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Abstract

The detection of image features is an essential com-

ponent of medical image processing, and has wide-

ranging applications including adaptive filtering, seg-

mentation, and registration. In this paper, we present

an information-theoretic approach to feature detection

in ultrasound images. Ultrasound images are corrupted

by speckle noise, which is a disruptive random pattern

that obscures the features of interest. Using theoretical

probability density functions of the speckle intensity dis-

tributions, we derive analytic expressions that measure

the distance between distributions taken from different

regions in an ultrasound image and use these distances

to detect features. We compare the technique to classic

gradient-based feature detection methods.

1. INTRODUCTION

Ultrasound is one of the most commonly used med-

ical imaging modalities. Compared to other modalities

such as X-ray, MR, and PET, ultrasound scanning has

many advantages, as it is fast, portable, relatively low

cost, and presents virtually no risk to the patient.

However, the primary limitation of ultrasound is

image quality. Ultrasound images are corrupted by

speckle noise, an interference pattern resulting from the

coherent accumulation of random scattering in a reso-

lution cell of the ultrasound beam. While the texture

of the speckle does not correspond to any underlying

structure, the local brightness of the speckle pattern is

related to the local echogenicity of the underlying scat-

terers. The speckle has a detrimental effect on the image

quality and interpretability, and renders the detection of

features in an ultrasound image as a difficult problem.

This work focuses on detecting salient edges in ul-

trasound images. For edge detection, the most popu-

lar approaches, such as the Canny edge detector [3],

are based on gradient operators. The detector in this

paper is perhaps most closely related to more recent

information-theoretic methods such as [1]. However,

unlike this method, our detector is designed for specific

use with ultrasound images as it is based on speckle

noise models. It differs from other ultrasound fea-

ture detection methods like the “sticks” approach [2] as

our detector uses Rayleigh or Fisher-Tippett models, is

based on information theory, and has a very simple im-

plementation.

In this paper, we derive analytic expressions us-

ing the J-divergence to characterize the difference be-

tween ultrasound image regions that are modeled us-

ing Rayleigh or Fisher-Tippett distributions, which have

been derived in the literature for modeling image in-

tensities in speckled images. By comparing adjacent

speckled regions in various directions (such as horizon-

tally an vertically), we form a detector that identifies

salient features embedded in speckle. We demonstrate

the usefulness of our feature detector and compare its

performance to other well-known operators, including

the derivative of Gaussian, Canny edge detection, and

non-parametric edge detection.

2. STATISTICAL MODELING OF UL-

TRASOUND SPECKLE

Figure 1 gives an overview of the ultrasound im-

age formation process. After the RF data from the

transducer is demodulated, one obtains an complex in-

phase/quadrature image, QI(x,y). In the case of fully

formed speckle, which is typically assumed when the

number of scatters per cell is greater than ten [4], it has

been shown that the speckle in QI(x,y) has a complex

Gaussian distribution,

p(QI(x,y)) =
1

2πσ2
e−|QI(x,y)|

2/(2σ2) (1)

where QI(x,y) is complex. To produce a real image, en-

velope detection is performed by taking the magnitude

of QI(x,y). It is can be shown that under this transfor-



Figure 1. Block diagram of the ultrasound image formation process.

mation, the distribution in this magnitude image M(x,y)
becomes Rayleigh [5], i.e.,

p(M(x,y)) =
M(x,y)

σ2
e−M(x,y)2/(2σ2), (2)

where M(x,y) is real. However, since M(x,y) has a

large dynamic range, it is customary to logarithmically

transform the image to produce an image I(x,y) suitable

for display. Under this transformation, the fully formed

speckle follows a Fisher-Tippett (FT) distribution,

p(I(x,y)) = 2e

(

2I(x,y)−ln2σ2−e2I(x,y)−ln2σ2
)

. (3)

More discussion and derivations of these distributions

can be found in [4, 5, 6, 7].

