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Summary

Resource-Aware Motion Control
Feedforward, Learning, and Feedback

There is an ever-increasing desire for technological advancements in many ar-
eas, including health care, additive manufacturing, space exploration, nanotech-
nology, and transportation. Motion systems have an essential role in all these
areas, for example, by moving components or adding/removing material. The
desire for technological advancements leads to a demand for increased through-
put and accuracy at low cost in motion systems. This calls for new designs of
motion systems.

The design of motion systems involves many different domains, including
embedded software and control engineering. Traditionally, the different domains
are considered separately, leading to a suboptimal trade-off between performance
and cost. This thesis provides a novel resource-aware control design framework
for motion systems that facilitates in bridging the gap between the different
domains and enables to transcend the traditional performance/cost trade-off in
motion systems.

A crucial factor that affects both the performance and the cost of motion
systems is the controller implementation. Driven by the exponential growth
in computing power, known as Moore’s law, digital control has become the
prevailing type of controller implementation. An important aspect in digital
control, which directly influences the implementation cost and performance, is
the sampling scheme, i.e., the selection of data that is available to the digital
controller. Traditionally, control engineers demand equidistant, time-triggered
sampling schemes from the embedded software engineers to enable the use of
well-established frequency-domain control design techniques. In this thesis,
the equidistant sampling paradigm is abandoned and non-equidistant sampling
schemes are explored. This results in a unified framework for resource-aware
motion control. On the one hand, it is driven by industrial application as it
provides a direct extension of state-of-the-art industrial control designs. On the
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other hand, it incorporates solid control theory and in particular linear periodi-
cally time-varying (LPTV) system theory.

The thesis covers feedback, feedforward, and learning control. In particu-
lar, a new feedback control design approach for LPTV systems is presented.
The approach enables to go beyond feedback control for equidistant sampling
through a sequence of industry-standard loop-shaping design steps that are sup-
ported by solid LPTV system theory. Furthermore, a comprehensive overview of
system inversion approaches for nonminimum-phase, linear time-invariant (LTI)
systems is presented, including several new approaches, which leads to new in-
sights for both feedforward and learning control. Based on this, feedforward
control approaches for LPTV systems are presented that outperform traditional
LTI approaches. The approaches address, among other aspects, nonminimum-
phase dynamics, intersample behavior, and overactuation. Similarly, learning
control approaches for LPTV systems are presented, which achieve superior per-
formance for repeating tasks, but also for non-exactly repeating tasks through
basis functions for LPTV systems. Finally, a method for joint design of feedback,
feedforward, and learning control is presented.

Experimental case studies on a variety of relevant industrial motion systems,
including industrial printing systems and wafer stage setups, confirm the advan-
tages of the proposed control approaches. The overall result is a resource-aware
motion control design framework with new theoretical contributions and new
perspectives for industrial motion control.
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Chapter 1

Introduction

1.1 The long history of control: From
mechanical to embedded implementations

Technology has a large impact on daily life and control plays a major role in
the technological development. Key examples of influential technological innova-
tions are, see for example Fallows (2013), the printing press (1430), steam engines
(1712), telephones (1876), internal combustion engines (late 19th century), au-
tomobiles (late 19th century), airplanes (1903), radios (1906), televisions (early
20th century), personal computers (1970s), and smartphones (2000). All these
devices need to be manufactured. Starting from the industrial revolution around
1760 and driven by a demand for increased productivity and accuracy at low
cost, many of the manufacturing processes are performed by machines. Nowa-
days, most of these processes are even automated, for example, car assembly
lines, packaging, welding, printing, and production lines. Virtually all manu-
facturing processes involve control systems to regulate temperature, to control
chemical compositions, to ensure goods arrive on time, to weld, to accurately
place components, and so on. Besides manufacturing, control also finds appli-
cation in other areas such as power, communications, transportation, and many
more (Murray et al., 2003). Control thus plays a major role in technological
development and is everywhere around us in daily life.

The first control systems can be traced back to over two thousand years
ago. One of the first feedback control mechanism is found in the ancient water
clock of Ktesibios in Alexandria, Egypt, around the third century B.C. (Kang,
2016) shown in Figure 1.1(a). For more than 1800 years, the water clock was
the most accurate clock, until the Dutch physicist Christiaan Huygens invented
the pendulum clock in 1656. The industrial revolution (1760 to 1830) marks the
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(a) Ktesibios water clock. The water clock
keeps time by measuring the amount of water
of a constant water flow from one chamber to
another. A floater is used to regulate a valve
and keep the water level in the top chamber
constant

(b) Centrifugal governor for a Watt steam
engine to maintain constant engine speed.
An increase in engine speed moves the balls
outside, which, via linkages, closes the valve
and thereby reduce the engine speed. Image:
Routledge (1881, Figure 4).

(c) Schematic drawing of an electrical imple-
mentation of a PID controller using resistors,
capacitors, and amplifiers. Image from Elec-
tronic Design, August 4, 1977.

(d) Embedded control system. Image:
DHCOM AM35xx from DH Electronics.

Figure 1.1. Overview of control implementations over time. The first control
designs, including (a) and (b), are based on mechanical implementations. Later,
electrical implementations as shown in (c) became popular. Nowadays, the
control is digital and embedded in software (d).
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transition to new manufacturing processes and led to an increase in control appli-
cations and designs. A prime and well-known example is the centrifugal governor
in the Watt steam engine in 1788 shown in Figure 1.1(b). Until a few decades
ago, all control designs were based on mechanical implementations. From then
on, electrical implementations using circuits, see Figure 1.1(c), became popular.
Nowadays, controllers are implemented digitally and embedded in software as
shown in Figure 1.1(d). An embedded control system is in essence a technol-
ogy containing a microprocessor for control. Embedded controllers find, among
others, application in systems consisting of combinations of cyber (computation,
communication, control) and physical (sensors, mechanics) elements, known as
cyber-physical systems (Khaitan and McCalley, 2015), a term emerged around
2006 (Lee, 2015). In summary, control has a long history in which the controller
implementations shifted from mechanical to embedded implementations.

1.2 The impact of high-tech systems on society

At present, control technology finds application in many high-tech systems. In
this thesis, the focus is on control of high-tech motion systems such as printing
systems (Pond, 2000), X-ray systems (Suetens, 2009, Chapter 3), electron mi-
croscopes (Egerton, 2016), scanning probe microscopes (Voigtländer, 2015), and
semiconductor lithography systems (Mack, 2007). All these systems have a large
impact on society, as highlighted by the following examples of X-ray systems and
semiconductor lithography systems.

Since the discovery of X-ray by Wilhelm Röntgen in 1895, X-ray systems have
become a fundamental tool for medical imaging. Over the years, X-ray systems
have been used to trace the process of digestion, to diagnose tuberculosis, to
detect broken bones, and to provide cross-sectional images of human bodies
using computed tomography (CT) scans. The variety of medical applications
makes X-ray systems vital instruments in health care and an indispensable tool
in understanding the human body.

Consumer electronics, such as smartphones, televisions, and laptops, are ev-
erywhere around us in daily life. Semiconductor lithography machines play a
key role in the technological development of these devices. To meet the ever-
increasing societal demand for more functionality in consumer electronics, inte-
grated circuits, which are at the heart of these devices, with smaller feature sizes
are required. A key step in the production of integrated circuits is the lithog-
raphy step performed by semiconductor lithography machines. In this step, a
blueprint of the integrated circuit is scaled and projected on a thin slice of silicon
to create the feature on the integrated circuit. This process requires extreme
accuracies up to nanometer level and the quality of the structures directly deter-
mines the functionality of the integrated circuit and hence the electronic device.
Semiconductor lithography machines are thus key enablers in the technological
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advancement of consumer electronics.
The examples show that the impact of high-tech motion systems on soci-

ety is large. A key enabler to meet the ever-increasing performance and cost
requirements for these systems are high-tech motion systems.

1.3 Control design and implementation for
high-tech motion systems

High-tech motion systems are mechatronic systems (Munnig Schmidt et al., 2011;
Verbaan, 2015) and the design involves various disciplines such as mechanics,
electronics, embedded software, control engineering, computer engineering, and
systems engineering. This thesis focuses on the embedded control aspect of the
mechatronics design.

Embedded software is a relatively new discipline, especially compared to con-
trol, see also Section 1.1. One of the first modern embedded systems is the Apollo
Guidance Computer in 1965 used for the computation and electronic interfaces
for guidance, navigation, and control of the Apollo spacecraft (Hall, 1996). The
main advantage of embedded controller implementations is that they provide
implementation flexibility at low cost. The driving force for the widespread
application of embedded control is the exponential growth in computing power
shown in Figure 1.2(a) and known as Moore’s law. It is named after Fairchild
Semiconductor and Intel co-founder Gordon Moore who observed in 1965 that
the number of components per integrated circuit doubled every year (Moore,
1965). In 1975, Moore revised it to doubling every two years (Moore, 1975),
which is the current definition of Moore’s law. Since the production cost of in-
tegrated circuits is mainly determined by feature sizes, the average production
cost of transistors decreases exponentially as shown by Figure 1.2(b). These
developments make embedded control accessible on a large scale and make them
the main form of implementing control technology in high-tech motion systems.

Control design for motion systems evolved independently from embedded
control. Starting from control approaches such as PID control (Åström and
Hägglund, 1995), robust control (Zhou et al., 1996) and sampled-data control
(Chen and Francis, 1995), the field of control lead to control approaches for
motion systems such as H2/H∞ control (Van de Wal et al., 2002), (mass) feed-
forward control, multirate control (Fujimoto et al., 2001), and learning control
(Bristow et al., 2006; De Roover and Bosgra, 2000; Steinbuch, 2002). The solid
control theory and variety of applications makes motion control indispensable in
high-tech motion systems.

Embedded control for high-tech motion systems involves both the design
and implementation of (motion) controllers. However, both domains evolved
independently and are often considered as two separate domains during control
design for high-tech systems.
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(a) Over a period of 42 years, the number of transistors per microprocessor
has doubled every two years, i.e., increased with 42% every year. Source: Karl
Rupp, “42 Years of Microprocessor Trend Data”.

1965 1970 1975 1980 1985 1990 1995 2000 2005

10−6

10−4

10−2

100

Year

Av
er

ag
e

tr
an

si
to

r
pr

ic
e

in
do

lla
rs

(b) The average transitor price decreases by 35% every year corresponding to
a halving time of 19 months. Source: Kurzweil (2005, p. 59).

Figure 1.2. Moore’s law: exponential growth in computation power and ex-
ponential decay in price.

1.4 Bridging the gap between control design
and implementation

Traditional motion control approaches consider control design and implementa-
tion as two separate domains, resulting in a big gap between the two domains.
The control engineer designs a controller for high performance and hands it over
to the software engineer who implements the controller based on the available
resources. How well the implemented controller matches the designed controller
directly influences the true performance and is mainly determined by the cost of
implementation. Indeed, higher implementation cost, i.e., more and/or better re-
sources, allows for better performance. This directly leads to a performance/cost
trade-off as illustrated in Figure 1.3. For the conventional two-step approach,
the trade-off might be suboptimal due to the separate designs.

Resource-aware motion control approaches can bridge the gap between con-
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Figure 1.3. Traditional controller design and implementation leads to a perfor-
mance/cost trade-off, where higher cost yields higher performance. Resource-
aware control design enhances this trade-off.

troller design and implementation. By bridging the gap, the performance/cost
trade-off can be significantly improved as illustated in Figure 1.3. The first steps
towards bridging the gap are related to discrete-time sampled-data control in the
1960s (Zadeh, 1962) as illustrated in Figure 1.4(a). In the 1990s, the importance
of discretization aspects and intersample behavior were recognized (Yamamoto,
1994; Chen and Francis, 1995). Further developments along this line mainly fo-
cus on H∞-optimal and H2-optimal control, starting with Bamieh et al. (1991);
Toivonen (1992); Bamieh and Pearson Jr. (1992); Yamamoto (1994); Chen and
Francis (1995). However, the application of these model-based techniques to
industrial motion systems is limited since (i) obtaining a parametric model is
difficult; and (ii) expert knowledge is required for design.

In this thesis, a resource-aware control design approach is developed to bridge
the gap between controller design and implementation for motion systems, aimed
at application in industry. For this purpose, this thesis focuses on time-triggered
control, i.e., the sampling/transmission instants are scheduled a priori based on
time. Alternatives to time-triggered control are event-triggered control and self-
triggered control, of which an introductory overview can be found in Heemels et
al. (2012). In event-triggered control (Heemels et al., 2008; Tabuada, 2007), the
triggering is based on continuous measurements. In self-triggered control (Anta
and Tabuada, 2010; Wang and Lemmon, 2009), the triggering is precomputed
based on predictions using received data and knowledge on the system dynamics.
In view of the application in industry, time-triggered control is preferred since
the sampling instances are known a priori and the sampling scheme is easy to
implement. The required predictability of such a sampling scheme is provided
by state-of-the-art platforms such as CompSOC (Goossens et al., 2017).

In view of the performance/cost trade-off in Figure 1.3, this thesis consid-
ers time-triggered control in which the sampling instances are distributed non-
equidistantly in time. Note that, opposed to event-triggered and self-triggered
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the performance variable z and
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Figure 1.4. Sampled-data control design in standard plant formulation
throughout time. Over the years, more aspects are taken into account. In
this thesis, the formulation in (c) is considered, where the communication and
implementation cost are taken into account through periodic, non-equidistant
time-triggered control.

control approaches, such non-equidistant sampling schemes are still periodic in
nature due to periodic scheduling. The non-equidistant sampling scheme pro-
vides more design flexibility to balance the performance/cost trade-off than in
conventional time-triggered control in which the sampling instances are dis-
tributed equidistantly in time. Indeed, equidistant sampling is a special case
of non-equidistant sampling. The time-triggered control with periodic, non-
equidistant sampling leads to a control design framework that addresses both
performance and cost and thereby improves the overall performance/cost trade-
off as illustrated in Figure 1.3.

1.5 Introduction to motion control design:
Feedback, feedforward, and learning

In this section, the basics of motion control design are presented. The concepts
are extensively used throughout the thesis. The three main types of control, i.e.,
feedback, feedforward, and learning control, are introduced.

A simple example of a motion system is shown in Figure 1.5. The system can
be moved by actuator force u generated by, for example, a motor. The position y
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Figure 1.5. Example of a motion system. The system G can move in horizontal
direction by applying an actuator force u. The position of the system y is
measured through an encoder. The control objective is to let position y track a
reference trajectory through design of actuator force u.
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Figure 1.6. Traditional two degrees-of-freedom control of system G, consisting
of feedback controller C and feedforward controller F .

of the system is measured through, for example, an encoder. The aim in motion
control design is to determine u such that there is perfect tracking y = r, where r
denotes the desired position of the system and may vary over time. The control
input u is determined by control algorithms. A common approach (Franklin
et al., 2015; Steinbuch et al., 2010) is to compose the control input as

u = Ce+ Fr, (1.1)

where C is a feedback controller, e = r−y is the tracking error, F is a feedforward
controller, and r is the reference trajectory. Note that these relations are in the
Laplace domain. The control architecture is captured in the block diagram
shown in Figure 1.6. Note that position measurement y is contaminated by
disturbances w, including sensor noise. The tracking error e = r − y is given by

e = S︸︷︷︸
FB

((I −G F︸︷︷︸
FF

)r − w), (1.2)

with (output) sensitivity function S = (I+GC)−1. From (1.2) it directly follows
that i) S = 0 eliminates all errors, and ii) F = G−1 eliminates the reference
induced error er = S(I −GF )r. Next, both these control designs are elaborated
on.

The first design S = 0 relates to the feedback controller C. The feedback
control action is based on measurements y of the position. The measurement
is compared with the desired trajectory r and the controller action is based on
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the difference e = r − y. However, achieving S = 0 is unfeasible due to Bode’s
sensitivity integral (Seron et al., 1997), also known as the waterbed effect. This is
caused by the inherent causality of feedback control as it relies on measurements
of output y. Since feedback control is based on measurements, it can provide
robustness against model uncertainties (Zhou et al., 1996). Furthermore, it
is the only means to attenuate the error ew = Sw induced by the unknown
disturbances w.

The second design F = G−1 relates to the feedforward controller F . The
feedforward control action is based on knowledge of the system. Indeed, if
G is exactly known, the inverse model feedforward controller F = G−1 yields
er = S(I − GF )r = 0. Note that noncausality of G−1 is not an issue since no
measured signals are involved and r is generally known in advance. Obviously,
the performance of the inverse model feedforward controller strongly depends on
the model accuracy. Due to the inherent mismatch between the physical system
and the model, i.e., F 6= G−1, the achievable performance is moderate.

An extension to feedforward control approaches are learning control ap-
proaches (Bristow et al., 2006; Moore, 1993). Learning control approaches itera-
tively update the feedforward action based on models and data of previous tasks
and/or predictions of future tasks (Chu et al., 2016). An example of learning
control is iterative learning control (ILC). The concept of ILC is illustrated in
Figure 1.7, where for simplicity of notation it is assumed that w = 0. In standard
ILC, finite-time tasks are considered and the feedforward signal rather than the
feedforward controller F is updated. In the first task, task j = 0, a feedforward
signal f0 is applied yielding e0 = Sr − SGf0. In the second task, task j = 1,
the feedforward signal is updated by learning from the error of the previous task
through f1 = f0 + Le0, with learning filter L. Repeating this process yields the
learning update

fj+1 = fj + Lej (1.3)

and error dynamics

ej+1 = Sr − SGfj+1 (1.4a)

= ej − SG(fj+1 − fj) (1.4b)

= (I − SGL)ej . (1.4c)

It directly follows that ej+1 = 0 for L = (SG)−1, which faces the same challenges
as feedforward control. The main advantage of ILC is that, even if there are
model mismatches L 6= (SG)−1, it can still obtain high performance. The key
aspect is convergence of the error (1.4), i.e., ‖ej+1‖ < ‖ej‖. Essentially, ILC
exploits the fact that many systems perform repeating tasks, i.e., rj = r, for
all j, which is exploited in (1.4). As a result, ILC is able to compensate for all
repeating disturbances, even if the related dynamics are not modeled.

The presented feedforward approaches either result in moderate performance
for a large class of reference trajectories (inverse model feedforward) or high
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Figure 1.7. Two tasks of iterative learning control (ILC) using update (1.3).

performance for a specific reference trajectory (ILC). This directly leads to the
trade-off between performance and task flexibility visualized in Figure 1.8. To
achieve high performance with high task flexibility, basis functions have been
proposed. Instead of learning the full signal fj , in learning control with basis
functions the feedforward filter parameters θj are learned by constructing the
feedforward signal as

fj = F (θj)rj , (1.5)

i.e., the learning is decoupled from the reference trajectory. Different parameter-
izations of F (θj) have been proposed, including a linear combination of polyno-
mial basis functions (Phan and Frueh, 1996; Van der Meulen et al., 2008; Van de
Wijdeven and Bosgra, 2010), a rational combination of basis functions (Bolder
and Oomen, 2015; Blanken et al., 2017a; Chapter 9), and a linear combination
of rational basis functions (Blanken et al., 2017b). Each of these parameteri-
zations has its own advantages and disadvantages. In general, learning control
with basis functions combines high performance with high task flexibility.

In summary, motion control design includes a combination of feedforward,
learning, and feedback, where each has its own advantages and disadvantages.

1.6 Digital controller implementation

Driven by the performance/cost trade-off in Figure 1.3, (motion) controllers
are typically implemented digitally to reduce cost, see also Section 1.1. In this
section, the digital implementation and related aspects are considered.
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Figure 1.8. Basis functions balance the moderate performance and high task
flexibility of inverse model feedforward with high performance and low task
flexibility of ILC.

The digital implementation of a controller (Chen and Francis, 1995, Chapter
1) is illustrated in Figure 1.9(a) with mathematical idealization in Figure 1.9(b),
where

� Roman letters: continuous-time signals, indicated by solid lines;

� Greek letters: discrete-time signals, indicated by nonsolid lines;

� A/D: analog-to-digital converter, including quantizer;

� D/A: digital-to-analog converter;

� µ: microprocessor;

� Cd: discrete-time controller;

� D: ideal (down)sampler, possibly non-equidistant; and

� H: hold operator, typically zero-order-hold.

A typical digital controller implementation of Figure 1.6 is shown in Figure 1.10.
The configuration is in line with the developments in sampled-data control in
Figure 1.4.

In this thesis, time-triggered, non-equidistant sampling schemes are consid-
ered, see also Section 1.4. Examples of time-triggered sampling with down-
sampler D and zero-order hold H are shown in Figure 1.11. Note that both
the sampling and hold can be non-equidistant in time, i.e., with time-varying
sampling intervals. The time-varying behavior of periodic, non-equidistant sam-
pling poses challenges for control design. In particular, periodic, non-equidistant
sampling of continuous-time, linear time-invariant (LTI) systems leads to linear
periodically time-varying (LPTV) behavior, as shown in, for example, Chap-
ter 2. In summary, the digital controller implementation is an important aspect
for controller design.
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(a) Controller components: A/D converter,
microprocessor µ, and D/A converter.
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εe ν u

(b) Mathematical equivalent of (a) with (down)sampler
D, discrete-time controller Cd, and hold H.

Figure 1.9. Digital controller implementation.
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Figure 1.10. In resource-aware control design, the digital implementation
is explicitly taken into account during controller design. The shown control
configuration conforms to that in Figure 1.4(c).

time

(a) Equidistant sampling ( ) of a continuous-
time signal ( ).

time

(b) Zero-order-hold ( ) on an
equidistantly-sampled signal ( ).

time

(c) Non-equidistant sampling ( ) of a
continuous-time signal ( ).

time

(d) Zero-order-hold ( ) on a non-
equidistantly-sampled signal ( ).

Figure 1.11. Examples of time-triggered upsampling and downsampling, both
equidistant and non-equidistant in time.
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1.7 Problem statement

Traditionally, control design and embedded software are treated as two sepa-
rate domains, resulting in a suboptimal performance/cost trade-off as shown in
Figure 1.3. Over the last decade, developments in embedded software have en-
abled much more design freedom in controller implementation and opened up
possibilities to improve the performance/cost trade-off by employing sampling
schemes other than conventional time-triggered, equidistant ones. In particular,
time-triggered schemes with periodic, non-equidistant sampling are promising
since they are predictable, easy to implement, and provide more design free-
dom. Such sampling schemes typically result in LPTV behavior. In order to
exploit the potential of these sampling schemes, a considerable amount of re-
search into controller design for LPTV systems has been conducted. However,
many of these approaches do not find application in industrial motion systems
since they require parametric LPTV models and expert knowledge. This leads
to the following research goal of this thesis.

Research goal: Develop a framework for resource-aware motion control design
by exploiting periodic, non-equidistant sampling that is suitable for industrial
application.

In view of the research goal, this thesis contributes to bridging the gap be-
tween control design and embedded software in the context of motion systems.
The envisioned end goal is a resource-aware motion control design framework
based on periodic, non-equidistant sampling, which is suitable for application in
industry.

1.8 Research challenges and contributions

In this section, the research contributions of this thesis towards the research
goal are presented. The resource-aware motion control design framework can
be divided into four categories: feedback control, system inversion, feedforward
control, and learning control.

1.8.1 Feedback control

Feedback control forms an essential part in motion control design. The main pur-
pose is suppression of unknown disturbances and providing robustness against
model uncertainties, see also Section 1.5. Due to the time-varying behavior intro-
duced by periodic, non-equidistant sampling, typical frequency-domain control
design techniques, based on Bode diagrams and Nyquist plots, are not directly
applicable. Most control designs for LPTV systems require a parametric model
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of the system. However, despite the availability of a solid control theory, model-
based designs are demanding since obtaining a parametric LPTV model is dif-
ficult and typical LTI interpretations are not valid. With the aim of industrial
application, control design approaches closely related to well-known existing ap-
proaches are desired. Many of these approaches are based on non-parametric
models and heuristic design rules.

This inspires the following contribution.

Contribution I: Resource-aware feedback control approach in the form of a
loop-shaping control design framework for LPTV systems based on frequency
response function measurements and LTI design insights.

1.8.2 System inversion

System inversion is essential in feedforward and learning control, see also Sec-
tion 1.5. The quality of inversion directly determines the achievable performance.

One of the main challenges associated with inversion is nonminimum-phase
behavior since the inverse system is unstable in that case and traditional ap-
proaches yield an unbounded output. Many algorithms and approaches are
available for system inversion of linear time-invariant (LTI), nonminimum-phase
systems. However, the choice for a technique is sometimes made arbitrarily with-
out a full understanding of the implications, the alternatives, and their underly-
ing mechanisms. In particular, guidelines on proper use of inversion techniques
for both inverse model feedforward and learning control are lacking. Further-
more, the applicability to time-varying and multivariable systems is often not
addressed.

This gives rise to the following contribution.

Contribution II: Overview and comparison of inversion techniques from the
perspective of the control goal and applicability to multivariable and time-varying
systems.

1.8.3 Feedforward control

Inverse model feedforward yields good performance for a large class of reference
trajectories, see also Section 1.5. Also for periodic, non-equidistant sampling,
nonminimum-phase behavior is observed, posing similar challenges as for equidis-
tantly sampled systems. Contribution II provides inversion techniques to obtain
bounded feedforward signals, even for nonminimum-phase systems, but is mainly
focused on LTI systems. As a consequence, application of inverse model feedfor-
ward for systems with periodic, non-equidistant sampling is hampered by a lack
of inversion techniques for general LPTV systems.
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Ideally, high performance in terms of the continuous-time error signal is
achieved. However, due to the digital implementation, inverse model control
techniques typically only address the discrete-time behavior and yield good on-
sample behavior. The continuous-time behavior between the samples, i.e., the
intersample behavior, is not addressed and may be poor. In traditional con-
trol design approaches, a high sampling rate is used such that good on-sample
behavior typically also yields good intersample behavior. However, such an ap-
proach is undesired in view of the performance/cost trade-off in Figure 1.3 and
the research goal. Therefore, discrete-time controller designs that also address
the intersample behavior are desired.

Perfect tracking for nonminimum-phase systems can be obtained through
noncausal control, i.e., by pre-actuating the system. However, in some applica-
tions preview is absent or pre-actuation is undesired, for example in applications
in which the reference trajectory is updated online. In many systems, additional
actuators can be used to overcome this limitation.

This inspires the following contribution.

Contribution III: Resource-aware feedforward control approaches.

III.A Exact inversion for LPTV systems, including nonminimum-phase systems,
using bounded inputs.

III.B Discrete-time system inversion that addresses both on-sample and inter-
sample behavior.

III.C Exact and causal inversion of overactuated nonminimum-phase systems.

1.8.4 Learning control

Learning control yields high performance for repeating tasks, see also Section 1.5.
However, the application of learning control to systems with non-equidistant
sampling strategies, such as multirate systems, is limited as most approaches
rely on frequency-domain techniques.

For non-exactly repeating tasks, the performance of standard ILC approaches
deteriorates, see also Section 1.5. To enhance the task flexibility, basis functions
can be used, see also Figure 1.8. However, at present basis functions are mainly
restricted to time-invariant systems, limiting their application.

The parameterizations of basis functions can be divided into two categories:
parameterizations that are linear in the parameters and parameterizations that
are nonlinear in the parameters. The first category is suboptimal in terms of
performance since only the zeros of the filter are updated, i.e., only the poles
of the system can be learned. However, from a computational point of view
these methods are attractive since the associated optimization problem is convex,
giving rise to fast computations. The second category enables optimization of
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both poles and zeros and thereby higher performance. However, it involves
solving nonconvex optimization problems, which is undesired from a cost point
of view. Hence, an approach that can learn both the poles and zeros of a system
through convex optimization is desired.

Traditional ILC approaches learning the full signal fj yield optimal perfor-
mance for repeating tasks. Although optimal from a control point of view, the
implementation of these approaches is often cumbersome. Especially for large
tasks, the computational load increases rapidly, which is undesired in view of
Figure 1.3 and limits applicability to large (industrial) tasks.

Traditionally, feedforward/learning control and feedback control are designed
separately. Feedback control is used to minimize the error between the reference
trajectory and the measured variable. Feedforward/learning control is used to
minimize the error between the reference trajectory and the performance vari-
able. However, in many applications the performance variable and the measured
variable differ since the performance variable cannot be measured in real-time,
for example, due to obstruction or extensive processing times. Hence, in such an
inferential setting, there is a mismatch between the control design objectives of
feedforward/learning control and feedback control, leading to suboptimal perfor-
mance. For an optimal design, the connections between feedforward, learning,
and feedback control are essential.

This gives rise to the following contribution.

Contribution IV: Resource-aware learning control approaches.

IV.A Iterative learning control for multirate systems for an enhanced perfor-
mance/cost trade-off.

IV.B Basis functions for LPTV systems for high performance and task flexibility
for systems with periodic, non-equidistant sampling.

IV.C Rational basis functions with convex optimization for high performance and
task flexibility at low computational cost.

IV.D Resource-efficient ILC approach to enable ILC for large tasks.

IV.E Connections between feedforward, learning, and feedback for inferential
control.

1.9 Overview of the thesis

An overview of the thesis is presented in Figure 1.12. Each of the (sub)contri-
butions is addressed in a separate chapter. The main application of a chapter is
indicated by a photograph for experiments and an illustration for simulations.
All chapters are sell-contained and can be read independently of each other.
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Figure 1.12. Overview of the thesis.





Chapter 2

Feedback control for LPTV
systems: A loop-shaping

approach

The performance/cost trade-off in Figure 1.3 can be enhanced by exploiting
sampling strategies that go beyond traditional equidistant sampling. The aim of
this chapter is to develop a systematic feedback control design approach for sys-
tems that go beyond equidistant sampling. A loop-shaping design framework for
such non-equidistantly sampled systems is developed that addresses both stabil-
ity and performance. The framework only requires frequency response function
measurements of the LTI system, while it appropriately addresses the LPTV
behavior introduced by the non-equidistant sampling. Experimental validation
on a motion system demonstrates the superiority of the design framework for
non-equidistantly sampled systems compared to traditional designs that rely on
equidistant sampling. The design framework constitutes Contribution I.

2.1 Introduction

Digital implementations of motion controllers provide a large design flexibility
at a low cost (Chen and Francis, 1995). Most of the digital implementations are
based on fixed, equidistant sampling schemes. Such schemes are favorable from
a control design perspective since time invariance of continuous-time systems

The contents of this chapter also appear in:
Jurgen van Zundert and Tom Oomen. Beyond Equidistant Sampling for Performance and
Cost: A Loop-Shaping Approach Applied to a Motion System. Accepted for International
Journal of Robust and Nonlinear Control, 2018.
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is preserved. In particular, for linear time-invariant (LTI) systems, equidistant
sampling allows the use of frequency-domain control design approaches, includ-
ing the use of Bode plots and Nyquist diagrams (Skogestad and Postlethwaite,
2005).

From the perspective of cost-effective and high performance control design,
flexible sampling is preferred over fixed sampling. Nowadays, digital controllers
are often embedded in software and task scheduling policies allocate resources
to the different software applications. The scheduling is often periodic and gen-
erally leads to periodic, non-equidistant sampling of the individual applications.
Due to the periodicity, equidistant sampling can always be obtained by simply
discarding part of the sampling instances. However, such an approach goes at
the expense of the achievable performance since not all data and decision vari-
ables are exploited. Flexible sampling, including non-equidistant sampling, is
preferred since it allows to exploit all available data and decision variables with
identical hardware cost and thereby improve the performance/cost trade-off com-
pared to fixed sampling. Examples of flexible sampling include non-equidistant
sampling (Chapter 8; Valencia et al., 2016), multirate control (Fujimoto et al.,
2001; Fujimoto and Hori, 2002; Salt and Albertos, 2005; Chapter 7), and sparse
control (Oomen and Rojas, 2017).

Flexible sampling potentially improves the performance/cost trade-off, but is
challenging from a control design perspective. In particular, flexible sampling of
continuous-time LTI systems leads to linear periodically time-varying (LPTV)
behavior, see also Chapter 8. Hence, typical frequency-domain control design
techniques are not directly applicable. Most control designs for LPTV systems
require a parametric model of the system, including pole placement (Hernández
and Urbano, 1989; Kono, 1980), linear quadratic regulator (LQR) control, linear
quadratic Gaussian (LQG) control, H2/H∞ approaches (Nie et al., 2013; Shah-
savari et al., 2013; Ravi et al., 1991), internal model principle (Grasselli and
Longhi, 1991), and LTI approximations (Chen and Qiu, 1997). Also, designs
based on time-invariant reformulations are often based on parametric models,
including Floquet-Lyapunov transformations (Bittanti and Colaneri, 2009, Sec-
tion 1.2) and lifting approaches (Bittanti and Colaneri, 2009, Section 1.6), which
enable the use of full state feedback (Sinha and Joseph, 1994), pole placement
(Colaneri, 1991), model matching (Colaneri and Kuc̆era, 1997), LQR (Kalender
and Flashner, 2008), LQG (Conway and Horowitz, 2008), and H2/H∞ control
(Bamieh et al., 1991; Voulgaris et al., 1994). However, as is argued in Oomen
et al. (2007), despite the availability of solid control theory, such model-based
designs are demanding since (i) obtaining a parametric LPTV model is difficult;
and (ii) typical LTI interpretations are not valid, leading to complications for
the actual design (Cantoni and Glover, 1997; Lindgärde and Lennartson, 1997).

Although non-equidistant sampling has a large potential and the underlying
theory has been substantially developed, at present there is a lack of suitable
control design techniques to address stability, performance, and robustness. The
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aim of this chapter is to develop a non-parametric loop-shaping control design
framework for non-equidistantly sampled systems based on frequency response
function (FRF) measurements. Such a framework is well-developed for tradi-
tional equidistantly sampled, single-variable systems (Skogestad and Postleth-
waite, 2005, Section 2.6; Steinbuch et al., 2010; Franklin et al., 2015, Chapter
6). The presented framework builds on the multirate approach in Oomen et
al. (2005); Oomen et al. (2007), exploits w-plane loop-shaping (Oomen et al.,
2007, Section 5.1), explicitly incorporates time-varying aspects, and addresses
key objectives such as stability and performance.

The main contribution of this chapter is a framework for LPTV loop-shaping
feedback control design based on FRF measurements, which enables to exploit
non-equidistant sampling for improved control performance. This chapter has
the following contributions.

2.I Development of a suitable stability test: an FRF measurement based
Nyquist test for LPTV systems.

2.II Quantification of performance: LPTV generalizations of FRFs for non-
equidistantly sampled systems.

2.III Design through loop-shaping: systematic framework based on FRF mea-
surements and LTI insights.

2.IV Application of the design framework to a motion system demonstrating
the potential of non-equidistant sampling.

2.V Validation of the designed controllers through experiments.

The outline of this chapter is as follows. In Section 2.2, the potential of
non-equidistant sampling is demonstrated via an illustrative example and the
control objective is formulated. The Nyquist stability test for non-equidistantly
sampled systems (Contribution 2.I) is presented in Section 2.3. The performance
quantification based on FRFs (Contribution 2.II) is presented in Section 2.4. The
loop-shaping design (Contribution 2.III) is presented in Section 2.5. Application
of the design framework to a motion system (Contribution 2.IV) is presented in
Section 2.6. In Section 2.7, the designed controllers are validated in experiments
(Contribution 2.V). Conclusions and an outlook are presented in Section 2.8.

Notation. For notation convenience, single-input, single-output (SISO) sys-
tems are considered. The results can directly be generalized to multivariable
systems. Let bxc = max{m ∈ Z | m ≤ x}. Lifted variables are underlined, with
In the n× n identity matrix and 0 the zero matrix of suitable dimensions.

2.2 Non-equidistant sampling in motion control

In this section, the potential of non-equidistant sampling in motion control ap-
plications is explored and the control objective is defined.
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Figure 2.1. Example of resource allocation to a motion control application
( ) and other applications ( ). The communication (actuation and sensing)
to the motion application at the end of each interval results in periodic ( )
non-equidistant sampling of the motion system ( ).

2.2.1 Non-equidistant sampling for cost-effective
embedded implementations

Multiple software applications are often embedded on a single platform to reduce
the overall implementation cost. An example of such a platform is CompSOC
(Goossens et al., 2017). A scheduling policy is used to allocate the platform
resources to the different applications. The scheduling is often periodic and typ-
ically results in periodic, non-equidistant sampling of the individual applications
as is illustrated in Figure 2.1.

Non-equidistant sampling introduces time variance, also for underlying time-
invariant continuous-time dynamics, which poses challenges from a control de-
sign perspective. In particular, periodic, non-equidistant sampling of a linear
time-invariant (LTI) system results in linear periodically time-varying (LPTV)
behavior, see Section 2.2.3.

2.2.2 Exploiting non-equidistant sampling in control
design

The potential of non-equidistant sampling in control is illustrated via the exam-
ple in Figure 2.2. The figure shows a continuous-time sine wave with frequency
3
8 Hz. The digital controller only has access to the non-equidistantly sampled
signal. Control techniques for LTI systems are unsuited for the sampling se-
quence provided by the hardware since the sampling is non-equidistant and thus
yields time-varying behavior.

The typical way for traditional LTI control designs is to use the equidistant
sampling sequence with the highest sampling frequency, i.e., 1

2 Hz for the exam-
ple in Figure 2.2. Clearly, such a design does not exploit all available data, which
may yield suboptimal performance. In fact, for the example in Figure 2.2 alias-
ing occurs and a sine wave with frequency 1

8 Hz instead of 3
8 Hz can be observed.

This poses substantial performance limitations for continuous-time performance.
Indeed, typical LTI control designs may improve on-sample behavior, but often
degrade intersample behavior (Oomen et al., 2007). This observation is corrob-
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Figure 2.2. Example demonstrating the potential of non-equidistant sam-
pling in control. The underlying continuous-time signal ( ) is sampled
non-equidistantly ( ) with period 4s. Equidistant sampling ( ) is obtained
by discarding part of the samples, which obstructs reconstruction of the true
continuous-time signal. Instead, the aliased signal ( ) is observed, posing se-
vere limitations for control. Control for the non-equidistant sampling sequence
( ) has the potential to enhance the performance since the continuous-time
signal can be reconstructed.

orated by experiments in Section 2.7.
In the proposed approach, the control design is explicitly based on the non-

equidistant sampling sequence. Such an approach exploits all available data and
design freedom and therefore has the potential to outperform traditional LTI
control. The experiments in Section 2.7 confirm that control design on the non-
equidistant rate is superior to LTI control on the equidistant rate in situations
similar to that illustrated in Figure 2.2.

2.2.3 Non-equidistant control architecture

In this chapter, the focus is on feedback control of non-equidistantly sampled
LTI motion applications according to the control diagram in Figure 2.3. The
following definitions are adopted.

Definition 2.1 (Linear system). Let y1 = Hu1 and y2 = Hu2, then H is linear
if αy1 + βy2 = H(αu1 + βu2), for all α, β ∈ R.

Definition 2.2 (LPTV system). A system H is LPTV with period τ ∈ N if it
is linear (Definition 2.1) and it commutes with the delay operator Dτ defined by
Dτu[k] = u[k − τ ], i.e., DτH = HDτ .

Definition 2.3 (LTI system). A system H is LTI if it is LPTV (Definition 2.2)
with period τ = 1.

The following two assumptions are made.

Assumption 2.4. The discrete-time system Gb,d in Figure 2.3 is LTI (Defini-
tion 2.3).
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Figure 2.3. Control diagram with base rate ( ) defined by ∆b in (2.1) and
non-equidistant rate ( ) defined by ∆ne in (2.2). Upsampler H, including
zero-order-hold interpolation, and downsampler D provide the conversion be-
tween ∆b and ∆ne. The control goal is to design feedback controller Cd operat-
ing on the non-equidistant sampling sequence ∆ne based on FRF measurement
Gb,d obtained on the base sampling sequence ∆b.

Assumption 2.5. The base rate sampling sequence is given by

∆b := (δb, δb, . . .), (2.1)

with δb ∈ R>0 and only available for dedicated identification experiments and
performance evaluation, and not available for control. The non-equidistant sam-
pling sequence with periodicity τ ∈ N available for control is given by

∆ne := (δ1, δ2, . . . , δτ , δ1, δ2, . . . , δτ , . . .), (2.2)

with δi = γiδb, γi ∈ N, 1 ≤ i ≤ τ , and is defined by Γne := (γ1, γ2, . . . , γτ ) ∈ Nτ .

A key observation is that the non-equidistant sampling sequence ∆ne in Fig-
ure 2.3 introduces periodic time-varying behavior. In particular, by Assump-
tion 2.5, ∆b has periodicity 1 and period time δb, and ∆ne has periodicity τ and
period time

∑τ
i=1 δi = Tδb, with T :=

∑τ
i=1 γi. Hence, for linear controllers Cd,

the system in Figure 2.3 is LPTV (Definition 2.2) with period time Tδb.
Traditional LTI approaches typically use the equidistant sampling sequence

with the highest possible sampling frequency as given by Definition 2.6. Note
that by periodicity of ∆ne in (2.2) such a sequence always exists since δeq ≤ Tδb.
The sampling sequences are illustrated by Example 2.7.

Definition 2.6. Given Assumption 2.5, let Γ̃ne = {∑j
i=1 γi | 1 ≤ j ≤ τ}, then

the equidistant sampling sequence is defined as

∆eq := (δeq, δeq, . . .), (2.3)

where δeq = γeqδb, with

γeq := min{γ ∈ N | ∀1 ≤ n ≤ T
γ , nγ ∈ Γ̃ne}, (2.4)

and is defined by Γeq = γeq ∈ N.

Example 2.7. The sampling sequences for the example in Figure 2.2 are il-
lustrated in Figure 2.4. The non-equidistant sampling sequence has periodicity
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Figure 2.4. Illustration of the sampling sequences for the example in Fig-
ure 2.2, with ∆ne ( ) given by Γne =

[
1 1 2

]
and ∆eq ( ) given by Γeq = 2.

τ = 3 with δ1 = δ2 = 1 s and δ3 = 2 s. Let δb = 1 s, then Γne =
[
1 1 2

]
, i.e.,

γ1 = γ2 = 1, γ3 = 2, and T = 4. By Definition 2.6, Γ̃ne = {1, 2, 4}. For γ = 1,
T
γ = 4, but nγ /∈ Γ̃ne for n = 3. For γ = 2, T

γ = 2 and nγ ∈ Γ̃ne for n = 1, 2,
hence Γeq = 2.

In the next section, the control objective is presented.

2.2.4 Control objective

The control objective considered in this chapter is given as follows.

Main problem. Let the control diagram in Figure 2.3 and a frequency response
function measurement Gb,d(e

jωδb) be given, and let Assumption 2.4 and Assump-
tion 2.5 be satisfied. Design a feedback controller Cd that provides

(A) robust stability, and

(B) robust performance in terms of εb,

with robust stability and performance according to McFarlane and Glover (1990,
Section 6).

In this chapter, the feedback control design is based on loop-shaping tech-
niques since these are directly applicable to FRF measurements, which are fast,
accurate, and inexpensive to obtain for motion systems, in contrast to parametric
identification methods (Oomen et al., 2007). The key challenge in this chapter
is that conventional loop-shaping for LTI systems (Skogestad and Postlethwaite,
2005, Section 2.6; Steinbuch et al., 2010; Franklin et al., 2015, Chapter 6) is
performed in the frequency domain, whereas the non-equidistantly sampled sys-
tems considered in this chapter are time-varying. In this chapter, the frequency-
domain insights for LTI systems are generalized to non-equidistantly sampled
systems.

The stability and performance aspects are addressed in Section 2.3 and Sec-
tion 2.4, respectively. The loop-shaping design framework is presented in Sec-
tion 2.5. Application and experimental validation of the framework is presented
in Section 2.6 and Section 2.7, respectively.



26 Chapter 2. Feedback control for LPTV systems

Remark 2.8. Although Cd in Figure 2.3 uses signal ε operating on the non-
equidistant sampling sequence ∆ne, the loop-shaping nominal performance goal
of this chapter addresses the fictitious signal εb operating on sampling sequence
∆b to also take intersample behavior into account (Oomen et al., 2007). This is
also illustrated in Section 2.7.

Remark 2.9. The FRF measurement Gb,d(e
jωδb) is assumed to be sufficiently

dense in view of integral behavior (Geerardyn and Oomen, 2017).

2.3 Stability: Nyquist test for LPTV systems

In this section, a stability test for the closed-loop system in Figure 2.3 is pre-
sented, which addresses subproblem (A). The proposed stability test is a Nyquist
stability test for LPTV systems based on FRF measurements and constitutes
Contribution 2.I.

2.3.1 LPTV stability

Consider the LPTV open-loop transfer function Lb,d = Gb,dHCdD in Figure 2.3
and assume that there are no pole/zero cancellations. Then, internal closed-loop
stability in Figure 2.3 is equivalent to stability of Sb,d = (1 + Lb,d)

−1, see also

Zhou et al. (1996, Section 5.3). Let Sb,d
z
= (A[i], B[i], C[i], D[i]), i = 1, 2, . . . , T ,

then closed-loop stability can be directly analyzed based on the monodromy
matrix of Sb,d given by (Bittanti and Colaneri, 2009, Section 1.2)

Ψ = A[τ ]A[τ − 1] . . . A[1]. (2.5)

More specific, the closed-loop system is stable (Bittanti and Colaneri, 2009,
Section 1.2.3) if and only if

|λi(Ψ)| < 1, for all i, (2.6)

where the eigenvalues λi(Ψ) are the roots of the characteristic polynomial

φ(z) = det(zI −Ψ). (2.7)

Condition (2.6) provides a stability test for parametric models based on (2.7).
However, there is no parametric model of Gb,d available, see Section 2.2.4. There-
fore, a Nyquist stability test based on FRF measurement Gb,d(e

jωδb) is proposed
instead.

2.3.2 Towards a Nyquist stability test for φ(z)

Nyquist stability tests for LTI systems are not directly applicable to the LPTV
system in Figure 2.3 due to the time-varying behavior. The main idea is to
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connect the characteristic polynomial φ(z) in (2.7) to a Nyquist stability test.
This is achieved through lifting of which preliminary results are presented in this
section.

Let u[k] ∈ R and

u[k] =


u[kT ]

u[kT + 1]
...

u[kT + T − 1]

 ∈ RT , (2.8)

with T ∈ N. The lifting operator LT is defined to be the map u 7→ u, with
inverse given by u = L−1

T u. Let y = Hu with H a linear system (Definition 2.1),
then y = LT y = (LTHL−1

T )(LTu) = Hu with lifted system H = LTHL−1
T .

Lifted controller Cd is given by Lemma 2.10 and obtained by lifting the
LPTV state-space controller Cd operating on sampling sequence ∆ne in (2.2)
over period Tδb, which corresponds to lifting over τ samples. For a proof see
Bittanti and Colaneri (2009, Section 6.2.3).

Lemma 2.10 (Lifting Cd). The τ ∈ N periodic state-space controller Cd
z
=

(A[k], B[k], C[k], D[k]), k = 0, 1, 2, . . ., with A[k + τ ] = A[k], B[k + τ ] = B[k],
C[k + τ ] = C[k], D[k + τ ] = D[k], lifted over τ samples is given by Cd(z) =
LτCdL−1

τ ∈ Cτ×τ ,

Cd
z
=



Ψ Φτ,2B[1] Φτ,3B[2] · · · B[τ ]
C[1] D[1] 0 · · · 0

C[2]Φ2,1 C[2]B[1] D[2]
. . .

...
...

...
. . .

. . . 0
C[τ ]Φτ,1 C[τ ]Φτ,2B[1] · · · C[τ ]B[τ − 1] D[τ ]

 , (2.9)

with transition matrix

Φk2,k1
=

{
I, k2 = k1,

A[k2 − 1]A[k2 − 2] . . . A[k1], k2 > k1,
(2.10)

and monodromy matrix Ψ = Φτ+1,1.

Lemma 2.11 shows that LPTV systems lifted over their period are LTI and
that stability is preserved under lifting, see also Bamieh et al. (1991, Section
2). Both properties are used in the Nyquist stability test presented in the next
section. In the remainder of this section, preliminary results related to lifting
are presented.

