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ABSTRACT

Medical Image Registration and 3D Object Matching
Waleed Mohamed

The great challenge in image registration and 3D object matching is to devise computationally efficient

algorithms for aligning images so that their details overlap accurately and retrieving similar shapes from

large databases of 3D models. The first problem addressed is this thesis is medical image registration,

which we formulate as an optimization problem in the information-theoretic framework. We introduce

a viable and practical image registration method by maximizing an entropic divergence measure using a

modified simultaneous perturbation stochastic approximation algorithm. The feasibility of the proposed

image registration approach is demonstrated through extensive experiments.

The rest of the thesis is devoted to a joint exploitation of geometry and topology of 3D objects for as

parsimonious as possible representation of models and its subsequent application in 3D object representa-

tion, matching, and retrieval problems. More precisely, we introduce a skeletal graph for topological 3D

shape representation using Morse theory. The proposed skeletonization algorithm encodes a 3D shape into

a topological Reeb graph using a normalized mixture distance function. We also propose a novel graph

matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Moreover, we

describe a skeletal graph for 3D object matching and retrieval. This skeleton is constructed from the second

eigenfunction of the Laplace-Beltrami operator defined on the surface of the 3D object. Using the gener-

alized eigenvalue decomposition, a matrix computational framework based on the finite element method is

presented to compute the spectrum of the Laplace-Beltrami operator. Illustrating experiments on two stan-

dard 3D shape benchmarks are provided to demonstrate the feasibility and the much improved performance

of the proposed skeletal graphs as shape descriptors for 3D object matching and retrieval.
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INFORMATION, AND (D) TSALLIS MUTUAL INFORMATION. . . . . . . . . . . . . . . . . . . . 20

2.7 BAR PLOTS OF OPTIMAL REGISTRATION PARAMETER VECTOR �� = (t�x, t
�
y, θ

�) WITH ER-

RORS �−��, USING (A) PROPOSED METHOD, (B) JENSEN-RÉNYI DIVERGENCE, (C) MUTUAL
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2.12 JENSEN-RÉNYI DIVERGENCE WITH NORMALIZED HISTOGRAM WEIGHT. . . . . . . . . . . . 26

2.13 (A) MRI 3D VOLUME. (B) REFERENCE AND TARGET IMAGES FOR TESTING THE EFFECT

OF THE ENTROPIC INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 DIVERGENCE VALUES WITH UNIFORM WEIGHT ωi. . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 DIVERGENCE VALUES WITH NORMALIZED HISTOGRAM WEIGHT ωi. . . . . . . . . . . . . . 28

3.1 LEVEL SETS OF THE (A) EUCLIDEAN AND (B) AFFINE INVARIANT DISTANCES. . . . . . . . . 34

3.2 MIXTURE DISTANCE-BASED REEB GRAPH EXTRACTION AT VARIOUS STEPS k = 1, . . . , 13. . 38

3.3 (A) CONNECTED COMPONENTS AND (B) SKELETAL GRAPH OF A DOUBLE TORUS. . . . . . . 39

3.4 THE 3D COW’S REEB GRAPH AND ITS SKELETON ENDPOINTS (RED COLOR). . . . . . . . . 39

3.5 (A) CAMEL’S REEB GRAPH. (B) SHORTEST PATHS BETWEEN PAIRS OF ENDPOINTS ON THE

SKELETON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 SHORTEST PATHS BETWEEN THE MESH CENTROID AND AN ENDPOINT ON THE SKELETON. . 43

3.7 SKELETAL GRAPHS USING AFFINE AND MIXTURE DISTANCE FUNCTIONS. . . . . . . . . . . 45

3.8 MIXTURE DISTANCE-BASED REEB GRAPHS OF DIFFERENT 3D MODELS. . . . . . . . . . . . 46

3.9 (A) NOISY DOUBLE TORUS AND ITS (B) MIXTURE DISTANCE-BASED REEB GRAPH. . . . . . 46

3.10 MIXTURE DISTANCE-BASED REEB GRAPH UNDER MESH DECIMATION. . . . . . . . . . . . . 47

3.11 ILLUSTRATION OF SKELETAL REEB GRAPH INVARIANCE TO ROTATION AND SCALING. . . . 48

ix



3.12 SAMPLE SHAPES FROM MCGILL ARTICULATED SHAPE DATABASE. ONLY TWO SHAPES

FOR EACH OF THE 10 CLASSES ARE SHOWN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.13 PRECISION VS. RECALL CURVES FOR SPHERICAL HARMONICS (SH), MEDIAL SURFACES

(MS), AND PROPOSED RGPD APPROACH USING THE MCGILL SHAPE BENCHMARK [71]. . 49

4.1 ILLUSTRATION OF A VERTEX NEIGHBORHOOD v�
i . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 ILLUSTRATION OF area(t) AND n(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 (A) 3D TOOTH MODEL; (B) SPARSITY PATTERN PLOT OF THE COTANGENT MATRIX Q; (C)

SPARSITY PATTERN PLOT OF THE AREA MATRIX K . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 (A) 3D TOOTH MODEL COLORED BY ϕ1; (B) TOOTH MODEL COLORED BY ϕ2; (C) LEVEL

SETS OF ϕ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 (A) 3D HORSE MODEL COLORED BY ϕ2; (B) LEVEL SETS OF ϕ2; (C) SPECTRAL REEB GRAPH. 63

4.6 SPECTRAL REEB GRAPH OF 3D OCTOPUS MODEL AND ITS SKELETON ENDPOINTS SHOWN

IN BLUE COLOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 (A) HORSE’S REEB GRAPH. (B) SHORTEST PATHS BETWEEN PAIRS OF ENDPOINTS ON THE

SPECTRAL SKELETON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 SHORTEST PATHS BETWEEN THE MESH CENTROID AND AN ENDPOINT ON THE SPECTRAL

SKELETON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 ROBUSTNESS OF SPECTRAL REEB GRAPH TO NOISE. . . . . . . . . . . . . . . . . . . . . . . 69

4.10 PRECISION VS. RECALL CURVES FOR REEB GRAPH PATH DISSIMILARITY, SPHERICAL

HARMONICS, MEDIAL SURFACES, REEB GRAPH PATH DISSIMILARITY, AND PROPOSED AP-

PROACH USING THE MCGILL SHAPE BENCHMARK [71]. . . . . . . . . . . . . . . . . . . . . 69

x



LIST OF ACRONYMS

Spherical Harmonics

Medial Surfaces

Reeb Graph Path Dissimilarity

Spectral Reeb Graph

xi





CHAPTER 1

INTRODUCTION

In this Chapter, we present the framework and motivation behind this work, followed by the problem state-

ment, objectives, and a brief overview of essential concepts and definitions which we will refer to throughout

the thesis. We also present a short summary of background material relevant to 3D object matching in the

topological framework.

1.1 FRAMEWORK AND MOTIVATION

Recent advances in medical imaging have resulted in the development of many imaging techniques that

capture various aspects of the patient’s anatomy and metabolism [1, 2]. Image registration is among the

most challenging problems in medical imaging, and it is of paramount importance in medical diagnosis

and computer aided surgery [1, 2]. Image registration or alignment refers to the process of aligning two

or more images of the same scene so that their details overlap accurately [1, 2, 3]. Typically, one image,

called the fixed or reference image, is considered the reference to which the other images, called moving or

target images, are compared. A wide range of image registration techniques have been recently developed

for many different types of applications and data, such as mean squared alignment, correlation registration,

moment invariant matching, and entropic alignment [1, 2, 3]. The latter problem will be the primary focus

in Chapter 2. Our focus on the entropic approach is inspired by the successful application of the mutual

information measure to medical image registration [2].

In the same vein, recent technological advancements in computing power and capability coupled with the

availability of freely-distributed 3D databases on the Internet have led to a flurry of research activity in the

area of 3D object recognition. The importance of 3D shape recognition is irrupting due to the difficulty in
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processing information expeditiously without its recognition. With the increasing use of 3D scanners and as

a result of emerging multimedia computing technologies, vast databases of 3D models are distributed freely

or commercially on the World Wide Web. The availability and widespread usage of such large databases

coupled with the need to explore 3D models in depth as well as in breadth has sparked the need to organize

and search these vast data collections, retrieve the most relevant selections, and permit them to be effectively

reused. 3D objects consist of geometric and topological information, and their compact representation is an

important step towards a variety of computer vision applications, particularly matching and retrieval in

a database of 3D models. The first step in 3D object matching usually involves finding a reliable shape

descriptor or skeletal graph which will encode efficiently the 3D shape information. The skeleton-based

approach for 3D object matching and retrieval will be the focus of the thesis in Chapters 3 and 4.

1.2 PROBLEM STATEMENT

1.2.1 IMAGE REGISTRATION

Image registration is of paramount importance in the field of medical imaging and has sparked a flurry

of research interest in many other applications of image analysis such as remote sensing, movie editing,

and archeology. The objective of image registration is to bring the target image into alignment with the

reference image by applying a spatial transformation to the target image. Images are usually registered for

the purpose of combining or comparing them, enabling the fusion of information in the images. Roughly

speaking, the image alignment problem may be formulated as a two-step process: the first step is to define

a distance measure that quantifies the quality of spatial alignment between the reference image and the

spatially transformed target image, and the second step is to develop an efficient optimization algorithm for

optimizing this distance measure iteratively in order to find the optimal transformation parameters.

More precisely, given two misaligned images, the reference image I and the target image J as depicted

in Figure 1.1, the image alignment or registration problem may be formulated as an optimization problem

�∗ = argmax
�

D
(
I(x), J(Φ�(x))

)
, (1.1)

where D(·, ·) is a dissimilarity measure that quantifies the discrepancy between the reference image and

the transformed target image; and Φ� : Ω ← Ω is a spatial transformation mapping parameterized by a

parameter vector �.

The goal of image registration is to align the target image to the reference image by maximizing the

dissimilarity measure D(I(x), J(Φ�(x))) using an optimization scheme in order to find the optimal spatial

2



FIGURE 1.1: (a) Reference image I; (b) Target image J .

transformation parameters. Note that since the image pixel values are integers, a bilinear interpolation may

be used to determine the values of J(Φ�(x)) when Φ�(x) is not an integer.

1.2.2 3D OBJECT MATCHING

In recent years, the 3D object recognition problem has become very important in the field of computer

graphics, computer vision and many related application areas due to the difficulty in processing information

efficiently without its recognition. There are two major techniques for 3D object recognition: feature-based

and global methods as illustrated in Figure 1.2. Most 3D shape matching techniques proposed in the litera-

ture of computer graphics, computer vision and computer-aided design are based on geometric representa-

tions which represent the features of an object in such a way that the shape dissimilarity problem reduces to

the problem of comparing two such object representations. Feature-based methods require that features be

extracted and described before two objects can be compared. An alternative to feature-based representations

is global methods. The idea here is to represent an object by a global measure or shape distribution defined

on the surface of the object. The shape matching problem is then performed by computing a dissimilarity

measure between the shape distributions of two arbitrary objects.

The goal of 3D object matching may be described as follows: Given two 3D objects M1 and M2 to be

matched, find their respective global measures or shape descriptors p̂1 and p̂2, and calculate how dissimilar

these objects are using a dissimilarity measure D(p̂1, p̂2) that has to be quantified. The basic idea behind

the shape descriptor is to characterize a 3D object with a skeleton graph that will help discriminate between

objects in a database of 3D models. The 3D object matching problem is depicted in Figure 1.3.

3
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FIGURE 1.2: 3D object matching diagram.

FIGURE 1.3: Illustration of the 3D matching problem.
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1.3 OBJECTIVES

Our main objectives may be summarized as follows:

• Develop an efficient image registration algorithm for aligning medical images so that their details

overlap accurately, and perform an experimental comparative study with the state-of-the-art registra-

tion techniques.

• Develop a novel skeletal graph for topological 3D shape recognition using Morse theory, and devise

an efficient graph matching algorithm.

• Construct a spectral skeleton from the second eigenfunction of the Laplace-Beltrami operator defined

on the surface of the 3D object, and design a practical 3D object matching and retrieval technique.

1.4 BACKGROUND

In computer graphics and geometric-aided design, 3D objects are usually represented as polygonal or tri-

angle meshes. A triangle mesh M is usually denoted by M = (V,T ), where V = {p1, . . . ,pm} is the

set of vertices and T = {t1, . . . , tn} is the set of triangles. Two distinct vertices pi,pj ∈ V are ad-

jacent (denoted by pi �� pj) if they are connected by an edge. The neighborhood of a vertex pi is

the set p�
i = {pj ∈ V : pi �� pj} as shown in Figure 1.4. We define the area of a vertex pi as

area(pi) =
∑

tj∈T (v�
i )
area(tj), where T (v�

i ) is the set of triangles of the vertex neighborhood. Con-

sider a triangle tj with sides of lengths a, b and c. Then, according to Heron’s formula, area(tj) is equal to

1

4

√
(a+ (b+ c))(a + (b− c))(c + (a− b))(c− (a− b)), (1.2)

where these lengths are arranged such that a ≥ b ≥ c.

The following section briefly describes the basic concepts of Morse theory, followed by a short description

of the Reeb graph representation for 3D topological modeling.

