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Abstract

A linear periodically time-varying (LPTV) system is a linear time-varying system with the co-

efficients changing periodically, which is widely used in control, communications, signal processing,

and even circuit modeling. This thesis concentrates on identification of LPTV systems. To this

end, the representations of LPTV systems are thoroughly reviewed. Identification methods are

developed accordingly. The usefulness of the proposed identification mehtods is verified by the

simulation results.

A periodic input signal is applied to a finite impulse response (FIR)-LPTV system and measure

the noise-contaminated output. Using such periodic inputs, we show that we can formulate the

problem of identification of LPTV systems in the frequency domain. With the help of the discrete

Fourier transform (DFT), the identification method reduces to finding the least-squares (LS) solu-

tion of a set of linear equations. A sufficient condition for the identifiability of LPTV systems is

given, which can be used to find appropriate inputs for the purpose of identification.

In the frequency domain, we show that the input and the output can be related by using the

discrete Fourier transform (DFT) and a least-squares method can be used to identify the alias

components. A lower bound on the mean square error (MSE) of the estimated alias components

is given for FIR-LPTV systems. The optimal training signal achieving this lower MSE bound is

designed subsequently. The algorithm is extended to the identification of infinite impulse response

(IIR)-LPTV systems as well. Simulation results show the accuracy of the estimation and the

efficiency of the optimal training signal design.
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Chapter 1

Introduction

1.1 Introduction to LPTV Systems

Linear periodically time-varying (LPTV) systems are widely used in control, communications, signal

processing, and circuit modeling [1–43]. LPTV systems are a generalization of linear time-invariant

(LTI) systems, that is, for an LPTV system with period M , when the input is delayed by M

samples, so will be the output. From this point of view, an LTI system is an LPTV system with

period 1. Moreover, a linear system that has coefficients changing periodically with period M is

an LPTV system with period M . For an LTI system, the inputs and outputs of the system can be

related by a transfer matrix. For a periodic system, we may use the blocked model of the system

and obtain the alias-component matrix of the system, which relates the input and output of the

system in the frequency domain [3].

There are many different ways to represent LPTV systems, each of which can be used to study

certain aspects of these systems. Some common representations include Green function representa-

tion, multiple-input and multiple-output (MIMO) LTI models obtained by blocking, linear switched

time-varying (LSTV) systems, and uniform maximally decimated multirate filter banks [1, 41, 44–

55]. In Chapter 2, several representations will be discussed. These representations will be used

later to study the identification of LPTV systems.

1.2 Previous Work on LPTV System Identification

Identification methods of LPTV systems have been proposed in [56–62] and the references therein.

Next, we will review a number of the most representative works on identification of LPTV systems.

1



• LPTV system identification in power systems: An interpolating method is discussed in

[56] which allows for efficient model identification in non-stationary power system conditions.

The LPTV model of power systems is a reasonable extension of the LTI model and it has

a clear physical explanation and mathematical description. The classical model description

and identification is based on infinite impulse response (IIR) parametric model of tuned

transfer function, with the LTI autoregressive moving average (ARMA) identification methods

adapted to LPTV systems. The impulse excitation techniques and impulse response based

LPTV system models deliver non-parametric model description, which can be easily changed

to parametric ARMA formulation. Non-parametric description allows to use 2D interpolations

in the frequency/relative time (f, t) domain with easy come-back as required by the LPTV

model, time/relative time (t, t) domain. With the use of that approach the identification of

the LPTV slowly varying structures is relatively quick, and the accuracy of identification is

expected to be high.

• Polyspectral analysis: Polyspectral analysis is introduced to identify LPTV systems,

e.g., [57], where nonparametric and parametric as well as non-stationary polyspectral es-

timation algorithms are discussed. These estimators are employed for identification of linear

(almost) periodically time-varying systems for (almost) periodic signals and deterministic,

stationary and non-stationary signals on a common high-order-statistics framework. All the

methods are proven to be insensitive to stationary noise and employ consistent single record

estimators.

• Wavelets modeling and adaptive identification: Wavelets modeling and adaptive identi-

fication methods have been investigated in [58, 63]. As for many stationary and non-stationary

inputs the wavelet transform is claimed to be very close to the Karhunen-Loēve transform

(KLT), which achieves exact diagonalization. A new approach for modeling discrete LPTV

systems with finite impulse responses using wavelets is proposed. It shows that using wavelets

can be viewed as a generalization of the raised model. A least mean square (LMS) based

adaptive identification algorithm is discussed. This algorithm is simple, and has reasonable

2



tracking abilities and low computational complexity. The motivation behind this algorithm is

to separate parameters, similar to frequency domain LMS. Its main disadvantage, as is well

known, is its slow convergence. This disadvantage becomes more acute here, since compared

to LTI systems, time-scale for any adaptive algorithm is lower for LPTV systems, by a factor

equal to their period.

• Finite basis decomposition: Modeling of linear systems by basis functions can turn a

time-varying system identification into a time-invariant one. For that purpose, the power

series, Legendre polynomial basis, wavelet basis, and prolate spheroidal basis can be used

to model LPTV systems. Another motivation for using basis functions is that some linear

systems can be represented with fewer coefficients than when using standard modeling (e.g.,

for time-invariant systems, by modeling the corresponding spectrum by rational functions).

In this case, system identification can be easier and more efficient. Several works can be found

in [59] and its references therein.

• State-space model: Several state-space model based identification methods are proposed

in the references [60, 61, 64–66]. Several subspace[60, 64–66] based identification methods

are developed to identify linear parameter varying systems. In [61], the authors discussed the

identification of LPTV systems in the framework of sample data systems. With the state-

space model representation, many control methods can be applied to identify LPTV systems.

Controllability and observability of LPTV systems are studied from the perspective of control

theory accordingly.

1.3 Outline of the Thesis

In Chapter 1, a brief introduction to LPTV systems is given. We also review the previous work on

LPTV system identification.

In Chapter 2, we review several representations of LPTV systems. Difference equations, Green

function, LSTV, alias components, MIMO-LTI, and maximally decimated filter banks representa-

3



tion have been fully discussed as each representation can reveal certain aspect of an LPTV system.

These different representations form the basis of the following chapters, and also act as a tutorial.

In Chapter 3, we derive a new method for the identification of discrete LPTV systems. An

LPTV system with period M is considered. If an input with period N is applied to this system,

where N is a multiple of M , the output of the system will be periodic with period N . Using

periodic inputs, we show that we can formulate the problem of identification of LPTV systems in

the frequency domain. With the help of the discrete Fourier transform (DFT), the identification

method reduces to finding the least-squares (LS) solution of a set of linear equations. A sufficient

condition for the identifiability of LPTV systems is given, which can be used to find appropriate

inputs for the purpose of identification. Simulation results illustrate the efficiency of the proposed

algorithm.

In Chapter 4, an LS method for identifying alias components of discrete LPTV systems is

proposed. We apply a periodic input signal to an LPTV system and measure the noise-contaminated

output. We show that the input and output can be related by using the DFT. In the frequency

domain, a least-squares method can be used to identify the alias components. A lower bound on

the mean square error (MSE) of estimated alias components is given for FIR-LPTV systems. The

optimal training signal achieving this lower MSE bound is designed subsequently. The algorithm is

extended to the identification of infinite impulse response (IIR)-LPTV systems as well. Simulation

results show the accuracy of the estimation and the efficiency of the optimal training design.

In Chapter 5, we summarize and draw some concluding remarks from the thesis research. Sug-

gestions for some future work are presented as well in this chapter.

Notation: The notation used throughout the thesis is fairly standard. (·)T , (·)∗, (·)H , and (·)†

denote transpose, conjugate, conjugate transpose, and Moore-Penrose pseudo-inverse, respectively.

The symbol WN is equal to e−2π/N , where  =
√
−1 and similarly for WM . In the whole thesis,

N generally stands for the period of the input signal and M for the period of the LPTV system.

The DFT coefficients of x(n) are denoted by X [k], and the N × N DFT matrix is denoted by

[FN ]mn = Wmn
N , m, n ∈ {0, 1, · · · , N − 1}. A Gaussian random variable with mean µ and variance

4



σ2 is denoted by z ∼ N (µ, σ2). The Euclidean norm of a vector x is denoted as ‖x‖. ⌊X⌋ stands

for the largest integer less than or equal to X .The N × N identity matrix is represented by IN .

The operator ⊗ is used to represent the Kronecker product. Bold-faced quantities denote matrices

and vectors.
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Chapter 2

LPTV Systems Review

There are many different ways to represent LPTV systems, each of which can be used to study

certain aspects of these systems. Some common representations include Green function, MIMO

LTI models obtained by blocking, LSTV systems, and uniform maximally decimated multirate

filter banks [1, 41, 44–53]. In the following, we will study these representations as we will be using

them for the identification of LPTV systems later on.

2.1 Green function

Green function representation is used as a general expression for a linear time-varying system. (The

system is not necessarily periodically time-varying.) Here, we consider a periodic-M LPTV system

G. The input x and the output y of the LPTV system can be related by

y(n) =

∞
∑

l=−∞
g(n, l)x(l)

=

∞
∑

l=−∞
h(n, n− l)x(l)

=

∞
∑

l=−∞
f(l, n− l)x(l),

(2.1)

where g(n, l) is the response of the system at time n to an impulse applied at time l in its input, i.e.,

the Green function. Here, another form Green function can be defined by variables substitution

h(n, l) , g(n, n− l),

and

f(n, l) , g(n + l, l).

6



Here, h(n, l) and f(n, l) represent, respectively , the system response at time n due to an unit

impulse applied at time n − l, and the response at time n + l due to an unit impulse applied at

time l. Figure 2.1 gives a structure figure to show the relationships among g(n, l), h(n, l), and

f(n, l). Here, h(k, p) is the pth element of the kth column of h(n, l), and f(k, p) is the pth element

of the kth row of h(n, l), with columns and rows zero-referenced from the main diagonal of h(n, l)

as shown in Figure 2.1.

n

l

0

0

( , )g n l

k

( , 0)h k

( ,1)h k

( ,2)h k

( , 0)f k ( ,1)f k ( ,2)f k

( , )h k k l 

( , )f k n k 

Figure 2.1: Green function structure of an LPTV system.

Now for an LPTV system with period M , due to the periodic condition on the system, it is not
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difficult to show that the impulse response has the property

g(n + M, l + M) = g(n, l), ∀k, l

h(n + M, l) = h(n, l), ∀k, l

f(n + M, l) = f(n, l), ∀k, l

(2.2)

This results clearly show that there are only M unique rows and M unique columns in h(n, l),

and arithmetic mod-M operator 〈〉 should be approximately used in all the previous expressions,

thus giving

y(n) =

∞
∑

l=−∞
g(n, l)x(l)

=

∞
∑

l=−∞
h (〈n〉, n− l)x(l)

=

∞
∑

l=−∞
f(〈l〉, n− l)x(l),

(2.3)

with

h(k, l) = f(〈k − l〉, l) = h(k, k − l)

f(k, n) = h(〈k + n〉, n) = h(k + n, k), 0 ≤ k ≤M − 1.

2.2 Difference Equation

LPTV discrete-time system with period M is a system for which a shift in the input sequence by M

samples results in a shift of M samples in the output sequence. These systems are a generalization

of LTI systems. Therefore, like LTI systems, LPTV systems can also be formulated by a difference

equation. For an LPTV system G, we can use a difference equation to represent it as follows

y(n) =

M−1
∑

i=0

ai(n)x(n− i)−
M−1
∑

i=1

bi(n)y(n− i), (2.4)

where

ai(n) = ai(n−M), i = 0, 1, · · · , M − 1

bi(n) = bi(n−M), i = 1, 2, · · · , M − 1.

