole time feature divided by sensor type. . . 79
5.10 Visualized regression model for Pulse pressure feature divided by sensor type. . 81
5.11 ANFIS model description for input and output member functions. . . . . . . . 83
5.12 Comparison of testing dataset from ANFIS output to reference values. . . . . . 83
5.13 PWV absolute error between PWVF , PWVR and PWVT . . . . . . . . . . . . . 87

12



5.14 Comparison of methods within conversion model in real measured Pulse Wave
Velocity values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.15 Comparison of used model bias based on regression and fuzzy PWV values. . . 90

13



14



List of Tables

2.1 Comparison of methods from Ding et al. [31] . . . . . . . . . . . . . . . . . . . 38
2.2 Existing BP-PTT models (extension of Table 2.1) . . . . . . . . . . . . . . . . . 44

4.1 In total the 9 combinations of tunable parameters are measured. . . . . . . . . 62
4.2 Correlation coefficient between all sensors of all measured settings . . . . . . . 64

5.1 Possible tunable parameters for our experiment. . . . . . . . . . . . . . . . . . . 70
5.2 Conversion models from shore to Young’s modulus for silicone material. . . . . 73
5.3 Statistical result for Crest time (CT). . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Statistical result for Systole time (ST). . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Statistical result for Pulse Pressure (PP). . . . . . . . . . . . . . . . . . . . . . 80
5.6 Statistical result for updated Pulse Pressure (PP*). . . . . . . . . . . . . . . . . 80
5.7 Regression model for hardness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8 Conversion models from Hardness to Elasticity. . . . . . . . . . . . . . . . . . . 84
5.9 Theoretical calculation of Pulse Wave Velocity (PWVT ) based on used silicon

material hardness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 PWV absolute error of difference PWVR and PWVF to PWVT . . . . . . . . . 86
5.11 Results of Shapiro-Wilk normality test of difference between PWVR and PWVT . 86
5.12 Results of Shapiro-Wilk normality test of difference between PWVF and PWVT . 86
5.13 Results of Wilcoxon one-sample test of difference between PWVR, PWVF to

PWVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.14 Absolute errors difference of PWVM values within used method for each model. 88
5.15 Results of Shapiro-Wilk normality test of difference between PWVR, PWVF

and PWVT to PWVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.16 Results of Student’s t-test of difference between our estimation methods to

PWVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

15



16



Chapter 1

Introduction

1.1 Effect of Systemic Vascular Resistance on Blood Pressure Mea-
surement

The cardiovascular system is a very important part of the human body which is responsible for
transport nutrients and oxygen to tissues. The whole system in the human body is influenced
by many parameters, which are difficult to describe, and is an integral part of maintaining
homeostasis - the stability of the internal environment of the human body. Blood flow is given
by the regular expulsion of blood based on contraction of the heart muscle. After expulsion,
blood has kinetic energy, which, due to the limited and directed expansion of the blood vessels,
is stored in the artery wall and turns into potential energy. When the systole disappears
and the valve closes, this potential energy is turned again into kinetic energy. During the
diastole of the heart there is a continuous blood flow. Due to the internal structure of the
vessel, it’s not possible to get the infinite expansion of blood vessels, and thus the need for
internal automatic control of both the nutrient supply and transport of respiratory gases into
the tissues and the control of hemodynamic parameters, which are based on feedback that
regulates the heart-beat, or vascular system variability. All of these mentioned processes are
influenced by systemic vascular resistance (SVR) [1, 2]

The systemic vascular resistance is a resistance in circulatory system that produce the
blood pressure, the flow of blood and it is a part of cardiac function [3]. The SVR is a
resistance of whole circulatory system which needs to be overcome by the blood pressure to
create a blood flow described by Equation 1.1. [2, 4]

R = ∆P

Q
= ∆P

CO
(1.1)
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Where R is resistance, Q is the flow which is equal to cardiac output (CO) and ∆P is change
in pressure described in Equation 1.2.

∆P = MAP − mean right arterial pressure (1.2)

Where MAP is mean arterial pressure (Equation 1.3) calculated from systolic blood pressure
(SBP) and diastolic blood pressure (DBP).

MAP = SBP + 2DBP

3 (1.3)

This parameter of vascular system is influenced by all arteries and their properties - i.e.
stiffness, width of arterial wall, diameter and length of artery. The systemic vascular resistance
is composed of vascular resistances of all single arteries [2]. The cardiac cycle is also involved
in SVR, mainly the Cardiac output and heart rate. The viscosity of blood also influences
the resistance value [5]. The SVR value increases with the blood vessels constriction and
conversely lowers with vasodilatation [3]. The resistance is a significant component of blood
pressure and perfusion of the tissues. In a human body, the vascular resistance is actively
regulated by vascular endothelium which is affected by physical and psychological conditions
of human [6].

Blood pressure (BP) is an important parameter of human health, since hypertension is a
major risk factor of the cardiovascular system [7]. Continuous measurement of blood pressure
participates in the hypertension treatment and it shows the dependence of blood pressure
on the whole vascular system and indicates the vascular properties [7, 8]. Nowadays, the
continuous measurement of blood pressure is only possible with an invasive measurement
method using catheter as the gold standard. This method measures BP at any arterial site
using a strain gauge introduced in the vessel. Other blood pressure measurements are only in
discrete time with long intervals between measurements [9]. For a noninvasive blood pressure
measurement the auscultatory and oscillometric method are currently used. Both methods can
measure blood pressure only at a given time and cannot be used for continuous measurement
because of the need to inflate the cuff. In the auscultatory method, it is necessary to listen
to Korotkoff’s echoes of the turbulent blood flow in the blood vessels as the cuff is gradually
deflated. In the oscillometric method the oscillation of pressure values is measured when
the cuff is gradually deflated [9–11]. Pulse transit time (PTT), the time delay of pulse wave
travel between two arterial measurements sites, or pulse wave velocity (PWV) are promising
methods for noninvasive and continuous estimation of blood pressure using nonobstructive
sensors instead of inflated cuff for conventional blood pressure measurements. These methods
estimate the BP without applying an external pressure [9, 12]. The pulse wave velocity
depends on the pressure value and the most accurate measurements are taken in the aorta.
The measurement error increases with the pulse wave propagation toward peripheral arteries.
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The accuracy of measurement is strictly dependent on accurate distance of the measured
points. And for the measurement, the presence of a skilled person is required for the sensor
placement and distance measurement between these points.

The blood pressure values vary periodically from the maximal systolic blood pressure to
minimal diastolic blood pressure. Typical blood pressure value of healthy person is 120 over
80 millimeters of mercury. The BP can be much higher or lower to maintain homeostasis
and accommodation to external conditions or due to vascular pathologies. In the long-term
measurement, the vascular properties described by systemic vascular resistance vary with the
blood pressure. These variations cause an increasing error in continuous BP measurement
based on pulse transit time [8].

In order to determine the algorithm for measuring non-invasive blood pressure, it is neces-
sary to investigate not only the relationships between the volumetric and pressure pulse wave
propagation, but also among other parameters concerning the pulse wave features. The com-
plete description of all pulse wave subparameters of vascular system is required to define the
improved estimation, which significantly influence algorithms for determining blood pressure
by using a non-invasive continuous measurement (NICBP).

NICBP
algorithm

Calibration
procedure

Pulse Transit
Time

Continuous blood
pressure value

Cuff based blood
pressure value

Con
sta

nts

Noninvasive
biosignals

Figure 1.1: The state of the art of current noninvasive continuous blood pressure (NICBP)
measurement.

The properties of the vascular system, variable heart rate, pulse wave shape are influencing
the blood pressure estimation (Figure 1.1). Unfortunately, these factors in the human body
are variable over time and depend, for example, on human activity or the level of stress. Also,
the breathing movements are modulated to blood pressure, these movements affect cardiac
output and thus blood pressure. Therefore, the real vascular system cannot be described by
constant parameters. Vascular pathologies such as calcification, arteriosclerosis and others
also cause further changes in parameters [13–15].
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To simplify and idealize the determination of these factors, a physical model of the systemic
circulation has been developed with adjustable parameters such a heart rate, stroke volume
and systole to diastole time ratio for the pump. Tuning these parameters affects systemic
vascular resistance resultsing in blood pressure behavior and pulse wave velocity. Furthermore,
it is possible to select different types of vascular segments with different length, diameter and
elasticity depending on the type of used material. These vessels are capable to affect systemic
vascular resistance, compliance and inertance. Any change in the parameters affects the
hemodynamics of the entire vascular system, and so far, there is no way to reflect the effects
of stress or other physical activity [16].

1.2 Doctoral Thesis Objectives

The main objective of this thesis work is to determine influence of systemic vascular resistance
on calibration procedure for noninvasive continuous blood pressure estimation for ex vivo
physical vascular model. An integral part of this work is about the detection of the pulse
wave features and verification on our vascular model based on literature review. With these
mentioned task we will be able to extend fundamental noninvasive continuous blood pressure
calculation methods based on Moens-Korteweg equation. The main improvement will be the
pulse wave velocity estimation using only one sensor, which can be used for estimation of
NICBP (non invasive continuous blood pressure measurement) . Proposed improvements will
be tested using our improved vascular model. A simplified overview of the whole thesis work
is given on Figure 1.2.
Research task for doctoral thesis are:

• Literature review of the current state of NICBP models
- Review PTT models based on Moens-Korteweg equation.
- Review extensions of fundamental model.
- Determine new approach for NICBP model improvement.

• Physical vascular model design
- Description of existing vascular model
- Implementation of baroreflex function
- Artificial arterial segments

• Innovative pulse wave sensor
- Design of capacitive sensor
- Gold standard pressure sensor
- Optical sensing of vessel diameter

• New possible extension model for NICBP
- Determine pulse wave features
- Prediction models based on input variables
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- Artificial arterial segment influence on Moens-Korteweg equation
- Measuring PWV using only one pulse wave sensor

This thesis work describes the usable method for future clinical test based on elasticity
influence on noninvasive blood pressure measurement from detecting pulse wave features.
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Figure 1.2: Dissertation thesis flowchart.
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Chapter 2

Noninvasive Continuous Blood Pressure
Estimation Methods

Noninvasive continuous blood pressure estimation is a promising alternative to minimally
invasive blood pressure measurement using cuff and invasive catheter measurement, because
it opens the way to both long-term and continuous blood pressure monitoring in ecological
situation. The most current estimation algorithm is based on pulse transit time measurement
where at least two measured signals need to be acquired. From the pulse transit time values, it
is possible to estimate the continuous blood pressure for each cardiac cycle. This measurement
highly depends on systemic vascular resistance represented by arterial properties which are
not easily accessible with common measurement techniques; but these properties are needed
as input for the estimation algorithm. With every change of input arterial properties, the
error in the blood pressure estimation rises, thus a periodic calibration procedure is needed
for error minimization. Recent research is focused on simplified constant arterial properties
which are not constant over time and uses only the linear model based on reference blood
pressure measurement. The elaboration of continuous calibration procedures, independent of
recalibration measurement, is the key to improving the accuracy and robustness of noninvasive
continuous blood pressure estimation. However, most models in literature are based on linear
approximation and we discuss here the need for more complete calibration models.

2.1 Fundamental Model of Blood Pressure Estimation

The noninvasive blood pressure estimation uses the Pulse Transit Time which uses delay
between R peak from ECG and the discovery of the pulse wave in peripheral blood vessels
using photoplethysmography sensor on the finger. The ECG signal is taken as the reference
time for the pulse wave formation. The velocity of pulse wave propagation is given by the the
vessel coefficient of elasticity, diameter and wall thickness, and also the blood density. This
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relationship has been described by Moens and Korteweg in equation 2.1. [17]

PWV = D

PTT
=

√︄
hE

ρd
=

√︄
hE0eαP

ρd
(2.1)

From previous Equation 2.1 and from the literature, we assume that the model is lin-
ear, thus the modified and simplified equation for blood pressure estimation is showed as
Equation 2.2.

BP = A · f(PTT ) + B (2.2)

The constants A and B are determined from calibration procedure, and the f(PTT ) should
be replaced with any variant of PTT like PTT , 1/PTT , 1/PTT 2, ln(PTT ) or ek·P T T [18].
This equation can be extended with other known input parameters related to blood pressure
and cardiovascular system to get better precision of noninvasive continuous blood pressure
estimation. Most used parameter is the heart rate or previous blood pressure value [19–22].

The PTT-BP should be divided into two standalone models, first for estimation of systolic
blood pressure and the second for estimation diastolic blood pressure [19, 23–41]. In addition,
the mean blood pressure can be estimated from similar equation using the right constants.

2.2 Methods of Pulse Transit Time Measurement

The pulse delay between two known places on artery is the pulse transit time. [8, 9, 17, 23,
24, 33, 42–48]

2.2.1 Description of PTT methods

Most conventional method to calculate PTT is using at least two signal generated by cardio-
vascular system, the R peak of electrocardiogram (ECG) signal as reference and the arrival
of pulse wave detected by photoplethysmography (PPG) sensor [8, 9, 17, 19, 23–25, 27, 30,
32–35, 40, 41, 43–58]. For PTT calculation specific points on PPG wave must be detected.
In the literature, most papers report the use of the steepest point of the pulse wave, or the
maximum of the first derivative and alternatively the annulation of the second derivative [8,
19, 28, 29, 31, 37, 51, 52, 55, 56, 59–63]. The key for better accuracy of PTT calculation
is the synchronous acquisition of multiple biosignals, for example ECG and PPG. The PPG
sensor is located on the finger, for good light absorbance conditions, but with the narrowing
of blood vessel, the pulse wave changes in shape [55]. With the rising blood pressure the pulse
wave velocity is increasing and the pulse transit time is decreasing.
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2.2.2 Effects and Elimination of Pre-ejection Period

The major difficulty in getting the precise PTT values is that the electrical activity precedes
the arterial pulse. This phenomenon is described as pulse arrival time (PAT), where PAT is
the sum of pre-ejection period (PEP) and pulse transit time (PTT). The PEP is caused by the
ventricular electromechanical delay and isovolumic contraction [8, 12, 17, 31, 35, 42, 45, 55, 62,
64–70]. PTT is mostly calculated as time interval between ECG, PPG and tonoarteriography
(TAG), which is an unobtrusive continuous arterial BP signal recorded by a pressure sensor
placed mostly on radial artery of the same arm as the PPG sensor [55, 71]. This method
cannot eliminate the pre-ejection period. But this pre-ejection period can be easily eliminated
using other signals than the ECG as a reference. The pre-ejection period is not correlated
with the blood pressure value and it causes the error in the BP estimation algorithm [55,
71]. One of the methods for PEP elimination is impedance cardiography (ICG) [38, 72–85],
in this method electrodes are placed on the chest to detect the aortic valve opening. After
aortic valve opening, the blood is expelled and that provokes a measurable decrease in chest
impedance. Together, the ECG, ICG, and PPG on the chest can be synchronized and used
to eliminate the PEP to obtain a clear PTT value [19].