1.5 MORSE THEORY FOR TOPOLOGICAL MODELING

Morse theory explains the presence and the stability of singular points in terms of the topology of the un-

derlying smooth manifold. Topology is the study of the “shape” of curves and surfaces [4], while geometry

determines where, in a given coordinate system, each part is located [5]. The basic principle is that the

5



p
�
i

pi

pj

FIGURE 1.4: Illustration of a vertex neighborhood p�
i .

topology of a manifold is very closely related to the singular points of a smooth function defined on that

manifold [6]. A smooth function f : M → R on a smooth manifold M is called a if all its

singular points are nondegenerate, i.e. the Hessian matrix is nonsingular at every singular point. The only

nondegenerate singularities are the minimum, maximum and saddle points as depicted in Figure 1.5.

FIGURE 1.5: Nondegenerate singular points of a Morse height function: minimum
(blue), saddle (green), maximum (red).

A point p is called a of f if the differential df : TpM → R is , that is, the

Jacobian matrix (3×1 in the case of a 2-manifold) has rank equal to dim(R) = 1, where TpM is the tangent

plane to M at p as shown in Figure 1.6. Otherwise, the point p is called a . Nondegenerate
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FIGURE 1.6: Illustration of the tangent space.

singularities are isolated, that is, there cannot be a sequence of nondegenerate singularities converging to a

nondegenerate singularity p ∈ M. A f−1(a) of f at a value a may be composed of one or many

connected components. Morse deformation lemma states that if no critical points exist between two level

sets of f , then the two level sets are topologically equivalent and can be deformed onto one another [7]. In

particular, they consist of the same number of connected components. Furthermore, Morse theory implies

that topological changes on the level sets occur only at critical points. This property can be illustrated by

considering the sub-surface Ma consisting of all points at which f takes values less than or equal to a real

number a

Ma = {p ∈ M : f(p) ≤ a}. (1.3)

Denote by La the set of points where the value of f is exactly a, that is La = f−1(a). Note that when a is a

regular value, the set La is a smooth curve of M and it is the boundary of Ma as illustrated in Figure 1.7.

(a) (b) (c)

FIGURE 1.7: Illustration of: (a) Level curve La, (b) Subsurface Ma, (c) Subsurface
and Level curve.
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Figure 1.8 shows the evolution of the subsurface Ma as a changes, when f is a height function. If a <

minp∈M{f(p)}, then Ma = ∅. And as we increase the parameter a, the subsurface Ma changes until it

covers the entire surface M.

FIGURE 1.8: Evolution of Ma as a changes.

An interesting concept related to Morse theory and very useful to analyze a surface topology is the Reeb

graph. The latter is defined as a quotient space M/� with the equivalence relation given by p � q if and

only if f(p) = f(q) and p, q belong to the same connected component of f−1(f(p)). An equivalence class

is defined as [p] = {q ∈ M : p � q}. Intuitively, M/� is a space created by taking the space M and gluing

p to any q that satisfies q � p. The classes [p] are the connected components for the Reeb graph, and being

in the same component is an equivalence relation:

q � p ⇐⇒ f(q) = f(p) and p, q ∈ C, (1.4)

where C denotes the connected component of f−1(f(p)). In a Reeb graph representation of the height

function, each connected component of a contour (i.e. h−1(z) where z = h(x, y, z)) corresponds to a point

as shown in Figure 1.9.

•

•

•

•
h

FIGURE 1.9: Reeb graph representation of a torus.
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1.6 THESIS OVERVIEW

The organization of this thesis is as follows:

❏ In Chapter 2, we propose an image registration method by maximizing a Tsallis entopy-based diver-

gence using a modified simultaneous perturbation stochastic approximation algorithm.

❏ In Chapter3, we introduce a skeletal graph for topological 3D shape representation using Morse the-

ory. The proposed skeletonization algorithm encodes a 3D shape into a topological Reeb graph using

a normalized mixture distance function.

❏ In Chapter 4, we describe a skeletal graph for 3D object matching and retrieval. This skeleton is

constructed from the second eigenfunction of the Laplace-Beltrami operator defined on the surface of

the 3D object.

❏ In Chapter 5, we summarize the contributions in this thesis and propose some future research direc-

tions.
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CHAPTER 2

IMAGE REGISTRATION USING STOCHASTIC OPTIMIZATION

In this Chapter, we propose an image registration method by maximizing a Tsallis entopy-based diver-

gence using a modified simultaneous perturbation stochastic approximation algorithm. Due to its convexity

property, this divergence measure attains its maximum value when the conditional intensity probabilities

between the reference image and the transformed target image are degenerate distributions. Experimental

results are provided to demonstrate the registration accuracy of the proposed approach in comparison to

existing entropic image alignment techniques.

2.1 INTRODUCTION

Image registration or alignment refers to the process of aligning images so that their details overlap accu-

rately [2, 3]. Images are usually registered for the purpose of combining or comparing them, enabling the

fusion of information in the images. Roughly speaking, the image alignment problem may be formulated

as a two-step process: the first step is to define a dissimilarity measure that quantifies the quality of spatial

alignment between the reference image and the spatially transformed target image, and the second step is

to develop an efficient optimization algorithm for maximizing this dissimilarity measure in order to find

the optimal transformation parameters. Recently, much attention has been paid to the image registration

problem due to its importance in a variety of tasks including data fusion, navigation, motion detection, and

clinical studies [2, 3]. A wide range of image registration techniques have been developed for many different

types of applications and data, such as mean squared alignment, correlation registration, moment invariant

matching, and entropic alignment [8, 9, 10, 11]. The latter will be the focus of this chapter. Inspired by

the successful application of the mutual information measure [8, 9], and looking to address its limitations in
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often difficult imagery, we proposed in [12] an information-theoretic approach to ISAR image registration

by estimating the target motion during the imaging time, and it was accomplished using the Jensen-Rényi

divergence. This generalized entropic measure enjoys appealing mathematical properties affording a great

flexibility in a number of applications [13, 14, 15, 16].

In recent years, there has been a concerted research effort in statistical physics to explore the properties

of Tsallis entropy, leading to a statistical mechanics that satisfies many of the properties of the standard

theory [17]. In [18], a Tsallis entropy-based image mutual information approach, combined with a stochastic

optimization algorithm, was proposed leading to accurate image registration results compared to the classical

mutual information [8, 9].

In this chapter, we propose an entropic image alignment approach by maximizing the Jensen-Tsallis di-

vergence [19] using a simultaneous perturbation stochastic approximation-based algorithm [20]. The main

contributions in this chapter may be summarized as follows: (i) explore the use of the Jensen-Tsallis diver-

gence as an alignment measure, (ii) develop an efficient optimization algorithm to maximize this divergence

measure, and (iii) perform an experimental comparative study of the proposed approach with existing en-

tropic image registration methods.

The rest of this chapter is organized as follows. Section 2.2 is devoted to the problem formulation,

followed by a theoretical analysis of the Jensen-Tsallis divergence and a derivation of its upper bound.

Then, we develop a modified simultaneous perturbation stochastic approximation algorithm to maximize

the divergence measure. In Section 2.3, we describe the proposed image alignment method and discuss its

most important algorithmic steps in more details. In Section 2.4, we provide experimental results to show

the effectiveness and the registration accuracy of the proposed approach.

2.2 PROBLEM FORMULATION

In the continuous domain, an image is defined as a real-valued function I : Ω → R, and Ω is a nonempty,

bounded, open set in R
2 (usually Ω is a rectangle in R

2). Throughout, we denote by x = (x1, x2) a pixel

location in Ω. Given two misaligned images, the reference image I1 and the target image I2 as depicted in

Figure 2.1, the image alignment or registration problem may be formulated as an optimization problem

�∗ = argmax
�

D
(
I1(x), I2(Φ�(x))

)
(2.1)

where D(·, ·) is a dissimilarity measure that quantifies the discrepancy between the reference image and the

transformed target image; and Φ� : Ω ← Ω is a spatial transformation parameterized by a parameter vector

11



�. An example of such a mapping is a Euclidean transformation with a parameter vector � = (t, θ, s), where

t = (tx, ty) is a translational parameter vector, θ is a rotational parameter, and s = (sx, sy) is a scaling

parameter vector.

(a) (b)

FIGURE 2.1: (a) Reference image I1. (b) Target image I2.

The goal of image registration is to align the target image to the reference image by maximizing the

dissimilarity measure D(I1(x), I2(Φ�(x))) using an optimization scheme in order to find the optimal spatial

transformation parameters. Note that since the image pixel values are integers, a bilinear interpolation

may be used to determine the values of I2(Φ�(x)) when Φ�(x) is not an integer. In this chapter, we use

the Jensen-Tsallis divergence as a dissimilarity measure [19], and a modified simultaneous perturbation

stochastic approximation (SPSA) approach as an optimization algorithm [20].

2.2.1 JENSEN-TSALLIS DIVERGENCE

Let X = {x1, x2, . . . , xk} be a finite set with a probability distribution p = (p1, p2, . . . , pk) where k > 1.

Shannon’s entropy is defined as H(p) = −
∑k

j=1 pj log(pj), and it is a measure of uncertainty, dispersion,

information, and randomness. The maximum uncertainty or equivalently minimum information is achieved

by the uniform distribution. Hence, we can think of the entropy as a measure of uniformity of a probability

distribution. Consequently, when uncertainty is higher it becomes more difficult to predict the outcome of a

draw from a probability distribution. A generalization of Shannon entropy is Rényi entropy [21] given by

Rα(p) =
1

1− α
log

k∑
j=1

pαj , α ∈ (0, 1) ∪ (1,∞). (2.2)

Another important generalization of Shannon entropy is Tsallis entropy [22, 23, 17] given by

Hα(p) =
1

1− α

( k∑
j=1

pαj − 1
)
= −

k∑
j=1

pαj logα(pj), (2.3)
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where logα is the α-logarithm function defined as logα(x) = (1 − α)−1(x1−α − 1) for x > 0. This

generalized entropy was first introduced by Havrda and Charvát in [22], who were primarily interested

in providing another measure of entropy. Tsallis, however, appears to have been principally responsible

for investigating and popularizing the widespread physics applications of this entropy which is referred to

nowadays as Tsallis entropy [17]. It is worth noting that for α ∈ (0, 1], Rényi and Tsallis entropies are both

concave functions; and for α > 1 Tsallis entropy is also concave, but Rényi entropy is neither concave nor

convex. Furthermore, both entropies tend to Shannon entropy H(p) as α → 1, and are related by

Hα(p) =
1

1− α
[exp{(1− α)Rα(p)} − 1]. (2.4)

For x, y > 0, the α-logarithm function satisfies the following property

logα(xy) = logα x+ logα y + (α− 1) logα x logα y. (2.5)

If we consider that a physical system can be decomposed in two statistical independent subsystems with

probability distributions p and q, then using Eq. (2.5) it can be shown that the joint Tsallis entropy is

pseudo-additive

Hα(p, q) = Hα(p) +Hα(q) + (1− α)Hα(p)Hα(q), (2.6)

whereas the joint Shannon and Rényi entropies satisfy the additivity property: H(p, q) = H(p) + H(q),

and Rα(p, q) = Rα(p) +Rα(q).

The pseudo-additivity property implies that Tsallis entropy has a nonextensive property for statistical

independent systems, whereas Shannon and Rényi entropies have the extensive property (i.e. additivity).

Furthermore, standard thermodynamics is extensive because of the short-range nature of the interaction

between subsystems of a composite system. In other words, when a system is composed of two statisti-

cally independent subsystems, then the Boltzman-Gibbs entropy of the composite system is just the sum of

entropies of the individual systems, and hence the correlations between the subsystems are not accounted

for. Tsallis entropy, however, does take into account these correlations due to its pseudo-additivity prop-

erty. Furthermore, many objects in nature interact through long-range interactions such as gravitational or

unscreened Coulomb forces. Therefore the property of additivity is very often violated, and consequently

the use of a nonextensive entropy is more suitable for real-world applications. Figure 2.2 depicts Tsallis

entropy of a Bernoulli distribution p = (p, 1 − p), with different values of the parameter α. As illustrated

in Figure 2.2, the measure of uncertainty is at a minimum when Shannon entropy is used, and for α ≥ 1 it
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FIGURE 2.2: Tsallis entropy Hα(p) of a Bernoulli distribution p = (p, 1 − p) for
different values of α.

decreases as the parameter α increases. Furthermore, Tsallis entropy attains a maximum uncertainty when

its exponential order α is equal to zero.

Definition 2.2.1 p1,p2, . . . ,pn n

Dω
α (p1, . . . ,pn) = Hα

(
n∑

i=1

ωipi

)
−

n∑
i=1

ωiHα(pi), (2.7)

Hα(p) ω = (ω1, ω2, . . . , ωn)
∑n

i=1 ωi = 1

ωi ≥ 0

Using the Jensen inequality, it is easy to check that the Jensen-Tsallis divergence is nonnegative for α > 0.

It is also symmetric and vanishes if and only if the probability distributions p1,p2, . . . ,pn are equal, for all

α > 0. Note that the Jensen-Shannon divergence [24] is a limiting case of the Jensen-Tsallis divergence

when α → 1.

Unlike other entropy-based divergence measures such as the Kullback-Leibler divergence, the Jensen-

Tsallis divergence has the advantage of being symmetric and generalizable to any arbitrary number of

probability distributions or data sets, with a possibility of assigning weights to these distributions. Fig-
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FIGURE 2.3: Surface/contour plots of Jensen-Tsallis divergence between two
Bernoulli distributions p = (p, 1 − p) and q = (q, 1 − q), and with equal weights
ω1 = ω2 = 1/2. First row: α = 0.3. Second row: α = 1.2.

ure 2.3 shows three-dimensional representations and contour plots of the Jensen-Tsallis divergence with

equal weights between two Bernoulli distributions p = (p, 1 − p) and q = (q, 1 − q), for α ∈ (0, 1) and

also for α ∈ (1,∞).