Lemma 2.11. Let H be an LPTV system with period T (Definition 2.2) and
let H = LTHL−1

T , then
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(i) H is LTI (Definition 2.3), and

(ii) H is stable if and only if H is stable.

Proof. The LTI properties are evident from Lemma 2.10. LTI system H =
(AH , BH , CH , DH) is stable if and only if |λi(AH)| < 1, for all i. By Lemma 2.10,
AH = Ψ in (2.5), and hence the stability condition is identical to (2.6).

The lifted system Gb,d is given by Lemma 2.12 and obtained by lifting Gb,d
operating on sampling sequence ∆b in (2.1) over period Tδb, which corresponds
to lifting over T samples. For a proof, see Bittanti and Colaneri (2009, Sec-
tion 6.2.1). Lemma 2.12 is expressed in terms of transfer functions to facilitate
application to FRF measurements by replacing z with ejωTδb .

Lemma 2.12 (Lifting Gb,d). The LTI transfer function Gb,d(z) lifted over T ∈
N samples is given by Gb,d = LTGb,dL−1

T ∈ CT×T , with element Gd(z)[i, j],
i, j = 1, 2, . . . , T , given by

Gd(z)[i, j] = G(|i−j|)(z), (2.11)

where

G(s)(z
T ) =

zs

T

T−1∑
k=0

Gb,d(zφ
k)φks, φ = e

2πj
T . (2.12)

Next, the downsampler and upsampler are lifted. Let

µT [i] := i− 1, i = 1, 2, . . . , T, (2.13)

µτ [i] :=


0, i = 1,
i−1∑
j=1

γi, i = 2, 3, . . . , τ + 1,
(2.14)

then lifting D and H over period time Tδb yields the non-square systems given
by Lemma 2.13 and Lemma 2.14, respectively. The results follow directly from
(2.13), (2.14), and Assumption 2.5. Note that the input and output are lifted
over a different number of samples due to the different sampling sequences.

Lemma 2.13 (Lifting D). Lifting downsampler D in Figure 2.3 over period Tδb
yields D = LτDL−1

T ∈ Nτ×T , with element D[i, j], i = 1, 2, . . . , τ , j = 1, 2, . . . , T ,
given by

D[i, j] :=

{
1, µτ [i] = µT [j],

0, otherwise,
(2.15)

with µT , µτ in (2.13) and (2.14), respectively.
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Lemma 2.14 (Lifting H). Lifting upsampler with zero-order-hold interpolation
H in Figure 2.3 over period Tδb yields H = LTHL−1

τ ∈ NT×τ , with element
H[i, j], i = 1, 2, . . . , T , j = 1, 2, . . . , τ , given by

H[i, j] :=

{
1, µτ [j] ≤ µT [i] < µτ [j + 1],

0, otherwise,
(2.16)

with µT , µτ in (2.13) and (2.14), respectively.

An important observation is that all lifted systems are LTI, see also
Lemma 2.11, and hence any interconnection of lifted systems is LTI. The results
in this section form the basis for the Nyquist stability test for LPTV systems
presented in the next section.

Remark 2.15. Note that all lifted systems correspond to lifting over period
Tδb, although the periodicities, and hence the dimensions, differ depending on
the sampling sequence, i.e., T for ∆b and τ for ∆ne.

2.3.3 Nyquist stability test

The results of the previous sections are used in this section for the stability test
of the closed-loop LPTV system in Figure 2.3. The presented Nyquist stability
test constitutes Contribution 2.I.

The stability test makes use of the principle of the argument (Vinnicombe,
2001, Section 1.2.2) in Lemma 2.16 and the results of Lemma 2.17.

Lemma 2.16. Let f(z) ∈ R and let C denote a closed contour in the complex
plane. Assume that

(i) f(z) is analytic on C, i.e., f(z) has no poles on C,

(ii) f(z) has Z zeros inside C, and

(iii) f(z) has P poles inside C.

Then, the image f(z) as z traverses the contour C once in a clockwise direction
will make N = Z − P clockwise encirclements of the origin.

Lemma 2.17. Let Lb,d = Gb,dHCdD and Ld = DGb,dHCd with Cd in
Lemma 2.10, Gd in Lemma 2.12, D in Lemma 2.13, and H in Lemma 2.14,
then

det(IT + Lb,d) = det(Iτ + Ld). (2.17)
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Proof. By properties of determinants (Kolman and Hill, 2008, Section 3.2) and
rank{D} = τ follows

det(IT + Lb,d) = det(IT +Gb,dHCdD) (2.18a)

= det

(
IT +

[
DGb,dHCd 0

0 0T−τ

])
(2.18b)

= det

([
Iτ +DGb,dHCd 0

0 IT−τ

])
(2.18c)

= det(Iτ +DGb,dHCd) (2.18d)

= det(Iτ + Ld). (2.18e)

In Lemma 2.17, IT +Lb,d has dimensions T ×T and Iτ +Ld has dimensions
τ × τ . Since τ ≤ T , the latter is preferred to calculate the determinant and
used in the stability test. The stability test for LPTV systems is presented in
Theorem 2.18.

Theorem 2.18. Given Cd in Lemma 2.10, Gd in Lemma 2.12, D in
Lemma 2.13, and H in Lemma 2.14, the closed-loop transfer function ρb 7→ εb
in Figure 2.3 given by Sb,d is stable if and only if the image of det(Iτ +Ld), with

Ld(e
jωTδb) = DGd(ejωTδb)HCd(ejωTδb), (2.19)

(i) does not pass through the origin, and

(ii) makes P anti-clockwise encirclements of the origin,

with P the number of unstable poles of Ld counting multiplicities.

Proof. By Lemma 2.11, the state matrix of LTSb,dL−1
T is given by Ψ in (2.5),

hence the roots of φ(z) in (2.7) are the poles of LTSb,dL−1
T = LT (1+Lb,d)

−1L−1
T

= (IT + LTLb,dL−1
T )−1 = (IT + Lb,d)

−1, i.e., the roots of det(IT + Lb,d), which

by Lemma 2.17 are the roots of det(Iτ + Ld). Let Ld
z
= (A,B,C,D), then the

open-loop and closed-loop characteristic polynomials are φol(z) = det(zI − A)
and φcl(z) = det(zI − Acl), with Acl = A − B(Iτ + D)−1C. Using the Schur
complement,

det(Iτ + Ld) = det(Iτ + C(zI −A)−1B +D) (2.20a)

=
1

det(zI −A)
det

[
zI −A B
−C Iτ +D

]
(2.20b)

=
1

det(zI −A)
det(Iτ +D)

× det(zI −A+B(Iτ +D)−1C)

(2.20c)
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det(Iτ + Ld) =
det(zI −Acl)
det(zI −A)

det(Iτ +D) (2.20d)

=
φcl(z)

φol(z)
c, (2.20e)

with constant c = det(Iτ + D). Hence, the closed-loop poles are the roots of
φcl(z) and the closed-loop zeros are the roots of φol(z).

The stability conditions follow from applying Lemma 2.16 to (2.20e), with
C being the contour encircling the region outside the unit disk such that Z is
the number of unstable closed-loop poles (roots of φcl(z) with |z| > 1) and P is
the number of unstable closed-loop zeros (roots of φol(z) with |z| > 1). The first
condition ensures det(Iτ + Ld) is analytic on C. The second condition ensures
closed-loop stability through Z = 0 as follows from the choice of contour C and
(2.6).

The number of unstable poles P in Theorem 2.18 follows from the design of
Cd and the number of unstable poles of Gb,d. The number is typically known
and for motion systems often given by the number of rigid body modes in Gb,d.

Interestingly, in view of Theorem 2.18, Lemma 2.17 essentially shows that
stability on the equidistant base rate ∆b is equivalent to stability on the non-
equidistant rate ∆ne. The result is explained by the fact that feedback is only
applied on the non-equidistant rate, i.e., in between these sampling instances
the system is in open-loop, and therefore it suffices to check stability on ∆ne.
Importantly, it does not suffice to check stability on ∆eq.

Remark 2.19. For multivariable systems, care has to be taken regarding inden-
tations (Desoer and Wang, 1980), since indentations outside the unit disc may
lead to undesirable results for multivariable systems.

Remark 2.20. The sampling in Figure 2.3 should be non-pathological to pre-
serve controllability and observability (Chen and Francis, 1995, Section 2.2).

2.4 Performance: FRFs for LPTV systems

In this section, the performance of the system in Figure 2.3 is quantified, which
addresses subproblem (B). The performance is quantified in terms of FRFs and
constitutes Contribution 2.II. Importantly, Bode plots, used for performance
characterization of LTI systems, are not directly applicable for performance char-
acterization of LPTV systems since for LPTV systems a single input frequency
generally yields multiple output frequencies. In this section, the periodicity
is exploited to obtain equivalent Bode plots for performance characterization,
extending the multirate approach in Oomen et al. (2007) to non-equidistantly
sampled systems. Indeed, the results in Oomen et al. (2007) are recovered as a
special case.
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q
βα

(a) Forward shift.

Sd,F
βα

(b) Downsampler.

Su,F
βα

(c) Upsampler.

Izoh,F
βα

(d) Zero-order-hold interpolator.

Figure 2.5. Multirate building blocks for conversion between equidistantly
sampled signals, where dashed lines ( ) are signals at low rate and dotted
lines ( ) are signals at high rate.

First, several preliminary results are presented. In Section 2.4.1, the conver-
sion between equidistant rates based on multirate building blocks is presented.
The building blocks are used in Section 2.4.2 to describe the system in Figure 2.3
through filter banks. Based on the filter banks, frequency response functions
(FRFs) are presented in Section 2.4.3. The FRFs provide a full characterization
of the system but are not convenient for control design. The main result, per-
formance functions for the system in Figure 2.3 based on FRFs, is presented in
Section 2.4.4 and used for control design in Section 2.5.

2.4.1 Multirate building blocks

Conversion between equidistant rates is described by the multirate operators in
Figure 2.5. These operators are defined in Definitions 2.21 to 2.24, with A,B
the Fourier transforms of the signals α, β, respectively.

Definition 2.21 (Forward shift). The forward shift operator q in Figure 2.5(a)
is defined as

β[k] = α[k + 1], B(ejωh) = ejωhA(ejωh). (2.21)

Definition 2.22 (Downsampler). The downsampling operator Sd,F in
Figure 2.5(b) with downsample factor F ∈ N is defined as

β[k] = α[Fk], B(ejωh) =
1

F

F−1∑
f=0

A
(
ej

1
F (ωh−2πf)

)
. (2.22)

Definition 2.23 (Upsampler). The upsampling operator Su,F in Figure 2.5(c)
with upsample factor F ∈ N is defined as

β[k] =

{
α[ kF ], k

F ∈ Z,
0, k

F /∈ Z,
B(ejωh) = A(ejωFh). (2.23)
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Definition 2.24 (Zero-order-hold interpolator). The zero-order-hold interpola-
tor Izoh,F in Figure 2.5(d) with interpolation factor F ∈ N is defined as

β[k] = α[F b kF c], B(ejωh) = A(ejωh)
F−1∑
f=0

e−jωhf . (2.24)

In control, the zero-order-hold interpolator in Definition 2.24 is commonly
used in combination with the upsampler in Definition 2.23. Further properties
are available in, e.g., Vaidyanathan (1993, Section 4.1.1).

In the next section, the multirate building blocks in Figure 2.5 are used to
construct the conversion between the base sampling sequence ∆b and the non-
equidistant sampling sequence ∆ne present in Figure 2.3.

2.4.2 Composed closed-loop of LPTV systems

In this section, the complete characterization of the system in Figure 2.3 is
presented. The non-equidistant downsampler D and zero-order-hold upsampler
H in Figure 2.3, and the lifted controller Cd in Lemma 2.10 are constructed
from the multirate building blocks of Figure 2.5 as shown in Figure 2.6. The
construction is based on filter banks by splitting the signals into subband signals
(Vaidyanathan, 1993, Section 4.1.2).

The decomposition of the productHCdD into the multirate building blocks of
Figure 2.5 is presented in Figure 2.7. The result follows directly from connect-
ing the non-equidistant downsampler D in Figure 2.6(a), the lifted controller
Cd in Lemma 2.10, and the non-equidistant zero-order-hold upsampler H in
Figure 2.6(b). An illustrative example of the different steps is provided in Ap-
pendix 2.A.

In the next section, the filter banks are used to construct frequency response
functions of LPTV systems.

2.4.3 Frequency response functions of LPTV systems

In this section, frequency response functions (FRFs) of LPTV systems are pre-
sented. The FRF of HCdD is given by Theorem 2.25.

Theorem 2.25. Let Eb(e
jωδb) be the Fourier transform of εb, then the Fourier

transform of νb = HCdDεb in Figure 2.7 is given by

Nb(e
jωδb) =

τ∑
i=1

e−jωγ̃iδb
( γi−1∑
f=0

e−jωδbf
)( τ∑

k=1

Cd[i, k](ejωT
2δb)

× 1

T

T−1∑
fi=0

(
ejγ̃k(ωδb−2π

fi
T )Eb(e

j(ωδb−2π
fi
T ))
))

,

(2.25)
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(b) Non-equidistant zero-order-hold upsampler H.
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(c) Lifted controller Cd.

Figure 2.6. Non-equidistant downsampler D, zero-order-hold upsampler H,
and lifted controller Cd constructed from the multirate building blocks in Fig-
ure 2.5, with base rate ( ) defined by ∆b in (2.1) and non-equidistant rate
( ) defined by ∆ne in (2.2).
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Figure 2.7. Filter bank of the transfer function εb 7→ νb in Figure 2.3, i.e.,
HCdD, with base rate ( ) defined by ∆b in (2.1) and non-equidistant rate
( ) defined by ∆ne in (2.2). The left side decomposes the equidistantly sam-
pled signal εb into τ subband signals with periodicity T which are the input
to the lifted controller Cd. The right side constructs the equidistantly sampled
signal νb through upsampling with zero-order-hold interpolation.

with γ̃i =

i−1∑
j=1

γj.

Proof. The dependency is given by Figure 2.7. The result follows from sub-
stitution of the Fourier transforms of the multirate building blocks given by
Definitions 2.21 to 2.24.

Importantly, Theorem 2.25 shows that the output Nb(e
jωδb) at frequency ω

depends on the T input frequencies (ωδb − 2π fiT ), fi = 0, 1, . . . , T , of Eb. Vice
versa, a single frequency in Eb contributes to T frequencies in Nb. The result
directly leads to the frequency response matrix HCdD satisfying Nb = HCdDEb.
Since the system is LPTV with period T , the FRM has the structure

HCdD :

 · · ·
...

. . .
...

· · ·

 (2.26)

consisting of T×T diagonal submatrices. Since Gb,d is LTI, the Fourier transform
of ψb is given by Yb(e

jωδb) = Gb,dNb(e
jωδb), whereGb,d has the diagonal structure

Gb,d :

[ ]
. (2.27)
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Let Rb(e
jωδb), Hb(e

jωδb) be the Fourier transforms of ρb, ηb in Figure 2.3, then

Eb(e
jωδb) = Sb,dRb(e

jωδb)− Sb,dHb(e
jωδb), (2.28)

with Sb,d =
(
I +Gb,dHCdD

)−1
which has the same structure as HCdD, see

(2.26). In the next section, the structure of the FRM is exploited for performance
evaluation.

Remark 2.26. For equidistant control on ∆b, it follows that Γne = 1, T = 1,
and hence the controller is LTI where (2.25) reduces to

Nb(e
jωδb) = Cd(e

jωδb)Eb(e
jωδb), (2.29)

and the FRM in (2.26) has the structure

HCdD
∣∣
Γne=1

:

[ ]
. (2.30)

2.4.4 Frequency-domain performance of LPTV systems

In traditional loop-shaping control design for LTI systems, Bode plots are used
to quantify the performance and based on the frequency separation principle.
As shown by Theorem 2.25, the frequency separation principle does not hold
for the LPTV system in Figure 2.3. Aimed at loop-shaping control design for
LPTV systems, the interest is in performance functions that only depend on the
input frequency, similar as in Bode plots for LTI systems. In this section, two
such performance functions are presented. The functions show those aspects of
the FRFs most relevant for controller design.

The two functions are generalizations of the fundamental transfer function
(FTF) F and the performance frequency gain (PFG) P as used for multirate
and sampled-data systems, see Oomen et al. (2007); Lindgärde and Lennartson
(1997) and references therein. Generalizations for LPTV systems in terms of
the FRM are given by Definition 2.27 and Definition 2.28 and follow from the
multirate definitions in Oomen et al. (2007) and the structure of the FRM.

Definition 2.27 (Fundamental transfer function (FTF)). Given a frequency
response matrix Ḡ with elements Ḡ[i, j] corresponding to the ith output frequency
and the jth input frequency, the fundamental transfer function (FTF) for the kth
input frequency is defined by

Fk = Ḡ[k, k] ∈ C. (2.31)

Definition 2.28 (Performance frequency gain (PFG)). Given a frequency re-
sponse matrix Ḡ with elements Ḡ[i, j] corresponding to the ith output frequency
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and the jth input frequency, the performance frequency gain (PFG) for the kth
input frequency is defined by

Pk =

√∑
i

∥∥Ḡ[i, k]
∥∥2

2
∈ R. (2.32)

Note that both the FTF and the PFG are defined in terms of the input
frequency. The FTF corresponds to the diagonal of the FRM and hence only
takes into account the fundamental frequency component. The PFG takes into
account the full intersample behavior and relates the root-mean-square (rms)
value of the input to that of the output. This is particularly relevant to quantify
control performance as also shown in Section 2.6 and Section 2.7.

In the next section, the stability test presented in Section 2.3 and the per-
formance functions presented in this section are used for LPTV loop-shaping
controller design.

Remark 2.29. For LTI systems, the FRM is diagonal and hence the output
frequencies equal the input frequencies, the FTF (Definition 2.27) equals the
FRF, and the PFG (Definition 2.28) equals the magnitude response of the FRF.
See also Remark 2.26.

2.5 Loop-shaping control design

In the previous two sections, the stability and performance aspects of the main
problem in Section 2.2.4 are addressed. In this section, the loop-shaping control
design based on FRF measurements is presented, which constitutes Contribu-
tion 2.III.

First, different approaches for loop-shaping control design for LTI systems are
evaluated. Second, a loop-shaping design procedure for LTI systems is presented.
Finally, loop-shaping design procedures for LPTV systems are presented.

2.5.1 Control design approaches for LTI systems

In this section, the design of a discrete-time LTI controller Cd(z) using loop-
shaping techniques is considered. The starting point is an identification experi-
ment from which a continuous-time FRF measurement Gc(jω) or a discrete-time
FRF measurement Gd(e

jωδ) with sampling time δ can be obtained.
There are two main requirements for loop-shaping design for LPTV systems.

First, the frequency response behavior should be asymptotic with respect to
the frequency since stability and performance specifications are defined in terms
of cut-off frequencies and asymptotes (Van de Wal et al., 2002). Second, the
discretization should be exact. Discretization methods such as zero-order-hold
and Tustin introduce approximation errors close to the Nyquist frequency, as
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Gc(jω)

Cc(s)

design design design

discretize transform

Gd(e
jωδ)

transform

(approx.)

discretize

(exact)

Identification experiment

Figure 2.8. Discrete-time controller Cd(z) can be designed using the
continuous-time s-domain ( ), the discrete-time z-domain ( ), or the aux-
iliary w-domain ( ), see also Oomen et al. (2005). Design via the w-domain
is preferred since it facilitates loop-shaping design and provides an exact trans-
formation.

illustrated in Appendix 2.B. For most LTI control designs this does not pose
problems since the designs do not include features near the Nyquist frequency.
However, for LPTV controller designs, features near the Nyquist frequency are
relevant, as also shown in Section 2.7.

The three main design approaches are visualized in Figure 2.8, see also
Oomen et al. (2005), and evaluated in the subsequent sections.

2.5.1.1 Discrete-time design

The first approach is a discrete-time design based on the discrete-time FRF
Gd(e

jωδ). Since the FRF is non-rational in frequency ω, the asymptotic behavior
of the frequency response with respect to the frequency is lost and therefore the
approach is unsuited for loop-shaping design.

2.5.1.2 Continuous-time design

The second approach is based on the continuous-time FRF Gc(jω) obtained
from the identification experiment. FRF Gc(jω) is rational in ω and hence
suited for continuous-time loop-shaping control design. However, the approach
is not suited for discrete-time control design since (i) Gc(jω) does not capture
discrete-time aspects; and (ii) the discretization of Cc(s) to Cd(z) is approximate
rather than exact.
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2.5.1.3 w-plane design

The third approach is based on transforming the FRF Gd(e
jωδ) to Ga(jν) in the

auxiliary w-domain and combines the advantages of the previous two approaches.
The approach, which is detailed below, enables loop-shaping design and provides
exact discretization.

The transformation from the discrete-time z-domain to the auxiliary
w-domain and vice versa is performed using bilinear Tustin transformations, a
special case of linear fractional or Möbius transformations (Brown and Churchill,
2009), given by

w =
2(z − 1)

δ(z + 1)
, z =

1 + wδ
2

1− wδ
2

. (2.33)

Let controller Ca(w) have state-space realization Ca
w
= (Aa, Ba, Ca, Da), then the

discrete-time controller Cd with sampling time δ is given by Cd
z
= (Ad, Bd, Cd,

Dd), with

Ad = (I − δ
2Aa)−1(I + δ

2Aa), (2.34a)

Bd = δ(I − δ
2Aa)−1Ba, (2.34b)

Cd = Ca(I − δ
2Aa)−1, (2.34c)

Dd = Da + 1
2δCa(I − δ

2Aa)−1Ba. (2.34d)

Transformation (2.33) preserves all magnitude and phase characteristics, but
introduces frequency warping, i.e., Gd(e

jωδ) = Ga(jν) where frequency axis
z = ejωδ is mapped to frequency axis w = jν with fictitious frequency

ν =
2

δ
tan

(
ωδ

2

)
. (2.35)

The frequency warping is compensated by implementing a characteristic at
discrete-time frequency ω at the fictitious frequency ν given by (2.35). An ex-
ample of this pre-warping is presented in Appendix 2.B.

Importantly, the auxiliary w-plane has the same characteristics as the contin-
uous-time s-plane (Oomen et al., 2005) and thus enables loop-shaping of Ca(w)
based on Ga(jν) similar to continuous-time approaches. Since the w-plane ap-
proach has asymptotic behavior of the frequency response with respect to the fre-
quency and yields exact discretization, the approach is used in the loop-shaping
design procedures presented in the next sections.

2.5.2 Loop-shaping for LTI systems

In this section, a loop-shaping design procedure is presented for the design of a
discrete-time LTI controller Cd(z) based on an FRF measurement Gd(e

jωδ). The
loop-shaping design procedure for LPTV systems is presented in Section 2.5.3.
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The LTI control design is performed in the w-plane, with the bandwidth (gain
crossover frequency (Skogestad and Postlethwaite, 2005, (2.44))) defined as the
first 0 dB crossing of the discrete-time open-loop system Ld(z) = Gd(z)Cd(z),
i.e., ωbw := minω |Ld(ejωδ)| = 1. The procedure provides general guidelines for
the design, which may need adjustment to the specific situation. The rationale
behind the procedure can be found in Steinbuch et al. (2010). The procedure is
given by Procedure 2.30.

Procedure 2.30 (LTI loop-shaping via the w-plane). Let FRF measurement
Gd(e

jωδ) be given.

1. Transform Gd(e
jωδ) to Ga(jν) by warping the frequency axis using (2.35).

2. Define a desired bandwidth ωbw and determine νbw using (2.35).

3. Stabilize the system.

3.a Create phase lead at the bandwidth by adding a lead filter
1
νl1

w+1
1
νl2

w+1
(e.g.,

νl1 = 1
3νbw, νl2 = 3νbw).

3.b Adjust gain such that |La(jνbw)| = 1, with La(w) = Ga(w)Ca(w).

3.c Use the Nyquist plot of 1+La(w) to check closed-loop stability and the
phase margin ∠La(jνbw) + 180◦ (Skogestad and Postlethwaite, 2005,
(2.43)) (typically 30◦ − 60◦). If the closed-loop system is unstable or
the phase margin is unsatisfactory, go back to step 2 and lower the
bandwidth ωbw, or go back to step 3.a and retune νl1, νl2.

4. Increase performance. Check stability after each step. If the system is un-
stable, retune the parameters or go back to step 2 and lower the bandwidth
ωbw.

4.a Remove resonances to improve stability margins or shape closed-loop
transfer functions in specific frequency ranges using (skewed)

notch filters
1
νn1

w2+
2β1
νn1

w+1

1
νn2

w2+
2β2
νn2

w+1
(typically: modulus margin (Skogestad

and Postlethwaite, 2005, (2.46)) maxω

∣∣∣ 1
1+Gd(jω)Cd(jω)

∣∣∣ < 6 dB).

4.b Improve steady-state behavior by adding integrators with cut-off w+νi
w

(e.g., νi = 1
5νbw).

4.c Cut-off high frequent controller gain by adding a first-order low-pass
filter 1

1
νc
w+1

(e.g., νc = 6νbw) or a second-order low-pass filter

1
1
ν2
c
w2+ 2β

νc
w+1

(e.g., νc = 6νbw, β = 0.5).

4.d Check performance by evaluating the Bode plot of the relevant transfer
functions. If unsatisfactory, retune the parameters.
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5. Transform Ca(w) to Cd(z) using (2.34).

Note that closed-loop stability and performance with controller Cd(z) is guar-
anteed by virtue of the bilinear transformation in (2.33) and the design of Ca(w)
since the only difference is the frequency warping. The procedure for LTI sys-
tems presented in this section forms the basis of the LPTV loop-shaping design
procedures presented in the next section.

2.5.3 Loop-shaping for LPTV systems

In this section, three loop-shaping control designs for the LPTV system in Fig-
ure 2.3 are presented. The first procedure, Procedure 2.31, provides an LTI
controller design for the equidistant sampling sequence ∆eq in (2.3).

Procedure 2.31 (LTI control design). Let Assumption 2.4 and Assumption 2.5
be satisfied and Gb,d(e

jωδb) be given.

1. Design an LTI controller Ca in the w-plane based on Gb,d(e
jωδb) using

Procedure 2.30.

2. Determine sampling sequence ∆eq in (2.3).

3. Transform Ca to Cd using (2.34) with δ = δeq.

4. Check closed-loop stability for ∆b using Theorem 2.18. If the closed-loop
system is unstable, go back to step 1 and redesign Ca.

5. Check performance by evaluating F and/or P in Definition 2.27 and Def-
inition 2.28, respectively. If unsatisfactory, go back to step 1 and adjust
Ca accordingly.

Importantly, although the controller design in Procedure 2.31 is LTI, stability
and performance should be checked through Theorem 2.18 and F ,P since ∆eq

differs from ∆b and hence the closed-loop system is LPTV, see also Oomen et al.
(2007).

To exploit the potential of non-equidistant sampling, two design procedures
for the non-equidistant sampling sequence ∆ne are presented. Procedure 2.32
provides an LPTV control design based on a single w-plane LTI control design.

Procedure 2.32 (LPTV control: single design). Let Assumption 2.4 and As-
sumption 2.5 be satisfied and Gb,d(e

jωδb) be given.

1. Design an LTI controller Ca in the w-plane based on Gb,d(e
jωδb) using

Procedure 2.30.

2. Determine the state-space representation of LPTV controller Cd[i] during
interval i, i = 1, 2, . . . , τ , by transforming Ca using (2.34) with δ = δi.
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Table 2.1. Overview of proposed controller design procedures for LPTV sys-
tems in terms of the w-plane controller design.

Description Reference Control sequence w-plane

LTI control Procedure 2.31 (Ca, Ca, . . .) on ∆eq

LPTV control: single Procedure 2.32 (Ca, Ca, . . .) on ∆ne

LPTV control: multiple Procedure 2.33 (Ca[1], . . . , Ca[τ ], Ca[1], . . .) on ∆ne

3. Check closed-loop stability for ∆b using Theorem 2.18. If the closed-loop
system is unstable, go back to step 1 and redesign Ca.

4. Check performance by evaluating F and/or P in Definition 2.27 and Def-
inition 2.28, respectively. If unsatisfactory, go back to step 1 and adjust
Ca accordingly.

Procedure 2.32 is based on the same LTI controller design for each time inter-
val δi. To exploit the full potential of non-equidistant sampling, Procedure 2.33
provides separate control designs for each time interval δi.

Procedure 2.33 (LPTV control: multiple designs). Let Assumption 2.4 and
Assumption 2.5 be satisfied and Gb,d(e

jωδb) be given.

1. For each time interval δi, i = 1, 2, . . . , τ , design an LTI controller Ca[i] in
the w-plane based on Gb,d(e

jωδb) using Procedure 2.30.

2. Determine the state-space representation of LPTV controller Cd[i] during
interval i, i = 1, 2, . . . , τ , by transforming Ca[i] using (2.34) with δ = δi.

3. Check closed-loop stability for ∆b using Theorem 2.18. If the closed-loop
system is unstable, go back to step 1 and redesign Ca[i].

4. Check performance by evaluating F and/or P in Definition 2.27 and Def-
inition 2.28, respectively. If unsatisfactory, go back to step 1 and adjust
Ca[i] accordingly.

The w-plane controller designs for the three design procedures are summa-
rized in Table 2.1. Importantly, for all three design procedures closed-loop sta-
bility should be checked for the discrete-time controller Cd since there is no
guarantee closed-loop stability is preserved under equidistant sampling (Proce-
dure 2.31), non-equidistant sampling (Procedure 2.32), or concatenating con-
trollers (Procedure 2.33).

In the next section, the control design procedures are used in controller design
for a motion system.

Remark 2.34. Note that the states of controllers Cd[i], i = 1, 2, . . . , τ , in Pro-
cedure 2.33 should match.
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Figure 2.9. Experimental setup: a two-mass-spring-damper system. The two
rotating masses are connected via a flexible shaft. The collocated motor and
encoder on the right-hand side are used as input and output, respectively.

2.6 Application to a motion system

In this section, the LPTV control design procedures presented in Section 2.5
are used in controller design for a motion system. The designs show the ad-
vantages of non-equidistant sampling over equidistant sampling and constitute
Contribution 2.IV. In Section 2.7, the presented controller designs are validated
in experiments.

2.6.1 Experimental motion system

The experimental setup is shown in Figure 2.9. The system consists of two
rotating masses that are connected via a flexible shaft. The FRF measurement
Gb,d is shown in Figure 2.10 and obtained through a dedicated identification
procedure (Pintelon and Schoukens, 2012, Chapter 2) for sampling sequence ∆b,
with sampling time δb = 0.25 ms.

Analysis of the system reveals that there are two rigid body modes in Gb,d
and no unstable poles. In the remainder, only stable controllers are considered,
hence P = 2 in Theorem 2.18. Consequently, by application of Theorem 2.18,
the closed-loop system is stable if and only if the Nyquist plot does not pass
through the origin and has two anti-clockwise encirclements of the origin, see
also Remark 2.19.

2.6.2 Case study

The control diagram in Figure 2.3 is considered where ∆ne in (2.3) is given by
Γne =

[
2 2 4

]
. By Definition 2.6, ∆eq is given by Γeq = 4, i.e., δeq = 1 ms,

and has Nyquist frequency feq,n = 1
2

1
δeq

= 500 Hz.

The controller designs are evaluated for non-aliased and aliased disturbances
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Figure 2.10. FRF measurement Gb,d(e
jωδb) of the system in Figure 2.9 ob-

tained by a dedicated identification experiment using ∆b. The frequency reso-
lution is 0.1 Hz.

(Riggs and Bitmead, 2013; Oomen et al., 2007) by setting

ηb[k] = 0.04
√

2 sin(2πf1k) + 0.015
√

2 sin(2πf2k), (2.36)

with f1 = 10 Hz and f2 = 890 Hz such that f1 < feq,n and f2 > feq,n. The
reference trajectory is set to zero, i.e., ρb[k] = 0, for all k. The relevant transfer

function ηb 7→ εb is given by −Sb,d, with Sb,d = (1 +Gb,dHCdD)
−1

. For a fair
comparison, the desired bandwidth in the w-plane is fixed at νbw = 25 ·2π rad/s
for all controller designs. Note that ωbw in the z-domain does not provide a fair
comparison since it depends on δi.

Next, five controller designs based on the procedures in Section 2.5 are pre-
sented. An overview is presented in Table 2.2. Experimental validation of the
designs is presented in Section 2.7.

2.6.3 Design 1: Equidistant control for stability

The first controller is designed for ∆eq and based on Procedure 2.31 with the
following steps.

1. In Procedure 2.30, the bandwidth of Ca1 is set to νbw = 25 · 2π rad/s. A
lead filter with νl1 = 1

3νbw and νl2 = 3νbw is used to create phase margin
near the bandwidth νbw. An integrator with cut-off at 1

5νbw is used to
overcome friction.

2. ∆eq is equidistant with sampling interval δeq = 1 ms, see Section 2.6.2.
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Figure 2.11. Nyquist plot of det(Iτ + Ld) for designs Cd1 ( ), Cd2 ( ), and
Cd3 ( ). By application of the LPTV Nyquist test of Theorem 2.18, all three
controllers stabilize the system.

3. Cd1 is obtained from Ca1 using (2.34) with δ = δeq.

4. Closed-loop stability for ∆ne is verified using Theorem 2.18 based on the
Nyquist plot in Figure 2.11.

5. The performance functions are not shown since the design is not aimed at
performance.

Design Cd1 stabilizes the system, but achieves moderate performance since
step 4 in Procedure 2.30 is omitted. Next, the performance is improved by also
designing for performance.

2.6.4 Design 2: Equidistant control for performance

Controller design Cd2 is an extension of controller design Cd1 in which perfor-
mance is taken into account by suppressing disturbance frequency f1 using step 4
in Procedure 2.30. The steps in Procedure 2.31 are as follows.

1. C2a is obtained by adding an inverse notch filter to design C1a, with νn1 =
νn2 = ν1, β1 = 0.1, β2 = 0.01, where ν1 = 10 · 2π rad/s follows from f1

through (2.35). The sensitivity function Sa2 in Figure 2.12(b) shows the
additional suppression at ν1.

2. ∆eq is equidistant with sampling interval δeq = 1 ms.

3. Cd2 is obtained from Ca2 using (2.34) with δ = δeq.

4. Closed-loop stability for ∆ne is verified using Theorem 2.18 based on the
Nyquist plot in Figure 2.11 similar as for Cd1.
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(b) Sensitivity functions in the w-plane. Compared to design Sa1 ( ), design Sa2 ( )
suppresses frequency ν1 = 10 · 2π rad/s. Design Sa3 ( ) also suppresses frequency
ν2a = 110 · 2π rad/s.

Figure 2.12. Bode magnitude diagrams for LTI controller designs Ca1, Ca2,
and Ca3 in the w-plane.

5. The PFG of Sb,d2 is shown in Figure 2.13 and shows suppression at f1.

The FRM, see Section 2.4.3, of the LPTV sensitivity function Sb,d2 (not
shown) reveals that the frequencies most dominantly contributing to εb are f2 =
890 Hz and the aliased frequency f2a = 1

δeq
− f2 = 110 Hz, where 1

δeq
= 1000 Hz

corresponds to the sampling periodicity of sequence ∆eq. Aliasing of f2 also
yields contributions at other output frequencies, but these contributions are
negligible compared to those at f2, f2a.

2.6.5 Design 3: Equidistant control suppressing aliased
components

An important observation for design Cd2 is that the component at f2 cannot be
suppressed since f2 > feq,n. To suppress the component at f2a, a notch filter
is used in design Cd3. The steps for designing Cd3 using Procedure 2.31 are as
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Figure 2.13. Performance frequency gain P of Sb,d2 ( ), Sb,d3 ( ), and Sb,d5 ( ).
All designs suppress f1 = 10 Hz. Design Sb,d5 yields the smallest amplification
at f2 = 890 Hz, and hence the best performance, due to a dedicated design.

follows.

1. C3a is obtained by adding an inverse notch filter to design C2a, with νn1 =
νn2 = ν2a, β1 = −0.015, β2 = 0.001, where ν2a = 110.27 · 2π rad/s follows
from f2a through (2.35). The sensitivity function Sa3 in Figure 2.12(b)
shows the additional suppression at ν2a.

2. ∆eq is equidistant with sampling interval δeq = 1 ms.

3. Cd2 is obtained from Ca2 using (2.34) with δ = δeq.

4. Closed-loop stability for ∆ne is verified using Theorem 2.18 based on the
Nyquist plot in Figure 2.11 similar as for Cd1 and Cd2.

5. The PFG of Sb,d3 is shown in Figure 2.13.

The PFG in Figure 2.13 shows that design Cd3 yields a performance degra-
dation, instead of a performance improvement, for frequency f2a compared to
design Cd2. The performance degrades since f2a results from aliasing and is not
present in ηb, see (2.36).

The equidistant controller designs Cd1, Cd2, Cd3 show that disturbances be-
low the Nyquist frequency can be effectively suppressed. The aliased compo-
nents of disturbances above the Nyquist frequency can be compensated, which
improves the on-sample behavior, but degrades the intersample behavior, see
Cd3. For these reasons, design Cd2 is expected to yield the best performance
among the equidistant controller designs. The observations are corroborated by
the experiments in Section 2.7.
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2.6.6 Design 4: Non-equidistant control, single design

The non-equidistant sampling sequence ∆ne has periods smaller than 1
2

1
f2

=
0.56 ms and hence there is potential to suppress frequency f2. Note that this
potential is absent with ∆eq. Design Ca2 successfully suppresses f1 and is used
as starting point for design Cd4. The steps in Procedure 2.32 are as follows.

1. Ca4 = Ca2.

2. Cd4 is obtained by transforming Ca4 using (2.34) with δ = δi, i = 1, 2, 3.

3. Closed-loop stability for ∆ne is verified using Theorem 2.18 in
Appendix 2.D.

4. The performance functions are not shown since the design is not aimed at
performance.

Design Cd4 only addresses the f1 component. Next, frequency f2 is also ad-
dressed.

2.6.7 Design 5: Non-equidistant control, multiple designs

To suppress the f2 component, an additional inverse notch filter is used during
the first two intervals only to avoid aliasing during the third interval. This leads
to the LPTV control design Cd5 consisting of multiple designs, which is designed
using Procedure 2.33 as follows.

1. Ca5[1] = Ca5[2] = Ca2. Ca5[3] is obtained by extending Ca2 with an inverse
notch filter, with νn1 = νn2 = ν2, β1 = −0.07, β2 = 0.005, where ν2 =
1070 · 2π rad/s follows from f2 using (2.35). The additional suppression at
ν2 is shown in Appendix 2.C

2. Cd5[i] is obtained by transforming Ca5[i] using (2.34) with δ = δi, i =
1, 2, 3.

3. Closed-loop stability for ∆ne is verified using Theorem 2.18 in
Appendix 2.D.

4. The PFG of Sb,d5 is shown in Figure 2.13 and shows additional suppression
at f2 as desired.

Design 5 suppresses f1 and f2 and avoids aliasing. For these reasons, it
is expected that Cd5 yields the best performance among the non-equidistant
controller designs. In the next section, the observations are corroborated by
experiments.
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Table 2.2. Overview of the different control designs. Designs Cd4, Cd5 for
the non-equidistant sequence ∆ne outperform the designs Cd1, Cd2, Cd3 for the
equidistant sequence ∆eq in terms of minimizing the rms value of εb. Suppress-
ing f2a in Cd3 improves on-sample behavior ε, but degrades intersample behavior
in terms of minimizing the rms value of εb. Design Cd5 for the non-equidistantly
sampled sequence achieves the best performance.

Sampling Targeted frequencies On-sample Intersample
Label sequence f1 f2a f2 εrms [mrad] εb,rms [mrad]

Cd1 ∆eq × × × 24.03 19.84
Cd2 ∆eq X × × 22.09 17.48
Cd3 ∆eq X X × 3.56 19.51
Cd4 ∆ne X × × 19.39 16.53
Cd5 ∆ne X × X 13.54 12.65

2.7 Experimental validation

In this section, the five control designs of Section 2.6 are validated on the ex-
perimental setup presented in Section 2.6.1 and shown in Figure 2.9, which
constitutes Contribution 2.V. An overview of the different control designs is pre-
sented in Table 2.2. As expected based on Section 2.6, in terms of intersample
behavior, design Cd2 yields the best performance among the equidistant con-
trollers and design Cd5 yields the best performance among the non-equidistant
controllers. Most importantly, the non-equidistant controller designs are supe-
rior to the equidistant controller designs.

2.7.1 Equidistant control designs 1, 2, and 3

The error signals εb for the equidistant controller designs Cd1, Cd2, Cd3 are shown
in Figure 2.14(a) and confirm closed-loop stability. For design Cd1, the frequency
components f1, f2 in (2.36) and aliased component f2a are clearly visible. The
corresponding cumulative power spectra (CPS) of εb in Figure 2.14(b) show that
Cd2 almost completely suppresses f1 as desired.

The results in Figure 2.14(b) confirm the performance deterioration for design
Cd3 as suggested by the PFG in Figure 2.13. By Section 2.4.4, the PFG relates
the root-mean-square (rms) values to the CPS values. Indeed, the PFG of Sb,d3

in Figure 2.13 relates the f1, f2 contributions in (2.36) to the contributions in
the CPS of εb shown in Figure 2.14(b). Frequency f1 yields one contribution
in Figure 2.14(b) (f1), whereas frequency f2 yields two dominant contributions
due to aliasing (f2, f2a). Note that the PFG at input frequency f2 relates to the
combination of all related output frequencies, rather than only output frequency
f2.

The analysis based on the PFG is confirmed by the CPS of εb shown in
Figure 2.14(b). Appendix 2.E shows that the on-sample behavior, i.e., ε, does
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(a) Measured error signals εb for Cd1 ( ), Cd2 ( ), and Cd3 ( ).
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(b) Cumulative power spectrum of εb for Cd1 ( ), Cd2 ( ), and Cd3 ( ).

Figure 2.14. Error εb in the time and frequency domain for designs
Cd1, Cd2, Cd3. Frequency f1 = 10 Hz is successfully suppressed with design
Cd2. The suppression of f2a = 110 Hz with design Cd3 is unsuccessful since f2a

results from aliasing and is not present in ηb. Frequency f2 = 890 Hz cannot
be suppressed using control on ∆eq since f2 > feq,n. Design Cd2 yields the best
performance among the equidistant controllers.
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(a) Time-domain signals εb for Cd2 ( ), Cd4 ( ), and Cd5 ( ).

100 101 102 103 104
0

1

2

3

4
·10−4

Frequency [Hz]

C
P

S
ε b

[r
ad

2
]

(b) Cumulative power spectrum of εb for Cd2 ( ), Cd4 ( ), and Cd5 ( ).

Figure 2.15. Error εb in the time and frequency domain for designs
Cd2, Cd4, Cd5. Frequency f1 = 10 Hz is also successfully suppressed for design
Cd4 which improves performance compared to Cd2 due to the additional control
variable. In addition to Cd4, design Cd5 also partly suppresses f2 = 890 Hz and
yields the best performance among all controllers.

improve. However, the intersample behavior εb deteriorates, see Figure 2.14.
The results corroborate the analysis in Section 2.6.5 and the reasoning in Sec-
tion 2.2.2.

2.7.2 Equidistant control designs 4 and 5

Controller Cd4 is based on the same w-plane design as controller Cd2, with the
key difference that it is implemented for the non-equidistant sampling sequence
∆ne, rather than the equidistant sampling sequence ∆eq. Due to the additional
control variable in each period, it is expected that design Cd4 outperforms design
Cd2, see also Section 2.6. The experiments indeed show that Cd4 outperforms
Cd2, see the CPS of εb in Figure 2.15(b), which corroborates the analysis in
Section 2.6.6 and the reasoning in Section 2.2.3.
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Design Cd5 is based on the LPTV control design approach with multiple w-
plane control designs. The CPS of εb for design Cd5 is shown in Figure 2.15(b)
which shows that the addition of an inverse notch filter during the first two
intervals results in a smaller increase at f2 as desired. At the same time, there
is no aliasing since the notch filter is absent during the third interval. The
results validate the reasoning in Section 2.6, i.e., the non-equidistant controller
design Cd5 outperforms the non-equidistant controller design Cd4, and the non-
equidistant controller designs are superior to the equidistant controller designs.

2.7.3 Summary

The application and experimental validation of the proposed control design
framework, presented in the previous and current section, show the following
aspects: (i) loop-shaping design of non-equidistantly sampled controllers; (ii) ap-
plication of the Nyquist stability criterion for both equidistantly and non-equidis-
tantly sampled controller designs; (iii) application of the performance frequency
gain for performance assessment; and (iv) superior performance with control
design for the non-equidistant rate.

2.8 Conclusion and outlook

An intuitive design framework for loop-shaping control design for non-equidis-
tantly sampled systems is presented. The framework facilitates non-equidistant
controller design, which enables a substantial performance improvement and cost
reduction for control applications compared to conventional LTI designs. The
stability of the time-varying closed-loop system is evaluated using a Nyquist sta-
bility test and the performance is quantified using performance functions. Both
are based on non-parametric models and frequency response functions.

The LPTV loop-shaping design procedure is based on intuitive loop-shaping
techniques, similar to those for LTI systems. Application of the design framework
to a motion system and the experimental validation demonstrate the potential
of non-equidistant sampling and the proposed control design framework.

Ongoing research focuses on extending the presented loop-shaping design
guidelines for non-equidistantly sampled systems and non-parametric identifi-
cation of LPTV systems of which initial results can be found in De Rozario
and Oomen (2018a). Future research focuses on design of the (non-quidistant)
sampling sequence to further optimize the performance/cost trade-off with early
results in Oomen and Rojas (2017) and related to that the impact of deadline
misses along the lines of Geelen et al. (2016). Future research also focuses on
feedforward control for flexible sampled systems of which initial results can be
found in, for example, Chapter 8.
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0 1 2 3 4 k5 6 7

(a) Equidistant input sequence εb with period T = 4 ( ), and
non-equidistant sampling sequence Γne =

[
1 1 2

]
( ).

0 1 2 3 4 k5 6 7

(b) τ = 3 subband signals
after shifts.

0 1 2 3 4 k5 6 7

(c) Downsampling with
period T = 4.

0 1 2 3 4 k5 6 7

(d) Upsampling with
period T = 4.

0 1 2 3 4 k5 6 7

(e) Zero-order-hold inter-
polation with factor γi.

0 1 2 3 4 k5 6 7

(f) Correction for shift.

0 1 2 3 4 k5 6 7

(g) Equidistant output
νb is the sum.

Figure 2.16. Step-by-step example of the filter bank in Figure 2.7 for Γne =[
1 1 2

]
with Cd = Iτ .

2.A Example filter bank HCdD

The filter bank of HCdD in Figure 2.7 consists of multiple steps. Figure 2.16
illustrates the different steps for a simple example.

2.B Frequency distortion

Many discretizations yield approximation errors close to the Nyquist frequency
as shown in Figure 2.17. To avoid these effects, controllers are designed in the
w-plane. The frequency warping is eliminated by implementing a characteristic
at discrete-time frequency ω at the fictitious frequency ν given by (2.35).
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(a) The error is limited at low frequencies but significant at high frequencies.
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(b) Detailed view at high frequencies. There is an approximation error for the char-
acteristics at high frequencies introduced by the discretization, except for the w-plane
design.

Figure 2.17. The discretization of the continuous-time filter ( ) with sam-
pling frequency 1000 Hz yields approximation errors with the zero-order-hold
( ) and Tustin ( ) method. Through design in the w-plane ( ) the
characteristics are preserved.
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Figure 2.18. Bode magnitude diagram of sensitivity functions Sa in the w-
plane near ν2 = 1070 · 2π rad/s. The suppression at ν2 ( ) is larger for
Sa5,1 = Sa5,2 ( ) than for Sa2 ( ).
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(b) Detailed view around the origin.

Figure 2.19. Nyquist plot of det(Iτ +Ld) for designs Cd2 ( ), Cd4 ( ), and Cd5
( ). By application of the LPTV Nyquist test of Theorem 2.18, all controllers
stabilize the system.