Additionally other biosignals illustrated in Figure 2.1 can be used for detecting PTT. The
rapid acceleration of ejected blood from heart can be detected using the ballistocardiography
(BCG) method due to mass movement in great vessels and PTT can be estimated as a delay
between BCG and PPG [68, 69, 86–96].

The micro vibrations detection of seismocardiography (SCG) is one of the options for PTT
measurement. These vibrations are produced by heart contraction and ejection of the blood.
With seismography method the mechanical events are detected such opening and closure of
mitral and aortic valves. This events can be used for PTT calculation excluding pre-ejection
period [48, 75, 97–112].

The sound of the mechanical activity of the heart can be recorded by using phonocardio-
graphy (PCG) method. As in the previously mentioned methods, this recorded sound can be
the start point of pulse transit time measurement with the eliminated pre-ejection period [63,
113–122].

All mentioned methods calculates pulse transit time with respect to heart activity but
one of the efficient method of the pre-ejection period elimination uses measurement of PPG
or TAG in close sensor placement, ideally on one arterial segment [19, 123, 124].

The most comfortable method for PTT measurement should avoid to use the electrode on
patient chest, but only measurement sites should be located on one or maximally two sites on
the hand like a wrist and finger [123, 124] or two places on the forearm [124]. Unfortunately,
the approach of seismocardiogram and ballistocardiogram is not applicable whilst they are
sensitive to micro-vibrations of human heart and it is not reachable for normal conventional
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Figure 2.1: Comparison of methods for PTT calculation [19].

measurement. In addition, the phonocardiography and impedance cardiography use sensors
on the chest, which are not comfortable for the patient. From this methods, the best solution
is only the use of hand-placed sensor system. This sensor would be more precise, because of
almost constant vessel properties on small sensor distance. This measurement could be done
by measuring impedance plethysmogram IPG [125–142] or PPG.

The best approach to measure PTT seems to be the measurement on single vessel, be-
cause the vessel exhibits constant parameters such as his diameter, compliance, stiffness. This
measurement method uses the two ICG or PPG close each other on one vessel or their com-
bination. Also the use of tonometry in addition with PPG sensor on the wrist and fingertip
can be useful for PTT detection [53, 55, 124]. In central arteries the blood pressure strongly
depends on vascular elasticity, whereas in peripheral arteries the correlation between PTT
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and BP is lower due to smooth muscle contractions. The peripheral arteries have many cur-
vatures, branches, and terminals where the reflection occurs. The pulse wave is therefore
composed from original forward wave and many backward reflected waves [124]. The artery
stiffness highly depends on age of the test subject and it also affects the shape of the pulse
wave [55].

2.2.3 Pulse Transit Time from multiwavelength photoplethysmography

In peripheral arteries, the multiwavelength photoplethysmography can be used [54].

Figure 2.2: Reconstruction of Multiwavelength PPG. (a) Used wavelengths for PPG. (b)
Feature extraction for the layers [54].

This method uses infrared, yellow, green and blue light to measure the absorption of each
wavelength by the tissue and the pulsating blood (Figure 2.2). Using different wavelengths,
one can extract the capillary layer (blue light), arteriole layer (yellow light) and artery layer
with the infrared light [54].

Based on this multiwavelength PPG measurement the systemic vascular resistance (SVR)
can be evaluated and used for better blood pressure estimation, the SVR is related to PTT
and it is regulated mainly by arterioles.
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2.2.4 Pulse Transit Time from impedance plethysmography

The impedance plethysmography (IPG) method is proposed to get the true PTT value without
pre-ejection period. The sites of measurement should be located close to each other. Thus
with this type of the measurement we can measure only a single artery with almost constant
physical properties, and we can acquire data with a sufficient precision. The measurement
place of IPG on the wrist could be in combination with the PPG on the finger as the Figure 2.3
shows [123]. The PTT is determined as time between peaks of first derivative of PPG and IPG
waveforms in each cardiac cycle. Due to the use of two different methods (PPG and IPG) [123]
the measured pulse wave is phase shifted. Thus, the PTT values vary significantly despite the
fact, that the distance between two adjacent sensors is quite small. The experimental results
show that the PPG waveform leads the IPG waveform instead of lagging. The phase shift of
IPG is greater than the phase shift of PPG. Thus, for the calculation of PTT the calibration
and elimination of phase shift is required.

Figure 2.3: Methodology of the PTT measurement on hand, (a) sensor placement, (b) IPG
and PPG measurement [123].

The IPG technique is able to detect the arterial volume changes. The PPG sensor must
be placed tightly on the finger to eliminate ambient light and motion artifacts. The IPG
sensor needs to contact the skin surface slightly to produce electric potential field which
can be measured by the electrodes placed on the sensor [143]. The electrodes for the IPG
measurement should be made from flexible and soft materials, more comfortable for the user.
In comparison with the PPG sensor, the IPG sensor requires less power than the PPG sensor
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for the light-emitting source and photodetector, and likewise the IPG sensor is less location
sensitive than the PPG [123, 143].

The tissue impedance measurable by IPG sensor is mainly affected by arterial cross-
sectional area A as follows in Equation 2.3.

A = ρl

Z
(2.3)

Where the l is length of measured segment, Z is the impedance of peripheral arteries and ρ

is constant per unit length of artery [123, 144].

The first investigation of pulse wave propagation and dependence of pulse wave velocity
on vascular parameters was described in 1878 by Moens [145] and Korteweg [146]. The recent
review of the literature on this topic found that most PTT-BP models are based on the
Moens-Korteweg Equation 2.4 of pulse wave velocity (PWV).

PWV =
√︄

Eh

ρd
(2.4)

The E from the equation is the elastic modulus of the vessel, ρ is density of the blood, h

is wall thickness of vessel and d is diameter of the vessel. The dependency of PTT on PWV
is shown in Equation 2.5.

PWV = D

PTT
(2.5)

The pulse wave velocity is proportional to blood pressure, the PTT is inversely propor-
tional to the BP. That means that high BP corresponds to low PTT and high PWV. D from
equation stands for distance between two observable points of detecting PTT. In ideal and
simplified conditions of measurement all these vascular properties are constant, so when the
blood pressure change only the PTT or PWV value changes. The Equation 2.4 and 2.5 are
entry points for almost all reviewed articles [8, 9, 12, 18, 20, 23, 24, 26, 28–37, 43, 45–47, 49,
51, 52, 59, 61, 63–66, 123, 124, 147–156].

The compliance C of the arterial vessel is related to the geometry and the propagation
velocity PWV is inversely related to the compliance. According to the Bramwell-Hill equation
the PWV is determined in Equation 2.6.

PWV =
√︄

A

ρC
(2.6)

Where C is characterized as Equation 2.7 [2, 157].

C = dA

dP
(2.7)
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The Equation 2.7 after integrating dP and dA the pressure should be written as function
of time in Equation 2.8.

P (t) = P0 + ρPWV 2ln

(︃
A(t)
A0

)︃
(2.8)

Where the P0 is the pressure corresponding to cross-sectional area A0 [158]. The total
impedance is a parallel combination of tissue impedance Zt and blood impedance Za. The
parallel impedance is shown in Equation 2.9.

1
Z

= 1
Za

+ 1
Zt

(2.9)

The tissue impedance can be considered constant, thus only the arterial impedance changes
∆Z due to changes of the cross-sectional area ∆A.

∆A ≈ ρbL∆Z

Z2
b

(2.10)

Where the ρb in Equation 2.10 is the resistivity of blood and the Zb represents the basal
impedance of the segment and L is the length of artery segment [158]. By replacing PWV
with the PTT function in Equation 2.8, the further equation for blood pressure can be shown
as Equation 2.11.

P (t) = P0 + ρ

(︃
D

PTT

)︃2
ln [1 + K(Z0 − Z(t))] (2.11)

Where the constant K is equal to Equation 2.12.

K = Za0
Z2

0
(2.12)

In Equation 2.11 P (t) can be either the SBP or DBP pressures, which corresponds to the
highest and lowest impedance values in each cardiac cycle.

2.3 Evaluation of Recent NICBP Models and their Calibration Pro-
cedures

It is suggested to perform the PTT measurement on one single artery to maintain almost
constant parameters of smooth vascular muscles.

2.3.1 Linear models

The calibration is done by measuring the blood pressure using standard cuff method and
calculation of the constants A and B from regression model (Equation 2.2). This regression
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model is mostly used in recent literature. The main disadvantage of this model is the short
term validity. The vascular parameters vary throughout the day and depend on the human
activity and physical or psychical conditions. Based on these changes, calibration needs to
be updated frequently to maintain a very precise estimation. Without recalibration the error
function is increasing with time. To improve the accuracy of this calibration procedure, one
can measure the test subject under various conditions affecting his blood pressure, in order
to get more input pairs of PTT and BP values. Typical various activities that affect BP are
lying, sitting, and riding an ergobike. Each person being his own model, will have his own
constant parameters for the blood pressure estimation. And for every measurement these
calibration values need to be updated due to aging or disease. From the previous studies
[8] the period of the recalibration should stay always within 2 hours [1, 9, 53]. This short
recalibration period may be due to peripheral arteries measurement because the correlation
between the PTT and BP is significantly low caused by smooth muscle and also the PEP
value can affect the precision.

2.3.2 GAO’s nonlinear arterial tube-load model

With more robust calibration algorithms, the period between calibration procedures could
increase significantly. In addition, if the patient activity is unchanged the calibration validity
is longer. In real condition this precision of the calibration is unreachable. The linear vascular
model assumes artery stiffness, compliance and diameter are constant. For the robustness of
algorithm, we need to include whole pulse wave, not only the segmented key points [53]. The
nonlinear models include the compliance dependent on blood pressure ( Equation 2.13).

C(P ) = C0e−αP (2.13)

Where C is compliance, C0 is compliance at zero pressure, P is blood pressure and α is
constant > 0. Thus, the whole nonlinear model is described in Equation 2.14.

Td(P ) =
√︂

D2LC0e−αP (2.14)

Where Td is delay of the pulse wave, L is length of the artery, D2 is supplement constant
reflected the previous α constant.

The measurement was performed by GAO [53] with animals and humans using the invasive
catheter measurement as a gold standard. Blood pressure was modified with medication in
both tested groups. The measured data was the input of the linear and nonlinear model and
output of both models were compared with the gold standard. Output data is represented as
a calibration curve for the mean, diastolic and systolic blood pressure. The first measurement
is used to construct the baseline of the measurement. The data from the interventions was
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added to the output calibration curve and the error function is calculated for the animals. And
the changes are correlated in PTT values of the mean, diastolic and systolic blood pressure
in corresponding blood pressure level of people [53].

At the results of statistical testing the group average is statistically significant measured by
two linear and one nonlinear model. The paired t-tests are used for three pairwise comparisons
of the root-mean-squared-error (RMSE) of nonlinear model and both linear models. The
proposed nonlinear model reduced RMSE by 0.5 to 1 mmHg compared to the both linear
tube models. In their time, authors concluded that the non linear model is computationally
expensive and not able to estimate blood pressure in real time. Today the computational
cost has decreased with the newer systems on chips or FPGAs thus the algorithms can be
processed in real time [159]. The simpler linear BP dependent compliance model facilitates
the reliability and the rapidity of parameter estimation. The main limitation is lack of the
reference PTT measurement. This measurement is not compared with other methods for the
PTT measurement [53].

2.3.3 Huyn’s IPG based model

The experimental measurement with the IPG and PPG sensor shown in Figure 2.4 was done
by Huyn [123] with the IPG on wrist and the PPG on the finger of the same hand. These two
results are compared and the phase shift is significant. Therefore the new measurement of
both sensor ideally on one place at the same position on the wrist is done to get comparison
of the IPG and PPG waveform. This comparison should be used as calibration for the phase
shift elimination in the measurement. And the Equation 2.15 for the shifted IPG waveform
is obtained by using PPG and PTT signal input.

IPGP S = PTT + PPGP S + PTTm (2.15)

By subtracting Equation 2.15 from Equation 2.16 the desired PTT is expressed subtraction
of calibrated PTTc and measured PTTm.

IPGP S = PPGP S + PTTc (2.16)

The average of calibrated PTT of the proposed system is approximately 0.15 seconds while
the measured PTT depends on the human parameters [123].

PTT = PTTc − PTTm (2.17)

The experiment was performed on 15 healthy subjects following functional test – relax
B1, exercise E1, recovery R2, exercise E2, recovery R3, exercise E3. Each test lasts 2 minutes
and at each test the reference blood pressure is measured using the cuff oscillometric method.
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Figure 2.4: Experimental verification of the pulse transit time measurement (PTTm) using
IPG sensor on wrist and PPG sensor on tip of the finger compared with theory. The measured
pulse wave the IPG phase shift (IPGP S) is greater than PPG phase shift (PPGP S) [123].

In each exercise functional test, the BP rises and in recovery the blood pressure decreases.
Before the test, each subject needed to rest 10-15 minutes relaxed to calm down and stabilize
the blood pressure for the baseline measurement.

The BP change for each functional test is clearly visible in the Figure 2.6, the PTT
corresponds with the impedance measurement and the impedance is inversely proportional to
blood pressure values.

The proposed model based on this experimental measurement is shown in Equation 2.18
for diastolic blood pressure and in Equation 2.19 for systolic blood pressure [23].

DBP = MBP0 + 2
γ

ln
PTT0
PTT

− PP0
3 ·

(︃
PTT0
PTT

)︃2
(2.18)
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Figure 2.5: Calibration and removal of the phase shift of pulse wave using IPG and PPG
sensor [123].

SBP = DBP + PP0 ·
(︃

PTT0
PTT

)︃2
(2.19)

The next model ( Equation 2.20) only estimates SBP from the PTT value [26].

SBP = SBP0 + 2
γ

PTT − PTT0
PTT0

(2.20)

After calibration the estimated BP can be calculated from models using impedance input for
diastolic blood pressure ( Equation 2.21) and systolic blood pressure ( Equation 2.22). Where
the K is described in Equation 2.23.

DBP = DBP0 + ρ
D2

PTT 2 ln [1 + K(Zmax0 − Zmin)] (2.21)
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Figure 2.6: Group average for BP, impedance and PTT (a) between each period and (b) error
within 95% confidence interval [123].