2.1. Maximum Likelihood Rayleigh Estimator

Given a region Ω in M(x,y), we would like to fit

the data to the Rayleigh distribution. To proceed, we

write the log likelihood of Equation 2 as ℓ(M(x,y),σ) =
ln(

∫

Ω
p(M(x,y))dxdy),

ℓ(M(x,y),σ)=
∫

Ω

(

lnM(x,y)− lnσ
2 −

M(x,y)2

2σ2

)

dxdy.

(4)

Next, we can differentiate ℓ(M(x,y),σ) with respect to

σ , and set this expression to zero to determine the max-

imum likelihood estimate of σ2,

σ
2 =

∫

Ω
M(x,y)2dxdy

2
∫

Ω
dxdy

. (5)

Thus, given a region Ω, we can compute the maximum

likelihood value of the parameter σ2 from the image

intensities in the region assuming the Rayleigh distribu-

tion.

2.2. Maximum likelihood Fisher-Tippett esti-

mator

Similarly, by forming the log likelihood of Equa-

tion 3, we find an expression for σ2 that is the maximum

likelihood estimator of the FT distribution,

σ
2 =

∫

Ω
e2I(x,y)dxdy

2
∫

Ω
dxdy

. (6)

3. INFORMATION-THEORETIC

MATCHING OF REGIONS IN UL-

TRASOUND IMAGES

In this section we derive analytic expressions for

measuring the distance between two distributions, p and

q, taken from different windows of the image. Later, we

will use these expressions in our feature detector.

3.1. Kullback-Liebler Divergence and J-

Divergence

The Kullback-Liebler divergence, or relative en-

tropy [8], is an information-theoretic measure between

two distributions. The relative entropy D(p||q) mea-

sures the inefficiency of assuming that a distribution is

q when the true distribution is p. The Kullback-Liebler

(KL) divergence is defined as

D(p||q) =
∫

p(x) ln
p(x)

q(x)
dx. (7)

In this definition, we follow the convention of defining

0ln 0
0

= 0 and p ln
p
0

= 0. It is well-known that the KL

divergence is asymmetric, that is, D(p||q) 6= D(q||p).
However, one can symmetrize the KL divergence using

the J-divergence, J = D(p||q)+D(q||p)
2

. It is useful to think

of the J-divergence as a measure of the distance between

two probability distributions, p and q.

3.2. Derivation of Rayleigh Case

For an image that can be modeled locally with

Rayleigh distributions, we form a distribution p in one

window of pixels, and another distribution q in an-

other window of pixels, and model each window with

a Rayleigh distribution, i.e.,

p(M(x,y)) =
M(x,y)

σ2
1

e−M(x,y)2/(2σ2
1 ) (8)

q(M(x,y)) =
M(x,y)

σ2
2

e−M(x,y)2/(2σ2
2 ), (9)

where M(x,y) is the intensity at pixel (x,y) in the mag-

nitude IQ image and σ2
1 and σ2

2 are the parameter of

each respective distribution. Then, we would like to



compute the J-divergence between the two distributions

as a measure of how “different” the regions are. In the

derivation below, we replace M(x,y) in these expres-

sions with x for simplicity. Furthermore, we derive the

expression for D(p||q) from which we can determine

D(q||p) by symmetry to get J:

D(p||q) =
∫

∞

0

x

σ2
1

e−x2/(2σ2
1 ) ln

x

σ2
1

e−x2/(2σ2
1 )

x

σ2
2

e−x2/(2σ2
2 )

dx (10)

Expanding the ln term yields

D(p||q) =
∫

∞

0

x

σ2
1

e−x2/(2σ2
1 )

(

ln
σ2

2

σ2
1

−
x2

2σ2
1

+
x2

2σ2
2

)

dx

= ln

(

σ2
2

σ2
1

)

∫

∞

0

x

σ2
1

e−x2/(2σ2
1 )dx

−
∫

∞

0

x3

2σ4
1

e−x2/(2σ2
1 )dx

+
∫

∞

0

x3

2σ2
1 σ2

2

e−x2/(2σ2
1 )dx, (11)

which, after some mathematics, gives

D(p||q) = ln

(

σ2
2

σ2
1

)

−1+
σ2

1

σ2
2

. (12)

Therefore, the J-divergence is then

J = −1+
σ2

1

2σ2
2

+
σ2

2

2σ2
1

, (13)

where σ2
1 and σ2

2 are determined from Equation 2.