2.C Non-equidistant control to suppress ν2

To suppress frequency ν2 in design Cd5, a notch filter is used during the first two
intervals, i.e., in Sa5[1], Sa5[2]. The suppression is shown in Figure 2.18.

2.D Nyquist stability non-equidistant sampling

Closed-loop stability for ∆ne for designs Cd4, Cd5 is verified using Theorem 2.18
based on the Nyquist plot in Figure 2.19. Stability follows along similar lines as
for the equidistant controller designs in Figure 2.11.
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Figure 2.20. Cumulative power spectrum of ε for the equidistant designs
Cd1 ( ), Cd2 ( ) and Cd3 ( ). Suppression of f2a = 110 Hz with Cd3
improves the on-sample behavior ε, but degrades the intersample behavior εb
in Figure 2.14(b).
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Figure 2.21. Design Cd3 yields good on-sample behavior ( ), but poor inter-
sample behavior ( ) by attenuating the aliased disturbance frequency f2a, rather
than the true disturbance frequency f2.

2.E On-sample performance Cd3

Design Cd3 improves the on-sample behavior compared to Cd2 as shown by
Figure 2.20. However, the intersample behavior is poor, see Figure 2.21. In fact,
the intersample behavior deteriorates compared to Cd2 as shown in Figure 2.14
and Table 2.2.



Chapter 3

System inversion for feedforward
and learning control

System inversion is at the basis of many feedforward and learning control al-
gorithms. The aim of this chapter is to analyze several of these approaches in
view of their subsequent use, showing inappropriate use that is previously over-
looked. This leads to different insights and new approaches for both feedforward
and learning control that are exploited in subsequent chapters. The methods are
compared in various aspects, including finite versus infinite preview, exact versus
approximate, and quality of inversion in various norms, which directly relates
to their use. In addition, extensions to multivariable and time-varying systems
are presented. The results are validated on a nonminimum-phase benchmark
system and constitute Contribution II.

3.1 Introduction

The quality of inversion depends on the control goal one has in mind. The aim of
this chapter is to investigate, compare, and develop inversion techniques for the
purpose of both feedforward and learning control. The model to be inverted can
be the closed-loop process sensitivity in iterative learning control (ILC) (Boeren
et al., 2016; Steinbuch and Van de Molengraft, 2000), the closed-loop com-
plementary sensitivity in repetitive control (Hara et al., 1988; Longman, 2010;
Blanken et al., 2017c), or the open-loop system in inverse model feedforward
(Boeren et al., 2015). For nonminimum-phase or strictly proper systems, such

The contents of this chapter are published in:
Jurgen van Zundert and Tom Oomen. On inversion-based approaches for feedforward and
ILC. IFAC Mechatronics, 50:282–291, 2018.
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inversion is not always straightforward. In addition, multivariable systems and
time-varying systems impose additional complications.

System inversion has received significant attention, also from a theoreti-
cal perspective (Silverman, 1969). Successful approximate solutions include
(Tomizuka, 1975), ZPETC (Tomizuka, 1987), ZMETC, NPZ-Ignore (Gross et
al., 1994), and EBZPETC (Torfs et al., 1992), see also Butterworth et al. (2012)
for an overview. Additionally, standard H∞ without preview has been used
(Wang et al., 2016; De Roover and Bosgra, 2000) to design ILC filters, as well as
H∞ preview in feedforward (Hazell and Limebeer, 2008; Mirkin, 2003). Further-
more, optimization-based approaches include techniques based on LQ tracking
control (Athans and Falb, 1966), also known as norm-optimal ILC (Gunnarsson
and Norrlöf, 2001), where in addition to inversion a weight on the input signal
can be imposed. In Wen and Potsaid (2004), ZPETC, ZMETC, and a model
matching approach are compared. The model matching approach is similar to
the H∞-preview control presented in this chapter, yet without preview.

Although many algorithms and approaches are available for system inver-
sion, the choice for a technique is sometimes made arbitrarily without a full
understanding of the alternatives and their underlying mechanisms. For exam-
ple, ZPETC is often used for the design of ILC filters, but requires an additional
robustness filter at the cost of performance (Steinbuch and Van de Molengraft,
2000; Bristow et al., 2010). Alternatively, infinite preview (Chapter 10) or H∞-
based (Wang et al., 2016; De Roover and Bosgra, 2000) techniques can be used.
However, Wang et al. (2016); De Roover and Bosgra (2000) lack the use of pre-
view and are recently extended in Blanken et al. (2016b) towards preview/fixed
lag smoothing situations.

This chapter provides guidelines on proper use of inversion techniques for
both inverse model feedforward and learning control by addressing the applica-
tion specific objective. The aim of this chapter is to compare existing approaches
and provide several new approaches with clear benefits. In this regard, it extends
Butterworth et al. (2012); Teng and Tsao (2015) with additional approaches by
explicitly addressing the control goal, and investigating applicability to multi-
variable and time-varying systems. It also extends Chapter 10 in which technical
results on several algorithms are presented by evaluating them in a broader per-
spective.

The outline of the chapter is as follows. In Section 3.2, the inverse model
feedforward and ILC optimization problems are cast in a single general frame-
work, and the associated challenges, optimization criteria, and properties are
presented. In Section 3.3, the benchmark system used for assessing the inversion
techniques is introduced. In Section 3.4, the inversion techniques are presented.
First, the well-known approximate inverse techniques NPZ-Ignore, ZPETC, and
ZMETC, and the stable inversion technique are recapitulated. Second, inver-
sion techniques based on norm-optimal feedforward/ILC are presented. Third,
H∞-preview control and H2-preview control are presented. In Section 3.5, the
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techniques are evaluated on the benchmark system of Section 3.3 in both a
feedforward and an ILC setting. In Section 3.6, extensions of the techniques in
Section 3.4 to multivariable and time-varying systems are considered. Section 3.7
contains conclusions and an outlook.

Notation. Apart from Section 3.6, discrete, single-input, single-output
(SISO), linear, time-invariant (LTI) systems are considered. In Section 3.6,
extensions to multi-input, multi-output (MIMO) and linear time-varying (LTV)

systems are presented. Let S = (1 +GC)
−1

denote the sensitivity function and
λi(·) the ith eigenvalue. A causal LTI system is referred to as stable (minimum
phase) if and only if all poles (zeros) are inside the unit circle, otherwise the
system is referred to as unstable (nonminimum phase). For ease of presentation,
it is assumed that the inverted system is hyperbolic, i.e., contains no eigenvalues
on the unit circle. Note that techniques as in Devasia (1997a) can be used to
relax this condition.

3.2 Problem definition

In this section, the inverse model feedforward and ILC optimization problem
are detailed, the common inversion problem is formulated, and the application
specific criteria are defined.

3.2.1 Role of inversion for feedforward and ILC

Feedback and feedforward control are typically combined to achieve high per-
formance. Feedback control can deal with uncertainty, but its performance is
limited due to Bode’s sensitivity integral. For known signals, feedforward con-
trol can be used to achieve excellent performance. In the feedforward scheme
of Figure 3.1(a), the goal is to design feedforward f such that tracking error
e = r − y is minimized, where r is the desired trajectory for output y. If the
system performs repetitive trajectories r, information of the previous task j can
be used to enhance the performance of the next task j + 1 through iterative
learning control (ILC). For the ILC scheme of Figure 3.1(b), fj+1 is designed
based on data ej , fj such that ej+1 = ej − SG(fj+1 − fj) is minimized.

Both the feedforward and the ILC design problem can be cast into the dia-
gram of Figure 3.1(c). As shown by Table 3.1, both problems are equivalent to
finding an input u such that error e is minimized. System H can be an open-
loop system as in feedforward (G) or a closed-loop system as in ILC (SG) and
repetitive control (SGC).

3.2.2 On inversion

Consider the general block diagram in Figure 3.1(c). Throughout this chapter,
it is assumed that system H is proper with relative degree d ∈ N, has p ∈ N
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Figure 3.1. The feedforward (a) and ILC (b) design problem are equivalent
to finding u in (c) that minimizes e.

Table 3.1. Conversion from feedforward in Figure 3.1(a) and ILC in Fig-
ure 3.1(b) into the general diagram of Figure 3.1(c).

r F u H W e

Feedforward control r F f G S e
Iterative learning control (ILC) ej L fj+1 − fj SG 1 ej+1

nonminimum-phase zeros, and has state-space realization (A,B,C,D). An im-
mediate solution to minimize e is to select F = H−1, where

H−1 z
=

[
A−BD−1C BD−1

−D−1C D−1

]
. (3.1)

At least three challenges are associated with the direct use of (3.1):

(i) Delay: for d > 0, H−1 does not exist since D is not invertible.

(ii) Non-square systems: systems with a different number of inputs and out-
puts cannot be directly inverted as in (3.1) since D is non-square.

(iii) Nonminimum-phase zeros: for p > 0, H−1 is unstable, which, when solved
forward in time, yields unbounded u.

This chapter mainly focuses on the third challenge. The second challenge is
addressed in Chapter 6.
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Remark 3.1. The first challenge can be overcome by inverting the bi-proper
system H̄ = zdH, where the acausal zd is implemented as a time shift on the
time-domain signal. Note that for an infinite-time horizon, filtering the time-
shifted signal with H̄ is equivalent to filtering the original signal with H, whereas
for a finite-time horizon this might introduce boundary errors.

3.2.3 Criteria

Depending on H, it might not be possible to achieve zero error e = 0. Therefore,
the inversion techniques construct u given a certain criterion aimed at minimizing
e. The criterion depends on the particular application.

In feedforward, generally high performance in terms of the error e is pursued.
Typically, this is enforced by minimizing the energy in the error signal through
minimizing ‖e‖2 (Van der Meulen et al., 2008; Boeren et al., 2015).

In ILC, the main concern is to guarantee convergence in the error to ensure
stability over trails. Superior performance is obtained by executing several trials.
For update fj+1 = fj +Lej , see also Figure 3.1(b), the error has trial dynamics
ej+1 = (1− SGL) ej . Hence, to ensure convergence of ‖ej‖2 over trials it should
hold ‖1 − SGL‖∞ < 1 (Bristow et al., 2006). Note that this is equivalent to
monotonic convergence of ‖ej − e∞‖2. Assuming this is feasible, the fastest
convergence for arbitrary ej is found by minimizing ‖1−SGL‖∞. In the general
block diagram of Figure 3.1(c), this is equivalent to minimizing ‖W (1−HF )‖∞.
Optionally, if convergence cannot be guaranteed, a robustness filter Q can be
added as fj+1 = Q(fj +Lej) with corresponding convergence condition ‖Q(1−
SGL)‖∞ < 1. If the model is uncertain, the condition can be evaluated for the
model with uncertainty or for the frequency response function of SG.

3.2.4 Properties

In Section 3.4, a variety of inversion techniques is presented. The main properties
of these techniques are:

� Finite versus infinite horizon design;

� Finite versus infinite preview, i.e., the required amount of future input
data;

� Applicability to SISO, MIMO, and non-square systems;

� Applicability to time-invariant and time-varying systems;

� Design objective.

An overview of these properties for the techniques in Section 3.4 is listed in
Section 3.5.



62 Chapter 3. System inversion for feedforward and learning control

yφ
x

u

Figure 3.2. The benchmark system is a mass that can translate in x direction
and rotate in φ direction. The system has input force u and output position y.

3.3 Benchmark system

To validate the inversion techniques of Section 3.4, the benchmark system shown
in Figure 3.2 is used. The continuous-time open-loop system G from force u [N]
to position y [m] is given by

G(s) =
−0.0625(s− 131.9)(s+ 56.87)

s2(s2 + 37.5s+ 3750)
. (3.2)

The zero-order-hold discretized system with sample time δ = 0.001 s is given by

G(z) =
−3× 10−8(z + 0.9632)(z − 0.9447)(z − 1.1410)

(z − 1)2(z2 − 1.9595z + 0.9632)
. (3.3)

The closed-loop system SG with feedback controller C(z) = 925(z−0.9979)
z−0.9813 is given

by

SG(z) =
−3× 10−8(z + 0.9632)(z − 0.9447)(z − 1.1410)(z − 0.9813)

(z − 0.9901)(z2 − 1.9903z + 0.9903)(z2 − 1.9605z + 0.9640)
. (3.4)

For both H = G in feedforward and H = SG in ILC, the following observations
can be made:

� H is stable (|λi(H)| ≤ 1, for all i);

� H has one nonminimum-phase zero z = 1.1410 (p = 1);

� H is strictly proper (D = 0) with relative degree d = 1, see also Re-
mark 3.1.

The step response for SG is shown in Figure 3.3. Due to the single nonmin-
imum-phase zero, the system initially moves in opposite direction (Vidyasagar,
1986).

The reference trajectory r is a fourth-order forward-backward motion of total
length N = 4201 samples and depicted in Figure 3.4. Time t = 0 is defined as
the start of the movement. The zero values at the start and end of the trajectory
allow for pre-actuation and post-actuation, respectively.
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(a) Response to positive step.
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(b) Initially, the system moves in negative
direction.

Figure 3.3. Step response of SG. The nonminimum-phase character of the
system is reflected in the system initially moving in opposite direction.
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Figure 3.4. Reference trajectory r consists of a forward and backward move-
ment and includes pre-actuation and post-actuation time.

3.4 Overview of techniques

In this section, inversion techniques are presented, developed, and implemented
on the benchmark system of Section 3.3.

3.4.1 Approximate inverse (NPZ-Ignore, ZPETC,
ZMETC)

3.4.1.1 Approach

As mentioned in Section 3.2.2, nonminimum-phase zeros and delays are key
challenges for system inversion. Let H be decomposed as

H(z) =
Bs(z)Bu(z)

A(z)
, (3.5)
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Table 3.2. Overview of NPZ-Ignore, ZPETC and ZMETC for decomposition
(3.5). The DC gain is compensated by β = Bu(1), see also Appendix 3.A.

Technique F (z) Preview H(z)F (z)

NPZ-Ignore
A(z)

βBs(z)
p+ d

Bu(z)

β

ZPETC
z−pA(z)B∗u(z)

β2Bs(z)
p+ d

z−pBu(z)B∗u(z)

β2

ZMETC
A(z)

Bs(z)B∗u(z)
d

Bu(z)

B∗u(z)

with Bs(z) containing all minimum-phase zeros and Bu(z) the p nonminimum-
phase zeros. A key issue is that B−1

u (z) is unstable. Several techniques have
been proposed to approximate the inverse of Bu(z), including NPZ-Ignore (Gross
et al., 1994), zero phase error tracking control (ZPETC) (Tomizuka, 1987), and
zero-magnitude-error tracking control (ZMETC). The results for these approach-
es are summarized in Table 3.2. If H(z) is nonminimum phase, i.e., p > 0, then
H(z)F (z) 6= 1 and stable. If H(z) is minimum phase, i.e., p = 0, all three
approaches are identical and exact: H(z)F (z) = 1. More background on these
approaches can be found in Appendix 3.A. See, for example, Butterworth et al.
(2012) for a comparison.

3.4.1.2 Application to benchmark system

To demonstrate the characteristics of these approaches, the approaches are ap-
plied to the benchmark system of Section 3.3 for H = G. The Bode diagram of
HF for each technique is shown in Figure 3.5. Recalling that ideally HF = 1,
it can observed that ZPETC indeed has zero phase error, ZMETC has zero
magnitude error, and NPZ-Ignore has both a magnitude and phase error.

3.4.1.3 Summary

The techniques in Table 3.2 are based on an approximate infinite horizon design
and have finite preview.

3.4.2 Stable inversion

In this section, the stable inversion approach for LTI systems is presented. For
inversion of LTV systems see Chapter 10.
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Figure 3.5. HF for NPZ-Ignore ( ), ZPETC ( ), and ZMETC ( ).
HF has zero phase for ZPETC and zero magnitude for ZMETC.

3.4.2.1 Approach

The techniques presented in the previous section are all based on approximations
of the unstable part of the inverse system. In contrast, stable inversion regards
the unstable part as a noncausal operation and generates signal u based on
infinite preview. Consider LTI system H̄ of Remark 3.1 in state-space form
with state x. The state of the inverse H̄−1 is divided into a stable and unstable

part by applying the state transformation x[k] = T

[
xs[k]
xu[k]

]
, where T contains

eigenvectors of H̄−1 such that[
xs[k + 1]
xu[k + 1]

]
=

[
As 0
0 Au

] [
xs[k]
xu[k]

]
+

[
Bs
Bu

]
r[k], (3.6)

u[k] =
[
Cs Cu

] [xs[k]
xu[k]

]
+Dr[k], (3.7)

with |λ(As)| < 1 and |λ(Au)| > 1, i.e., all stable poles are contained in As and
all unstable poles in Au. The bounded states are found through solving

xs[k + 1] = Asxs[k] +Bsr[k], xs[−∞] = 0 (3.8)

forward in time and

xu[k + 1] = Auxu[k] +Bur[k], xu[∞] = 0 (3.9)
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backward in time. The command signal u follows from

u[k] = Csxs[k] + Cuxu[k] +Dr[k]. (3.10)

In practice, the boundaries are finite, i.e., xs[0] = xs,0, xu[N ] = xu,N , and
introduce boundary errors.

The dichotomy in a stable and unstable part as in (3.6) is nontrivial for lin-
ear time-varying (LTV) systems. The dichotomy for a very general LTV case is
presented in Chapter 4, namely for linear periodically time-varying (LPTV) sys-
tems. For the LTI benchmark system considered in this chapter the dichotomy
can be found through an eigenvalue decomposition as shown above.

3.4.2.2 Application to benchmark system

To illustrate the influence of preview on the performance of the stable inversion
approach, the approach is applied to H = G with r the reference trajectory
of Figure 3.4 in the time intervals [−0.06, 0.2] and [−0.08, 0.2], i.e., the pre-
actuation is restricted to either 60 or 80 samples and the post-actuation to 0
samples. The results in Figure 3.6 show a considerable performance improve-
ment when increasing the pre-actuation from 60 to 80 samples. For infinite
pre-actuation and post-actuation, the results become exact.

3.4.2.3 Summary

Stable inversion is an infinite-time design that is exact on an infinite-time horizon
and has infinite preview. A finite-time horizon introduces boundary errors.

3.4.3 Norm-optimal feedforward/ILC

In this section, norm-optimal inversion techniques based on norm-optimal ILC
techniques are presented.

3.4.3.1 Approach

Within ILC there are two main classes (Bristow et al., 2006). The first class
is frequency-domain ILC in which a learning filter L ≈ (SG)−1 is constructed.
The filter is typically implemented using ZPETC or ZMETC, see Section 3.4.1.
The second class is norm-optimal ILC in which the 2-norms of ej+1 and fj+1

are minimized. Here, subscript j denotes the current trial and j + 1 the next
trial. Common solution methods are adjoint ILC and lifted ILC. The reader is
referred to Owens and Chu (2009); Owens et al. (2014) for adjoint ILC, including
the effect of nonminimum-phase zeros. In this chapter, the focus is on lifted
ILC. In lifted ILC, the solution is based on describing input-output relations in
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(a) Stable inversion generates identical u
with 60 samples preview ( ) and 80 sam-
ples preview ( ) for t ≥ −0.06, whereas for
80 samples preview u is non-zero for −0.08 ≤
t < −0.06.
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(b) Norm-optimal feedforward generates a
non-zero input u at the begin of the task to
compensate for boundary effects. The effect
is larger for 60 samples preview ( ) than
for 80 samples preview ( ).
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(c) The infinite-time design of stable inver-
sion introduces significant boundary errors on
a finite interval. The error is larger with 60
samples preview ( ) than with 80 samples
preview ( ).
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(d) The finite-time design of norm-optimal
feedforward inversion introduces small
boundary errors. The error is smaller with
80 samples preview ( ) than with 60
samples preview ( ).

Figure 3.6. The finite-time design of norm-optimal feedforward generates an
input that compensates for boundary effects and thereby outperforms stable
inversion on a finite horizon since the latter is an infinite-time design.
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lifted/supervector notation (Moore, 1993). For example, the relation between y
and u is described by

y[0]
y[1]
...

y[N − 1]


︸ ︷︷ ︸

y

=


h(0) 0 . . . 0
h(1) h(0) . . . 0
...

...
. . .

...
h(N − 1) h(N − 2) . . . h(0)


︸ ︷︷ ︸

H


u[0]
u[1]
...

u[N − 1]


︸ ︷︷ ︸

u

, (3.11)

where h is the impulse response of H given by

h(k) =

{
D, k = 0,

CAk−1B, k = 1, 2, . . . , N − 1,
(3.12)

with N the task length. A general performance criterion is

‖ej+1‖2We
+ ‖fj+1‖2Wf

+ ‖fj+1 − fj‖2W∆f
, (3.13)

where ‖(·)‖2W = (·)>W (·), with We = weIN , Wf = wfIN , W∆f = w∆fIN . The
solution that minimizes this criterion is, see for example Theorem 10.2,

f
j+1

= Qf
j

+ Lej , (3.14)

Q =
(
H>weH + wfI + w∆fI

)−1(
H>weH + w∆fI

)
, (3.15)

L =
(
H>weH + wfI + w∆fI

)−1
H>we. (3.16)

The use of N × N matrix calculations results in extensive computation times
growing as O(N3), see Chapter 10. An alternative is to use Riccati equations to
find the optimal solution as is done in Chapter 10. The approach yields exactly
the same optimal solution, but the computation time is limited to O(N). Next,
the resource-efficient approach based on Riccati equations is used for both ILC
and feedforward design.

First, the approach for ILC is presented. Criterion (3.13) is equivalent to

N−1∑
k=1

(
(ej+1[k])>we(ej+1[k]) + (fj+1[k])>wf (fj+1[k])

+ (fj+1[k]− fj [k])>w∆f (fj+1[k]− fj [k])
)
.

(3.17)

The optimal command signal fj+1 that minimizes (3.17) is the output of the
state-space system[

A−BL[k] −BLf [k] BLe[k] BLg[k]
−L[k] Ini − Lf [k] Le[k] Lg[k]

]
, (3.18)
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with zero initial state for input

 fj [k]
ej [k]

gj+1[k + 1]

, where

L[k] =
(
γ−1[k] +B>P [k + 1]B

)−1 (
D>weC +B>P [k + 1]A

)
, (3.19)

Lf [k] =
(
γ−1[k] +B>P [k + 1]B

)−1
wf , (3.20)

Le[k] =
(
γ−1[k] +B>P [k + 1]B

)−1
D>we, (3.21)

Lg[k] =
(
γ−1[k] +B>P [k + 1]B

)−1
B>, (3.22)

γ =
(
D>weD + wf + w∆f

)−1
, (3.23)

with

gj+1[k] =
(
A> −Kg[k]B>

)
gj+1[k + 1] + C>weej [k] +Kg[k]wffj [k], (3.24a)

gj+1[N ] = 0nx×1, (3.24b)

where

Kg[k] =
(
A> − C>weDγB>

)
P [k + 1]

(
Inx +BγB>P [k + 1]

)−1
Bγ, (3.25)

and P [k] the solution of the matrix difference Riccati equation

P [k] =
(
A−BγD>weC

)>
P [k + 1]

×
(
Inx −B

(
γ−1[k] +B>P [k + 1]B

)−1
B>P [k + 1]

)
×
(
A−BγD>weC

)
+ C>weC − (D>weC)>γ(D>weC),

(3.26a)

P [N ] = 0nx×nx . (3.26b)

It can be shown that ‖ej − e∞‖2 converges monotonically if we > 0,
wf , w∆f ≥ 0. If H is strictly proper, i.e., D = 0, then wf > 0 or w∆f > 0
is required to guarantee monotonic convergence. This inherently reduces the
performance in terms of ‖e‖2 since input fj or the convergence speed is pe-
nalized. To avoid this, H can be made bi-proper by applying time shifts, see
Remark 3.1, such that D 6= 0 and hence wf = w∆f = 0 can be used.

Next, the approach for inverse model feedforward is presented. Feedforward
can be seen as a special case of ILC in which there is only one trial and hence no
input change weight w∆f . In particular, if H is bi-proper and wf , w∆f = 0, the
solution reduces to inverse model ILC. Without input change weight (w∆f = 0),
and we = Q, wf = R, (3.17) reduces to the LQ criterion

N−1∑
k=1

e>[k]Qe[k] + u>[k]Ru[k]. (3.27)
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For the case without direct feedthrough (D = 0), the problem reduces further
to the well-known LQ tracking problem (Athans and Falb, 1966), with solution

x[k + 1] = (A−BL[k])x[k] +BLg[k]g[k + 1], x[0] = 0, (3.28)

u[k] = −L[k]x[k] + Lg[k]g[k + 1], (3.29)

where

L[k] =
(
R+B>P [k + 1]B

)−1
B>P [k + 1]A, (3.30)

Lg[k] =
(
R+B>P [k + 1]B

)−1
B>, (3.31)

with

g[k] = C>Qr[k]

+A>
(
I − (P−1[k + 1] +BR−1B>)−1BR−1B>

)
g[k + 1],

(3.32a)

g[N ] = 0, (3.32b)

and P [k] the solution of the matrix difference Riccati equation

P [k] = C>QC +A>P [k + 1]A

−A>P [k + 1]B
(
R+B>P [k + 1]B

)−1
B>P [k + 1]A,

(3.33a)

P [N ] = 0. (3.33b)

3.4.3.2 Application to benchmark system

The norm-optimal feedforward approach is applied to the benchmark system
H = G under the same conditions as in Section 3.4.2, i.e., with reduced pre-
actuation and post-actuation. The results are shown in Figure 3.6. The approach
outperforms stable inversion since it takes the boundary effects into account
using the linear time-varying (LTV) character of the solution. This behavior
can be observed at the start of u in Figure 3.6(b).

3.4.3.3 Summary

Norm-optimal ILC/feedforward is a finite-time design and has infinite preview,
i.e., equal to the task length. The approach is optimal in terms of minimizing
‖e‖2 if wf = 0 in ILC or if R = 0 in feedforward.

3.4.4 Preview control

In preview control the inverse system is optimized for a specific infinite-time
objective, with pre-defined preview.
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(a) In preview control, the objective is minimization of a certain
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Figure 3.7. In preview control, the preview q is fixed and F̄ is optimized to
minimize a certain norm on the transfer function w̄ 7→ e.

3.4.4.1 Approach

A general formulation of preview control is shown in Figure 3.7(a) where F is
decomposed into F = F̄ zq, with preview q ∈ N. Note that an input weighting
Wr is added compared to Figure 3.1(c). For fixed q, F̄ follows from

F̄ = arg min
F̄
‖W

(
z−q −HF̄

)
Wr‖x, (3.34)

where ‖·‖x is a certain norm. The problem cast into the general plant formulation
is shown in Figure 3.7(b). Note that the pre-multiplication with the acausal
part zq is not part of generalized plant P to ensure P ∈ RH∞. For the special
case without preview, i.e., q = 0, the approach in Wen and Potsaid (2004) is
recovered.

First, optimal ILC synthesis is presented in which the induced (worst-case)
2-norm of the error e is minimized by using H∞-preview control, i.e., x =∞ in
(3.34). The input is set to w = r, i.e., Wr = 1. H∞ synthesis on P minimizes
‖W

(
z−q −HF̄

)
‖∞ = ‖W (1−HF ) ‖∞ which is the ILC convergence criterion

for W = 1, see also Section 3.2.3.
Second, optimal inverse model feedforward synthesis is presented in which

‖e‖2 is minimized for a specific reference r by using H2-preview control, i.e.,
x = 2 in (3.34). Input w is white noise of unity intensity and Wr is the power
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(a) |W (1−HF )| for H∞-preview control for q = 0 ( ), q = 20 ( ), q = 40 ( ),
and q = 90 ( ). For larger q, the maximum of |W (1−HF )| is smaller
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(b) |HF | for H2-preview control for q = 1 ( ), q = 20 ( ), q = 40 ( ), and
q = 90 ( ). For larger q, |HF | is closer to unity.

Figure 3.8. H∞-preview control and H2-preview control for a range of preview
values q. More preview yields better performance.

spectrum of r such that H2 synthesis on P minimizes ‖e‖2 for the spectrum of
r = Wrw.

3.4.4.2 Application to benchmark system

ForH∞-preview control in a feedfoward setting, the results for a range of preview
values q are shown in Figure 3.8(a). More preview q introduces more design
freedom and hence ‖W (1−HF )‖∞ decreases.

For H2-preview control in a feedforward setting with input weighting

Wr(z) =

(
2.0236(z + 0.03295)

z − 0.9570

)4

, (3.35)

the resulting filtersHF for a range of preview values q are shown in Figure 3.8(b).
For larger q, |HF | is closer to unity.
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Table 3.3. Overview of inversion techniques. *See Section 3.6.

Technique Design Preview Dimensions*
Time

Aim
varying*

NPZ-Ignore Infinite Finite SISO No H−1 approx.
ZPETC Infinite Finite SISO No H−1 approx.
ZMETC Infinite Finite SISO No H−1 approx.

Stable inversion Infinite Infinite Square Yes H−1 exact
Norm-optimal Finite Infinite Non-square Yes min ‖e‖2
H∞-preview Infinite Finite Non-square No min ‖W (1−HF )‖∞
H2-preview Infinite Finite Non-square No min ‖e‖2

Table 3.4. Design and performance in a feedforward setting.

Technique Settings ‖e‖2
NPZ-Ignore - 0.0153

ZPETC - 0.0050
ZMETC - 0.0317

Stable inversion - 3.5849× 10−11

Norm-optimal Q = 1; R = 0 7.7392× 10−11

H∞-preview q = 100 3.6942× 10−6

H2-preview Wr: (3.35); q = 100 6.6786× 10−9

3.4.4.3 Summary

Preview control is an infinite-time design with finite pre-defined preview. H∞-
preview control and H2-preview control address the control goal in ILC and
feedforward, respectively.

3.5 A control goal perspective

A qualitative overview of the inversion techniques of the previous section is
provided in Table 3.3. Extensions to multivariable and time-varying systems are
presented in Section 3.6. In this section, the control goal is added to the inversion
techniques of Section 3.4 and the results are validated on the benchmark system
of Section 3.3.

3.5.1 Application to feedforward

Table 3.4 summarizes the results of the techniques in a feedforward setting on
the benchmark system of Section 3.3. For norm-optimal feedforward the system
is made bi-proper through shifting r such that R = 0 can be used, see also
Section 3.4.3. For H∞-preview control and H2-preview control, q = 100 samples
preview are used. Wr for H2-preview control is given by (3.35).
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The time signals u and e are shown in Figure 3.9 and Figure 3.10, respectively.
Figure 3.9 shows d = 1 sample preview for ZMETC, p+d = 2 samples preview for
NPZ-Ignore and ZPETC, q = 100 samples preview for H∞-preview control and
H2-preview control, and infinite preview for stable inversion and norm-optimal
feedforward.

Figure 3.9(a) shows that the generated inputs of NPZ-Ignore and ZPETC are
not very well suited for practical application, which is in line with the analysis
in Butterworth et al. (2012, Section 6). Also the errors are considerably large
as shown in Table 3.4 and Figure 3.10. Note that only part of the time axis is
shown.

Figure 3.9(b) shows that the inputs of stable inversion, norm-optimal feed-
forward, H∞-preview control, and H2-preview control are similar, whereas that
of ZMETC is different. Table 3.4 and Figure 3.10 show a large error for the ap-
proximate inverse techniques. Stable inversion, norm-optimal feedforward, and
H2-preview control achieve the lowest ‖e‖2, which is to be expected since these
techniques are aimed at minimizing ‖e‖2, see also Table 3.3. H∞-preview con-
trol achieves moderate performance since it aims at minimizing ‖W (1−HF )‖∞
rather than ‖e‖2. The desired preview in preview control depends on the lo-
cation of the nonminimum-phase zeros (Middleton et al., 2004), where higher
preview enhances performance.

3.5.2 Application to ILC

3.5.2.1 Guaranteed convergence

In an ILC setting, there is guaranteed convergence in error norm ‖ej‖2 over
the trials if ‖W (1 − HF )‖∞ = ‖1 − SGF‖∞ < 1, see also Section 3.2.3. It
might be possible that the condition cannot be satisfied at all, but if the condi-
tion can be satisfied, H∞-preview control guarantees convergence since it min-
imizes ‖W (1−HF )‖∞, see Section 3.4.4. Figure 3.11(a) shows the Bode mag-
nitude |W (1 − HF )| for techniques with explicit design of F . Note that since
the benchmark system is singlevariable, ‖W (1−HF )‖∞ = maxω |W (ejωδ)(1−
H(ejωδ)F (ejωδ))|. The figure reveals that both H∞-preview control and H2-
preview control are guaranteed to converge. The approximate inverse techniques
require a robustness filter W 6= 1 to guarantee convergence, which goes at the
expense of performance, i.e., W (1−HF ) for some possibly noncausal W .

On an infinite-time horizon, stable inversion is also guaranteed to converge
since it is exact. However, on a finite-time interval truncation errors might de-
teriorate convergence. Finally, convergence can be guaranteed for norm-optimal
ILC by proper weight selection, see Section 3.4.3.

In summary, convergence in ‖ej‖2 can be guaranteed for H∞-preview con-
trol, H2-preview control, norm-optimal ILC, and stable inversion (on an infinite
horizon). For NPZ-Ignore, ZPETC and ZMETC an additional robustness filter
W 6= 1 is required to enforce convergence, at the cost of performance.
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(a) NPZ-Ignore ( ) and ZPETC ( ).
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(b) ZMETC ( ), stable inversion ( ), norm-optimal feedforward ( ), H∞-
preview control ( ), and H2-preview control ( ). All except ZMETC are over-
lapping.

Figure 3.9. Command signal u. The signals in (a) are unacceptably large.
The signals in (b) are satisfactory.

3.5.2.2 Application to the benchmark system

The convergence on the benchmark system of Section 3.3 is investigated. Fig-
ure 3.11(b) shows ‖ej‖2 over 11 trials. The results show that there is indeed con-
vergence for H∞-preview control, H2-preview control, and norm-optimal ILC,
and also for stable inversion despite the boundary errors. For the approximate
inverse techniques NPZ-Ignore, ZPETC, and ZMETC an additional robust fil-
ter W is used to guarantee convergence. The robustness filter is designed as
W = Q∗Q with Q∗ the adjoint of Q to avoid phase distortion. A first-order
low-pass filter is used for Q to reduce the high frequent magnitude, see also
Figure 3.11(a).

Since the approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC
require an additional robustness filter W 6= 1, the limit error is nonzero, i.e.,
e∞ 6= 0. The consequence is a poor performance as shown by Figure 3.11(b)
confirming statements in earlier sections.

Since there are no trial-varying disturbances, the theoretical limit error equals
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(a) NPZ-Ignore ( ), ZPETC ( ), and ZMETC ( ).
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(b) Stable inversion ( ), norm-optimal feedforward ( ), H∞-preview control
( ), and H2-preview control ( ). Norm-optimal feedforward, stable inversion,
and H2-preview control are overlapping.

Figure 3.10. Error signal e. The errors in (a) are unacceptably large. The
errors in (b) are close to zero as desired.

e∞ = 0 for all methods without robustness filter, i.e., all except the approximate
inverse techniques. However, due to numerical aspects, this value is not achieved
exactly. Norm-optimal ILC converges in a single trial to e∞ since wf = w∆f = 0.
In contrast, H∞-preview control, H2-preview control and stable inversion are not
exact and therefore require multiple trials to converge. The number of preview
samples q in H∞-preview control (q = 100 in Figure 3.11) directly influences the
convergence speed. Ideally, the H2-preview control filter F is updated every trial
based on the spectrum of ej . Figure 3.11 shows the results for fixed F based on
the spectrum of e0 = Sr with q = 100.
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(a) ILC convergence is only guaranteed for H∞-preview control ( ) and H2-preview
control ( ) since only for these approaches |1 − SG(ejωδ)F (ejωδ)| < 1, for all fre-
quencies ω. The approximate inverse techniques NPZ-Ignore ( ), ZPETC ( ),
and ZMETC ( ) require an additional robustness to guarantee convergence (not
shown).
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(b) For the approximate inverse techniques NPZ-Ignore ( ), ZPETC ( ), and
ZMETC ( ) convergence is enforced through a robustness filter W = Q∗Q at the
cost of performance ‖ej‖2. All other techniques, i.e., stable inversion ( ), norm-
optimal feedforward ( ), H∞-preview control ( ), and H2-preview control ( ),
converge to zero error up to numerical precision. Norm-optimal ILC is exact and
therefore converges in a single trial.

Figure 3.11. Application in ILC with the convergence condition in (a) and
the performance in (b).
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3.6 Extensions: Multivariable, time varying,
parameter varying, and nonlinear

The applicability of each technique to multivariable and time-varying systems is
summarized in Table 3.3. For NPZ-Ignore, ZPETC, and ZMETC the extension
to multivariable systems is nontrivial. In Blanken et al. (2016b), an approach for
multivariable ZPETC is proposed, which applies multiple times SISO ZPETC
to the Smith form of the system. Similarly, the Smith form can be used to
construct NPZ-Ignore and ZMETC. However, in Blanken et al. (2016b) it is
concluded that at present there are no numerically stable algorithms for finding
Smith forms. Therefore, these techniques currently seem to be limited to SISO
systems.

Techniques based on state-space descriptions, such as stable inversion and
norm-optimal feedforward/ILC, can directly be extended to multivariable sys-
tems. Note, however, that stable inversion is only applicable to square systems
since it requires the inverse system (3.1). Also H∞-preview control and H2-
preview control can directly be extended, but the exact implementation depends
on the specific requirements. For example, in ILC convergence over trials of the
error ej is determined by (I − (SG)F ) whereas convergence of input u is deter-
mined by (I−F (SG)), and generally (SG)F 6= F (SG) for multivariable systems.
For underactuated systems, i.e., with more outputs than inputs, exact tracking
is impossible. For overactuated systems, i.e., with more inputs than outputs,
exact tracking is possible and the additional degrees of freedom can be exploited
to satisfy additional requirements, see Chapter 6.

Application to time-varying systems is restricted to stable inversion and
norm-optimal feedforward/ILC since others are based on time-invariant fre-
quency-domain techniques. However, the dichotomy in stable inversion is non-
trivial for general time-varying systems. For linear periodically time-varying
(LPTV) systems this is solved in Chapter 4.

For stable inversion for nonlinear systems, the reader is referred to Devasia
and Paden (1998); Pavlov and Pettersen (2008). For linear parameter-varying
systems, the reader is referred to Sato (2008).

3.7 Conclusion and outlook

Inversion techniques are essential for achieving high performance in motion sys-
tems, either through inverse model feedforward or learning control. In this chap-
ter, the criteria for inverse model feedforward and ILC are posed and several in-
version techniques are investigated, developed, and compared on a nonminimum-
phase benchmark system, resulting in the following guidelines.

For inverse model feedforward, norm-optimal feedforward in Section 3.4.3
has important advantages as it explicitly takes into account boundary effects. If
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boundary effects are not critical, H2-preview control in Section 3.4.4 is recom-
mended as infinite-time design.

For ILC, filter synthesis via H∞-preview control in Section 3.4.4 is strongly
recommended, since the optimization criterion is taken equal to the convergence
condition of ILC. For non-optimal filter design, stable inversion in Section 3.4.2 is
experienced to yield better results than the approximate inverse techniques NPZ-
Ignore, ZPETC, and ZMETC in Section 3.4.1. Importantly, the approximate
inverse techniques typically require an additional robustness filter at the cost of
performance.

For applicability of the techniques to multivariable and time-varying systems
the following conclusions are drawn. The approximate inverse techniques NPZ-
Ignore, ZPETC, and ZMETC are currently limited to SISO systems. Stable
inversion, norm-optimal feedforward/ILC, H∞-preview control, and H2-preview
control can directly be applied multivariable systems, although stable inversion
is limited to square systems. Only stable inversion and norm-optimal feedfor-
ward/ILC are applicable to time-varying systems.

Ongoing research focuses on different system classes such as linear time vary-
ing (LTV), linear periodically time varying (LPTV), linear parameter varying
(LPV), position dependent, and data-driven methods (Kim and Zou, 2008; Teng
and Tsao, 2015; De Rozario and Oomen, 2018b; Bolder et al., 2016). Initial re-
sults can be found in Chapters 4, 5 and 10.

3.A Background approximate inverse
techniques

In this appendix the approximate inverse techniques NPZ-Ignore, ZPETC, and
ZMETC are derived for the decomposition in (3.5). The results are summarized
in Table 3.2.

NPZ-Ignore ignores the nonminimum-phase dynamics by using

F (z) =
A(z)

βBs(z)
(3.36)

resulting in

H(z)F (z) =
Bu(z)

β
. (3.37)

Parameter β is a tuning parameter and typically used to compensate for the DC
gain by setting

β = Bu(1). (3.38)

Note that (3.36) has p+d samples preview. Recalling that ideally H(z)F (z) = 1,
it follows that for p > 0 there is an error in both magnitude and phase.
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Zero phase error tracking control (ZPETC) perfectly compensates for the
phase using

F (z) =
A(z)Bu(z−1)

β2Bs(z)
=
z−pA(z)B∗u(z)

β2Bs(z)
, (3.39)

with

B∗u(z) = zpBu(z−1). (3.40)

For this choice it follows that

H(z)F (z) =
Bu(z)Bu(z−1)

β2
=
z−pBu(z)B∗u(z)

β2
(3.41)

has zero phase as desired. Note that with β in (3.38) the DC gain is compensated
and that (3.39) has p+ d samples preview.

Zero-magnitude-error tracking control (ZMETC) perfectly compensates the
magnitude by using

F (z) =
A(z)

zpBs(z)Bu(z−1)
=

A(z)

Bs(z)B∗u(z)
, (3.42)

resulting in

H(z)F (z) =
Bu(z)

zpBu(z−1)
=
Bu(z)

B∗u(z)
. (3.43)

Note that (3.43) indeed has zero magnitude error, i.e., unity magnitude, and
that (3.42) has d preview samples.



Chapter 4

Stable inversion of LPTV systems

In Chapter 3, several approaches for system inversion of nonminimum-phase
systems are presented. The results show that for linear time-invariant (LTI),
nonminimum-phase systems, a bounded, noncausal inverse response can be ob-
tained through stable inversion based on an exponential dichotomy. However,
for generic linear time-varying (LTV) systems, such a dichotomy does not exist
in general. The aim of this chapter is to develop an inversion approach for an im-
portant class of LTV systems, namely linear periodically time-varying (LPTV)
systems, which occur in, e.g., position-dependent systems with periodic tasks and
periodic, non-equidistantly sampled systems. The proposed methodology ex-
ploits the periodicity to determine a bounded inverse for general LPTV systems.
Conditions for existence are provided. The method is successfully demonstrated
in several application cases, including position-dependent and non-equidistantly
sampled systems, and constitutes Contribution III.A.

4.1 Introduction

Inverses of dynamical systems are essential in many control applications, includ-
ing feedforward and learning control. The early inversion approaches in Silver-
man (1969); Hirschorn (1979) are restricted to causal inverses of minimum-phase
systems since they lead to unbounded responses for nonminimum-phase systems.
See, for example, Butterworth et al. (2008) for the effect of nonminimum-phase
zeros. Interestingly, in Section 3.4.2; Devasia and Paden 1994; Hunt et al. 1996;

The contents of this chapter are published in:
Jurgen van Zundert and Tom Oomen. Stable inversion of LPTV systems with application in
position-dependent and non-equidistantly sampled systems. International Journal of Control,
2017. doi: 10.1080/00207179.2017.1380315.

https://doi.org/10.1080/00207179.2017.1380315
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Devasia et al. 1996, an exact inverse for nonminimum-phase systems is obtained
with bounded responses. This stable inversion approach is based on a dichotomy
of the inverted system into a stable part and an unstable part. It essentially
uses a bi-lateral Laplace or Z-transform (Sogo, 2010) by regarding the unstable
part as an acausal operation and solving it backward in time. For linear time-
invariant (LTI) systems such a dichotomy is trivial and successful applications
in feedforward and learning control are reported in Boeren et al. (2015); Bolder
and Oomen (2015); Clayton et al. (2009).

Linear time variance has a large impact on system inversion approaches.
Such linear time-varying (LTV) applications occur frequently, e.g., (i) multirate
systems with different sampling frequencies (Chen and Francis, 1995; Fujimoto
and Hori, 2002; Ohnishi and Fujimoto, 2016b); (ii) non-equidistantly sampled
systems with time-varying sampling intervals (Chapter 8); and (iii) position-
dependent systems with periodic tasks (De Rozario et al. 2017; Chapter 10).
Similar to LTI systems, inversion of LTV systems can lead to unbounded re-
sponses if a causal inverse is computed. For these applications, it is of direct
interest to compute system inverses with bounded responses, similar to stable
inversion techniques for LTI systems. However, an exponential dichotomy for
LTV systems is nontrivial. In fact, such a dichotomy does not exist for the
general class of LTV systems, as is shown in Coppel (1978) and Section 4.3.

Although stable inversion is a standard technique for LTI systems, it does
not directly apply to LTV systems. The aim of this chapter is to provide a
direct solution for linear periodically time-varying (LPTV) systems, which form
an important subclass of LTV systems. In fact, the mentioned LTV applications
(i)–(iii) typically satisfy the additional periodicity property. In this chapter, the
periodicity of LPTV systems is exploited to establish the required exponential
dichotomy, enabling the use of stable inversion for LPTV systems. The presented
work relates to Devasia and Paden (1994); Hunt et al. (1996); Devasia et al.
(1996); Devasia and Paden (1998); Pavlov and Pettersen (2008) where nonlinear
systems are investigated and related conditions are imposed on the system, and
to Devasia and Paden (1998); Zou and Devasia (1999); Zou and Devasia (2004);
Zou (2009); Jetto et al. (2015) where perfect tracking is compromised for finite
preview, with extension to nonlinear systems in Zou and Devasia (2007). For
LTI systems, approaches related to stable inversion include inversion via lifting
(Bayard, 1994), geometric approaches (Marro et al., 2002; Zattoni, 2014), and
state-space reduction for non-square systems (Moylan, 1977). For continuous-
time LTV systems with a time-varying state-to-output map, see Kasemsinsup
et al. (2016).

The main contribution of this chapter is stable inversion for LPTV systems,
with the following sub-contributions.

4.I It is shown that an exponential dichotomy does not always exist for gen-
eral LTV systems.
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4.II It is shown that an exponential dichotomy always exists for LPTV sys-
tems under mild conditions similar to those for LTI systems.

4.III Two computational procedures of the exponential dichotomy for LPTV
systems are provided: one for reversible systems and one for non-re-
versible systems.

4.IV The proposed approach is demonstrated via three cases: (i) a reversible
numerical example; (ii) a non-equidistantly sampled system; and (iii) a
position-dependent system.

The outline of this chapter is as follows. In Section 4.2, the stable inversion
problem for general LTV systems is formulated. The key issue lies in finding an
exponential dichotomy. In Section 4.3, it is shown that such a dichotomy does
not always exist for general LTV systems, which constitutes Contribution 4.I.
In Section 4.4, the exponential dichotomy for LPTV systems is presented and
shown to always exist, which constitutes Contribution 4.II. In Section 4.5, the
stable inversion approach for LPTV systems is presented constituting Contri-
bution 4.III. The approach is demonstrated using several cases in Sections 4.6
to 4.8 which constitutes Contribution 4.IV. Section 4.9 contains conclusions and
an outlook.

Throughout this chapter, linear, single-input, single-output (SISO) systems
are considered. Extensions to square multi-input, multi-output (MIMO) systems
follow directly. The focus is on discrete-time systems, since this is natural for
sampled systems. Results for continuous-time systems follow along similar lines.

4.2 Problem formulation

4.2.1 Application in mechatronics

In mechatronics, there is an ever increasing demand for lower cost and higher
accuracy which introduces LPTV behavior, see also Chapter 1. At least three
cases causing this behavior can be identified: (i) multirate systems, (ii) non-e-
quidistant sampling, and (iii) position-dependent behavior with periodic tasks.
These cases are detailed below.

To reduce cost, multiple applications are often embedded on a single plat-
form. Scheduling of the different processes leads to non-equidistant sampling
of the applications, which is observed as time variance of the system, see Fig-
ure 4.1(a). The scheduling is often periodic, leading to LPTV behavior. LTI
control design for a lower equidistant rate is conservative in terms of performance
since not all design freedom is exploited. To enhance the performance/cost trade-
off, control design of the LPTV system is desired.