SBP = DBP0 + ρ
D2

PTT 2 ln [1 + K(Zmax0 − Zmax)] (2.22)

K = e

(︂
P (t)−P0

ρ
P T T 2

D2

)︂
− 1

Z0 − Z(t) = e

(︂
SBP0−DBP0

ρ

P T T 2
0

D2

)︂
− 1

Zmax0 − Zmin0
(2.23)

The statistical testing of the measured data reveals, that all estimated BP values are
statistically significant, the nonlinear relationship between the diameter or the cross-section
of arteries and the blood pressure is found [59, 123, 149, 150].
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2.3.4 Extended model by PIR

The pulse transit time model can be extended by the photoplethysmogram intensity ratio
(PIR). The PIR depends on artery diameter change. The artery diameter varies with blood
pressure variations, thus the PIR is good indicator to evaluate this parameter. Artery diameter
is the input of Moens-Korteweg Equation 2.4, that means that with more known parameters

Figure 2.7: (a) Relationship between arterial Bp and arterial diameter. (b) Diameter change
during systole and diastole [28].

we could get better precision and very robust algorithm for noninvasive continuous blood
pressure estimation. The relation of artery diameter to blood pressure is shown in Figure 2.7.

The PPG light absorption depends on vessel diameter and the amount of blood inside
(Figure 2.8). Mainly this pulsatile component of the light absorption is used to detect the
vessel diameter. Dd is vessel diameter during diastole and Ds is vessel diameter during systole.
The difference between the systole and diastole diameter is the vessel diameter change based
on the pulsatile light absorption [28, 31]. The diameter change can be obtained from the peak
IH ( Equation 2.24) and the negative peak IL ( Equation 2.25) of PPG signal. Detected PPG
signal is composed of DC component caused by tissue, venous blood and non-pulsatile blood

36



Figure 2.8: Light absorption due to the different amount of blood [28].

absorption. The AC component is only the pulsatile blood absorption, which changes during
the cardiac cycle visible on Figure 2.9.

The Lambert-Beer law for both light absorptions is defined:

IH = I0 · e−αDCdDC · e−αDd (2.24)

Figure 2.9: Diagram for derivation of PPG intensity ratio (PIR) [31].
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IL = I0 · e−αDCdDC · e−αDs (2.25)

Where I is the intensity of light (L index for diastole and H index for systole), I0 is
the intensity of the light source, αDC is multiplication of the material concentration and
absorbance coefficient, dDC is optical path of DC component. Ds and Dd refers to systolic
respectively diastolic diameter. From previous formulas we can get the diameter change as
follow in Equation 2.26.

∆d = Ds − Dd = 1
α

· ln
IH

IL
(2.26)

Modified Lambert-Beer law for the PIR value is shown in Equation 2.27

PIR = IH

IL
= ek·∆d (2.27)

Table 2.1: Comparison of methods from Ding et al. [31]

PTT-BP Model

SBP DBP

PTT&PIR#1 DBP + PP0 ·
(︂

P T T0
P T T

)︂2
DBP0 · P IR0

P IR

PTT&PIR#2 MBP0 · P IR0
P IRi

+ 2
3 · P IRi

P IR0
·
(︂

P T T0
P T Ti

)︂2
MBP0 · P IR0

P IRi
− 1

3 · P IRi
P IR0

·
(︂

P T T0
P T Ti

)︂2

PTT#1 SBP0 − 2
γP T T0

(PTT − PTT0) DBP0 − 2
γP T T0

(PTT − PTT0)

PTT#2 DBP + PP0 ·
(︂

P T T0
P T T

)︂2
MBP0 + 2

γ lnP T T0
P T T − 1

3PP0 ·
(︂

P T T0
P T T

)︂2

PTT#3 a3 · PTT + b3 a′
3 · PTT + b′

3

PTT#4 a4 · lnPTT + b4 a′
4 · lnPTT + b′

4

PTT#5 a5
P T T + b5

a′
5

P T T + b′
5

PTT#6 a6
P T T 2 + b6

a′
6

P T T 2 + b′
6
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Experimental testing of PIR measurement was performed on healthy person in calm sit-
ting, Valsalva maneuver and deep breathing. This experimental function test provides the re-
lationships between arterial diameter change and the blood pressure. The PTT was measured
using ECG reference and PPG on finger. The deep breathing activates the parasympathetic
functions. Data is analyzed within each breath cycle, the HR is measured, and the PTT, PIR
and BP are estimated at the same time during three functional tests [28, 29, 31].

The effects of the functional testing on response of the measured parameters were analyzed
in time and frequency. During the deep breathing the systolic blood pressure significantly
decreased with the increase of PTT, when the heart rate decreases the PIR increases. The
Valsalva maneuver consist of four phases. The PTT inversely changed with the systolic blood
pressure (SBP) but the PIR increases with SBP rise as reversed as during the deep breathing
test. In conclusion of this literature, the PTT can track BP with tolerable accuracy and the
PIR value can improve the accuracy of calibration procedure in this model. From the PIR
value we can get the peripheral vascular resistance.

In this paper [28, 29, 31] the PTT-BP models are divided into SBP (systolic blood pressure)
and DBP (diastolic blood pressure) and all tested models are shown in Table 2.1.

The most acceptable model based on the article is PTT&PIR#2 for estimation of SBP
and DBP. This model is described by two equations 2.28 and 2.29.

SBPi = MBP0 · PIR0
PIRi

+ 2
3 · PIRi

PIR0
·
(︃

PTT0
PTTi

)︃2
(2.28)

DBPi = MBP0 · PIR0
PIRi

− 1
3 · PIRi

PIR0
·
(︃

PTT0
PTTi

)︃2
(2.29)

All mentioned model algorithms in Table 2.1 were tested on 33 healthy subject, where
19 of them was normotensive and 14 hypertensive. The PTT is calculated from R peak of
ECG signal and the peak of first derivative of PPG signal. The experiment was performed
according to the diagram on Figure 2.10.

The different calibration intervals are compared and validated. The extended calibration
interval is 24 hours while the subject was sitting at the measurement. The SBP and DBP
algorithms were significantly increased at Day 2 after initial calibration. For the PTT&PIR#2
algorithm, the estimation remained better in the Day 2 but only the standard deviation
increased. Finally, the SD of the BP estimation were significantly different [28, 31].

After data acquisition the data analysis was performed and all tested models are showed
in plot for each functional test in Figure 2.11, the estimate error is calculated as the difference
between the reference cuff BP measurement and the BP estimation, and evaluated as the
error mean ± standard deviation and the mean absolute difference.

The Student’s t-test is used to test the significance between the normotensive and hyper-
tensive group and ANOVA is used for test the significance of all models for BP estimation.
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Figure 2.10: Diagram of activities during the measurement [31].

The differences between references and estimations are from normal distribution and the result
of Levene’s test for homogenity of variance is taken as statistically significant [28, 31].

2.3.5 Commercial devices for Blood Pressure estimation based on Pulse Transit
Time

On the commercial market, there are few medical devices which estimate blood pressure from
only measuring pulse wave signal. The first of them is SOMNOtouch™ NIBP which can
provide continuous beat-to-beat blood pressure values. The algorithms use pulse transit time
for the blood pressure estimation. This device uses ECG measurement as the reference and
PPG sensor on the finger. The major advantage is that is not dependent on hydrostatics
and the body orientation during the measurement. At the beginning of the measurement the
single calibration of the blood pressure is required. Data is stored in device memory and
can be read by the connected link to computer. The algorithm of the device is described in
article [61] and patent [36], it was tested on 63 subject under physical examination on bicycle
ergometer. In the first group of 13 persons, the algorithm is determined. The BP is measured
by cuff at the end of each level of ergometer load. The PTT uses 5-value moving windows
average filter to reduce the artifacts and both BP values are compared.
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Figure 2.11: Comparison of different model BP estimation for separate functional test [31].

PWV (cm/ms) = BDC · height(cm)
PTT (ms) (2.30)

The algorithm for PWV is described in Equation 2.30 where the BDC is body correlation
factor and height is body length. The BDC corresponds to the distance from sternal notch
to the tip of the middle finger and for adults the BDC value is 0.5. The PTT-BP model is
described in Equation 2.31.

BP = P1 · PWV eP3P W V + P2 · PWV P4 − BPP T T c + BPc (2.31)

where the parameters P1 = 700, P2 = 766000, P3 = −1 and P4 = 9. These parameters
were estimated by least square fitting on data from 13 subjects. The BPc is the blood
pressure value measured by cuff at end of each testing load. BPP T T c is calculated BP from
PTT corresponding to reference BP value.

The blood pressure value of the second tested group of 50 persons is estimated using using
Equation 2.31. The load is increased 5 times on the bicycle ergometer exercise and the outliers
values are removed. The correlation coefficient for data of 50 persons was r = 0.83 after
correction for repeated measurements. The statistical analysis result is standard deviation
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of the measured values 19.8 mmHg and statistical test confirms, that data are significantly
different in 95% confident interval.

The most recent device which can calculate the blood pressure after initial calibration
using oscillometric blood pressure monitor. The function of the blood pressure estimation is
described in patent [160] owned by Samsung Electronics. For the noninvasive blood pressure
estimation, the multiple signals are used. The measuring procedure check all the measured
signals and evaluate their quality. If the quality of the measured signal is not good, the
recalibration is needed. The calibration method is not directly described in the patent, we only
know, that the input is the reference cuff measurement which user needs to input measured
values into paired Samsung Galaxy mobile phone in Samsung Health application. The device
can measure different biosignals, the most important is the PPG for the pulse wave and
oxymetry, other important biosignal is the ECG measured by skin contact with the backplate
of the watches and finger of the other hand touches the metal edge of the watches.

Among other types of biosignal measurements, the patent describes ballistocardiogram
(BCG) methods, or sensors for measuring changes in blood flow using the ultrasonic Doppler
method or the laser Doppler method. Other sensors that help determine blood pressure
include inertial sensors such as an accelerometer, gyroscope, tilt sensors, temperature sensors,
and GPS. According to these additional sensors, the system detects movements and thus
adapts the calibration procedure for accurate blood pressure determination.

The pulse wave from the PPG sensor is processed and analyzed, based on a model for
determining blood pressure. The second derivative of the pulse curve is used to detect the
peaks in the signal, so that the aging of the vessels can be calculated. This aging calculation
is not described in patent publication [160]. This peak analysis is used in the subsequent
determination of blood pressure. The calibrator uses other measurements, such as temperature
or movement, to determine blood pressure more accurately, because the entire calibration is
based on changing ambient parameters to obtain accurate results. If there is no change in the
surrounding parameters, the test subject is at rest, no calibration is necessary. For example,
due to a change in temperature, the offset of blood pressure also changes.

Another calibration method uses the measurement of the pulse wave delay and determines
the blood pressure according to this value [160].

In recent release model of Samsung Galaxy Watch3 to Watch5, the cuffless blood pressure
measurement is estimated using pulse wave analysis from the heart rate sensor. However, this
estimation requires an initial calibration based on cuff measurement and the recalibration
every four weeks [161].
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2.4 Discussion

It was earlier demonstrated that the blood pressure can be non-invasively estimated from the
pulse transit time or pulse wave velocity. This non invasive method has great potential to be
used as common method for blood pressure measurement. It avoids the use of the inflated
cuff which is obstructive and is limited to discrete time and non continuous BP monitoring.
In addition the blood pressure estimation will be done on a single pulse wave. The continuous
blood pressure monitoring can deliver new instantaneous information about behavior of human
vascular system and possibly it can improve the treatment of vascular system pathologies, for
example hypertension.

Nevertheless, all the various existing methods for noninvasive continuous blood pressure
estimation hold significant errors. One comfortable way to obtain pulse transit time is mea-
suring the pulse wave signal within one limb; sensor placement should be ideally on one
artery, because of the near constant vascular parameters which affect the systemic vascular
resistance. By measuring on a vessel with almost constant parameters along its entire length,
it significantly increases the accuracy of the algorithm for determining blood pressure from
PTT measurements.

All current measurement methods are based on the Moens-Korteweg relation for the ve-
locity of pulse wave propagation. Since the properties of blood vessels cannot be measured
directly, for example elasticity, an algorithm must be developed that is independent of these
properties of the vessels. For the robustness of the whole algorithm, the heart rate, previous
blood pressure value and other measurable parameters can also be added to improve the BP
estimation and extend the validity of the calibration. All existing algorithms need to be cal-
ibrated using the input of cuff measured blood pressure as a reference. Another parameter
that can be obtained by plethysmography is the change in the diameter of measured vessel due
to the photoplethysmographic intensity ratios. This value can also be used as one of the in-
puts of a calibration algorithm for determining blood pressure from PTT/PWV. These many
aspects should improve the noninvasive continuous blood pressure estimation with increased
accuracy.

Recent research mostly focused on constant vascular parameters rather than variation in
time. Linear models for the determination of blood pressure need frequent recalibrations to
the cuff gold standard, because any change in the human vascular system has a significant
impact in the determination of blood pressure. We showed that additional cardiovascular
parameters can be derived from the measurement of PTT, such as properties of the artery
(e.g. compliance and elasticity).
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Table 2.2: Existing BP-PTT models (extension of Table 2.1)

Model SBP DBP

Proportional [19] A(PTT ) + B A′(PTT ) + B′

Logarithmic [65] A ln(PTT ) + B A′ ln(PTT ) + B′

Inverse [58] A
P T T + B A′

P T T + B′

Inverse square [17] A
P T T 2 + B A′

P T T 2 + B′

Extended - HR [154] A(PTT ) + B(HR) + C A′(PTT ) + B′(HR) + C ′

Extended - TDB [162] A(PTT ) + B(TDB) + C A′(PTT ) + B′(TDB) + C ′

Extended - Previous BP [21] A(PTT ) + B(BPp) + C A′(PTT ) + B′(BPp) + C ′

Poon’s [23] DBP + PP0
(︂

P T T0
P T T

)︂2
MBP0 + 2

γ lnP T T0
P T T − 1

3PP0
(︂

P T T0
P T T

)︂2

Ding’s PIR based [31] MBP0
P IR0
P IRi

+ 2
3

P IRi
P IR0

(︂
P T T0
P T Ti

)︂2
MBP0

P IR0
P IRi

− 1
3

P IRi
P IR0

(︂
P T T0
P T Ti

)︂2

Huyn’s IPG based [123] DBP0 + ρ D2

P T T 2 ln [1 + K(Zmax0 − Zmax)] DBP0 + ρ D2

P T T 2 ln [1 + K(Zmax0 − Zmin)]

SOMNOtouch™[61] P1PWV eP3P W V + P2PWV P4 − BPP T T c + BPc P ′
1PWV eP ′

3P W V + P ′
2PWV P ′

4 − BPP T T c + BPc
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From the reviewed literature, the Table 2.2 contains all found models for noninvasive
continuous blood pressure estimation from pulse transit time. Basically, the relationships are
divided to systolic and diastolic blood pressure. First 7 mentioned models were described
primary for systolic blood pressure, but they can be used also for diastolic blood pressure
with the change of the coefficients. The last 4 models are more advanced, and they need
additional measured biosignals as inputs.