2.2.2 PROPERTIES OF THE JENSEN-TSALLIS DIVERGENCE

The following result establishes the convexity of the Jensen-Tsallis divergence of a set of probability distri-

butions [23].

Proposition 2.2.2 α ∈ [1, 2] Dω
α p1,p2, . . . ,pn
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In the sequel, we will restrict α ∈ [1, 2], unless specified otherwise. In addition to its convexity property,

the Jensen-Tsallis divergence is an adapted measure of disparity among n probability distributions as shown

in the next result.

Proposition 2.2.3 Dω
α p1,p2, . . . ,pn

pi = (δij) δij = 1 i = j 0

Proof: The domain of the Jensen-Tsallis divergence is a convex polytope in which the vertices are degenerate

probability distributions. That is, the maximum value of the Jensen-Tsallis divergence occurs at one of the

extreme points which are the degenerate distributions.

2.2.3 MODIFIED SPSA OPTIMIZATION ALGORITHM

The implementation of SPSA depends on a simple “simultaneous perturbation” approximation to the gra-

dient [20]. It uses only two measurements of the loss function in each iteration independent of the number

of the problem dimension. In contrast, the standard stochastic approximation method like finite difference

stochastic approximation varies the variables one at a time. If the number of terms being optimized is equal

to ν, then the finite-difference method takes 2ν measurements of the objective function at each iteration.

Next we propose a modified SPSA algorithm that maximizes a real-valued loss function L(�), where �

denotes a ν-dimensional transformation parameter vector that needs to be optimally found by maximizing

L(�). The proposed SPSA algorithm starts from an initial guess of �, where the iteration process depends

on the above-mentioned highly efficient “simultaneous perturbation” approximation to the gradient g(�) ≡

∇L(�). It is assumed that L(�) is a differentiable function of � and that the maximum point �∗ corresponds

to a zero point of the gradient, i.e.,

g(�∗) = ∇L(�∗) = 0. (2.8)

Let y(�) = L(�) + noise, and �̂ be the estimate of �. Then the gradient estimate ĝ(�̂) in the k-th iteration is

given by

ĝk(�̂k) =
y(�̂k + ckεk)− y(�̂k − ckεk)

2ckεk
(2.9)
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where ck is the perturbation coefficient, and εk is the ν-dimensional simultaneous perturbation vector that is

Monte Carlo-generated. At the end of each iteration, the �̂k estimate is updated using the standard stochastic

approximation form

�̂k+1 = �̂k + akĝk(�̂k). (2.10)

Note that the choice of the gain sequences ak and ck should satisfy some typical stochastic approximation

conditions [20].

2.3 PROPOSED METHOD

Our proposed approach may now be described as follows: Given two images that need to be registered, we

first compute their conditional intensity probabilities and the Jensen-Tsallis divergence between them. Then

we optimize this divergence measure using the modified SPSA algorithm.

Without loss of generality, we consider a Euclidean transformation Φ� with a parameter vector � = (t, θ),

i.e. a transformation with translation parameter vector t = (tx, ty), and a rotation parameter θ. In other

words, for an image pixel location x = (x, y) the Euclidean transformation is defined as Φ�(x) = Rx+ t,

where R is a rotation matrix given by

R =

⎛⎝ cos θ sin θ

− sin θ cos θ

⎞⎠ . (2.11)

Denote by X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} the sets of pixel intensity values of the

reference image I1(x) and the transformed target image I2(Φ�(x)) respectively. Let X and Y be two

random variables taking values in X and Y .

The proposed approach consists of the following main steps:

(i) Find the conditional intensity probabilities

pi = pi

(
I2(Φ�(x))|I1(x)

)
= (pij)j=1,...,n, ∀i = 1, . . . , n, (2.12)

where pij = P (Y = yj|X = xi), j = 1, . . . , n.

(ii) Find the optimal parameter vector �� = (t�, θ�) of the Jensen-Tsallis objective function

�� = argmax
�

Dω
α (p1, . . . ,pn) (2.13)

using the modified SPSA optimization algorithm.
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Note that if the images I1 and I2 are exactly matched, then pi = (δij) and by Proposition 2.2.3, the

Jensen-Tsallis divergence is therefore maximized. Figure 2.5(1)-(2) show two MRI images in which the

misalignment corresponds to a clockwise rotation with an angle θ = 10◦. The conditional probability

distributions {pi} are crisp, as shown in Figure 2.5(3), when the two images are aligned, and dispersed, as

depicted in Figure 2.5(4), when they are not matched.

(a) � = (0, 0, 0) (b) � = (2, 0, 0) (c) � = (0, 0, 5) (d) � = (5, 0,−15)

(e) (f) (g) (h)

FIGURE 2.4: 3D plots of conditional probability distributions for different transforma-
tion vectors.

Also, it is worth pointing out that if α = 1 and ωi = P (X = xi) then the Jensen-Tsallis divergence

becomes mutual information, indicating that the Jensen-Tsallis divergence induces a dissimilarity measure

that provides a more general framework for the image registration problem.

2.4 EXPERIMENTAL RESULTS

We tested the performance of the proposed entropic image registration method on a variety of images. In all

experiments we used an entropic index α = 2 and the normalized histogram as the weight vector ω for the

Jensen-Tsallis divergence. In our first experiment, we applied a Euclidean transformation Φ� with different

values of the parameter vector � = (tx, ty, θ) to the three reference medical images shown in Figure 2.6

through Figure 2.8. And, we used the modified SPSA algorithm to find the optimal parameter vector �∗ =

(t�x, t
�
y, θ

�). We also compared the image alignment results of the proposed approach to existing image

registration techniques based on the mutual information [8], Tsallis mutual information [18], and Jensen-
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FIGURE 2.5: Conditional probability distributions.

Rényi divergence [12]. The output registration results are shown in Figure 2.6 through Figure 2.8, where

the absolute differences |tx − t�x|, |ty − t�y|, and |θ − θ�| between the true and the estimated transformation

parameters are also displayed as error bars for three different transformation parameter vectors � = (5, 5, 5),

� = (5, 10, 15), and � = (10, 20, 20). From these figures, it is clear that the estimated values of the

transformation parameters indicate the effectiveness and the registration accuracy of the proposed algorithm.

Amongst the other methods, we noticed that the Tsallis mutual information approach performs relatively

well at higher values of the rotation angle, but poorly at higher values of the translation parameters compared

to the proposed approach. Moreover, the much better performance of our method is in fact consistent with a

variety of images used for experimentation.

In the next experiments, we examine the effects of the values of the weight vector ω and the entropic

index α on the performance of the proposed image registration approach.
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Reference image Input parameter vector � = (5, 5, 5)

Input parameter vector � = (5, 10, 15) Input parameter vector � = (10, 20, 20)

FIGURE 2.6: Bar plots of optimal registration parameter vector �� = (t�x, t
�
y, θ

�) with
errors � − ��, using (a) proposed method, (b) Jensen-Rényi divergence, (c) mutual
information, and (d) Tsallis mutual information.

2.4.1 EFFECT OF WEIGHT ON THE JENSEN-TSALLIS DIVERGENCE

Figure 2.9 and Figure 2.10 show the plots for the divergence values of Jensen-Tsallis and Jensen-Rényi re-

spectively, in the case of a uniform weight ωi = 1/n. As shown in Figure 2.10, the Jensen-Rényi divergence

has the same maximum value given different values of α, whereas the maximum value of the Jensen-Tsallis

divergence drops significantly when the value of α increases. Also, it is worth noting that the output of the

Jensen-Tsallis divergence shows a sharp impulse located at where the images are aligned, and a uniform

value anywhere else if a uniform weight ωi = 1/n is used and also if α is larger than 1. This property

indicates a dramatic change of the gradient. Indeed, through extensive experiments we noticed that the

modified SPSA algorithm experiences difficulty in converging to the optimal solution when the initial guess

of � is not in a small range where a noticeable gradient change is observed. To circumvent this problem,
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(a) (b) (c) (d)

Input parameter vector � = (5, 10, 15) Input parameter vector � = (10, 20, 20)

FIGURE 2.7: Bar plots of optimal registration parameter vector �� = (t�x, t
�
y, θ

�) with
errors � − ��, using (a) proposed method, (b) Jensen-Rényi divergence, (c) mutual
information, and (d) Tsallis mutual information.

we used the normalized histogram of the reference image I1 as the weight vector ω instead of a uniform

weight. The Jensen-Tsallis and Jensen-Rényi divergences with the normalized histogram weights are shown

in Figure 2.11 and Figure 2.12 respectively.

2.4.2 EFFECT OF α ON THE JENSEN-TSALLIS DIVERGENCE

Most medical imaging methods, for instance, produce a full three-dimensional (3D) volume, and the medical

scans are viewed as a series of superposed two-dimensional (2D) slices of theis full 3D volume. The MRI

3D volume of a healthy patient, shown in Figure 2.13(a), consists of 27 horizontal slices and each slice

is 128 × 128 pixels. To examine the effect of the entropic index α, we applied the proposed approach

to two horizontal slices of this MRI 3D volume: the reference image and the misaligned image, which are
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FIGURE 2.8: Bar plots of optimal registration parameter vector �� = (t�x, t
�
y, θ

�) with
errors � − ��, using (a) proposed method, (b) Jensen-Rényi divergence, (c) mutual
information, and (d) Tsallis mutual information.

shown on the left and right-hand sides of Figure 2.13(b) respectively. Figure 2.14 and Figure 2.15 display the

output results of Jensen-Rényi and Jensen-Tsallis divergences with uniform weight and also with normalized

histogram weight.
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FIGURE 2.9: Jensen-Tsallis divergence with uniform weight.
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FIGURE 2.10: Jensen-Rényi divergence with uniform weight.
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FIGURE 2.11: Jensen-Tsallis divergence with normalized histogram weight.
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FIGURE 2.12: Jensen-Rényi divergence with normalized histogram weight.
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(a) (b)

FIGURE 2.13: (a) MRI 3D volume. (b) Reference and target images for testing the
effect of the entropic index.
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FIGURE 2.14: Divergence values with uniform weight ωi.
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CHAPTER 3

REEB GRAPH PATH DISSIMILARITY FOR 3D OBJECT

MATCHING AND RETRIEVAL

In this Chapter, we introduce a skeletal graph for topological 3D shape representation using Morse theory.

The proposed skeletonization algorithm encodes a 3D shape into a topological Reeb graph using a nor-

malized mixture distance function. We also propose a novel graph matching algorithm by comparing the

relative shortest paths between the skeleton endpoints. Experimental results demonstrate the feasibility of

the proposed topological Reeb graph as a shape signature for 3D object matching and retrieval.

3.1 INTRODUCTION

The importance of 3D shape recognition is increasing rapidly in the field of computer graphics and mul-

timedia communication due to the difficulty in processing information efficiently without its recognition.

With the increasing use of scanners to create 3D models which are usually represented as triangle meshes

in computer graphics and geometric-aided design, shape recognition of 3D objects has become an active

research field with the recent developments in solid modeling and visualization [7]. These 3D scanners

are used extensively by the entertainment industry in the production of movies and 3D games. Other com-

mon applications of the 3D technology include healthcare, airport security, archaeology, manufacturing,

and quality assurance. Nowadays, vast amounts of 3D models are being developed and are distributed freely

or commercially on the Internet. 3D objects consist of geometric and topological information, and their

compact representation is an important step towards a variety of computer vision applications, particularly

matching and retrieval in a database of 3D models. The first step in 3D object matching usually involves
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finding a reliable shape descriptor or skeletal graph which will encode efficiently the 3D shape information.

Skeletonization aims at reducing the dimensionality of a 3D shape while preserving its topology [7, 27].

Most 3D shape representation techniques proposed in the literature of computer graphics and computer

vision are based on geometric and topological representations which represent the features of an object [30,

31, 28, 29]. For example, Siddiqi [28] introduced a shock detection approach based on singularity

theory to generate a skeletal shape model. Also, Siddiqi [32] recently proposed a directed acyclic

graph representation for 3D retrieval using medial surfaces. This approach uses the geometric information

associated with each graph node along with an eigenvalue labeling of the adjacency matrix of the subgraph

rooted at that node. Damon [33] presented an elegant algorithm for decomposing the medial axis into

irreducible medial components which are attached to each other along fin curves. The mathematical and

algorithmic aspects of medial representations are further explored in [34]. Cornea [35] devised a 3D

matching framework for 3D volumetric objects using a many-to-many matching algorithm. This algorithm is

based on establishing correspondences among two skeletal representations via distribution-based matching

in metric spaces. Hassouna [36] proposed a level set based framework for robust centerline extraction

of 2D shapes and 3D volumetric objects. This approach is based on the gradient vector flow and uses a

wave propagation technique, which identifies the curve skeletons as the wave points of maximum positive

curvatures. Tagliasacchi [37] introduced a curve skeleton extraction algorithm from imperfect point

clouds. A major drawback of curve skeletons is that they cannot capture general shape features, such as

surface ridges, and are essentially restricted to objects which resemble connected tubular forms.