To reduce cost, the applications can also run on different dedicated control
boards, depending on the performance requirement of the specific (control) loop.



84 Chapter 4. Stable inversion of LPTV systems

time
resources

inputs

dynamics

LTV

LTI

(a) Example of resource scheduling introducing
non-equidistant sampling of the system. Periodic
scheduling leads to LPTV behavior.
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(b) Example of a thermomechanical con-
trol diagram (Evers et al., 2017; Evers et
al., 2018). The different time scales lead
to LPTV behavior.

(c) Example of a meander pattern on a wafer stage. The periodic
task on the position-dependent system leads to LPTV behavior.

Figure 4.1. LPTV behavior occurs in many mechatronic applications.

For example, fast dynamics are typically controlled with a higher sampling rate
than slow dynamics, as is, for example, the case in thermomechanical systems,
see Figure 4.1(b). The interconnection of the different loops forms a multirate
system with LPTV behavior.

Accuracy is often limited by the inherent position-dependent behavior of
mechatronic systems. However, most control is based on LTI designs, not taking
into account the position-dependent behavior. For periodic motion tasks, as for
example in Figure 4.1(c), the position-dependent behavior leads to LPTV behav-
ior. Taking the LPTV behavior into account for control design can significantly
improve the accuracy.
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u yr

Figure 4.2. For nonminimum-phase system H, stable inversion yields bounded
signal u such that y = r.

4.2.2 Problem setup

Consider the exponentially stable LTV system H given by

x[k + 1] = AH [k]x[k] +BH [k]u[k], (4.1a)

y[k] = CH [k]x[k] +DH [k]u[k], (4.1b)

where AH [k] ∈ Rnx×nx , BH [k] ∈ Rnx×1, CH [k] ∈ R1×nx , DH [k] ∈ R, with time
index k, ks ≤ k ≤ ke, ks, k, ke ∈ Z, and x[ks] = 0.

The problem considered in this chapter is to determine a bounded input u,
such that y = r in Figure 4.2. In particular, the main idea is to invert the system
H, i.e., for square and invertible H use

F
z
=

[
A[k] B[k]
C[k] D[k]

]
(4.2a)

=

[
AH [k]−BH [k]D−1

H [k]CH [k] BH [k]D−1
H [k]

−D−1
H [k]CH [k] D−1

H [k]

]
. (4.2b)

The main point is that F in (4.2) does not need to be exponentially stable.
The zeros of (4.1) can be immediately verified to be eigenvalues of AH [k] −
BH [k]D−1

H [k]CH [k], which in fact are the poles of (4.2). Hence, stability of F
in (4.2) hinges on the zeros of H in (4.1). More on zero dynamics and stability
of LTV systems can be found in, for example, Hill and Ilchmann (2011); Berger
et al. (2015).

The following definition is adopted from Coppel (1978); Halanay and Ionescu
(1994); Papaschinopoulos (1986).

Definition 4.1 (Exponential dichotomy). The system

x[k + 1] = A[k]x[k], (4.3)

with A[k] ∈ Rnx×nx and fundamental matrix solution X[k] ∈ Rnx×nx satisfies
an exponential dichotomy if there exist a projection P = P 2 ∈ Rnx×nx and
constants K > 0, 0 < p < 1 such that

‖X[n]PX−1[m]‖ ≤ Kpn−m, n ≥ m, (4.4a)

‖X[n](I − P )X−1[m]‖ ≤ Kpm−n, m ≥ n, (4.4b)

where ‖(·)‖ is any convenient norm.



86 Chapter 4. Stable inversion of LPTV systems

H̄
F

u[k]
H

y[k]r[k] ū[k]
F̄=H̄−1 D−ρ

Figure 4.3. Input shift D−ρ renders H̄ bi-proper such that H̄ is invertible.
The shift is compensated through time-shifting output ū[k] of F̄ = H̄−1 as
u[k] = D−ρū[k]. The results are exact on an infinite horizon.

Essentially, P provides a projection onto the stable subspace (exponential de-
cay for k →∞), and I−P a projection onto the unstable subspace (exponential
decay for k → −∞).

The main idea in stable inversion is to obtain an exponential dichotomy
(Definition 4.1) through a nonsingular state transformation T [k] ∈ Cnx×nx :

x[k] = T [k]

[
xs[k]
xu[k]

]
, (4.5)

resulting in

F̃
s
=

[
Ã[k] B̃[k]

C̃[k] D̃[k]

]
=

[
T−1[k + 1]A[k]T [k] T−1[k + 1]B[k]

C[k]T [k] D[k]

]
. (4.6)

Note that the transformation into (4.6) is valid for inversion since the main
interest is in the output u of (4.2), which is invariant under transformation (4.5).
Instead of solving F completely forward in time, F̃ is solved with the stable part
xs forward in time and the unstable part xu backward in time (Devasia et al.,
1996), yielding a unique, bounded and noncausal solution. The key issue is
determining this dichotomy for LTV systems, which is investigated next.

Remark 4.2. Invertibility of H in (4.1) relates to invertibility of DH [k] in
(4.2) and can be directly satisfied by applying input shifts to H as illustrated
in Figure 4.3. Note that if H = (AH [k], BH [k], CH [k], 0), then H̄ = HD−1 =
(AH [k− 1], BH [k− 1], CH [k]AH [k− 1], CH [k]BH [k− 1]), with the delay operator
defined as (Dτu)[k] = u[k − τ ].

4.3 Exponential dichotomy for LTV systems

Stable inversion hinges on the existence of an exponential dichotomy (Defini-
tion 4.1). The following example shows that, for general LTV systems, there
does not always exist such a dichotomy.
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Example 4.3. Consider the scalar LTV system

x[k + 1] = A[k]x[k], A[k] =

{
α, k < 0,

β, k ≥ 0,
(4.7)

where α, β ∈ R, which has fundamental solution

X[k] =

{
αk, k < 0,

βk, k ≥ 0.
(4.8)

Whether the system admits an exponential dichotomy (Definition 4.1) depends
on |α|, |β| as illustrated by the following cases:

1. |α|, |β| < 1: exponential dichotomy with P = 1, K = 1, and
p = max{|α|, |β|}.

2. |α|, |β| > 1: exponential dichotomy with P = 0, K = 1, and
p = max{|α|−1, |β|−1}.

3. |α| < 1, |β| > 1: no exponential dichotomy since there exists no constant
P satisfying all conditions. Indeed, P = P 2 ∈ R implies P = 0 or P = 1.
For P = 0, for example, 0 ≥ m ≥ n violates the condition. For P = 1, for
example, n ≥ m ≥ 0 violates the condition.

4. |α| = 1 or |β| = 1: no exponential dichotomy due to eigenvalues on the
unit circle.

Example 4.3 shows that an exponential dichotomy requires no eigenvalues
on the unit circle, i.e., the system should be hyperbolic. This is a common
condition (Coppel, 1978; Devasia and Paden, 1998) and also occurs for LTI
systems (Devasia et al., 1996). If the system has eigenvalues on the unit circle,
i.e., the system is non-hyperbolic, similar techniques as in Devasia (1997a) can
be followed.

Importantly, also for hyperbolic systems, there does not always exist an ex-
ponential dichotomy, see case 3 of Example 4.3. Transformation T [k] in (4.5)
facilitates in finding suitable P to satisfy an exponential dichotomy. However,
there does not always exist T [k] such that the transformed system satisfies an
exponential dichotomy. Indeed, for case 3, it can be directly observed that no
such transformation exists.

4.4 Exponential dichotomy for LPTV systems

In this section, LPTV systems are considered, which are an important subclass
of LTV systems, see also Section 4.2.1. It is shown that for LPTV systems,
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there always exists an exponential dichotomy, under the mild condition of an
hyperbolic system. Moreover, it is shown how to compute the dichotomy. To
this end, two cases are distinguished: systems that are reversible and systems
that are non-reversible.

4.4.1 Stability of LPTV systems

LPTV systems are a subclass of LTV systems also satisfying Definition 4.4.

Definition 4.4 (LPTV system). An LTV system H is LPTV with period τ ∈ N
if it commutes with the delay operator Dτ defined by (Dτu)[k] = u[k − τ ], i.e.,
DτH = HDτ .

It is directly verified that if H in (4.1) and T [k] in (4.5) are periodic with
period τ , then F in (4.2) and F̃ in (4.6) are also periodic with period τ .

Exponential stability of LPTV systems directly relates to the monodromy
matrix (Bittanti and Colaneri, 2009, Section 1.2), which for F in (4.2) is given
by Ψ[k] = Φk+τ,k with transition matrix

Φk2,k1
=

{
I, k2 = k1,

A[k2 − 1]A[k2 − 2] · · ·A[k1], k2 > k1.
(4.9)

Importantly, the eigenvalues of Ψ[k], and therefore stability, are independent of
evaluation point k (Bittanti and Colaneri, 2009, Section 3.1). In particular, F
in (4.2) with period τ is stable if and only if |λi(Ψ)| < 1, for all i (Bittanti and
Colaneri, 2009, Section 1.2.3), where Ψ := Ψ[0] is given by

Ψ = A[τ − 1]A[τ − 2] · · ·A[0]. (4.10)

4.4.2 Exponential dichotomy

Theorem 4.5 provides conditions on T [k] such that transformed system F̃ satisfies
an exponential dichotomy. See Appendix 4.A for a proof.

Theorem 4.5 (Conditions T [k]). Let Ψ in (4.10) have no eigenvalues on the
unit circle. Then, if there exists T [k] in (4.5) such that the monodromy matrix
of system F̃ in (4.6) with period τ (Definition 4.4) satisfies

Ψ̃ = Ã[τ − 1]Ã[τ − 2] · · · Ã[0] =

[
Ψ̃s 0

0 Ψ̃u

]
, (4.11)

where |λi(Ψ̃s)| < 1, for all i, and |λi(Ψ̃u)| > 1, for all i, then F̃ in (4.6) satisfies
an exponential dichotomy according to Definition 4.1.

The results in Theorem 4.5 directly lead to a possible choice of T [k] such
that F̃ satisfies an exponential dichotomy; see Theorem 4.6 and Appendix 4.B
for a proof.
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Theorem 4.6 (Dichotomy LPTV systems). If T [k] is τ -periodic with T [0] con-
sisting of generalized eigenvectors of Ψ in (4.10) such that (4.11) is satisfied,
then F̃ satisfies an exponential dichotomy according to Definition 4.1.

The result of Theorem 4.6 essentially shows that only T [0] is relevant for
satisfying an exponential dichotomy. Next, the other entries of T [k] are used to
transform the LPTV system into one with time-invariant state matrix, which
allows to completely separate the stable and unstable part. The separation will
turn out to simplify the stable inversion approach in Section 4.5.

4.4.3 Reversible systems

Finding a transformation T [k] such that the LPTV system F is transformed to
F̃ with a time-invariant state matrix Ã[k] = Â, for all k, is known as the Floquet
problem (Bittanti and Colaneri, 2009, Section 3.2). An important result is that
such a transformation does not always exist, see Lemma 4.7 and Bittanti and
Colaneri (2009, Section 3.2) for a proof.

Lemma 4.7. Given F in (4.2) with period τ (Definition 4.4), there exists a
τ -periodic invertible transformation T [k] in (4.5) and a constant matrix Â such
that Ã[k] = Â, for all k, in (4.6), if and only if rank{Φk+i,k} is independent of
k, for all i ∈ [1, nx], with Φk+i,k in (4.9).

The rank condition in Lemma 4.7 is automatically satisfied if F is reversible,
see Definition 4.8. In fact, if F is reversible, there is a procedure (Bittanti and
Colaneri, 2009, Section 3.2.1) to determine T [k] such that Ã[k] is constant for
all k as provided by Lemma 4.9. See Appendix 4.C for a proof.

Definition 4.8 ((Non-)reversible system). A system (A[k], B[k], C[k], D[k]) is
reversible if and only if A[k] is non-singular for all k. If A[k] is singular for
some k, the system is non-reversible.

Lemma 4.9. Let F with period τ (Definition 4.4) be reversible (Definition 4.8)
and given by (4.2) and let τ -periodic transformation T [k] in (4.5) be given by

T [k] = A[k − 1]T [k − 1]Â−1, k ∈ [1, τ − 1], (4.12)

with

Â = (T−1[0]ΨT [0])
1
τ , (4.13)

for some T [0] ∈ Cnx×nx . Then, transformed system F̃ in (4.6) has constant
state matrix Ã[k] = T−1[k + 1]A[k]T [k] = Â, for all k.

The combination of Lemma 4.9 and Theorem 4.6 directly leads to the di-
chotomy for reversible systems in Theorem 4.10, see Appendix 4.D for a proof.
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Theorem 4.10 (Dichotomy reversible systems). If F in (4.2) is LPTV with
period τ (Definition 4.4) and reversible (Definition 4.8), and transformation
T [k] is given by Lemma 4.9 with T [0] according to Theorem 4.6, then F̃ in (4.6)
satisfies an exponential dichotomy according to Definition 4.1. Moreover, the
stable and unstable parts are completely separated.

4.4.4 Non-reversible systems

The transformation in Lemma 4.9 is only applicable to reversible systems. In
practice, systems are often non-reversible. For instance, strictly proper systems
that are made bi-proper to enable inversion through the procedure in Remark 4.2
which effectively introduces zeros at the origin in H̄. These zeros become poles
for the inverse system H̄−1 and consequently A[k] in (4.2) has eigenvalues zero
and is thus singular. Hence, for strictly proper H, F is non-reversible and
Lemma 4.9 is not applicable.

For non-reversible systems, the transformation in Lemma 4.9 is thus not
applicable. Since the system dynamics are often similar over time, a static
transformation is used as provided by Corollary 4.11. The result follows directly
from Theorem 4.6.

Corollary 4.11 (Dichotomy non-reversible systems). If F in (4.2) with period
τ (Definition 4.4) is non-reversible (Definition 4.8) with transformation T [k] in
(4.5) given by

T [k] = T [0], for all k, (4.14)

with T [0] according to Theorem 4.6, then F̃ in (4.6) satisfies an exponential
dichotomy according to Definition 4.1.

In contrast to T [k] in Lemma 4.9, T [k] in Corollary 4.11 does generally not
completely separate the stable and unstable parts. Indeed, this only holds if
A[k] has the same generalized eigenvectors for all k. A well-known class of such
systems is the class of LTI systems.

4.5 Stable inversion

Based on the exponential dichotomy obtained in the previous section, the sta-
ble inversion approach for LPTV systems is presented. An overview over the
complete approach is presented in Figure 4.4.

System (4.6), with T [k] such that the conditions in Theorem 4.5 are satisfied,
can be written as

xs[k + 1] = Ass[k]xs[k] +Asu[k]xu[k] +Bs[k]r[k], (4.15a)

xu[k + 1] = Aus[k]xs[k] +Auu[k]xu[k] +Bu[k]r[k], (4.15b)

u[k] = Cs[k]xs[k] + Cu[k]xu[k] +D[k]r[k], (4.15c)
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with xs[ks], xu[ke] = 0, where[
Ass[k] Asu[k]
Aus[k] Auu[k]

]
= T−1[k + 1]A[k]T [k], (4.16a)[

Bs[k]
Bu[k]

]
= T−1[k + 1]B[k], (4.16b)[

Cs[k] Cu[k]
]

= C[k]T [k]. (4.16c)

The stable inversion approach yielding bounded u for discrete-time systems
is provided in Theorem 4.12.

Theorem 4.12 (Stable inversion). Given that system (4.15) satisfies an ex-
ponential dichotomy with stable xs and unstable xu (Definition 4.1), output u
(4.15c) is bounded for the solution

xs[k + 1] = (Ass[k] +Asu[k]S[k])xs[k] +Bs[k]r[k] +Asu[k]g[k], (4.17a)

xu[k] = S[k]xs[k] + g[k], (4.17b)

S[k] = (Auu[k]− S[k + 1]Asu[k])
−1

(S[k + 1]Ass[k]−Aus[k]) , (4.17c)

g[k] = (S[k + 1]Asu[k]−Auu[k])
−1

× (Bu[k]r[k]− S[k + 1]Bs[k]r[k]− g[k + 1]) ,
(4.17d)

with xs[ks] = 0, S[ke] = 0, g[ke] = 0.

For completeness, the derivation of Theorem 4.12 is included in Appen-
dix 4.E. Stable inversion for continuous-time systems can be found in, e.g., Chen
(1993) and follows along similar lines.

For reversible systems, Theorem 4.10 can be applied yielding constant

Ã[k] = Â =

[
Ass 0
0 Auu

]
, (4.18)

i.e., there is no coupling between xs and xu. This simplifies the expressions in
Theorem 4.12 which are given in Corollary 4.13.

Corollary 4.13 (Stable inversion reversible systems). If F in (4.2) with period
τ (Definition 4.4) is reversible (Definition 4.8), then Asu[k] = 0, Aus[k] = 0,
Ass[k] = Ass, Auu[k] = Auu, for all k in (4.15a), (4.15b), and Theorem 4.12
reduces to

xs[k + 1] = Assxs[k] +Bs[k]r[k], (4.19a)

xu[k] = A−1
uu (xu[k + 1]−Bu[k]r[k]), (4.19b)

with xs[ks] = 0, xu[ke] = 0.
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If F is stable, the stable inversion solution reduces to the regular inverse
solution u = H−1r, see Corollary 4.14. The result follows directly from Theo-
rem 4.12.

Corollary 4.14 (Stable inversion stable system). If system F in (4.2) is stable,
then the stable inversion solution in Theorem 4.12 reduces to the causal inverse
solution.

The stable inversion procedure for LPTV systems is summarized in Fig-
ure 4.4.

Remark 4.15. The results in Theorem 4.12 and Corollary 4.13 are exact for
ks → −∞, ke →∞, as is also illustrated via an example in Section 4.8.

4.6 Case 1: Numerical example of a reversible
system

In this section, the stable inversion approach is applied step-by-step to a numer-
ical example of a reversible system.

Consider the LPTV system F in (4.2) with period τ = 3 defined by

A[0] =

[
0.3 2.0
−0.9 0.8

]
, A[1] =

[
1.4 1.3
1.6 0.6

]
, A[2] =

[
0.4 3.0
−0.2 0.7

]
, (4.20a)

B[k] =

[
1
1

]
, C[k] =

[
1 1

]
, D[k] = 1, for all k. (4.20b)

Since A[0], A[1], A[2] are all full rank, the system is reversible, see Definition 4.8.
The monodromy matrix (4.10) is given by

Ψ = A[2]A[1]A[0] =

[
−0.318 2.640

0.192 −3.344

]
, (4.21)

with eigenvalues and eigenvectors

λ1 = −0.1589, v1 =

[
0.9982
0.0602

]
, (4.22a)

λ2 = −3.5031, v2 =

[
−0.6381
0.7699

]
. (4.22b)

Hence, F has one stable and one unstable state. Transforming F using T [k] from
Theorem 4.10 with T [0] =

[
v1 v2

]
yields F̃ in (4.6) with constant Ã[k] = Â,
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LPTV system H (4.1)
(Definition 4.4)

H invertible?

F = H−1 (4.2)

Apply suggestions
in Remark 4.2

F reversible?
(Definition 4.8)

T [k] in Theorem 4.10

Apply Corollary 4.13

T [k] in Corollary 4.11

Apply Theorem 4.12

LPTV stable inversion solution

yes

no

yes

no

Figure 4.4. Stable inversion procedure for LPTV systems.



94 Chapter 4. Stable inversion of LPTV systems

for all k:

Â =

[
0.2708 + 0.4690i 0

0 0.7594 + 1.3153i

]
, (4.23a)

B̃[0] =

[
−0.0260− 0.0451i

0.5859 + 1.0148i

]
, (4.23b)

B̃[1] =

[
−0.0405 + 0.0701i
−0.3837 + 0.6646i

]
, (4.23c)

B̃[2] =

[
1.7450
1.1625

]
, (4.23d)

C̃[0] =
[
1.0584 0.1318

]
, (4.23e)

C̃[1] =
[
−0.3974 + 0.6883i 0.8358− 1.4476i

]
, (4.23f)

C̃[2] =
[

0.6069 + 1.0512i −1.3671− 2.3679i
]
, (4.23g)

D̃[k] = 1, for all k. (4.23h)

Note that, although the state-space of F is real-valued, the state-space of F̃ is
complex-valued since Ψ

1
τ is complex.

By construction, F̃ satisfies an exponential dichotomy according to Theo-
rem 4.5. Since the system is reversible, Asu, Aus = 0 in (4.15) and the stable
inversion solution is found through Corollary 4.13.

For input

r[k] =

{
1, k = 2,

0, k 6= 2,
(4.24)

causal inversion and stable inversion yield

uCI =



0
0
1
2

2.2
6.71
−0.83
−10.2188
−25.5839


, uSI =



0.0437
0.8424
3.0928
1.8468
−0.7511
−0.6213
−0.2934

0.1193
0.0987


. (4.25)

As expected, uCI grows unbounded since F is unstable. In contrast, uSI remains
bounded as desired. The noncausal character of stable inversion is visible in
uSI [0], uSI [1] 6= 0 while r[0], r[1] = 0.
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equidistant (LTI)

non-equidistant (LPTV)δ1 δ2

0 1 3 4 6 15 time1816

δeq

δ1 δ2

δeq

δ1 δ2

δeq

Figure 4.5. Time line of the non-equidistant sampling sequence. Control for
the equidistant sampling sequence with period δeq = Tδb = δ1 + δ2 = 3 is
conservative since not all control points are exploited. To improve performance,
control for the non-equidistant sampling sequence δ1, δ2 is pursued.

4.7 Case 2: Non-equidistant sampling

In this section, the potential of control under non-equidistant sampling is demon-
strated. In particular, it is shown that the proposed stable inversion approach
for LPTV systems enables exact tracking of the trajectory, whereas the tracking
is non-exact for LTI control under non-equidistant sampling.

4.7.1 Sampling sequence

The non-equidistant sampling sequence is shown in Figure 4.5. It has periodicity
τ = 2, with δ1 = γ1δb = 1 and δ2 = γ2δb = 2.

4.7.2 System

Consider the continuous-time system of Example 2 in Åström et al. (1984):

Hc =
1

(s+ 1)3

s
=

[
Ac Bc
Cc Dc

]
=


0 1 0 0
0 0 1 0
−1 −3 −3 1
1 0 0 0

, (4.26)

with zero-order-hold discretization

H
s
=

[
AH [k] BH [k]
CH DH

]
=

[
eAcδk A−1

c (AH [k]− I)Bc
Cc Dc

]
, (4.27)

where δk is the sampling interval. Since DH = 0, H is not directly invertible and
the procedure in Remark 4.2 is followed. As a consequence, the inverse system
F is non-reversible, see also Section 4.4.4.

As shown in Åström et al. (1984), for 0 < δk < 1.8399, there is one minimum-
phase and one nonminimum-phase zero, and for δk ≥ 1.8399, both zeros are
minimum phase. For the non-equidistant sampling sequence in Figure 4.5, one
of the poles of LPTV system F alternates between stable and unstable.

It follows directly from Figure 4.5 that the smallest equidistant sampling
sequence has period δeq = δ0 + δ1 = 3. The corresponding LTI system is thus
minimum phase. The reference trajectory r is shown in Figure 4.6(a).
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4.7.3 Application in feedforward control

In this section, an application in inverse model feedforward control is considered.
True system H is assumed to be exactly known and F = H−1, with H in (4.27).

Regular inversion of the minimum-phase LTI system with period δeq = 3
yields input u shown in Figure 4.6(b). Note that u is only updated after 3 time
units, and constant in-between. Applying this input to the true LPTV system
H yields the output in Figure 4.6(a). Due to the mismatch between the LTI
system used for inversion and the true LPTV system, the output y differs from
the reference r. The results show the importance of LPTV inversion techniques.

The results in Figure 4.6 show that causal inversion of LPTV system H
through (4.2) yields perfect tracking y = r. However, input u is unbounded
since F is unstable.

To obtain a bounded u and exact tracking, the stable inversion approach for
LPTV systems as outlined in Figure 4.4 is used. Since F is non-reversible, Corol-
lary 4.11 and Theorem 4.12 are used. The monodromy matrix Ψ in (4.10) has
two eigenvalues inside and one outside the unit circle. A static transformation
T [k] = T [0], for all k, consisting of eigenvectors of Ψ is used, see Corollary 4.11.
The stable inversion solution is obtained through Theorem 4.12. Figure 4.6(b)
shows that stable inversion generates bounded u as desired.

The tracking in Figure 4.6(a) is non-exact due to finite-time effects (Middle-
ton et al., 2004). To improve performance, the interval length is increased by
starting at time −6, with r[k] = 0, k = −6, . . . ,−1. The results are shown in
Figure 4.7. The addition of this preview time results in a performance improve-
ment for stable inversion as desired. The addition of even more preview time
further improves the performance.

4.7.4 Application in iterative learning control

In this section, an application in iterative learning control (ILC) is considered. In
ILC, the same task is repeated and deterministic uncertainties are compensated
by learning from past data using a system model; see also Bristow et al. (2006).

The ILC update law is based on the closed-loop model Ĥ = 0.8H, with H
in (4.27). The error dynamics are given by

ej+1 = ej −H(uj+1 − uj), e0 = r, (4.28)

with trial number j = 0, 1, . . ., and input u. The learning update is given by

uj+1 = uj + αFej , u0 = 0, (4.29)

with learning filter F = Ĥ−1 and learning factor α = 0.5. Note that if αF =
H−1, error ej+1 is zero as desired.

The results for the reference signal r in Figure 4.7(a) are shown in Figure 4.8.
Since α 6= 1, it takes several trials for the algorithm to converge, as can be ob-
served in the two-norm of the error shown in Figure 4.8(b). After approximately
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(a) Reference r ( ) is perfectly tracked by output y using causal inversion ( ). The
tracking using stable inversion ( ) is limited due to finite preview. Output y for the
equidistantly sampled LTI system ( ) differs significantly from r.
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(b) Signal u is bounded for stable inversion ( ), but not for causal inversion ( ). For
the equidistantly sampled LTI system ( ), u is bounded and only updated every 3 time
steps.

Figure 4.6. Stable inversion generates bounded u, whereas causal inversion
generates unbounded u. The performance of stable inversion is limited due to
finite preview. The performance of the equidistant sampled LTI system is low
due to an inexact inverse.
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(a) The performance of stable inversion ( ) is improved compared to Figure 4.6(a).
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(b) Signal u is bounded for stable inversion ( ), but not for causal inversion ( ).

Figure 4.7. Additional preview improves the performance of stable inversion
compared to Figure 4.6.
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(a) After one trial the performance is poor ( ), but after ten trials the performance is
excellent ( ) and similar to that of inverse model feedforward in Figure 4.7.
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(b) The error norm converges in approximately ten trials to its final value.

Figure 4.8. Application of stable inversion in ILC enables high-performance
tracking with a nonexact model.

ten trials, the update is converged to the same solution as with exact model
inverse feedforward shown in Figure 4.7.

4.7.5 Summary

The case illustrates the use of stable inversion for non-equidistantly sampled sys-
tems, both in inverse model feedforward and ILC design. First of all, the case
shows the advantage of LPTV control over LTI control for a non-equidistantly
sampled system. Second, the case shows that causal inversion yields unbounded
u whereas stable inversion generates bounded u. Third, the case shows that
additional preview improves the performance of stable inversion. Indeed, sta-
ble inversion is exact for ks → −∞. Finally, the application of LPTV stable
inversion in ILC is demonstrated.

4.8 Case 3: Position-dependent system

One of the challenges in motion systems is position-dependent behavior, as
present in, for example, wafer stages.
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u

φ
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x̂

(a) Zero position.

u

x̂ φ

x

y

(b) Moved and rotated.

Figure 4.9. Top view of wafer stage. The interferometer is fixed on the
metrology frame and measures distance x̂ to the wafer stage, which has degrees
of freedom x, y, φ. If φ 6= 0, position y effects measurement x̂.

Table 4.1. Parameter values of the wafer stage system.

Parameter Symbol Value Unit

Mass m 50 kg
Inertia I 2.08 kgm2

Spring constant c 106 N/m
Damping constant d 2500 Ns/m

Length l 0.5 m

4.8.1 Wafer stage system

Wafer stages are key motion systems in wafer scanners used for the production
of integrated circuits. A simplified 2D model of a wafer stage in the horizontal
plane is considered as shown in Figure 4.9. The stage is actuated by force input
u, can translate in x and y direction, and rotate in φ direction. The output
is the distance x̂ between the metrology frame and the wafer stage, measured
through an interferometer located on the metrology frame. The parameters are
listed in Table 4.1.

A typical wafer stage movement is a so-called meander pattern as illustrated
in Figure 4.1(c); see also Van der Meulen et al. (2008). The position y is assumed
to be prescribed by the periodic movement in Figure 4.11(a) and is controlled
by a PD controller represented by the spring and damper in Figure 4.9. The
desired trajectory x̂d for x̂ is also shown in Figure 4.11(a). The combination of y
and x̂d generates the meander pattern shown in Figure 4.10. A key observation
is that the x̂-dynamics are position dependent due to the influence of position y
when φ 6= 0.

A continuous-time state-space realization (Ac, Bc, Cc, Dc) of the

x̂-dynamics, linearized around φ, φ̇ = 0, with input u, state
[
x ẋ φ φ̇

]>
,
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−0.08
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x̂d [m]
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Figure 4.10. Part of meander pattern constructed by x̂d, y in Figure 4.11(a).

and output x̂ is

[
Ac Bc
Cc[k] Dc

]
=


0 1 0 0 0
0 0 0 0 1

m
0 0 0 1 0

0 0 − 1
2
cl2

I − 1
2
dl2

I
1
2
l
I

1 0 y[k] 0 0

 . (4.30)

System H in (4.1) is the zero-order-hold discretized version of (4.30):

H
s
=

[
AH BH
CH [k] DH

]
=

[
eAcδ A−1

c (A− I)Bc
Cc[k] Dc

]
, (4.31)

with sampling interval δ = 0.001 s. Note that H is indeed position dependent
through CH [k]. Moreover, for the given parameters, the system is minimum
phase if y[k] ≥ 0, and nonminimum phase for y[k] < 0. Since y[k] is periodic, H
is LPTV. Also note that H is strictly proper since DH = 0, and thus F being the
inverse of time-shifted H is non-reversible. Finally, note that the time variance
of CH [k] in H also introduces time variance in A[k] of F in (4.2).

4.8.2 Nonminimum-phase system

Forward time simulation of F with reference r = x̂d and trajectory y in Fig-
ure 4.11(a) yields the unbounded signal u shown in Figure 4.11(b). Since F is
non-reversible, it follows from Figure 4.4 that Theorem 4.12 with static trans-
formation T [k] = T [0], for all k, in Corollary 4.11 yields the stable inversion
solution with bounded u. The monodromy matrix Ψ reveals one unstable and
three stable states. The resulting signal u is shown in Figure 4.11(b) and is
indeed bounded. The output position x̂ perfectly tracks the desired trajectory
x̂d as shown in Figure 4.11(a).



102 Chapter 4. Stable inversion of LPTV systems

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

Time [s]

y
,x̂

d
,x̂

[m
]

(a) Output x̂ with forward simulation ( ) and with stable inversion ( ) perfectly
tracks the desired trajectory x̂d ( ) for the prescribed periodic position y ( ).
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(b) Forward simulation ( ) of F yields unbounded u, whereas stable inversion ( )
yields bounded u.

Figure 4.11. Prescribed position y introduces position dependence resulting
in an LPTV system that is unstable. With stable inversion, a bounded solution
u resulting in perfect tracking is obtained.

4.8.3 Minimum-phase system

Consider the trajectory y in Figure 4.12(a). For this trajectory, the monodromy
matrix Ψ indicates F is stable. Indeed, y[k] < 0 for some k, but this does not
necessarily lead to unstable F . Since F is stable, the stable inversion solution
reduces to forward simulation of F , see Corollary 4.14. The results are shown
in Figure 4.12 and show exact tracking with bounded input.

4.8.4 Summary

The results show that if the LPTV system F is unstable, a bounded solution u
is found, whereas if F is stable, the causal inversion result is recovered. The case
demonstrates the application of the proposed LPTV stable inversion approach
to position-dependent systems with periodic tasks.
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(a) Output x̂ with forward simulation ( ) and with stable inversion ( ) perfectly
tracks the desired trajectory x̂d ( ) for the prescribed position y ( ).
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(b) Since LPTV system F is stable, the solutions of stable inversion ( ) and forward
simulation ( ) of F are the same and bounded.

Figure 4.12. Prescribed position y introduces position dependence resulting
in an LPTV system that is stable. The stable inversion solution reduces to that
of forward simulation and yields perfect tracking.

4.9 Conclusion and outlook

In practice, many systems are LTV, yet exhibit periodicity, rendering them
LPTV. Examples include, position-dependent systems with periodic tasks, mul-
tirate systems, and periodic, non-equidistantly sampled systems. System in-
version is essential for tracking control applications, including feedforward and
learning control. Perfect tracking of reference trajectories can be obtained via
stable inversion. The stable inversion approach is based on a dichotomy of the
system into a stable and unstable part. Such a dichotomy always exists for LTI
systems (under mild conditions). In this chapter, it is shown that such a di-
chotomy may not exist for general LTV systems, hampering the use of stable
inversion.

By exploiting the periodicity, a dichotomy for LPTV systems is established.
In fact, there always exists a dichotomy for LPTV systems, under similar mild
conditions as for LTI systems. In this chapter, this dichotomy is exploited to de-
velop a stable inversion approach for LPTV systems, enabling perfect tracking of
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general reference trajectories. The approach is demonstrated for reversible sys-
tems, in feedforward and learning control, and for position-dependent systems.
For reversible systems, the stable inversion approach simplifies considerably. An
overview of the complete approach can be found in Figure 4.4.

The presented stable inversion for LPTV systems enables feedforward and
learning control design for an important class of systems.

The performance of stable inversion strongly depends on the amount of pre-
view, as also observed in Section 4.7. Future research related to this focuses
on the role of preview and in particular on deriving bounds similar as for the
LTI case (Middleton et al., 2004). From a broader perspective, future research
focuses on exploiting the structure associated with LPTV systems in general
feedforward and ILC techniques, and their connection to zeros of such systems,
see also, e.g., Zamani et al. (2016).

4.A Proof of Theorem 4.5

Proof. If Ψ has no eigenvalues on the unit circle, so does Ψ̃ and an exponential
dichotomy exists. Let (4.11) be satisfied, then the autonomous system

x̃[k + 1] = Ψ̃x̃[k] (4.32)

has fundamental matrix solution

X̃[k] = Ψ̃k =

[
Ψ̃k
s 0

0 Ψ̃k
u

]
. (4.33)

Since |λi(Ψ̃s)| < 1, for all i, there exist constants Ks > 0 and 0 < ps < 1 such
that

‖Ψ̃k
s‖ ≤ Ksp

k
s . (4.34)

Similarly, since |λi(Ψ̃u)| > 1, for all i, there exist constants Ku > 0 and 0 <
pu < 1 such that

‖Ψ̃k
u‖ ≤ Kup

−k
u . (4.35)

Consequently, for

P =

[
Is 0
0 0

]
, (4.36)

with Is the identity matrix of size Ψ̃s, it follows∥∥X[n]PX−1[m]
∥∥ ≤ Ksp

n−m
s , n ≥ m, (4.37)∥∥X[n](I − P )X−1[m]

∥∥ ≤ Kup
m−n
u , m ≥ n. (4.38)
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Hence, system (4.32) with Ψ̃ in (4.11) satisfies an exponential dichotomy ac-
cording to Definition 4.1 for K = max{Ks,Ku}, p = max{ps, pu}, and P in
(4.36).

4.B Proof of Theorem 4.6

Proof. The transformed system F̃ has monodromy matrix Ψ̃ = Ã[τ − 1]Ã[τ −
2] · · · Ã[0] = T−1[τ ]ΨT [0]. For τ -periodic T [k], it holds T [τ ] = T [0] and hence
Ψ̃ = T−1[0]ΨT [0]. By selecting T [0] as generalized eigenvectors of Ψ, condition
(4.11) can be satisfied by proper ordering of the eigenvectors. It then directly
follows from Theorem 4.5 that F̃ satisfies an exponential dichotomy according
to Definition 4.1.

4.C Proof of Lemma 4.9

For transformation T [k] in (4.12), it follows using (4.6) that

Ã[k] = T−1[k + 1]A[k]T [k] (4.39a)

=
(
A[k]T [k]Â−1

)−1

A[k]T [k] (4.39b)

= Â (A[k]T [k])
−1

(A[k]T [k]) (4.39c)

= Â (4.39d)

for all k. Periodicity of T [k] can be shown by successive substitution:

Tτ = (A[τ − 1]A[τ − 2] . . . A[0])T [0]Â−τ (4.40a)

= ΨT [0]
((
T−1[0]ΨT [0]

) 1
τ

)−τ
(4.40b)

= ΨT [0]
(
T−1[0]ΨT [0]

)−1
(4.40c)

= ΨT [0]T−1[0]Ψ−1T [0] (4.40d)

= T [0]. (4.40e)

Combining this result with (4.12) shows that T [k] is periodic with period τ . Note
that Â−1 should exist, which is directly satisfied if T [0] and Ψ are invertible.
Indeed, the reversibility condition ensures A[k], for all k, and thereby Ψ in (4.10)
are invertible.

4.D Proof of Theorem 4.10

Proof. Lemma 4.9 yields Ã[k] = Â, for all k, such that by (4.11) it follows that
Ψ̃ = Âτ = T−1[0]ΨT [0], for Â in (4.13). With T [0] given by Theorem 4.6, F̃
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satisfies an exponential dichotomy. Moreover, condition (4.11) is satisfied and
hence

Â = Ψ̃
1
τ =

[
Ψ̃

1
τ
s 0

0 Ψ̃
1
τ
u

]
, (4.41)

which shows that the unstable and stable parts are separated.

4.E Proof of Theorem 4.12

Proof. From (4.15a) and (4.15b) follows that there is an affine relation between
xs and xu. Let this relation be given by (4.17b) for some S[k], g[k]. Substitut-
ing (4.17b) in (4.15a) yields (4.17a) which can be solved forward in time with
xs[ks] = 0. Eliminating xu from (4.15b) using (4.17b), substituting (4.17a), and
rearranging terms yields

S[k + 1]xs[k + 1] + g[k + 1] =

Aus[k]xs[k] +Auu[k](S[k]xs[k] + g[k]) +Bu[k]r[k],
(4.42a)

S[k + 1]
(
(Ass[k] +Asu[k]S[k])xs[k] +Bs[k]r[k] +Asu[k]g[k]

)
+ g[k + 1] =

Aus[k]xs[k] +Auu[k](S[k]xs[k] + g[k]) +Bu[k]r[k],

(4.42b)

(
S[k + 1]Ass[k] + S[k + 1]Asu[k]S[k]−Aus[k]−Auu[k]S[k]

)
xs[k] =

− S[k + 1]Bs[k]r[k]− S[k + 1]Asu[k]g[k]− g[k + 1]

+Auu[k]g[k] +Bu[k]r[k],

(4.42c)

which is of the form A[k]xs[k] = B[k]. Since it holds for all xs[k], it follows that
A[k] = 0, for all k, which yields (4.17c), and B[k] = 0, for all k, which yields
(4.17d). Next, (4.17c) and (4.17d) are solved backward in time for some S[ke]
and g[ke], respectively. Here, S[ke] = 0 and g[ke] = 0 are selected.



Chapter 5

Discrete-time system inversion
for intersample performance

Discrete-time system inversion for perfect tracking goes at the expense of inter-
sample behavior. The aim of this chapter is the development of a discrete-time
inversion approach that improves continuous-time performance by also address-
ing the intersample behavior. The proposed approach balances the on-sample
and intersample behavior and provides a whole range of new solutions, with sta-
ble inversion and multirate inversion as special cases. Note that multirate inver-
sion refers to using multirate techniques for inversion and differs from multirate
control in Chapter 5. The approach is successfully applied to an LTI and an
LPTV motion system. The proposed approach improves the intersample behav-
ior through discrete-time system inversion and constitutes Contribution III.B.

5.1 Introduction

Physical systems evolve in continuous time and hence their performance is nat-
urally defined in continuous time. Many approaches for tracking control, includ-
ing inverse model feedforward and iterative learning control (ILC), are based
on system inversion, see, for example Butterworth et al. (2012); Clayton et al.
(2009); Kim and Zou (2013). For continuous-time systems, system inversion ap-
proaches such as, for example, Devasia et al. (1996) can be used. However, since

The contents of this chapter also appear in:
Jurgen van Zundert, Wataru Ohnishi, Hiroshi Fujimoto, and Tom Oomen. Improving In-
tersample Behavior in Discrete-Time System Inversion: With Application to LTI and LPTV
Systems. Submitted for journal publication, 2018.
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controllers are often implemented in a digital environment (Chen and Francis,
1995), discrete-time control is often used.

One of the main challenges in system inversion is nonminimum-phase be-
havior. Causal inversion of nonminimum-phase systems yields unbounded sig-
nals. To avoid unbounded signals, many discrete-time inversion approaches have
been proposed, see, e.g., Chapter 3 for an overview. Approximate inversion ap-
proaches such as ZPETC, ZMETC, and NPZ-Ignore (Butterworth et al., 2012)
are well-known, but yield limited performance due to the approximation. Op-
timal approaches, such as norm-optimal feedforward, H2-preview control, and
H∞-preview control (Section 3.4.3; Section 3.4.4), yield high performance in dis-
crete time. Discrete-time stable inversion (Section 3.4.2) yields exact tracking
at the discrete-time samples.

Discrete-time inversion approaches focus on the on-sample performance, i.e.,
at the discrete-time samples, resulting in poor intersample behavior, i.e., in
between the samples. This holds in particular for zeros close to z = −1 (Moore
et al., 1993), see, e.g., Oomen et al. (2009); Butterworth et al. (2008). As a
consequence, the continuous-time behavior is poor. Indeed, the best on-sample
performance does not necessarily lead to the best continuous-time performance.

Multirate inversion (Ohnishi et al., 2017; Ohnishi and Fujimoto, 2018; Fu-
jimoto et al., 2001) provides an interesting alternative to improve intersample
behavior by sacrificing on-sample performance. However, the approach does
not take into account the system dynamics when balancing the intersample and
on-sample performance. As a consequence, the continuous-time performance is
generally suboptimal.

Although many discrete-time inversion approaches exist, the balance between
on-sample performance and intersample behavior is not optimized. The main
contribution of this chapter is a discrete-time inversion approach that finds the
optimal balance between on-sample performance and intersample behavior for
the purpose of continuous-time performance. The stable inversion and multirate
inversion approaches are recovered as special cases. Related work includes Chen
and Francis (1995); Yamamoto (1994); Bamieh and Pearson Jr. (1992) where
synthesis-based approaches are presented. In contrast, the approach presented
in this chapter does not require synthesis.

The outline of this chapter is as follows. In Section 5.2, the control objective
is formulated. The concept of the proposed approach is presented in Section 5.3.
Key ingredients to the approach are presented in Section 5.4 and Section 5.5.
Based on these results, the approach is presented in Section 5.6. The advantages
of the approach are demonstrated by application to an LTI motion system in
Section 5.7 and to an LPTV motion system in Section 5.8. Conclusions are
presented in Section 5.9.

Notation. For notational convenience, single-input, single-output (SISO) sys-
tems are considered. The results can directly be generalized to square multi-

variable systems. Let s(i) , di

dti s denote the ith time-derivative of s, ρ the
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HFS
y(t)u(t)u[k]r[k]

r(t) e(t)

Hc

+

−

Figure 5.1. Tracking control diagram with continuous-time system Hc, sam-
pler S, and hold H. Given continuous-time reference trajectory r(t), the objec-
tive is to minimize continuous-time error e(t) through design of discrete-time
controller F , while control input u[k] remains bounded.

Heaviside operator, B(·) a bilinear transformation, and Rb>a = {x ∈ Rb | x[k] >

a for all k = 0, 1, . . . , b − 1}. Let Σ
z
= (A,B,C,D) be a state-space model and

define T (Σ, T )
z
= (TAT−1, TB,CT−1, D).

5.2 Problem formulation

In this section, the control problem is formulated. The considered tracking
control configuration is shown in Figure 5.1, with reference trajectory r(t) ∈ R,
control input u(t) ∈ R, output y(t) ∈ R, digital controller F , sampler S, and
zero-order hold H. The continuous-time, linear time-invariant (LTI) system Hc

is given by

ẋ(t) = Acx(t) +Bcu(t), (5.1a)

y(t) = Ccx(t), (5.1b)

with x(t) ∈ Rn, n ∈ N and can be either an open-loop or closed-loop system.
Conventional discrete-time control focuses on the on-sample performance.

The discrete-time system H = SHcH with Hc in (5.1) and sampling time δ is
given by

x[k + 1] = Ax[k] +Bu[k], (5.2a)

y[k] = Cx[k], (5.2b)

with

A = eAcδ, B =

∫ δ

0

eAcτBc dτ, C = Cc. (5.2c)

In this setting, perfect on-sample tracking, i.e., e[k] = 0, for all k, is achieved for
F = H−1. However, this does not provide any guarantees for the intersample
performance e(t), t 6= kδ. Hence, the continuous-time performance in terms of
e(t), for all t, may be poor as observed in, e.g., Oomen et al. (2009).

The control objective considered in this chapter is to minimize the contin-
uous-time error e(t). Note that this includes both on-sample (t = kδ) and



110 Chapter 5. Discrete-time system inversion for intersample performance

H2 H1

intersample

u[k]
H

u1[k] y2[k]
H1

on-sample

H2

inversion

x̂1[k]F

y[k]r[k] inversion

Figure 5.2. The discrete-time system H is decomposed into H1 and H2.
System H1 is inverted such that there is exact state tracking of the desired
state x̂1[k] every n1 samples for the purpose of intersample behavior. System
H2 is inverted such that there is exact output tracking every sample for the
purpose of on-sample behavior.

intersample (t 6= kδ) performance. Importantly, u[k] should remain bounded,
even in the presence of nonminimum-phase behavior. Trajectory r(t) is assumed
to be known a priori.

In the next section, the concept of the proposed approach is presented.

5.3 Inversion for on-sample and intersample
behavior

In the proposed approach, the system is decomposed into two parts and both
parts are inverted separately as illustrated in Figure 5.2, where H is decomposed
as H = H1H2. The inversion of system H1 aims at the intersample behavior.
More specific, let n1 be the state dimension of H1, then H1 is inverted such
that there is exact state tracking of a desired state x̂1[k] every n1 samples. The
inversion of H2 aims at the on-sample behavior through perfect output tracking
for every sample.

Exact state tracking is experienced to yield good intersample behavior in
multirate inversion (Ohnishi et al., 2017), whereas exact output tracking yields
good on-sample behavior in stable inversion, see Chapter 3. Hence, the choice of
the decomposition intoH1 and H2 can be used to balance the on-sample behavior
and the intersample behavior to the benefit of the continuous-time performance.
The idea is conceptually illustrated in Figure 5.3. An important observation is
that a small on-sample error does not necessarily yield a small continuous-time
error. The figure shows that the approach provides a whole range of solutions
that were non-existing before. The stable inversion and multirate inversion so-
lution are recovered as the two extreme cases, see also Section 5.6.3.

The proposed approach requires the decomposition H = H1H2 in terms of
state-space realizations and the desired state x̂1[k] for H1, see also Figure 5.2.
In Section 5.4, the desired state for the continuous-time system Hc is presented.
In Section 5.5, the state-space decomposition H = H1H2 is presented. Based on
these results, the complete approach is presented in Section 5.6.
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Figure 5.3. Qualitative plot of the continuous-time versus on-sample error.
The proposed approach balances the intersample behavior and the on-sample
behavior for the purpose of continuous-time performance. It provides a whole
range of solutions that were non-existing before. Importantly, the smallest on-
sample error does not necessarily yield the smallest continuous-time error as the
intersample behavior may be poor. The relative performance depends on the
particular settings, e.g., the system dynamics, and may vary. Stable inversion
( ) and multirate inversion ( ) are recovered as special cases.