3.3. Derivation of Fisher-Tippett Case

In the Fisher-Tippett case, we model regions p and

q as Fisher-Tippett distributed regions with different pa-

rameters, σ2
1 and σ2

2 . We derive an analytic expression

for the Kullback-Liebler divergence of two regions de-

scribed by Fisher-Tippett distributions, as

D(p||q) =
∫

∞

0
2e2x−ln2σ2

1−e
2x−ln2σ2

1 ·

ln





2e2x−ln2σ2
1−e

2x−ln2σ2
1

2e2x−ln2σ2
2−e

2x−ln2σ2
2



dx (14)

Expanding the ln term gives

D(p||q) = 4

∫

∞

0
xe2x−ln2σ2

1−e
2x−ln2σ2

1
dx

−2ln2σ
2
1

∫

∞

0
e2x−ln2σ2

1−e
2x−ln2σ2

1
dx

−2

∫

∞

0
e4x−2ln2σ2

1−e
2x−ln2σ2

1
dx

−4

∫

∞

0
xe2x−ln2σ2

1−e
2x−ln2σ2

1
dx

+2ln2σ
2
2

∫

∞

0
e2x−ln2σ2

1−e
2x−ln2σ2

1
dx

+2

∫

∞

0
e4x−ln2σ2

1−ln2σ2
2−e

2x−ln2σ2
1

dx,(15)

which, after some mathematics, gives

D(p||q) = e
− 1

2σ2
1

(

− ln2σ
2
1 + ln2σ

2
2 −1

−
1

2σ2
1

+
σ2

1

σ2
2

+
1

2σ2
2

)

. (16)

The J-divergence is then

J =
1

2
e
− 1

2σ2
1

(

− ln2σ
2
1 + ln2σ

2
2 −1

−
1

2σ2
1

+
σ2

1

σ2
2

+
1

2σ2
2

)

+
1

2
e
− 1

2σ2
2

(

− ln2σ
2
2 + ln2σ

2
1 −1

−
1

2σ2
2

+
σ2

2

σ2
1

+
1

2σ2
1

)

. (17)

where σ2
1 and σ2

2 are determined from Equation 3.

4. FEATURE DETECTION

At this point, we have tools in place to optimally

estimate Rayleigh and Fisher-Tippett distributions in a

region of an image. Furthermore, given two regions, we

have an analytic expression for the distance between the

distributions based on the J-divergence. In this section,

we describe how these tools can be used for feature de-

tection in ultrasound images.

4.1. Gradient-like Operator

One of the most commonly used methods to detect

features in an image is the image gradient, computed

via convolution of the image with a bandpass kernel,

which is often modeled as the derivative of a Gaussian

function. For example, the derivative kernel Kx(x,y) in

the x-dimension is

Kx(x,y) =
∂

∂x

(

1

2πσxσy

e−x2/(2σ2
x )e−y2/(2σ2

y )

)

(18)

=
−x

2πσ3
x σy

e−x2/(2σ2
x )e−y2/(2σ2

y ) (19)

where σ2
x and σ2

y are the variance in the x and y di-

mensions, respectively. Similarly, a kernel Ky(x,y) =



Kx(x,y)
T can be found for the y dimension. The gra-

dient can then be determined from Gx(x,y) = Kx(x,y)∗
I(x,y), Gy(x,y) = Ky(x,y) ∗ I(x,y), where I(x,y) is the

image. The feature map is then simply the gradient

magnitude, F =
√

G2
x +G2

y . In Figure 2 (b), we show

this gradient magnitude operator for a cardiac ultra-

sound image, for σx = σy = σ = 2.5. The gradient is

sensitive to the speckle, which causes significant clutter

in the feature map. While increasing the variance helps

“blur over” the speckle, the effect of the speckle is still

apparent in the feature map, and furthermore, larger val-

ues of σ blur detected edges, resulting in poorer local-

ization.