An alternative to feature-based representations is global methods, which represent a 3D object by a global

measure or shape distribution defined on the surface of the object [38, 39, 40]. Ankerst [38] uses shape

histograms to analyze the similarity of 3D molecular surfaces. These histograms are built from uniformly

distributed surface points taken from the molecular surfaces, and are defined on concentric shells and sec-

tors around the centroid of the surface. Osada [39] proposed a global approach for computing shape

signatures of arbitrary 3D models. The key idea is to represent an object by a global histogram based on

the Euclidean distance defined on the surface of an object. Kazhdan [40] proposed a rotation invariant

spherical harmonic representation that transforms rotation dependent shape descriptors into rotation inde-

pendent ones. Chen [41] presented a lightfield descriptor for 3D object retrieval by comparing ten

silhouettes of the 3D shape obtained from ten viewing angles distributed uniformly on the viewing enclos-

ing sphere. The dissimilarity of two shapes is computed as the minimal distance obtained by rotating the

viewing sphere of one lightfield descriptor relative to the other lightfield descriptor. The computation of this

30



descriptor is, however, significantly time consuming compared to spherical harmonics [42].

The approach proposed in this chapter aims at representing 3D objects with topological coding. Topology

represents the connectedness of a shape and enables parts of shapes, which are connected, to be mapped

and drawn equivalently. One of the key mathematical tools used to study the topology of spaces is Morse

theory which is the study of the relationship between functions on a space and the shape of the space. Morse

studies the properties of a Morse function which has only nondegenerate singular points [7], and it describes

the topology changes of the level sets of this function at those singularities. Regular or noncritical points do

not affect the number or genus of the components of the level sets. It can be shown that Morse functions

are dense and stable in the set of all smooth functions, that is the structure of nondegenerate singularities

does not change under small perturbations [7]. A Morse theoretic representation that captures topological

properties of objects is the so-called Reeb graph representation proposed in [30]. The vertices of the Reeb

graph are the singular points of a Morse function defined on the surface of a 3D object [7, 30]. The height

function-based approach may lead to the extraction of an unbounded number of critical points, except in the

case of triangle meshes where the number of critical points is bounded by the number of mesh vertices. This

limitation has been addressed in [60] by introducing a fair Morse function that produces the least possible

number of critical points. Since the level sets of the height function are horizontal planes perpendicular

to the height axis, the weakness of such Reeb graphs is that they are not invariant to rotation. Lazarus

[31] used the geodesic distance from a manually chosen source point as a Morse function to compute their

extracted graphs which they referred to as . Hilaga [29] used the geodesic distance

from point to point on a surface to overcome the problem of automatic extraction of the source point.

The geodesic integral is, however, computed using a selected (typically small) random subset of points on

the surface, which may lead to inaccuracies in terms of effectively capturing the topological structure of

the surface. Moreover, another disadvantage of using the geodesic distance is its sensitivity to topological

changes. That is, modifying the shape connectivity may significantly alter the shortest paths between feature

points, resulting in significant changes of the geodesic distance. Tierny [61] presented a structural

oriented Reeb graph based method for partial 3D shape retrieval. Partial similarity between two shapes is

then evaluated by computing a variant of their maximum common sub-graph. Gebal [44] proposed a

surface signature based on the heat kernel and applied it to mesh skeletonization and segmentation. Aouada

[45] proposed a topological Reeb graph skeleton using an intrinsic global geodesic function defined on

the surface of a 3D object. This approach decomposes a shape into primitives, and then a detailed geometric

information is added by tracking the evolution of Morse’s function level curves along each primitive. A
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detailed overview of the mathematical properties of Reeb graphs and their applications to shape analysis is

presented in [46]. Pascucci [47] introduced a robust method for fast Reeb graph computation that is

able to handle non-manifold meshes. Also, Patane [48] proposed an efficient Reeb graph computation

algorithm by studying the evolution of the level sets only at the saddle points of a Morse function. More

recently, Reuter [64] introduced a Morse-theoretic method for shape segmentation and registration using the

topological features of Laplace-Beltrami eigenfunctions. These eigenfunctions are computed with a cubic

finite element method on triangular meshes. Moreover, the level curves of the first eigenfunction may be

used to extract the skeletal Reeb graph of a 3D mesh.

In this chapter, we propose an invariant skeletal Reeb graph for 3D object representation using a normal-

ized mixture distance function. The key idea is to identify and encode regions of topological interest of a 3D

object in the Morse-theoretic framework [6, 51]. The main motivation behind using the distance function is

it rotational invariance, which makes it more adapted to object recognition than the Morse height function.

Using this skeletal graph as a shape signature, we also extend to 3D the idea of path similarity skeleton

graph matching by comparing the relative shortest paths between the skeleton endpoints.

The rest of this chapter is organized as follows. In Section 3.2, we propose a normalized mixture distance

function-based approach to construct invariant skeletal Reeb graphs of 3D objects. Section 3.3 introduces a

3D extension of the idea of path similarity skeleton graph matching by comparing the relative shortest paths

between the skeleton endpoints. In Section 3.4, we present experimental results for topological coding using

the mixture distance function-based skeletal graph, and show its robustness to noise, mesh decimation, and

invariance to rigid motion transformations. Then, we demonstrate the feasibility of the proposed skeletal

Reeb graph as a shape signature for 3D object matching and retrieval.

3.2 PROPOSED REEB GRAPH APPROACH

The concept of distance is of paramount importance to topology, with the actual numeric values being of less

importance. In fact, topologists often use a distance function, but the attributed numerical values have only

secondary meaning. To illustrate this, suppose we are given an object in the ordinary 3D space, and a point

outside the object, and the question is: does the object come arbitrarily close to this reference point? this

may be stated as: is the point a boundary point of the object? “Arbitrarily close” means that if one imagines

a ball around the reference point, then the ball contains some points belonging to the object no matter how

small the ball is.

Denote by V = (p1 p2 . . . pm)T the m × 3 mesh vertex matrix having as rows the coordinates of the

32



mesh vertices

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 z1

x2 y2 z2
...

...
...

xm ym zm

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

m×3, (3.1)

where pi = (xi, yi, zi)
T ∈ V .

Let c = (x̄, ȳ, z̄)T be the centroid of the triangle mesh, that is c is the center of the minimal enclosing

sphere of the mesh vertices V . We define the m× 3 centered vertex matrix as

Vc = (p1 − c p2 − c . . . pm − c)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 − x̄ y1 − ȳ z1 − z̄

x2 − x̄ y2 − ȳ z2 − z̄
...

...
...

xm − x̄ ym − ȳ zm − z̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2)

The Euclidean distance function of M to c is defined as

deucc : M → R such that deucc (p) = ‖p− c‖2, (3.3)

and it can be easily shown that it is rotation and translation invariant.

Let A = m(V T
c Vc)

−1, we define the affine distance function as follows

daffc : M → R such that

daffc (p) = ‖p− c‖2A = (p − c)TA(p− c), (3.4)

and it can be shown that it is invariant to affine transformations [52]. It is worth pointing out that A is

the covariance matrix of the surface points about their centroid. Thus, the affine distance reduces to the

Mahalanobis distance with respect to this matrix. In addition, the matrix A is always well-defined for

nondegenerate 3D shapes (i.e. when M is not a point or a plane).

The level sets of the Euclidean and affine invariant distances are illustrated in Figure 3.1.
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(a) Concentric spheres (b) Concentric ellipsoids

FIGURE 3.1: Level sets of the (a) Euclidean and (b) affine invariant distances.

3.2.1 MIXTURE DISTANCE FUNCTION

We define the mixture distance function as a convex combination of the Euclidean and the affine distance

functions:

dc : M → R such that

dc(p) = λ‖p− c‖2 + (1− λ)‖p− c‖2A, (3.5)

where λ ∈ (0, 1) is a mixture parameter that needs to be estimated or chosen .

From the invariance properties of the Euclidean and affine distance functions, it is easy to verify that the

mixture distance function is invariant to orthogonal and translation transformations.

3.2.2 MORSE-THEORETIC ANALYSIS OF THE MIXTURE DISTANCE FUNCTION

A surface M may be defined locally in parametric form by a Monge patch r : M → R such that the

neighborhood of each point p = r(x, y) ∈ M may be defined as a graph of a function u : Ω ⊂ R
2 → R.

In other words, there exists (x, y) ∈ Ω such that p = r(x, y) = (x, y, u(x, y)). Hence the mixture distance

function may be expressed as

dc(r(x, y)) = λ‖r(x, y)− c‖2 + (1− λ)‖r(x, y)− c‖2A. (3.6)

Taking the derivatives of dc with respect to x and y, the first partial derivatives are given by dx = rTxBλ(r−

c) and dy = rTy Bλ(r − c), where Bλ = λI3 + (1− λ)(A+AT ), and I3 is the 3× 3 identity matrix. Thus

dc has a critical point at p = r(x, y) if and only if Bλ(p − c) is orthogonal to M at p, or equivalently

c− r(x, y) is parallel to the surface normal N . Therefore

c = p+ αB−1
λ N = r(x, y) + αB−1

λ N , (3.7)
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where α is a constant.

On the other hand, the second order partial derivatives of dc at a critical point are given by

dxx = rTxBλrx + rTxxBλ(r − c) = rTxBλrx − αrTxxN

dyy = rTy Bλry + rTyyBλ(r − c) = rTy Bλry − αrTyy N

dxy = rTxBλry + rTxyBλ(r − c)) = rTxBλry − αrTxy N .

Hence, the Hessian matrix is given by ∇2d = I − αII , where I and II denote the first and second funda-

mental forms [5] with respect to the orthogonal basis

{
√
Bλ rx,

√
Bλ ry}.

A degenerate critical point of the mixture distance function satisfies det(∇2dc) = 0 if and only if

det(∇2dc) = 1/α2 = κ1κ2, (3.8)

where κ1 and κ2 are the principal curvatures [5]. A point p ∈ M is therefore a degenerate critical point

of the mixture distance function dc if and only if c is a focal point of (M,p), that is c = p + κ−1
1 N or

c = p + κ−1
2 N . If c is the origin of the coordinate system, then it is clear that c is not a focal point and

hence dc has no degenerate critical points. In addition, the Morse index of a nondegenerate critical point of

the mixture distance function dc is equal to the number of focal points of (M,p) which lie on the segment

from p to c. This can be shown using the Hessian matrix ∇2dc since the number of its negative eigenvalues

is equal to the number of eigenvalues of the second fundamental form matrix II (assuming that the first

fundamental form I is the identity matrix) which are ≥ 1/α.

3.2.3 PROPERTIES OF THE MIXTURE DISTANCE FUNCTION

For simplicity we consider the centroid c of the surface M to be the origin of the Euclidean coordinate

system. Hence the mixture distance function becomes

d(p) = λ‖p‖2 + (1− λ)‖p‖2A. (3.9)

Note that for � > 0, the level sets {p ∈ M : d(p) = �} of the mixture distance function are concentric

convex combination of quadrics. The key idea behind using the mixture distance function is to track the

changes in topology as we cross a surface singularity. In the first step, we start with a convex combination of

quadrics having a sufficiently small level value �, and centered as the barycenter of the underlying surface,

then we evolve this convex combination of quadrics by increasing the level value so that we will have a set
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of concentric convex combination of quadrics covering the entire surface. The most important properties of

the mixture distance function are:

(i) the level sets {p ∈ M : d(p) = �} of the distance function are concentric convex combination of

quadrics.

(ii) a 3D object can be reconstructed if we know its intersections with these concentric convex combination

of quadrics.

(iii) the mixture distance function is rotation and translation invariant and can be easily normalized to

achieve scale invariance as shown next.

3.2.4 NORMALIZED MIXTURE DISTANCE FUNCTION

We define the normalized mixture distance function as

d̃(p) =
d(p)− dmin

dmax − dmin
, ∀p ∈ V, (3.10)

where dmin = min d(p) and dmax = max d(p).

It can easily be shown that the normalized mixture distance function is scale-invariant, that is d̃(sp) = d̃(p),

where s ∈ R. Even with the normalized form, calculating the mixture distance function for a given surface

point is simple and computationally inexpensive.

3.2.5 PROPOSED SKELETONIZATION ALGORITHM

The main algorithmic steps of the mixture distance-based Reeb graph are described in Algorithm 4. In Fig-

ure 3.2 the work flow of the proposed skeletonization algorithm is shown at selected steps to illustrate the

skeletal graph extraction, where the VerticesSet and NodeSet are marked as green and red points respec-

tively.

The complexity of the proposed skeletonization algorithm can be determined as follows. Computing the

centroid and the normalized mixture distance function for a 3D triangle mesh with m vertices takes O(m)

time. Constructing the nodes and edges of the skeletal graph requires calculating the connected component

of triangles and hence also takes O(m) time. The overall complexity is, therefore, O(m), which shows an

improvement over geodesic function based Reeb graphs with complexity O(m logm). This computational

cost can be further improved [29] using Patane ’s Reeb-graph extraction algorithm [48], which has
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Algorithm 1 Proposed skeletonization approach
1: Find the centroid of c of the 3D mesh M = (V,T )
2: Find the maximum distance dmax = max dc(p), ∀p ∈ V
3: for (k = 1 to R)
4: d(k) = k ∗ dmax/R; ⇐ R is the resolution parameter
5: VerticesSetp[0,1] = setIntersect(M,1); ⇐ Find vertices subset of M from c to d(1)
6: NodeSetp = centroid(VerticesSetp [0,1](n)); ⇐ Assign a node to each connected component at its cen-

troid.
7: Connect c and NodeSetp
8: for k = 2 to R do
9: VerticesSetc[k − 1, k] = setIntersect(M, k − 1, k);⇐ Find intersection of M from distance d(k − 1)

to d(k)
10: for each component VerticesSetc [k − 1, k](n) do
11: NodeSetc = centroid(VerticesSetc [k − 1, k](n))
12: for each connected portion do
13: Connect NodeSetc and NodeSetp
14: end for
15: end for
16: NodeSetp = NodeSetc
17: VerticesSetp = VerticesSetc
18: end for

a computational complexity of O(sm), where s is the number of saddle points of the underlying Morse

function. Thus, a considerable computational improvement is expected when s < logm.