5.4 Desired state for continuous-time system

In this section, the desired state for the continuous-time system is presented.
Given a continuous-time reference trajectory r(t) together with its n − 1 time
derivatives and system Hc in (5.1), the objective is to determine a bounded state
x̂(t) such that y(t) = Ccx̂(t) yields y(i)(t) = r(i)(t), i = 0, 1, . . . , n − 1, where
(·)(i) denotes the ith time derivative of (·), i.e., such that r̄(t) = ȳ(t) where

r̄(t) =


r(0)(t)
r(1)(t)
...

r(n−1)(t)

 , ȳ(t) =


y(0)(t)
y(1)(t)
...

y(n−1)(t)

 . (5.3)

A similar approach as in Ohnishi and Fujimoto (2016a) is used based on the
controllable canonical form given by Lemma 5.1, see also Goodwin et al. (2000,
Section 17.6). The desired state is given by Theorem 5.2.

Lemma 5.1 (Controllable canonical form). Let the transfer function of Hc in
(5.1) be given by

Hc(s) = Cc(sI −Ac)−1Bc =
B(s)

A(s)
, (5.4a)
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with

A(s) =
sn + an−1s

n−1 + . . .+ a0

b0
, (5.4b)

B(s) =
bms

m + bm−1s
m−1 + . . .+ b0
b0

, (5.4c)

b0 6= 0, then the controllable canonical form Hccf (s) = T (Hc, Tccf ) is given by

ẋccf (t) = Accfxccf (t) +Bccfu(t), (5.5a)

y(t) = Cccfxccf (t), (5.5b)

where

[
Accf Bccf
Cccf

]
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
−a0 −a1 −a2 · · · −an−1 b0

1 b1
b0

b2
b0

· · · 0


(5.5c)

and

T−1
ccf =

[
Bc AcBc · · · An−1

c Bc
] 

a1
b0

a2
b0
··· 1

b0

a2
b0

a3
b0

. .
.

0

... . .
.
. .
. ...

1
b0

0 ··· 0

 . (5.6)

Theorem 5.2 (Desired continuous-time state). Let B−1(s) in (5.4) be decom-
posed as

B−1(s) = Fs(s) + Fu(s), (5.7)

with all poles ps ∈ C of Fs(s) such that <(ps) < 0 and all poles pu ∈ C of Fu(s)
such that <(pu) > 0. Let

fs(t) = L−1(Fs(s)), fu(t) = L−1(Fu(−s)), (5.8a)

x̂ccf,s(t) =

∫ t

−∞
fs(t− τ)r̄(τ) dτ, (5.8b)

x̂ccf,u(t) =

∫ ∞
t

fu(t− τ)r̄(τ) dτ, (5.8c)

where L−1(·) is the inverse uni-lateral Laplace transform (Oppenheim et al.,
1997, Section 9.3). Let Hc in (5.4) have realization (5.5), then y(t) = Ccx̂(t)
where

x̂(t) = T−1
ccf (x̂ccf,s(t) + x̂ccf,u(t)), (5.9)

is bounded and such that ȳ(t) = r̄(t), with ȳ(t), r̄(t) in (5.3).
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Proof. See Appendix 5.A.

Theorem 5.2 provides the desired bounded state for optimal state tracking.
Together with the state-space decomposition presented in the next section, The-
orem 5.2 forms the basis of the proposed approach presented in Section 5.6.

Remark 5.3. If poles of B−1(s) have <(p) = 0, i.e., B−1(s) is non-hyperbolic,
similar techniques as in Devasia (1997a) can be used.

5.5 State-space decomposition

In this section, the multiplicative state-space decomposition is presented. To-
gether with Theorem 5.2, the decomposition forms the basis of the proposed
approach in Section 5.6.

Given the state-space systemH in (5.2), the interest is in minimal realizations
H1, H2 such that H = H1H2 in terms of state-space realization, where the zeros
and poles of H can be arbitrarily assigned to H1 or H2. The starting point is
the multiplicative decomposition H = H1H2 in terms of transfer functions as
given by Lemma 5.4.

Lemma 5.4 (Transfer function decomposition). Let H
z
= (A,B,C,D) be a

state-space realization with n states and invertible D. Let V ∈ Rn×n1 be a
column space of an invariant subspace of A and let V× ∈ Rn×n2 be a column
space of an invariant subspace of A× = A − BD−1C, such that S =

[
V V×

]
has full rank n = n1 + n2. Let

Π = S

[
In1

0n1×n2

0n2×n1
0n2×n2

]
S−1. (5.10)

Then, the realizations

H1f
z
=

[
A ΠBD−1

C I

]
, H2f

z
=

[
A B

C(I −Π) D

]
(5.11)

are such that H = H1fH2f in terms of transfer functions, i.e., C(zI −A)−1B+
D = (C(zI −A)−1ΠBD−1 + I)(C(I −Π)(zI −A)−1B +D).

Proof. Follows directly from extending Bart et al. (2005, Corrollary 11) to
D 6= I.

If the D matrix in Theorem 5.5 is singular, a bilinear transformation (Chen
and Francis, 1995, Section 3.4; Oppenheim et al., 1997, Section 10.8.3) can
possibly be employed to obtain an equivalent system with non-singular D matrix.
A multiplicative decomposition for the transformed system is obtained through
Lemma 5.4. Applying the inverse transformation on the decomposed system
yields the decomposition for the original system since B(H1H2) = B(H1)B(H2).
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Importantly, Lemma 5.4 guarantees equivalence in terms of transfer func-
tions, but not in terms of state-space realizations. Indeed, the decomposition of
Lemma 5.4 yields nonminimal realizations of H1f , H2f as both have state dimen-
sion n. By exploiting the modal form and using a suitable state transformation,
the desired state-space decomposition for the proposed approach is obtained as
given by Theorem 5.5.

Theorem 5.5 (State-space decomposition). Let Tmod ∈ Cn×n be such that
Hmod = T (H,Tmod) = (A,B,C,D) is in modal form (Franklin et al., 2015,
Section 7.4) with nonsingular D. Let H1fH2f = Hmod be the decomposition
given by Lemma 5.4. Let Tper ∈ Rn×n be such that

T (H1f , Tper)
z
=

 A1 0 B1

0 A2 0
C1 C1r I

 , (5.12)

T (H2f , Tper)
z
=

 A1 0 B2r

0 A2 B2

0 C2 D

 , (5.13)

with A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , n1 + n2 = n, and define

H1
z
=

[
A1 B1

C1 I

]
, H2

z
=

[
A2 B2

C2 D

]
. (5.14)

Furthermore, let X ∈ Rn1×n2 satisfy

A1X −XA2 = B1C2. (5.15)

Then, the state-space realization of T (H1H2, T
−1
perT12) with

T12 =

[
In1

X
0n1×n2 In2

]
, (5.16)

is identical to that of Hmod.

Proof. See Appendix 5.B.

Theorem 5.5 yields a state-space decomposition H = H1H2 with identical
state-space realizations. Note that such a decomposition always exists. Together
with Theorem 5.2, Theorem 5.5 forms the basis for the proposed approach pre-
sented in the next section.

Remark 5.6. Note that V in Lemma 5.4 is related to the poles of H, whereas
V× is related to the zeros of H. Hence, the selection of V, V× enables to assign
the poles and zeros to either H1 or H2.
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Remark 5.7. The column spaces of the invariant subspaces in Lemma 5.4 can
be constructed from eigenvectors. Note that for complex eigenvectors, the real
and imaginary part should be used. For eigenvalues with multiplicity larger than
1, generalized eigenvectors obtained from the Jordan form can be used to ensure
S has full rank.

Remark 5.8. Sylvester equation (5.15) has a unique solution X if the eigenval-
ues of A1 and −A2 are distinct (Bartels and Stewart, 1972).

5.6 Approach

In the previous sections, preliminary results on the desired state and the state-
space decomposition are presented. Based on these results, the proposed ap-
proach is presented in this section. First, the approach for LTI systems is pre-
sented. Second, the approach for LPTV systems is presented. Finally, special
cases are recovered.

5.6.1 Approach for LTI systems

The proposed approach consists of two steps. First, stable inversion is applied
to H2 in (5.14) to obtain u such that y2[k] = u1[k], for all k, see also Figure 5.2.
The solution is given by Theorem 5.9 and provides exact output tracking every
sample. See Section 3.4.2 for a proof.

Theorem 5.9 (Inversion of H2). Consider Figure 5.2 and let H−1
2 be given by[

xs[k + 1]
xu[k + 1]

]
=

[
As 0
0 Au

] [
xs[k]
xu[k]

]
+

[
Bs
Bu

]
u1[k], (5.17a)

u[k] =
[
Cs Cu

] [xs[k]
xu[k]

]
+Du1[k], (5.17b)

with |λ(As)| < 1 and |λ(Au)| > 1. Then, y2[k] = u1[k], for all k, if

u[k] = Csxs[k] + Cuxu[k] +Du1[k], (5.18)

which is bounded for bounded u1, where xs follows from solving

xs[k + 1] = Asxs[k] +Bsu1[k], xs[−∞] = 0 (5.19)

forward in time and xu follows from solving

xu[k + 1] = Auxu[k] +Buu1[k], xu[∞] = 0 (5.20)

backward in time.
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If u1 is bounded, u in Theorem 5.9 is bounded by construction of xs, xu,
even if H2 is nonminimum phase. The stable inversion solution in Theorem 5.9
achieves exact output tracking every sample and has infinite preactuation. Reg-
ular causal inversion is recovered as special case if the system is minimum phase,
i.e., xu is non-existing, see also Chapter 3.

Second, multirate inversion is applied to H1 in (5.14) to obtain u1. Note
that by Theorem 5.9, y2[k] = u1[k], for all k. The solution is based on lifting
the state equation over n1 samples. The solution is given by Theorem 5.10 and
provides exact state tracking every n1 samples.

Theorem 5.10 (Inversion of H1). Consider Figure 5.2 with y2[k] = u1[k], for
all k, and let x̂1 be the desired state for system H1 in (5.14). Consider the state
equation lifted over τ samples given by

x1[q + 1] = A1 x1[q] +B1 u1[q], (5.21)

with u1[q] =
[
u1[kn1] u1[kn1+1] . . . u1[(k+1)n1 − 1]

]>
, x1[q] = x1[kn1],

A1 = An1
1 , and B1 =

[
An1−1

1 B1 An1−2
1 B1 . . . B1

]
. Then, x1[q] = x̂1[q], for

all q, if

u1[q] = B−1
1 (x̂1[q + 1]−A1 x̂1[q]) , (5.22)

which is bounded for bounded x̂1.

Proof. See Ohnishi et al. (2017, Section 3.3).

Importantly, the inversion approach in Theorem 5.10 is based on the contin-
uous-time system Hc, rather than the discrete-time system H. The approach
yields exact state tracking, and hence exact output tracking, every n1 samples
and has n1 samples preactuation. Note that u1 is bounded if x̂1 is bounded, even
if H1 is nonminimum phase. More details can be found in, for example, Ohnishi
et al. (2017); Fujimoto et al. (2001). The desired state x̂1 in Theorem 5.10 is
obtained by Procedure 5.11 which follows from Section 5.4 and Section 5.5.

Procedure 5.11 (Desired state of H1). Given Hc in (5.5), H in (5.2), and the
decomposition H = H1H2 in Theorem 5.5, the following steps yields the desired
state x̂1[k] in Theorem 5.10.

1. Obtain the controllable canonical form Hccf = T (Hc, Tccf ) according to
Lemma 5.1.

2. Obtain the desired state x̂(t) of Hc using Theorem 5.2.

3. Set the desired state of H to x̂[k] = x̂(kδ).

4. Obtain the desired state of Hmod: x̂mod[k] = Tmodx̂[k], with Hmod, Tmod in
Theorem 5.5.
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5. Given H1, H2 in (5.14), let

H12 = H1H2
z
=

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 . (5.23)

6. Obtain the desired state of H12: x̂12[k] = T−1
12 Tperx̂mod[k], with T12 in

(5.16) and Tper satisfying (5.12) and (5.13).

7. Obtain the desired state for H1: x̂1[k] =
[
In1

0n1×n2

]
x̂12[k].

The combination of the inversion of H2 in Theorem 5.9 and the inversion
of H1 in Theorem 5.10 constitutes the control input u in Figure 5.2, which is
bounded by design, also for nonminimum-phase systems. The design freedom
is in the decomposition of H into H1 and H2 in Theorem 5.5. Equation (5.23)
shows that the output is given by y[k] = C1x1[k]+D1C2x2[k] since either D1 = 0
or D2 = 0 as D = 0 in (5.2). If D1 = 0, y[k] = C1x1[k] and since inversion of H1

in Theorem 5.9 ensures tracking of x1 every n1 samples, there is perfect output
tracking every n1 samples. If D1 6= 0, y[k] also depends on x2[k] of H2 and
since inversion of H2 in Theorem 5.10 does not provide perfect state tracking,
there is no perfect output tracking for y every n1 samples. Hence, to guarantee
exact on-sample tracking every n1 samples, V, V× in Theorem 5.5 are preferably
chosen such that D1 = 0.

In summary, input u[k] in Figure 5.1 that minimizes e(t), in terms of both
the intersample and on-sample behavior, is obtained by decomposing H as in
Figure 5.2 using Theorem 5.5, followed by inversion of H2 using Theorem 5.9
and inversion of H1 using Theorem 5.10. In the next section, special cases are
recovered.

Remark 5.12. For strictly proper systems H2, Theorem 5.9 can be applied to
the bi-proper system H̄2 obtained through time shifts H̄2 = zd2H2, where d2 is
the relative degree of H2, see also Remark 3.1. If there are eigenvalues on the
unit circle, i.e., there exist λi such that |λi(A)| = 1, then similar techniques as
in Devasia (1997a) can be followed.

Remark 5.13. The decomposition of H−1 given by (5.17) can be obtained
through an eigenvalue decomposition.

Remark 5.14. Note that B1 in Theorem 5.10 is the controllability matrix of
H1 and hence B−1

1 exists if H1 is controllable.
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5.6.2 Approach for LPTV systems

In this section, the approach for LPTV systems is presented. Let the LPTV
system H with period τ ∈ N be given by

x[k + 1] = A[k]x[k] +B[k]u[k], (5.24a)

y[k] = C[k]x[k], (5.24b)

with A[k+ τ ] = A[k], B[k+ τ ] = B[k], C[k+ τ ] = C[k], for all k. LPTV systems
may result from non-equidistant sampling as in Example 5.15.

Example 5.15 (Non-equidistant sampling). Let the sampling in Figure 5.1 be
non-equidistant in time and given by the sampling sequence ∆ne ∈ R∞>0 with
periodicity τ ∈ N defined as

∆ne = (δ1, δ2, . . . , δγ , δ1, δ2 . . .), (5.25)

with δi = γiδb, δb ∈ R>0, γi ∈ N, i = 1, 2, . . . , τ . Then, the discretized system
H = SHcH is given by (5.24) with

A[i] = eAcδi , (5.26a)

B[i] =

∫ δi

0

eAcτBc dτ, i = 1, 2, . . . , τ, (5.26b)

C = Cc, (5.26c)

where A[k + τ ] = A[k], B[k + τ ] = B[k], for all k. By linearity of Hc and
periodicity of ∆ne, H is LPTV with period τ .

The approach for LPTV systems is similar to that for LTI systems, with the
key difference that an additional lifting step is used. The lifting step turns the
LPTV system into a (multivariable) LTI system as given by Lemma 5.16.

Lemma 5.16. Lifting the input of H in (5.24) over τ samples yields the LTI
system H given by

x[q + 1] = Ax[q] +B u[q], (5.27a)

y[q] = C x[q] +Du[q], (5.27b)
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where

x[q] = x[kτ ], (5.27c)

u[q] =


u[kτ ]

u[kτ + 1]
...

u[(k + 1)τ − 1]

 , (5.27d)

A = Φτ+1,1, (5.27e)

B =
[
Φτ+1,2B[1] Φτ+1,3B[2] . . . B[τ ]

]
, (5.27f)

C =


C[1]

C[2]Φ2,1

...
C[τ ]Φτ,1

 , (5.27g)

D =


0 0 · · · 0

C[2]B[1] 0 · · · 0
...

...
. . .

...
C[τ ]Φτ,2B[1] C[τ ]Φτ,3B[2] · · · 0

 , (5.27h)

with transition matrix

Φk2,k1 =

{
I, k2 = k1,

A[k2 − 1]A[k2 − 2] . . . A[k1], k2 > k1.
(5.28)

For the lifted system H in (5.27), the same approach as for the LTI system
illustrated in Figure 5.2 is used. The state-space decomposition H = H1H2 is
obtained using Theorem 5.5. System H2 is inverted using Theorem 5.9 and H1

is inverted using Theorem 5.10, where the desired state x̂1[q] follows along the
same lines as in Procedure 5.11. The result is the lifted input signal u[q], which,
after inverse lifting, yields input u[k], for the LPTV system H in (5.24).

In the previous and present section, the approaches for LTI and LPTV are
presented, respectively. Next, special cases are recovered.

5.6.3 Special cases

The proposed approach provides a whole range of solutions as illustrated in
Figure 5.3. The stable inversion and multirate inversion solution are recovered
as the two extreme cases and given by Corollary 5.17 and Corollary 5.18. The
results hold for both LTI and LPTV systems.

Corollary 5.17 (Special case: stable inversion (Section 3.4.2; Chapter 4)).
The stable inversion solution for H is recovered from the proposed approach in
Section 5.6 as special case when H = H2, i.e., H1 = I and n1 = 0.
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Corollary 5.18 (Special case: multirate inversion (Ohnishi et al., 2017; Fuji-
moto et al., 2001)). The multirate inversion solution for H is recovered from the
proposed approach in Section 5.6 as special case when H = H1, i.e., H2 = I and
n1 = n.

Importantly, although Theorem 5.9 yields exact output tracking of H2 for
every sample, the inversion of H1 does not reduce to conventional multirate
inversion of H1 since the desired state x̂1 depends on the full system Hc and not
only on H1.

Finally, the approach for LTI systems is recovered from that for LPTV sys-
tems as given by Corollary 5.19. Indeed, for τ = 1, (5.2) is recovered from
(5.24).

Corollary 5.19. The approach for LTI systems in Section 5.6.1 is recovered as
a special case from the approach for LPTV systems in Section 5.6.2 for τ = 1.

The proposed approach provides a whole range of solutions that were non-
existing before, see also Figure 5.3. The advantages of the approach are demon-
strated by application to an LTI and an LPTV motion system in Section 5.7
and Section 5.8, respectively.

5.7 Application to an LTI motion system

In this section, the approach proposed in Section 5.6.1 is applied to a motion
system. The results demonstrate the potential of the proposed approach.

5.7.1 Setup

The motion system is illustrated in Figure 5.4(a) and based on the benchmark
system in Section 3.3. The continuous-time transfer function from input u to
output y is given by

Hc =
0.3125

s2

s2 + 15s+ 1500

s2 + 37.5s+ 3750
(5.29)

and is minimum phase. The discretized system (5.2) with sampling time δ =
0.02 s has the transfer function

H =
5.13× 10−5(z + 0.842)

(z − 1)2

z2 − 1.249z + 0.742

z2 − 0.5415z + 0.4724
(5.30)

and is also minimum phase. The Bode diagrams of Hc and H are shown in
Figure 5.4(b). Reference trajectory r is shown in Figure 5.5.
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(a) The system is actuated by input force
u, can translate in x direction, rotate in φ
direction, and has output position y.
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(b) Bode magnitude diagram of the continuous-
time system Hc ( ) and the discretized sys-
tem H ( ) from input u to output y in (a).

Figure 5.4. Motion system used for validation of the proposed approach.
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Figure 5.5. The reference trajectory r(t) ( ), with discretization r[k] ( ).
The trajectory consists of a forward and backward movement.
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5.7.2 Results

Three different solutions are compared in simulation: the proposed approach
with n1 = 2, the special case n1 = 0, i.e., stable inversion in Corollary 5.18, and
the special case n1 = 4, i.e., multirate inversion in Corollary 5.17. The error
signals for the three approaches are shown in Figure 5.6.

The results in Figure 5.6(a) show that the special case of stable inversion
achieves exact tracking every sample, but poor intersample behavior. The results
for the special case of multirate inversion in Figure 5.6(b) show good intersample
behavior, but moderate on-sample behavior since the solution only yields exact
tracking every n = 4 samples.

The results of the proposed approach are shown in Figure 5.6(c). The results
show good intersample behavior with exact on-sample tracking every n1 = 2
samples. Hence, it outperforms the special case of multirate inversion in terms
of on-sample performance. At the same time, it outperforms the special case of
stable inversion in terms of intersample performance.

The results demonstrate the potential of the proposed approach on a motion
system as it outperforms the existing solutions. Next, the approach is demon-
strated on an LPTV motion system.

5.8 Application to an LPTV motion system

In this section, the proposed approach is applied to an LPTV system resulting
from non-equidistant sampling of an LTI motion system. The results show that
many solutions of the proposed approach outperform the special cases of stable
inversion and multirate inversion.

5.8.1 Setup

The considered motion system is the experimental high-precision positioning
stage shown in Figure 5.7(a), with model in Figure 5.7(b). The Bode diagram
of a frequency response function measurement is shown in Figure 5.7(c). The
identified 8th order continuous-time system Hc (n = 8 and m = 4) is given by

Hc =
4.576 · 106

s(s+ 2.101)(s2 + 10.89s+ 3.665 · 104)

× (s2 + 8.132s+ 2.518 · 104)(s2 + 84.73s+ 8.497 · 105)

(s2 + 45.4s+ 3.139 · 105)(s2 + 262.2s+ 3.507 · 106)

(5.31)

and is stable and minimum phase. The Bode diagram of Hc is also shown in
Figure 5.7(c).

The non-equidistant sampling sequence, see also Example 5.15, is set to γ1 =
1, γ2 = 2 (τ = 2), with δb = 400 µs. The lifted system H in (5.27) has one
nonminimum-phase (transmission) zero due to discretization.
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(a) Stable inversion yields exact on-sample tracking every sample ( ), but
poor intersample behavior ( ).

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
·10−4

Time [s]

e
[m

]

(b) Multirate inversion yields only exact on-sample tracking every n = 4
samples ( ), but good intersample behavior ( ).
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(c) The proposed approach yields exact on-sample tracking every n1 = 2
samples ( ) and good intersample behavior ( ).

Figure 5.6. Error signals with on-sample error e[k] ( ) and continuous-time
error e(t) ( ).



124 Chapter 5. Discrete-time system inversion for intersample performance

u

y

(a) Experimental high-precision position-
ing stage with input u and output y.

y

u

(b) Model of the experimental
high-precision positioning in (a).
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(c) Bode diagram of the frequency response function measurement
( ) and identified continuous-time model Hc ( ).

Figure 5.7. Motion system (Hara et al., 2008) used for validation of the
proposed approach for LPTV systems in Section 5.8.
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Figure 5.8. Reference trajectory r(t) for the LPTV system in Figure 5.7
consisting of 8th order polynomials in t.

The trajectory r(t) is given by the forward and backward motion shown in
Figure 5.8. The profile consists of 8th order polynomials in t.

5.8.2 Simulation results

First, three different solutions are considered: the proposed approach with n1 =
4, the special case n1 = 0, i.e., multirate inversion in Corollary 5.18, and the
special case n1 = 8, i.e., stable inversion in Corollary 5.17. The continuous-time
input signal u(t) and error signal e(t) for these solutions are shown in Figure 5.9.

The special case of stable inversion achieves perfect output tracking, see
Figure 5.10(a). However, the intersample performance in Figure 5.9(b) is poor
as a consequence of the erratic input, see Figure 5.9(a). The special case of
multirate inversion yields a less erratic input, see Figure 5.9(a). Figure 5.10(b)
shows perfect state tracking is achieved every n = 8 samples. The intersample
performance shown in Figure 5.9(b) is reasonable.

The proposed approach yields good intersample performance as shown by
Figure 5.9(b). Perfect state tracking is achieved every n1 = 4 samples, see
Figure 5.10(c). The proposed approach outperforms the special cases of stable
inversion and multirate inversion in terms of the continuous-time error e(t).

Second, the performance is evaluated for a variety of solutions. The results
are shown in Figure 5.11 and quantify Figure 5.3. The results show that many
of the solutions provided by the proposed approach outperform the special cases
of stable inversion and multirate inversion. Figure 5.11 only shows results for
even numbers n1 due to the additional lifting step with τ = 2 that is used.

In summary, in this simulation the intersample performance of the special
case of stable inversion is poor due to an erratic input signal. The special
case of multirate inversion yields a non-erratic input, but moderate intersample
performance. The proposed approach offers a variety of options that outperform
the two special cases of stable inversion and multirate inversion, and achieve
superior performance.
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(a) The input signals u(t) for multirate inversion and the proposed approach are
overlapping. The input for the stable inversion approach is erratic.
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(b) The continuous-time error e(t) is large for the stable inversion approach as a result
of an erratic input. The proposed approach achieves the smallest error and outperforms
the other approaches.

Figure 5.9. Results for the LPTV system in Section 5.8 with stable inver-
sion ( ), multirate inversion ( ), and the proposed approach ( ). The
proposed approach achieves superior performance.
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(a) The stable inversion approach achieves exact output tracking every sample ( ).
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(b) The multirate inversion approach achieves exact state and output tracking every
n = 8 samples ( ).
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(c) The proposed approach achieves exact state and output tracking every n1 = 4
samples ( ).

Figure 5.10. Intersample error signal e(t) ( ) and on-sample error signal
e[k] ( ) near t = 0.30 s for the LPTV system in Section 5.8. The proposed
approach outperforms the other approaches.
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Figure 5.11. Quantification of Figure 5.3 for the LPTV system in Section 5.8.
The number of states n1 in H1 corresponds to the number of samples between
exact on-sample tracking. The proposed approach (n1 = 4, ) outperforms the
stable inversion approach (n1 = 0, ) and the multirate inversion approach
(n1 = 8, ).

5.9 Conclusion and outlook

A discrete-time inversion approach is developed that allows to balance the on-
sample and intersample behavior for the purpose of continuous-time perfor-
mance. The approach is applicable to both LTI and LPTV systems. The mul-
tirate inversion and stable inversion approaches are recovered as special cases.
Application to two motion systems demonstrate the advantages of the proposed
approach.

For LPTV systems, the proposed approach currently involves an additional
lifting step, which limits applicability due to constraints on the input and state
dimensions. In contrast, stable inversion and multirate inversion can be directly
applied to LPTV systems. Future work focuses on an explicit state-space de-
composition for LPTV systems to avoid the additional lifting step and thereby
potentially increase the performance of the proposed approach.

5.A Proof of Theorem 5.2

Let xccf (t) in (5.5) be given by xccf (t) =
[
x0(t) x1(t) · · · xn−1(t)

]>
and ρ

the Heaviside operator (Goodwin et al., 2000, Section 4.2), then

x1(t) = ρx0(t), (5.32a)

x2(t) = ρ2x0(t), (5.32b)

...

xm(t) = ρmx0(t), (5.32c)
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and

y(t) = Cccfxccf (t) (5.33a)

= x0(t) + b1
b0
x1(t) + . . .+ bm

b0
xm(t) (5.33b)

=
b0 + b1ρ+ . . .+ bmρ

m

b0
x0(t) (5.33c)

= B(ρ)x0(t). (5.33d)

Hence, it holds

ȳ(t) = B(ρ)xccf (t). (5.34)

For y(t) = Cccf x̂ccf (t), with

x̂ccf (t) = B−1(ρ)r̄(t), (5.35)

it follows that ȳ(t) = r̄(t). Bounded x̂ccf (t) is obtained through stable inversion
for continuous-time systems, see, e.g., Devasia et al. (1996), as given by (5.8).
State transformation (5.6) yields bounded x̂(t) in (5.9) which concludes the
proof.

5.B Proof of Theorem 5.5

Due to the modal form of Hmod, the A matrix of Hmod is block diagonal and the
states are decoupled per mode. The matrix Tper is a permutation matrix and
follows directly from V, V× and the state ordering of Hmod. The first n1 states
in (5.12) are uncontrollable and are redundant since the states are decoupled.
Similarly, the last n2 states in (5.13) are unobservable and are redundant since
the states are decoupled. Hence, H1, H2 are minimal realizations such that
Hmod = H1H2 in terms of transfer functions. The product H1H2 with H1, H2

in (5.14) is given by

H1H2 =

 A1 B1C2 B1D
0 A2 B2

C1 C2 D

 . (5.36)

Using (5.15),

T (H1H2, T12) =

 A1 −A1X +B1C2 +XA2 B1D +XB2

0 A2 B2

C1 −C1X + C2 D

 (5.37a)

=

 A1 0 B2r

0 A2 B2

C1 C1r D

 . (5.37b)
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By definition of Tper in (5.12) and (5.13),

T (H1H2, T
−1
perT12) = T (T (H1H2, T12), T−1

per) = (A,B,C,D) = Hmod (5.38)

which concludes the proof.



Chapter 6

Causal feedforward control for
non-square systems

In Chapter 3, several approaches for system inversion of nonminimum-phase sys-
tems are presented. The key aspect to achieve perfect tracking for nonminimum-
phase systems is the use of preview and pre-actuating the system. The aim of
this chapter is to exploit the additional freedom in overactuated systems to
avoid the use of pre-actuation and preview to enable causal and exact inversion
of nonminimum-phase systems. In an either static or dynamic squaring-down
step prior to inversion, the approach exploits the fact that non-square systems
typically have no invariant zeros. The approach is successfully demonstrated
on a benchmark system and through experiments on a motion system. The ap-
proach enables exact inversion for non-square systems without requiring preview
or pre-actuation and constitutes Contribution III.C.

6.1 Introduction

System inversion is at the heart of achieving high performance in many con-
trol applications, including printing systems (Bolder et al., 2014), atomic force
microscopes (Rios et al., 2018), and wafer stages (Blanken et al., 2017a). It is
extensively used in, for example, inverse model feedforward (Boeren et al., 2015)
and iterative learning control (ILC) (Bristow et al., 2006). See also Chapter 3
for an overview and comparison of system inversion approaches.

The contents of this chapter are published in:
Jurgen van Zundert, Fons Luijten, and Tom Oomen. Exact and Causal Inversion of
Nonminimum-Phase Systems: A Squaring-Down Approach for Overactuated Systems. Sub-
mitted for journal publication, 2018.
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Many systems have more actuators or sensors, for example flight control
systems (Ma et al., 2012; Chen, 2016; Santamaria-Navarro et al., 2017), dual-
stage actuators (Zheng et al., 2010), marine vessels (Fossen and Johansen, 2006;
Tsopelakos and Papadopoulos, 2017), wafer stages (Van Herpen et al., 2014),
ground vehicles (Wang et al., 2014; Knobel et al., 2006; Wang and Longoria,
2009), and many more (Johansen and Fossen, 2013). For such systems, system
inversion is often performed after the system is cast in a square system, see, for
example, Van de Wal et al. (2002). This can be done by, for example, choosing
outputs such that they coincide with performance variables (Oomen et al., 2015)
or choosing inputs such that the system is decoupled (Stoev et al., 2017). This
facilitates the design of decentralized feedback control (Van de Wal et al., 2002;
Oomen, 2018), as well as decentralized ILC (Blanken and Oomen, 2018).

One of the main challenges in system inversion is nonminimum-phase be-
havior, which is related to the invariant zeros of the system being “unstable”.
Indeed, causal inversion of nonminimum-phase systems yields unbounded sig-
nals. To avoid unbounded signals, inversion techniques have been developed,
see also Chapter 3 for an overview. Traditionally, approximate inversion tech-
niques such as ZPETC, ZMETC and NPZ-Ignore (Butterworth et al., 2012) are
used, but such approaches inherently yield non-exact tracking. Stable inversion
(Section 3.4.2) yields exact tracking, but for nonminimum-phase systems the ap-
proach requires preview, i.e., a priori knowledge of the reference trajectory, and
pre-actuation, i.e., a non-zero input before the start of the trajectory. Further-
more, the approach is restricted to square systems. Optimization approaches
such as norm-optimal feedforward (Athans and Falb, 1966) require preview,
which is not always available. Synthesis approaches such as H2-preview control
and H∞-preview control (Section 3.4.4) are only optimal for trajectories with a
specific frequency spectrum or address a control goal other than tracking error
minimization, respectively.

Although there are many inversion techniques that yield bounded inputs for
nonminimum-phase systems, they either require preview or pre-actuation. The
aim of this chapter is to develop a new approach for system inversion that recon-
siders traditional choices for squaring down, i.e., aiming to decouple systems as
is outlined above. In particular, the approach considers new criteria for squar-
ing down in view of system inversion, exploiting the additional design freedom
available in overactuated systems.

The main contribution of this chapter is a causal inverse model feedforward
solution for overactuated systems, also for systems with nonminimum-phase be-
havior. The approach exploits the design freedom at the input side to square
down the non-square system to a square minimum-phase system, which enables
exact causal inversion. A key aspect is that non-square systems generally do not
have any invariant zeros. The following subcontributions are identified.

6.I Coordinate basis of non-square systems revealing key properties for squar-
ing down.
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F
y

H
r u

Figure 6.1. System inversion diagram. Given system H, the aim is to let
output y ∈ Rp̄ track reference r ∈ Rp̄ through design of F such that u ∈ Rm̄
remains bounded.

6.II A squaring-down approach with a static compensator.

6.III A squaring-down approach with a dynamic compensator.

6.IV Systematic design framework for design of inverse model feedforward for
overactuated systems.

6.V Validation of the design framework on a benchmark system.

6.VI Experimental validation of the design framework on an overactuated sys-
tem with nonminimum-phase behavior.

Related work on overactuated systems addressing different aspects includes Duan
and Okwudire (2018); Benosman et al. (2009), see also Johansen and Fossen
(2013).

The outline of the chapter is as follows. In Section 6.2, the control problem is
formulated. In Section 6.3, the main idea of the approach is presented together
with preliminary results. The static squaring-down approach is presented in Sec-
tion 6.4, with extension to dynamic squaring down in Section 6.5. An overview of
the complete approach is presented in Section 6.6. Application to a benchmark
system is presented in Section 6.7. In Section 6.8, the experimental validation
on a motion system is presented. Conclusions are presented in Section 6.9.

6.2 Problem formulation

In this section, the challenges associated to inversion of (non-)square systems
are illustrated through several examples, which leads to the problem considered
in this chapter.

Consider the inversion diagram in Figure 6.1, where discrete-time system H
has the minimal realization

H :
x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k] +Du[k],
(6.1)

with x ∈ Rn, u ∈ Rm̄, y ∈ Rp̄. Without loss of generality, it is assumed that
rank{[ BD ]} = m̄ and rank{[C D ]} = p̄. The system H is stable if and only
if |λi(A)| < 1, for all i, where λi denotes the ith eigenvalue. The following
definition is adopted.
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Definition 6.1 (Invariant zeros (MacFarlane and Karcanias, 1976; Rosenbrock,
1970)). The invariant zeros of H in (6.1) are given by

z =

{
zi ∈ C

∣∣∣ rank{HRSM (zi)} < max
zj∈C

rank{HRSM (zj)}
}
, (6.2)

with HRSM (z) =

[
zIn −A −B

C D

]
.

The system H in (6.1) is minimum phase if and only if all invariant zeros, see
Definition 6.1, satisfy |zi| < 1, for all i. SystemH is unstable (resp. nonminimum
phase) if it is not stable (resp. minimum phase). If |zi| = 1 for some i, techniques
as in Devasia (1997a) can be used. It is assumed that H is right invertible as
defined by Definition 6.2.

Definition 6.2 (Invertibility). System H in (6.1) is

� left invertible if and only if rn = m̄,

� right invertible if and only if rn = p̄,

� invertible if and only if rn = m̄ = p̄,

with rn = maxz∈C rank{D + C(zIn −A)−1B}.

Given Figure 6.1 and H, the objective is to let output y track the reference
trajectory r, while input u remains bounded. The following examples illustrate
that the inversion of H is nontrivial.

Example 6.3. Let H be scalar and given by

H =
(z − 0.6)(z + 2)

(z − 0.1)(z + 0.8)(z − 0.4)
, (6.3)

then

F = H−1 =
(z − 0.1)(z + 0.8)(z − 0.4)

(z − 0.6)(z + 2)
(6.4)

is unique, but unstable (pole at z = −2) as a consequence of H being nonmini-
mum phase. Hence, causal filtering with F leads to unbounded signals.

Example 6.3 shows the challenges associated with nonminimum-phase be-
havior. The following example illustrates the key concepts of this chapter.

Example 6.4. Let H be non-square and given by

H =
1

(z − 0.1)(z + 0.8)(z − 0.4)

[
(z − 0.6)(z + 2) (z − 5)

]
, (6.5)
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then F such that HF = 1 is non-unique. The inverses

F1 =

[ 1
(z−0.6)(z+2)

0

]
(z − 0.1)(z + 0.8)(z − 0.4), (6.6)

F2 =

[
0
1

(z−5)

]
(z − 0.1)(z + 0.8)(z − 0.4) (6.7)

may lead to unbounded responses since they are unstable. In contrast, the inverse

F =

[
1
−0.3

]
(z − 0.1)(z + 0.8)(z − 0.4)

(z + 0.5)(z + 0.6)
, (6.8)

allows for bounded causal solutions since F is stable.

The main point of Example 6.4 is that for systems with nonminimum-phase
behavior, selecting either one of the inputs may yield unstable inverses, see
(6.6) and (6.7). Interestingly, a smart combination of inputs as in (6.8) yields a
stable inverse. This is the main idea of this chapter and exploits the fact that
in general non-square systems are minimum phase, regardless of the properties
of the individual transfer functions. However, the solution is not always as
straightforward as in Example 6.4, as shown by the following example.

Example 6.5. Let H be non-square and given by

H =
1

(z − 0.1)(z + 0.8)(z − 0.4)

[
(z − 0.6)(z + 2) (z − 5)(z + 0.9)

]
, (6.9)

then F such that HF = 1 is non-unique. The only difference with Example 6.4
is one additional minimum-phase zero at the second input. For (6.9), the design
of a stable F such that HF = 1 is not as straightforward as (6.8) in Example 6.4.

The examples show that inversion of H is nontrivial if H is nonminimum
phase or non-square. Example 6.4 shows that additional freedom in the inputs
can be exploited to create a stable system that yields exact inversion. However,
such a design is not straightforward as illustrated by Example 6.5. In the next
sections, a systematic design framework for inversion of overactuated systems is
presented. A design for Example 6.5 is presented later on.

Remark 6.6. In this chapter, discrete-time systems are considered since this al-
lows for a digital controller implementation. Results for continuous-time systems
follow along the same lines.

6.3 Causal and stable inversion for non-square
systems

In this section, the main idea of the proposed approach is presented together
with preliminary results.
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u1

u2

r
F

y
H

(a) Tracking control of r ∈ Rp̄ by H with
more inputs u1 ∈ Rp̄, u2 ∈ Rm̄−p̄ than out-
puts y ∈ Rp̄.

F u1

u2

r
K̂pre

ûsq
Σ̂−1

sq

(b) Minimimum-phase, square Σ̂sq =

HK̂pre is created and inverted such that
HF = I and hence y = r.

Figure 6.2. Inverse model feedforward approach for a system H with more
inputs than outputs. Perfect tracking is obtained without pre-actuation and
preview through squaring down and direct inversion of the minimum-phase,
square system.

6.3.1 Main idea: Squaring down in view of system
inversion

Squaring down is a standard step in control applications. Typical considerations
include decoupling. In this chapter, a systematic design approach is presented
that exploits the additional freedom of overactuated systems H in Figure 6.1
in view of system inversion, i.e., with m̄ > p̄, to obtain stable F such that
HF = I and hence y = r. A key aspect is that non-square systems generally
have no invariant zeros. Hence, the invariant zeros of the squared-down system
are determined by the squaring-down approach and can be affected.

The tracking control application of Figure 6.1 with more inputs than outputs
(m̄ > p̄) is shown in Figure 6.2(a), with input u ∈ Rm̄ divided into u1 ∈ Rp̄ and
u2 ∈ Rm̄−p̄. The design approach consists of two steps as shown in Figure 6.2(b).
First, a precompensator K̂pre is designed such that

Σ̂sq = HK̂pre (6.10)

is square with dimensions p̄× p̄. Second, F is selected as

F = K̂preΣ̂
−1
sq (6.11)

such that perfect tracking is obtained since

y = HFr = HK̂preΣ̂
−1
sq r = HK̂pre(HK̂pre)

−1r = r. (6.12)

Note that the second step is straightforward once the first step is completed.
The proposed approach is also used in Example 6.4 in Section 6.2 where

squaring down is performed by the static precompensator K̂pre =
[

1
−0.3

]
. The

precompensator yields a minimum-phase, square system as desired. It is shown
later on that there does not exist a static precompensator for the system in
Example 6.5 such that the square system is minimum phase. However, there does
always exist a dynamic compensator such that the square system is minimum
phase. A dynamic compensator design for Example 6.5 is presented later on.
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The precompensator design K̂pre introduces additional invariant zeros in the

square system Σ̂sq in (6.10). The interest is in stable precompensator designs

K̂pre that yield minimum-phase, square systems Σ̂sq as they result in stable F
and thus bounded u when using the causal solution. If the compensator is sta-
ble, but the square system is nonminimum phase, then inversion techniques are
required to compute bounded outputs of Σ̂−1

sq , since the invariant nonminimum-

phase zeros become unstable poles in Σ̂−1
sq . Inversion techniques, such as stable

inversion, are not preferred since they are noncausal and require pre-actuation
and preview.

The critical step in the proposed approach is the design of the compensator
K̂pre in (6.10) which is presented in the subsequent sections based on the coor-
dinate basis presented in the next section.

6.3.2 Coordinate basis for squaring down

In this section, a coordinate basis is presented to facilitate the design of the
precompensator K̂pre in (6.10). The basis is specifically developed for use in the
squaring-down approach presented in Sections 6.4 and 6.5, in contrast to the
more general special coordinate basis (s.c.b.) (Sannuti and Saberi, 1987; Saberi
and Sannuti, 1990). The results in this section constitute Contribution 6.I.

The coordinate basis is developed for left-invertible systems. The right-
invertible system H

z
= (A,B,C,D) in Figure 6.2(a) is transformed to a left-

invertible system by considering its dual Σ̂ = Hd given by

Σ̂ :
x̂[k + 1] = Âx̂[k] + B̂û[k],

ŷ[k] = Ĉx̂[k] + D̂û[k],
(6.13)

with (Â, B̂, Ĉ, D̂) = (A>, C>, B>, D>) and x̂ ∈ Rn, ŷ ∈ Rp, û ∈ Rm, where
p = m̄, m = p̄. Note that since H is right invertible, Σ̂ = Hd is left invertible,
see also Definition 6.2.

In the related work Sannuti and Saberi (1987); Saberi and Sannuti (1990)
the special coordinate basis (s.c.b.) is used. Existing algorithms to obtain this
special structure, for example in Chen et al. (2004, Chapter 12), are experienced
to be numerically inaccurate. Instead, an other structure is used which only
enforces those features that are required for the squaring-down approach and
thereby results in numerically more accurate results. The coordinate basis that
is used is given by Theorem 6.7. See Appendix 6.A for the construction of the
basis.

Theorem 6.7 (Coordinate basis). Let Σ = Γ−1
o Σ̂Γi, with Σ̂ in (6.13) and

ŷ = Γo

[
yf
ys

]
, û = Γiu, (6.14)



138 Chapter 6. Causal feedforward control for non-square systems

with non-singular Γo ∈ Rp, Γi ∈ Rm and yf =

[
y0f

yxf

]
, y0f ∈ Rm0 , yxf ∈ Rm−m0 ,

ys ∈ Rp−m, and u =

[
u0

ux

]
, u0 ∈ Rm0 , ux ∈ Rm−m0 , where m0 = rank{D}.

Then, Σ satisfies the coordinate basis

xa[k + 1] = Aaaxa[k] +Aafyf [k], (6.15a)

xb[k + 1] = Abbxb[k] +Abfyf [k], (6.15b)

xf [k + 1] = Afaxa[k] +Afbxb[k] +Bfxux[k] + Lfyf [k], (6.15c)

y0f [k] = C0faxa[k] + C0fbxb[k] + C0ffxf [k] + u0[k], (6.15d)

yxf [k] = xf [k], (6.15e)

ys[k] = Csbxb[k]. (6.15f)

The coordinate basis in Theorem 6.7 reveals several features that are used in
the squaring-down approach in subsequent sections. For example, the invariant
zeros, see Definition 6.1, of Σ̂ in Theorem 6.7 are given by λ(Aaa). In the next
section, the coordinate basis in Theorem 6.7 is exploited in the squaring-down
approach to obtain the compensator K̂pre in (6.10).

6.4 Causal feedforward through static squaring
down

In this section, the static squaring-down approach is presented, which consti-
tutes Contribution 6.II. The approach exploits properties of the coordinate basis
presented in Section 6.3, and in particular Theorem 6.7. First, the static com-
pensator design is presented. Second, the static compensator design is applied
to the examples in Section 6.2. The extension to a dynamic compensator design
is presented in Section 6.5. An overview of the complete feedforward design
approach for H in Figure 6.2(a) is presented in Section 6.6.

6.4.1 Static compensator

The concept of squaring down a left-invertible system Σ in (6.15) is illustrated
in Figure 6.3. The outputs yf ∈ Rm, ys ∈ Rp−m are combined into a new output

ỹ ∈ Rm through a postcompensator as ỹ = Kpost

[
yf
ys

]
, such that Σsq = KpostΣ

is square with dimensions m ×m. The main idea is to design Kpost such that
Σsq is invertible and nonminimum phase to enable direct inversion.

The precompensator Kpre for the right-invertible dual system system Σd is
obtained as the dual of the postcompensator of Σ, i.e., Kpre = Kpost,d. The
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KpostΣ

Σsq

u ỹ
yf

ys

Figure 6.3. Postcompensator Kpost combines outputs yf , ys of the left-
invertible system Σ into a new output ỹ such that the combined system Σsq
is square. The freedom in design of Kpost is exploited to make Σsq minimum
phase.

Kpost
ỹyf

ys L

+

+

(a) Static postcompensator
with static gain L.

Kpost

ỹ
yf

ys
Σobs

x̂b +
+

J

(b) Dynamic postcompensator with observer
Σobs to obtain x̂b for use in state feedback.

Figure 6.4. Two proposed postcompensator designs for Kpost in Figure 6.3.

precompensator K̂pre for system H in Figure 6.2(b) is given by

K̂pre = Γ−>o Kpre = Γ−>o Kpost,d. (6.16)

The design of static compensator design Kpost in Figure 6.3 is given by Theo-
rem 6.8 and illustrated in Figure 6.4(a).

Theorem 6.8 (Static compensator). Given Figure 6.3 with Σ in (6.15), the
static compensator is given by

Kpost =
[
Im L

]
, (6.17)

i.e., ỹ = yf + Lys, with L ∈ Rm×(p−m).

Proof. The proof follows along similar lines as for continuous-time systems based
on the s.c.b. in Saberi and Sannuti (1988, III.A).

Properties of the square system Σsq for the static compensator in Theo-
rem 6.8 are provided by Theorem 6.9, where na, nb are the dimensions of xa, xb
in (6.15), respectively.

Theorem 6.9 (Properties Σsq static compensator). Given H in (6.1) and Σ in
(6.15), the square system Σsq in Figure 6.3 with Kpost the static compensator of
Theorem 6.8 has the following properties.

� Invertible;
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� na + nb invariant zeros: λ(Aaa) + λ(Abb −AbfLCsb);

� n poles: λ(Â).

Proof. Substitution of yf = ỹ − Lys = ỹ − LCsbxb in (6.15) and obtaining the

coordinate basis in Theorem 6.7 for the new system shows that x̃a =

[
xa
xb

]
with

Ãaa =

[
Aaa −AafLCsb

0 Abb −AbfLCsb

]
from which the results follow directly.