Figure 2.2 gives a time-varying IIR filter-like structure for the difference equation representation

in (2.4). Equation (2.4) uses a set of time-invariant coefficients to give

8



1z 1z 1z 

!
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!
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0( )a n
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2( )b n

3( )b n

( )kb n

( )( )

) ( )(
ii

j j
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b
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#

#

"

( )y n

Figure 2.2: Difference equation representation of an LPTV system.

yk(n) =

M−1
∑

i=0

aik(n)x〈k−i〉(n + 〈k − i〉) +

M−1
∑

j=1

bjk(n)y〈k−i〉(n + 〈k − i〉),

k = 0, 1, · · · , M − 1, (2.5)

where


















































xk(n) = x(nM + k), −∞ ≤ n ≤ ∞

yk(n) = y(nM + k), 0 ≤ k ≤M − 1

aik = ai(k) = ai(nM + k), 0 ≤ i ≤M − 1

bjk = bj(k) = bj(nM + k), 0 ≤ i ≤M − 1

with the brackets 〈·〉 relating to the arithmetic modulo-M . The LPTV difference equation in (2.4)
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has now been transformed into M equivalent LTI systems, but crosscoupled. We also see that

equation (2.5) corresponds the structure in Figure 2.5. Once taking the z-transform of each one

of these linear difference equations in (2.5) results in M linear simultaneous equations in the M

z-transforms of the subsampled outputs of y(n), i.e., Yk(z), k = 0, 1, · · · , M−1. These simultaneous

equations can now be solved to give [49]

Y (z) = F̄(z)X(z),

where Y (z) and X(z) is a column vector formed by their M -phase decomposition terms, and F̄(z)

is given in equation (2.11).

2.3 Linear Switched Time-Varying

By defining h(m, i) = g(m, m− i), we can write (2.1) as

y(m) =

∞
∑

i=0

h(m, m− i)x(i),

Using (2.2), we have

h(m, i) = h(m + M, i).

Setting

Hm(z) =

∞
∑

i=0

h(m, i)z−i

and noting that Hm = Hm+M , we obtain a representation of an LPTV system by M LTI subsystems

and a commutative switch at the output as shown in Figure 2.3a (which is an LSTV setting [45]).

The switch is connected to the output of the first LTI subsystem H0 at time 0, to the output of

H1 at time 1, and to HM−1 at time M − 1, and then, it repeats and connects to H0. Meanwhile,

the similar structure given in Figure 2.3b can also be obtained by setting

f(l, k) = g(l + k, l).

The M -periodic condition on the LPTV system G gives

f(l, k) = f(l + M, k).

10



( )x n

0( )H z

( )y n

1( )H z

1( )MH z
 

0( )u n

1( )u n

1( )Mu n
 

(a) Output switch

( )y n

0( )F z

( )x n
1( )F z

1( )MF z
 

0( )x n

1( )x n

1( )Mx n
 

(b) Input switch

Figure 2.3: Structure of an LSTV system with (2.3a) output switch and (2.3b) input switch.

By substituting f for g in (2.1), we get

y(k) =

k
∑

i=−∞
f(i, k − i)u(i)

=

p−1
∑

l=0

∞
∑

r=−∞
f(l, k − l − rp)u(l + rp).

(2.6)

Define the LTI systems

Fl(z) =

∞
∑

k=0

f(l, k)z−k.

Because of the M -periodic condition, Fl = Fl+M , and we see that (2.6) is equivalent to the LSTV

system shown in Figure 2.3b.
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2.4 Alias Components

Consider the LSTV system {H0, H1, · · · , HM−1}o in Figure 2.3a, where o stands for the output

switch. The switch can be substituted by directly connecting the input to branches and introducing

a multiplication factor in each branch that is zero at all sampling times that the switch is not

connected to the branch and is equal to 1 when it is connected, i.e., for branch i , we multiply the

input by

1

M

M−1
∑

l=0

W
(n−i)l
M , (2.7)

where WM = e−2πj/M . Note that the results in (2.7) is nonzero only when n is an integer multiple

of i, that is

1

M

M−1
∑

l=0

W
(n−i)l
M =















1, if n is a multiple of i

0, otherwise

As the multiplication by W−kn
M in the time domain is equivalent to a shift in frequency by 2πk/M

in the frequency domain, the output of the LPTV system Y (z) and its input X(z) are related by

Y (z) =
1

M

M−1
∑

i=0

M−1
∑

l=0

W−il
M Fi(z)X(zW−l

M )

=
M−1
∑

l=0

(

M−1
∑

i=0

1

M
W−il

M Fi(z)

)

X(zW−l
M ).

(2.8)

By writing

Al =

M−1
∑

i=0

1

M
W−il

M Fi(z),

the system G can be represented as shown in Figure 2.4.

If we define

XT (z) =
[

X(z), X(zW−1
M ), · · · , X

(

zW−M+1
M

)]

, (2.9)

and

AT (z) = [A0(z), A1(z), · · · , AM−1(z)] ,

equation (2.8) can be written as

Y (z) = XT (z)A(z). (2.10)
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Figure 2.4: Alias components representation for an LPTV system G.

The subsystem Ai yields the transfer function from the frequency shifted input X(zW i
M ) to the

output Y (z). This is in contrast with an LTI system that has an input-output relationship given

by Y (z) = A0(z)X(z). The difference system A−A0 represents the alias components, and its norm

gives a measure of the alias distortions in an LPTV system [67].

2.5 MIMO LTI Model

Defining the blocking (or lifting) of an input sequence x(n) into a sequence of vectors of length M

as [29, 45, 68]

x(n) = [x(nM), x(nM + 1), · · · , x(nM + M − 1)]T ,

we consider an LPTV system G with the LSTV representation {F0, F1, · · · , FM−1}i, where i denotes

an input switch shown in Figure 2.3b. If the input and output sequences are blocked into sequences

of vectors of length M , an equivalent LTI system F results as shown in Figure 2.5. Note that

in Figure 2.5 xl(z) and yl(z), 0 ≤ l ≤M−1 denote the lth polyphase of x(n) and y(n), respectively.

The system F has M inputs and M outputs. The (i, l)th element of the polyphase matrix F(z)

gives the transfer function between the lth component of the blocked input and the ith component
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Figure 2.5: Equivalent MIMO-LIT system for an LPTV system F with an input switch.

of the blocked output. Because of the switch, the lth component of the blocked input is only

connected to the subsystem Fl. By writing Fl(z) in terms of its polyphase components as

Fl(z) =

p−1
∑

i=0

z−iF l
i (z

p),

we have

F (i,l)(z) =















F l
i−l(z), if l ≤ i

z−1F l
M−l+i(z) otherwise.

Therefore, the transfer matrix of the equivalent MIMO-LIT system can be written as follows

F(z) =

























F 0
0 (z) z−1F 1

M−1(z) · · · z−1FM−1
1 (z)

F 0
1 (z) F 1

1 (z) · · · z−1FM−1
2 (z)

...
...

. . .
...

F 0
M−1(z) F 1

M−2(z) · · · FM−1
0 (z)

























. (2.11)

This can be intuitively explained as we take the lth column of the polyphase matrix of the lth

branch Fl(z) shown in Figure 2.3b and form an equivalent polyphase matrix for the LPTV system

G.

Similarly, when an output switch structure {H0, H1, · · · , HM−1}i shown in Figure 2.3a is con-

sidered, the blocked representation of this system can be found by noting that the element (i, l) of

the polyphase matrix H is the output of the LTI system Hi at time kp + l for an integer k. Take
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Hi
l to be the polyphase components of Hi as in

Hl(z) =

p−1
∑

i=0

z−iH l
i(z

p).

Figure 2.6 shows the structure diagram. The polyphase components of Hi appear on the ith row

of the polyphase matrix, and we have

H(z) =

























H0
0 (z) z−1H0

M−1(z) · · · z−1H0
1 (z)

H1
1 (z) H1

0 (z) · · · z−1H1
2 (z)

...
...

. . .
...

HM−1
M−1 (z) HM−1

M−2 (z) · · · HM−1
0 (z)

























. (2.12)

2.6 State-Space Model

As mentioned in [14, 69], an LPTV system can also be represented by a state-space model as follows

x(n + 1) = A(n)x(n) + b(n)u(n) (2.13)

y(n) = c(n)x(n) + d(n)u(n), (2.14)

where x(n) is an M -dimensional state vector, u(n) is the scalar input, y(n) is the scalar output,

and A(n), b(n), c(n), and d(n) are respectively M ×M , M × 1, 1×M and 1× 1 real matrices with

( )z 
( )x n

(1) ( 1(0 ))y y y M    

(1)(0) ( 1)y y My    ( )y n

(0) (1) ( 1)y y y M    

Figure 2.6: Equivalent MIMO-LIT system for an LPTV system G with an output switch.
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( )u n

! !( )c n

( )d n

( )x n

( )y n

Figure 2.7: LPTV state-space digital filter.

period M as follows

A(n + M) = A(n), b(n + M) = b(n)

c(n + M) = c(n), d(n + M) = d(n).

The signal flow graph of this LPTV state-space digital filter is shown in Figure 2.7.The unit impulse

response h(n, k) of this LPTV state-space digital filter, which is the output at time n when the

input is the unit impulse at time k, can be evaluated as follows:

h(n, k) =



























































0 n < k

d(k) n = k

c(n)b(k) n = k + 1

c(n)

n−1
∏

i=k+1

A(i)b(k) n > k + 1.

Note that the impulse response varies periodically with period M for n and k as h(n, k) = h(n +

M, k + M).

2.7 Maximally Decimated Filterbanks

By using the multirate building blocks, we can get a filter banks representation of an LPTV system.

Consider the representation given in Figure 2.3b. Due to the switch, the output of an LPTV

system at time rM + m, y(rM + m) is equal to the output of the mth branch um(rM + m), where

0 ≤ m ≤M − 1 and r is an integer.
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Figure 2.8: The mth branch of an LPTV system.
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Figure 2.9: Equivalent filter banks for an LPTV system.

We can represent the mth branch by a filter and some multirate building blocks, i.e., a time delay

block z−m, a downsampler by M , ↓ M , an upsampler by M , ↑ M , and a time advance block zm,

given in Figure 2.8: A downsampler by M is used to decrease the sampling rate of an input signal

by keeping every Mth sample, while an upsampler by M is used to increase the sampling rate of an

input signal by inserting M − 1 zeros between samples. The combination of zm, downsampler by

M , upsampler by M and z−m fulfills the task of keeping the rM +mth samples of um(n) unchanged

and setting others 0. Because the block Hm(z) and z−m can commute, we can rearrange an LPTV

system as a multirate filter bank shown in Figure 2.9, which is an equivalent setting to the LSTV

structure given in Figure 2.3b.
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2.8 Conclusion

In this chapter we discussed the various representations of LPTV systems, i.e., Green functions,

difference equation, linear switched time varying, alias components, MIMO LTI, state-space, and

maximally decimated filterbanks. These different representations are the basis of the identification

algorithms in the following chapters. It is noted that throughout this thesis we will discuss the

identification of an LPTV system based on the several aforementioned LPTV representations.
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Chapter 3

Identification of LPTV Systems by Using an LSTV

Representation

In the previous chapter, we reviewed various representations of LPTV systems. These repre-

sentations revealed different aspects of an LPTV system. In this chapter, we focus on the LSTV

representation and develop an identification method based on this structure.

3.1 Introduction

Identification methods of LPTV systems have been proposed in [56–61] and the references therein:

An interpolating method is discussed in [56] which allows for efficient model identification in non-

stationary power system conditions. Polyspectral analysis is introduced to identify LPTV systems,

e.g., [57], where nonparametric and parametric as well as non-stationary polyspectral estimation

algorithms are discussed. Wavelets modeling and identification methods have been investigated

in [58, 59], while subspace based method is developed in [60]. The authors in [61] discussed the

identification of LPTV systems in the framework of sample data system.

In this chapter, we develop an identification method for discrete single-input single-output

(SISO) LPTV systems by using periodic inputs. The approach goes as follow: Take a finite impulse

response LPTV system with period M . A periodic input with period N is applied, where N is an

integer multiple of M . After the system has reached the steady state, the output signal will also

have a period of N . White Gaussian noise is added to the output of this LPTV system. As there is

no frequency leakage, the DFT can be applied to the input and the output. We show that when N

is greater than the number of the parameters to be estimated, an overdetermined system is formed
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and our identification method reduces to finding the LS solution of a set of linear equations [70].

