Conventional sub-Nyquist sampling methods for analog signals exploit prior
information about the spectral support. In this paper, we consider the
challenging problem of blind sub-Nyquist sampling of multiband signals, whose
unknown frequency support occupies only a small portion of a wide spectrum. Our
primary design goals are efficient hardware implementation and low
computational load on the supporting digital processing. We propose a system,
named the modulated wideband converter, which first multiplies the analog
signal by a bank of periodic waveforms. The product is then lowpass filtered
and sampled uniformly at a low rate, which is orders of magnitude smaller than
Nyquist. Perfect recovery from the proposed samples is achieved under certain
necessary and sufficient conditions. We also develop a digital architecture,
which allows either reconstruction of the analog input, or processing of any
band of interest at a low rate, that is, without interpolating to the high
Nyquist rate. Numerical simulations demonstrate many engineering aspects:
robustness to noise and mismodeling, potential hardware simplifications,
realtime performance for signals with time-varying support and stability to
quantization effects. We compare our system with two previous approaches:
periodic nonuniform sampling, which is bandwidth limited by existing hardware
devices, and the random demodulator, which is restricted to discrete multitone
signals and has a high computational load. In the broader context of Nyquist
sampling, our scheme has the potential to break through the bandwidth barrier
of state-of-the-art analog conversion technologies such as interleaved
converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in
Signal Processing, the special issue on Compressed Sensin