Theorem 6.9 shows that the static compensator introduces new invariant ze-
ros in addition to the invariant zeros λ(Aaa) of Σ. When inverting the square
system Σsq, these zeros become poles. Hence, these zeros are preferred to be min-
imum phase to avoid the use of inversion techniques which require pre-actuation.
The zeros λ(Aaa) are fixed, but since Σ is non-square, there are typically no
(nonminimum-phase) zeros. Theorem 6.10 shows how the additional zeros can
possibly be placed through static output feedback.

Theorem 6.10 (Invariant zero placement static compensator). The invariant
zeros introduced by the static compensator in Theorem 6.8 can possibly be placed
by solving the static output feedback problem for the triplet (Abb, Abf , Csb).

Proof. By Theorem 6.9, the additional invariant zeros are given by λ(Abb −
AbfLCsb) and thus affected by L. These zeros are also the poles of the state-
space system (Abb, Abf , Csb) with static output feedback gain −L.

Importantly, the static output feedback problem in Theorem 6.10 is not al-
ways solvable (Syrmos et al., 1997). This is also shown through examples in the
next section.

6.4.2 Application of the static compensator

In this section, the static compensator design of Theorem 6.8 is applied to Ex-
ample 6.4 and Example 6.5 in Section 6.2.

Example 6.4 (continued). The dual left-invertible system, see also
Section 6.3.2, of H in (6.5) is given by

Hd =
1

(z − 0.1)(z + 0.8)(z − 0.4)

[
(z − 0.6)(z + 2)

(z − 5)

]
, (6.18)

with m = 1, p = 2. System Σ = Hd in the coordinate basis of Theorem 6.7 is
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given by

xb[k + 1] =

[
0.5935 0.1569
0.1069 −1.9935

]
xb[k] +

[
−1.9347

3.5010

]
yf [k], (6.19a)

xf [k + 1] =
[
0.0580 −0.6477

]
xb[k] + 1.1yf [k] (6.19b)

yf [k] = xf [k], (6.19c)

ys[k] =
[
0.9512 0.8113

]
xb[k], (6.19d)

with Γo = [ 1 0
0 1 ]. The coordinate basis confirms Σ has no invariant zeros since

xa is non-existing. Selecting L = −0.3 in Theorem 6.8 yields Kpost =
[
1 −0.3

]
and λ(Abb − AbfLCsb) = {−0.5,−0.6}. Hence, by (6.16), K̂pre =

[
1
−0.3

]
which

yields controller F in (6.8).

Example 6.5 (continued). The dual left-invertible system Hd, see Section 6.3.2,
of H in (6.9) in the coordinate basis of Theorem 6.7 is given by

xb[k + 1] =

[
0.5137 1.7257
0.1257 −1.9137

]
xb[k] +

[
−5.9323

5.3673

]
yf [k], (6.20a)

xf [k + 1] =
[
0.0445 −0.3942

]
xb[k] + 1.1xf [k] + ux[k], (6.20b)

yf [k] = xf [k], (6.20c)

ys[k] =
[
1.1556 0.2525

]
xb[k], (6.20d)

with Γo = [ 1 0
1 1 ]. It can be verified that there does not exist an L ∈ R such that

|λ(Abb − AbfLCsb)| < 1. Hence, for this system, there does not exist a static
compensator that yields a square system which is minimum phase.

Theorem 6.10 shows that the problem of designing a postcompensator reduces
to solving a static output feedback problem. However, the static output feedback
problem does not always have a solution, as also illustrated by Example 6.5
above. Therefore, in the next section a dynamic compensator is constructed for
which the additional invariant zeros can always be placed arbitrarily.

6.5 Causal feedforward: Extension to dynamic
squaring down

In the previous section, a static compensator design is presented that yields a
square system. However, it is also shown that such a design may not suffice
to obtain a minimum-phase square system, as is also illustrated through Ex-
ample 6.5. In this section, the compensator design is extended to a dynamic
compensator which enables to always obtain a minimum-phase square system.
This section constitutes Contribution 6.III.
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The minimum-phase square system is obtained by using an observer to re-
construct the full state xb, followed by state feedback on this observed state x̂b.
The resulting dynamic compensator is presented in Theorem 6.11 and illustrated
in Figure 6.4(b). Note that the observer poles λ(N) can be placed arbitrarily
since (Abb, Abf ) is controllable as Σ is a minimal realization. For minimal order
observers, see, for example, O’Reilly (1983, Section 2.3).

Theorem 6.11 (Dynamic compensator). Given Figure 6.3 with Σ in (6.15),
the dynamic compensator Kpost is given by

Kpost =
[
Im 0

]
+ JΣobs, (6.21)

i.e., ỹ[k] = yf [k] + Jx̂b[k], x̂b[k] = Σobs

[
yf [k]
ys[k]

]
, where Σobs denotes a minimal

order observer with state matrix N for the matrix triplet (Abb, Abf , Csb).

Proof. The proof follows along similar lines as for continuous-time systems based
on the s.c.b. in Saberi and Sannuti (1988, III.A).

Properties of the square system Σsq for the dynamic compensator of Theo-
rem 6.11 are provided by Theorem 6.12.

Theorem 6.12 (Properties Σsq dynamic compensator). Given H in (6.1) and
Σ in (6.15), the minimal realization of the square system Σsq in Figure 6.3 with
Kpost the dynamic compensator of Theorem 6.11 has the following properties.

� Invertible;

� na + nb invariant zeros: λ(Aaa) + λ(Abb −AbfJ);

� n poles: λ(Â).

Proof. The proof follows along similar lines as for Theorem 6.9.

The additional invariant zeros λ(Abb − AbfJ) are affected by J and can be
arbitrarily placed through static state feedback of the pair (Abb, Abf ). This
requires that (Abb, Abf ) is controllable which is satisfied since Σ is a minimal
realization. Hence, if H is minimum phase, which typically holds, Σsq can be
made minimum phase enabling the use of direct inversion without pre-actuation.

Next, the dynamic compensator design is applied to Example 6.5 in Sec-
tion 6.4.2.

Example 6.5 (continued). The subsystem (Abb, Abf , Csb) in (6.20) has two
states and one output. Let the desired invariant zeros be λ(N) = 0.7 and
λ(Abb−AbfJ) = {−0.5,−0.6}, then pole placement on the pair (Abb, Abf ) yields
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J =
[
−0.2188 −0.2977

]
. The dynamic postcompensator, see Theorem 6.11, is

given by

Kpost =
1

(z − 0.7)

[
(z + 0.6) 0.291(z − 0.531)

]
, (6.22)

which, by (6.11), yields

F =
(z − 0.4)(z + 0.8)(z − 0.1)

(z + 0.6)(z + 0.5)(z − 0.7)

[
0.709(z + 1.064)
0.291(z − 0.531)

]
, (6.23)

which is stable as desired. It can be verified that HF = 1 and hence perfect
tracking is obtained.

In summary, the dynamic postcompensator design in Theorem 6.11 can al-
ways create a stable, minimum-phase, square system, if H in (6.1) is stable and
has no nonminimum-phase invariant zeros, which typically holds for non-square
systems. Next, the complete design framework is summarized, including both
static and dynamic compensators.

6.6 Application in tracking control

In this section, the design framework is summarized which constitutes Contri-
bution 6.IV.

The systematic design framework for design of F in Figure 6.2 given a right-
invertible system H is shown in Figure 6.5. The result follows directly from
combining the results of the previous sections. There are two main design types:
static and dynamic squaring down. Properties of both are given by Lemma 6.13
and Lemma 6.14, respectively.

Lemma 6.13 (Properties controller with static compensator). Given H in (6.1)
and Σ in (6.15), the minimal realization of F in Figure 6.5 based on a static
compensator has:

� n invariant zeros: λ(Â),

� na + nb poles: λ(Aaa) + λ(Abb −AbfLCsb).

Proof. The results follow from Theorem 6.9 and Figure 6.5.

Lemma 6.14 (Properties controller with dynamic compensator). Given H in
(6.1) and Σ in (6.15), the minimal realization of F in Figure 6.5 based on a
dynamic compensator has:

� n invariant zeros: λ(Â),

� na + 2nb − p+m poles: λ(Aaa) + λ(N) + λ(Abb −AbfJ).
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Right-invertible system H (6.1)

Σ̂ = Hd (6.13) left invertible
Σ = cb(Σ̂) (Theorem 6.7)

Output feedback
for (Abb, Abf , Csb)

solvable?

Kpost static (Figure 6.4(a))
with L solution output
feedback (Abb, Abf , Csb)

Kpost dynamic (Figure 6.4(b))
with J solution state
feedback (Abb, Abf )

K̂pre = Γ−>o Kpost,d (6.16)

Σ̂sq = HK̂pre (6.10)

F = K̂preΣ̂
−1
sq (6.11)

yes no

Figure 6.5. Inversion approach for overactuated systems in tracking control
as shown in Figure 6.2. The precompensator K̂pre is designed such that the
square system Σ̂sq has desired properties, for example, minimum-phase behav-
ior. Perfect tracking is obtained through inversion of the square system.
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Proof. The results follow from Theorem 6.12 and Figure 6.5.

The locations of the invariant zeros of Σ̂sq directly influence the dynamics
and the resulting input signals u1, u2 in Figure 6.2. To avoid the use of pre-
actuation, these invariant zeros can be made minimum phase.

In the next sections, the controller design framework presented in Figure 6.5
is validated through simulations and experiments.

6.7 Validation on a benchmark system

In this section, the static and dynamic squaring-down designs are applied to a
benchmark system. The results demonstate the squaring-down approach out-
lined in Section 6.6 and constitute Contribution 6.V.

The non-square benchmark system is shown in Figure 6.6 and the reference
trajectory r is shown in Figure 6.7. The system is an extended version of the
benchmark system in Figure 3.2, with the addition of input u2 located 0.1l from
input u1. The system H from (u1, u2) 7→ y is given by[

A B1 B2

C D1 D2

]

=


1.0000 0.0010 0 0 0.0000 0.0000

0 1.0000 0 0 0.0001 0.0001
0 0 0.9981 0.0010 0.0000 0.0000
0 0 −3.6783 0.9614 0.0037 0.0029

1.0000 0 −0.0500 0 0 0

 .
(6.24)

By Definition 6.1 it follows that the transfer function u1 7→ y, i.e., (A,B1, C,D1)
has a nonminimum-phase zero at z = 1.140, see also Section 3.3, and that the
transfer function u2 7→ y, i.e., (A,B2, C,D2), has a nonminimum-phase zero
at z = 1.2965. Since both transfer functions have a single nonminimum-phase
zero, the step responses of both initially move in opposite direction (Vidyasagar,
1986), see Figure 6.6(b). Because the nonminimum-phase zeros are different,
the non-square system H is minimum phase.

6.7.1 Static compensator design

In this section, a static compensator is designed for the system in Figure 6.6(a).
First, a static precompensator is derived based on physical insights. From the
dynamics follows that if the squared-down input acts above the center of mass,
the transfer function is minimum phase. Therefore, the static transformation

K̂pre,s1 =

[
−1
1.1

]
(6.25)
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(a) System in Figure 3.2 ex-
tended with an additional
input.
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(b) The step responses of the transfer functionss u1 7→ y ( )
and u2 7→ y ( ) initially move in opposite direction of the
final value, confirming nonminimum-phase behavior. The step
response of the squared-down system ( ) moves in the di-
rection of the final value, confirming minimum-phase behavior.

Figure 6.6. The two-input, one-output system of which both individual trans-
fer functions are nonminimum phase is squared down to a single-input, single-
output, minimum-phase system.

is selected, which yields the scalar system HK̂pre,s1
z
= (A,

[
B1 B2

]
K̂pre,s1, C,[

D1 D2

]
K̂pre,s1), where

[
B1 B2

]
K̂pre,s1 = 10−3 ×


0.0000
0.0125
−0.0002
−0.4414

 . (6.26)

Using Definition 6.1, it can be shown that HK̂pre,s1 has no nonminimum-phase
zeros as desired, which is confirmed by the step response in Figure 6.6(b). The
resulting controller, see also (6.11), is denoted Fs1 and the inputs u1, u2 are
shown in Figure 6.8. Note that since HK̂pre,s1 is strictly proper with relative
degree d = 1, one sample pre-actuation is required, see also Remark 3.1.

Next, the systematic design procedure illustrated in Figure 6.5 is used and
compared with the design Fs1 based on physical insights. The dual left-invertible
system in the coordinates basis of Theorem 6.7 shows that the output feedback
problem for (Abb, Abf , Csb) is solvable, as is to be expected based on the previous
results. In particular, for 6.99 · 107 < L < 9.77 · 107 the square system is
minimum phase. For L = 7.99 · 107 the static precompensator is given by
K̂pre,s2 = 5.77 · 107

[−1
1.1

]
. The compensator design matches the design based on

physical insights K̂pre,s1 in (6.25), apart from a scaling factor. The scaling factor
is canceled in F , see (6.11), and hence the same signals u1, u2 as in Figure 6.8
are obtained. The input signals are shown in Figure 6.9.

For comparison, the norm-optimal feedforward solution, see Section 3.4.3, is
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Figure 6.7. The reference trajectory consists of a forward and backward move-
ment.
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Figure 6.8. For the two-input, single-output system of Figure 6.6, the trans-
formation (6.25) enables the use of exact and causal inversion yielding bounded
inputs u1 ( ), u2 ( ), and combined input u ( ).

also shown in Figure 6.9. Both the squaring down and norm-optimal feedforward
solutions achieve exact tracking by design. The main difference is that the norm-
optimal feedforward solution requires pre-actuation, whereas no pre-actuation is
required for the proposed squaring-down approach. However, the input signals
of the squaring-down approach are relatively large in magnitude. This is a
consequence of the selected invariant zeros, which are design variables and can
be used to “shape” the input signals, as is done for the experiments in Section 6.8.

6.7.2 Dynamic compensator design

In this section, a dynamic compensator is designed for the system in Figure 6.10
which includes actuator dynamics. The actuator dynamics for both inputs are
modeled as identical mass-damper-spring systems with mass ma = 0.001 kg,
damping da = 0.5 Ns/m, and spring ka = 100 N/m. Using Theorem 6.8, it
can be shown that there does not exist a static compensator for the system in
Figure 6.10 that yields a minimum-phase square system. It is possible to obtain
a minimum-phase square system using a dynamic compensator. The dynamic
compensator, see Theorem 6.11, is designed with λ(N) = {−0.8, 0.85, 0.9, 0.95}
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(a) Input signal u1.
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(b) Input signal u2.

Figure 6.9. Results for the system in Figure 6.6(a) with static squaring down
( ), and norm-optimal feedforward ( ). The squaring-down solution is
also shown in Figure 6.8. The norm-optimal feedforward solution requires pre-
actuation, whereas this is avoided in the squaring-down approach.

yφ
x

u2
u1

Figure 6.10. The system in Figure 6.6(a) extended with actuator dynamics.

and λ(Abb −AbfJ) = {0.75,−0.8, 0.85, 0.9, 0.95}.
Figure 6.11 shows the input signals for the dynamic squaring-down approach

and the norm-optimal feedforward solution, see Section 3.4.3. Both solutions
yield exact tracking by design, with the key difference that the squaring-down
approach avoids the use of pre-actuation. Similar as for static squaring-down,
the input signals are relatively large in magnitude.

The results show how the additional design freedom at the inputs is exploited
in the proposed approach to obtain exact tracking without pre-actuation. The
results also show that a suitable static compensator may not always exist, as
also observed in Example 6.5.

6.8 Experimental validation on an overactuated
system

In this section, the squaring-down approach is validated in experiments by com-
paring it to traditional inversion approaches. The results demonstrate the high
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(a) Dynamic squaring down: u1 ( ) and
u2 ( ).
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(b) Norm-optimal feedforward: u1 ( ) and
u2 ( ).

Figure 6.11. Input signals for the system in Figure 6.10. The dynamic
squaring-down approach avoids the use of pre-actuation, but results in large
input signals.

u1 u2

y

Figure 6.12. Top view of the experimental system. The system consists of
the suspended beam in yellow with actuation in horizontal direction through
actuators u1, u2 and position measurement through encoder y.

tracking performance of the squaring-down approach, without requiring pre-
actuation or preview, and constitute Contribution 6.VI.

6.8.1 Experimental system

The motion system consists of a thin, suspended beam and is shown in Fig-
ure 6.12. For the experiments, the actuators u1, u2 and encoder y are used and
the control architecture in Figure 6.2(a) is considered. The system has a stroke
of 1 mm. The reference trajectory r is a forward and backward movement over
0.7 mm as shown in Figure 6.13.

The measured frequency response function of the system is shown in Fig-
ure 6.14 together with the identified 14th order parametric model H in (6.1)
obtained using the procedure in Voorhoeve et al. (2018). Both transfer func-
tions u1 7→ y and u2 7→ y are nonminimum phase and hence only using one
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Figure 6.13. Reference trajectory r is a forward and backward movement
constructed from fourth order polynomials.

input would require pre-actuation to ensure bounded signals, see also Exam-
ple 6.4. The non-square system H is minimum phase, i.e., the xa-dynamics
in Theorem 6.7 are non-existing. Hence, the feedforward control design frame-
work in Section 6.6 enables exact inversion with bounded inputs and without
pre-actuation.

6.8.2 Controllers: Squaring down and norm optimal

The static and dynamic squaring-down solutions are compared with the com-
monly used norm-optimal feedforward solution. Table 6.1 provides an overview
of the controllers. In this section, the controller designs are presented. The
experimental results are presented in Section 6.8.3.

The inversion approach in Figure 6.5 is used to construct stable controllers
to avoid the use of pre-actuation. A static compensator design, see Theorem 6.8,
that satisfies this requirement is feasible. The poles of the static squaring-down
controller Fstat are visualized in Figure 6.15. The input signals u1, u2 that are
generated by the controller are shown in Figure 6.16. It turns out that, due
to the limited design freedom of a static compensator in combination with the
requirement of no pre-actuation, only oscillatory input signals can be generated.
Moreover, there is a large difference in the magnitude of u1 and u2, which might
be undesired in view of actuator constraints.

To avoid oscillatory input signals and better balance u1 and u2, a dynamic
squaring-down controller Fdyn is designed. The oscillatory behavior in the inputs
of Fstat is caused by low damping since the poles of Fstat are close to the unit
circle, see Figure 6.15. Using the additional design freedom of a dynamic com-
pensator compared to a static compensator, the poles of Fdyn are placed farther
from the unit circle as shown in Figure 6.17. Similar to controller Fstat, con-
troller Fdyn is stable and hence no pre-actuation is required. The input signals
that are generated by the controller are shown in Figure 6.16 and, as desired,
show less oscillatory behavior than those generated by Fstat.
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Figure 6.14. Frequency response function measurement ( ) and identified 14th
order model ( ) of the experimental system in Figure 6.12 from inputs u1, u2

to output y.
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Figure 6.15. Pole locations of the static squaring-down controller Fstat, see
also Lemma 6.13.

Table 6.1. Settings for the different controller designs. Controller Fnorm uses
preview and serves as a benchmark to compare the squaring-down controllers
Fstat, Fdyn, which do not require preview.

Label Type Reference Parameters Preview

Fnorm Norm-optimal Section 3.4.3 Q = 1; R = [ 0 0
0 0 ] Yes

Fstat Static squaring-down Theorem 6.8 Figure 6.15 No
Fdyn Dynamic squaring-down Theorem 6.11 Figure 6.17 No
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(b) Input signal u2.

Figure 6.16. Input signals for the norm-optimal controller Fnorm ( ), the
static squaring-down controller Fstat ( ), and the dynamic squaring-down
controller Fdyn ( ). Input u2 of Fstat has undesired oscillations. Controller
Fnorm yields pre-actuation, i.e., non-zero input before t = 0. Controller Fdyn
yields smooth and causal inputs.
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Figure 6.17. Pole locations of the dynamic squaring-down controller Fdyn, see
also Lemma 6.14.
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Table 6.2. Experimental results for the different controller designs in Table 6.1.
The dynamic squaring-down controller Fdyn achieves superior performance in
terms of both ‖e‖∞ and ‖e‖2.

Label ‖u1‖∞ [A] ‖u2‖∞ [A] ‖e‖2 [mm] ‖e‖∞ [mm]

Fnorm 0.201 0.126 0.075 1.999
Fstat 0.028 0.785 0.080 2.025
Fdyn 0.308 0.231 0.064 1.774

The squaring-down approaches are compared with norm-optimal feedfor-
ward. Norm-optimal feedforward, see Section 3.4.3, is directly applicable to
non-square systems, but requires preview, i.e., a priori knowledge of trajectory
r. The weights of the performance criterion, i.e., Q for the error e = r − y
and R for the input [ u1

u2
], see also Section 3.4.3, are selected to minimize the

error without restricting the input signals, see Table 6.1. The input signals are
shown in Figure 6.16. Importantly, the controller requires preview of the entire
reference trajectory r as well as pre-actuation, whereas this is not the case for
the static and dynamic squaring-down controllers.

6.8.3 Experimental results

In simulation, all controllers achieve perfect tracking. However, in experiments
the tracking is non-perfect due to model mismatches as shown by the tracking
error signals e = r − y for the different controllers in Figure 6.18. Due to pre-
actuation and model mismatches, there is a non-zero error with Fnorm for t < 0
in Figure 6.18(a), i.e., before any movement is required. Controller Fstat shows
oscillatory behavior as a consequence of the oscillatory input in Figure 6.16 and
model mismatches. The smallest error is achieved with the dynamic squaring-
down controller Fdyn, see also Table 6.2.

The controller designs and experimental results are summarized in Table 6.1
and Table 6.2. The results show that the dynamic squaring-down controller
outperforms the static squaring-down and the norm-optimal controllers. Impor-
tantly, both the static and dynamic squaring-down controllers do not require
preview, i.e., they do not require a priori knowledge of the reference trajectory,
in contrast to the norm-optimal controller.

6.9 Conclusion and outlook

In this chapter, system inversion is investigated and in particular from the per-
spective of squaring down. This leads to new insights that enable causal and
exact feedforward for overactuated systems. An inversion approach is presented
that does not require preview or pre-actuation for nonminimum-phase systems.
The approach exploits the additional design freedom in overactuated systems
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Figure 6.18. Error e = r− y in the time and frequency domain for controllers
Fnorm ( ), Fstat ( ), and Fdyn ( ). Due to model mismatches the track-
ing is non-perfect. The dynamic squaring-down controller Fdyn achieves the
highest performance.

and the fact that non-square systems generally have no invariant zeros. Ex-
perimental results demonstrate superior tracking performance without requiring
preview of pre-actuation.

The approach provides a systematic method to exploit overactuation to the
benefit of control. Besides inverse model feedforward, the approach is also of
interest to feedback control design by creating a square system with favorable
properties, such as nonminimum-phase behavior.

Future research focuses on taking model uncertainty into account and using
the available design freedom in overactuated systems to create robustness.

6.A Construction of coordinate basis

The coordinate basis in Theorem 6.7 is obtained through the following steps.
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Step 1: Separate direct feedthrough

Let D̂ = USV > be the singular value decomposition of D̂, with U ∈ Rp×p,

V ∈ Rm×m, and S =

[
Sm0

0
0 0

]
∈ Rp×m, where Sm0

∈ Rmo×m0 with m0 =

rank{D̂} is a diagonal matrix with the singular values on the diagonal. Then

Γ−1
o,1Σ̂Γi,1, with Σ̂ in (6.13), Γo,1 = U , and Γi,1 = V −>

[
Sm0

0
0 Im−m0

]−1

, admits

the representation

x1[k + 1] = A1x1[k] +Bx,1ux,1[k] +B0,1y0f,1[k], (6.27a)

y0f,1[k] = C0f,1x1[k] + u0,1[k], (6.27b)

yxf,1[k] = Cxf,1x1[k], (6.27c)

ys,1[k] = Cs,1x1[k], (6.27d)

with A1 = Â−B0,1C0f,1.

Step 2: Separate xf

To separate xf , find invertible Γs,2 such that Γ−1
s,2Bx,1 =

 0
× 0...
. . .

× ··· ×

 and

Cxf,1Γs,2 =

[
0

× ··· ×
. . .

...
0 ×

]
, where × are arbitrary elements. Such transforma-

tions can be found by considering the last row/column pairs in Cxf,1 and Bx,1,
and working back as follows.

(i) Let the column/row pair be given by
b1
b2
b3
...

 ∈ Rn,
[
c1 c2 c3 . . .

]
∈ Rn. (6.28)

(ii) Find matrices P = Q−1 ∈ R2×2, such that P

[
b1
b2

]
=

[
0

b̃2

]
and

[
c1 c2

]
Q =[

0 c̃2
]
. If P,Q exist, there exist unitary P,Q or P,Q such that |det(P )| =

|det(Q)| = 1. If P,Q do not exist, a random (unitary) transformation may
be applied and the procedure can be restarted.

(iii) Repeat the previous step for the pair

[
b̃2
b3

]
,
[
c̃2 c3

]
, and so on.

The process is repeated until all pairs and rows/columns are processed and the
desired structure is obtained. The concatenation of all P,Q yields Γs,2.
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Step 3: Separate xa

The invariant zeros zi, i = 1, 2, . . . , na are given by Definition 6.1. Let A2 =
Γ−1
s,2A1Γs,2. To separate xa, an eigenvalue decomposition can be used to obtain

invertible Γs,3 such that

Γ−1
s,3A2Γs,3 =


z1 . . .

zna
× ··· ×...
. . .

...
× ··· ×

 , (6.29)

where the structure related to xf remains unaltered.

Step 4: Make ys independent of xf and yf = xf

Let the output matrix after step 3 be given by

C3 =


× ··· ×...
. . .

...
× ··· ×

× ··· ×...
. . .

...
× ··· ×

× ··· ×...
. . .

...
× ··· ×

0 0 Cxff,3

0
× ··· ×...
. . .

...
× ··· ×

Csd,3

 . (6.30)

Then Γo,4 =

Im0
0 0

0 Cxff,3 0
0 Csd,3 Ip−m

 yields

Γ−1
o,4C3 =


× ··· ×...
. . .

...
× ··· ×

× ··· ×...
. . .

...
× ··· ×

× ··· ×...
. . .

...
× ··· ×

0 0 I

0
× ··· ×...
. . .

...
× ··· ×

0

 . (6.31)

which makes ys independent of xf and yf = xf .
This concludes the derivation of the coordinate basis in Theorem 6.7.



Chapter 7

Multirate control with basis
functions

Motion systems with multiple control loops often run at a single sampling rate
for simplicity of implementation and controller design. The achievable perfor-
mance in terms of position accuracy is determined by the data acquisition hard-
ware, such as sensors, actuators, and analog-to-digital/digital-to-analog convert-
ers, which is typically limited due to economic cost considerations. The aim of
this chapter is to develop a multirate approach to go beyond this traditional
performance/cost trade-off as illustrated in Figure 1.3. In particular, different
sampling rates in different control loops are used to optimally use hardware re-
sources. Note that such a multirate control approach is different from multirate
inversion as used in Chapter 5. The multirate approach appropriately deals
with the inherent time-varying behavior that is introduced by multirate sam-
pling. A multirate feedforward control design framework with basis functions is
presented to optimize tracking of a dual-stage multirate system. Application of
the proposed approach to an industrial dual-stage wafer system demonstrates
the advantages of multirate control, both in simulations and experiments. The
results constitute Contribution IV.A.

The contents of this chapter also appear in:
Jurgen van Zundert, Tom Oomen, Jan Verhaegh, Wouter Aangenent, Duarte J. Antunes, and
W.P.M.H. Heemels. Beyond Performance/Cost Trade-Offs in Motion Control: A Multirate
Feedforward Design with Application to a Dual-Stage Wafer System. Accepted for IEEE
Transactions on Control Systems Technology, 2018.
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7.1 Introduction

Multivariable control systems, including those in motion systems, are often im-
plemented digitally since it offers flexibility and directly connects to the digital
supervisory layers. The digital implementation requires analog-to-digital and
digital-to-analog conversion. For motion systems, these processes are often exe-
cuted using fixed, single-rate sampling schemes (Chen and Francis, 1995; Åström
and Wittenmark, 1997), i.e., homogeneous for all loops, since for linear time-
invariant (LTI) systems it enables controller design using well-developed design
approaches. In particular, it allows the use of frequency domain techniques such
as Bode plots and Nyquist diagrams (Skogestad and Postlethwaite, 2005), which
find application in various areas of controller design, including feedback control
(Skogestad and Postlethwaite, 2005; Franklin et al., 2015), feedforward control
(Steinbuch et al., 2010), and iterative learning control (Bristow et al., 2006).

Fixed, single-rate sampling is preferred from a controller design point of
view, but not from a performance versus cost point of view. As an example,
consider systems with multiple control loops, where only one limits the overall
performance. The performance of a control loop can be increased by increasing
the sampling frequency of that loop. For single-rate implementations this implies
that if the performance of one of the loops is increased, the sampling frequency
of all loops needs to be increased. Obviously, such an approach is expensive
in terms of the required hardware, such as sensors, actuators, and analog-to-
digital/digital-to-analog converters, since all loops are affected while only one is
limiting performance.

From a performance versus cost point of view, flexible sampling is preferred
over fixed sampling, see also Figure 7.1. Examples of flexible sampling include
multirate control (Glasson, 1983; Salt and Tomizuka, 2014; Salt and Albertos,
2005; Lall and Dullerud, 2001; Ohnishi et al., 2017; Chen and Xiao, 2016; Ding
et al., 2006; Lee, 2006; Fujimoto et al., 2001; Antunes and Heemels, 2016),
sparse control (Oomen and Rojas, 2017), and non-equidistant sampling (Chap-
ter 8; Valencia et al., 2016). Indeed, a multirate approach is more natural for
multiloop systems with different performance requirements, but also for systems
with different time scales such as thermomechanical systems (Fraser et al., 1999).
Sparse control and non-equidistant sampling are used in, e.g., systems with lim-
ited resources and optimal resource allocation (Valencia et al., 2016; Aminifar
et al., 2016).

Flexible sampling has a large potential, but its deployment is hampered by
a lack of control design techniques. This is mainly caused by the fact that
flexible sampling introduces time-varying behavior (Chen and Francis, 1995,
Section 3.3). In particular, flexible sampling of a linear time-invariant (LTI)
system yields a linear (periodically) time-varying (L(P)TV) system. Due to the
time variance, the frequency domain control design techniques mentioned earlier
are not (directly) applicable. Frequency domain design for linear time-varying
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systems is investigated in Chapter 2; Lindgärde and Lennartson 1997; Cantoni
and Glover 1997; Sandberg et al. 2005; Oomen et al. 2007 and linear time-
varying feedforward design is investigated in Oomen et al. 2009; Chapter 8, but
at present there is no systematic control design framework available.

Although flexible sampling has the potential to go beyond the traditional
performance/cost trade-off for fixed sampling, as shown in Figure 7.1, at present
its deployment is hampered by a lack of control design techniques for such sam-
pling schemes. In this chapter, a framework to exploit multirate feedforward
controller design is presented to overcome this restriction and thereby go be-
yond the traditional performance/cost trade-off. Application of the framework
focuses on precision motion systems. In particular, the framework is demon-
strated on an experimental dual-stage system, as standard in, e.g., wafer stages
(Munnig Schmidt et al., 2011, Chapter 9).

The main contribution of this chapter is a framework to exploit multirate
control for performance improvement. The following subcontributions are iden-
tified.

7.I Multirate controller design based on multirate system descriptions, in-
cluding time variance.

7.II Controller optimization addressing non-perfect models.

7.III Performance improvement by exploiting time variance.

7.IV Application of the design framework in simulation.

7.V Experimental validation on a dual-stage system.

Related work on minimizing intersample behavior in digital control systems can
be found in Bamieh et al. (1991); Chen and Francis (1995); Oomen et al. (2007).
Related work on wafer stage control design includes feedback control (Van de
Wal et al., 2002; Heertjes et al., 2016), feedforward control (Butler, 2013), LPV
control (Groot Wassink et al., 2005), and sparse control (Oomen and Rojas,
2017). In the present work, previously unexplored freedom in sampling is ex-
ploited, which makes the approach complementary to other approaches.

This chapter is organized as follows. In Section 7.2, the main problem that is
considered to improve the performance/cost trade-off through multirate control
is presented. In Section 7.3, the multirate control system is modeled. The multi-
rate controller design is presented in Section 7.4. Furthermore, the performance
is further improved by exploiting properties of time-varying systems. The con-
troller design is applied to an experimental setup resembling a dual-stage wafer
system. The experimental setup is detailed in Section 7.5. Simulation results are
presented in Section 7.6 and experimental results are presented in Section 7.7.
Conclusions are given in Section 7.8.

Notation. Matrix variables are underlined, with In the n×n identity matrix,
0m×n the m× n zero matrix, 1n the n× 1 ones vector with all elements 1, and
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highlow
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low
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Figure 7.1. A low sampling frequency is inexpensive in terms of implemen-
tation cost, but yields low performance ( ). A high sampling frequency yields
high performance, but is expensive ( ). This performance/cost trade-off is in-
herent to traditional fixed sampling ( ). Flexible sampling goes beyond this
trade-off through use of different sampling frequencies in different control loops.
Essentially, the performance/cost trade-off can be decided upon per control
loop, resulting in an improved overall trade-off ( ).

en the n× 1 unit vector with the first element 1 and others 0. Vector α ∈ RN ,

N ∈ N, is given by α =
[
α[0] α[1] . . . α[N − 1]

]>
, with transpose (·)>

and ‖α‖22 = α>α. The Kronecker product is denoted ⊗ and diag{(·)} denotes
a diagonal matrix with diagonal entries (·). The floor operator is given by
bxc = max{m ∈ Z | m ≤ x}. The discrete-time delay operator is denoted z−1.

7.2 Problem definition

In this chapter, a framework is presented to enhance the performance/cost trade-
off through multirate control. In this section, the main problem is presented.

7.2.1 Application motivation: Dual-stage motion systems
with large differences in performance requirements

In many motion control applications, a high positioning accuracy is required over
a large range. For such systems, a single-stage design may not suffice due to the
large dynamic range. To achieve high precision over a large range, a dual-stage
system can be used.

A dual-stage system, as illustrated in Figure 7.2, consists of two subsystems:
a short stroke with a high positioning accuracy (and limited range) connected to
a long stroke with a large range (and limited positioning accuracy). If designed
properly, the dual-stage system is able to cover a large range with high posi-
tioning accuracy. Clearly, there is a large difference between the performance
requirements of the two subsystems.
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long stroke (LoS)

dynamic
coupling

short stroke (SS)

Figure 7.2. Dual-stage systems consist of two subsystems: a short stroke for
high precision and a long stoke to cover large ranges. The combined system
provides high positioning accuracy over a large range.

An example of a dual-stage system is a wafer stage in lithography machines
(Munnig Schmidt et al., 2011, Chapter 9). Wafer stages require an accuracy up
to nanometer level over a range of one meter (Butler, 2011; Munnig Schmidt et
al., 2011, Section 9.3.1), resulting in a large dynamic range of O(109). Therefore,
wafer stages are typically constructed as dual-stage systems. More details on the
wafer stage application are presented in Section 7.5.

7.2.2 A performance/cost perspective on multivariable
systems with large differences in performance
requirements

In view of the performance/cost trade-off in Figure 7.1, the different (control)
requirements for the subsystems of the dual-stage design provide an excellent
opportunity to exploit multirate control to go beyond performance/cost trade-
offs in motion control.

The considered multirate control architecture is shown in Figure 7.3 where a
high sampling frequency fh is used for the short stroke GSS,h ( in Figure 7.1)
and a low sampling frequency fl is used for the long stroke GLoS,l to reduce cost
( in Figure 7.1). The short-stroke system GSS,h tracks reference trajectory
ρSS,h. The long-stroke system GLoS,l tracks the position of GSS,h to ensure the
short stroke is within range and reaction forces are limited. The downsampler
DF facilitates the sampling rate conversion. The control design of both subsys-
tems consists of feedback control (CFB), feedforward control (CFF ), and input
shaping (Cψ).

For design of the long-stroke controllers, the interest is in the position error
between the two stages during exposure, i.e., during the scanning motion, to limit
reaction forces to the short stroke. This error measured at the highest possible
sampling frequency f∗ is denoted ε∗ and not available for real-time control,
but typically available afterwards for performance evaluation. The sampling
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GSS,h

GLoS,l

+

−

ε∗DF

ρSS,h εSS,h

CFF,SS,h

CFB,SS,h

+
+

+
+

+

−

CFF,LoS,l

CFB,LoS,l
εLoS,l+

−

Cψ,SS,h

Cψ,LoS,l

Figure 7.3. Multirate control configuration for a dual-stage system. The top
part relates to the short stroke (SS) at high rate fh. The bottom part relates to
the long stroke (LoS) at low rate fl. The long stroke tracks the output position
of the short stroke, where downsampler DF facilitates the sampling rate conver-
sion. Dotted lines ( ) indicate extreme high sampling rates f∗, dashdotted
lines ( ) high sampling rates fh, and dashed lines ( ) low sampling rates fl.
Both control loops include a feedback controller CFB , a feedforward controller
CFF , and an input shaper Cψ. The objective is to minimize position difference
ε∗ through design of Cψ,LoS,l and CFF,LoS,l.

frequencies are related by

f∗ = Fhfh = Flfl, fh = Ffl, (7.1)

where Fh ≥ Fl ≥ 1, F := Fl
Fh

, with Fh, Fl, F ∈ N. In this chapter, finite-time
signals are considered of which the signal lengths are related as

N∗ = FhNh = FlNl, Nh = FNl (7.2)

as directly follows from (7.1).

Remark 7.1. The assumption of integer sampling rate factors in (7.1) is im-
posed for ease of notation, but can easily be relaxed if the factor is a rational
number. The proposed approach is not applicable for irrational factors, although
these can often be closely approximated with rational factors.

7.2.3 Problem formulation: Framework for exploiting
multirate sampling for enhanced control
performance

In this chapter, the following problem is considered.
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Main problem. Given the multirate control configuration in Figure 7.3 with
sampling frequencies admitting (7.1), a given finite-time reference trajectory
ρ
SS,h

∈ RNh for ρSS,h, models GSS∗ , GLoS,∗ of GSS,h, GLoS,l at sampling fre-

quency f∗, and controllers CFF,SS,h, Cψ,SS,h, CFB,SS,h, CFB,LoS,l, determine

(CFF,LoS,l, Cψ,LoS,l) = arg min
CFF,LoS,l,Cψ,LoS,l

‖ε∗‖22 , (7.3)

where ε∗ ∈ RN∗ denotes the position error ε∗ over the considered interval.

Controllers CFF,SS,h, Cψ,SS,h, CFB,SS,h are often available from earlier con-
trol designs based on the single-rate short-stroke system only, neglecting the
long-stroke system and multirate aspects. A similar reasoning holds for
CFB,LoS,l. It is assumed that CFB,SS,h and CFB,LoS,l stabilize the short-stroke
and long-stroke system, respectively. Note that stability is not affected by
CFF,LoS,l, Cψ,LoS,l.

Importantly, control objective (7.3) incorporates the dynamics of the short
stroke for design of the long-stroke controllers CFF,LoS,l, Cψ,LoS,l. Moreover,
it considers ε∗ rather than εLoS,l and thereby takes intersample behavior into
account, which is an important aspect in multirate control (Oomen et al., 2007).
Note that (7.3) is posed in terms of finite-time signals, rather than infinite-time
signals, since, in practice, tasks have a finite length.

The presented framework allows to recover single-rate control as a special
case of multirate control by setting Fh = Fl. In Section 7.6 and Section 7.7,
multirate control is compared with single-rate control.

7.3 Multirate control system

In this section, the model-based multirate controller design is presented, which
constitutes Contribution 7.I. In Section 7.3.1, the time-varying aspects of multi-
rate systems are modeled. In Section 7.3.2, these models are used to describe the
multirate control diagram in Figure 7.3. Based on these results, the multirate
controller is presented in Section 7.4.

7.3.1 Modeling multirate systems: Time-varying aspects

In this section, building blocks to model the multirate system in Figure 7.3 are
presented. The system is modeled over the finite-time length considered in the
main problem in Section 7.2.3.

Consider a causal, single-input, single-output (SISO), discrete-time, linear
time-invariant (LTI) system H with Markov parameters h(k) ∈ R, k = 0, 1, . . . ,
N−1. The mapping from the finite-time input α ∈ RN to the finite-time output
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β ∈ RN is given by H ∈ RN×N via

β = Hα, (7.4)
β[0]
β[1]
β[2]

...
β[N−1]

=


h(0) 0 0 ··· 0
h(1) h(0) 0 ··· 0
h(2) h(1) h(0) ··· 0

...
...

...
. . .

...
h(N−1) h(N−2) h(N−3) ··· h(0)




α[0]
α[1]
α[2]

...
α[N−1]

 . (7.5)

Since α, β have the same sampling frequency, H is square. Moreover, since H
is causal and time-invariant, H is lower triangular and Toeplitz, respectively
(Chen and Francis, 1995).

The multirate system in Figure 7.3 involves different sampling frequencies.
The conversions between the different sampling frequencies are given as follows,
see also (Vaidyanathan, 1993, Section 4.1.1) and (Oomen et al., 2007, Definition
5). Let α ∈ NFN , F,N ∈ N, then the downsampling operator DF : RFN 7→ RN
with factor F yields β = DF (α) ∈ RN where

β[k] = α[Fk], k = 0, 1, . . . , N − 1. (7.6)

Let α ∈ RN , N ∈ N, then the upsampling operator Su,F : RN 7→ RFN with
factor F ∈ N yields β = Su,F (α) ∈ RFN where

β[k] =

{
α[ kF ], k = 0, F, 2F, . . . , (N − 1)F,

0, otherwise.
(7.7)

The upsampling operator inserts zeros in between the values of the low rate
signal to create a high rate signal. The interpolation is performed using a zero-
order-hold interpolator. In terms of discrete-time transfer functions, the zero-
order-hold interpolator with factor F ∈ N is defined as

IZOH,F =

F−1∑
f=0

z−f . (7.8)

The zero-order-hold interpolator is used in combination with the upsampling
operator for upsampling. The resulting zero-order-hold upsampler is defined by
HF := IZOH,F Su,F , i.e., let α ∈ RN , N ∈ N, then HF with factor F ∈ N yields
β = HF (α) ∈ RFN where

β[k] = α[b kF c], k = 0, 1, . . . , (N − 1)F. (7.9)

The system description and controller design are based on finite-time de-
scriptions. The finite-time description of the downsampling operator DF with
factor F ∈ N is given by

DF = IN ⊗ e>F ∈ RN×FN , (7.10)
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i.e., let α ∈ RFN , N ∈ N and let β ∈ RN be given by (7.6), then β = DFα with
DF in (7.10). The finite-time description of the zero-order-hold upsampling
operator HF with factor F ∈ N is given by

HF = IN ⊗ 1F ∈ RFN×N , (7.11)

i.e., let α ∈ RN , N ∈ N and let β ∈ RFN be given by (7.9), then β = HFα with
HF in (7.11). Examples of DF and HF are provided by Example 7.2.

Example 7.2 (Downsampler and upsampler). Let F = 2, N = 3, then DF in
(7.10) and HF in (7.11) are given by

DF =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 , HF =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 . (7.12)

Let α =
[
1 2 3 4 5 6

]>
, then β := DF (α) = DFα =

[
1 3 5

]>
and

γ := HF (β) = HFβ =
[
1 1 3 3 5 5

]>
. Note that γ = HFDFα 6= α,

since

HFDF =


1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0

 6= I6. (7.13)

Example 7.2 shows that down-up sampling affects the signal. More generally,
using the Kronecker mixed-product property

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (7.14)

it can be shown that

DFHF = IN , HFDF = IN ⊗ (1F e
>
F ) 6= IFN . (7.15)

A key observation is that up-down sampling DFHF has no effect on the signal,
whereas down-up sampling HFDF does affect the signal. In fact, HFDF is
block Toeplitz with block size F , see also Example 7.2, and hence the down-
up sampling operation is not LTI, but linear periodically time-varying (LPTV)
with period F . An important consequence is that if an input-output operation
involves any sampling rate lower than the input sampling rate, then the operation
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is LPTV. Indeed, this is the case for the multirate control diagram in Figure 7.3,
which is thus LPTV. The presented finite-time descriptions enable to exactly
describe this time-varying multirate system.

In the following section, the multirate control diagram is presented, based on
the finite-time descriptions presented in this section.

Remark 7.3. A more general definition of the downsampler DF in (7.6) is

obtained by considering α ∈ RM , β ∈ RdMF e, F,M ∈ N. For ease of notation, it
is assumed that M = FN .

7.3.2 Multirate control diagram

The full control diagram of the architecture in Figure 7.3 is shown in Figure 7.4
and includes the modeling of systems GSS,h and GLoS,l. The systems are mod-
eled through GSS,∗ and GLoS,∗ operating at the extremely high rate f∗, which
approximate the underlying continuous-time systems GSS and GLoS , respec-
tively. Here, H∗,S∗ are the continuous-time hold (digital-to-analog) and sam-
pling (analog-to-digital converter). Recall that signals at rate f∗ are not available
for real-time feedback control. However, this approach enables evaluation of the
tracking error ε∗ at rate f∗.

To determine the optimal controllers, the relation between CFF,LoS,l, Cψ,LoS,l
and ε∗ is required. The dependence of finite-time ε∗ on ρ

SS,h
, νFF,LoS,l, ρψ,LoS,l

is given by Lemma 7.4.

Lemma 7.4. Given the finite-time descriptions in Section 7.3.1, ε∗ in Figure 7.4
is given by

ε∗ = ψ
SS,∗ −A

[
νFF,LoS,l
ρ
ψ,LoS,l

]
, (7.16)

with

ψ
SS,∗ = GSS,∗HFhSSS,h

(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

, (7.17)

A = GLoS,∗HFlSLoS,l
[
INl CFB,LoS,l

]
, (7.18)

SSS,h = (INh + CFB,SS,hGSS,h)−1, (7.19)

SLoS,l = (INl + CFB,LoS,lGLoS,l)
−1. (7.20)

Proof. See Appendix 7.A.

An important observation in Lemma 7.4 is that A includes sampling rate
changes and hence the transfer function from νFF,LoS,l, ρψ,LoS,l to ε∗ is LPTV

and cannot be described using traditional frequency domain transfer functions.
In the next section, the controllers are designed.
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7.4 Multirate controller design

In the previous section, the multirate system in Figure 7.4 was modeled. In this
section, the controllers are parameterized and the optimal controller parameters
are presented, constituting Contribution 7.II. Furthermore, the multirate sys-
tem is further improved by modifying the controller implementation and design,
which constitutes Contribution 7.III.

7.4.1 Controller parameterization

To address arbitrary reference trajectories, the feedforward and input shaping
filters are parameterized in terms of basis functions, see, for example, Bolder
et al. (2014); Bolder and Oomen (2015). Basis functions decouple the parame-
ters from the reference trajectory, allowing variations in the reference trajecto-
ries without affecting the parameters. This is in contrast to standard learning
approaches (Bristow et al., 2006) in which a command signal for one specific
reference trajectory is learned.

Inspired by Boeren et al. (2014), controllers CFF,LoS,l, Cψ,LoS,l are parame-
terized in terms of difference operators according to Definition 7.5. Note that
CFF,LoS,l(0) = 0 and Cψ,LoS,l(0) = 1 such that if the parameters are zero, only
feedback control is used.

Definition 7.5. CFF,LoS,l and Cψ,LoS,l in Figure 7.4 are given by

CFF,LoS,l(θFF ) =

nFF−1∑
i=0

θFF [i]

(
fl(z−1)

z

)i+1

, (7.21)

Cψ,LoS,l(θψ) = 1 +

nψ−1∑
i=0

θψ[i]

(
fl(z−1)

z

)i+1

, (7.22)

with design parameters θFF , θψ.

Theorem 7.6 shows that νFF,LoS,l and ρ
ψ,LoS,l

depend affine on parameters

θFF and θψ, respectively.

Theorem 7.6. Given Definition 7.5, the finite-time descriptions of νFF,LoS,l
and ρψ,LoS,l are given by

νFF,LoS,l = CFF,LoS,lDFψSS,h = ΦFF,l θFF , (7.23)

ρ
ψ,LoS,l

= Cψ,LoS,lDFψSS,h = DFψSS,h + Φψ,l θψ, (7.24)

with

Φx,l = DFTψSS,h
[

Inx+1 ⊗ eF
0(Nh−F (nx+1))×(nx+1)

]
Rx,l, (7.25)
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TψSS,h =


ψSS,h[0] 0 0 ··· 0

ψSS,h[1] ψSS,h[0] 0 ··· 0

ψSS,h[2] ψSS,h[1] ψSS,h[0] ··· 0

...
...