All the mentioned models are calibrated only once by cuff blood pressure measurement
but the changing arterial properties cause the short term validity of that calibration. There
are several maneuvers and functional tests for measurements on the human body that affect
the value of blood pressure. These maneuvers can produce useful additional values to the
calibration algorithm and thus increase its robustness and accuracy. These reviewed linear
calibration models could eventually lead to improve calibration procedures by measuring pulse
wave with the constant vascular parameters. If the first calibration is done by using inflated
cuff method, then the models are accurate until change of vascular parameters. However, due
to small arterial properties parameter change the error of blood pressure estimation increases.
The better method to determine the calibration algorithm is use of non-linear model. De-
spite the computational complexity, these models can process multiple input parameters. In
addition to the model, one of the other approaches is using pulse wave analysis together with
artificial intelligence for feature extraction. Using of single sensor, which can determine pulse
wave velocity from single measurement site can have huge impact for NICBP estimation.

2.5 Conclusion

The arterial elasticity has major influence on NICBP measurement. Almost all models don’t
take into account the elasticity in their calculations and thus it causes a short term validity
when models are applied on human biosignals. Few of the reviewed model deals with SVR
features, which significantly improves the noninvasive continuous blood pressure estimation.
Despite the fact that they are limitations of in vivo measurement due to impossibility of direct
arterial adjustments. Future work will concentrate on application of arterial elasticity and its
derivatives in new method for blood pressure estimation.
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Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibra-
tion Models. IEEE Reviews in Biomedical Engineering [online]. 2022, vol. 15, pp. 138–151
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Chapter 3

Physical vascular model

The aim of this work is to determine the calibration procedure, which will ideally continuously
recalculate the measured data to specify the constants from the Moens-Korteweg (relation
2.1). All recent NIBP models based on PTT need initial measurement of blood pressure
for determining the calibration procedure of the algorithm. Unfortunately these algorithms
have only short term validity because of significant changes in systemic vascular resistance
over the time. From the literature review we found that all NIBP estimation model uses
only constants parameters which are not constant at all. We are focused on BP estimation
model parameters as the functions in time, thus we need to determine dependencies what we
found in literature review. The current algorithm for continuous noninvasive blood pressure
measurement is described in Figure 3.1 for data acquired from human body as we found in
literature. Algorithms are based on calculating pulse transit time from measured biosignals,

NICBP

Pulse Transit
Time

NICBP estimated
values

Calibration

Noninvasive
biosignals

NIBP cuff
measurement

Initial measurement

Continuous measurement

Figure 3.1: Current CNIBP algorithm based on reviewed literature for in vivo measurement.
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the pulse wave features describe indirectly measured parameter we can obtain measure as
arterial diameter from photoplethysmography intensity ratio. The algorithm can be extended
by pulsatile pressure and heart rate. Also the arterial properties are the part of SVR features
such as length, stiffness, wall thickness and diameter of arteries. Another SVR feature is
dependent on blood viscosity. These pulse wave features could enter the calibration procedure
to precise the blood pressure estimation and error minimization. Whole algorithm need to be
calibrated by initial blood pressure measurement using cuff method.

We thus developed our own innovative in-vitro vascular model [47] which allows a precise
simulation of human parameters. The main purpose of the model is an estimation of a
noninvasive blood pressure using a pulse transit time measurement. Thanks to our existing
vascular model, many of these indirectly measurable parameters can be individually tuned in
order to collect a lot of input data to improve the calibration procedure. The main advantage
of that model is the continuous simulation of set parameter for a long time. In the human body,
it is impossible to have such constant vascular parameters on a long period. The parameters
of human vascular system vary on physical and psychical conditions of the human. And also,
the ease of using different types of sensor is the main reason to determine accurate calibration
procedure firstly on the vascular model. Eventually, thanks to our in-vitro vascular model,
we can easily validate any calibration procedures found in the literature showed in Figure 3.2.
After determining calibration procedure on vascular model we obtain very precise estimation
over time with continual artificial vessel changes. Therefore, the calibration procedure for

CNIBP
algorithmPTT/PWVPulse wave

features

Noninvasive
biosignals

Invasive
pressure

measurement

Physical
vascular model

Figure 3.2: Our modification of CNIBP algorithm based on reviewed literature for in vitro
measurement.
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ideal physiological values and pulse wave waveforms of healthy individuals will be determined
and tested in clinical practice. Furthermore, we can easily simulate the pathological conditions
on our in-vitro vascular model - e.g. hypertension, ischemia, etc - and thus it will be possible
to verify the calibration procedure in case of pathological changes in the vascular system
which should affect the properties of the vessel as arteriosclerosis, cardiac hypertrophy stroke
and myocardial infarction. These pathologies can be caused by hypertension which can be
detected and examined in continuous measurement.

3.1 Physical Vascular Model Design

The blood vessels model is an idealized Wind-Kessel model. The Mock circulatory loop was
developed for in-vitro testing instead of human body. On the physical vascular model, the
hemodynamic parameters can only be adjusted by selecting appropriate vascular segments,
selecting the vessel material and adjusting the heart rate, systole-to-diastole time ratio, and
cardiac output. The Wind-Kessel model describes the relationships between momentary flow
and pressure depending on vascular resistance and compliance. It is not possible to directly
control systemic resistance, compliance and inertia of the vascular system within the model.

To clarify the description of the calibration procedure, the ideal model of the blood vessels
should be as close as possible to the real functioning of the vascular system in the human
body. As part of the optimization, the constants for the definition of the calibration procedure
become dependent variables on various factors of the vascular system, suggesting the physical
properties of the vessels, the compliance, resistance and inertia of the vascular system. With
these variable parameters of the vascular model showed in Figure 3.3 it is possible to person-
alize the whole model and thus set values defining various states, such as physical activity or
physiological changes of the vascular system due to the aging of the organism. [9]

In order to reproduce the blood flow in human body we used pulsatile pump (Harvard
Apparatus) which can simulate the heart. This pulsatile pump is used as external heart in
clinical practice and has three controllable parameters - stroke volume, heart rate and systole
to diastole time ratio. The another part of physical model is more variable and depends on use
of vessel segments. As a vessel segments we use tubes and containers to simulate whole human
circulatory system. Each vessel segment is described by its own inner diameter, wall thickness,
length and modulus of elasticity. These parameters have such influence on elasticity of vessels
and stored kinetic energy of blood flow expelled from heart. The potential energy stored in
artery walls in systole turns again into kinetic energy in diastole, this phenomenon is called
Windkessel effect. We mainly use silicone tubes because of the material properties, which are
closest to real blood vessels [164]. Containers are also an integral part of the vascular model,
which simulates the compliance of arterial tree. The first compliance chamber simulates
compliance of the aortic segment. Arterial reservoir simulates the amount of blood in arteries
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Arterial properties

Diameter of artery

Stiffness of artery

Thickness of artery wall
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Pulsatile pump options
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Stroke volume

Systole to diastole ratio

Liquid properties

Viscosity

Physical Vascular Model

Figure 3.3: Physical vascular model capabilities - configurable parameters.

and its given resistance and compliance. The venous reservoir works on the same principle,
but only for venous tree. The diagram of physical vascular model is shown in Figure 3.4.

Figure 3.4: Vascular model diagram with described components [164].

With this physical vascular model we are able to adjust many parameters for further
measurements and noninvasive blood pressure estimation. This Mock circulatory loop as a
close fluidic circuit will help to determine algorithm for calibration of the BP estimation. The
physical vascular model has limitation for measurement due to impossibility of use colored
particles in liquid for photopletysmography measurement. Also the mock circulatory loop
cannot handle the high pressure caused by constant vessel parameters with high values of
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pulsatile pump parameters. This pressure rise due to significant increase of systemic vascular
resistance cause the disconnection of arterial segments. Thus we need the device, which
controls the maximal pressure in whole circulatory loop. Considering the ideal conditions
where the parameters entering the Moens-Korteweg equation are constant, linear regression
can be used to determine the constant parameter of mentioned equation. If one of the input
parameters changes slightly, a new calibration is needed, so it would be useful to predict
parameter changes, and immediately implement that in calibration procedure to calculate
blood pressure from pulse wave transit time measurement. And based on the calibration
procedure, it will be possible to perform measurements on different respondents without the
need for user intervention to set the parameters or periodical recalibration using the inflatable
cuff method.

3.2 Digitally Controllable Vascular Model Parameters

The blood pressure can be divided into two components: constant and pulsatile. A constant
component as mean arterial pressure depends on heart rate, stroke volume and systemic
vascular resistance. A pulsatile component depends on the blood pressure wave propagation
as forward wave and reflected wave [2, 165, 166].

Figure 3.5: Vascular model diagram with electrically operated valve to control constant pres-
sure.

The peripheral resistance of Mock circulatory loop can be replaced by electric controllable
valve, which represent the baroreflex function of real human arterial system [167, 168]. In
simplicity it is a system which measures the constant blood pressure component and controls
the electric valve to maintain the stable constant component of the blood pressure. The
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position of electrically operated valve is shown in Figure 3.5 with the pressure sensor placed
on aortic segment.

In this part we were focused on constant blood pressure component, which is measured
by Argon DTX Plus™ pressure sensor and it is obtained by calculating moving average for
a window of 8 seconds. The mechanical part uses the brass spindle valve ½" with connected
closed loop Nema 17 stepper motor with sufficient torque. Based on valve parameters we
calculate the number of full steps needed to fully open the close spindle valve.

Start

Initialize PID
parameters and

Pressure setpoint

Initialize Closed loop
stepper motor

Read pressure
feedback

Calculate Error

Calculate
Proportional, Integral
and Derivative term

Calculate Output
Pulses

Send pulses number
to stepper motor

Limit output (prevent
overshoot)

End

No

Yes

Pressure
setpoint 

hit

Figure 3.6: Flowchart of baroreflex function within physical vascular model.

The spindle valve is connected to stepper motor by using designed shaft connector which
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is printed using additive manufacturing technology. And the stepper motor needs to be fixed
to valve to prevent the unwanted rotation instead of controlling valve closure.

The stepper motor was controlled by stepper driver connected to microcontroller. The
microcontroller processed the constant pressure component to drive a stepper motor by us-
ing PID (proportional-integral-derivative) control loop described in Figure 3.6, with negative
pressure feedback. The control system calculated the error function as the difference between
the moving average pressure using a time window of 7 seconds (average for at least 3 periods
of pulse wave) and the desired set-point pressure, which was set constant for the whole mea-
surement of 30 mmHg; due to limitations of our vascular model. At start of measurement, the
valve was homed using stall function of closed-loop stepper motor driver, and for full valve
closure it needed to use 13600 steps. Calculated steps for closing or opening of the stepper
motor is limited in the range from 0 to 13600 to prevent overshoot.

The effect of closing an electrically operated valve in a constant-parameter model will
result in an increase in system resistance. This modification of the bloodstream model will
bring the model closer to the real system and baroreflex function. By this modification, it
will be possible to digital control of the properties of the blood vessels model and thus create
various testing conditions for the data mining purpose.

3.3 Artificial Arterial Segment

Physical vascular model can be tuned using different properties of vascular segments. For this
thesis we chose mainly the elasticity of arterial segments. Thus we used the silicone material,
which had similar elastic modulus as human arteries and it was easily applicable into our
physical model. Second important parameter was the length of artificial artery, according to
the mean length of the thoracic aorta in the human body, which is approximately 300 mm
long [2]. The inner diameter of the artificial artery was set to 10 mm. Lastly we chose 3
values of arterial wall to find dependencies between elasticity and its influence on pulse wave
velocity.

We needed to create arterial segments with different properties to cover many tunable
parameters of whole physical vascular model. We were using 5 types of two compound silicone
material with different hardness 10 - 50 ShoreA, in steps of 10 ShoreA. Hardness precision
of used two compound silicone from Dawex Chemical is ±2 ShoreA. Consequently we used 3
arterial wall thicknesses of 1, 1.5 and 2 mm. By these tunable parameters we were finding
the method of creation consistent arterial segments. Firstly we used pressure molding of
mixed silicone in hot water for faster curing of material, this results wasn’t good, because
curing time of silicone was not sufficient. The next mold was created using 3D printing
SLA technology, but after testing we found, that UV curable resin mold affected the silicone
material and prevented the curing due to the substances it contained. Afterwards we create
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molds (Figure 3.7) for each arterial wall thickness using FDM method from PLA material,
which was smoothed to remove visible layers on silicon arteries. The core of the mold was
aluminun pipe with desired outer diameter of 10 mm. Our mold were designed with two holes
on each end, one for injecting liquid silicone material, and second on the other end for air
outlet from the mold.

Figure 3.7: Closed and opened 3D printed mold for artificial artery creation.

Before injection of silicone into mold, we needed to properly mixed two compounds of
silicon material based on same volume. After mixing the silicone compounds, a large number
of air bubbles appeared in the silicone, which had to be removed. We used vaccum chamber
for silicone degassing, because the bubbles could cause inhomogeneity of silicon arterial wall.
Prepared and degassed liquid silicone was injected in our prepared molds, where we used
special silicon separator, to ensure non-sticking of material to the mold, and for ease of
removing the final artificial arterial segments from closed mold. After injection, the molds
were stabilized for silicon curing for at least 7 hours. Finally the artificial arterial wall could
be removed from the mold and it was visually checked for any imperfections, furthermore the
arterial segments was pressurized with water to withstand higher pressure than in physical
vascular model is used.
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Chapter 4

Pulse Wave Sensors

Sensors for invasive blood pressure measurement on blood vessels model are used for sensing
the pressure pulse wave propagation. The main disadvantage of current vascular model is
impossibility of pulse wave measurement by photoplethysmography method, which is widely
used in clinical practice. In order to overcome the limitations of photopletysmography -
dependence on transillumination and light absorption - it is necessary to develop sensors
which are independent of optical properties of the tissues. In addition, in our physical model
of the vascular system, we can’t flow a liquid with colored particles because these could
damage the blood pump piston and, moreover we will face a difficulty to mimic the variability
of the light absorption by the particles. For sensing the volume pulse wave, special sensors
have been developed based on the measurement of the electrical capacity due to the change in
the volume of the dielectric in order to sense the pulse wave on the blood vessels model. The
change in dielectric occurs as a result of fluid pulsation on blood vessels model. This pulsation
is seen as a periodic change in vessel diameter. Capacitive pulse wave measurement can also
be used when using pure water or glycerol/water solution to simulate blood viscosity in a
vascular model. For the verification of newly developed capacitive sensor, the gold standard
pressure sensor is used and also optical measurement of vessel diameter.