It is important to understand how the mixture distance function relates to topology and Morse theory. The

intersection of a 3D object with a growing convex combination of quadrics results in connected compo-

nents on the object surface (see Figure 3.3(a)). The critical points of the surface, which define its topology,

correspond to distance levels, at which there is a change in number of connected components (see Fig-

ure 3.3(b)). This change in the number of connected components reflects the changes in topology of a 3D

shape, particularly, branching and merging or holes within as shown in Figure 3.3(b).

3.3 REEB GRAPH MATCHING

In this section, we extend to 3D the idea of path similarity skeleton graph matching by comparing the

relative shortest paths between the skeleton endpoints [55]. Bai [55] algorithm uses the similarity

of the shortest paths between each pair of skeleton endpoints to establish a correspondence relation of the

endpoints in different graphs. These shortest path-based methods, however, were essentially proposed to

tackle the problem of 2D shape matching. Our proposed approach, which only considers the shortest skeletal

paths between skeleton endpoints, is focused on skeletal graph matching for 3D objects. The proposed
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(k = 1) (k = 3) (k = 5)

(k = 6) (k = 8) (k = 10)

(k = 11) (k = 12) (k = 13)

FIGURE 3.2: Mixture distance-based Reeb graph extraction at various steps k =
1, . . . , 13.

skeleton graph matching is based on the dissimilarity of the shortest paths between the endpoints of the

skeletal Reeb graph. A skeleton endpoint refers to the skeleton node that is connected by only one edge

as shown in Figure 3.4. It is worth pointing out that endpoints are the salient points of the skeleton and

can be seen as visual parts of the original 3D shape [55]. In the same vein as [55], considering only the

shortest skeletal paths between endpoints would help avoid the instability problem of the skeleton junction

points (i.e. points having three or more adjacent points) and also to make our proposed method more robust
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(a) (b)

FIGURE 3.3: (a) Connected components and (b) skeletal graph of a double torus.

to shape deformation. The shortest path between each endpoint and all other endpoints of the skeleton

provides an important endpoint feature that will be incorporated into our matching dissimilarity measure.

Our proposed skeleton graph matching approach is based on the assumption that similar skeletons have a

similar structure of their endpoints. It is common that the skeletons of similar 3D shapes may have different

structures of junction nodes. Similar to [55], one of the major advantages of the proposed method is that it

does not require that the graphs be converted to trees prior to finding the correspondence, as this conversion

may result in the loss of important structural information and, consequently, negatively influence the 3D

object recognition result.

FIGURE 3.4: The 3D cow’s Reeb graph and its skeleton endpoints (red color).
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In contrast to existing methods for skeleton matching, our proposed approach focuses on the dissimilarity

between the shortest paths connecting the skeleton endpoints. We use the shortest paths between endpoints

to establish a correspondence relation of the endpoints in different skeletal Reeb graphs. It is worth noting

that the idea of using of shortest paths in skeletal graph matching and classification has been previously

explored in the literature. For example, Demirci [53] proposed transforming the graphs into points

in a low-dimensional geometric space using low-distortion graph embedding techniques. Each point in the

embedding space corresponds to a node in the original graphs. The distance in the embedding space reflects

the shortest-path distance in the original graphs in order to keep topological relations. Ling [54]

proposed using the inner-distance to build shape descriptors that are robust to articulation and capture part

structure. The inner-distance is defined as the length of the shortest path between landmark points within

the shape silhouette.

After generating the 3D shape skeleton, our next step is to develop a robust approach for skeletal graph

matching. To this end, we match any two Reeb graphs by establishing a correspondence of their endpoints.

Then, we apply a pruning algorithm [56] to remove non-salient nodes from the skeleton graph. The proposed

matching method consists of two main steps. The first step, which we refer to as indexing, reduces the

number of skeletons to be compared with. In the second step, we match the Reeb graphs by applying a

dissimilarity measure to retrieve the closest 3D model. These two steps are explained in more details in the

following subsections.

3.3.1 INDEXING

A linear search through a database of 3D models is inefficient for large databases, as it requires comparing

the query object to each model in the database and selecting the closest one [32]. Therefore, the goal is to

apply an efficient indexing mechanism to narrow the search scoop in a small set of objects that are most

probably similar to the query object. Using our skeletonization algorithm, we may formulate the indexing

problem as finding skeletons whose topological structures are similar to the query skeleton. It is important

to note that similar shapes will have the same skeleton even if they are subject to some deformation or

transformation. Moreover, these skeletons will have the same number of endpoints.

Thus, in our indexing mechanism we use the number of skeleton endpoints as the base for indexing, with

an error rate of 2 or 3 nodes, meaning that for two skeletons to be in the same index group they should have

the same number of endpoints. However, due to noise there might be a difference of 1 or 2 nodes at most,

as a result of the pruning process.
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3.3.2 ENDPOINTS CORRESPONDENCE

After applying the indexing mechanism, the next step is to match the skeletons. Our proposed matching

method considers both topological and geometrical features of the matched 3D models. We assign to each

endpoint in the Reeb graph (query or model) some features that may help identify the closet endpoint in

the other skeletal graph. Thus, our skeleton graph matching problem may be reduced to finding the best

correspondence between the endpoints in the query and the endpoints in the model. This can be achieved

by minimum weight matching of the two sets of endpoints. A dissimilarity measure between the set of end-

points in both query and model skeletons is used. Therefore, the matching problem aims at finding the best

correspondence between the query skeleton endpoints and the database skeletons endpoints. Two endpoints

are said to be in close correspondence if the dissimilarity measure between their endpoints has a smaller

value. In other words, the matching problem is now reduced to finding the maximum correspondence, min-

imum weight matching of the two sets of endpoints. The endpoints correspondence process is shown in

Algorithm 2.

Algorithm 2 Endpoints correspondence
Let E = (vi)i=1,..,n1 and Ẽ = (ṽj)j=1,..,n2 be two sets of endpoints.
For each endpoint vi ∈ E:

1: Compute a dissimilarity measure between vi and all the nodes in Ẽ
2: Find the node ṽj with the minimum dissimilarity and assign its correspondence to vi

3: Delete vi and ṽj from the list of nodes in E and Ẽ, respectively
Repeat steps 1-3 for all nodes in E until one of the node sets E or Ẽ is empty

3.3.3 MATCHING ENDPOINTS USING SKELETON PATHS

Endpoint Features

When generating the skeletal Reeb graph of a 3D shape we assign three features to each endpoint of the

skeleton. The first feature is the relative node area, which is equal to the area of the neighboring triangles of

the endpoint divided by the total area of the 3D model. This feature provides important information about

the endpoint as sometimes the skeletons of two models may look similar, albeit their shapes are completely

different. Thus, adding this feature to an endpoint will help discriminate between endpoints based on the

original 3D shape and not just its skeleton. The reason behind using the relative area is due to its invariance

to scaling. The second feature assigned to an endpoint is the relative node path, which is equal to the sum of

shortest path distances from each endpoint to all other endpoints of the skeleton (see Figure 3.5(b)) divided
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(a)

(b)

FIGURE 3.5: (a) Camel’s Reeb graph. (b) Shortest paths between pairs of endpoints
on the skeleton.

by the sum of the shorted paths from the mesh centroid (root node) to each endpoint. And the third feature

is the relative centroid path, which is the shortest path distance from the mesh centroid to each endpoint (see

Figure 3.6), divided by the sum of the shortest paths from the mesh centroid to all endpoints.

Endpoints dissimilarity

Let M and M̃ be two 3D objects with skeletal Reeb graphs G and G̃, respectively. And denote by E =

(vi)i=1,..,n1 and Ẽ = (ṽj)j=1,..,n2 the skeleton endpoints sets of G and G̃, respectively. We define the
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FIGURE 3.6: Shortest paths between the mesh centroid and an endpoint on the skele-
ton.

dissimilarity measure between two endpoints vi and ṽj as follows:

Φ(vi, ṽj) = [(ai − ãj)
2 + (dvi − dṽj)

2 + (dci − dc̃j)
2]1/2, (3.11)

where

• ai and ãj are the relative node areas of vi and ṽj

• dvi =
∑n1

k=1 dist(vi,vk)/
∑n1

k=1 dist(c,vk) and dṽj =
∑n2

k=1 dist(ṽj , ṽk)/
∑n2

k=1 dist(c̃, ṽk) are

the relative node paths of vi and ṽj

• dci = dist(c,vi)/
∑n1

k=1 dist(c,vk) and

dc̃j = dist(c̃, ṽj)/
∑n2

k=1 dist(c̃, ṽk) are the relative centroid paths of vi and ṽj

• c and c̃ are the centroids of M and M̃, respectively
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• dist(·, ·) denotes the Dijkstra’s shortest path distance.

Therefore, the dissimilarity between two skeletal Reeb graphs may be defined as:

D(G, G̃) =

n1∑
i=1

n2∑
j=1

Φ(vi, ṽj). (3.12)

The main algorithmic steps of the proposed graph matching approach are described in more details in

Algorithm 3.

Algorithm 3 Proposed graph matching approach
Given two 3D objects M and M̃

1: Generate the skeletal Reeb graphs G and G̃ of M and M̃, respectively
2: Apply graph pruning to remove non-salient nodes
3: Find the skeleton endpoints sets E = (vi)i=1,..,n1 and Ẽ = (ṽj)j=1,..,n2 of G and G̃, respectively
4: for all endpoints (vi) and (ṽj) do
5: Compute the relative node areas ai and ãj of vi and ṽj , respectively
6: Compute the relative node paths dvi and dṽj

7: Compute the relative centroid paths dci and dc̃j
8: end for
9: Apply Algorithm 2 to find the correspondence between G and G̃

10: Compute the dissimilarity D(G, G̃) given by Eq. (3.12).

It is important to point out that our matching algorithm is largely motivated by [55]. However, a significant

difference with our algorithm is the novel choice of features that we assigned to the skeleton endpoints as

well as the dissimilarity measure between these endpoints. More precisely, steps 4-to-10 of Algorithm 3

show a major difference between our proposed approach and Bai ’s algorithm [55].

Let � denote the number of skeleton endpoints. Using Patane ’s Reeb-graph extraction algorithm [48],

the computational complexity of our approach may be reduced to O(sm+ �2) when s < logm. In addition,

the number of skeleton endpoints � is relatively small.

3.4 EXPERIMENTAL RESULTS

The results of the proposed Reeb graph path dissimilarity method are presented in this section. We start by

presenting examples of mixture distance-based Reeb graphs for 3D shapes using the proposed skeletoniza-

tion algorithm. In all the experimental results, we used a data-dependent mixture distance parameter λ given

by:

λ = max(‖pi‖2/(‖pi‖2 + ‖pi‖2A)).
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In other words, the value of λ is computed automatically from all the vertices of the 3D shape. Also, The

resolution parameter R was set to R = 22. To justify the purpose of introducing a weighted distance,

Figure 3.7 shows the skeletonization results using the affine and mixture distance. As can be seen, the

mixture distance function-based approach provides more accurate results while preserving topology.

(a) affine (b) mixture

FIGURE 3.7: Skeletal graphs using affine and mixture distance functions.

Using the skeletonization algorithm described in Section 3, we constructed the Reeb graphs of several

3D models as shown in Figure 3.8. The results clearly indicate the robustness of the proposed of the skele-

tonization algorithm in extracting skeletal Reeb graphs of 3D objects.

Next, we show the robustness of the proposed skeletal graph to noise and to mesh decimation as well as

its invariance to Euclidean transformations.

3.4.1 ROBUSTNESS TO NOISE

To test the performance of the proposed skeletonization algorithm in the presence of noise, we generated

the noisy 3D model by adding artificial noise to each coordinate of the mesh vertices according to the noise

model given by p̄i = pi + σN , where pi and p̄i are the original and noisy mesh vertices respectively, N is

a Gaussian noise process with zero mean and unit variance, and σ is a variable parameter that specifies the

amount of noise to be added and it is usually chosen experimentally. For the noisy double torus shown in

Figure 3.9(a), we used a value of σ equal to σ = 3.5min(max(‖pi − pj‖)), ∀i, j = 1, . . . ,m.

Figure 3.9(b) depicts the extracted mixture distance-based Reeb graph using the proposed algorithm, and

it evidently shows a good preservation of the mesh topological structure. The result is very similar to what

one would expect in the case of the skeleton graph of the noise-free double torus shown in Figure 3.3(b).
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FIGURE 3.8: Mixture distance-based Reeb graphs of different 3D models.

(a) (b)

FIGURE 3.9: (a) Noisy double torus and its (b) mixture distance-based Reeb graph.