Then, a sufficient condition for identifiability is derived based on a multirate filter bank structure.

Finally, when compared with the least-mean-square (LMS) algorithm, the proposed algorithm gives

more accurate results. It is straightforward to generalize this method to MIMO LPTV systems.

Therefore, we will focus on the SISO LPTV in the following.

The rest of this chapter is organized as follows. Section 3.2 describes the basic LPTV system

model. Section 3.3 presents the identification method and discusses the identifiability conditions.

Numerical simulation results of the proposed method are given in section 3.4, and the conclusion

is in Section 3.5.

3.2 System Model

Take an LPTV system with period M . It is a causal system. The input x and the output y of the

LPTV system are related by

y(m) =

∞
∑

i=0

g(m, i)x(i), (3.1)

where g(m, i) is the response of the system at time m to an impulse applied at time i in its input,

i.e., the Green function. Due to the inherent periodic property of LPTV systems, we have

g(m + M, i + M) = g(m, i), ∀m, i. (3.2)

By defining h(m, i) = g(m, m− i), we can write (3.1) as

y(m) =
∞
∑

i=0

h(m, m− i)x(i),

Using (3.2), we have

h(m, i) = h(m + M, i).

Setting

Hm(z) =

∞
∑

i=0

h(m, i)z−i

and noting that Hm = Hm+M , we obtain a representation of an LPTV system by M LTI subsystems

and a commutative switch at the output as shown in Figure 3.1 (which is an LSTV setting [45]).
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The switch is connected to the output of the first LTI subsystem H0 at time 0, to the output of

H1 at time 1, and to HM−1 at time M − 1, and then, it repeats and connects to H0. Therefore,

an LPTV system can be fully characterized by M LTI subsystems. If H0 = H1 =, · · · , = HM−1,

an LPTV system will reduce to an LTI system. Here, we assume the impulse response of each

subsystem is of finite length.

( )x n

0( )H z

( )y n

1( )H z

1( )MH z
 

0( )u n

1( )u n

1( )Mu n
 

Figure 3.1: An LPTV system with period M and a commutative switch at the output.

Given the LPTV system above, the commutative switch can be substituted by connecting the

output of the LTI subsystems to the branches and introducing a multiplication factor in each branch

that is zero when the switch is not connected to the branch and is equal to 1 when it is connected,

i.e., for branch m, the output of the mth LTI subsystem at time n is multiplied by the factor

1

M

M−1
∑

ℓ=0

W
(n−m)ℓ
M .

Thus, in the frequency domain the output Y (z) is obtained as [44, 45, 71]

Y (z) =

M−1
∑

m=0

Ym(z), (3.3)

where

Ym(z) =
1

M

M−1
∑

ℓ=0

W−mℓ
M Hm(zW−ℓ

M )X(zW−ℓ
M ). (3.4)
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As Hm(z) is assumed to be of finite length, we can denote it as

Hm(z) =

Lm−1
∑

i=0

h(m, i)z−i = eT
m(z)hm, (3.5)

where

eT
m(z) , [1, z−1, · · · , z−(Lm−1)],

hT
m , [h(m, 0), h(m, 1), · · · , h(m, Lm − 1)],

and Lm is the length of the m-th branch.

Substituting (3.5) into (3.4) gives

Ym(z) =
1

M

M−1
∑

ℓ=0

W−mℓ
M X(zW−ℓ

M )eT
m(zW−ℓ

M )hm

=
[

c(0)
m (z), c(1)

m (z), · · · , c(Lm−1)
m (z)

]

hm

, (3.6)

where we define

c(i)
m (z) ,

1

M

M−1
∑

ℓ=0

W−mℓ
M (zW−ℓ

M )−iX(zW−ℓ
M ). (3.7)

Thus, defining

cT
m(z) ,

[

c(0)
m (z), c(1)

m (z), · · · , c(Lm−1)
m (z)

]

, (3.8)

we have

Ym(z) = cT
m(z)hm. (3.9)

Putting everything together, we get

Y (z) = cT (z)h, (3.10)

where

hT , [hT
0 ,hT

1 , · · · ,hT
M−1],

cT (z) , [cT
0 (z), cT

1 (z), · · · , cT
M−1(z)].

Next, we will discuss how to estimate the impulse response of an LPTV system by using (3.10).
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3.3 Algorithm Description and Analysis

In this section, we will describe the proposed algorithm. Identifiability conditions will be discussed

as well, i.e. a sufficient condition for the input signal design is presented. Based on this condition,

we can design an input sequence to make sure an FIR LPTV system is identifiable.

3.3.1 Algorithm Description

Consider an LPTV system with period M (see Figure 3.1) and assume that the impulse response

of every branch is of finite length as given in the previous section. We apply a random input of

period N to this LPTV system, where N is an integer multiple of M , i.e., N = KM . After the

system has reached the steady state, the output of the LPTV system is also of period N because

each subsystem is an LTI system. Note that the system reaches the steady-state in Lmax sampling

time, where Lmax is the maximum length of impulse response of all the subsystems, i.e.,

Lmax = max
m
{Lm}.

Here, the steady state means that after several periods of input, the output will also be periodic. It’s

different from the definition of the linear system theory. As both the input and the output signals

are periodic, we can take the DFT of the input and the output signals without any frequency

leakage. Therefore, the estimation will be more precise than an aperiodic input. Before going

further, we denote N consecutive input samples in one period as

x = [x(0), x(1), · · · , x(N − 1)]T ,

and N consecutive output samples in one period as

y = [y(0), y(1), · · · , y(N − 1)]T .

Here, evaluating (3.10) at frequency ωk = 2πk/N (i.e., by substituting z = W−k
N ) gives [72]

Y (W−k
N ) = cT (W−k

N )h, (3.11)
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where

Y (W−k
N ), k = 0, 1, · · · , N − 1,

are the DFT coefficients of the output, denoted by Y [k].

Defining c
(i)
m [k] , c

(i)
m (W−k

N ), we have

c(i)
m [k] =

1

M

M−1
∑

ℓ=0

W−mℓ
M (W−k

N W−ℓ
M )−iX(W−k

N W−ℓ
M )

=
1

M

M−1
∑

ℓ=0

W
−ℓK(m−i)+ki
N X

(

W
−(k+ℓK)
N

)

=
1

M

M−1
∑

ℓ=0

W
−ℓK(m−i)+ki
N X [k + ℓK]

, (3.12)

where

X [k + ℓK] , X
(

W
−(k+ℓK)
N

)

.

Note that X [k] and Y [k] are periodic with period N , and they are the N -point DFT coefficients of

x(n) and y(n), respectively. Next we will show that after some evaluations, equation (3.11) can be

used to identify LPTV systems.

Using (3.8) and (3.12) gives

cT
m[k] , cT

m(W−k
N ) =

[

c(0)
m [k], c(1)

m [k], · · · , c(Lm−1)
m [k]

]

.

Therefore, (3.11) can be rewritten as

Y [k] = cT [k]h, (3.13)

where

cT [k] ,
[

cT
0 [k], cT

1 [k], · · · , cT
M−1[k]

]

.

Generally, there is some noise present while measuring the output signal. The noise is usually

assumed to be an identical independently distributed (i.i.d.) Gaussian random variable with zero

mean and variance σ2. Considering the measuring and system noise, we write (3.13) in a matrix

form as follows

Y = Ch+w, (3.14)
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where

Y =

























Y [0]

Y [1]

...

Y [N − 1]

























, h =

























h0

h1

...

hM−1

























,

and

C =

























cT
0 [0] cT

1 [0] · · · cT
M−1[0]

cT
0 [1] cT

1 [1] · · · cT
M−1[1]

...
...

. . .
...

cT
0 [N − 1] cT

1 [N − 1] · · · cT
M−1[N − 1]

























.

Here, the vector w is the N -point DFT of the noise which accounts for the measuring error and

system noise, and the matrix C has a dimension of N × L, where

L ,

M−1
∑

m=0

Lm.

As the input is known, the elements of the data matrix C can be found. Note that there are

L unknown parameters and a set of N linear equations in (3.14). If N < L, equation (3.14) is

underdetermined and the parameters can not be identified uniquely. For N ≥ L, unless the matrix

C is rank deficient, the parameters can be identified without error when the noise w = 0. In this

case, the matrix C has full column rank, and we can find h by

h = C†Y, (3.15)

where

C† = (CHC)−1CH .

If the noise w 6= 0, then

h = C†Y − C†w. (3.16)

For a fixed signal to noise ration (SNR), we can improve the estimation error by increasing N .

Now, let ĥ denote the optimal estimation of h. In the 2-norm sense, finding the optimal solution

to (3.14) is equivalent to minimizing the residue Y − Ch over h, that is,

ĥ = arg min
h

‖Y − Ch‖2. (3.17)
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Accordingly, given Y and C, the parameters that minimize (3.17) are given by the LS estimator

ĥ = C†Y. (3.18)

3.3.2 Identifiability Conditions

In this section, we will first discuss a filter bank representation of LPTV systems. Then, we will

use this representation to study the identifiability of LPTV systems.

Take the representation given in Figure 3.1. Due to the switch, the output of an LPTV system

at time rM + m, y(rM + m) is equal to the output of the mth branch um(rM + m), where

0 ≤ m ≤ M − 1 and r is an integer. We can represent the mth branch by a filter and some

multirate building blocks, i.e., a time delay block z−m, a downsampler by M , ↓ M , an upsampler

by M , ↑ M , and a time advance block zm, given in Figure 3.2: A downsampler by M is used to

decrease the sampling rate of an input signal by keeping every Mth sample, while an upsampler

by M is used to increase the sampling rate of an input signal by inserting M − 1 zeros between

samples. The combination of zm, downsampler by M , upsampler by M and z−m fulfills the task

of keeping the rM + mth samples of um(n) unchanged and setting others 0. Because the block

Hm(z) and z−m can commute, we can rearrange an LPTV system as a multirate filter bank shown

in Figure 3.3, which is an equivalent setting to the LSTV structure given in Figure 3.1. Next, we

will use this structure to discuss the identifiability of LPTV systems.

( )
m
H z M M

( )x n ( )
m
u n ( )

m
v n

mz 
( )
m
y n

mz

( )
m
F z

Figure 3.2: The mth branch of a periodic-M LPTV system.

First of all, we will simplify this problem by making use of the special structure of LPTV systems.

Consider the structure shown in Figure 3.3: the output samples y(n) in every M consecutive samples

are from M different branches, which means those M branches can be treated separately. At the

26



same time, all the branches share the same structure and have the same input. Therefore, it is

reasonable for us to investigate the identifiability for one branch. If all branches of an LPTV system

are identifiable, the whole system will be identifiable.
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( )y n

( )x n

z

0( )H z

1( )H z

1( )MH z
 

M

M
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1( )u n
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1z 

1z 

z 1z 

Figure 3.3: A filter bank representation of a periodic-M LPTV systems.

In the following, we will focus on one branch to investigate the identifiability. Without loss of

generality, we pick the mth branch of an LPTV system (see Figure 3.2). Because the time delay

block z−m and the advance block zm don’t affect the identifiability, we can concentrate on the

blocks in the dash-dotted box, and furthermore absorb the block zm into the LTI system Hm(z),

denoted by Fm(z) = zmHm(z) (i.e., the two blocks in the dotted box). Now, we relate x(n) to

vm(n) in the frequency domain as follows

Vm(z) =
1

M

M−1
∑

ℓ=0

Fm(zW ℓ
M )X(zW ℓ

M ). (3.19)

Following the method we used in section 3.3.1, evaluating (3.19) at the frequency ωk = 2πk/N (i.e.,

by substituting z = W−k
N ) gives

Vm[k] =
1

M

M−1
∑

ℓ=0

Fm(W−k+ℓK
N )X(W−k+ℓK

N )

=
1

M

M−1
∑

ℓ=0

Fm(W−k+ℓK
N )X [k − ℓK]

, (3.20)

where Vm[k] is the N -point DFT coefficients of vm(n) and is periodic with period-N .