4.1 Pressure Sensor

For pressure pulse wave sensing the ARGON DTX Plus™ pressure sensors are used. The
analog signal from pressure sensors is amplified by the instrumentation amplifier INA126
and then digitized using the analog-to-digital converters (ADC) of the microcontroller. The
ARGON DTX pressure sensor has Luer-Lock connector type, and it is connected on plastic
fitting which connects artery segments. On the sensor input a three-way valve is placed for
closing or opening the sensor input. The liquid can pass through the sensor, when the rubber
plug is opened. The purpose of this plug is to remove the air bubbles, which can distort
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the pressure value. The range of the used sensor is from −30 mmHg to 300 mmHg with the
nominal sensitivity 5 µV/V/mmHg. Sensor uses 4 wire connection. 2 wires are powered by
5V power supply and the other 2 wires are for measuring differential voltage of the resistive
pressure sensor.

For the sensor calibration the FLUKE DPM2Plus Universal Pressure Meter Tester was
used. The output voltage of the sensor is calculated by linear regression using multiple
values of pressure. The final equation for voltage to pressure conversion based on our sensor
calibration is shown in equation 4.1.

P [mmHg] = 0.735559 · U [mV ] − 533.28 (4.1)

4.2 Optical Sensor

For measuring the change in vessel diameter we used the Multi-Purpose CCD Laser Microm-
eter Keyence IG-028 with Amplifier and Main unit IG-1000. These sensors provide precise
measurement of vessel outer diameter. The coherent 660 nm laser beam of the optical trans-

Transmitter Receiver

Vessel

CCD

Edge

Edge

Figure 4.1: Cross-section of measurement setup using optical sensor with vessel placement
and illustrated outer diameter measurement between edges of vessel’s shadow.

mitter is emitted in direction of vessel, the shadow of the vessel is measured by CCD (Charge
Coupled Device) detector located in optical receiver shown in Figure 4.1. The accuracy of
optical sensor is described as repeatability of 5 µm for our measurement setup which use set-
ting distance of 50 mm, thus the smaller diameter change than 5 µm is hardly detectable. The
digital output value is transmitted by RS232 communication to PC (personal computer) and
synchronized with the other sensors. Maximal sampling frequency of optical sensor is just 100
samples per second, which is sufficient for data analysis and comparison of our new developed
capacitive sensor.
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4.3 Capacitive Sensor

The sensors for volume pulse wave measurement of blood vessels model using perspective
method of capacitive sensing. The volume pulse wave sensor with a high sensitivity has a
great potential in the field of wearable devices and medical health. Two types of capacity
sensors were developed and tested on blood vessel model, which is used for simulation of
pulse wave propagation with possibility of changes in vessel properties and many setups are
reached for testing different pulse wave propagation. For the signal processing, the wavelet
decomposition is used as low pass filter. The new developed capacitive sensor detects the
capacity change of pulsating liquid flow in vascular model. Data from capacitive sensor
are compared with our reference data from pressure sensors, which precisely measures the
pressure pulse wave propagation. The signal segmentation was used for both type of sensors
and statistical analysis was for determination the accuracy. The use of capacitive sensors is
promising since it can measure negligible diameter expansion of the vessel in the range of tens
of femtofarads. We can confirm the high precision measurement is dependent on environment,
which can cause the capacity change, but with proper shielding it can be eliminated.

The proposed electronic circuit for capacitive pulse wave measuring was chosen after thor-
ough search. The best properties were found on capacitive-digital converter AD7147. Capac-
itive probes for sensing the expansion of blood vessel of vascular model are connected directly
to chosen integrated circuit and we have avoided using long wires. Long wire are the source
of unwanted noise in the measured signal. Up to twelve capacitive probes can be connected
to the circuit.

The circuit for the measuring capacity uses 250 kHz excitation tri-state signal connected
to the active electrode of capacity probe. It compares the unknown capacity value between
active electrode and ground plane with the internal reference capacity using Σ-∆-based ca-
pacitance to digital converter. The output capacity values is read by microcontroller using
I2C communication protocol.

Two different types of capacitive probe were designed for the measurement. The first type
uses thin copper layer on 0.2 mm thin layer of glass-fiber material, which is used as inner layer
of printed circuit board. The probe on Figure 4.2 is flexible, so it can be wrapped around the
vessel [169, 170].

The sensor design is based on literature [171], where the copper plates geometries were
tested to obtain acceptable results. The geometry of the flexible sensor is modified to fit in our
physical model vessels. The dimension is set for the measured vessel, the vessel diameter is 12
mm, and the length of copper plates needed to be more, than the half of vessel circumference
(37, 7mm from Equation 4.2).

Ovessel = πdvessel = π · 12 = 37.7mm (4.2)
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Figure 4.2: The printed circuit board as a flexible electrode made from glass-fiber material
with thin copper layer.

The length of copper plates is set to 26.5mm with the 3mm space between them from
both sides, when the probe is wrapped around the vessel. Overall length of copper plates and
spaces is 59mm. The diameter of sensor is estimated in Equation 4.3.

dprobe = Oprobe

π
= 59

π
= 18.8mm (4.3)

It means there is a tolerance 3.2mm between the probe and the vessel for free movement of
the vessel. The width (W) of copper plate is estimated from the wave length of the pulse wave
in Equation 4.4. The average PWV being 3 m/s, and the sampling rate (fs) being 200Hz.
Pulse wave is sampled without duplicate samples.

W = PWV

fs
= 3

200 = 0.015m = 15mm (4.4)

Capacity of the sensor is estimated based on conformal mapping from real space as parallel
plate capacitor in the curve space. The curve space consists of two axes p and q related to
real axis (x and y) described in Equation 4.5 [172–175].

w = p + iq = f(x, y) + ig(x, y) (4.5)

The p and q are an axis in curve space. The connection of p axis related to the real space is
given by Equation 4.6.

p = arctan

[︃ 2ay

r2 − (x2 + y2)

]︃
(4.6)

Where x and y is the position on real axis and r is a radius of capacitor. The Equation 4.6
can be expressed as Equation 4.7 using cylindrical curve of sensor.

p = ±π

2 (4.7)
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The q axis related to the real space is expressed in Equation 4.8.

q = ln

[︃
sinθ

1 − cosθ

]︃
(4.8)

The θ stands for angle, related to the gap between edges. The conformal mapping is used to
convert capacitive probe from the real space into the parallel plate capacitors into the curve
space shown in Figure 4.3 [172, 174].

Figure 4.3: (a) capacitor plates in real space and (b) capacitor plates in curved space [174].

The gap between copper plates of developed electrode is 3mm, thus the θ value is 9◦. The
capacitance of parallel plates is shown in Equation 4.9.

C = Aϵ0ϵr

d
(4.9)

Where A is surface area of the plates, d is distance between plates, ϵ0 is permittivity of free
space, ϵr is the relative permittivity of used dielectric material and C is the capacitance. The
surface area A in curved space can be calculated from Equation 4.10.

A = 2z ln
(︃

sinθ

1 − cosθ

)︃
(4.10)

Where z is the width of sensor. Overall, the capacitive probe capacitance C is based on
Equation 4.11.

C = 2zϵ0ϵr

π
ln

(︃
sinθ

1 − cosθ

)︃
(4.11)

The second type of capacitive sensor uses two halves of copper pipe (pure copper DIN 1787)
with diameter 28 mm, and aluminum shielding. The cross-section is displayed on Figure 4.4.
This type of sensor is more rigid and easy swappable between different artery segments. The
main advantage of the rigid sensor is his shape stability and constantness of electrical field
for capacity measurement. The flexible probe can be flattened and thus the electrical field
can become much more complex. The width of rigid sensor is increased by 5mm based on
Equation 4.4, because the measured PWV is 4 m/s in average on the vascular model. With
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the thinner sensor we miss data due to undersampling. The diameter of the sensor is 28 mm
and it is larger than previous type of capacitive sensor because of the universal use on various
artificial artery diameter.

Figure 4.4: The cross-section of rigid capacity probe with the layer types. The active plate is
wired to cable and shield is connected to the shield of the cable.

4.4 Validation Measurement Setup

Two types of sensors are used for the measurement, capacitive and pressure, connected to our
designed printed circuit board with microcontroller. The optical sensor is connected directly
to the computer and data are synchronized. The sensors are placed as close as possible on
artificial artery segment showed on Figure 3.4. Measurement setup transmits data to the PC
using UART (Universal asynchronous receiver-transmitter) communication protocol. Power
supply is provided by external power adapter with DC voltage. Voltage range of power supply
is from 7 V to 12 V. Whole block diagram is shown on Figure 4.5. The optical sensor is used
for validating our newly developed capacitive sensing, because both methods are dependent
to vessel diameter value thus we can compare and validate our results. The pressure sensor
is used as gold standard for direct measurement of invasive artificial blood pressure in our
model. In that case we can also validate the new developed sensor with the method which is
currently used in medical practice for invasive continuous blood pressure measurement.
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Figure 4.5: Functional block of developed electronic circuit for measuring capacity and pres-
sure. It is connected via USB (Universal Serial Bus) to PC, where the measured data is
processed. Optical sensor is directly connected to PC.

4.5 Signal Processing

Measured data is directly stored in PC at a sampling rate 200 Hz and after measuring enough
values for the various settings of blood vessels model, the data is loaded into the Matlab for
entire signal processing showed on Figure 4.6. The pressure data is converted from voltage

Data
Acquisition

Baseline
removal

Low pass
filtration

Power
spectral
density

Correlation
coefficients

Figure 4.6: Steps of signal processing from measuring to evaluation measured data.

value to the pressure value using the equation 2.8. The raw values from capacitive sensors
are also converted to capacity values in femtoFarads using this equation 4.12 [176].

C[fF ] = (Craw − 32768) · 0.244 + offset (4.12)

Where Craw is the measured digital values, and offset is the capacity value of internal
reference with respect to capacity of used capacitive sensor. And C is the real capacity value.
The resolution of the sensor is 0.244 fF per least significant bit.

As a first step after recalculation to the values of the sensors we remove the baseline
by using a moving median filter with a temporal window of 500 samples. This filter can

60



robustly remove the isoline of our data to get only AC component of the signal. Then we can
apply our designed filtration algorithm as low-pass filter with cutoff frequency of 16 Hz with
the stopband attenuation of 100 dB. In this frequency spectrum we can analyze our useful
signals to get comparison of different sensor types because it is in range of plethysmography
frequencies [177].

After signal filtration we make an analysis of our signals using correlation coefficient
between signals in time domain and comparison of power spectral density in frequency domain.
The correlation coefficient is representing the relationship of both measured signals. We can
assume three types of conventional relationships, e.g. weak, moderate and strong. Strong
relationship is represented by coefficient 0.70 and higher. In case of coefficient > 0.90 we can
conclude that relationship is very strong. Moderate relationship would be for coefficient in
range from 0.40 to 0.69. Weak relationship is for coefficient < 0.39. The correlation coefficients
near to zero (< 0.10) has negligible relationship [178].

4.6 Experiments and Results

The theoretical capacity of cylinder shaped flexible electrode based on Equation 4.11 is 215 fF
using the relative permittivity of air as dielectric material (ϵr = 1) inside the capacitive
probe. Real measured value of the flexible electrode is 337 fF. The calculated capacity of
rigid capacitive probe is 534 fF using also the ϵr = 1. The measured value of that probe
is 1114 fF. The difference between theoretical value and measured value is not significant
on such low capacity and it can be compensated on the offset value of Equation 4.12. The
higher values of real measurement are due to used protective layer on flexible PCB and plastic
coating of copper electrode of rigid sensor. This thin layer which protects the copper probe
from oxidation caused the rise of capacity because of increased relative permittivity. This
values are also very dependent on little changes of environment conditions as temperature,
humidity of the air.

The pulse wave is measured with 9 combinations of the parameters from the Table 4.1.
Each measurement lasts 10 minutes long, so we captured 120000 samples from pressure

sensor and capacitive sensor, that means we obtain from 400 to 800 pulse waves depending on
the heart rate parameter of the vascular pump. The vascular pump controllers are continuous
and linear, thus we can set for further measurement different values and the values can be
changed continually during the data acquisition. Unfortunately, due to basic potentiometers
used on the controller, we are unable to precisely control and set exactly the same model setup
parameter for successive measurement. The real calculated heart rate from power spectral
density (PSD) is shown in last column of Table 4.1. From the calculated heart rate we found,
that the precision of pump controllers is really unsatisfying.
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Table 4.1: In total the 9 combinations of tunable parameters are measured.

Stroke volume (ml) HR (Heart rate) (bpm) HR from PSD (bpm)
10 40 48
10 60 83
10 80 113
20 40 38
20 60 75
20 80 104
30 40 34
30 60 62
30 80 87

Firstly, the initial experiment is comparison of different capacitive sensor type, the flexible
and rigid.

Signal quality of flexible capacitive sensor is dependent mainly on stroke volume setting of
the pulsatile blood pump. At low stroke volumes, the pulse wave is hardly detected (Figure
4.7a), we are unable to detect any pulse wave. With the rising stroke volume, the pulse wave
is more visible. Whereas the pulse wave measured by the rigid sensor is more visible. Based
on results from the first experiment we decided to use in next experiments the second type of
sensor - the rigid one.

The rigid sensor also proves to be easier to place on the arterial segments, because the
two halves of the sensor can be used as clamp while the flexible one needs to be fixed on
artery using external mold and the relocation is difficult. From the Figures 4.7a to 4.7c we
can clearly see the effect of stroke volume change in rising amplitude.

In the second experiment we compare our developed rigid capacitive sensor with the
pressure sensor on Figure 4.8. The pressure sensors are used as a gold standard for whole
measurement to compare output signal of capacitive sensor with the reference. The volume
pulse wave measured by capacitive sensor has similar changes with the pressure pulse wave.
Also the directly measured arterial segment diameter by optical sensor is used for further
comparison.

The power spectral density (PSD) is shown for each measured heart rate value on stroke
volume of 30 ml on Figures 4.9a to 4.9c for comparison. The power spectral densities of
all other measurement setup are approximately same, but it differs in peak location due
to inaccuracy of set parameters on the pulsatile pump. First and also the highest peak of
PSD represents the frequency of heart rate. This value was converted from Hertz to more
conventional beats per minute and it is shown as PSD HR value in plot title.

For comparison in time domain we use correlation coefficient between our measured sig-
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(a) Stroke volume 10 ml and heart rate 60 bpm
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(b) Stroke volume 20 ml and heart rate 60 bpm

Capacitive sensor comparison
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(c) Stroke volume 30 ml and heart rate 60 bpm

Figure 4.7: Comparison of flexible and rigid capacitive sensor and its raw and filtered wave-
forms on different stroke volume setup.
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Sensor comparison
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Figure 4.8: Measured waveform comparison for each sensor type - measurement sample of
heart rate 40 bpm and stroke volume 20 ml.