3.4.2 ROBUSTNESS TO MESH DECIMATION

The goal of mesh decimation is to reduce the total number of mesh faces while closely approximating the

original surface. The original model shown in Figure 3.10(a) contains 25600 triangles. The two decimated

heart meshes shown in Figure 3.10(b) and Figure 3.10(c) contain 6400 and 1600 triangular faces, respec-
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tively. Note that the skeletal Reeb graphs of the decimated meshes are excellent approximations of the

original model graph.

(a) 25600 triangles (b) 6400 triangles (c) 1600 triangles

FIGURE 3.10: Mixture distance-based Reeb graph under mesh decimation.

3.4.3 INVARIANCE TO ROTATION, TRANSLATION, AND SCALING

Figure 3.11(a) and Figure 3.11(b) shows that rotating a 3D spider model, prior to the construction of the

skeletal graph, does not change the critical points of the mixture distance function. Their corresponding

mixture distance-based Reeb graphs are identical. Moreover, by introducing the normalized mixture distance

function, we guarantee that different dimensions of the same object are modeled with the same skeletal

graph. Figure 3.11(c) shows the skeletal graph of the 3D spider model scaled by a factor of 2 but at the same

resolution as Figure 3.11(a).

3.4.4 MATCHING AND RETRIEVAL RESULTS

We tested the performance of the proposed matching algorithm using the McGill Shape Benchmark [71].

This publicly available benchmark database provides a 3D shape repository, which contains 255 objects

that are divided into ten categories, namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’, ‘Octopuses’,

‘Pliers’, ‘Snakes’, ‘Spiders’, and ‘Teddy Bears’. Sample models from this database are shown in Figure 3.12.

The McGill’s database objects are represented by voxel grids as well as by triangle meshes. Table 3.1

shows that the proposed approach yields correct matching results, where a low value (displayed in boldface

for emphasis) of the dissimilarity measure indicates that the objects are more similar.

We also compared our approach with spherical harmonics (SH) [40] and medial surfaces (MS) [32].

The results show that our method achieve better retrieval results than the spherical harmonic approach as
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(a) original (b) rotated by 90◦

(a) scaled by a factor of 2

FIGURE 3.11: Illustration of skeletal Reeb graph invariance to rotation and scaling.

FIGURE 3.12: Sample shapes from McGill Articulated Shape Database. Only two
shapes for each of the 10 classes are shown.

shown in Table 3.2, where the top ten retrieved 3D objects are displayed (top-to-bottom). As can be seen

in Table 3.2, the proposed approach returns correct results whereas the spherical harmonics method yields

poor retrieval results (columns 2, 4, and 6).

To carry out comparison experiments on the entire benchmark of articulated 3D objects, we evaluated the
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retrieval performance of the proposed approach using the standard information retrieval evaluation measure

of precision recall curve, where

precision =
No. relevant objects retrieved

Total No. objects retrieved

and

recall =
No. relevant objects retrieved

Total No. relevant objects in the collection
.

A precision-recall curve that is shifted upwards and to the right indicates superior performance. It is

evident from Figure 3.13 that our method significantly outperforms spherical harmonics and medial surfaces.
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FIGURE 3.13: Precision vs. Recall curves for spherical harmonics (SH), medial sur-
faces (MS), and proposed RGPD approach using the McGill Shape Benchmark [71].

Finally, we tested the performance of the proposed algorithm on the Princeton Shape Benchmark [72].

As can be seen in Table 3.3, the proposed approach shows superior performance over spherical harmonics,

where the top five retrieved 3D objects are displayed (top-to-bottom).
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D(M, M̃)

0.0275 0.1130 0.1216 0.0278 0.1583 0.1146 0.1137

0.1103 0.0025 0.1131 0.1156 0.1255 0.1632 0.1522

0.1231 0.1143 0.0123 0.0355 0.1137 0.1223 0.1312

0.0187 0.1167 0.1332 0.0169 0.1136 0.1174 0.1225

0.1333 0.1244 0.1141 0.1335 0.0077 0.1158 0.1623

0.1135 0.1463 0.1311 0.1624 0.1243 0.0041 0.1473

0.1145 0.1247 0.1445 0.1193 0.1533 0.1776 0.0093

TABLE 3.1: Matching results using proposed Reeb graph path dissimilarity (RGPD).
Each object in the database is matched against all the other objects in the database.
Each cell shows the dissimilarity measure between two objects selected from the
database. The smallest value corresponds to the correct match.
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Query

Retrieved Objects

RGPD SH RGPD SH RGPD SH

TABLE 3.2: Retrieval results using the McGill Shape Benchmark. The query shapes
are shown in the second row. The top ten retrieved objects (top-to-bottom) using spheri-
cal harmonics (SH) and our proposed Reeb graph path dissimilarity (RGPD) are shown
in rows 5 to 14.
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Query

Retrieved Objects

RGPD SH RGPD SH RGPD SH

TABLE 3.3: Retrieval results using the Princeton Shape Benchmark. The query shapes
are shown in the second row. The top five retrieved objects (top-to-bottom) using
spherical harmonics (SH) and our proposed Reeb graph path dissimilarity (RGPD) are
shown in rows 5 to 9.
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CHAPTER 4

SPECTRAL SKELETON FOR 3D OBJECT MATCHING AND

RETRIEVAL

In this Chapter, we describe a skeletal graph for 3D object matching and retrieval. This skeleton is con-

structed from the second eigenfunction of the Laplace-Beltrami operator defined on the surface of the 3D

object. Using the generalized eigenvalue decomposition, a matrix computational framework based on the

finite element method is presented to compute the spectrum of the Laplace-Beltrami operator. We also in-

troduce a robust matching method by comparing the shortest paths between the skeleton endpoints. The

experimental results demonstrate the feasibility of the spectral skeleton in 3D object matching and retrieval.

4.1 INTRODUCTION

In light of the latest software, hardware and computing advancements, 3D technology has grown beyond

being a buzzword. Today, 3D technology has become an essential part of the modern lifestyle and is gaining

momentum rapidly, from consumer demand for in-home 3D television experiences to far-reaching positive

implications for healthcare through the use of advanced 3D medical imaging systems aimed at improving

patient outcomes and expanding their clinical practice.

The importance of 3D shape recognition is irrupting due to the difficulty in processing information ex-

peditiously without its recognition. With the increasing use of 3D scanners and as a result of emerging

multimedia computing technologies, vast databases of 3D models are distributed freely or commercially

on the World Wide Web. The availability and widespread usage of such large databases coupled with the

need to explore 3D models in depth as well as in breadth has sparked the need to organize and search these
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vast data collections, retrieve the most relevant selections, and permit them to be effectively reused. 3D

objects consist of geometric and topological information, and their compact representation is an important

step towards a variety of computer vision applications, particularly matching and retrieval in a database of

3D models. The first step in 3D object matching usually involves finding a reliable shape descriptor or

skeletal graph, which will encode efficiently the 3D shape information. Skeletonization aims at reducing

the dimensionality of a 3D shape while preserving its topology [7, 27]. Unlike text documents, 3D models

are not easily retrieved due to the variability of their shapes. Attempting to find a 3D model using textual

annotation and a conventional text-based search engine would not work properly in many cases [57]. The

annotations added by users depend on various factors, including language, culture, age, and gender. In con-

trast, content-based 3D shape retrieval methods, which typically use the shape properties of the 3D models

to search for similar models, perform better than text-based methods [57].

The vast majority of 3D shape representation techniques proposed in the literature of computer graphics

and computer vision are based on geometric and topological representations which represent the features

of an object [30, 28, 29]. For example, Siddiqi [28] introduced a shock detection approach based on

singularity theory to generate a skeletal shape model. Also, Siddiqi [32] proposed a directed acyclic

graph representation for 3D retrieval using medial surfaces. This approach uses the geometric information

associated with each graph node along with an eigenvalue labeling of the adjacency matrix of the subgraph

rooted at that node. Cornea [35] devised a 3D matching framework for 3D volumetric objects using

a many-to-many matching algorithm. This algorithm is based on establishing correspondences among two

skeletal representations via distribution-based matching in metric spaces. Hassouna [36] proposed a

level set based framework for robust centerline extraction of 2D shapes and 3D volumetric objects. This

approach is based on the gradient vector flow and uses a wave propagation technique, which identifies the

curve skeletons as the wave points of maximum positive curvatures. Tagliasacchi [37] introduced

a curve skeleton extraction algorithm from imperfect point clouds. A major drawback of curve skeletons

is that they cannot capture general shape features, such as surface ridges, and are essentially restricted to

objects which resemble connected tubular forms.

An alternative to feature-based representations is global methods, which represent a 3D object by a global

measure or shape distribution defined on the surface of the object [38, 39, 40, 58]. Ankerst [38] uses

shape histograms to analyze the similarity of 3D molecular surfaces. These histograms are built from uni-

formly distributed surface points taken from the molecular surfaces, and are defined on concentric shells

and sectors around the centroid of the surface. Osada [39] proposed a global approach for comput-
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ing shape signatures of arbitrary 3D models. The key idea is to represent an object by a global histogram

based on the Euclidean distance defined on the surface of an object. More recently, Ion [59] pro-

posed an articulation-insensitive shape matching approach by constructing histograms from the eccentricity

transform using geodesic distances. Kazhdan [40] proposed a rotation invariant spherical harmonic

representation that transforms rotation dependent shape descriptors into rotation independent ones. Chen

[41] presented a lightfield descriptor for 3D object retrieval by comparing ten silhouettes of the 3D shape

obtained from ten viewing angles distributed uniformly on the viewing enclosing sphere. The dissimilarity

of two shapes is computed as the minimal distance obtained by rotating the viewing sphere of one light-

field descriptor relative to the other lightfield descriptor. The computation of this descriptor is, however,

significantly time consuming compared to spherical harmonics [42].

In this chapter, we describe a spectral skeletonization approach that aims at representing 3D objects with

topological coding, which we refer to as (SRG). Topology represents the connectedness

of a shape and enables parts of shapes, which are connected, to be mapped and drawn equivalently. One of

the key mathematical tools used to study the topology of spaces is , which is the study of the

relationship between functions on a space and the shape of the space. Morse theory studies the properties of

a Morse function which has only nondegenerate singular points [6, 7], and it describes the topology changes

of the level sets of this function at those singularities. Regular or noncritical points do not affect the number

or genus of the components of the level sets. It can be shown that Morse functions are dense and stable in

the set of all smooth functions, that is the structure of nondegenerate singularities does not change under

small perturbations [6, 7]. A Morse theoretic representation that captures topological properties of objects

is the so-called representation proposed in [30], which is based on the Morse height function.

The vertices of the Reeb graph are the singular points of a Morse function defined on the surface of a 3D

object [7, 30]. The height function-based approach may lead to the extraction of an unbounded number of

critical points, except in the case of triangle meshes where the number of critical points is bounded by the

number of mesh vertices. This limitation has been addressed in [60] by introducing a fair Morse function that

produces the least possible number of critical points. Since the level sets of the height function are horizontal

planes perpendicular to the height axis, the weakness of such Reeb graphs is that they are not invariant to

rotation. Hilaga [29] used the geodesic distance from point to point on a surface to overcome the

problem of automatic extraction of the source point. The geodesic integral is, however, computed using a

selected (typically small) random subset of points on the surface, which may lead to inaccuracies in terms of

effectively capturing the topological structure of the surface. Moreover, another disadvantage of using the
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geodesic distance is its sensitivity to topological changes. That is, modifying the shape connectivity may

significantly alter the shortest paths between feature points, resulting in significant changes of the geodesic

distance. Tierny [61] presented a structural oriented Reeb graph based method for partial 3D shape

retrieval. Partial similarity between two shapes is then evaluated by computing a variant of their maximum

common sub-graph. Gebal [44] proposed a surface signature based on the heat kernel and applied it to

mesh skeletonization and segmentation. Aouada [45] proposed a topological Reeb graph skeleton using

an intrinsic global geodesic function defined on the surface of a 3D object. This approach decomposes a

shape into primitives, and then detailed geometric information is added by tracking the evolution of Morse’s

function level curves along each primitive. A detailed overview of the mathematical properties of Reeb

graphs and their applications to shape analysis is presented in [46]. Pascucci [47] introduced a robust

method for fast Reeb graph computation that is able to handle non-manifold meshes. Also, Patane [48]

proposed an efficient Reeb graph computation algorithm by studying the evolution of the level sets only at

the saddle points of a Morse function.

More recently, there has been a surge of interest in the spectral analysis of the Laplace-Beltrami op-

erator, resulting in many applications to object recognition and in particular manifold learning [62] and

shape analysis [63, 64, 65, 66]. It is worth pointing out that spherical harmonics [40] are nothing but the

Laplace-Beltrami eigenfunctions on the sphere. Reuter [64] introduced a Morse-theoretic method for shape

segmentation and registration using the topological features of Laplace-Beltrami eigenfunctions. These

eigenfunctions are computed via a cubic finite element method on triangular meshes, and are arranged in

increasing order of their associated eigenvalues. Shi [67] used the level curves of the second eigen-

function to construct the spectral Reeb graph of 3D neuroanatomical structures. In addition to having a nice

geometric property of following the pattern of the overall shape of a 3D object, the second eigenfunction

of the Laplace-Beltrami operator can capture the intrinsic structure of elongated shapes (e.g. hippocampus)

and it is also invariant to isometric transformations. Moreover, the spectral Reeb graph is invariant to the

pose of the shape [67].