...
. . .

...
ψSS,h[Nh−1] ψSS,h[Nh−2] ψSS,h[Nh−3] ··· ψSS,h[0]

 , (7.26)

Rx,l =


1 1 1 ... 1
−1 −2 −3 ... −nx
0 1 3 ... ∗
0 0 −1 ... ∗
...

...
...
. . .

...
0 0 0 ... (−1)nx

 diag{f1
l , . . . , f

nx
l }, (7.27)

where x refers to FF or ψ.

Proof. See Appendix 7.B.

Combining Theorem 7.6 with Lemma 7.4 reveals an affine dependence of ε∗
on θFF and θψ as made explicit in Lemma 7.7.

Lemma 7.7. Error ε∗ is given by

ε∗ = b−AΦθ, (7.28)

with

b = ψ
SS,∗ −GLoS,∗HFlSLoS,lCFB,LoS,lDFψSS,h, (7.29)

Φ =

[
ΦFF,l 0

0 Φψ,l

]
, (7.30)

θ =

[
θFF
θψ

]
. (7.31)

Proof. See Appendix 7.C.

Lemma 7.7 provides the dependence of ε∗ on the controller parameters θ. In
the next section, the parameters θ are optimized.

7.4.2 Controller optimization

The optimal parameters for the control objective in (7.3) are given by the solu-
tion of the optimization problem

min
θ

∥∥ε∗∥∥2

2
s.t. ε∗ = b−AΦθ. (7.32)

If AΦ is full rank, the solution to this quadratic optimization problem is given
by the least-squares solution θ = θ0, with

θ0 =
(
(AΦ)>(AΦ)

)−1
(AΦ)>b. (7.33)
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For perfect models, solution (7.33) provides the optimal solution.
In practice, there are always model mismatches for which the parameters are

iteratively learned through an approach that closely resembles norm-optimal it-
erative learning control (ILC) (Bristow et al., 2006) based on the models and data
of previous executions. A key observation is that the models are time-varying,
which is in sharp contrast to standard learning techniques. One execution of the
learning approach is referred to as a trial or task and indicated with subscript
j = 0, 1, 2, . . .. The parameters θj+1 for the next trial are determined as those
minimizing the performance criterion in Definition 7.8 (Bristow et al., 2006)
based on measured data from trial j.

Definition 7.8 (Performance criterion). The performance criterion for trial
j + 1, j = 0, 1, 2, . . . is given by

J (θj+1) =
∥∥εj+1,∗

∥∥2

W ε

+
∥∥∥ξ
j+1,l

∥∥∥2

Wξ

+
∥∥∥ξ
j+1,l

− ξ
j,l

∥∥∥2

W∆ξ

(7.34)

where ‖(·)‖2W = (·)>W (·), with W ε ∈ RN∗×N∗ positive definite, Wξ,W∆ξ ∈
R2Nl×2Nl semi-positive definite, and

εj+1,∗ = εj,∗ −AΦ
(
θj+1 − θj

)
, (7.35)

ξ
j,l

= Φθj . (7.36)

Performance criterion (7.34) can be used to address several control goals.
For example, for W ε = IN∗

and Wξ = W∆ξ = 02Nl
, the control goal in (7.3)

is addressed, i.e., minimizing ‖ε∗‖22. The optimal parameters for the general
criterion are given by Theorem 7.9.

Theorem 7.9 (Iterative solution). The parameters θj+1, j = 0, 1, 2, . . ., that
minimize J (θj+1) in Definition 7.8 are given by

θj+1 = Qθj + Lεj,∗, (7.37)

with

Q =
(

(AΦ)>W ε(AΦ) + Φ>
(
Wξ +W∆ξ

)
Φ
)−1

×
(

(AΦ)>W ε(AΦ) + Φ>W∆ξΦ
)
,

(7.38)

L =
(

(AΦ)>W ε(AΦ) + Φ>
(
Wξ +W∆ξ

)
Φ
)−1

(AΦ)>W ε. (7.39)

Theorem 7.9 directly follows from substitution of (7.35) and (7.36) in (7.34)
and equating ∇J (θj+1) = 0, see also Bolder et al. (2014). Note that W ε,
Wξ, W∆ξ should be chosen such that the inverse in (7.38) and (7.39) exists. A
step-by-step procedure for the iterative algorithm is provided in Algorithm 7.10,
where (7.33) provides initial parameters based on models only.
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Algorithm 7.10 (Iterative tuning procedure). Calculate Q,L using (7.38),
(7.39), set j = 0 and determine θ0 in (7.33). Then, perform the following
sequence of steps:

1. Execute task j and record data εj,∗.

2. Determine θj+1 through (7.37).

3. Set j → j + 1 and repeat from step 1 until satisfactory convergence in θj
or a user-defined maximum number of trials is reached.

Algorithm 7.10 provides the iterative tuning solution for the time-varying
multirate system with controller design at the low rate. In the next section, the
controllers are explicitly designed and implemented at the high rate to enhance
the performance/cost trade-off in Figure 7.1.

7.4.3 Performance enhancement: High-rate control

In the previous sections, the optimal controller for the multirate system in Fig-
ure 7.4 is presented. In this section, the performance of the multirate system is
further improved by modifying the controller implementation and design, which
constitutes Contribution 7.III. The results of the previous section are recovered
as a special case.

In contrast to time-invariant systems, time-varying systems do generally not
commute, i.e., interchanging the order affects the output. One key advantage of
the proposed approach is that this property can be directly exploited to enhance
the performance/cost trade-off in Figure 7.1. In Figure 7.4, both the feedforward
controller and input shaper of the long stroke are implemented at the low rate
fl. In this section, these controllers are implemented at high rate fh as shown in
Figure 7.5(a). This implementation has the potential to improve the performance
since ψSS,h contains more information than ρLoS,l = DFψSS,h. This also follows
from the noble identity DFH(zF ) ≡ H(z)DF , with H a discrete-time system
rational in z (Vaidyanathan, 1993, Section 4.2). Indeed, since the frequency
response of CFF,LoS,h is independent from that of CFF,LoS,l, there is more design
freedom as illustrated in Figure 7.5(b).

The additional cost of the high-rate implementation is negligible since it only
involves a different controller design in software, without effecting hardware. In
particular, it uses sensor information of the short-stroke loop at high rate, which
is also required for feedback control on the short stroke. The new design does
not require sensor information of the long-stroke loop at a higher rate. The
actuation of the long-stroke loop remains at low rate.

The parameterization of the controllers at high rate is similar to that in
Definition 7.5 and provided by Definition 7.11.
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νFF,LoS,l

ψSS,h

CFF,LoS,h

Cψ,LoS,h
ρψ,LoS,l

DF
νFF,LoS,h

DF
ρψ,LoS,h

(a) Part of the control diagram in Figure 7.4 with the
controllers implemented at high rate, i.e., fc = fh.

CFF,LoS,lDF

DFCFF,LoS,h

(b) The design space is larger for the
controller design at high rate.

Figure 7.5. Designing and implementing the controllers at high rate allows to
exploit all information in ψSS,h and thereby improve performance.

Definition 7.11. CFF,LoS,h and Cψ,LoS,h in Figure 7.5 are given by

CFF,LoS,h(θFF ) =

nFF−1∑
i=0

θFF [i]

(
fh(z − 1)

z

)i+1

, (7.40)

Cψ,LoS,h(θψ) = 1 +

nψ−1∑
i=0

θψ[i]

(
fh(z−1)

z

)i+1

. (7.41)

The finite-time descriptions for this parameterization are provided in
Lemma 7.12. Using these results, the iterative approach outlined in Algo-
rithm 7.10 is directly applicable.

Lemma 7.12. Given Definition 7.11, the finite-time descriptions (7.23), (7.24),
and (7.30) change to

νFF,LoS,l = DFCFF,LoS,hψSS,h = DFΦFF,h θFF , (7.42)

ρ
ψ,LoS,l

= DFCψ,LoS,hψSS,h = DFψSS,h +DFΦψ,h θψ, (7.43)

Φ =

[DFΦFF,h 0
0 DFΦψ,h

]
, (7.44)

with

Φx,h = TψSS,h

[
Inx+1

0(Nh−(nx+1))×(nx+1)

]
Rx,h, (7.45)

Rx,h =


1 1 1 ... 1
−1 −2 −3 ... −nx
0 1 3 ... ∗
0 0 −1 ... ∗
...

...
...
. . .

...
0 0 0 ... (−1)nx

diag{f1
h , . . . , f

nx
h }, (7.46)

where x refers to FF or ψ.
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Proof. See Appendix 7.D.

The controller design and implementation at high rate completes the multi-
rate controller design. Next, the advantages of multirate control over single-rate
control are demonstrated in both simulation and experiments.

7.5 Experimental setup: A dual-stage wafer
stage system

In the remainder of this chapter, the multirate control design framework pre-
sented in the previous section is validated on a dual-stage system, both in sim-
ulations and experiments. In this section, the wafer stage system is introduced
in more detail and the experimental setup of the dual-stage system is presented.

7.5.1 Wafer stages: Key components in lithography
machines

Wafer stages are key components in wafer scanners. Wafer scanners are state-of-
the-art lithography machines for the automated production of integrated circuits.
In Figure 7.6, a schematic illustration of a wafer scanner system is depicted.
Ultra-violet light from a light source 1 passes through a reticle 2 , which contains
a blueprint of the integrated circuits to be manufactured. The reticle is clamped
atop the reticle stage 3 which performs a scanning motion. The resulting image
of the reticle is scaled down by a lens system 4 and projected onto the light
sensitive layers of a wafer 5 . The wafer is clamped on the wafer stage 6 and
performs a synchronized scanning motion with the reticle stage.

During the scanning process, the wafer stage and reticle stage track reference
signals with nanometer positioning accuracy. In this chapter, the focus is on
control of the wafer stage, which has more stringent performance requirements
than the reticle stage (Evers et al., 2017).

7.5.2 Experimental setup

The experimental setup is shown in Figure 7.7 and consists of two stages: a long
stroke (LoS) and a short stroke (SS). Both stages can translate in one horizontal
direction and are air guided. Each stage is actuated through a Lorentz actuator
attached to the force frame. The position of each stage is measured through 1 nm
resolution optical encoders attached to the metrology frame, which is separated
from the force frame to reduce interaction. The total stroke is 16.0 mm.

The sampling rate of ε∗ is f∗ = 10080 Hz. The identified frequency response
functions of both stages are shown in Figure 7.8. The stages are modeled as
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1

2
3

4

5

6

Figure 7.6. Schematic illustration of a wafer scanner system, consisting of
light source 1 , reticle 2 , reticle stage 3 , lens system 4 , wafer 5 , and wafer
stage 6 .

metrology frame encodersLoS SS force frame

Figure 7.7. Experimental setup resembling a one degree-of-freedom wafer
stage. The setup consists of two air-guided stages that can translate in one hor-
izontal direction. The positions are measured through 1 nm resolution optical
encoders.
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freely moving masses with one sample I/O delay:

Gx,∗ = z−1 (z + 1)

2mxf2∗ (z−1)2
, (7.47)

with masses mSS = 4.70 kg and mLoS = 4.33 kg. The sampling rate factors
Fh, Fl are varied and provided when relevant.

Reference trajectory ρ
SS,h

consists of a forward and backward movement with

a total duration of 0.25 s and is shown in Figure 7.9. The point-to-point profile
is representative for the application in terms of distance, maximum acceleration,
etc. A fourth-order profile is used to guarantee a smooth signal with limited
high-frequency content to avoid excitation of higher-order dynamics, see also
Figure 7.8 and, e.g., Lambrechts et al. (2005).

Experiments show that the measurement noise on both ψ
SS,∗ and ψ

LoS,∗
has a variance of (45 nm)2. This value is used during simulation to mimic
experimental conditions.

7.5.3 Controller design

The fixed feedback controllers CFB,SS,h and CFB,LoS,l both consist of a lead
filter, weak integrator, and second order lowpass filter based on loop-shaping
techniques (Steinbuch et al., 2010). The controllers stabilize their respective
closed-loop systems and yield a bandwidth (first 0 dB crossing of the open-loop)
of 100 Hz for both loops. The feedforward controller and input shaper for the
short stroke are given by

CFF,SS,h = mSS
f2
h(z−1)2

z2
, (7.48)

Cψ,SS,h = GSS,hCFF,SS,h. (7.49)

Hence, CFF,SS,h generates mass feedforward and the combination results in
εSS,h = 0, if GSS,h is exact.

The design of the long-stroke feedforward controller and input shaper aims
to minimize ‖ε∗‖22 by setting the weights in Definition 7.8 to

W ε = IN∗
, Wξ,W∆ξ = 02Nl×2Nl

. (7.50)

Note that these settings also facilitate fast convergence of the iterative procedure
in Algorithm 7.10.

7.6 Simulation results

In this section, the simulation results are presented, which serve as a benchmark
for the experimental results presented in Section 7.7. The simulations enable
validation of the experimental results and constitute Contribution 7.IV.



176 Chapter 7. Multirate control with basis functions

−240

−200

−160

−120

M
ag

ni
tu

de
[d

B
]

102 103 104
−180

−90

0

90

180

Frequency [Hz]

P
ha

se
[d

eg
]

(a) Short-stroke (SS) stage.
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(b) Long-stroke (LoS) stage.

Figure 7.8. Measured frequency response functions ( ) with sampling rate
f∗ = 10080 Hz and the identified models ( ) in (7.47).
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Figure 7.9. Reference trajectory ρ
SS,h

is a forward and backward movement

over 0.5 mm constructed from fourth-order polynomials.

Table 7.1. The four different control configurations that are evaluated.

Label Symbol f∗ [Hz] fh [Hz] fl [Hz] fc [Hz]

Single-rate high 10080 2016 2016 2016
Single-rate low 10080 1008 1008 1008
Multirate high 10080 2016 1008 2016
Multirate low 10080 2016 1008 1008

7.6.1 Comparing controllers at different rates

The considered control configurations are listed in Table 7.1, see also (7.1). Due
to the difference in sampling rate between the controller parameterization on low
rate (Definition 7.5) and high rate (Definition 7.11), the number of parameters
nFF and nψ alone does not provide a fair comparison between the controllers.
Therefore, the controller buffer lengths

τFF :=
nFF
fc

, τψ :=
nψ
fc
, (7.51)

are defined, where fc is the sampling rate of the optimized controllers, see Ta-
ble 7.1. These buffer lengths are an indication for the implementation cost of
the controller.

7.6.2 Simulation setup

For comparison with the experimental results in Section 7.7, measurement noise
is added to ψ

SS,∗ and ψ
LoS,∗. The noise is modeled as zero mean, Gaussian

white noise with variance σ2 = (45 nm)2 based on experimental data, see also
Section 7.5.2.

In simulation, the models are exact and hence the initial parameters θ0 in
(7.33) provide the optimal solution. Note that the noise introduces trial-varying
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disturbances, which cannot be compensated through the iterative tuning algo-
rithm and thereby limits the achievable performance.

7.6.3 Results

The performance/cost trade-off curves for the configurations in Table 7.1 are
shown in Figure 7.10. The figure shows the enhancement of the performance/cost
trade-off through multirate control as illustrated in Figure 7.1. In particular,
the figure shows I) increasing performance (decreasing J ) for increasing cost
(increasing τ); and II) excellent performance through multirate control with
design at high rate.

As a direct consequence of a higher sampling rate, single-rate high outper-
forms single-rate low. Multirate control is a trade-off between these two and
hence the performance is somewhere in between. The performance improvement
of multirate low is limited compared to single-rate low. In contrast, the perfor-
mance of multirate high is close to that of single-rate high. The results show that
multirate control can achieve high performance with limited cost, when designed
and implemented at the high rate. Indeed, the long-stroke feedback control loop
remains executed at the low rate.

The results in Figure 7.10(a) show the importance of adding the acceleration
profile as basis function in terms of performance improvement, as is also apparent
from the frequency response functions in Figure 7.8 and identified models in
(7.47). Indeed, especially for low frequencies, the stages behave as a rigid body

mass. Therefore, a mass feedforward controller CFF,LoS = θFF [1]
f2
c (z−1)2

z2 is used
in Figure 7.10(b), where parameter θFF [1] is also optimized. Note that mass
feedforward is also used for the short-stroke feedforward controller in (7.48).

Time-domain results for multirate high with nFF = 2, nψ = 0 are shown in
Figure 7.11. Compared to mass feedforward, there is an additional parameter
in the feedforward filter as can be observed in νFF,LoS,l, resulting in improved
performance.

The simulation results demonstrate the potential of multirate control, espe-
cially when the controllers are designed and implemented at the high rate. Next,
the results are experimentally validated.

7.7 Experimental results

In this section, the simulation results of the previous section are experimentally
validated on the setup described in Section 7.5. The results experimentally
validate the advantages of multirate control and constitute Contribution 7.V.
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(a) Simulation results for varying τFF show that, due to more design freedom in
terms of parameters nFF , the performance increases (J decreases) for increasing cost
(increasing buffer length τFF ). The results shown are for fixed Cψ,LoS = 1 and varying
nFF .
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(b) Simulation results for varying τψ show that larger cost (larger buffer length τψ)
yields better performance (lower J ). The results shown are for mass feedforward
(nFF = 2 and θFF [0] = 0) and varying nψ .

Figure 7.10. Simulation results for the four control configurations in Table 7.1.
As is expected, single-rate high ( ) outperforms single-rate low ( ). The
performance of multirate low ( ) is similar to that of single-rate low ( ).
The performance of multirate high ( ) is close to the performance of single-
rate high ( ). The results demonstrate the advantages of multirate control.
Indeed, a high level of performance is achievable with multirate control for
limited cost since one of the feedback control loops is evaluated at a lower rate.
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(a) Feedforward signal νFF,LoS,l.

0 0.05 0.1 0.15 0.2 0.25
−1,000

−500

0

500

1,000

Time [s]

ε ∗
[n

m
]

(b) Error signal ε∗.

Figure 7.11. Time-domain simulation results for single-rate high with nFF =
2, nψ = 0. The results show the importance of mass feedforward.

7.7.1 Application of iterative tuning

In contrast to simulation, the models do not exactly describe the system in
experiments. Therefore, the iterative tuning procedure in Algorithm 7.10 is
invoked to iteratively update the parameters based on measured data. The
convergence of the iterative tuning algorithm is shown in Figure 7.12 for the
various control configurations in Table 7.1 with a fixed buffer length τFF = 1 ms
(τψ = 0).

The results in Figure 7.12 show fast convergence (one trial) of the iterative
algorithm as desired. Note that the deviations over the trials are caused by
trial-varying disturbances for which the algorithm cannot compensate. In the
remainder, five trials are used and only the results of the fifth trial are shown.

7.7.2 Results

The experimental results for the simulations in Figure 7.10 are shown in Fig-
ure 7.13. The results are in line with the simulation results and the conclusions
in Section 7.6, i.e., higher performance (lower J ) for increasing number of pa-
rameters (increasing τ), and excellent performance for multirate control with
control design at high rate (multirate high).

Time-domain signals for several parameterizations with multirate high are
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Figure 7.12. Experimental results of the performance criterion over trials for
τFF = 1 ms, τψ = 0 with single-rate high ( ), multirate high ( ), multirate low
( ), and single-rate low ( ). The results show that all control configurations
converge in one trial up to the level of trial-varying disturbances for which the
iterative tuning algorithm cannot compensate.
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(a) Experimental validation of the simulation in Figure 7.10(a). The
results are in line with the simulation results.
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(b) Experimental validation of the simulation in Figure 7.10(b). The
results are in line with the simulation results.

Figure 7.13. Experimental results for the four control configurations in Ta-
ble 7.1. The results corroborate the simulations results in Figure 7.10.
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(a) Parameterizations with more design freedom yield a smaller error ε∗ which is also
apparent in the performance criterion J shown in Figure 7.10 and Figure 7.13.
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(b) The different feedforward signals νFF,LoS,l.
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(c) The shaped input ρ
ψ,LoS,l

is only different from ρ
LoS,l

for the parameterization

with nψ = 4 ( ) since nψ = 0 for the other parameterizations.

Figure 7.14. Time-domain experimental results for multirate high for different
parameterizations. In ascending order of design freedom: mass feedforward
(nFF = 2, θFF [0] = 0, nψ = 0) ( ); nFF = 2, nψ = 0 ( ); nFF = 2, nψ = 4
( ); and full learning of νFF,LoS,h (nFF = Nh, nψ = 0) ( ). More design
freedom reduces the error ε∗.
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shown in Figure 7.14. Clearly, mass feedforward only (nFF = 2, θFF [0] = 0,
nψ = 0) is restrictive and achieves moderate performance. When using nFF = 2,
nψ = 0 there is more design freedom resulting in better performance. Adding
design freedom in the input shaper by using nFF = 2, nψ = 4 yields even
better performance. Most design freedom is obtained by fully parameterizing
the feedforward signal as in traditional learning control with nFF = Nh (nψ = 0)
and yields the best performance. Indeed, the performance of standard learning
control in which the full signal is learned is superior for repeating tasks. However,
the performance deteriorates drastically when the trajectory ρ

SS,h
is changed,

see for example Bolder et al. (2014); Bolder and Oomen (2015), which conflicts
with the requirement on reference task flexibility in Section 7.2.3. Hence, there
is a trade-off between performance and task flexibility, which can be balanced
using basis functions.

7.7.3 Summary

The experimental results validate the simulation results and thereby demonstrate
the potential of multirate control for dual-stage systems. Both the simulations
and experiments show that a multirate design approach with control design at
the high rate can significantly enhance the performance compared to traditional
single-rate control on the low rate. In fact, the performance is similar to that of
single-rate control at the high rate, but obtained with a lower cost since one of
the control loops is executed at the low rate which reduces hardware cost.

7.8 Conclusion and outlook

In most motion systems, all control loops are operated on a single, fixed sampling
rate since this allows the use of well-known control design techniques. However,
for such a design, increasing the sampling rate to increase performance is costly
in terms of required hardware since all control loops are affected.

In this chapter, a multirate approach is exploited to enhance the traditional
performance/cost trade-off. In essence, this allows to allocate the performance
and cost over the different control loops. The time variance introduced by mul-
tirate sampling complicates control design and constitutes the main challenge
addressed in this chapter.

The main contribution of this chapter is a control design framework for mul-
tirate systems. The framework facilitates optimal feedforward control design
through iterative tuning control. Through simulations and experiments on a
dual-stage wafer stage system, the advantages of the multirate control approach
are demonstrated. In particular, it is shown that by design of multirate control
on the high rate excellent performance is achieved, with limited cost. The results
demonstrate the potential of flexible sampling in motion systems.
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Ongoing research focuses on feedback control design for multirate systems,
see for example Chapter 2, and control design for other classes of flexible sam-
pling.

7.A Proof Lemma 7.4

The following identity, known as the push-through rule, is exploited:

(Im +AB)
−1
A = A (In +BA)

−1
, (7.52)

with A ∈ Rm×n, B ∈ Rn×m, n,m ∈ N.
Using Figure 7.4 and (7.52), ψ

SS,∗ is expressed in ρ
SS,h

:

ψ
SS,∗ = GSS,∗HFh

(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

−GSS,∗HFhCFB,SS,hDFhψSS,∗
(7.53a)

=
(
IN∗

+GSS,∗HFhCFB,SS,hDFh
)−1

GSS,∗HFh
×
(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

(7.53b)

= GSS,∗HFh
(
INh + CFB,SS,hDFhGSS,∗HFh

)−1

×
(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

(7.53c)

= GSS,∗HFh
(
INh + CFB,SS,hGSS,h

)−1

×
(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

(7.53d)

= GSS,∗HFhSSS,h
(
CFF,SS,h + CFB,SS,hCψ,SS,h

)
ρ
SS,h

, (7.53e)

with

SSS,h =
(
INh + CFB,SS,hGSS,h

)−1
. (7.54)

Using Figure 7.4 and (7.52), ψ
LoS,∗ is expressed in ρ

ψ,LoS,l
, νFF,LoS,l:

ψ
LoS,∗ = GLoS,∗HFl

(
νFF,LoS,l + CFB,LoS,lρψ,LoS,l

)
−GLoS,∗HFlCFB,LoS,lDFlψLoS,∗

(7.55a)

=
(
IN∗

+GLoS,∗HFlCFB,LoS,lDFl
)−1

GLoS,∗HFl
×
(
νFF,LoS,l + CFB,LoS,lρψ,LoS,l

) (7.55b)

= GLoS,∗HFl
(
INl + CFB,LoS,lDFlGLoS,∗HFl

)−1(
νFF,LoS,l + CFB,LoS,lρψ,LoS,l

) (7.55c)
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ψ
LoS,∗ = GLoS,∗HFl

(
INl + CFB,LoS,lGLoS,l

)−1

×
(
νFF,LoS,l + CFB,LoS,lρψ,LoS,l

) (7.55d)

= GLoS,∗HFlSLoS,l
[
INl CFB,LoS,l

] [νFF,LoS,l
ρ
ψ,LoS,l

]
(7.55e)

= A
[
νFF,LoS,l
ρ
ψ,LoS,l

]
, (7.55f)

with

SLoS,l =
(
INl + CFB,LoS,lGLoS,l

)−1
, (7.56)

A = GLoS,∗HFlSLoS,l
[
INl CFB,LoS,l

]
. (7.57)

The result follows from

ε∗ = ψ
SS,∗ − ψLoS,∗ = ψ

SS,∗ −A
[
νFF,LoS,l
ρ
ψ,LoS,l

]
. (7.58)

7.B Proof Theorem 7.6

It is shown that for the parameterization

Cl(θ) =

n−1∑
i=0

θ[i]

(
fl(z − 1)

z

)i+1

(7.59)

it holds

ξ
l

= ClDF ρSS,h = Φlθ. (7.60)

Relations (7.23) and (7.24) directly follow from this result.

Parameterization (7.59) can equivalently be written as a finite impulse re-
sponse (FIR) structure of order nα = n+ 1:

Cl(θ) =
n−1∑
i=0

θ[i]

(
fl(z − 1)

z

)i+1

=

nα−1∑
i=0

α[i]z−i. (7.61)

By equating coefficients, it directly follows that the relation between parameters
is given by α = Rlθ with Rl ∈ Rnα×n as in (7.27). Note that Rl is the product of
a truncated transposed (lower triangular Cholesky factor of the) Pascal matrix
of order nα, with a diagonal scaling matrix depending on fl.
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The finite-time description of Cl in terms of α is given by

Cl =



α[0] 0 0 ···
α[1] α[0] 0 ···
... α[1] α[0] ···

α[nα−1]
... α[1]

. . .

0 α[nα−1]
...

. . .

0 0 α[nα−1]
. . .

...
...

...
. . .


. (7.62)

Using the Kronecker mixed-product property rule (7.14) the order of Cl and
DF , see (7.10), is interchanged:

ClDF = (Cl ⊗ 1)
(
INl ⊗ e>F

)
(7.63a)

=
(
ClINl

)
⊗
(
1e>F

)
(7.63b)

=
(
INlC, l

)
⊗
(
(e>F eF )e>F

)
(7.63c)

=
(
INlC, l

)
⊗
(
e>F (eF e

>
F )
)

(7.63d)

=
(
INl ⊗ e>F

) (
Cl ⊗ (eF e

>
F )
)

(7.63e)

= DF
(
Cl ⊗ (eF e

>
F )
)
. (7.63f)

Note that Cl⊗ (eF e
>
F ) is a lower triangular matrix and that ψ

SS,h
= TψSS,heNh ,

with TψSS,h in (7.26) is also a lower triangular matrix.
Next, the commutative property of lower triangular matrices is exploited to

express ξ
l

in θ. To this end, the Kronecker product rule and the relation α = Rlθ
are used:

ξ
l

= ClDFψSS,h (7.64a)

= DF
(
Cl ⊗ (eF e

>
F )
)
ψ
SS,h

(7.64b)

= DF
(
Cl ⊗ (eF e

>
F )
)
TψSS,heNh (7.64c)

= DFTψSS,h
(
Cl ⊗ (eF e

>
F )
)
eNh (7.64d)

= DFTψSS,h
[

α⊗ eF
0(Nh−Fnα)×1

]
(7.64e)

= DFTψSS,h
[(
Inαα

)
⊗ (eF 1)

0(Nh−Fnα)×1

]
(7.64f)

= DFTψSS,h
[(
Inα ⊗ eF

)
(α⊗ 1)

0(Nh−Fnα)×1

]
(7.64g)

= DFTψSS,h
[(
Inα ⊗ eF

)
α

0(Nh−Fnα)×1

]
(7.64h)
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ξ
l

= DFTψSS,h
[

Inα ⊗ eF
0(Nh−Fnα)×nα

]
α (7.64i)

= DFTψSS,h
[

Inα ⊗ eF
0(Nh−Fnα)×nα

]
Rlθ (7.64j)

= Φlθ, (7.64k)

which concludes the proof of (7.59). Relations (7.23) and (7.24) directly follow
from this result.

7.C Proof Lemma 7.7

Substitution of (7.23) and (7.24) in (7.16) and using (7.18) yields

ε∗ = ψ
SS,∗ −A

[
νFF,LoS,l
ρ
ψ,LoS,l

]
(7.65a)

= ψ
SS,∗ −A

[
ΦFF,lθFF

DFψSS,h + Φψ,lθψ

]
(7.65b)

= ψ
SS,∗ −A

[
0Nl

DFψSS,h

]
−A

[
ΦFF,lθFF

Φψ,lθψ

]
(7.65c)

= ψ
SS,∗ −GLoS,∗HFlSLoS,l

[
INl CFB,LoS,l

] [ 0Nl
DFψSS,h

]
−A

[
ΦFF,lθFF

Φψ,lθψ

] (7.65d)

= ψ
SS,∗ −GLoS,∗HFlSLoS,lCFB,LoS,lDFψSS,h

−A
[
ΦFF,l 0

0 Φψ,l

] [
θFF
θψ

] (7.65e)

= b−AΦθ, (7.65f)

with b,Φ, θ as given in Lemma 7.7.

7.D Proof Lemma 7.12

It is shown that for the general parameterization

Ch(θ) =
n−1∑
i=0

θ[i]

(
fh(z − 1)

z

)i+1

(7.66)

it holds

ξ
l

= DFChψSS,h = DFΦh θ. (7.67)
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Relations (7.42) and (7.43) directly follow from this result.
The proof is similar to that of Theorem 7.6. First, Ch is expressed in terms

of FIR parameters α:

Ch(θ) =
n−1∑
i=0

θ[i]

(
fh(z − 1)

z

)i+1

=

nα−1∑
i=0

α[i]z−i, (7.68)

where α = Rhθ with Rh ∈ Rnα×n as in (7.46) and nα = n + 1. The finite-time
description of Ch in terms of α is given by

Ch =



α[0] 0 0 ···
α[1] α[0] 0 ···
... α[1] α[0] ···

α[nα−1]
... α[1]

. . .

0 α[nα−1]
...

. . .

0 0 α[nα−1]
. . .

...
...

...
. . .


. (7.69)

Next, it is exploited that the lower triangular matrices Ch and TψSS,h com-
mute:

ξ
l

= DFChψSS,h (7.70a)

= DFChTψSS,heNh (7.70b)

= DFTψSS,hCheNh (7.70c)

= DFTψSS,h
[

α
0(Nh−nα)×1

]
(7.70d)

= DFTψSS,h
[

Inα
0(Nh−nα)×nα

]
α (7.70e)

= DFTψSS,h
[

Inα
0(Nh−nα)×nα

]
Rhθ (7.70f)

= DFΦhθ. (7.70g)

Relations (7.42) and (7.43) directly follow from this result.



Chapter 8

Task flexibility for LPTV
systems: A basis functions

approach

Motion control applications traditionally operate with a single-rate, equidistant
sampling scheme. For cost reasons, a current trend in industry is consolidating
multiple applications on a single embedded platform, see also Figure 1.3. Gener-
ally, to deal with inter-application interference, a predictable scheduling policy
allocates resources to the applications in these platforms. Realizing an equidis-
tant sampling scheme on such shared platform is inflexible and often turns out
to be expensive in terms of resources or conservative in terms of performance.
The aim of this chapter is to investigate the possibilities to relax the equidis-
tant sampling convention. To this end, recent results show that platform timing
properties can be represented by a known, precise, and periodically varying set
of sampling periods. In view of such predictable platforms, a framework is pre-
sented for analysis and synthesis of lifted domain feedforward controllers for
non-equidistantly sampled closed-loop systems. Through simulations the poten-
tial of non-equidistant sampling over conservative equidistant sampling schemes
is demonstrated. The results constitute Contribution IV.B.

The contents of this chapter are published in:
Jurgen van Zundert, Tom Oomen, Dip Goswami, and W.P.M.H. Heemels. On the Potential
of Lifted Domain Feedforward Controllers with a Periodic Sampling Sequence. In Proceedings
of the 2016 American Control Conference, pages 4227–4232. Boston, Massachusetts, 2016.
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8.1 Introduction

Traditional motion controllers are often designed and implemented using a sin-
gle sampling frequency under equidistant sampling, either in a continuous-time
setting with a posterior discretization, a discrete-time setting, or a sampled-data
setting (Chen and Francis, 1995). Hence, it is tacitly assumed that resources,
such as computation, communication, and memory, are sufficiently available.

In certain applications, increasing performance requirements and enhanced
functionality lead to a situation where resources are scarce. To deal with these
resource limitations, platforms are commonly shared by multiple applications.
For example, visual servoing (Chaumette and Hutchinson, 2006) uses feedback
information from visual sensors in motion control, where both image processing
and control computation tasks are executed on the same processor. In such
shared platforms, a scheduler statically/dynamically decides the availability of
a resource to an application, and the order of execution of various tasks or
applications. Realizing an equidistant sampling scheme in such shared embedded
implementation imposes inflexibility and often leads to unnecessary expensive
design solutions.

Recently, a potentially promising embedded platform candidate, Compos-
able and Predictable System on Chip (CompSOC), was introduced (Goossens
et al., 2017). Composability allows for independent development of multiple
applications, while predictability provides precise temporal behavior of the plat-
form. The CompSOC platform is suitable for independent development and
interference-free execution of (control) applications. In Valencia et al. (2015), it
is shown that a resource-efficient implementation of a control algorithm in such
composable platform leads to a set of known, precise, and periodically vary-
ing sampling periods. Whereas the majority of control design techniques aims
at a single sampling frequency, the aim of this chapter is to develop a control
design framework that exploits the periodicity knowledge from the platform for
analyzing and synthesizing motion controllers. In particular, the focus is on feed-
forward controllers, since they constitute the largest part of the motion system’s
control input (De Gelder et al., 2006).

The design of controllers for linear periodically time-varying (LPTV) sys-
tems has been investigated in Bamieh et al. (1991); Yamamoto and Khar-
gonekar (1996) and has been mainly applied to sampled-data designs with an
equidistant sample frequency (Bamieh and Pearson Jr., 1992; Chen and Francis,
1995). These approaches have been further developed towards multirate sam-
pling, where different actuator/sensor channels have different rates, see Lall and
Dullerud (2001); Fujimoto and Hori (2002); Salt and Albertos (2005) for feed-
back designs, Oomen et al. (2007) for motion feedback control, and Chapter 7
for multirate feedforward design.

Although important developments for periodically time-varying systems have
occurred, they are not directly applicable to feedforward design for a periodic
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sampling sequence. The main contribution of this chapter is a framework for the
design of feedforward controllers under non-equidistant sampling. This combines
the analysis of data-based feedforward design (Van de Wijdeven and Bosgra,
2010; Van der Meulen et al., 2008; Boeren et al., 2015) with non-equidistant
sampling, where the main technical step involves a specific lifting step.

The outline of this chapter is as follows. First, the problem and control goal
are formulated in Section 8.2. The model of the non-equidistantly sampled sys-
tem is developed in Section 8.3. This model is used for feedforward controller
design in Section 8.4. In Section 8.5, the advantages of describing and control-
ling the system as a non-equidistantly sampled system instead of a conservative
time-invariant sampled system are demonstrated through a simulation example.
Finally, conclusions and an outlook are given in Section 8.6.

Notation. Finite dimensional, linear, single-input, single-output, discrete-
time systems are considered. Extension to multi-input, multi-output systems is
straightforward, since the theory is based on state-space descriptions. Dotted
lines indicate a high equidistant sampling rate, dashed lines a low equidistant
sampling rate, and dash-dotted lines a non-equidistant sampling rate. Under-
lined variables indicate finite-time matrix descriptions. In denotes the n × n
identity matrix, ⊗ the Kronecker product, and ◦ the Hadamard product. The
superscript 0 refers to the base period, subscript i refers to subperiod δi.

8.2 Problem formulation

In this section, the objective is formulated by defining the periodic sampling
sequence, the control configuration, and the control goal.

8.2.1 Periodic sampling sequence

In this section, the periodic timing behavior observed in platforms as Goossens
et al. (2017); Valencia et al. (2015) is described. Such a platform runs under a
time division multiplexing (TDM) policy where the TDM wheel of length Tδb is
divided into a fixed number of time slots. Depending on the allocation of slots
to the applications, the timing behavior of an application can be abstracted as
shown in Figure 8.1. The motion control task is only allocated and executed in
the slots. Other applications run on the slots. The composable nature of the
platform allows for independent analysis of the control application.

Assumption 8.1 is imposed throughout this chapter.

Assumption 8.1. In a period Tδb there are τ subperiods of length δi, i =
1, 2, . . . , τ , which are an integer multiple of base period δb, i.e., δi = γiδb, γi ∈ N,
indicated by

Γne :=
[
γ1 γ2 . . . γτ

]
. (8.1)
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time

dynamics

resources
inputs

Tδb Tδb

Figure 8.1. Example timeline where the processor is allocated to either motion
control tasks ( ) or to non-motion control tasks ( ).

δ1 δ2 δ1 δ2δ3 δ3

Tδb Tδb
time

δeq δeq δeq δeq

Figure 8.2. Example of periodic non-equidistant sampling where a period Tδb
consists of three subperiods (τ = 3) with Γne =

[
1 1 2

]
.

An example of two periods Tδb is provided by Example 8.2.

Example 8.2. Consider Figure 8.2 with the sampling sequence given by Γne =[
1 1 2

]
. There is more design freedom with the non-equidistant sequence ( )

than with the conservative equidistant sampling sequence ( ).

Remark 8.3. Assumption 8.1 can directly be relaxed at the expense of more
involved derivations.

8.2.2 Control configuration

The motion system is controlled via the feedback/feedforward control architec-
ture depicted in Figure 8.3. The selected configuration is common in motion
control, but the results can readily be extended to other configurations. In Fig-
ure 8.3, G is the motion system, and C the feedback controller acting on the error
error ε between the output ψ and the reference signal ρ. F is the feedforward
controller to be designed, see also Section 8.2.3.

Including the periodic non-equidistant sampling into the control diagram of
Figure 8.3 yields Figure 8.4. Here, G = DGbH is a sampled version of the (linear)
plant Gb at the base rate δb, with D and H the downsampler and upsampler,
respectively, that are defined in Section 8.3.4.

8.2.3 Control goal

The control goal is to design the feedforward controller F such that error ε
is minimized according to a certain performance criterion. To provide a fair
comparison, the feedback controller C is designed at a conservative, equidistant
sampling rate, see also Figure 8.2. This is by no means restrictive and can
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C G

F

ρ ε +
+

+

−

ψ

Figure 8.3. Closed-loop control configuration.

C H

F

ρb ε +
+

+

−

ν

Gb DD
ρ ψ

−

+ εb

νb

ψb

G

H

Figure 8.4. Control diagram including the sample rate conversion between the
equidistant base rate δb ( ) and the non-equidistant rate ( ). Only the
part is implemented on the actual system.

directly be relaxed. The feedforward controller is explicitly designed and imple-
mented at the non-equidistantly sampled rate. To enable a fair comparison, the
tracking error εb at equidistant rate δb is used for performance evaluation. This
data is often available off-line and can be used in batch-to-batch feedforward
control (Gorinevsky, 2002; Boeren et al., 2015). The framework can easily be
adapted for evaluation of the tracking error at other rates.

With the definition of the non-equidistant sampling sequence and the control
configuration, the main problem can be formulated.

Main problem. Given the closed-loop configuration in Figure 8.4, with sta-
bilizing C, and a periodic, non-equidistant sampling sequence, see for example
Figure 8.2, determine the optimal feedforward controller

Fopt := arg min
F∈F

Vb(F ), (8.2)

where

Vb(F ) = ‖εb‖2W ε
+ ‖νb‖2Wν

, (8.3)

with ‖(·)‖2W = (·)>W (·), W ε
> = W ε � 0, Wν

> = Wν � 0, and where εb, νb ∈
RNb , Nb ∈ N, are the lifted domain equivalents of εb and νb, respectively.

In Section 8.4, the feedforward class F is defined and the optimal feedforward
controller Fopt is derived. The latter requires the relation between ν and εb which
is derived next.
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δb δb

time

ub,i[0] ub,i[1] ub,i[2]

δb

ub,i[γi−1]

u[i] u[i+1]

δi

ub,i+1[0]

Figure 8.5. A single period δi consists of γi base periods δb where the input
ub,i remains constant.

8.3 System description

In this section, the non-equidistantly sampled system G and feedback controller
C are described in order to express εb in terms of ν. The design of F is presented
separately in Section 8.4. In the following sections, a systematic framework for
describing these systems using finite-time descriptions is presented. In succes-
sion, the dynamics during a subperiod δi, during a period Tδb, and during a finite
length N are described. Finally, finite-time descriptions of the downsampler and
upsampler are derived, and the system interconnection is derived, providing the
relation between εb and ν.

8.3.1 Dynamics during a subperiod

Due to the periodic nature, the system dynamics are identical for every period
Tδb. In order to describe the dynamics during a period Tδb, a description of the
dynamics during subperiods δi is required. In Theorem 8.4, the dynamics over
a subperiod are provided at rate δb. In Corollary 8.5, the equivalent dynamics
at rate δi are presented.

Theorem 8.4. Let the dynamics of a discrete-time system with equidistant sam-
pling time δb have state-space representation (Ab, Bb, Cb, Db) and let the sam-
pling periods δi satisfy Assumption 8.1, see also Figure 8.5. If a zero-order-
hold of period δi is applied to the input of this system, i.e., ub,i[k] = u[i],
k = 0, 1, . . . , γi − 1, then the dynamics during the interval δi are given by

xb,i[n] = Anb xb,i[0] +
n−1∑
j=0

AjbBbub,i[0], n ≤ γi, (8.4a)

yb,i[0] = Cbxb,i[0] +Dbub,i[0]. (8.4b)

Proof. Follows from successive substitution.
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time
Tδb

u[kτ ] u[(k+1)τ ]u[kτ+1] u[kτ+2] u[kτ+τ−1]

δτδ1 δ2

Figure 8.6. The dynamics over a period Tδb is determined by the dynamics
of the τ subperiods δi, i = 1, 2, . . . , τ .

Corollary 8.5. The equivalent dynamics of the system in Theorem 8.4 for sam-
pling time δi has state-space representation

[
A[i] B[i]
C[i] D[i]

]
=

 Aγib

γi−1∑
j=0

AjbBb

Cb Db

 . (8.5)

Corollary 8.5 shows that downsampling the system of Theorem 8.4 from
sampling time δb to δi is equivalent to considering n = γi steps as a single step,
see also Example 8.6.

Example 8.6. Consider the discrete-time system with transfer function 5z
z−2 at

equidistant sampling rate δb. A state-space realization of this system is

(Ab, Bb, Cb, Db) = (2, 4, 2.5, 5). (8.6)

Then, by Corollary 8.5, the dynamics over a subperiod δi = 2δb, admit the state-
space realization

(A[i], B[i], C[i], D[i]) =
(
A2
b , Bb +AbBb, Cb, Db

)
= (4, 12, 2.5, 5) (8.7)

and has transfer function

C[i](z −A[i])−1B[i] +D[i] =
5z + 10

z − 4
. (8.8)

8.3.2 Dynamics during a period

The dynamics during a subperiod at rate δi are described by Corollary 8.5. By
combining the dynamics of the τ subperiods δi, i = 1, 2, . . . , τ , see Figure 8.6,
the dynamics during a period Tδb are obtained as provided by Theorem 8.7.
Downsampling this system to rate Tδb yields a multi-input, multi-output system
as shown by Theorem 8.8.
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Theorem 8.7. During the kth period Tδb, consisting of τ periods δi, the dy-
namics at non-equidistant rate δi evolve according to

x[kτ + n] =
n−1∏
j=0

A[n− j]x[kτ ] +
n−1∑
i=0

n−i−2∏
j=0

A[n− j]B[i+ 1]u[kτ + i], (8.9a)

y[kτ + n] = C[n]x[kτ + n] +D[n]u[kτ + n], n ≤ τ, (8.9b)

with
n∏
j=0

A[j] = I for n ≤ 0.

Proof. Follows from successive substitution of the dynamics in (8.5) according
to Figure 8.6.

Theorem 8.8. The dynamics of Theorem 8.7 at non-equidistant rate δi have a
τ -input, τ -output equivalent at equidistant rate Tδb with state-space realization

τ−1∏
j=0

A[τ − j]
τ−2∏
j=0

A[τ − j]B[1]
τ−3∏
j=0

A[n− j]B[2] · · · B[τ ]

Cb Db 0 · · · 0

CbA[1] CbB[1] Db
. . .

...
...

...
. . .

. . . 0

Cb
τ−1∏
j=0

A[τ − j] Cb
τ−2∑
j=0

A[τ − j]B[1] · · · CbB[τ − 1] Db


, (8.10)

with state x, x[k] = x[kτ ], k ∈ N, and input u and output y given by

u[k] =


u[kτ ]

u[kτ + 1]
...

u[(k + 1)τ − 1]

 , y[k] =


y[kτ ]

y[kτ + 1]
...

y[(k + 1)τ − 1]

 . (8.11)

Proof. Follows from successive substitution of the relations in Theorem 8.7 and
Corollary 8.5.

Since the system is perceived at non-equidistant rate δi, Theorem 8.7 is used
for deriving finite-time expressions in Section 8.3.3. Theorem 8.8 is used for
feedforward controller design in Section 8.4.

8.3.3 Finite-time description of the system

The dynamics over the finite signal length are described using finite-time descrip-
tions. First, finite-time descriptions for LTI systems are recapitulated. Second,
finite-time expressions for the LPTV system are derived.
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Let the single-rate discrete-time system G
z
= (A,B,C,D) be operating over

a finite-time interval [0, N − 1]. Then, the input-to-output behavior is given by

ψ = Gν, G =


h(0) 0 0 · · · 0
h(1) h(0) 0 · · · 0
h(2) h(1) h(0) · · · 0
...

...
...

. . .
...

h(N − 1) h(N − 2) h(N − 3) · · · h(0)

 , (8.12)

with Markov parameters h(0) = D and h(k) = CAk−1B, k = 1, 2, . . . , N − 1.
For causal singlevariable LTI systems, G ∈ RN×N is a square lower triangular

Toeplitz matrix that maps input vector ν =
[
ν[0] ν[1] ν[2] . . . ν[N − 1]

]>
∈ RN to output vector Ψ =

[
ψ[0] ψ[1] ψ[2] . . . ψ[N − 1]

]> ∈ RN .
Finite-time descriptions can also be used for LPTV systems. For time-

invariant systems, entries in the finite-time description correspond to equidis-
tant points in time. This property is lost for non-equidistantly sampled systems
where the entries correspond to non-equidistant points in time determined by
the sampling sequence Γne. The finite-time description for the LPTV system of
Theorem 8.7 is provided by Theorem 8.9.

Theorem 8.9. Given a state space realization (Ab, Bb, Cb, Db) of the system
Gb at equidistant rate δb, and a periodic, non-equidistant sampling sequence of
τ subperiods per period Tδb, the finite-time description of G, given the periodic,
non-equidistant sampling sequence Γne, is given by

G =



Db 0 0 · · · 0 · · ·
CbB[1] Db 0 · · · 0 · · ·

CbA[2]B[1] CbB[2] Db · · · 0 · · ·
...