Table 4.2: Correlation coefficient between all sensors of all measured settings

Measurement C-P1 C-O2 P-O3

SV=10 HR=40 0.6328 0.0059 0.0730
SV=10 HR=60 0.7734 -0.4311 -0.5595
SV=10 HR=80 0.7505 -0.1775 -0.0899
SV=20 HR=40 0.9415 0.8532 0.9184
SV=20 HR=60 0.9681 0.7873 0.8263
SV=20 HR=80 0.9243 0.6110 0.6684
SV=30 HR=40 0.9724 0.5952 0.6176
SV=30 HR=60 0.9903 0.6352 0.6738
SV=30 HR=80 0.9877 0.9452 0.9182

1 Capacitive and pressure sensor.
2 Capacitive and optical sensor.
3 Pressure and optical sensor.

nal. The results are shown in Table 4.2 where we can observe, that pressure and capacitive
measurements have very strong relationship at higher stroke volumes. With the lowest stroke
volume measurements, the relationship of both mentioned sensors are moderate to strong.
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Figure 4.9: Power spectral density comparison of used sensors with heart rate values and
frequency obtained from PSD.
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The comparison of capacitive and optical sensor has such variability of stroke volumes of
20 ml and 30 ml. With the lowest stroke volume, the optical sensor cannot detect the neg-
ligible change of diameter, thus the relationships of optical sensor to other types are quite
weak. The change in diameter for stroke volume of 10 ml is about 10 µm which is close to
the minimal resolution of the optical sensor. The stroke volumes of 20 ml provides diameter
change of 100 µm thus the higher stroke volumes has stronger relationship with both sensors.

From the results of time and frequency domain we find that the capacitive sensor is di-
rectly comparable to pressure sensor and we conclude that the optical sensor is not precise
enough. Pressure measurement with ARGON DTX pressure sensors is very precise, so the
pressure values are considered accurate without systematic errors for the invasive blood pres-
sure measurement.

4.7 Discussion

Experimental results show that our proposed capacitive sensor is suitable for non contact pulse
wave measurement on physical vascular model. The capacitive measurement is very precise
but very sensitive to environment noise. The noise can be reduced by using better shielding
of capacitive sensor its sensor wires. Principle of capacitive measurement is simple, but the
accuracy can be affected by external conditions of humidity, temperature or proximity of
capacity coupled materials. Whole measurement is done in stable and controlled environment
within 2 hours with room temperature 22 degrees Celsius and humidity level of 50 %, thus
the environmental conditions don’t cause significant changes in our measurements. But we
must avoid the capacitive coupling that could occur with the experimenter’s body.

First version of capacitive sensor, the flexible electrode without shielding signal, is too
much sensitive to noise. Thus we proposed an updated version of our capacitive probe. By
the general observation on the overall setup of physical vascular model and results of our
two types of capacitive sensors we reached the fact that rigid capacitive sensor provides much
better results than the flexible sensor. Design of second capacitive sensor is greatly improved to
obtain less noisy signals. Our filtered signals are very similar to the pressure pulse waves ones.
Further analysis in time and frequency domains confirms the accuracy of newly developed
sensors in comparison of our gold standard measurement. Our gold standard is the pressure
pulse wave measurement with pressure sensors, which are commonly used in medical practice
for continuous invasive blood pressure measurement. From our results we have found, that the
optical sensors can measure the outer diameter of vessels, but the accuracy is not adapted to
measuring the pulse wave on physical vascular model due to negligible change of diameter due
to using low stroke volumes. As can be seen on our power spectral density plots (Figure 4.9),
the capacitive sensor carries more noise. In future use we want to make measurements directly
on human body e.g. on wrist or ankle, but we need to eliminate stray capacitance of human
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body, which strongly affects the measurement. This could be done through recalibration of
nominal sensor capacity and followed by relative measurement.

The dual-plate capacitive sensor is not novel nor innovative measurement principle but
the application in biomedical sensing of volume pulse wave on blood vessel model. In our con-
ditions the capacitive sensor is an only option how to measure volume pulse wave on artery
model because of lack of blood cells which can absorb the light and then the photoplethysmog-
raphy is not suitable for such measurement. Also the repeatability test of the measurement
cannot be done due to impossibility of set exactly same properties of blood pump due to
continuous parameter settings. From our literature review, we found many applications of
capacitive sensor in industrial applications, mainly for measuring two-phase flow, but most of
these capacitive electrode designs and layouts are not suitable for our purpose. Thus we use
our findings to develop new capacitive probe, which suits our physical vascular model. In this
manuscript we compare different set up of sensor, because we need such type of sensor for
further development in field of continuous noninvasive blood pressure estimation. This capac-
itive sensing technique is also feasible for use in industrial sector for measurement of pulsatile
flow of liquids in hose. And this correlation with pressure sensor we can utilize for indirect and
contactless inner hose pressure measurement. The susceptibility to environmental conditions
can be controlled through calibration and controlling the temperature and moisture during
the measurement.

4.8 Conclusion

Our newly developed capacitive sensors is satisfying, it produces a dynamic signal which is
strongly correlated with the one from the gold standard pressure sensor. The correlation
coefficient of measurements with lowest stroke volume is strong (about 0.70), but with higher
stroke volumes the correlation coefficient is very strong (cca 0.95). That means, the larger
expelled volume makes the larger change in pressure and the dielectric volume. Also, the
electronic circuit for capacity-to-digital conversion should be placed as close as possible on
the capacitive sensor to reduce noise on the analog side. The optical sensor, which measures
only the diameter change is not satisfactory for our measurements, firstly we reach the limits
of resolution and secondly the sampling limit is only 100 sps. These limitations are also visible
in our analysis, where the correlation coefficient between optical sensor and other sensor is
much weaker, than the capacitive-pressure pair. Thus we conclude, that our first thoughts
about similarities of capacitive and optical sensor was wrong.

Despite its sensitivity, our sensor presents some limits when measuring in real environment.
A little change in humidity, temperature can cause significant capacity changes in measured
vessel. With the capacitive sensor improvements we would be able to measure this capacitive
changes on humans, where we cannot use conventional photoplethysmography sensors.
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Chapter 5

Experiment

5.1 Methods of Pulse Wave Velocity estimation

The dependency of vessel elasticity was estimated thanks our physical vascular model [179–
181]. Thus, we can test the proposed method on a vascular model, with stable measurement
conditions, before to apply it directly to a human body. Our ideal Wind-Kessel model can
be tuned by Harvad Apparatus pulsating blood pump setting of heart rate, stroke volume
and pulsatility. Further tuning could be achieved using various types of hoses from different
materials and reservoirs [179, 180]. Every single parameter change can affect the shape of the
pulse wave; thus, we choose the dependence of vessel stiffness on the shape of the pulse wave
and its effect on systemic vascular resistance.

For our experiment, we used previously created artificial artery segments to obtain such
variation of measurements using different properties. The pressure and capacitive sensors
were used for data acquisition, which were placed on artificial artery segment in the same
places for each measurement setup. The pressure sensors were placed on each end of artery
segment, the second type of sensor, the capacitive one, was placed 5 cm from each end as
shown in the Figure 5.1. [179]

Data were acquired and preprocessed directly on the microcontroller (STM32, ST Micro-
electronics), which synchronizes data from the pressure analog input and digital capacitive
sensor. One of the pressure sensors was also used as a pressure feedback for a digitally con-
trollable valve. All calculations are performed in real time within the microcontroller and
the acquired data at a sampling rate of 200 samples per second are transferred to the PC

Figure 5.1: Sensors placement on artificial arterial segment.
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Table 5.1: Possible tunable parameters for our experiment.

Pump Setup Arterial segment

Stroke volume (ml) Heart rate (bpm) Wall thickness (mm) Hardness (shoreA)

10 40 1 10

20 60 1.5 20

80 2 30

40

50

via UART. At least 15 minutes for each combination of artificial arterial segment and pump
settings from the table 5.1 were acquired. In total, 90 measurements were performed.

All measured data were loaded into the Matlab environment for complete signal processing
shown in Figure 5.2. At the first step, the baseline was removed using a high pass zero phase

Data acquisition Baseline removal Lowpass filtration Normalization

Differentiation Fiducial point
detection

Pulse wave
feature calculation

Input data for fitting
models

Figure 5.2: Processing flow diagram for measured data.

digital filter with cutoff frequency 0.2 Hz [182], which removes only the constant component
identified as a maintained pressure of 30 mmHg that is not significative for future pulse wave
analysis. The following low pass zero phase digital filter was adaptively selected by Welch’s
power spectral density estimation of each signal to ensure a minimum of 4 harmonic frequencies
[167], which are the most significant in our analysis because the other harmonic frequencies
contain mostly noise. That means, we used in total 3 cutoff frequencies for each pump heart
rate values. The cutoff frequencies were 8Hz, 6Hz and 3Hz. The next step for pulse wave
analysis we needed to extract features from each pulse wave by identifying fiducial points on
the pulse wave and its derivative as these points provide important information for further
analysis. The following fiducial points was selected based on literature search [183–185]:

• the foot of pulse wave, the last minimum before the systolic peak, and it is considered
the beginning of the pulse wave,
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• the systolic peak, is based on blood ejection from the left ventricle (pump in our
case), it is the result of the forward wave traveling the arterial tree and a backward
wave returning to the heart from the reflection sites,

• rising steep, the point of maximum upslope on first derivative,

• the falling steep, first local minimum after maximum upslope on first derivative,

• the dicrotic notch, small dip or notch that appears on the arterial pressure waveform
during the cardiac cycle.

All mentioned fiducial points (Figure 5.3) were crucial in understanding the pulse wave
and extracting major features for further analysis.

Figure 5.3: Fiducial points detected on pulse wave.

From fiducial points we can calculate other features described in [182] as shown on Figure
5.3.

• Pulse-to-pulse interval, characterizes stability of our vascular model,

• Crest time, time difference between the pulse onset and the first zero-crossing of the
pulse wave derivative,

• Systole time, time difference between foot and falling steepest point,

• Pulse pressure, amplitude between foot and systolic peak of pulse wave.

Acquired data were normalized to amplitude range from 0 to 1, and fiducial points were
automatically detected by zero-crossing detector applied on first, second, and third derivatives
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[182, 186, 187]. Zero-crossing is the current method to localize the slope change points, but
it needed to be tuned to detect certain fiducial points.

Afterward we calculated the pulse pressure from data before amplitude normalization and
calculated the Crest time and the Systole time. The influence of these features was tested for
statistically significant relationships between tunable parameters and calculated features.

The multiple linear regression model was fitted to describe the relationship between fea-
tures and five independent variables in Rstudio. Regression models are validated using F-tests,
that linear regression model output variable can be represented as a function of predictor vari-
able, and partial t-tests represents the significance of predictor variable in fitted regression
model. And the R2 statistic provides a measure of how well the model fits the actual input
data.

Further work for hardness estimation had two directions, linear regression and fuzzy sys-
tem, in both methods we used the same input data. We fitted the regression model for

Linear regression

Adaptive Neuro-
Fuzzy Inference

Systems

Input parameters

Stroke volume

Heart rate

Wall thickness

Crest time

Systole time

Pulse pressure

R2 74.1%

R2 98.7%

ShoreA

ShoreA

Figure 5.4: The 2 methods used for hardness ShoreA estimation based in input parameters.

hardness using pulse wave features and other directly measurable parameters from our exper-
iment setting as predictors shown in Figure 5.4.

Second approach to estimate hardness values based on our predictors was Adaptive neuro-
fuzzy inference system (ANFIS), which is type of machine learning algorithm that combines
fuzzy logic and neural networks to create highly accurate predictive models. In our case,
ANFIS architecture based on the Takagi-Sugeno model in Matlab was trained using 75% of
measured dataset as input and the remaining 25% used for system validation.

Number of epochs were set to 30 and input data measurement order was randomized to
limit learning on the input parameter patterns due to alphabetical order of input data and
its names. Architecture of ANFIS consists of five layers [188–191]:

1. Input layer - 6 input variables represented by membership functions

2. Fuzzy inference layer - generates the fuzzy rules
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3. Normalization layer - computes the weights of each rule

4. Defuzzy layer - combines all rules to generate single output variable

5. Output layer - final output of the ANFIS model

The ANFIS was trained by hybrid learning algorithm using backpropagation and least-squares
estimation. The least squares estimation was used to update parameters in layers 2 and 3 and
backpropagation was used in layers 4 and 5 to update the parameters of the neural network.

Both methods for hardness estimation were compared using coefficient of determination.
These models were further used for estimation of the pulse wave velocity based on conversion
the hardness value to elasticity described by founded 5 models from literature review [192–
196]. The elasticity values were fitted in Moens-Korteweg equation 2.4 to obtain estimated
PWV. Further work is based on found models described in Table 5.2.

Table 5.2: Conversion models from shore to Young’s modulus for silicone material.

Model Young Modulus (E) Reference

DMA 0.2354 · e0.0657ShA [194]

Gent 0.0981(53+7.62336ShA)
0.137505(254−2.54ShA) [192]

RDA 0.1611 · e0.058ShA [194]

Ruess e0.0235ShA−0.6403 [194]

Secant 0.1614 · e0.0541ShA [194]

From the conversion models we convert our theoretical values based on used hardness
level (10 - 50 ShoreA) of silicone material, and also for hardness from regression and fuzzy
estimation. These values were compared after fitting of PWV equation 2.4.

The last step of our experiment was the verification measurement of pulse wave velocity on
our physical vascular model with higher sample rate. We used only pressure sensor, because
the capacitive measurement is limited to only 200 samples per minute. With the pressure
sensors we can reach sample rate of 2000 samples per second, which were sufficient to measure
pulse wave delay between two pressure sensor and known distance of 30 cm. This measured
values of PWV were compared with estimated values from our models. In first comparison,
we calculated the difference between estimated PWV value from regression and fuzzy model
with theoretical calculation. Further comparison is done over difference of regression, fuzzy
and theoretical PWV values to measured PWV values. Thus we can validate our prediction
models to observable pulse wave velocity. This predicted PWV values were statistically tested
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normality using Shapiro-Wilk normality test and for significance difference of mean absolute
error from 0 using Student’s t-test.

Data from all sensors were used as separate input, thus all the estimations were based
only on single sensor. Just the measured pulse wave velocity (PWVM ) used time difference
from sensor pair with known distance.