In order to make an LPTV system identifiable, we will impose a constraint on the DFT coeffi-

cients of the input signal x(n) as follows. This condition will not ensure x(n) is a real signal instead

27



of a complex one, but we will comment on this later on.

Condition :















X [k] 6= 0, 0 ≤ k ≤ K − 1

X [k] = 0, otherwise

, (3.21)

where those consecutive nonzero K inputs will lead to alias-free outputs. Given the condition (3.21)

and equation (3.20), we can obtain at most K distinct linear equations as follows

Vm[k] =
1

M
Fm(W−k

N )X [k], 0 ≤ k ≤ K − 1. (3.22)

Reformulating (3.22) in a matrix form gives

Vm = ΠmXDFK×Lhm, (3.23)

where

Vm , [Vm[0], Vm[1], · · · , Vm[K − 1]]
T

Π , diag{1, W−1
N , · · · , W−(K−1)

N }

XD , diag {X [0], X [1], · · · , X [K − 1]}

.

In the above, the symbol Πm is the mth power of the matrix Π, diag{A} represents diagonal matrix

formed from the vector A, and FK×Lm
is a K × Lm submatrix of an N ×N DFT matrix FN×N

at the top left corner .

From equation (3.22), it is seen that the identifiability of the mth branch is equivalent to judging

whether the matrix ΠmXDFK×Lm
has a full column rank. Note that the diagonal matrices Πm

and XD are obviously invertible, and the matrix FK×Lm
is a Vandermonde matrix with its rank

given by min{K, Lm}. Therefore, we can obtain that the K × Lm matrix ΠmXDFK×Lm
has a

rank of min{K, Lm}. We can come to a conclusion that if K ≥ Lm, the parameter hm can be

uniquely identified, namely, the mth branch is identifiable for ∀m ∈ {0, 1, · · · , M − 1}. Given

the aforementioned discussion, the whole system is identifiable if every branch is identifiable, i.e.,

K ≥ Lmax, where Lmax = maxm Lm. Under the condition (3.21), once this LPTV system is

identifiable, we can also have K ≥ Lmax. Therefore, K ≥ Lmax is a necessary condition under the

condition (3.21).

As mentioned before, under the condition (3.21) the input signal x(n) will not be real. If the

input sinal must be real, we just need to make the DFT coefficients sequence X [k], 0 ≤ k ≤ N − 1
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a Hermitian sequence

X [k] = X∗[N − k], 0 ≤ k ≤ N − 1

where this could be considered as a frequency shift of condition (3.21). Therefore, (3.21) can be

rewritten as

X [k] 6= 0, −⌊K/2⌋ ≤ k ≤ ⌊K/2⌋ (3.24)

where X [k] = X∗[N − k]. Note that we consider X [0] and X [N − 1] as adjacent elements. Because

the frequency shift only relates to an exponential factor, the identifiability will not be affected

accordingly. Therefore, a real signal will always exist. As an underlying condition, K must be an

odd number to make the input signal X [k] a Hermitian sequence. If K is an even number, the

input signal x(n) is not a real signal under the condition (3.21).

The condition we give in equation (3.21) is a sufficient one. In general, it will not be a necessary

condition. However, based on this sufficient condition, we can design the input sequence to make

sure an LPTV system is identifiable. Moreover, the input sequence given in (3.21) can cancel

the alias components of an LPTV system, which will reduce the computational complexity of

the identification algorithm. From the point view of identifiability, a sufficient condition is more

important than a necessary one. When we do the numerical simulation, we find that in almost every

trial randomly generated sequences can make an LPTV system identifiable, which can be intuitively

interpreted as a random sequence that is rich enough in modes [73]. However, the simulation results

also demonstrate our sufficient condition is conservative.

3.4 Numerical Examples

In this section, we will give an explicit example to demonstrate our method and compare our

simulation results with those obtained by the LMS algorithm (see sections 5.2 in [74] for more

details). In order to apply the LMS algorithms, we need to block this periodic-M LPTV system

to an M ×M MIMO LTI system, i.e., the raised model [58, 71]. As is known, an M ×M MIMO

system can be considered to be blocked by M multi-input single-output (MISO) system. To make

this section self-contained, we include the MIMO-LTI model here once again.
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Figure 3.4: Equivalent MIMO-LIT system for an LPTV system G with an output switch.

When an LPTV system {H0, H1, · · · , HM−1}i shown in Figure 2.3a, the blocked representation

of this system can be found by noting that the element (i, l) of the polyphase matrixH is the output

of the LTI system Hi at time kp + l for an integer k. Take Hi
l to be the polyphase components of

Hi as in

Hl(z) =

p−1
∑

i=0

z−iH l
i(z

p).

The polyphase components of Hi appear on the ith row of the polyphase matrix, and we have

H(z) =

























H0
0 (z) z−1H0

M−1(z) · · · z−1H0
1 (z)

H1
1 (z) H1

0 (z) · · · z−1H1
2 (z)

...
...

. . .
...

HM−1
M−1 (z) HM−1

M−2 (z) · · · HM−1
0 (z)

























. (3.25)

In this stage, the LMS algorithm can be applied to those M MISO systems directly [58]. We

will first define SNR and the normalized mean square error (NMSE) as follows

SNR =
‖y‖2
Nσ2

and

NMSE =
‖ĥ− h‖2
‖h‖2

We take an LPTV system with period M = 2. The corresponding frequency response of each

30



branch is as follows














H0(z) = 0.3 + 0.1z−1 + 0.05z−2 + 1.25z−3

H1(z) = 0.4− 0.05z−1 − 0.01z−2 + 0.8z−3

Hence, the parameters to be estimated can be written as a vector

h = [0.3 0.1 0.05 1.25 0.4 − 0.05 − 0.01 0.8]T .

3.4.1 Performance of the Proposed Algorithm

We consider an input signal x with period N and take the input and the output samples in 1 period.

We assume that x is known. However, in order to test different cases, we have generated a periodic

input randomly. Gaussian noise with zero mean at SNR = 25dB is added to the output of the

above LPTV system. Taking N = 100, we obtain that the corresponding ensemble average NMSE

is 2.2737× 10−4 using the proposed method. The estimation results are given in Table 3.1(a).

Table 3.1: Identification results for the two algorithms

Subsystem Estimated Coefficients

H0 [0.3087 0.0990 0.0605 1.2516]

H1 [0.4108 -0.0541 0.0004 0.7886]

(a) The proposed algorithm

Subsystem Estimated Coefficients

H0 [0.3016 0.0763 0.0614 1.2401]

H1 [0.4074 -0.0564 -0.0141 0.7969]

(b) The LMS algorithm

3.4.2 Performance of the LMS Algorithm

Table 3.1(b) demonstrates the simulation results by employing the LMS algorithm at SNR = 25dB.

Here, the step size is taken as µ = 0.05 (see the explicit expressions in [74]). In this example, the

LMS algorithm converges after 250 input samples. The corresponding ensemble average NMSE is
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3.7055×10−4 when the LMS algorithm converges. The frequency responses of H0(z) and H1(z) are

given in Figure 3.5. In Figure 3.5, solid line is for true value, dashed for the proposed algorithm,

dotted for the LMS algorithm with the step size µ = 0.05 and dashdot for the LMS algorithm with

µ = 0.01.
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Figure 3.5: Frequency responses for H0(z) and H1(z).

Here, the input periodical signal is also generated randomly as the input for the LMS algorithm.

The ensemble average learning curve is illustrated in Figure 3.6. For the LMS algorithm, the

horizontal axis stands for the number of input samples for the iteration, while for the proposed

method the horizontal axis denotes the period of the input signal (only one period of the output is

used for the identification). Examining the figure, we can see that the proposed method is better

than the LMS algorithms in this example. In order to investigate the method, we have repeated

the process for LPTV systems with different periods and FIR filter coefficients many times. We

observed that the MSE curves of our method stay below those of the LMS algorithms, which means
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that our method needs shorter training sequences and has a lower mean squares error.
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Figure 3.6: NMSE curve for the two algorithms.

3.5 Conclusion

We derived a method for the identification of FIR LPTV systems in the frequency domain by using

DFT. We chose the period of the input signal to be a multiple of the period of an LPTV system.

Then, the output of the system has the same period as the period of the input signal. Therefore,

our identification method reduces to finding the least-squares solution of a set of linear equations. A

sufficient condition for the identifiability is given, which can be used to find appropriate inputs for

the purpose of identification. Simulation results illustrated the accuracy of the proposed method.

A comparison with the LMS algorithms was presented as well.
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Chapter 4

Alias Components Identification of LPTV Sys-

tems

In Chapter 3, we discussed the identification method based on an LSTV structure. In this

chapter, we will develop an identification method for LPTV system by using the alias components

representation in the frequency domain.

4.1 Introduction

In general, there are two ways to represent LPTV systems in a wide sense: one is a time-domain

based approach called blocking in signal processing, and the other one is a frequency-domain tech-

nique [45, 49, 71]. These two techniques are inherently related. In this chapter, for the convenience

of discussion we adopt the latter one, which is modelled as alias components in parallel with fre-

quency shifted inputs shown in Figure 4.1. A key question for system identification is how to choose

the training signal [75]. Especially, optimal training signal design is very important in communi-

cation area [76–80], to name a few. However, they generally deal with LTI systems. To the best of

the authors’ knowledge, the optimal training signal design for the identification of LPTV systems

has not been studied.

In this chapter, we develop an identification method for alias components of discrete FIR-LPTV

systems. Take an FIR-LPTV system with period M . A periodic training signal with period N is

applied, where N is a multiple of M , so in the steady-state, the output will also have period N . We

measure the output of this LPTV system. Due to the periodicity of the input and the output, the

DFT can be applied to the input and the output signals. Therefore, when N is greater than the
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number of the parameters to be estimated, an overdetermined system is formed. This identification

method is equivalent to solving a LS problem [70, 75]. Because the alias component representation

is a frequency-domain representation, we feel that is more natural to derive the equations in the

frequency domain. However, the algorithm can be derived in the time domain, in which case, an

LSTV setup [45] can be used. But we should note that in the time domain representation the input

signal does not have to be periodic. Therefore, the two methods are not exactly equivalent. In

order to evaluate the proposed method, an MSE lower bound on this LS estimator is derived. An

optimal training signal is designed to achieved this lower bound as well. Finally, this algorithm is

extended to the identification of IIR-LPTV systems.

The rest of this chapter is organized as follows. Section 4.2 introduces the alias component repre-

sentation of LPTV systems. Section 4.3 presents the least-squares identification of alias components

for FIR-LPTV systems. Section 4.4 describes the optimal input signal design for FIR-LPTV sys-

tems in the sense of minimum MSE (MMSE). An extension to IIR-LPTV system identification is

presented in Section 4.5. Numerical simulation results of the proposed method are given in Section

4.6, and the conclusion is in Section 4.7.

4.2 System Model

Take an LPTV system A with period M . Such a system can be modelled as M alias components

with periodic modulating inputs. Figure 4.1 shows the alias components representation of an LPTV

system, where Am(z), m = 0, · · · , M − 1 are its alias components [44]. Given the LPTV system in

Figure 4.1, in the frequency domain the output Y (z) is obtained as [44, 45]

Y (z) =

M−1
∑

m=0

Am(z)X(zW−m
M ), (4.1)

where the quantities Am(z) are the alias components of the aforementioned LPTV system and

X(zW−m
M ) can be considered as the input of Am(z). If we define

XT (z) =
[

X(z), X(zW−1
M ), · · · , X

(

zW−M+1
M

)]

, (4.2)
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Figure 4.1: Alias component representation of an LPTV system.

and

AT (z) = [A0(z), A1(z), · · · , AM−1(z)] ,

equation (4.1) can be written as

Y (z) = XT (z)A(z). (4.3)

Assume that the impulse responses of the LPTV system, i.e., the response to impulses at time

0 to M − 1, are shorter than L. Because the alias components Am(z), m = 0, 1, · · · , M − 1 are a

linear transformation of the impulse responses, i.e., alias components are the DFT of the impulse

responses [45], the length of alias components will also be less than L. Hence, we can denote Am(z)

as

Am(z) =

L−1
∑

i=0

am,iz
−i = αT

me(z), (4.4)

where

αT
m , [am,0, am,1, · · · , am,L−1],

and

eT (z) , [1, z−1, · · · , z−(L−1)].

