53 research outputs found

    Information-Theoretic Feature Detection in Ultrasound Images

    Get PDF

    Edges Detection Based On Renyi Entropy with Split/Merge

    Get PDF
    Most of the classical methods for edge detection are based on the first and second order derivatives of gray levels of the pixels of the original image. These processes give rise to the exponential increment of computational time, especially with large size of images, and therefore requires more time for processing. This paper shows the new algorithm based on both the Rényi entropy and the Shannon entropy together for edge detection using split and merge technique. The objective is to find the best edge representation and decrease the computation time. A set of experiments in the domain of edge detection are presented. The system yields edge detection performance comparable to the classic methods, such as Canny, LOG, and Sobel.  The experimental results show that the effect of this method is better to LOG, and Sobel methods. In addition, it is better to other three methods in CPU time. Another benefit comes from easy implementation of this method. Keywords: Rényi Entropy, Information content, Edge detection, Thresholdin

    Nonextensive Entropic Kernels

    Full text link

    Inference of gene regulatory networks from time series by Tsallis entropy

    Get PDF
    Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.Fundacao de Amparo e Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicofamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Medical Image Registration and 3D Object Matching

    Get PDF
    The great challenge in image registration and 3D object matching is to devise computationally efficient algorithms for aligning images so that their details overlap accurately and retrieving similar shapes from large databases of 3D models. The first problem addressed is this thesis is medical image registration, which we formulate as an optimization problem in the information-theoretic framework. We introduce a viable and practical image registration method by maximizing an entropic divergence measure using a modified simultaneous perturbation stochastic approximation algorithm. The feasibility of the proposed image registration approach is demonstrated through extensive experiments. The rest of the thesis is devoted to a joint exploitation of geometry and topology of 3D objects for as parsimonious as possible representation of models and its subsequent application in 3D object representation, matching, and retrieval problems. More precisely, we introduce a skeletal graph for topological 3D shape representation using Morse theory. The proposed skeletonization algorithm encodes a 3D shape into a topological Reeb graph using a normalized mixture distance function. We also propose a novel graph matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Moreover, we describe a skeletal graph for 3D object matching and retrieval. This skeleton is constructed from the second eigenfunction of the Laplace-Beltrami operator defined on the surface of the 3D object. Using the generalized eigenvalue decomposition, a matrix computational framework based on the finite element method is presented to compute the spectrum of the Laplace-Beltrami operator. Illustrating experiments on two standard 3D shape benchmarks are provided to demonstrate the feasibility and the much improved performance of the proposed skeletal graphs as shape descriptors for 3D object matching and retrieval

    Image similarity in medical images

    Get PDF

    Image similarity in medical images

    Get PDF
    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al
    corecore