5.2 Analysis of experimental results

Our physical vascular model was directly tunable for pump parameters shown in the Table 5.1,
and these parameters could be tuned continuously whilst we used discrete values mentioned
in Table 5.1. The serious limitation was to modify the arterial segments that were created
using values similar to those in the human body despite the fact that we only use discrete
steps. Our artery segments were without full control as vasodilatation and vasoconstriction
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Figure 5.5: Comparison of the capacitive (volume pulse wave) and pressure sensor (pressure
pulse wave) signals.

influenced by human psychical and physical state, which really affects the systemic vascular
resistance. The 15 artificial artery segments were connected separately for each measurement
session, which takes at least 15 minutes to obtain enough pulse waves for further analysis.
The acquired data were noisy, so filtration was needed (Figure 5.5).
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For the next step, automatic detection of fiducial points was done using the conventional
method proposed in literature review [182, 186, 187]. The success rate of detections of the
systole peak and foot was 99.93% with a maximum absolute error 1 detection per measurement
and sensor. For steepest point detection based on zero-crossing of the second derivative, the
success rate was a little less than the systole peak and foot detector, that is 99.84%. The
dicrotic notch moment was detected using a non-conventional method, because the pulse wave
shape on our vascular model differs from the real human body, thus we used the alternative
detection from the third derivative of the pulse wave as the first zero-crossing after the systole
peak [197]. The efficiency of this detection was only 78,01% (for count of dicrotic notches
over a 10-minute-long signal). All identified fiducial points were double checked by human
operator, thus we decided to continue with the systole peaks, feet, steep points, and omit all
dicrotic points, because they were not correctly detected. Any inaccuracies in detection were
corrected manually, but only for one measurement setup (stroke volume 10ml, heart rate 80
bpm, hardness shore A 10 and wall thickness 1mm), where the backward pulse wave appears
at foot of pulse wave in two sensors (C1 and P1). The correction was checked by three experts.
The results of corrections - before and after - are shown in Figure 5.6.
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Figure 5.6: Automatic fiducial point detection after corrections.

For further analysis of calculated time features (crest time, systole time), we normalized
values using the real measured heart rate. This step was taken to ensure that the time features
were adjusted for variations in heart rate, allowing for more accurate and reliable comparisons
between different measurement setups. Since the vascular model operates with continuous
settings, it is not feasible to set the same heart rate for all measurements. Normalization
was done as a percentage of the absolute feature time per measured cycle. Following this
normalization, we were able to make direct comparisons between all the measurements. Our
analysis revealed that higher shore values were associated with longer systole times, suggesting
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that shore hardness is a significant factor in our model, as supported by the boxplot analysis
shown in Figure 5.7.
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Figure 5.7: Systole time dependency on artificial artery hardness (HR=60 bpm, SV=20 ml,
W=2 mm).

The Figure 5.7 illustrates how the hardness of the silicon material used affects the shape
of the pulse wave, as measured by the normalized systole time and its variance, using a heart
rate of 60 bpm, stroke volume of 20 ml, and wall thickness of 2 mm.

Statistical analysis was performed on means of detected features of Crest time, Systole
time, and pulse pressure, and linear regression models were fitted for each feature. The
features depend on pump and artificial artery parameters for every measurement; therefore,
our independent variables were chosen as stroke volume (SV), heart rate (HR), shore A
hardness (ShA) and wall thickness (W). Furthermore, the sensor type (capacitive P=0 or
pressure P=1) was set as the reference category because we were unable to directly compare
the volume pulse wave measured with the capacitive sensor and the pressure pulse wave
measured with the pressure sensor. Before fitting regression models, outliers were identified
using the Cook distance method. As a result, 7 measurements were removed from a total
of 90. Without the removal of these outliers, the regression models were found to be highly
distorted, leading to significantly reduced accuracy.
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5.2.1 Crest time

Estimated regression coefficient of the regression model is described by Equation 5.1:

CT = 29.78428+0.31864 ·SV +0.04451 ·HR+0.06005 ·ShA+1.21577 ·W +0.56250 ·P (5.1)

The results of the F statistic indicate the relationship between our predictor and the
response variables, which was found to be 130.1, with a p-value: «0.05. These results show
that at least one of the coefficients is not equal to zero, thus a significant relationship between
the predictor and response variables exists. Further t-test is shown in the table 5.3.

Table 5.3: Statistical result for Crest time (CT).

Crest time Estimate Standard Error t-value p-value
(Intercept) 29.784 28 0.522 96 56.954 ≪0.05
SV 0.318 64 0.015 90 20.038 ≪0.05
HR 0.044 51 0.004 89 9.108 ≪0.05
ShA 0.060 05 0.005 84 10.288 ≪0.05
W 1.215 77 0.200 11 6.076 ≪0.05
P 0.562 50 0.158 67 3.545 ≪0.05

The p-values for all predictor variables are very close to zero, indicating a highly significant
result at a 95% confidence level. Therefore, we can conclude that all predictors are suitable
for the regression model and there is a relationship between our model settings and the Crest
time feature. The multiple R-squared statistic for the Crest time regression model is 66.6%
and adjusted R2 is 66.1% which is more suitable for comparing models with different numbers
of independent variables. In Figure 5.8 we can see the dependency of used material ShoreA
and stroke volume to crest time feature.
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Figure 5.8: Visualized regression model for Crest time feature divided by sensor type.

5.2.2 Systole time

Estimated regression coefficient of the regression model is described by Equation 5.2:

ST = 32.27598+0.39709 ·SV +0.18899 ·HR+0.10372 ·ShA+2.13448 ·W +0.92754 ·P (5.2)

The results of the F statistic suggest a relationship between our predictor and the response
variables, with a value of 279.9 and a p-value of «0.05. This indicates that at least one of the
coefficients is not equal to zero, and a model can be fitted. Additional t-tests are presented
in the table 5.4.

The p-values obtained from the regression model are very close to zero, thus all predictor
variables are significant at the 95% confidence level. Based on this, we can conclude that all
predictors are suitable for the regression model and there is a significant relationship between
our model settings and the systole time feature. The multiple R-squared statistic for the
Crest time regression model is 81.1% and adjusted R2 is 80.8%. The dependency of ShoreA
and stroke volume on systole time is shown in Figure 5.9.
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Table 5.4: Statistical result for Systole time (ST).

Systole time Estimate Standard Error t-value p-value
(Intercept) 32.275 98 0.729 42 44.249 ≪0.05
SV 0.397 09 0.022 18 17.903 ≪0.05
HR 0.188 99 0.006 82 27.724 ≪0.05
ShA 0.103 72 0.008 14 12.740 ≪0.05
W 2.134 48 0.279 11 7.647 ≪0.05
P 0.927 54 0.221 31 4.191 ≪0.05
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Figure 5.9: Visualized regression model for Systole time feature divided by sensor type.

5.2.3 Pulse pressure

Estimated regression coefficient of the regression model is described by Equation 5.3:

PP = 18.61510+1.63861 ·SV +0.07647 ·HR−0.25294 ·ShA−7.05456 ·W +6.34175 ·P (5.3)

The results of the F statistic indicate the relationship between our measurement settings
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and the calculation of pulse pressure, with a value of 32.64 and p-value of «0.05. The corre-
sponding t-test values are presented in the table 5.5.

Table 5.5: Statistical result for Pulse Pressure (PP).

Pulse pressure Estimate Standard Error t-value p-value
(Intercept) 18.615 10 5.142 88 3.620 ≪0.05
SV 1.638 61 0.156 38 10.478 ≪0.05
HR 0.076 47 0.048 06 1.591 0.112 56
ShA −0.252 94 0.057 40 −4.407 ≪0.05
W −7.054 56 1.967 91 −3.585 ≪0.05
P 6.341 75 1.560 36 4.064 ≪0.05

Based on the p-value analysis, it appears that the heart rate (HR) variable is not sta-
tistically significant at the 95% confidence level, with a p-value of 0.11255. Therefore, we
have considered removing this variable from the model to create an updated regression model
Equation 5.4.

PP∗ = 22.73906 + 1.65017 · SV − 0.24763 · ShA − 6.98267 · W + 6.34175 · P (5.4)

The new regression model F statistic value is 39.98 with p-value of «0.05.

Table 5.6: Statistical result for updated Pulse Pressure (PP*).

Pulse pressure * Estimate Standard Error t-value p-value
(Intercept) 22.739 06 4.452 39 5.107 ≪0.05
SV 1.650 17 0.156 58 10.539 ≪0.05
ShA −0.247 63 0.057 44 −4.311 ≪0.05
W −6.982 67 1.971 99 −3.541 ≪0.05
P 6.341 75 1.564 01 4.055 ≪0.05

Based on the t-test p-values from the table 5.6, we have found that all parameters are
statistically significant at the 95% confidence level. However, the R2 statistics value of 32.8%
is considerably low, that only about one-third of the variance found in the pulse pressure
feature can be explained by the predictor variables. This result is shown in Figure 5.10.

The reason for the visible slope difference between the capacitive and pressure sensor
measurements is due to the nature of the variable being measured. With a stiffer artery
segment, there is more pressure rise than diameter expansion, which affects the shape of the
volume pulse wave. The capacitive sensor measures the volume of dielectric material, which is
directly proportional to the cross-sectional area of the artery. In contrast, the pressure sensor
measures the pressure changes in the artery, which are influenced by both the volume and the
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Figure 5.10: Visualized regression model for Pulse pressure feature divided by sensor type.

elasticity of the artery. As a result, the slope of the pulse wave measured with the capacitive
sensor is different from the slope of the pulse wave measured with the pressure sensor.
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5.3 Artificial Artery Hardness Estimation

Based on our analysis of experiment results we revert the approach to find hardness (ShA)
based on detected features and stroke volume (SV), heart rate (HR) and wall thickness (W).
Because all parameters except of ShA are easily measurable on our physical model, and also
in further experiment in vivo.

5.3.1 Linear regression

First method used stroke volume, heart rate, wall thickness, pulse pressure and systole time
to estimated the hardness values using linear regression model. Regression model for hardness
ShoreA is described in Equation 5.5:

ShA = 42.50689−24.80629·ST +1.07553·PP −1.77336·SV −0.09323·HR−7.88986·W (5.5)

The results of the regression model F statistic suggest a relationship between our predictor
and the response variables, with a value of 57.43 and a p-value of «0.05. This indicates that
at least one of the coefficients is not equal to zero, and a model can be fitted. Additional
t-tests are presented in the table 5.7.

Table 5.7: Regression model for hardness.

Hardness (ShoreA) Estimate Standard Error t-value p-value
(Intercept) 42.506 89 3.847 36 11.048 ≪0.05
ST −24.806 29 8.482 70 −2.924 ≪0.05
PP 1.075 53 0.070 37 15.284 ≪0.05
SV −1.773 36 0.164 48 −10.782 ≪0.05
HR −0.093 23 0.033 61 −2.774 ≪0.05
W −7.889 86 1.114 26 −7.081 ≪0.05

The p-values obtained from the regression model are very close to zero, thus all predictor
variables are significant at the 95% confidence level.

Based on this, we can conclude that all predictors are suitable for the regression model
and there is a significant relationship between arterial wall material hardness and other easily
measurable predictors. The multiple R-squared statistic for the ShA regression model is 74.9%
and adjusted R2 is 73.6% which we considered as good for linear model.
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5.3.2 Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system was learned on both measured datasets using 75% of

Stroke volume (56)

Heart rate (56)

Wall thickness (56)

Crest time (56)

Pulse pressure (56)

Systole time (56)

Hardness (56)

Output

ANFIS (56 )
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Figure 5.11: ANFIS model description for input and output member functions.

measured data for the input. ANFIS model is described in Figure 5.11 and it contained 56
rules of the Takagi-Sugeno type, which were determined using ANFIS in accordance in Section
5.1. Remaining 25% of dataset were used for system validation. To evaluate the performance
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Figure 5.12: Comparison of testing dataset from ANFIS output to reference values.
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of the ANFIS model, the validation dataset was compared to ANFIS output, and the R-
squared coefficient of determination was calculated. Validation dataset was compared to
ANFIS output (Figure 5.12).

The R2 parameter of ANFIS model is 98.7% and that represents the proportion of the
variance in the dependent variable that is explained by the input variables.

5.4 Hardness to elasticity conversion

Based on literature review, we found five empirical models (Table 5.2) for conversion of silicone
hardness material parameter to Young’s modulus [192–196]. We performed calculations using
these model to determine Young’s modulus values of the artificial arteries, that we used in
our physical vascular model. Our analysis (Table 5.8) revealed that the calculated elasticity

Table 5.8: Conversion models from Hardness to Elasticity.

Hardness
(shoreA)

Elasticity (MPa)

DMA Gent RDA Ruess Secant

10 0.45 0.41 0.29 0.67 0.28

20 0.88 0.73 0.51 0.84 0.48

30 1.69 1.14 0.92 1.07 0.82

40 3.26 1.69 1.64 1.35 1.41

50 6.29 2.46 2.93 1.71 2.41

values of arterial segment are close to the one observed in the human body, which is between
0.1 and 2 MPa as physiological values [2]. In humans, higher elasticity values correspond to
stiffen artery leading to vascular pathologies, namely atherosclerosis.

This suggests that our model may be a useful tool for investigating the mechanical prop-
erties of arteries and their role in various diseases. The elasticity values showed in Table 5.8
were evaluated, to find best conversion model based on our measurements.

5.5 Pulse Wave Velocity Calculation

Pulse wave velocity calculated based on Moens-Korteweg equation 2.4 using converted values
of our arterial segment hardness shown in Table 5.9 for each ShA to elasticity conversion. As
another input we used density of water in vascular model equal to 997 kg/m3, which were
similar to density of blood, vessel diameter was 10 mm. After calculation we got also the real
and observable values as in human body (5-20 m/s) [2]. The increasing PWV values over
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20 m/s could be consecutive of pathologies [2], which we can also simulate by stiffer arterial
segments.

Table 5.9: Theoretical calculation of Pulse Wave Velocity (PWVT ) based on used silicon
material hardness.