If Am(z), m = 0, · · · , M − 1 are of different lengths, zeros can be padded to make sure they have
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the same length. Without loss of generality, we consider they have the same length L.

Substituting (4.4) into (4.3) gives

Y (z) =XT (z)
[

αT
0 e(z),αT

1 e(z), · · · ,αT
M−1e(z)

]T

=XT (z)
(

IM ⊗ eT (z)
)

α

= ϕT (z)α,

(4.5)

where

αT ,
[

αT
0 ,αT

1 , · · · ,αT
M−1

]

,

ϕT (z) ,XT (z)
(

IM ⊗ eT (z)
)

.

Note that α is the unknown parameters vector to be identified. Equation (4.5) is the basis of the

proposed identification algorithm. Next, we will discuss the identification algorithm based on this

equation.

4.3 Algorithm Description

Consider an LPTV system with period M mentioned before and assume that the alias components

are FIR with L taps. We apply a period-N input signal

x = [x(0), x(1), · · · , x(N − 1)]T

to this LPTV system, where N is an integer multiple of M , i.e., N = KM, k ∈ Z. Given the

periodic input, the output in the steady-state will be periodic with the same period N . Due to the

periodicity of the input and the output, we can take the DFT of the input and the output signals

without frequency leakage. Evaluating (4.5) at frequency ωk = 2πk/N (i.e., z = W−k
N ) gives

Y [k] = ϕT (W−k
N )α+ F{u(n)}

= ϕT (W−k
N )α+ w[k],

(4.6)

where

Y [k] , Y (W−k
N )
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are the DFT coefficients of the output y(n), u(n) is assumed to be the i.i.d Gaussian-distributed

noise with zero mean and a variance of σ2 that contaminates the measurements, i.e.,

u ∼ N (0, σ2IN ),

w[k] are the DFT coefficients of u(n) and the symbol F{·} denotes DFT operator. Here, we use u

to refer to the noise vector and w to refer to the corresponding DFT coefficients vector.

Defining

ϕT [k] , ϕT (W−k
N ),

XT [k] ,XT (W−k
N ),

and

eT [k] , eT (W−k
N ),

we have

XT [k] =
[

X(W−k
N ), X(W−k

N W−1
M ), · · · , X

(

W−k
N W−M+1

M

)]

=
[

X(W−k
N ), X(W−k−K

N ), · · · , X
(

W
−k−(M−1)K)
N

)]

= [X [k], X [k + K], · · · , X [k + (M − 1)K]] ,

(4.7)

and

ϕT [k] = XT (W−k
N )

(

IM ⊗ eT (W−k
N )

)

= XT [k]
(

IM ⊗ eT [k]
)

.

(4.8)

Putting all together, equation (4.6) can be rewritten as

Y [k] = ϕT [k]α+ w[k]. (4.9)

By stacking the N samples, equation (4.9) can be rearranged in a matrix form as follow

Y = Φα+w, (4.10)

where

YT , [Y [0], Y [1], · · · , Y [N − 1]] ,

ΦT , [ϕ[0],ϕ[1], · · · ,ϕ[N − 1]] ,
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and

wT , [w[0], w[1], · · · , w[N − 1]] .

In the least-squares sense, the unknown vector α can be determined by

α̂LS = arg min
α
‖Y −Φα‖22, (4.11)

where ‖X‖22 = tr
(

XXH
)

. If the matrix Φ is of full column rank (later we will see that the full

column rank assumption is trivial if we employ the optimal training signal as the input signal) so

that the Gram matrix ΦHΦ is positive definite, then α̂LS is uniquely determined by

α̂LS = (ΦHΦ)−1ΦHY, (4.12)

where α̂T
LS =

[

α̂T
0 , α̂T

1 , · · · , α̂T
L−1

]

. Here, we assume that N is greater than or equal to ML. If

N is less than ML, it is impossible to identify those parameters uniquely. Because the input

training signal is known, [ΦHΦ]−1ΦH can be precomputed and stored so that the complexity of

computation is decreased further. In the next section, we will discuss the performance of this LS

estimator and present the design of the optimal training signal.

Remark: In the derivation above, we have assumed that N is a multiple of M . If N is not a

multiple of M , the output will be periodic with period N̄ equal to the least common multiple of

N and M . That is, we need to use N̄ sample of the output signal y(n) in one period. In this

case, even when the constraint N = KM, k ∈ Z is not satisfied, we still can generalize the previous

discussion to relate the N -point DFT coefficients of the input and the N̄ -point DFT coefficients of

the output. If N̄ is greater than or equal to ML, the proposed algorithm still can be used.

4.4 Performance Analysis and Optimal Training Signal De-

sign

This section investigates the performance of the least-squares estimator for FIR-LPTV systems.

An MSE lower bound on the LS estimator is derived and the design of an optimal training signal

to achieve this bound is given. For completeness, at the beginning we summarize two main DFT
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properties used in this paper. Let

X [k] =

N−1
∑

n=0

x(n)W kn
N ,

and

x(n) =

N−1
∑

k=0

X [k]W−kn
N ,

i.e., x(n)
F←→ X [k].

Property− 1: FH
N FN = FNF

H
N = NIN , i.e., the columns (rows) of the DFT matrix are

orthonormal to each other.

Property− 2: W ln
N x(n)

F←→ X [(k + l)N ], hence representing a cyclically-shifted version. Its

duality is given by

x[(n + m)N ]
F←→W−mk

N X [k].

In the following, we will discuss the MSE bound of the proposed least-squares estimator and

the optimal training signal design.

4.4.1 MSE Bound of LS Estimator

We will first discuss the relationship of the errors in the coefficients of alias components and the

H2-norm of an error system. Then, we will find some bound of the LS estimator, which in turn

will give us some bound on the energy of errors to an impulse input.

In fact, minimizing the square error coefficients of the alias components is equivalent to min-

imizing the square error of the impulse response in the sense of H2-norm. Here, we include the

proof here. In the following, we will show that minimizing the square error coefficients of the alias

components Am(z) is equivalent to minimizing the square error of the impulse response in the sense

of H2-norm. Take a periodic-M LPTV system A into consideration. The input x and the output

y of the LPTV system can be related by

y(k) =

∞
∑

l=0

g(k, l)x(l), (4.13)

where g(k, l) is the response of the system at time k to an impulse applied at time l in its input,

i.e., the Green function. Due to the periodic condition on the system, the impulse response has the
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property

g(k + M, l + M) = g(k, l), ∀k, l. (4.14)

An equivalent representation can be obtained by setting h(l, k) = g(l + k, l). The M -periodic

property on A gives

h(l, k) = h(l + M, k).

Substituting h for g in (4.13) , we get

y(k) =

k
∑

i=−∞
h(i, k − i)x(i).

Now, we consider the H2-norm of the LPTV system A. By applying the impulse δ(k − m), 0 ≤

m ≤M − 1 to the input of A, we have the output

ym(k) = h(m, k −m).

Thus, the frequency representation of the the ouput w.r.t. δ(k −m) is

Ym(z) =
∞
∑

k=0

h(m, k −m)z−k

=

∞
∑

k=0

h(m, k −m)z−(k−m+m)

= z−m
∞
∑

k=0

h(m, k −m)z−(k−m)

= z−mHm(z),

where Hm(z) =
∑∞

k=0 h(m, k)z−k with Hm(z) = Hm+M (z). The 2-norm of this output Ym(z) is

equal to ‖Hm(z)‖2. Because of the M -periodic property, the H2-norm of the LPTV system A is

equal to averaging the squares of the 2-norms of the outputs of A in terms of impulses at time 0

through M − 1 [23] in the manuscript, that is,

‖A‖2 =

(

1

M

M−1
∑

m=0

‖Hm(z)‖22

)1/2

=

(

1

M
HT (z)H(z)

)1/2

,

(4.15)

with H = [H0(z), H1(z), · · · , HM−1(z)]T . The relationship between A(z) and H(z) is given by [6]

in the manuscript

H(z) = FMA(z). (4.16)
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Substituting (4.16) into (4.15) results in

‖A‖2 =

(

1

M
(FMA(z))T (FMA(z))

)1/2

=

(

1

M
AT (z)A(z)

)1/2

=

(

1

M

M−1
∑

m=0

‖Am(z)‖22

)1/2

=

(

1

M

M−1
∑

m=0

L−1
∑

i=0

‖am,i‖22

)1/2

.

(4.17)

The mean-square error of the coefficients of the alias components Am(z) is also equal to the square

error of the impulse responses of an LPTV error system. Such an error system is formed by

subtracting the estimated system Â from the true system A. As the error system is an LPTV

system, the square of its H2-norm can be defined as the average of the squares of the 2-norms of

its outputs to impulses at time 0 through M − 1 [81]. It can be shown that

‖A− Â‖2 =

(

1

M

M−1
∑

m=0

L−1
∑

i=0

‖am,i − âm,i‖22

)1/2

= ‖α− α̂LS‖2.

(4.18)

Thus, minimizing the mean-square error of the coefficients is equivalent to minimizing the H2-norm

of the error system. In the following, we will discuss the bound of the LS estimator.

Using (4.10) and (4.12), we have

α̂LS = (ΦHΦ)−1ΦH(Φα+w)

= α+ (ΦHΦ)−1ΦHw

= α+ (ΦHΦ)−1ΦHFNu.

(4.19)

From equation (4.18), we can see that minimizing the square error coefficients of the alias compo-

nents Am(z) is equivalent to minimizing the square error of the impulse response Hm(z). Thus,

α̂LS is the sum of the true α and a term induced by the noise. Taking the ensemble average over

the left hand side and the right hand side gives

E(α̂LS) = α,

which demonstrates that the proposed estimator is unbiased.
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Letting

εLS = α̂LS −α = (ΦHΦ)−1ΦHFNu,

we have the MSE given by

MSE = E(‖εLS‖22)

= tr
(

E(εLSε
H
LS)
)

= Nσ2E
(

tr
(

(ΦHΦ)−1
))

.

(4.20)

Before deriving the lower MSE bound for the estimated alias components, we first consider the

term tr
(

(ΦHΦ)−1
)

. Noticing that ϕT [k] can be rewritten as

ϕT [k] = XT [k]
(

IM ⊗ eT [k]
)

=
(

X [k]eT [k], · · · , X [k + (M − 1)K]eT [k]
)

,

,

we can write the matrix Φ as following

Φ =

























X [0]eT [0] · · · X [(M − 1)K]eT [0]

X [1]eT [1] · · · X [1 + (M − 1)K]eT [1]

...
. . .

...

X [N − 1]eT [N − 1] · · · X [(M − 1)K − 1]eT [N − 1]

























.

Here, there are ML columns of the matrix Φ. We formulate the (mL+l)th (m = 0, 1, · · · , M−1; l =

0, 1, · · · , L− 1) column vector of this matrix as following

ψm,l = ΛlFNΛmKx, (4.21)

where we have used property-2 and

Λ , diag
(

1, W 1
N , · · · , WN−1

N

)

is a diagonal matrix with its kth diagonal element as W k−1
N .

We assume that the periodic-N input signal has a constant power, i.e.,

‖x‖22 = Eav

where Eav is a constant. Consider the diagonal element of the Gram matrix ΦHΦ. Using (4.21),

we have

ψH
m,lψm,l = NEav (4.22)
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where

0 ≤ m ≤M − 1,

and

0 ≤ m ≤ L− 1.

This equation indicates that the diagonal elements of ΦHΦ are constants once the input training

signal x is fixed. Let λ1, λ2, · · · , λML be the eigenvalues of ΦHΦ. Then, we have

tr(ΦHΦ) = λ1 + λ2 + · · ·+ λML = NMLEav.