Motivated by the aforementioned invariance properties of the second eigenfunction of the Laplace-

Beltrami operator, we propose to use the spectral Reeb graph to construct the shape skeleton of a 3D object.

The key idea is to identify and encode regions of topological interest of a 3D object in the Morse-theoretic

framework. That is, the level sets (curves) of the second eigenfunction are computed (identified), then each

level set (curve) is encoded as a skeleton node representing the centroid of the curve.

The rest of this chapter is organized as follows. In Section 4.2, we delineate the spectral Reeb graph of
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a 3D object using the second eigenfunction of the Laplace-Beltrami operator, which is the intrinsic surface

Laplacian. Section 4.3 briefly describes the path dissimilarity skeleton graph matching method by comparing

the relative shortest paths between the skeleton endpoints. In Section 4.4, we present experimental results

for topological coding using the spectral Reeb graph and we demonstrate the feasibility of this skeletal graph

as a shape descriptor for 3D object matching and retrieval.

4.2 SPECTRAL REEB GRAPH

4.2.1 LAPLACE-BELTRAMI OPERATOR

Let M be a smooth orientable 2-manifold embedded in R
3. A parametric representation of M is a vector-

valued function r defined from a connected open set Ω ⊆ R
2 to R

3 such that

r(u) =

⎛⎜⎜⎜⎝
x1(u)

x2(u)

x3(u)

⎞⎟⎟⎟⎠ (4.1)

where u = (u1, u2) ∈ Ω. At each point p = r(u) ∈ M, the coordinate vector fields (partial derivatives)

r1 = ∂r/∂u1 and r2 = ∂r/∂u2 span the tangent space TpM, that is TpM = span{r1, r2}.

For each pair {ri, rj} in the tangent space TpM, the real-valued functions gij : Ω → R defined by the

inner (dot) products gij =< ri, rj > form a Riemannian metric tensor g = (gij) on M (called the usual

metric on M). That is, g is a symmetric 2× 2 matrix given by

g = (gij) =

⎛⎝ g11 g12

g12 g22

⎞⎠ , (4.2)

which is also denoted as ds2 =
∑2

i,j=1 gij dui duj . The geometry obtained from such dot products is called

Riemannian geometry. The Riemannian metric g makes it possible to define various geometric notions on

a Riemannian manifold (M, g), such as angles, lengths of curves, geodesics, areas (or volumes), curvature,

gradients of functions and divergence of vector fields. The metric tensor g is the analogous of the speed

in the case of space curves, and determines all the intrinsic properties of the surface M. These properties

depend on the surface and do not depend on its embedding in space. Furthermore, the tensor g is invariant

to rotation of the surface in space because it is defined in terms of inner products that are rotation invariant.

The area of the manifold M is given by

area(M) =

∫
M

dM =

∫
Ω

√
det g(u)du (4.3)
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where
√
det g =

√
g11g22 − g212 = ‖r1 × r2‖.

Given a twice-differentiable function f : M → R, the Laplace-Beltrami operator is defined as

ΔMf = −div(∇Mf) (4.4)

where ∇Mf is the intrinsic gradient vector field given by

∇Mf =
2∑

i,j=1

gij
∂f

∂uj

∂r

∂ui
(4.5)

and gij denote the elements of the inverse of the metric tensor, that is g−1 = (gij).

Thus, the Laplace-Beltrami may be expressed as

ΔMf = − 1√
det g

2∑
i,j=1

∂

∂ui

(√
det g gij

∂f

∂uj

)
. (4.6)

Using the divergence theorem under the assumption of Neumann boundary conditions yields∫
M

f1(p)ΔMf2(p) dM = −
∫
M

f1(p)div(∇Mf2) dM

=

∫
M

< ∇Mf1(p),∇Mf2(p) > dM

(4.7)

for any two differentiable functions f1 and f2, where the dot product is taken in the tangent space of the

manifold.

Let L2(M) be the space of square integrable functions on the manifold M. The space L2(M) is endowed

with inner product

< f1, f2 >=

∫
M

f1(p)f2(p) dM. (4.8)

An eigenfunction f of the Laplace-Beltrami operator satisfies ΔMf = λf , where λ is the corresponding

eigenvalue. Moreover, the eigenfunctions of the Laplace-Beltrami operator are the critical points (vectors)

of the Rayleigh-Ritz quotient, which is an energy functional defined as

R(f) =

∫
M
‖∇Mf‖2dM∫
M
‖f‖2dM (4.9)

and the eigenvalues are the values of the functional R at such critical points. Obviously, the infimum value

λ1 = 0 of R(f) is achieved for a constant function f = ϕ1. Since ΔM is a Hermitian operator, the set of

eigenvalues (spectrum) {λi, i = 1, 2, . . . ,∞} of ΔM is an infinite discrete subset of R+. These eigenvalues

may be written in increasing order as 0 = λ1 < λ2 ≤ λ3 ≤ . . . , with corresponding eigenfunctions

{ϕi, i = 1, . . . ,∞}. Moreover, the eigenfunctions of the Laplace-Beltrami operator form an orthogonal

basis for the the space L2(M). That is, < ϕi, ϕj > for i �= j.
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The second eigenvalue is given by

λ2 = inf
f⊥ϕ1

R(f) (4.10)

and ϕ2 is its corresponding eigenfunction. Note that since ϕ1 is a constant function, f ⊥ ϕ1 implies

< f,ϕ1 >= 0, which yields
∫
M
fdM = 0.

4.2.2 DISCRETIZATION USING FINITE ELEMENT METHOD

Let M be a triangle mesh represented as M = (V, E) or M = (V,T ) , where V = {v1, . . . ,vm} is the set of

vertices, E = {eij} is the set of edges, and T = {t1, . . . , tn} is the set of triangles. Each edge eij (denoted

by [vi,vj] or simply [i, j]) connects a pair of vertices {vi,vj}. Two distinct vertices vi,vj ∈ V are adjacent

(denoted by vi ∼ vj or simply i ∼ j) if they are connected by an edge, i.e. eij ∈ E . The neighborhood of a

vertex vi is the set v�
i = {vj ∈ V : i ∼ j} as shown in Figure 4.1.

FIGURE 4.1: Illustration of a vertex neighborhood v�
i .

Consider a triangle t ∈ T with vertices vi, vj and vk, angles α, β and γ and sides a, b and c as illustrated

in Figure 4.2. Then, according to Heron’s formula, area(t) is equal to

area(t) =
1

4

√
(a+ (b+ c))(a + (b− c))(c + (a− b))(c − (a− b)), (4.11)

where the length of the sides are arranged such that a ≥ b ≥ c.

We denote by t�[i,j] the set of triangles sharing the edge eij = [i, j], and by θ
[i,j]
k the angle in the triangle

tk opposite to the edge [i, j].

Using the finite element method on triangle meshes [68, 69], it can be shown that the energy functional

given in Eq. (4.9) may be expressed in matrix form as follows

R(f) =
f ′Qf

f ′Kf
(4.12)
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FIGURE 4.2: Illustration of area(t) and n(t).

where Q is an m×m matrix representing
∫
M
‖∇f‖2dM is given by

Q = (Qij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∑
vj∈v�

i

∑
tk∈t

�
[i,j]

cot θ
[i,j]
k if i = j

−1

2

∑
tk∈t

�
[i,j]

cot θ
[i,j]
k if i ∼ j

0 otherwise

(4.13)

and K is an m×m matrix representing
∫
M
‖f‖2dM is given by

K = (Kij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

12

∑
vj∈v�

i

∑
tk∈t

�
[i,j]

area(tk) if i = j

1

12

∑
tk∈t

�
[i,j]

area(tk) if i ∼ j

0 otherwise.

(4.14)

Both matrices Q and K are sparse. We refer to Q as the cotangent matrix, and K as the area matrix.

Figure 4.3 shows a 3D tooth model and its sparse area and cotangent matrices Q and K.

4.2.3 SPECTRAL SKELETON

The eigenvalues λi and corresponding eigenfunctions ϕi of the Laplace-Beltrami operator can be computed

by solving the generalized eigenvalue problem:

Qϕi = λiKϕi, i = 1, 2, . . . ,m (4.15)

where ϕi is the unknown eigenfunction evaluated at m mesh vertices. That is, ϕi is an m-dimensional

vector.

We may sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤ · · · ≤ λm and their correspond-

ing eigenfunctions as ϕ1,ϕ2, . . . ,ϕm, where each eigenfunction ϕi = (ϕi(v1), . . . , ϕi(vm))′ is an m-

dimensional vector. Moreover, these eigenfunctions are orthogonal < ϕi,ϕj >K= 0, ∀i �= j, where
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(a)

(b) (c)

FIGURE 4.3: (a) 3D tooth model; (b) sparsity pattern plot of the cotangent matrix Q;
(c) sparsity pattern plot of the area matrix K

the orthogonality is defined in terms of the K-inner product. That is, < ϕi,ϕj >K= ϕ′iKϕj . We may

normalize each eigenfunction ϕi by dividing each of its components with the K-norm ‖ϕi‖K =
√

ϕ′iKϕi,

so that the eigenfunctions of the Laplace-Beltrami operator form an orthonormal basis. Thus, any function

f : V → R (viewed as a column-vector of length m) on the triangle mesh M = (V,T ) can be expressed in

terms of the eigenfunctions as follows

f =

m∑
i=1

αiϕi, where αi =< f,ϕi > (4.16)

and the squared norm of f is given by ‖f‖2 =
∑m

i=1 α
2
i .

Note that since the sum of each row in the matrix Q equals zero, the first eigenvalue λ1 is zero and the

corresponding eigenfunction ϕ1 is a constant m-dimensional vector, that is ϕ1(vi) is equal to a constant

c for all i = 1, . . . ,m. This constant eigenfunction is depicted in Figure 4.4(a), where each vertex vi is

61



colored by a constant c = ϕ1(vi).

The second eigenvalue is given by

λ2 = inf
f⊥ϕ1

f ′Qf

f ′Kf
(4.17)

and ϕ2 = (ϕ2(v1), . . . , ϕ2(vm))′ is its corresponding eigenfunction. This eigenfunction is displayed in

Figure 4.4(b), where each vertex vi is colored by ϕ2(vi). The level curves of ϕ2 are shown in Figure 4.4(c).

(a) (b) (c)

FIGURE 4.4: (a) 3D tooth model colored by ϕ1; (b) tooth model colored by ϕ2; (c)
level sets of ϕ2.

On the other hand, Uhlenbeck [70] showed that the eigenfunctions of the Laplace-Beltrami operator are

Morse functions on the interior of the domain of the operator. Consequently, this generic property of the

eigenfunctions gives rise to constructing their associated Reeb graphs.

As shown in Figure 4.4(b) and Figure 4.5(a), the second eigenfunction of the Laplace-Beltrami operator

captures well the overall shape of 3D objects. Motivated by the invariance properties of the second eigen-

function of the Laplace-Beltrami operator and also by its generic property as a Morse function, we propose

to use the spectral Reeb graph to construct the shape skeleton of a 3D object as follows: First, the level sets

(curves) of the second eigenfunction are computed (identified); then each level set (curve) is encoded as a

skeleton node representing the centroid of the curve, as shown in Figure 4.5(c). The main algorithmic steps

for computing the spectral Reeb graph are described in Algorithm 4.

4.3 SPECTRAL REEB GRAPH MATCHING

In this section, we use the same graph matching approach discussed in Chapter 3, which is based on the

dissimilarity of the shortest paths between the endpoints of the skeletal Reeb graph. Recall that a skeleton
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(a) (b)

(c)

FIGURE 4.5: (a) 3D horse model colored by ϕ2; (b) level sets of ϕ2; (c) spectral Reeb
graph.

endpoint is the skeleton node that is connected by only one edge as shown in Figure 4.6.

Similar to the previous chapter, we also assign three features to each endpoint of the skeleton. The first

feature is the relative node area, which is equal to the area of the neighboring triangles of the endpoint

divided by the total area of the 3D model. This feature provides important information about the endpoint as

sometimes the skeletons of two models may look similar, albeit their shapes are completely different. Thus,

adding this feature to an endpoint will help discriminate between endpoints based on the original 3D shape

and not just its skeleton. The reason behind using the relative area is due to its invariance to scaling. The

second feature assigned to an endpoint is the relative node path, which is equal to the sum of shortest path

distances from each endpoint to all other endpoints of the skeleton (see Figure 4.7(b)) divided by the sum of

the shorted paths from the mesh centroid (root node) to each endpoint. And the third feature is the relative

centroid path, which is the shortest path distance from the mesh centroid to each endpoint (see Figure 4.8),
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Algorithm 4 Proposed skeletonization approach
1: Compute the second eigenfunction ϕ2 of the Laplace-Beltrami operator by solving the sparse general-

ized eigenvalue problem Qϕi = λiKϕi.
2: Compute N level sets Lk (k = 1, . . . , N ) of ϕ2

3: for each level set Lk (k = 1 to N )
4: VerticesSetp[0,1] = setIntersect(M,1); ⇐ Find vertices (subset of the 3D mesh M) of level set Lk

5: NodeSetp = centroid(VerticesSetp [0,1](n)); ⇐ Assign a node to each connected component at its cen-
troid.