In contrast, in our approach we use sliding win-

dows, which are placed on either side of a pixel, as

shown for two windows w1 and w2 in Figure 2 (a). We

apply our FT model to I(x,y), and our Rayleigh model

to M(x,y); here we describe the FT case. Given the set

of pixels in w1, we determine a FT parameter σ2
1 using

Equation 3, and likewise, we estimate σ2
2 in w2. Then,

we compute J-divergence between these two distribu-

tions using Equation 17 as a measure of how different

the regions are. When the windows are placed to the

left and to the right of the pixel, this gives a horizon-

tal distance map Jx(x,y) that is functionally similar to

the gradient operator in the x direction, except that the

values are non-negative. This can be repeated in the y

direction. Here, we define a feature map Fj(x,y) as

Fj(x,y) =
√

Jx(x,y)2 + Jy(x,y)2. (20)

Figure 2 (c) shows an example of a cardiac ultrasound

image and its feature map Fj. Note that this feature

detector only picks up the most salient features and is

much less distracted by the speckle compared to the gra-

dient estimator.

The only real parameter to this feature detection

method is the window size. Increasing the window size

gives a better statistical modeling of the distribution’s

parameter in the window, and varies the scale of the

features detected. For example, in Figure 3 we show

the effect of changing the window size. We observe

that the size of the features detected is proportional to

the window size.

Another example is shown in Figure 4 for a le-

sion phantom. In (a), we show the original image. In

(b), we show the J-divergence feature map applied to

M(x,y) using the Rayleigh distribution, and in (c) we

show the J-divergence feature map applied to I(x,y) us-

ing the Fisher-Tippett distribution, both using a win-

dow size of 7 by 7. Note that the results in (b) and

(c) are nearly identical, which suggests our modeling

is correct. In (d), we show the derivative of Gaussian

feature detector, which was performed using σ = 2.5,

for which the detected features have approximately the

same size as those in (b) and (c). In (e), we show the

output of the Canny operator, which was optimized to

detect the salient edges while minimizing false detec-

tion of speckle edges. Finally, in (f) we show the out-

put of using the J-divergence non-parametrically, i.e.,

computing J = D(p||q)+D(q||p)
2

for Parzen-windowed his-

tograms. This latter method results in false detections

due to speckle compared to the parametric methods.

Compared with these other methods, our parametric

feature detectors have a strong feature response while

at the same time mitigating false responses due to the

speckle.

5. CONCLUSION

In this paper, we presented an information theoretic

approach to detect features in ultrasound images. Our

feature detector is computed using the J-divergence of

two Rayleigh or Fisher-Tippett distributed variables es-

timated from windows in the image. We demonstrated

the ability of our method to detect features in ultrasound

images and compared to other common feature detec-

tors. For future work, we are interested in fully vali-

dating the method and using it in applications such as

filtering and segmentation.
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(a) (b) (c)

Figure 2. Gradient-like feature detection in a cardiac ultrasound image. Image (a), gradient (b),
and J-divergence feature map (c) computed on the log magnitude IQ image using the Fisher-Tippett
method. Please see the digital version of the images for maximal quality.

(a) (b) (c) (d)

Figure 3. Effect of window size. From left to right: 3x3, 5x5, 7x7, 9x9.

(a) (b) (c)

(d) (e) (f)

Figure 4. Different ultrasound feature detectors on a lesion phantom image. Original image (a),
Rayleigh (b), Fisher-Tippett (c), Derivative of Gaussian (d), Canny (e), Non-Parametric (f).