Note that

tr((ΦHΦ)−1) = λ−1
1 + λ−1

2 + · · ·+ λ−1
ML.

Hence, finding the lower bound of MSE is equivalent to finding the solution to the following opti-

mization problem [82]

minimize λ−1
1 + λ−1

2 + · · ·+ λ−1
ML

subject to λ1 + λ2 + · · ·+ λML = NMLEav.

(4.23)

Given the matrix ΦHΦ is positive definite, the minimum MSE (MMSE) is achieved if and only if

λ1 = λ2 = · · · = λML = NEav. (4.24)

The above equation is satisfied when

ΦHΦ = NEavIML, (4.25)

and the corresponding MMSE is

MMSE = Nσ2 × ML

NEav
=

MLσ2

Eav
. (4.26)

4.4.2 Optimal Training Signal Design

In this subsection, we will investigate the design of the optimal training signal which achieves the

lower MSE bound in equation (4.26). For LTI systems identification, the pseudo-random noise is
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the optimal training signal as mentioned in [75], while we will see that the pseudo-random noise is

not the optimal training signal for LPTV systems.

In order to achieve the MSE bound, we need to consider the following condition from (4.25):

ψH
m,lψm′,l′ = 0 ∀(m−m′)L + l − l′ 6= 0, (4.27)

where

m, m′ ∈ {0, · · · , M − 1},

and

l, l′ ∈ {0, · · · , L− 1}.

Using equation (4.21), the following condition is obtained from (4.27)

ψH
m,lψm′,l′ = (ΛlFNΛmKx)H(Λl′FNΛm′Kx)

= xHΛ−mKFH
N Λl′−lFNΛm′Kx

= xHΠ
(d)
m,m′x

= 0,

(4.28)

where

Π
(d)
m,m′ , Λ−mKFH

N ΛdFNΛm′K ,

and

d ∈ {−L + 1, · · · ,−1, 0, 1, · · · , L− 1}.

Note that the (i, j)th element of the matrix Π
(d)
m,m′ can be written as

[

Π
(d)
m,m′

]

ij
= W−imK+jm′K

N

(

N−1
∑

k=0

W
k(j−i+d)
N

)

. (4.29)

Using the identity
N−1
∑

p=0

W pq
N = 0 (q not an integer multiple of N),

we can reformulate (4.29) as

[

Π
(d)
m,m′

]

ij
=















NW−imK+jm′K
N , (j − i + d) is a multiple of N

0, otherwise.

(4.30)
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Furthermore, letting j − i + d = pN, p ∈ Z and substituting it into (4.30) gives

W−imK+jm′K
N = W

−imK+(i−d+pN)m′K
N

= W−dm′K
N ×W i∆K

N .

Thus

[

Π
(d)
m,m′

]

ij
=















W−dm′K
N ×W i∆K

N , (i− j)N = d

0, otherwise.

(4.31)

where

∆ , m′ −m,

and hence

∆ ∈ {−M + 1, · · · , 0, · · · , M − 1}.

Now, we recall condition (4.25) for convenience

xHΠ
(d)
m,m′x =















NEav, ∆ = d = 0

0 , otherwise.

(4.32)

Note that condition (4.28) is subsumed in (4.32). Because xHΠ
(d)
m,m′x ≡ NEav always holds when

∆ = d = 0, we only need to choose the training signal to make xHΠ
(d)
m,m′x = 0 when ∆2 + d2 6= 0.

Substituting (4.31) into (4.32), we can rewrite (4.32) in a sum form

xHΠ
(d)
m,m′x =

N−1
∑

i=0

N−1
∑

j=0

x∗(i)
[

Π
(d)
m,m′

]

ij
x(j)

= W−dm′K
N ×

(

N−1
∑

i=0

x∗(i)W i∆K
N x((i− d)N )

)

= 0

that is
N−1
∑

i=0

W i∆K
N x∗(i)x ((i− d)N ) = 0, (4.33)

where

∆ ∈ {−M + 1, · · · , 0, · · · , M − 1},

and

d ∈ {−L + 1, · · · ,−1, 0, 1, · · · , L− 1}.
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Considering the circularity of WN , the modular operation and the assumption N = MK, we have

at most ML − 1 distinct non-trivial equations in (4.33). (∆ = d = 0 is considered as the trivial

case.) We rewrite (4.33) in the following



























































N−1
∑

i=0

W i∆K
N x∗(i)x ((i− d)N ) = 0

∆ ∈ {0, 1, · · · , M − 1}

d ∈ {0, 1, · · · , L− 1}

∆2 + d2 6= 0.

(4.34)

Note that in the above, repeated equations were eliminated.

Next, let us consider LTI systems first. In (4.34), we have M = 1, which results in ∆ = 0.

Thus, the optimal input satisfies

N−1
∑

i=0

x∗(i)x ((i− d)N ) = 0, ∀d ∈ {1, · · · , L− 1}.

That is, pseudo-randomly generated inputs are optimal for LTI systems. However, for LPTV

systems pseudo-randomly generated inputs do not necessarily satisfy equation set (4.34). That is,

pseudo-random signals are not the optimal training signals for LPTV systems, even if they are the

optimal training signals for LTI systems.

For LPTV systems, in order to find the optimal input, we need to solve equation set (4.34).

This is a set of multivariate quadratic polynomial equations. Similar equations arise in the design

of public key cryptographic systems. These equations are NP-complete [83], and generally difficult

to solve. It is hard to get an analytic solution, but it may be possible to develop a method similar

to that given in [84] to test whether there exists a nontrivial solution to the equation set (4.34). At

the same time, we can adjust the period of the input signal N so that an underdetermined system

is formed and an optimal training signal exists. For example, if for a specified N there is no optimal

training signal, we can increase N to achieve the optimal training signal. Generally, if the number

of the parameters to be estimated is small, the equation set can be solved by hand. Note that if

the optimal training signal is applied, the Gram matrix ΦHΦ will be diagonal and can be easily

inverted.
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4.5 Extension to IIR-LPTV Systems

In this section, we extend the proposed algorithm to IIR-LPTV systems. The parts that are similar

to the discussion in the previous sections on the FIR case will be discussed briefly and the main

emphasis will be on the extension to the IIR case. In particular, variables that were defined in

previous sections will remain unchanged. Without loss of generality, we assume that all of the

branches have the same denominator:

Am(z) =

Ln−1
∑

i=0

am,iz
−i

1 +
Ld−1
∑

i=1

biz−i

=
αT

me(z)

1 + βTed(z)
,

where Ln and Ld are the order of the numerator and the denominator, respectively, with

ed(z) = [z−1, · · · , z−(Ld−1)]T ,

and

β , [β1, β2, · · · , βLd−1]
T .

The relationship between the input x and the output y is

Y (z) = XT (z) [A0(z), · · · , AM−1(z)]T

=
XT (z)

[

αT
0 e(z), · · · ,αT

M−1e(z)
]T

1 + βTed(z)

=
XT (z)(IM ⊗ eT (z))α

1 + βTed(z)

=
ϕT (z)α

1 + βTed(z)
.

(4.35)

Simplifying (4.35) gives

Y (z)(1 + βTed(z)) = ϕT (z)α,

which is equivalent to

Y (z) =
[

ϕT (z),−Y (z)eT
d (z)

]









α

β









. (4.36)
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Applying the same method for FIR-LPTV systems in Section 4.3, we have

Y [k] =
[

ϕT [k],−Y [k]eT
d [k]

]









α

β









(4.37)

with

eT
d [k] , eT

d (W−k
N ).

Stacking the N samples in one period, we have the matrix form of equation (4.37)

Y = Ψ









α

β









,

with

Y =

















Y [0]

...

Y [N − 1]

















, Ψ =

















ϕT [0] −Y [0]eT
d [0]

...
...

ϕT [N − 1] −Y [N − 1]eT
d [N − 1]

















.

Using the least-squares method, we have the estimated parameters








α̂

β̂









LS

= (ΨHΨ)−1ΨHY.

Here, we assume that the period of the input signal N is greater than the number of unknown

parameters MLn + Ld − 1, and ΨHΨ is of full rank. Note that contrary to the FIR case, it is

not straightforward to relate the error in the approximation of coefficients and the H2 norm of the

error system. Moreover, we were not able to extend the results for optimal signal design, to the

IIR case.

4.6 Numerical Results

In this section, the performance of the proposed method is illustrated by numerical simulations.

Both FIR-LPTV and IIR-LPTV systems identification algorithms are examined.

4.6.1 FIR-LPTV Examples with Optimal Input

Take an FIR-LPTV system with period M = 2. The corresponding frequency response of each

branch is given in Table 4.1.

49



Table 4.1: Alias Components for an FIR-LPTV System

A0(z) 0.7 + 0.05z−1 + 0.04z−2 + 2.05z−3

A1(z) −0.1 + 0.15z−1 + 0.06z−2 + 0.45z−3
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Figure 4.2: MSE curve for the FIR-LPTV system.

Here, we choose N = 16 > ML = 8. Based on equation (4.33), one possible optimal training

signal is
√

2
2 [1, −3, 1, 1, 1, 1, 1, 1, 1, 1, −3, 1, 1, 1, 1, 1], where the constant

√
2

2 is used to normal-

ize the input signal so that the average power is equal to 1. In order to compare the results, we

have also used a randomly generated periodic-N input signal.

Gaussian noise is added to the output. We change the signal to noise ratio (SNR) and perform

Monte-Carlo simulations. Figure 4.2 gives the simulation results. Those ensemble average MSE

curves are generated by using MATLAB after 40 trials. Here, we can see that the theoretic MSE

curve agrees with the MSE curve under the optimal training signal, while the pseudo-random input

signal is about 4 dB worse. This demonstrates that the design of the optimal training signal can
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Figure 4.3: Performance comparison of the given method with the LMS algorithm.

improve the identification accuracy. It also shows that short pseudo-random input signals are not

optimal for the identification of LPTV systems. Furthermore, the optimal training signals will lead

to diagonal Gram matrices that can be easily inverted; however for random training signals the

Gram matrix ΦHΦ is not necessarily a diagonal matrix. Here, we also find that the SNR vs the

MSE is straight line. At the first glance, it seems not reasonable. However, when looking into

equation (4.20), it is found that the last term E
(

tr
(

(ΦHΦ)−1
))

is actually a constant. Then, the

noise variance is linearly proportionate to the MSE. That’s why the SNR vs MSE curve figure is a

linear curve.

A comparison with the LMS algorithm [58] is presented in Figure 4.3. From this figure, we can

see that the proposed method outperforms the LMS algorithm. In order to get an MSE equal to 30

dB, using our method, we need a training signal of length 32. However, using the LMS algorithm,

comparable errors are obtained when the input signal length is greater than 250. Once the optimal

training signal is used, the computational complexity is reduced considerably. As we mentioned

before, the Gram matrix has full column rank. Therefore, the identification method is not only
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more accurate but also more efficient than the LMS algorithm when the optimal training signal

is applied. From Figure 4.3, we also see that the performance of the random training signal will

approach that of the optimal training signal as the length of the input signal increases. Therefore,

from a practical point of view, the optimal training signal is desirable mainly when the length of

the training signal is short.

4.6.2 Time Domain Algorithms for FIR-LPTV

As mentioned in the Section 4.1, the algorithm can be derived in the time domain, in which

case, an LSTV setup can be used to derive the algorithm in the time domain [6] in the manuscript.

Figure 4.4 shows the simulation results of the time domain algorithm. The MSE curve are generated

by performing 1000 trials. We tried different parameters as well. The parameters are given in

Table 4.2. According to the simulations, the time domain algorithm gives slightly worse results.