Wall thickness

(mm)

Hardness

(ShoreA)

PWVT (m/s)

DMA Gent RDA Ruess Secant

1

10 6.74 6.42 5.36 8.17 5.27

20 9.36 8.56 7.17 9.18 6.90

30 13.00 10.69 9.58 10.33 9.04

40 18.05 13.00 12.80 11.62 11.85

50 25.07 15.67 17.11 13.06 15.54

1.5

10 8.25 7.87 6.57 10.00 6.45

20 11.46 10.48 8.78 11.25 8.45

30 15.92 13.09 11.73 12.65 11.08

40 22.11 15.92 15.68 14.23 14.52

50 30.71 19.19 20.96 16.00 19.03

2

10 9.53 9.08 7.59 11.55 7.45

20 13.24 12.10 10.14 12.99 9.76

30 18.38 15.12 13.55 14.61 12.79

40 25.53 18.38 18.11 16.43 16.76

50 35.46 22.16 24.20 18.48 21.97

To verify the accuracy of PWV estimation using above approaches, we used dataset mea-
sured with sampling frequency of 2000 Hz. As we are not able to use such frequency due
to limitation of capacitive sensing. New validation measurement was performed to the same
settings of vascular model as shown in Table 5.1. The next step was to compare the PVW
values calculated from the ShA values estimated by the regression model (PWVR) and the
fuzzy model (PWVF ). Then the values are compared with the measured PWV values on the
model (PWVM ).
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Table 5.10: PWV absolute error of difference PWVR and PWVF to PWVT .

Model Method Mean ± STD (m/s)

DMA
Regression -0.17 ± 0.83

Fuzzy 0.05 ± 0.21

Gent
Regression -0.19 ± 0.92

Fuzzy 0.06 ± 0.24

RDA
Regression -0.14 ± 1.01

Fuzzy 0.05 ± 0.19

Ruess
Regression -0.08 ± 0.48

Fuzzy 0.02 ± 0.10

Secant
Regression -0.29 ± 1.36

Fuzzy 0.09 ± 0.38

From Table 5.10 we assumed that absolute error of Fuzzy method to PWVT showed smaller
standard deviation and mean values were closer to 0 than Regression method.

Differences between estimated pulse wave velocity and PWVT values were statistically
tested for normal distribution using Shapiro-Wilk normality test with 95% confidence level.

Table 5.11: Results of Shapiro-Wilk normality test of difference between PWVR and PWVT .

Shapiro-Wilk DMA Gent RDA Ruess Secant
W 0.9640 0.9677 0.9681 0.9743 0.9697
p-value 0.2688 0.3490 0.3587 0.5372 0.3994

All p-values from Table 5.11 are greater than 0.05 level of significance, thus normality was
not rejected.

Table 5.12: Results of Shapiro-Wilk normality test of difference between PWVF and PWVT .

Shapiro-Wilk DMA Gent RDA Ruess Secant
W 0.2847 0.3202 0.2882 0.3076 0.2901
p-value «0.05 «0.05 «0.05 «0.05 «0.05

From Table 5.12, the p-values of difference between fuzzy and theoretical method were
close to 0, thus normal distribution was rejected for all conversion models.

Further comparison of Regression and Fuzzy method to theoretical values were done using
nonparametric one-sample Wilcoxon test shown in Table 5.13.
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Table 5.13: Results of Wilcoxon one-sample test of difference between PWVR, PWVF to
PWVT .

Method Wilcoxon DMA Gent RDA Ruess Secant

Regression
V 285 291 285 285 286
p-value 0.3234 0.3696 0.3234 0.3234 0.3308

Fuzzy
V 426 426 425 427 425
p-value 0.2677 0.2677 0.2743 0.2612 0.2743

The results showed that medians of each conversion model is not statistically significant
from 0.
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Figure 5.13: PWV absolute error between PWVF , PWVR and PWVT .

From Figure 5.13 the Ruess model showed the smallest interquartile range (IQR), thus we
assumed that this model was most precise for ShA to elasticity conversion based on theoretical
values of pulse wave velocity.

Further analysis was done over difference between the values of PWV approx with various
methods and the one really measured PWVM on arterial segments for all 90 combinations of
measurement setup.
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Table 5.14: Absolute errors difference of PWVM values within used method for each model.

Model Method Mean ± STD

DMA
Regression -2.89 ± 3.84

Fuzzy -2.67 ± 4.13

Theoretical -2.72 ± 4.17

Gent
Regression -2.59 ± 3.83

Fuzzy -2.35 ± 4.17

Theoretical -2.40 ± 4.21

RDA
Regression -1.18 ± 3.77

Fuzzy -1.00 ± 4.18

Theoretical -1.04 ± 4.22

Ruess
Regression -0.01 ± 3.93

Fuzzy 0.09 ± 4.06

Theoretical 0.07 ± 4.09

Secant
Regression -0.09 ± 3.87

Fuzzy 0.29 ± 4.51

Theoretical 0.21 ± 4.53

From Table 5.14 we assumed that absolute error of Ruess models were close to 0 with
standard deviation of approximately 4 m/s. Our dataset was prepared for normality testing
using Shapiro-Wilk statistical test, which results are shown in Table 5.15.

Table 5.15: Results of Shapiro-Wilk normality test of difference between PWVR, PWVF and
PWVT to PWVM .

Method Shapiro-Wilk DMA Gent RDA Ruess Secant

Regression
W 0.9780 0.9690 0.9637 0.9765 0.9625
p-value 0.6619 0.3808 0.2640 0.6107 0.2415

Fuzzy
W 0.9936 0.9883 0.9882 0.9775 0.9852
p-value 0.9986 0.9588 0.9579 0.6444 0.8936

Theoretical
W 0.9928 0.9877 0.9867 0.9783 0.9842
p-value 0.9970 0.9496 0.9301 0.6722 0.8658

Based on Shapiro-Wilk test, the null hypotesis about normality was not rejected, thus we
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used Student’s t-test for testing mean value for each method and conversion model equaled
to zero.

Table 5.16: Results of Student’s t-test of difference between our estimation methods to
PWVM .

Method Student t-test DMA Gent RDA Ruess Secant

Regression
t -0.1397 -1.9082 -4.1219 -0.0180 -4.5789
p-value 0.8897 0.0644 0.0002 0.9857 0.0001

Fuzzy
t 0.3935 -1.4520 -3.4249 0.1373 -3.9402
p-value 0.6963 0.1552 0.0016 0.8916 0.0004

Theoretical
t 0.2759 -1.5045 -3.4733 0.1000 -3.9743
p-value 0.7842 0.1412 0.0014 0.9209 0.0003

From the Table 5.16 we highlighted the p-values greater than significance level, thus we
assumed that DMA, Gent and Ruess conversion models were not statistically significant for
difference from PWVM . These result are also shown in Figure 5.14, where mentioned conver-
sion models medians are closest to 0. But in comparison to Figure 5.13, the IQR of absolute
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Figure 5.14: Comparison of methods within conversion model in real measured Pulse Wave
Velocity values.

error is higher between estimated PWV and measured PWV.
For better interpretation we used Bland-Altman plots Figure 5.15 where we used PWV

values from regression and fuzzy method.
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Figure 5.15: Comparison of used model bias based on regression and fuzzy PWV values.

From Figure 5.15 we assumed, that the Ruess model showed the minimal bias between
mentioned two methods and difference of estimated pulse wave velocity was less than ±1 m/s.
Also in the Figure 5.15 was no trend of plotted values, thus we assumed there was no system-
atical error, which caused mostly the rising or falling trends.

Based on our analysis of used methods and conversion models we found, that the Ruess
conversion model was better suited for our analysis of pulse wave velocity estimated using pulse
wave features and another input parameters describing our measurement setup of physical
vascular model.

5.6 Discussion

The experimentation on artificial arterial segments is significant in the field of biomedical
engineering for simulation of vascular system. This innovative approach has the potential
to improve the treatment of various vascular diseases by measuring noninvasively and con-
tinuously the blood pressure. Manufacturing these artificial arterial segments these artificial
arterial segments involved the use of different materials and wall thicknesses to mimic the
properties of the human vascular system. The segments were then tested on our physical
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vascular model that simulates the behavior of human the arterial path of the systemic circu-
lation.

To evaluate these artificial arterial segments, a range of tunable parameters were selected
on the pump of our vascular model. The pulse waveform was then captured using our previ-
ously developed contactless capacitive sensor and a gold standard medical invasive pressure
sensor. This sensor provided accurate and reliable data, allowing us to analyze the pulse
wave generated by pump in our physical vascular model. In addition we were able to main-
tain constant value of the mean blood pressure, thus mimicking the baroreflex function using
electrically controllable valve. This last element controls the systemic vascular resistance by
closing the valve and reducing the flow of the liquid. With a pressure maintained to 30 mmHg,
we were therefore able to analyze the pulse pressure of both sensors under identical conditions.

Experimental results showed that our consideration of our artificial arterial segments and
its material hardness were significant for elasticity measurement. The measurement was per-
formed in 90 different settings twice, firstly with sampling frequency 200 sps for both types
of sensors and the validation measurement with much higher sampling frequency of 2000 sps
to be able to measure the pulse wave velocity on such short arterial segment. This first mea-
surement was sufficient for the prediction models of pulse wave features based on our tunable
parameters from our physical vascular model. The R-squared coefficient of determination
for these models were 66% for Crest time, 81% for Systole time and 35% for Pulse pressure.
Based on these predictions we used reverted approach to calculate hardness parameter of ar-
tificial arterial wall. For hardness ShoreA estimation we used two methods, linear regression
and adaptive neuro-fuzzy inference system. The regression model used Systole time, Pulse
pressure, stroke volume, heart rate and wall thickness as predictors, and after evaluation of
this regression model the R-squared parameter was considered as sufficient for such estima-
tion (74%). The results from ANFIS method were much better, with the R-squared close to
99%. These two methods were further evaluated using statistical testing and exploratory data
analysis.

We used 5 empirical models for the estimated results of hardness ShoreA values to convert
ShoreA to Young’s modulus. Because the conversion models were empirical, they could exhibit
a large error rate due to inaccuracy; because conversion of hardness to elasticity were not
standardized and worked only in certain cases for silicone material. Also the material ShoreA
value was in range of ±2 based on technical list of used material for creation of artificial
arteries. This inaccuracy could be interpreted as ±0.3 m/s after PWV theoretical calculation
for Ruess model.

After conversion from hardness ShoreA, the elasticity data were fed into the Moens-
Korteweg equation 2.4, which is well known for pulse wave velocity calculation and further
estimation of non-invasive continuous blood pressure. We used directly all four input variables
of the equation, the elasticity, wall thickness, blood density and arterial diameter.
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We calculated pulse wave velocity using our arterial segments hardness ShoreA values,
which we labeled as theoretical PWV values. Then we used elasticity values based on regres-
sion and fuzzy method estimation. Afterwards we calculated the differences between used
methods and theoretical values (regression - theoretical, fuzzy - theoretical), and this abso-
lute error we plotted as boxplots for each elasticity conversion models. PWVF calculation
to PWVT showed the best result for Ruess model, where the absolute error mean was 0.02
m/s with standard deviation of 0.10 m/s. In addition to the boxplot we also performed a
statistical analysis. All elasticity conversion models and their medians of absolute error were
not statistically significant from 0. But from the boxplots we concluded, that the interquar-
tile ranges were smallest for Ruess model in regression and fuzzy method. In comparison to
PWVM , the Ruess model also showed the best results. The mean value of absolute errors of
PWVR, PWVF and PWVT were close to 0 with standart deviation of 4 m/s.

For further analysis we used the real measured pulse wave velocity on our 30 cm long
artificial arterial segment and differences between all three methods from the measured PWV
values. The results were statistically analyzed and by the statistical testing we concluded,
that the mean differences of all method from DMA, Gent and Ruess conversion models were
not statistically significant from 0. But based on exploratory analysis, the smallest IQR from
boxplots were for Ruess and DMA conversion models (IQR about 6 m/s). These differences
between estimated and measured pulse wave velocity could be caused with accumulating error
due to inaccuracies of used silicone material, further inaccuracy of regression or fuzzy method
for estimation or error caused by conversion models. But in other hand, we found method
which can estimate pulse wave velocity from a single measurement site.

Due to the limitations of our model, which is unable to replicate the full complexity of the
real vascular system, the shape of the pulse wave we obtained differs from that of a human
pulse wave. As a result, we were unable to collect data on all of the features that could be
detected in a real pulse wave; for example Large artery stiffness index – subject height divided
by time between systolic and diastolic peak, Augmentation index – ratio between amplitude
of systolic and amplitude of diastolic peak, and many ratios of peaks from a, b, c, d and e
waves from second derivative corresponding to arterial stiffness. With all these mentioned
features, the prediction model precision could be probably increased, but it must be provided
by further test and analysis.

5.7 Conclusion

Building of artificial arterial segments from different materials and wall thicknesses to mimic
the human vascular system has great potential in ex vivo measurement on physical vascular
model. The results showed that the material hardness of the artificial arterial segments signifi-
cantly affected the blood pressure pulse wave pattern, thus we can estimate pulse wave velocity

92



from measurable properties of vascular model. Additionally, the Moens-Korteweg model for
PWV can be estimated using the stroke volume, heart rate, wall thickness as predictors with
detected pulse wave features. Further work should be done to validate our proposed method
using one photoplethysmography sensor placed on the human body, taking into account the
non-stable properties of physiological conditions over time, and verify that using conventional
PWV measurements.

Submitted manuscript: Barvik, Daniel; Cerny, Martin; Litschmannova, Martina; Noury,
Norbert. Enhancing Pulse Wave Velocity Estimation with One Site Measurement using Ar-
tificial Arterial Segments in Physical Vascular Model. IEEE Transactions on Biomedical
Engineering. May 2023
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Chapter 6

Future direction

In the future, we can continue to explore the potential of artificial arterial segments in ex
vivo measurements on physical vascular models. This could involve further investigation of
the effect of numerous arterial diameters, compared to various elasticity and wall thicknesses.
Another complementary approach will be to focus on the simulation of the other second of
the systemic system, i.e. the venous tree. This could improve the shape of pulse wave, thus
the extraction of the pulse wave features based on dicrotic notch could be possible.

To validate the proposed method, future work could involve conducting experiments with
multiple photoplethysmography signals directly measured on the human body. This would
take into account the non-stable properties of human body. Overall, future research can
verify our promising results of this study to improve our understanding of different arterial
elasticity dependence on pulse wave velocity obtained only from a single measured site. The
advantages of single-site measurement are the limitation of error in measuring the distance
between measurable sites, which can be critical to accuracy of Pulse wave velocity. Further
measurement can be done using wearable sensor placed on human body with real time feature
extraction and data processing.

Currently, single-site measurements are not used in clinical practice for pulse wave velocity
measurement, so we would like to focus on the pulse wave shape analysis and captured pulse
waves. We can evaluate the stiffness/elasticity of the arteries affected by aging or cardiovas-
cular pathologies. Pulse wave velocity and the influence of aortic stiffness has independent
predictive value for all-cause and cardio vascular mortality, cardiovascular disease, fatal and
nonfatal coronary events and fatal strokes in patients with various levels of cardiovascular risk
[198, 199].

Pressure pulse wave can be significant of mean arterial pressure (MAP) measurement,
which is valuable for further diagnosis [2, 200, 201] and can be used for diuresis control of
patients [5] due to renal perfusion [202].
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