6: for k = 2 to N do
7: VerticesSetc[k− 1, k] = setIntersect(M, k − 1, k);⇐ Find intersection of M from region Lk−1 to Lk

8: for each component VerticesSetc [k − 1, k](n) do
9: NodeSetc = centroid(VerticesSetc [k − 1, k](n))

10: for each connected portion do
11: Connect NodeSetc and NodeSetp
12: end for
13: end for
14: NodeSetp = NodeSetc
15: VerticesSetp = VerticesSetc
16: end for

FIGURE 4.6: Spectral Reeb graph of 3D Octopus model and its skeleton endpoints
shown in blue color.

divided by the sum of the shortest paths from the mesh centroid to all endpoints.
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4.4 EXPERIMENTAL RESULTS

The results of the proposed framework are presented in this section. We start by demonstrating the ro-

bustness of the proposed skeletonization algorithm to noise. Figure 4.9 depicts the extracted skeletal Reeb

graphs of a noise-free model and its noisy version using the proposed algorithm. It is evident the spectral

skeletonization algorithm shows a good preservation of the mesh topological structure.

The results of the proposed spectral Reeb graph approach are presented in this section. We tested the

performance of the proposed matching algorithm using the McGill Shape Benchmark [71]. Table 4.1 shows

that the proposed approach yields correct matching results, where a low value (displayed in boldface for

emphasis) of the dissimilarity measure indicates that the objects are more similar.

We also compared our approach with spherical harmonics (SH) [40], medial surfaces (MS) [32], and Reeb

graph patch dissimilarity (RGPD) approach [80]. The results show that our method achieve better retrieval

results than the spherical harmonics and medial surfaces as shown in Table 4.2, where the top ten retrieved

3D objects are displayed (top-to-bottom). As can be seen in Table 4.2, the proposed approach returns correct

results whereas the spherical harmonics method yields poor retrieval results (columns 2, 4, and 6). Also, the

proposed algorithm performs slightly better than the RGPD approach.

To carry out comparison experiments on the entire benchmark of articulated 3D objects, we evaluated the

retrieval performance of the proposed approach using the standard information retrieval evaluation measure

of precision recall curve. A precision-recall curve that is shifted upwards and to the right indicates

superior performance. It is evident from Figure 4.10 that our method significantly outperforms spherical

harmonics, medial surfaces, and the Reeb graph path dissimilarity approach.

Finally, we tested the performance of the proposed algorithm on the Princeton Shape Benchmark [72].

As can be seen in Table 4.3, the proposed approach shows superior performance over spherical harmonics,

where the top five retrieved 3D objects are displayed (top-to-bottom).
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D(M, M̃)

0.0124 0.1127 0.1216 0.1258 0.1131 0.1344 0.1257

0.1116 0.0073 0.1136 0.1297 0.1227 0.1124 0.1131

0.1311 0.1142 0.0653 0.1356 0.1315 0.1171 0.1137

0.1146 0.1329 0.1113 0.0055 0.1332 0.1621 0.1552

0.1193 0.1248 0.1342 0.1421 0.1131 0.1572 0.1592

0.1327 0.1109 0.1152 0.1474 0.11719 0.1021 0.1116

0.1223 0.1128 0.1175 0.1453 0.1623 0.1121 0.0042

TABLE 4.1: Matching results using proposed approach. Each database object is
matched against all the other objects in the database. Each cell shows the dissimi-
larity measure between two objects selected from the database. The smallest value
corresponds to the correct match.
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(a)

(b)

FIGURE 4.7: (a) Horse’s Reeb graph. (b) Shortest paths between pairs of endpoints on
the spectral skeleton.
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FIGURE 4.8: Shortest paths between the mesh centroid and an endpoint on the spectral
skeleton.
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(a) Noise-free model (b) Noisy model

FIGURE 4.9: Robustness of spectral Reeb graph to noise.
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FIGURE 4.10: Precision vs. Recall curves for Reeb graph path dissimilarity, spheri-
cal harmonics, medial surfaces, Reeb graph path dissimilarity, and proposed approach
using the McGill Shape Benchmark [71].
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Query

Retrieved Objects
SRG RGPD SH SRG RGPD SH SRG RGPD SH

TABLE 4.2: Retrieval results using the McGill Shape Benchmark. The query shapes
are shown in the second row. The top ten retrieved objects (top-to-bottom) using spheri-
cal harmonics (SH), Reeb graph path dissimilarity (RGPD), and our proposed approach
(SRG) are shown in rows 5 to 14.
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Query

Retrieved Objects

TABLE 4.3: Retrieval results using Princeton 3D dataset Benchmark. The query
shapes are shown in the second row. The top five retrieved objects (top-to-bottom)
of our proposed approach (SRG).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter briefly concludes the thesis and highlights the major contributions of this research.

This thesis presented a medical image registration technique in the information-theoretic setting, a

distance-based 3D object recognition approach in the Morse-theoretic framework, and a spectral 3D ob-

ject recognition method using the Laplace-Beltrami operator. We have demonstrated the effectiveness of the

proposed methods through numerical experiments on a variety of medical images and 3D benchmarks.

In the next section, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. Suggestions for future research directions related to

this thesis are provided in Section 5.2.

5.1 THESIS CONTRIBUTIONS

5.1.1 IMAGE REGISTRATION USING STOCHASTIC OPTIMIZATION

In Chapter 2, we proposed an entropic image alignment method by optimizing a generalized divergence

measure using a modified simultaneous perturbation stochastic approximation algorithm. The registration

is achieved by finding the optimal Euclidean transformation parameters that maximize the Jensen-Tsallis

divergence. The main advantages of the proposed approach are: (i) Jensen-Tsallis divergence is symmetric,

convex, theoretically upper-bounded, and quantifies efficiently the statistical dissimilarity between the refer-

ence image and the transformed target image, and (ii) the experimental results provide accurate registration

results in comparison with existing techniques.
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5.1.2 REEB GRAPH PATH DISSIMILARITY FOR 3D OBJECT MATCHING AND RETRIEVAL

In Chapter 3, we presented a normalized mixture distance function-based approach to topological modeling

of 3D objects in the Morse-theoretic framework. The proposed algorithm preserves well the topology of 3D

shapes, and it is robust, accurate, and has a low computational complexity. The main attractive properties

of the proposed approach are: invariance to rotation, translation, and scaling; and robustness to noise and

mesh decimation. The experimental results on 3D shape benchmark databases indicate the feasibility of the

proposed approach and a much better performance compared to spherical harmonics and medial surfaces.

5.1.3 SPECTRAL SKELETON FOR 3D OBJECT MATCHING AND RETRIEVAL

In Chapter 4, we proposed the use of shortest path distance matching algorithm of the shape skeletons

constructed from the second eigenfunction of the Laplace-Beltrami operator. The better performance of

proposed algorithm was demonstrated on McGill’s articulated shape database compared to spherical har-

monics, medial surfaces, and Reeb graph path dissimilarity. We also tested the algorithm on Princeton’s

shape dataset and we showed that the proposed approach gives also satisfactory results for non-articulated

shape models.

5.2 FUTURE RESEARCH DIRECTIONS

Several interesting research directions motivated by this thesis are discussed next. In addition to focusing

on further improving the results of Reeb graph-based approaches by appropriately choosing more discrimi-

natory endpoint features, we also intend to accomplish the following projects in the near future:

5.2.1 3D PARTIAL SHAPE MATCHING

Our ongoing efforts are focused on exploring the use of the Reeb graph path dissimilarity for 3D partial

shape matching. Also, theoretically we hope to develop more rigorous way of finding the optimal resolution

parameter of the skeletonization algorithm.

5.2.2 STOCHASTIC ANALYSIS OF LAPLACE-BELTRAMI SPECTRA

Another possible future work direction is the stochastic analysis of the second eigenfunction of Laplace-

Beltrami operator and its application to 3D object matching and retrieval. Also, it would be of interest to
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incorporate topology into the proposed methodology through Morse singularities of the second eigenfunc-

tion of the Laplace-Beltrami operator.

5.2.3 IMAGE REGISTRATION USING PRIORS

Another future work direction is to incorporate prior information on the joint intensity histogram between

the images being registered for a more robust image alignment.
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[22] M.E. Havrda and F. Charvát, “Quantification method of classification processes: concept of structural α-

entropy,” , vol. 3, pp. 30-35, 1967.

[23] J. Burbea and C.R. Rao, “On the convexity of some divergence measures based on entropy functions,”

, vol. 28, no. 3, pp. 489-495, 1982.

[24] J. Lin, “Divergence measures based on the Shannon entropy,” , vol. 37, no.

1, pp. 145-151, 1991.

[25] A.W. Marshall and I. Olkin, , Academic Press, 1979.

[26] J.C. Spall, “Implementation of the simultaneous perturbation algorithm forstochastic optimization,”

, vol. 34, no. 3, pp. 817-823, 1998.

76



[27] T. Grigorishin, G. Abdel-Hamid, Y.H. Yang, “Skeletonization: an electrostatic field-based approach,”

, pp. 163-177, 1998.

[28] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S.W. Zucker, “Shock graphs and shape matching,”

, vol. 35, no. 1, pp. 13-32, 1999.

[29] M. Hilaga, Y. Shinagawa, T. Komura, and T.L. Kunii, “Topology matching for fully automatic similarity estima-

tion of 3D shapes,” , pp. 203-212, 2001.

[30] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien, “Surface coding based on Morse theory,”

, vol. 11, no. 5, pp. 66-78, 1991.

[31] F. Lazarus and A. Verroust, “Level set diagrams of polyhedral objects,”

, pp. 130-140, 1999.

[32] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson, “Retrieving articulated 3-D

models using medial surfaces,” , vol. 19, no. 4, pp. 261-275, 2008.

[33] J. Damon, “Tree structure for contractible regions in R
3,” , vol. 74, no. 2, pp. 103-116,

2007.

[34] K. Siddiqi and S. Pizer, , Springer, Heidel-

berg, 2008.

[35] N.D. Cornea, M.F. Demirci, D. Silver, A. Shokoufandeh, S. Dickinson, and P.B. Kantor, “3D object retrieval

using many-to-many matching of curve skeletons,” , pp. 368-

373, 2005.

[36] M.S. Hassouna and A.A. Farag, “Variational curve skeletons using gradient vector flow,”

, vol. 31, no. 12, pp. 2257-2274, 2009.

[37] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extraction from incomplete point cloud,”

, vol. 28, no. 3, 2009.

[38] M. Ankerst, G. Kastenmüller, H. Kriegel, and T. Seidl, “3D shape histograms for similarity search and classifi-

cation in spatial databases,” , pp. 207-226, 1999.

[39] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distributions,” , vol. 21, no.

4, pp. 807-832, 2002.

[40] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation invariant spherical harmonic representation of 3D

shape descriptors,” , pp. 156-164, 2003.

77



[41] D-Y. Chen, X-P. Tian, Y-T. Shen, M. Ouhyoung, “On visual similarity based 3D model retrieval,”

, vol. 22, no. 3, pp. 223-232, 2003.

[42] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton shape benchmark,”

, pp. 167-178, 2004.

[43] J. Tierny, J-P. Vandeborre, and M. Daoudi, “Partial 3D shape retrieval by Reeb pattern unfolding,”

, vol. 28, no. 1, pp. 41-55, 2008.

[44] K. Gebal, A. Baerentzen, H. Aans, and R. Larsen, “Shape analysis using the auto diffusion function,”

, vol. 28, no. 5, pp. 1405-1413, 2009.

[45] D. Aouada and H. Krim, “Squigraphs for fine and compact modeling of 3-D shapes,”

, vol. 19, no. 2, pp. 306-321, 2010.

[46] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, “Reeb graphs for shape analysis and applications,”

, vol. 392, no. 1-3, pp. 5-22, 2007.

[47] V. Pascucci, G. Scorzelli, P.T. Bremer, and Ajith Mascarenhas, “Robust on-line computation of Reeb graphs:

simplicity and speed,” , vol. 26, no. 3, 2007.

[48] G. Patane, M. Spagnuolo, and B. Falcidieno, “A minimal contouring approach to the computation of the Reeb

Graph,” , vol 15, no. 4, pp. 583-595, 2009.

[49] M. Reuter, “Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigen-

functions,” , vol. 89, no. 2, pp. 287-308, 2010.

[50] X. Ni, M. Garland, and J.C. Hart, “Fair morse functions for extracting the topological structure of a surface

mesh,” , pp. 613-622, 2004.

[51] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse complexes for piecewise linear 2-

manifolds,” , pp. 70-79, 2001.

[52] G.M. Nielson and T.A. Foley, “A survey of applications of an affine invariant norm,”

, Academic Press, Boston, pp. 445-467, 1989.

[53] M.F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, and S. Dickinson, “Object recognition as many-to-

many feature matching,” , vol. 69, no. 2, pp. 203-222, 2006.

[54] H. Ling and D.W. Jacobs, “Shape classification using inner-distance,”

, vol. 29, no. 2, pp. 286-299, 2007.

78



[55] X. Bai and L.J. Latecki, “Path similarity skeleton graph matching,”

, vol. 30, no. 7, pp. 1282-1292, 2008.

[56] X. Bai, L.J. Latecki, and W.-Y. Liu, “Skeleton pruning by contour partitioning with discrete curve evolution,”

, vol. 29, no. 3, pp. 449-462, 2007.

[57] P. Min, M. Kazhdan, and T. Funkhouser, “SA comparison of text and shape matching for retrieval of online 3D

models,” , pp. 209-220, 2004.

[58] A. Ben Hamza and H. Krim, “Geodesic matching of triangulated surfaces,” , vol.

15, no. 8, pp. 2249-2258, 2006.
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