Table 4.2: Parameters of Alias Components

A0(z) 0.7 + 0.05z−1 + 0.04z−2 + 2.05z−3

A1(z) −0.1 + 0.15z−1 + 0.06z−2 + 0.45z−3

However, we should note that in the time domain representation the signal does not have to be

periodic. Therefore, the two methods are not exactly equivalent. The constraint N = KM, K ∈ Z

can be relaxed as we mentioned (given as a remark) in Section 3. The periods of the input and

the output signals do not need to be the same. All that is needed is to have the data for a whole

period of the output signal of the system. For example, if the period of the input signal x(n) is 5

and the period of the LPTV system is 3, the period of the output y(n) will be 15.

4.6.3 Examples for the Extension to IIR-LPTV

In this example, the setup is the same as the above example for FIR-LPTV systems. The alias

components are given in Table 4.3.

We have used the algorithm described in Section 4.5. Figure 4.5 shows the identification results
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Figure 4.4: MSE curve for the FIR-LPTV system in the time and frequency domain.

Table 4.3: Alias Components for an IIR-LPTV System

A0(z) 0.7+0.05z−1+0.04z−2+2.05z−3

1−1.25z−1+0.33z−2+0.15z−3−0.05z−3

A1(z) −0.1+0.15z−1+0.06z−2+0.45z−3

1−1.25z−1+0.33z−2+0.15z−3−0.05z−3

of the above system, when the input signal is randomly generated. As the period of the input signal

increases, the MSE curve decrease as expected. Moreover, this example shows that an improvement

of about 6dB is obtained if we use an input sequence of length 24, rather than an input sequence

of length 16.

4.7 Conclusion

We derived an alias component identification method for FIR based LPTV systems. When a

periodic input is applied to an LPTV system and the period of this input

is a multiple of that of the LPTV system, it has shown that the identification method is reduced
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Figure 4.5: MSE curve for the IIR-LPTV system

to solving a least-squares problem in the frequency domain. This method can be generalized to the

case when the period of the input is not a multiple of that of the LPTV system. To evaluate the

performance of this LS estimator, we derived the lower MSE bound. Simulation results corroborated

that the optimal training signal design achieves this lower MSE bound. We also came to the

conclusion that the estimation accuracy was increased when compared to the random training

signal. We showed that a pseudo-random input signal is not optimal for LPTV systems even if

it is the optimal signal for LTI systems. We also extended the algorithm to IIR-LPTV systems.

Simulation results showed the accuracy of the estimation, and demonstrated that the performance

decreases when a pseudo-random input signal is applied. From the simulation results, we also

saw that the optimal training design is advantageous for short training signals. Otherwise, longer

pseudo-random input signals are approximately optimal.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis explored the identification of discrete LPTV systems. Using different settings of LPTV

systems, we developed two identification algorithms by using periodic inputs. Due to the periodic

inputs, the DFT can be used to related the input signal to the output signal in the frequency

domain. Because of this favorable characteristic, we used the LS method to identify the coefficients

of the LSTV representation and the alias components. In the mean time, an optimal input signal

design was considered naturally.

In Chapter 2, we reviewed the basic theory of LPTV systems and its various representations.

Difference equations, Green function, LSTV, alias components, MIMO-LTI, and maximally deci-

mated filter banks representations have been fully discussed as each representation can reveal certain

aspect of an LPTV system. Based on different representations, different identification algorithms

could be developed. These different representations formed the basis of the following chapters, and

also acted as a tutorial.

In Chapter 3, we developed an identification method for discrete single-input single-output

(SISO) LPTV systems. By using an LSTV structure, we applied a periodic input to the system.

We showed that when the period of the input singal is greater than the number of the parameters to

be estimated, an overdetermined system is formed and our identification method reduces to finding

the LS solution of a set of linear equations. Then, a sufficient condition for identifiability was

derived based on a multirate filter bank structure. It is straightforward to generalize this method

to MIMO LPTV systems. Simulation results illustrated the accuracy of the proposed method. A
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comparison with the LMS algorithms was presented as well.

In Chapter 4, we derived an alias component identification method for FIR based LPTV systems.

When a periodic input is applied to an LPTV system and the period of this input is a multiple

of that of the LPTV system, it was shown that the identification method is reduced to solving a

least-squares problem in the frequency domain. To evaluate the performance of this LS estimator,

we derived a lower MSE bound. We showed that a pseudo-random input signal is not optimal

for LPTV systems even if it is the optimal signal for LTI systems. We designed optimal training

signal to achieve the lower MSE bound. Simulation results showed the accuracy of the proposed

method. From the simulation results, we saw that the optimal training design is advantageous for

short training signals.

In Chapter 5, a brief conclusion of the thesis was given and the sketch of the future research

plan is described.

5.2 Future Work

Our research has so far discussed two identification methods and achieved meaningful results. The

exploration is still at its initial stage whereas LPTV system research is a vast world with many

areas worth further studying. It is believed that the challenges addressed in this thesis need to be

examined in future research.

We observe that Chapter 3 considered only FIR-LPTV systems. In fact, the algorithm can also

be generalized to IIR-LPTV systems if all of the branches shared the same denominators. At the

same time, we only obtain a necessary condition for the identifiability. In fact, this could lead to

the longer sequence than needs. However, due to the high complexity, we can not find the sufficient

and necessary condition for the identifiability. Therefore, the sufficient condition still needs to be

investigated.

Chapter 4 discussed identification of an LPTV systems by resorting to the alias components

representation. Fortunately, we have already generalized the algorithm to the IIR-LPTV case. But

we did not find the optimal training sequence for the IIR-LPTV case. Because the optimal inputs

56



can guarantee the algorithm to achieve the MMSE, it is very meaningful to design. Meanwhile,

using the optimal inputs can also reduce the computational complexity. Therefore, it is worth

spending some effort designing such kind of optimal inputs in order to achieve the lower MSE

bound.

Besides, we believe that using a state-space model to represent IIR-LPTV systems would bring

the identification problem much convenience. If a state-space model is used, many control tech-

niques can be modified to identify IIR-LPTV systems such as subspace identification method.

Therefore, Other adaptive filtering methods like Kalman filtering can also be used to identify IIR-

LPTV systems. Under the framework of control theory, observability and controllability of an

IIR-LPTV system can be further discussed.

57



References

[1] T. Chen and L. Qiu, “Linear periodically time-varying discrete-time systems: aliasing and LTI

approximations,” Syst. Contr. Lett., vol. 30, pp. 225–235, 1997.

[2] G. Gelli and F. Verde, “Blind FSR-LPTV equalization and interference rejection,” IEEE Trans.

Communications, vol. 51, pp. 145–150, 2003.

[3] A. Saadat Mehr and T. Chen, “On alias-component matrices of discrete-time linear periodically

time-varying systems,” IEEE Signal Processing Letters, vol. 8, pp. 114–116, 2001.

[4] F. J. Harris, Multirate Signal Processing for Communication Systems. Prentice Hall, 2004.

[5] K. Rajawat, T. Wang, and G. B. Giannakis, “An algebraic polyphase approach to wireless

network coding,” in Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing ICASSP 2009, 19–24 April 2009, pp. 2441–2444.

[6] K.-H. Kim, H.-B. Lee, Y.-H. Kim, and S.-C. Kim, “Channel adaptation for time-varying power-

line channel and noise synchronized with AC cycle,” in Proc. IEEE International Symposium

on Power Line Communications and Its Applications ISPLC 2009, March 29 2009–April 1

2009, pp. 250–254.

[7] G. Gelli and F. Verde, “Blind LPTV joint equalization and interference suppression,” in

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP

’00, vol. 5, 5–9 June 2000, pp. 2753–2756.

[8] H. Zhang, D. Le Ruyet, and M. Terre, “Signal detection for OFDM/OQAM system using

cyclostationary signatures,” in Proc. IEEE 19th International Symposium on Personal, Indoor

and Mobile Radio Communications PIMRC 2008, 15–18 Sept. 2008, pp. 1–5.

[9] R. Gandhi and S. K. Mitra, “Aliasing cancelation in block filters and periodically time varying

systems: a time-domain approach,” in Proc. IEEE International Symposium on Circuits and

Systems ISCAS ’97, vol. 4, June 1997, pp. 2421–2424.

[10] P. P. Vaidyanathan and S. K. Mitra, “Polyphase networks, block digital filtering, LPTV sys-

tems, and alias-free qmf banks: a unified approach based on pseudocirculants,” IEEE Trans-

actions on Acoustics, Speech and Signal Processing, vol. 36, no. 3, pp. 381–391, March 1988.

58



[11] F. Yuan, “On the periodicity of network functions of periodically switched linear and nonlinear

circuits,” in Proc. Canadian Conference on Electrical and Computer Engineering, vol. 1, March

2000, pp. 574–577.

[12] F. J. Canete, J. A. Cortes, L. Diez, J. T. Entrambasaguas, and J. L. Carmona, “Fundamen-

tals of the cyclic short-time variation of indoor power-line channels,” in Proc. International

Symposium on Power Line Communications and Its Applications, April 2005, pp. 157–161.

[13] M. W. Cantoni and K. Glover, “Robustness of linear periodically-time-varying closed-loop

systems,” in Proc. 37th IEEE Conference on Decision and Control, vol. 4, Dec. 1998, pp.

3807–3812.

[14] X. Chen, C. Zhang, and J. Zhang, “A state space approach to the inverse of LPTV filters,”

in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP

2006, vol. 3, 14–19 May 2006, pp. 632–635.

[15] P. Vanassche, G. Gielen, and W. Sansen, “Symbolic modeling of periodically time-varying

systems using harmonic transfer matrices,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 21, no. 9, pp. 1011–1024, Sept. 2002.

[16] J. Lerdworatawee and W. Namgoong, “Generalized linear periodic time-varying analysis for

noise reduction in an active mixer,” IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp.

1339–1351, June 2007.

[17] S. Mirabbasi, B. Francis, and T. Chen, “Input-output gains of linear periodic discrete-time

systems with application to multirate signal processing,” in Proc. IEEE International Sympo-

sium on Circuits and Systems ISCAS ’96., ’Connecting the World’, vol. 2, 12–15 May 1996,

pp. 193–196.

[18] J. Roychowdhury, “Reduced-order modeling of time-varying systems,” IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 10, pp. 1273–1288,

Oct. 1999.

[19] A. Saadat Mehr, “Alias-component matrices of multirate systems,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 489–493, June 2009.

[20] M. Vetterli, “Invertibility of linear periodically time-varying filters,” IEEE Transactions on

Circuits and Systems, vol. 36, no. 1, pp. 148–150, Jan. 1989.

[21] G. B. Giannakis, G. Zhou, and M. K. Tsatanis, “On blind channel estimation with periodic

misses and equalization of periodically varying channels,” in Conference Record of The Twenty-

Sixth Asilomar Conference on Signals, Systems and Computers, 26–28 Oct. 1992, pp. 531–535.

59



[22] J. Zhang and C. Zhang, “Robustness of discrete periodically time varying control under differ-

ent model perturbations,” in Proc. 35th IEEE Decision and Control, vol. 4, 11–13 Dec. 1996,

pp. 3984–3989.

[23] S. Zbigniew, “Power system properties periodical time variance investigations: hardware and

software tools development,” in Proc. IEEE Instrumentation and Measurement Technology,

1–3 May 2007, pp. 1–5.

[24] V. Martin, M. Chabert, and B. Lacaze, “Digital watermarking of natural images based on

LPTV filters,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing ICASSP 2007, vol. 2, April 2007, pp. 197–200.

[25] E. Gad and M. Nakhla, “Efficient model reduction of linear periodically time-varying systems

via compressed transient system function,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 52, no. 6, pp. 1188–1204, June 2005.

[26] Y. Wan and J. Roychowdhury, “Operator-based model-order reduction of linear periodically

time-varying systems,” in Proc. 42nd Design Automation Conference, 13–17 June 2005, pp.

391–396.

[27] F. J. C. Corripio, J. A. C. Arrabal, L. D. del Rio, and J. T. E. Munoz, “Analysis of the

cyclic short-term variation of indoor power line channels,” IEEE Journal on Selected Areas in

Communications, vol. 24, no. 7, pp. 1327–1338, July 2006.

