124 research outputs found

    ロバスト性解析と制御器設計のための離散時間非因果的周期時変スケーリング

    Get PDF
    京都大学0048新制・課程博士博士(工学)甲第17889号工博第3798号新制||工||1581(附属図書館)30709京都大学大学院工学研究科電気工学専攻(主査)教授 萩原 朋道, 教授 土居 伸二, 准教授 久門 尚史学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Analysis, estimation and control for perturbed and singular systems and for systems subject to discrete events.

    Get PDF
    Annual technical report for grant AFOSR-88-0032.Investigators: Alan S. Willsky, George C. Verghese.Includes bibliographical references (p. [10]-[15]).Research supported by the AFOSR. AFOSR-88-003

    Identification of linear periodically time-varying (LPTV) systems

    Get PDF
    A linear periodically time-varying (LPTV) system is a linear time-varying system with the coefficients changing periodically, which is widely used in control, communications, signal processing, and even circuit modeling. This thesis concentrates on identification of LPTV systems. To this end, the representations of LPTV systems are thoroughly reviewed. Identification methods are developed accordingly. The usefulness of the proposed identification methods is verified by the simulation results. A periodic input signal is applied to a finite impulse response (FIR)-LPTV system and measure the noise-contaminated output. Using such periodic inputs, we show that we can formulate the problem of identification of LPTV systems in the frequency domain. With the help of the discrete Fourier transform (DFT), the identification method reduces to finding the least-squares (LS) solution of a set of linear equations. A sufficient condition for the identifiability of LPTV systems is given, which can be used to find appropriate inputs for the purpose of identification. In the frequency domain, we show that the input and the output can be related by using the discrete Fourier transform (DFT) and a least-squares method can be used to identify the alias components. A lower bound on the mean square error (MSE) of the estimated alias components is given for FIR-LPTV systems. The optimal training signal achieving this lower MSE bound is designed subsequently. The algorithm is extended to the identification of infinite impulse response (IIR)-LPTV systems as well. Simulation results show the accuracy of the estimation and the efficiency of the optimal training signal design

    Resource-aware motion control:feedforward, learning, and feedback

    Get PDF
    Controllers with new sampling schemes improve motion systems’ performanc

    Analysis of Implicit Uncertain Systems. Part II: Constant Matrix Problems and Application to Robust H2 Analysis

    Get PDF
    This paper introduces an implicit framework for the analysis of uncertain systems, of which the general properties were described in Part I. In Part II, the theory is specialized to problems which admit a finite dimensional formulation. A constant matrix version of implicit analysis is presented, leading to a generalization of the structured singular value μ as the stability measure; upper bounds are developed and analyzed in detail. An application of this framework results in a practical method for robust H2 analysis: computing robust performance in the presence of norm-bounded perturbations and white-noise disturbances

    Noncoherent Capacity of Underspread Fading Channels

    Full text link
    We derive bounds on the noncoherent capacity of wide-sense stationary uncorrelated scattering (WSSUS) channels that are selective both in time and frequency, and are underspread, i.e., the product of the channel's delay spread and Doppler spread is small. For input signals that are peak constrained in time and frequency, we obtain upper and lower bounds on capacity that are explicit in the channel's scattering function, are accurate for a large range of bandwidth and allow to coarsely identify the capacity-optimal bandwidth as a function of the peak power and the channel's scattering function. We also obtain a closed-form expression for the first-order Taylor series expansion of capacity in the limit of large bandwidth, and show that our bounds are tight in the wideband regime. For input signals that are peak constrained in time only (and, hence, allowed to be peaky in frequency), we provide upper and lower bounds on the infinite-bandwidth capacity and find cases when the bounds coincide and the infinite-bandwidth capacity is characterized exactly. Our lower bound is closely related to a result by Viterbi (1967). The analysis in this paper is based on a discrete-time discrete-frequency approximation of WSSUS time- and frequency-selective channels. This discretization explicitly takes into account the underspread property, which is satisfied by virtually all wireless communication channels.Comment: Submitted to the IEEE Transactions on Information Theor

    From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals

    Full text link
    Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Efficient algorithms for arbitrary sample rate conversion with application to wave field synthesis

    Get PDF
    Arbitrary sample rate conversion (ASRC) is used in many fields of digital signal processing to alter the sampling rate of discrete-time signals by arbitrary, potentially time-varying ratios. This thesis investigates efficient algorithms for ASRC and proposes several improvements. First, closed-form descriptions for the modified Farrow structure and Lagrange interpolators are derived that are directly applicable to algorithm design and analysis. Second, efficient implementation structures for ASRC algorithms are investigated. Third, this thesis considers coefficient design methods that are optimal for a selectable error norm and optional design constraints. Finally, the performance of different algorithms is compared for several performance metrics. This enables the selection of ASRC algorithms that meet the requirements of an application with minimal complexity. Wave field synthesis (WFS), a high-quality spatial sound reproduction technique, is the main application considered in this work. For WFS, sophisticated ASRC algorithms improve the quality of moving sound sources. However, the improvements proposed in this thesis are not limited to WFS, but applicable to general-purpose ASRC problems.Verfahren zur unbeschränkten Abtastratenwandlung (arbitrary sample rate conversion,ASRC) ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvarianteVerhältnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese(WFS), einem Verfahren zur hochqualitativen, räumlich korrekten Audio-Wiedergabe, untersucht.Durch ASRC-Algorithmen kann die Wiedergabequalität bewegter Schallquellenin WFS deutlich verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystembenötigten simultanen ASRC-Operationen ist eine direkte Anwendung hochwertigerAlgorithmen jedoch meist nicht möglich.Zur Lösung dieses Problems werden verschiedene Beiträge vorgestellt. Die Komplexitätder WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmensignifikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissenermöglicht. Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlungmit einer Komplexität, die mit der Anwendung einfacher konventioneller ASRCAlgorithmenvergleichbar ist. Dieses Partitionierungsschema stellt jedoch auch zusätzlicheAnforderungen an ASRC-Algorithmen und erfordert Abwägungen zwischen Performance-Maßen wie der algorithmischen Komplexität, Speicherbedarf oder -bandbreite.Zur Verbesserung von Algorithmen und Implementierungsstrukturen für ASRC werdenverschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytischeBeschreibungen für den kontinuierlichen Frequenzgang verschiedener Klassen von ASRCStruktureneingeführt. Insbesondere für Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden kompakte Darstellungen hergeleitet, die sowohl Aufschluss über dasVerhalten dieser Filter geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.Einen zweiten Schwerpunkt bildet das Koeffizientendesign für diese Strukturen, insbesonderezum optimalen Entwurf bezüglich einer gewählten Fehlernorm und optionaler Entwurfsbedingungenund -restriktionen. Im Gegensatz zu bisherigen Ansätzen werden solcheoptimalen Entwurfsmethoden auch für mehrstufige ASRC-Strukturen, welche ganzzahligeÜberabtastung mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt.Für diese Klasse von Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen,welche in Verbindung mit den entwickelten optimalen Entwurfsmethoden signifikanteQualitätssteigerungen ermöglichen.Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwierigkeitbei der Auswahl eines für eine gegebene Anwendung geeigneten Verfahrens.Evaluation und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wirdzum Einen der Einfluss verschiedener Entwurfsparameter auf die erzielbare Qualität vonASRC-Algorithmen untersucht. Zum Anderen wird der benötigte Aufwand bezüglich verschiedenerPerformance-Metriken in Abhängigkeit von Design-Qualität dargestellt.Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschränkt, sondernsind in einer Vielzahl von Anwendungen unbeschränkter Abtastratenwandlung nutzbar
    corecore