[28] Y. Shi, F. Ding, and T. Chen, “Multirate crosstalk identification in xDSL systems,” IEEE

Transactions on Communications, vol. 54, no. 10, pp. 1878–1886, Oct. 2006.

[29] R. Meyer and C. Burrus, “A unified analysis of multirate and periodically time-varying digital

filters,” IEEE Transactions on Circuits and Systems, vol. 22, no. 3, pp. 162–168, Mar 1975.

[30] T. Chen, L. Qiu, and E.-W. Bai, “General multirate building structures with application to

nonuniform filter banks,” IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 45, no. 8, pp. 948–958, Aug. 1998.

[31] X. Chen, C. Zhang, and J. Zhang, “Decomposition and noncausal realization of unstable LPTV

system,” in Proc. 9th International Conference on Control, Automation, Robotics and Vision

ICARCV ’06, 5–8 Dec. 2006, pp. 1–6.

[32] J. J. Yame and R. Hanus, “On stabilization and spectrum assignment in periodically time-

varying continuous-time systems,” IEEE Transactions on Automatic Control, vol. 46, no. 6,

pp. 979–983, June 2001.

60



[33] T. Hagiwara and H. Umeda, “Robust stability analysis of sampled-data systems with noncausal

periodically time-varying scaling: Optimization of scaling via approximate discretization and

error bound analysis,” in Proc. 46th IEEE Conference on Decision and Control, 12–14 Dec.

2007, pp. 450–457.

[34] T. Hagiwara and R. Mori, “Robust stability analysis of sampled-data systems via periodically

time-varying scaling,” in Proc. American Control Conference, June 2006, pp. 213–219.

[35] Y. Tange and K. Tsumura, “Periodically weighted model-matching problems by LPTV con-

trollers formulated in dual lifted forms,” in Proc. American Control Conference the 2004, vol. 4,

30 June–2 July 2004, pp. 3502–3507.

[36] S. Akkarakaran and P. P. Vaidyanathan, “Bifrequency and bispectrum maps: a new look at

multirate systems with stochastic inputs,” IEEE Transactions on Signal Processing, vol. 48,

no. 3, pp. 723–736, March 2000.

[37] Y. Tange, “State space parameterization of stabilizing multirate controllers for MIMO linear

time-invariant plants,” in Proc. the 44th IEEE Conference on Decision and Control, and the

European Control Conference 2005, Dec. 2005, pp. 1583–1588.

[38] R. Garcia, L. Diez, J. A. Cortes, and F. J. Canete, “Mitigation of cyclic short-time noise in

indoor power-line channels,” in Proc. IEEE International Symposium on Power Line Commu-

nications and Its Applications ISPLC ’07, March 2007, pp. 396–400.

[39] T. Miyawaki and C. W. Barnes, “Multirate recursive digital filters-A general approach and

block structures,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, pp. 1148–1154,

1983.

[40] J. S. Prater and C. M. Loeffler, “Analysis and design of periodically time-varying IIR filters,

with applications to transmultiplexers,” IEEE Trans. Signal Processing, vol. 40, pp. 2715–2725,

1992.

[41] R. G. Shenoy, D. Burnside, and T. W. Parks, “Linear periodic systems and multirate filter

design,” IEEE Trans. Signal Processing, vol. 42, pp. 2242–2251, 1994.

[42] R. G. Shenoy, “Multirate specifications via aliasccomponent matrices,” IEEE Trans. Circuits

Syst. II, vol. 45, pp. 314–320, Mar 1998.

[43] C. Loeffler and C. Burrus, “Optimal design of periodically time-varying and multirate digital

filters,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32, no. 5, pp.

991–997, Oct 1984.

[44] P. P. Vaidyanathan, Multirate System and Filter Banks. Prentice-Hall, 1993.

61



[45] A. Saadat Mehr and T. Chen, “Representations of linear periodically time-varying and multi-

rate systems,” IEEE Trans. Signal Processing, vol. 50, pp. 2221–2227, 2002.

[46] G. Wang, “Analysis of M-channel time-varying filter banks,” Digital Signal Processing, vol. 18,

pp. 127–147, 2008.

[47] M. Abo-Zahhad, “Current state and future directions of multirate filter banks and their ap-

plications,” Digital Signal Processing, vol. 13, pp. 127–147, 2003.

[48] M. J. T. Smith and T. P. Barnwell, “A new filter bank theory for time-frequency representa-

tion,” IEEE Trans. Acoustics, Speech, Signal Process, vol. 35, pp. 314–327, 1987.

[49] D. C. McLernon, “One-dimensional linear periodically time-varying structures: derivations,

interrelationships and properties,” IEE Proceedings -Vision, Image and Signal Processing, vol.

146, no. 5, pp. 245–252, Oct. 1999.

[50] ——, “Properties for state-transition matrix of LPTV two-dimensional filter,” Electronics

Letters, vol. 38, no. 25, pp. 1748–1750, 5 Dec. 2002.

[51] ——, “Relationship between an LPTV system and the equivalent LTI MIMO structure,” IEE

Proceedings -Vision, Image and Signal Processing, vol. 150, no. 3, pp. 133–141, June 2003.

[52] W. Chauvet, B. Lacaze, D. Roviras, and A. Duverdier, “Characterization of a set of invertible

lptv filters using circulant matrices,” in Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP ’03), vol. 6, April 2003, pp. 45–48.

[53] D. Roviras, B. Lacaze, and N. Thomas, “Effects of dicrete LPTV on stationary signals,” in

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP

’02), vol. 2, 2002, pp. 1217–1220.

[54] W. Yin and A. Saadat Mehr, “Least square identification of alias componentsof an lptv sys-

tem,” to appear at IET Signal Processing.

[55] ——, “Identification of linear periodically time-varying systems using periodic sequences,” in

IEEE Multi-conference on Systems and Control 2009.

[56] Z. T. Staroszczyk, “Power system time variance-LPTV model implementation and identifica-

tion problems,” in 11th International Conference on Harmonics and Quality of Power, 2004,

pp. 658–665.

[57] G. B. Giannakis and A. V. Dnizdawate, “Polyspectral analysis of (almost) cyclostationary

signals: LPTV system identification and related applications,” Proc. 25th Asilomar Conf. on

Signals, Systems, and Computers, vol. 1, pp. 377–382, 1991.

62



[58] Y. Dorfan, A. Feuer, and B. Porat, “Modeling and identification of LPTV systems by wavelets,”

Signal Processing, vol. 84, pp. 1285–1297, 2004.

[59] M. K. Tsatsanis and G. B. Giannakis, “Time-varying system identification and model valida-

tion using wavelets,” IEEE Trans. Signal Processing, vol. 41, pp. 3512–3522, 1993.

[60] M. Verhaegen and X. Yu, “A class of subspace model identification algorithms to identify

periodically and arbitrarily time-varying systems,” Automatica, vol. 31, pp. 206–216, 1995.

[61] J. Wang and T. Chen, “Multirate sampled-data systems: compute fast-rate models,” Journal

of Process Control, vol. 14, pp. 79–88, 2004.

[62] A. D. Samsb and V. Z. Marmarelis, “Identification of linear periodically time-varying system-

snext term using white-noise test inputs,” Automatica, vol. 24, pp. 563–567, July 1988.

[63] M. I. Doroslovacki and H. Fan, “Wavelet-based linear system modeling and adaptive filtering,”

IEEE Transactions on Signal Processing, vol. 44, no. 5, pp. 1156–1167, May 1996.

[64] K. Liu, “Identification of linear time-varying systems,” Journal of Sound and Vibration, vol.

206, pp. 487–505, October 1997.

[65] F. Felici, J.-W. vanWingerden, and M. Verhaegen, “Subspace identification of MIMO LPV

systems using a periodic scheduling sequence,” Automatica, vol. 43, pp. 1684–1697, 2007.

[66] J.-W. van Wingerden and M. Verhaegen, “Subspace identification of bilinear and LPV systems

for open- and closed-loop data,” Automatica, vol. 45, pp. 372–381, February 2009.

[67] S. Mirabbasi, B. Francis, and T. Chen, “Controlling distortions in maximally decimated filter

banks,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

vol. 44, no. 7, pp. 597–600, July 1997.

[68] B. Yu, Y. Shi, and H. Huang, “l2-l∞ filtering for multirate systems based on lifted models,”

Circuits, Systems, and Signal Processing, vol. 27, no. 5, pp. 699–711, October 2008.

[69] M. Kawamata, X. Yang, and T. Higuchi, “Fundamental study on periodically time-varying

state-space digital filters-statistical analysis, scaling and stability,” in Proc. IEEE International

Conference on Systems Engineering, Sept. 1992, pp. 348–351.

[70] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis.

Addison-Wesley Pub. Co., 1991.

[71] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and applica-

tions: A tutorial,” in Proceedings of IEEE, vol. 78, 1990, pp. 56–78.

63



[72] P. P. Vaidyanathan and A. Kirac, “Cyclic LTI systems in digital signal processing,” IEEE

Trans. Signal Processing, vol. 45, pp. 433–447, 1999.

[73] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-square approach to blind channel identifica-

tion,” IEEE Trans. Signal Processing, vol. 43, pp. 2982–2992, 1995.

[74] A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Inc. and IEEE Press,

2003.

[75] S. Kay, Statistical Signal Processing: Estimation Theory. Prentice Hall, 1993.

[76] P. Stoica and O. Besson, “Training sequence design for frequency offset and frequency-selective

channel estimation,” IEEE Trans. Signal Processing, vol. 51, pp. 1910–1917, 2003.

[77] H. Minn and N. Al-Dhahir, “Optimal training signals for MIMO OFDM channel estimation,”

IEEE Trans. Wireless Communications, vol. 5, pp. 1158–1164, 2006.

[78] X. Ma, L. Yang, and G. B. Giannakis, “Optimal training for MIMO frequency-selective fading

channels,” IEEE Trans. Wireless Communications, vol. 4, pp. 453–466, 2005.

[79] X. Dai, “Optimal training design for linearly time-varying MIMO/OFDM channels modelled

by a complex exponential basis expansion,” IET Communications, vol. 1, pp. 945–953, 2007.

[80] M. Ghogho and A. Swami, “Training design for multipath channel and requency-offset esti-

mation in MIMO systems,” IEEE Trans. Signal Processing, vol. 54, pp. 3957–3965, 2006.

[81] A. Saadat Mehr and T. Chen, “Properties of linear switching time-varying discrete-time sys-

tems with applications,” Syst. Contr. Lett., vol. 39, pp. 229–235, 2000.

[82] Z. Q. Luo and W. Yu, “An introduction to convex optimization for communications and signal

processing,” IEEE Journal Selected Areas In Communications, vol. 24, pp. 1426–1437, 2006.

[83] C. Wolf, “Multivariate quadratic polynomials in public key cryptography,” Ph.D. dissertation,

Katholieke Universiteit Leuven, 2005.

[84] A. I. Barvinok, “Feasibility testing for systems of real quadratic equations,” in Proceedings of

the twenty-fourth annual ACM symposium on theory of computing, 1992, pp. 126–132.

64


	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Introduction to LPTV Systems
	Previous Work on LPTV System Identification
	Outline of the Thesis

	LPTV Systems Review
	Green function
	Difference Equation
	Linear Switched Time-Varying
	Alias Components
	MIMO LTI Model
	State-Space Model
	Maximally Decimated Filterbanks
	Conclusion

	Identification of LPTV Systems by Using an LSTV Representation
	Introduction
	System Model
	Algorithm Description and Analysis
	Algorithm Description
	Identifiability Conditions

	Numerical Examples
	Performance of the Proposed Algorithm
	Performance of the LMS Algorithm

	Conclusion

	Alias Components Identification of LPTV Systems
	Introduction
	System Model
	Algorithm Description
	Performance Analysis and Optimal Training Signal Design
	MSE Bound of LS Estimator
	Optimal Training Signal Design

	Extension to IIR-LPTV Systems
	Numerical Results
	FIR-LPTV Examples with Optimal Input
	Time Domain Algorithms for FIR-LPTV
	Examples for the Extension to IIR-LPTV

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	References