. . .
. . .

. . .
...

. . .

Cb
τ−2∏
j=0

A[τ − j]B[1] · · · · · · CbB[τ − 1] Db · · ·
...

. . .
...

...
...

. . .


, (8.13)

where A[i] = Aγib , B[i] =
γi−1∑
j=0

AjbBb, and G ∈ RN×N .

Proof. The finite-time description of the dynamics of Theorem 8.7 is given by

G =



D[1] 0 0 · · · 0
C[2]B[1] D[2] 0 · · · 0

C[3]A[2]B[1] C[2]B[2] D[3] · · · 0
...

. . .
. . .

. . .
...

C[N ]
N−2∏
j=0

A[N − j]B[1] · · · · · · C[N ]B[N − 1] D[N ]


. (8.14)
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Since the system is periodic with period T consisting of τ subperiods, it holds
that A[i+kτ ] = A[i] and B[i+kτ ] = B[i], for all k ∈ N, with (A[i], B[i], C[i], D[i])
given by Corollary 8.5.

Note that G in Theorem 8.9 is block-Toeplitz with block size τ × τ . The
equidistant sampling case is a special case of Theorem 8.9, see Corollary 8.10.

Corollary 8.10. If γi = γ, for all i, then (A[i], B[i], C[i], D[i]) = (A,B,C,D),
for all i, and the equidistant sampling case is recovered as a special case.

8.3.4 Finite-time descriptions of rate conversions

In Theorem 8.9, the finite-time description for the LPTV system is provided.
To describe the full system of Figure 8.4 in a finite-time framework, the finite-
time descriptions of the downsampler D and zero-order-hold upsampler H are
required. These are provided by Theorem 8.11 where it should be noted that
these results can readily be extended to the situation when there is not an integer
number of periods T present in N .

Theorem 8.11. For the purpose of exposition, let the time span of N samples
consist of an integer number of periods T , and define the vectors

µT [i] := i− 1, i = 1, 2, . . . , T, (8.15)

µτ [i] :=


0, n = 1,
i−1∑
j=1

γi, n = 2, 3, . . . , τ + 1.
(8.16)

The finite-time expression of the downsampler D is

D := I N
T
⊗DT,τ , (8.17)

with DT,τ ∈ Rτ×T given by

DT,τ [i, j] :=

{
1, µτ [i] = µT [j],

0, otherwise.
(8.18)

The finite-time expression of the zero-order-hold upsampler H is

Hτ,T := I Nb
T

⊗HT , (8.19)

with Hτ,T ∈ RT×τ given by

Hτ,T [i, j] :=

{
1, µτ [j] ≤ µT [i] < µτ [j + 1],

0, otherwise.
(8.20)
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Proof. See, for example, Oomen et al. (2009).

Note that both H and D are block-Toeplitz matrices. Furthermore, note
that up-down conversion does not affect the signal (DH = IN ), whereas down-
up conversion does affect the signal (HD 6= INb).

8.3.5 System interconnection

By combining Theorem 8.9 and Theorem 8.11, the finite-time description of
the system in Figure 8.4 is complete and the system interconnection can be
described. The error εb as function of the feedforward ν is provided by Theo-
rem 8.12.

Theorem 8.12. The finite-time error εb in Figure 8.4 for the equidistant rate
δb is given by

εb = Sbρb − SbGbHν, (8.21)

with Sb =
(
INb +GbHCD

)−1
.

Proof. The output at the base rate is given by

ψ
b

= SbGbHν + SbGbHCDρb. (8.22)

The result follows from substituting this expression in εb = ρ
b
− ψ

b
and rear-

ranging terms.

In this section, finite-time descriptions for the system interconnection of Fig-
ure 8.4 are presented. Next, these expressions are used for designing the feed-
forward filter F .

8.4 Lifted domain feedforward optimization

The class F to which the feedforward controller F in the main problem in Sec-
tion 8.2.3 belongs to is parameterized according to Definition 8.13. Parameter
β ∈ Rnβτ2

contains all parameters in β
i
, i = 0, 1, . . . , nβ − 1.

Definition 8.13. The feedforward class F is given by

F =
{ nβ−1∑

i=0

β
i
◦ ϑi(z)

∣∣∣ β
i
∈ Rτ×τ

}
, (8.23)

with ϑi(z) an τ -input, τ -output system of basis functions.
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Note that the class F in Definition 8.13 consists of multivariable transfer
functions in the so-called lifted domain (Bamieh and Pearson Jr., 1992). In
the physical time domain, after reversal of the lifting operator, it becomes a
singlevariable yet LPTV operator, due to the periodic sampling sequence, hence
the name lifted feedforward controller.

The finite-time description of F , denoted F (β), depends on the particular
choice of Γne. Since by Definition 8.13 it is linear in β, there exists a matrix

T ρ,β ∈ RN×nβτ2

satisfying

F (β)ρ = T ρ,ββ. (8.24)

Using (8.24) and combining the results of the previous sections, the optimal
feedforward filter can be computed, see Theorem 8.14.

Theorem 8.14. The optimal solution to the main problem in Section 8.2.3 with
F according to Definition 8.13 is given by

β
opt

=
(
M>W εM+ T>ρ,βWνT ρ,β

)−1

M>W εb, (8.25)

with

b = Sbρb, (8.26)

M = SbGbHT ρ,β . (8.27)

Proof. Substitution of ν = F (β)ρ = T ρ,ββ, see (8.24), in Theorem 8.12 yields
εb = b −Mβ. Hence, Vb is quadratic in β and thus the minimum follows from
∇βVb = 0 which yields β

opt
.

Theorem 8.14 is used in the simulation case study of the next section.

8.5 Simulation case study

In this section, the advantages of the periodic, non-equidistant sampling frame-
work introduced in this chapter over conservative equidistant sampling are shown
through a simulation case study.

8.5.1 System definition

The system is based on the rotational two-mass-spring-damper system shown
in Figure 8.7. The feedback controller C is a lead filter yielding a closed-loop
bandwidth (first 0 dB crossing of the open-loop) of 10 Hz. In order to have the
same feedback controller for each sampling sequence, the feedback controller is
designed at the lowest rate. The reference signal ρb is selected as the fourth
order point-to-point trajectory depicted in Figure 8.8.
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(a) Photograph of the mechanical setup consisting of two
masses interconnected by a flexible shaft.
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(b) Model of the mechanical setup in (a).
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(c) Bode magnitude plot of the model for sampling time δb = 1 ms.

Figure 8.7. The system G is the model of the collocated control loop from the
motor to the encoder.
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Figure 8.8. The reference trajectory is a fourth order point-to-point profile.
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Figure 8.9. Two periods Tδb of the case study’s timeline with the base rate
δb ( ), non-equidistant sampling ( ), and equidistant sampling ( ).

8.5.2 Sampling sequences

In this case study, the sampling sequence of Figure 8.2 is used, i.e., Γne =[
1 1 2

]
, see also Figure 8.9. The highest possible equidistant sampling rate is

2δb, i.e., Γeq =
[
2 2

]
, which is conservative since in each period Tδb a control

point is neglected. The proposed framework allows to exploit all possible control
points. Since this increases the freedom of the feedforward signal, an increase in
performance can be expected.

The basis functions ϑi(z) in Definition 8.13 are selected as

ϑi(z) = z−i


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 . (8.28)

In the simulation δb = 0.001 s, Nb = 1000, and the weights in (8.3) are selected
as W ε = 1012INb and Wν = 0Nb in order to minimize εb.

8.5.3 Results

For comparison, the results for sampling at the base rate δb are also presented.
Note that this is typically not possible in practice, but included here as bench-
mark. The results are shown in Figure 8.10.
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(b) Error signal εb at the start of the motion for nβ = 3.

Figure 8.10. Results of the case study for Γb =
[
1 1 1 1

]
( ), Γne =[

1 1 2
]

( ), and Γeq =
[
2 2

]
( ).

The performance metric Vb as function of nβ for the three sampling sequences
is shown in Figure 8.10(a). A higher nβ means a larger operating time span of the
feedforward controller and therefore an improved performance. This is indeed
observed for all three cases: Vb decreases for increasing nβ . As expected, the
performance of the sampling sequence Γne =

[
1 1 2

]
is worse than for Γb =[

1 1 1 1
]

(less control points per period) and higher than for Γeq =
[
2 2

]
(more control points per period). The time-domain error signal εb near the start
of the motion is provided in Figure 8.10(b) for nβ = 3.

8.6 Conclusion and outlook

A resource-efficient implementation on a class of predictable platforms leads to
a periodically switched system due to periodic, non-equidistant sampling. The
analysis and controller design of such systems can be done by (i) settling with
slower equidistant sampling of the system and using standard LTI techniques; or
(ii) controlling the system as a non-equidistantly sampled system and exploiting
all possible control points. The first option is often conservative in terms of
performance since not all measurement and actuation points are exploited. In
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this chapter, a framework is introduced that allows to describe the periodic, non-
equidistantly sampled systems of option (ii). Moreover, the framework allows
for optimal feedforward design incorporating the non-equidistant sampling of the
system. As a case study, a motion control application is considered and through
simulation it is shown that non-equidistant sampling control of option (ii) is
indeed superior to conservative equidistant sampling of option (i).

Ongoing work focuses on experimental validation of the presented work. Fu-
ture work aims at optimal selection of the sampling sequence.



Chapter 9

Task flexibility in ILC: A rational
basis functions approach

Iterative Learning Control (ILC) can significantly enhance the performance of
systems that perform repeating tasks, see also Section 1.5. However, small vari-
ations in the performed task may lead to a large performance deterioration. The
aim of this chapter is to develop a novel ILC approach, by exploiting rational
basis functions, that enables performance enhancement through iterative learn-
ing, while providing flexibility with respect to task variations. The proposed
approach involves an iterative optimization procedure after each task that ex-
ploits recent developments in instrumental variable-based system identification.
Enhanced performance compared to pre-existing results is proven theoretically
and illustrated through simulation examples. The results constitute Contribu-
tion IV.C.

9.1 Introduction

ILC enables a significant performance enhancement of batch-repetitive processes.
In ILC, the command signal is iteratively updated from one experiment (trial)
to the next. Typical ILC algorithms generate a control signal that exactly com-
pensates for the trial-invariant exogenous disturbances during a specific task.
ILC has been thoroughly researched, including convergence analysis (Norrlöf
and Gunnarsson, 2002; Moore, 1993), multivariable systems (Blanken et al.,
2016a), and robustness to model uncertainty (Ahn et al., 2007; Li et al., 2016;

The contents of this chapter are published in:
Jurgen van Zundert, Joost Bolder, and Tom Oomen. Optimality and flexibility in Iterative
Learning Control for varying tasks. Automatica, 67:295–302, 2016.
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Bristow and Alleyne, 2008) and disturbances (Ghosh and Paden, 2002; Saab,
2005). In addition, many successful applications have been reported, including
wafer scanners (Mishra et al., 2007; De Roover and Bosgra, 2000), rehabilitation
(Xu et al., 2014), and printing systems (Bolder et al., 2014).

ILC can perfectly compensate for non-varying disturbances, but is conse-
quently very sensitive to varying disturbances. These varying disturbances in-
clude measurement noise and also changing reference trajectories. As a result, a
learned signal corresponds to a specific reference signal and a change in this sig-
nal potentially leads to performance deterioration (Gao and Mishra, 2014; Phan
and Frueh, 1996; Heertjes and Van de Molengraft, 2009; Hoelzle et al., 2011).
To overcome this drawback, several solutions to enhance the extrapolation prop-
erties of ILC have been developed. In Hoelzle et al. (2011), the extrapolation
properties are enhanced by constructing the task such that it consists of a set
of basis tasks. This provides extrapolation to tasks consisting of a finite set of
elementary tasks. A more general approach is to parameterize the command
signal in a set of basis functions (Phan and Frueh, 1996; Oh et al., 1997). Such
an approach allows for arbitrary tasks. Examples include polynomial basis func-
tions (Van de Wijdeven and Bosgra, 2010; Bolder et al., 2014; Heertjes and Van
de Molengraft, 2009; Gao and Mishra, 2014) for which the associated optimiza-
tion problem has an explicit analytic solution (Gunnarsson and Norrlöf, 2001).
These polynomial approaches have clear advantages from an optimization per-
spective, since global optimality can be guaranteed and the implementation and
computation is generally inexpensive and fast.

Recently, rational basis functions have been introduced in ILC in Bolder and
Oomen (2015). These rational basis functions are more general than polynomial
basis functions. In fact, polynomial basis functions are recovered as a special
case of rational basis functions. In the rational case, an analytic solution can be
retained if the poles are pre-specified (Heuberger et al., 2005). Alternatively, the
poles can be updated while maintaining a convex optimization problem (Blanken
et al., 2017b; Blanken et al., 2018). In Bolder and Oomen (2015), the poles are
also optimized to enable enhanced performance by solving the non-convex opti-
mization problem using a similar algorithm as in Steiglitz and McBride (1965).
In Bolder and Oomen (2015), fast convergence to a stationary point and in-
creased performance is reported. In addition, the algorithm is reported to be
less sensitive to local minima when compared to a Gauss-Newton type of algo-
rithm as shown in, for example, Bohn and Unbehauen (1998). However, in this
chapter both a theoretical and numerical analysis are presented that reveal that
the stationary point of the iteration is not necessarily a minimum of the objective
function, which in fact has also been observed in related system identification
algorithms (Whitfield, 1987).

Although important contributions have been made to enhance extrapola-
tion capabilities of ILC through basis functions, presently available optimization
algorithms suffer from the problem of non-optimality or poor convergence prop-
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erties. The aim of this chapter is to develop a new approach that guarantees
that the stationary point of the iterative solution is always an optimum. As
a consequence, increased performance is achieved compared to pre-existing ap-
proaches. The proposed approach is related to instrumental variable system
identification. Note that the instrumental variable approach in Boeren et al.
(2015) is essentially different in that it deals with an estimation problem and
not an ILC problem.

The contributions of this chapter are threefold. First, a new iterative solution
algorithm for rational basis functions in ILC is proposed, which constitutes the
main contribution of this chapter. Second, non-optimality of the pre-existing
approach for rational basis functions in ILC is established. Third, it is shown by
two simulation examples that (i) the proposed approach outperforms the pre-ex-
isting approach, and (ii) ILC with basis functions outperforms standard ILC for
varying reference tasks. Since the proposed approach has close connections to
instrumental variable-based system identification, the simulation study may be
of interest to instrumental variable based system identification. In Bolder and
Oomen (2015), a different iterative solution for rational basis functions in ILC is
provided. In this chapter, it is theoretically proven and illustrated through sim-
ulation examples that this pre-existing approach is non-optimal by construction
and is outperformed by the proposed approach.

The outline of this chapter is as follows. In Section 9.2, the problem con-
sidered in this chapter is introduced. The proposed approach is presented in
Section 9.3. In Section 9.4, the proposed approach is compared with the pre-
existing approach in Bolder and Oomen (2015). Moreover, non-optimality of the
pre-existing approach is established. The two iterative approaches are compared
by use of a simulation example in Section 9.5, demonstrating that the proposed
approach outperforms the pre-existing approach on a complex industrial system.
In Section 9.6, a simulation example is presented revealing the benefit of using
basis functions in ILC. Section 9.7 contains conclusions and an outlook.

Notation. In this chapter, systems are discrete-time, linear, time-invariant
(LTI), single-input, single-output (SISO). Systems are generally rational in com-
plex indeterminate z and indicated with the argument z, for example H(z). Let
x[k] denote a signal x at time k. Let h be the impulse response of the sys-
tem H(z). The output y[k] of the response of H(z) to input u is given by
y[k] =

∑∞
l=−∞ h(l)u[k− l]. Let N ∈ Z+ denote the trial length, i.e., the number

of samples per trial. Assuming u[k] = 0 for k < 0 and k > N − 1, then the
input-output relation can be recast as

y[0]
y[1]
...

y[N − 1]


︸ ︷︷ ︸

y

=


h(0) h(−1) . . . h(1−N)
h(1) h(0) . . . h(2−N)
...

...
. . .

...
h(N − 1) h(N − 2) . . . h(0)


︸ ︷︷ ︸

H


u[0]
u[1]
...

u[N − 1]


︸ ︷︷ ︸

u

, (9.1)
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Figure 9.1. Block diagram of closed-loop system under consideration.

with u, y ∈ RN the input and output, respectively. Let ‖x‖2W := x>Wx, where
x ∈ RN and W = W> ∈ RN×N . W is positive definite (W � 0) if and only
if x>Wx > 0, for all x 6= 0, and positive semi-definite (W � 0) if and only if
x>Wx ≥ 0, for all x.

To facilitate presentation, occasionally transfer functions are assumed causal
to enable a direct relation between infinite and finite time. This is standard
in ILC (Norrlöf and Gunnarsson, 2002) and not a restriction on the presented
results. For instance, the approach in Boeren et al. (2015, Appendix A) may be
adopted.

9.2 Problem formulation

In this section, the considered problem is defined by describing the system, in-
troducing norm-optimal ILC, and highlighting the limitations of standard norm-
optimal ILC. Finally, the contributions are listed explicitly.

9.2.1 System description

The control setup is shown in Figure 9.1. Here G = B0

A0
, B0, A0 ∈ R[z], is the

rational system and C an internally stabilizing feedback controller. The closed-
loop system is assumed to operate batch-repetitive, i.e., the same process of
fixed length N is repeated over and over. A single execution is referred to as
a trial. The aim is to determine the feedforward fj+1 for trial j + 1 such that
the output yj+1 follows the trial-invariant reference r, i.e., minimizes the error
ej+1 = r − yj+1.

The error for trial j is given by

ej = Sr − SGfj (9.2a)

= Sr − Jfj , (9.2b)

with sensitivity S := (I +GC)
−1

, and process sensitivity J := SG. The error
for trial j + 1 is given by

ej+1 = Sr − Jfj+1. (9.3)
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Eliminating Sr from (9.3) by using (9.2b) yields the trial-to-trial dynamics

ej+1 = ej + J (fj − fj+1) , (9.4)

which are optimized in norm-optimal ILC.

9.2.2 Norm-optimal ILC

Norm-optimal ILC is an important class of ILC in which the feedforward signal
fj+1 for the next trial is determined by minimizing a performance criterion as
in Definition 9.1.

Definition 9.1. The performance criterion for norm-optimal ILC is given by

J (fj+1) := ‖ej+1‖2We
+ ‖fj+1‖2Wf

+ ‖fj+1 − fj‖2W∆f
(9.5)

with We,Wf ,W∆f � 0 and ej+1 given by (9.4).

Since J (fj+1) is quadratic in fj+1, the optimal feedforward signal fj+1,opt

can be computed analytically (Gunnarsson and Norrlöf, 2001) from

dJ (fj+1)

dfj+1

∣∣∣∣
fj+1=fj+1,opt

= 0 (9.6)

and is provided by Theorem 9.2.

Theorem 9.2. Given J>WeJ+Wf+W∆f � 0, model J , and measurement data
r, fj , ej, optimal fj+1,opt for norm-optimal ILC with the performance criterion
of Definition 9.1 is

fj+1,opt = Qfj + Lej , (9.7)

Q =
(
J>WeJ +Wf +W∆f

)−1 (
J>WeJ +W∆f

)
, (9.8)

L =
(
J>WeJ +Wf +W∆f

)−1
J>We. (9.9)

Proof. Substitute (9.4) in (9.5) and solve (9.6) for fj+1,opt.

With norm-optimal ILC excellent performance is achieved for exactly re-
peating tasks. Indeed, if G is invertible, We � 0, and Wf = W∆f = 0,
convergent ILC with a perfect model results in fj+1,opt = G−1r and hence
ej+1 = Sr − SGfj+1,opt = 0, for all r. However, this result does not hold
when r varies as shown next. Let the reference signal at trail j be denoted
by rj . Then, under the same conditions as before, fj+1,opt = G−1rj and hence
ej+1 = Srj+1−SGfj+1,opt = S (rj+1 − rj). Consequently, ej+1 6= 0 if rj+1 6= rj ,
i.e., for a trial-varying reference signal.



210 Chapter 9. Task flexibility in ILC

fj
F (θj)

+

G
rj

C
+

−

+ej yj

Figure 9.2. Implementation of basis functions in fj = F (θj)rj .

Ideally fj+1,opt = G−1rj+1, which corresponds to inverse model feedforward
and shows that the optimal feedforward signal is a function of the applied refer-
ence signal. A key observation for norm-optimal ILC is that only information of
previous trials is exploited. Hence, the learned signal will only be optimal for one
specific constant reference signal and non-optimal for varying reference signals,
i.e., extrapolation properties are poor. To enhance extrapolation properties,
basis functions are exploited in this chapter.

9.2.3 Problem formulation

Inspired by inverse model feedforward, extrapolation properties are introduced
in ILC by use of basis functions as

fj = F (θj)rj , (9.10)

where F (θj) ∈ RN×N denotes the matrix notation of the feedforward filter pa-
rameterized in parameters θj ∈ Rnθ . Similar parameterizations are used in, for
example, Hätönen et al. (2006); Van de Wijdeven and Bosgra (2010). The im-
plementation in the control scheme of Figure 9.1 is depicted in Figure 9.2. Note
that fj+1 is a function of rj+1, which is in sharp contrast to standard norm-
optimal ILC where it is implicitly only a function of rj . Substitution of (9.10)
in (9.2a) yields ej = Srj − SGF (θj)rj = S(I − GF (θj))rj = 0, for all rj , if
F (θj) = G−1. Hence, by proper selection of F (θj) and learning θj , zero error
may be achieved for arbitrary reference signals.

The basic idea is that if instead of learning fj , the ILC algorithm optimizes
θj , then ej is invariant under r if F (θj) = G−1 = A0

B0
. Note that a standard

model-based feedforward is recovered from (9.10) if θj is pre-specified. In this
chapter, rational basis functions are used for parameterizing the feedforward
filter F (θj), see Definition 9.3, which enables optimization of both zeros and
poles.

Definition 9.3. Rational basis functions in the parameters θj ∈ Rnθ with ref-
erence rj as basis are defined as in (9.10) with F (θj) the matrix representation
of F (θj , z) ∈ F ,

F =

{
A(θj , z)

B(θj , z)

∣∣∣∣ θj ∈ Rnθ
}
, (9.11)
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with

A(θj , z) = ξA,0(z) +

nθ∑
i=1

ξA,i(z)θj [i− 1], (9.12)

B(θj , z) = ξB,0(z) +

nθ∑
i=1

ξB,i(z)θj [i− 1], (9.13)

where ξA,i(z), ξB,i(z) ∈ R[z], i = 0, 1, . . . , nθ are polynomials in z.

Note that for B(θj , z) = ξB,0(z) the pole locations of F (θj , z) are pre-
specified. Polynomial basis functions are the special case of rational basis func-
tions with B(θj , z) = 1.

Substitution of (9.10) in (9.5) yields Definition 9.4, which reveals that
J (fj+1) is a function of θj+1 by the fixed structure of (9.10). Instead of de-
termining fj+1,opt, θj+1,opt is to be determined.

Definition 9.4. The performance criterion for norm-optimal ILC with basis
functions is given by

J (θj+1) := ‖ej+1(θj+1)‖2We
+ ‖fj+1(θj+1)‖2Wf

+ ‖fj+1(θj+1)− fj‖2W∆f
,

(9.14)

with We,Wf ,W∆f � 0, and using Definition 9.3 and (9.4),

fj+1 = B−1(θj+1)A(θj+1)rj , (9.15)

ej+1 = ej + Jfj − JB−1(θj+1)A(θj+1)rj . (9.16)

The goal in this chapter is to solve the following problem.

Main problem. Given Definition 9.3, a model of J , parameters θj, and mea-
surement data rj , fj , ej, determine

θj+1,opt = arg min
θj+1

J (θj+1), (9.17)

with J (θj+1) given by Definition 9.4.

The contributions of this chapter are as follows.

9.I An iterative approach to solve the main problem in Section 9.2.3 is pro-
posed and its optimality is shown.

9.II By analysis of the approach it is shown that the solution in Bolder and
Oomen (2015) solves the main problem in Section 9.2.3 non-optimally.
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9.III The results of Contribution 9.I and Contribution 9.II are confirmed by
use of simulation examples. In particular, it is validated that the pro-
posed approach outperforms the pre-existing approach, and the bene-
fits of ILC with basis functions in terms of extrapolation properties are
demonstrated.

Experimental validation of the results can be found in Bolder et al. (2017).

9.3 Proposed approach

In this section, the main problem in Section 9.2.3 is analyzed and the proposed
approach is introduced, forming Contribution 9.I. Finally, polynomial basis func-
tions and standard norm-optimal ILC are recovered as special cases.

9.3.1 Analysis

In standard norm-optimal ILC, see Section 9.2.2, the optimal feedforward is
found through (9.6). Similarly, θj+1,opt satisfies

dJ (θj+1)

dθj+1

∣∣∣∣
θj+1=θj+1,opt

= 0, (9.18)

with the gradient given by Lemma 9.5.

Lemma 9.5. Given Definition 9.3, the gradient of J (θj+1) with respect to θj+1

is given by(
dJ (θj+1)

dθj+1

)>
= 2

(
dfj+1

dθj+1

)> [ (
−J>WeJ −W∆f

)
fj + J>Weej

+
(
J>WeJ +Wf +W∆f

)
B−1(θj+1)A(θj+1)rj

]
.

(9.19)

Proof. Follows from substituting (9.4) in (9.14) and using that for x, b ∈ RN ,
A ∈ RN×N , and W = W> ∈ RN×N ,

d
(
‖Ax+ b‖2W

)
dx

= 2(Ax+ b)>WA. (9.20)

The stated result is found by substitution of (9.15).

Lemma 9.5 reveals that
dJ (θj+1)

dθj+1
is nonlinear in θj+1 because of the terms

dfj+1

dθj+1
and B−1(θj+1). Consequently, there is no general analytic solution avail-

able and there may exist multiple optima. To solve this optimization problem,
an iterative solution is proposed in the following subsection.
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9.3.2 Optimal solution

In this subsection the proposed approach to solve the main problem in Sec-
tion 9.2.3 is introduced, which forms the main contribution of this chapter. The
idea is to iteratively solve a sequence of convex optimization problems, which
are also a solution of the non-convex optimization problem if the iterative proce-
dure converges. A weighted version of (9.18) is considered, which is affine in the
parameters and enables an analytic solution. Upon convergence, the gradient in
Lemma 9.5 is recovered and a solution to the main problem in Section 9.2.3 is
obtained.

First, an auxiliary iteration index q is introduced and a weighting is applied
to (9.19) as given by Definition 9.6.

Definition 9.6. The weighted gradient of the performance criterion is defined
as (

dJ (θj+1,q)

θj+1,q

)>
= 2ζq

[
−
(
J>WeJ +W∆f

)
B(θj+1,q)fj

− J>WeB(θj+1,q)ej

+
(
J>WeJ +Wf +W∆f

)
A(θj+1,q)rj

]
∈ Rnθ ,

(9.21)

with

ζq =

(
dfj+1,q−1

dθj+1,q−1

)>
B−1(θj+1,q−1) ∈ Rnθ×N . (9.22)

Note that the expression in Lemma 9.5 is recovered from Definition 9.6 upon
convergence, i.e., θj+1,q = θj+1,q−1 = θj+1.

Second, it is observed that (9.21) is affine in A(θj+1,q) and B(θj+1,q). Since
both A(θj+1,q) and B(θj+1,q) are affine in θj+1,q, see Definition 9.3, (9.21) is
affine in θj+1,q. This is exploited in Theorem 9.7.

Theorem 9.7. Given rj , fj , ej , θj+1,q−1, the solution to
dJ (θj+1,q)
θj+1,q

= 0 is given

by

θj+1,q,opt = − (ζqQ)
−1
ζqR, (9.23)

with

Q =
(
J>WeJ +Wf +W∆f

)
ΨA,rj − J>WeΨB,ej

−
(
J>WeJ +W∆f

)
ΨB,fj ,

(9.24)

R =
(
J>WeJ +Wf +W∆f

)
ξA,0rj − J>WeξB,0ej

−
(
J>WeJ +W∆f

)
ξB,0fj .

(9.25)
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Proof. Using the notation defined in Section 9.1:

A(θj+1,q)rj = ξA,0rj + ΨA,rjθj+1,q, (9.26)

B(θj+1,q)ej = ξB,0ej + ΨB,ejθj+1,q, (9.27)

B(θj+1,q)fj = ξB,0fj + ΨB,fjθj+1,q. (9.28)

Substituting these expressions into (9.21), equating to zero, and solving for
θj+1,q = θj+1,q,opt completes the proof.

Note that (9.23) only depends on data of trial j (rj , fj , ej) and the previous
parameter estimate θj+1,q−1.

In the previous steps two key elements are derived, which are briefly sum-
marized as follows. First, a weighted gradient is introduced in Definition 9.6,
from which the gradient in Lemma 9.5 is recovered for θj+1,q = θj+1,q−1 = θj+1.
Second, an analytic solution for θj+1,q,opt = θj+1,q is obtained for which the
weighted gradient in Definition 9.6 is zero. Hence, upon convergence, the actual
gradient also converges to zero and optimal performance is achieved. Combining
these two elements, there is an optimal analytic solution to the main problem in
Section 9.2.3 when there is convergence in the parameters, i.e., θj+1,q → θj+1,q−1.
The iterative algorithm to obtain this solution is given by Algorithm 9.8.

Algorithm 9.8. The proposed algorithm for solving the main problem in Sec-
tion 9.2.3 is given by the following sequence of steps.

1. Given rj , fj , ej , θj, set q = 1, initialize θj+1,q−1 = θj.

2. Compute θj+1,q,opt in (9.23).

3. Set q → q+ 1 and go back to step 2 until an appropriate stopping criterion
is satisfied.

Note that the iteration in q is performed off-line and hence does not require
additional experiments in the usual ILC sense.

The convergence of similar type of algorithms is experienced to be good in
well-established related algorithms in instrumental variable system identification
(Gilson et al., 2011; Blom and Van den Hof, 2010), yet at present global conver-
gence has only been proved under certain assumptions (Stoica and Söderström,
1981).

9.3.3 Recovering pre-existing results as special cases

For polynomial basis functions the optimization problem is convex and conver-

gence is achieved in a single step. Indeed, ζq =
(

dA(θj+1,q−1)rj
dθj+1,q−1

)>
= Ψ>A,rj in

Algorithm 9.8 is constant for all q and hence the procedure yields the single-
step solution provided by Corollary 9.9, which recovers the well-known results
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in Van de Wijdeven and Bosgra (2010) and Bolder and Oomen (2015). More-
over, for standard norm-optimal ILC, i.e., fj = θj , Theorem 9.2 is recovered
from Theorem 9.7, see Corollary 9.9.

Corollary 9.9. For polynomial basis functions, the solution in (9.23) reduces
to the analytic solution

θj+1,opt =
(

Ψ>A,rj
(
J>WeJ +Wf +W∆f

)
ΨA,rj

)−1

Ψ>A,rj

×
(
−
(
J>WeJ +Wf +W∆f

)
ξA,0rj

+J>Weej +
(
J>WeJ +W∆f

)
fj
)
.

(9.29)

If in addition ξA,0(z) = 0, then

θj+1,opt = Qfj + Lej , (9.30)

with

Q =
(

Ψ>A,rj
(
J>WeJ +Wf +W∆f

)
ΨA,rj

)−1

Ψ>A,rj
(
J>WeJ +W∆f

)
, (9.31)

L =
(

Ψ>A,rj
(
J>WeJ +Wf +W∆f

)
ΨA,rj

)−1

Ψ>A,rjJ
>We. (9.32)

If fj = θj, then Theorem 9.2 is recovered.

Proof. Substitute ζq = Ψ>A,rj , ξB,0 = I, and ΨB,ej = ΨB,fj = 0 in (9.23). If in

addition ξA,0(z) = 0, then ξA,0 = 0 and fj = ΨA,rjθj . For fj = θj , ΨA,rj = I
which substituted in (9.30) yields (9.7).

9.4 Non-optimality of pre-existing approach

In Bolder and Oomen (2015), an alternative solution to the main problem in
Section 9.2.3 is proposed. In this section, it is demonstrated that this iterative
procedure generally converges to a non-optimal stationary point. As a result,
the proposed approach potentially yields better performance. This section forms
Contribution 9.II.

9.4.1 Pre-existing approach

In the proposed approach, the gradient of the performance criterion is weighted.
In contrast, in the pre-existing approach of Bolder and Oomen (2015) the per-
formance criterion is weighted, see Definition 9.10.
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Definition 9.10. The weighted performance criterion is defined as

Ĵ (θj+1,q) :=
∥∥B−1(θj+1,q−1)B(θj+1,q)ej+1,q

∥∥2

We

+
∥∥B−1(θj+1,q−1)B(θj+1,q)fj+1,q

∥∥2

Wf

+
∥∥B−1(θj+1,q−1)B(θj+1,q)fj+1,q − fj

∥∥2

W∆f
.

(9.33)

Note that if θj+1,q = θj+1,q−1 = θj+1, then Ĵ (θj+1,q) = J (θj+1), i.e., the
unweighted performance criterion is recovered.

The weighted signals are affine in θj+1,q since the term B−1(θj+1,q) is can-

celed. As a result, Ĵ (θj+1,q) is quadratic in θj+1,q and there is a unique solution
for θj+1,q,opt, which can be determined analytically from(

dĴ (θj+1,q)

dθj+1,q

)>∣∣∣∣∣∣
θj+1,q=θj+1,q,opt

= 0. (9.34)

The idea is to iteratively determine θj+1,q,opt for Ĵ (θj+1,q) in Definition 9.10
using (9.34). The reasoning is that upon convergence of the parameters, i.e.,
θj+1,q → θj+1,q−1, θj+1,q,opt are also the optimal parameters for the main prob-

lem in Section 9.2.3, because J (θj+1) is recovered from Ĵ (θj+1,q) for θj+1,q =
θj+1,q−1 = θj+1. However, in the next section it is demonstrated that this rea-
soning is incorrect, i.e., the stationary point of the iteration is not necessarily a
minimum of J (θj+1).

9.4.2 Non-optimality

In the approach outlined in Section 9.4.1, (9.34) is solved, which yields the mini-
mum of Ĵ (θj+1,q). However, this is not necessarily a minimum of J (θj+1). As a
consequence, the parameters do not necessarily provide the solution to the main
problem in Section 9.2.3. The non-optimality of this approach is highlighted in
Theorem 9.11.

Theorem 9.11. For the purpose of exposition let Wf = W∆f = 0 and assume
that the pre-existing iterative procedure described in Section 9.4.1 converges to a
stationary point, and let θj+1,pre = limq→∞ θj+1,q,opt with θj+1,q,opt the solution
to (9.34). Then non-optimal performance is achieved if(

B−1(θj+1,pre)
dB(θj+1,pre)

dθj+1,pre
ej+1,pre

)>
Weej+1,pre 6= 0. (9.35)

Proof. Substitution of Wf = W∆f = 0 in (9.19) and using
dfj+1

dθj+1
=

dFj+1

dθj+1
rj it

follows (
dJ (θj+1)

dθj+1

)>
= −2

(
J

dF (θj+1)

dθj+1
rj

)>
Weej+1, (9.36)
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with ej+1 given by (9.4). The gradient of (9.33) for Wf = W∆f = 0 is given by(
dJ̃ (θj+1,q)

dθj+1,q

)>
= 2

(
B−1(θj+1,q−1)

dB(θj+1,q)ej+1,q

dθj+1

)>
×WeB

−1(θj+1,q−1)B(θj+1,q)ej+1,q,

(9.37)

dB(θj+1,q)ej+1,q

dθj+1
=

dB(θj+1,q)

dθj+1,q
ej+1,q −B(θj+1,q)J

dF (θj+1,q)

dθj+1,q
rj . (9.38)

Evaluating this gradient after convergence, i.e., θj+1,q−1 = θj+1,q = θj+1,pre,
yields

2

(
B−1(θj+1,pre)

dB(θj+1,pre)

dθj+1,pre
ej+1,pre − J

dF (θj+1,pre)

dθj+1,pre
rj

)>
Weej+1,pre (9.39)

which is zero by definition of θj+1,pre. Hence, if(
B−1(θj+1,pre)

dB(θj+1,pre)

dθj+1,pre
ej+1,pre

)>
Weej+1,pre 6= 0, (9.40)

then, by (9.36),
dJ (θj+1)

dθj+1

∣∣∣
θj+1=θj+1,pre

6= 0, indicating non-optimality which con-

cludes the proof.

Theorem 9.11 implies that the pre-existing approach solves the main problem
in Section 9.2.3 if ej+1 = 0. This requires there exists θj+1 such that F (θj+1) =
G−1, see Section 9.2.2. This is, however, generally not the case due to unmodeled
dynamics and therefore non-optimal performance is achieved. Moreover, the
non-optimality of the pre-existing approach may be more severe under stochastic
disturbances, see for example Whitfield (1987).

The key difference between the two approaches is the level at which the weight
is applied. In the pre-existing approach this is at the level of the performance
criterion, whereas with the proposed approach this is at the level of the gradient
of the performance criterion. Since the parameters are determined at the level
of the gradient, the proposed approach is optimal, whereas this is generally not
the case for the pre-existing approach. The non-optimality of the pre-existing
approach is illustrated in a simulation example in Section 9.5.

9.5 Example: Convergence

In this section, a simulation example is presented to demonstrate the optimality
of the proposed approach in Section 9.3 and the non-optimality of the pre-
existing approach in Section 9.4. In addition, the convergence behavior of both
approaches is analyzed and compared to the Gauss-Newton algorithm. This
section forms the first part of Contribution 9.III.
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9.5.1 Setup

The parameter update over a single trial is considered and therefore the subscript
j is omitted throughout this section. An open-loop system is considered, i.e.,
C = 0, with the system defined as

G =
(1 + 2β1,1 + ω1) z2 − 2(1− β1,1)z + 1

(1 + 2β1,2 + ω1) z2 − 2(1− β1,2)z + 1

× (1 + 2β2,1 + ω2) z2 − 2(1− β2,1)z + 1

(1 + 2β2,2 + ω2) z2 − 2(1− β2,2)z + 1
,

(9.41)

where β1,1 = 0.12, β1,2 = 0.01, ω1 = 0.0005 · 2π, β2,1 = 1.2, β2,2 = 0.1, and
ω2 = 0.01 · 2π.

The reference signal is defined as

r[k] = 40 sin(ω1k) + sin(ω2k), k = 0, 1, . . . N − 1, (9.42)

with trial length N = 1000. The weighting filters in Definition 9.4 are set to
We = 10−4I and Wf = W∆f = 0 in order to only weigh the error.

The feedforward filter is parameterized as

F (θ) =
(z − 1)2 + (2β1(z − 1) + ωn) θ

(z − 1)2 + (2β2(z − 1) + ωn) θ
, (9.43)

with β1 = 0.001, β2 = 2, ωn = 0.02 · 2π. Note that F (θ) can be written in the
form of Definition 9.3 with nθ = 1 and

ξA,0(z) = (z − 1)2, ξA,1(z) = 2β1(z − 1) + ωn, (9.44)

ξB,0(z) = (z − 1)2, ξB,1(z) = 2β2(z − 1) + ωn. (9.45)

The Bode plot of F (θ) is depicted in Figure 9.3 for various values θ, together
with the system inverse. The figure shows that there exists θ such that F (θ)
resembles (part of) the system inverse. However, by design, F (θ) is only able
to (partially) compensate one of the two system resonances. Assuming minor
influence of transient behavior, it is to be expected that there are two optima:
compensation of either the resonance at 0.0005 Hz or the resonance at 0.01 Hz.

9.5.2 Results

The results are shown in Figure 9.4, Figure 9.5, Table 9.1, and Table 9.2.
First, the performance criterion is analyzed. In Figure 9.4, J (θ) is de-

picted for a grid of values for θ. As expected, there are two minima: θopt,1 =
1.5959× 10−4 and θopt,2 = 0.0315, of which the feedforward filters are depicted
in Figure 9.5. Visual inspection reveals that for θ = θopt,1 the first resonance of
the system is (partially) compensated, whereas for θ = θopt,2 the second system
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Figure 9.3. The inverse system G−1 ( ) and feedforward filters F (θ = 10−5)
( ), F (θ = 10−3) ( ), and F (θ = 10−1) ( ). By design, F (θ) is only able
to (partially) compensate one of the resonances.

10−5 θopt,1 10−3 θopt,2 10−1 100
0

2

4

6

θ

J

Figure 9.4. J for a grid in θ and the corresponding optimal parameters. For
θ0 = 10−3, the pre-existing approach ( ) converges to the point near the local
minimum, whereas the proposed approach ( ) converges to the global minimum.

resonance is (partially) compensated. Note that the difference in resonance fre-
quency between F (θopt,1) and the first resonance frequency of G appears to be
large due to the logarithmic scale, but is small and in the same order as the dif-
ference between the resonance frequency of F (θopt,2) and the second resonance
frequency of G.

Second, non-optimality of the pre-existing approach and optimality of the
proposed approach are demonstrated. In Figure 9.4, the stationary point of the
pre-existing approach θ = 9.7249×10−5 for an initial value θ0 = 10−3 is indicated
after ten iterations. The stationary point is located near local minimum θopt,1.
Clearly, this stationary point yields non-optimal performance since there exists θ
for which J (θ) is lower. Indeed, since J̃ instead of J is minimized, non-optimal
performance is obtained in terms of J , see also Table 9.1. The results confirm
Theorem 9.11 since the stationary point of the pre-existing approach is not a
local minimum of J . In contrast to the pre-existing approach, the gradient
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Figure 9.5. F (θ) for θopt,1 ( ), θopt,2 ( ), and pre-existing ( ) and pro-
posed ( ) approach (both after ten iterations) partially compensate different
resonances of G−1 ( ).

Table 9.1. Convergence properties of the pre-existing and proposed approach
after ten iterations.

θopt J
∣∣dJ

dθ

∣∣
θopt,1 1.5950× 10−4 3.6226 −0.5151
θopt,2 0.0315 2.6776 0.0001

Pre-existing 9.9856× 10−5 4.0573 14556
Proposed 0.0307 2.6781 1.3158

of J converges to zero for the proposed approach. Indeed, Table 9.1 shows a
small value dJ

dθ for the proposed approach. As a result, optimal performance is
achieved and the value of J is the lowest for the proposed approach.

Finally, convergence is considered. In Table 9.2, the stationary point of the
approaches is indicated for a range of θ0. From the table it is observed that
the pre-existing approach always converges to the same stationary point located
closely to the local minimum, independent of the initial parameter. In contrast,
for this case the stationary point of the proposed approach is always the global
optimum. Hence, the proposed approach outperforms both the pre-existing and
Gauss-Newton approach.

Table 9.2. Converged parameters. For the given interval, the stationary point
of the pre-existing approach is always near θopt,1, whereas the stationary point
of Gauss-Newton depends on the initial parameter.

Initial value θ0 Gauss-Newton Pre-existing Proposed

10−5 < θ0 ≤ 6× 10−4 θopt,1 near θopt,1 θopt,2
6× 10−4 < θ0 ≤ 100 θopt,2 near θopt,1 θopt,2
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Figure 9.6. Bode magnitude plot of the printer model.

9.6 Example: Performance

In this section, the pre-existing and proposed approach for ILC with rational
basis functions are compared with standard ILC and ILC with polynomial ba-
sis functions. Varying reference signals and a model of a complex industrial
printer are considered. The simulation demonstrates the excellent extrapolation
properties of ILC with basis functions compared to standard ILC. Moreover, the
simulation highlights the difference in performance for the three variants of ILC
with basis functions. This section forms the second part of Contribution 9.III.

9.6.1 System description

The system is a model of the carriage position of an Océ Arizona 550 GT flatbed
printer of which the Bode magnitude plot is depicted in Figure 9.6. The system
operates in closed-loop with a bandwidth of 25 Hz.

9.6.2 Simulation setup

Nine trials are considered with a trial-varying reference signal according to Fig-
ure 9.7. All trials have a length of N = 4000 samples.

Rational basis functions with θj ∈ R4 are defined according to Definition 9.3
and Lambrechts et al. (2005) as follows

A(θj , z) =
(

1 +
(
z−1
zδ

)
θj [0] +

(
z−1
zδ

)2
θj [1]

) (
z−1
zδ

)2
, (9.46)

B(θj , z) =
(

1 +
(
z−1
zδ

)
θj [2] +

(
z−1
zδ

)2
θj [3]

)
, (9.47)

with sampling time δ and where the choice of basis functions is in part based on
Lambrechts et al. (2005). Recall that polynomial basis functions are the special
case of rational basis functions with B(θj , z) = 1, i.e., θj [2] = θj [3] = 0, for all
j. The initial parameters θ0 are set to zero. To simulate noise, white noise with
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Figure 9.7. A trial-varying reference signal is considered. Reference signal ra
( ) is active during trial j = 0, 1, 2; rb ( ) during j = 3, 4, 5; and rc ( )
during j = 6, 7, 8.

a variance of 10−4 µm2 is injected on the error signal. The weighting filters in
Definition 9.4 are set to We = I, Wf = W∆f = 0 in order to only penalize the
error.

9.6.3 Simulation results

In Figure 9.8, Jj is shown as function of the trial index j. The following ob-
servations are made. First, the proposed approach outperforms the pre-existing
approach for rational basis functions by a factor 40. Second, rational basis func-
tions outperform polynomial basis functions; even the pre-existing approach is a
factor 480 better. Third, ILC with basis functions outperforms standard ILC af-
ter a change in reference signal by at least a factor 9. The error signal after such
a change is depicted in Figure 9.9. The results (i) clearly highlight the problem
encountered in standard ILC with respect to extrapolation, (ii) demonstrate the
excellent extrapolation properties of ILC with basis functions, and (iii) confirm
the analysis in Section 9.2.2.

9.7 Conclusion and outlook

For systems operating repetitively, high performance can be achieved by use
of ILC. However, standard norm-optimal ILC has poor extrapolation proper-
ties with respect to varying reference signals. In this chapter, rational basis
functions are used to enhance these extrapolation properties. The associated
optimization problem is significantly more complex than for polynomial basis
functions, but can be solved iteratively. The main contribution of this chapter
is a new iterative algorithm for rational basis functions. The algorithm relates
to techniques from system identification and is guaranteed to converge to a min-
imum. The algorithm is compared with the pre-existing iterative algorithm in
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Figure 9.8. For rational basis functions the proposed approach ( ) outper-
forms the pre-existing approach ( ), which both outperform polynomial basis
functions ( ). At reference signal changes (trial j = 3 and j = 6) basis functions
outperform standard ILC ( ).

Bolder and Oomen (2015) which is shown to be non-optimal. As a consequence,
the proposed approach outperforms the pre-existing results.

The results are supported using simulation examples. It is shown that, even
for simple systems, the difference in performance between the pre-existing and
proposed approach can be significant. The excellent extrapolation properties of
ILC with basis functions are demonstrated in a simulation of a complex industrial
system. Also for this simulation, the proposed approach is superior to the pre-
existing approach.

Experimental validation of the simulation results can be found in Bolder et al.
(2017). Ongoing research focuses on the selection of basis functions, robustness
analysis, and numerical aspects along the lines of Van Herpen et al. (2013) and
Blanken et al. (2017b); Blanken et al. (2018). Finally, an interesting extension
could be to investigate convergence to the global minimum along the lines of
Eckhard et al. (2012).
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(b) The performance difference between the pre-existing and pro-
posed approach is significant.

Figure 9.9. Time-domain error signals after a change in reference signal (j = 6)
for standard ILC ( ), polynomial basis functions ( ), and rational basis
functions using the pre-existing ( ) and the proposed ( ) approach. The
change in reference signal has significant impact on the performance of standard
ILC, whereas the effect on ILC with basis functions is significantly smaller,
especially for rational basis functions.



Chapter 10

Resource-efficient ILC

Iterative learning control (ILC) enables high performance for systems that ex-
ecute repeating tasks, see also Section 1.5. Norm-optimal ILC based on lifted
system representations provides an analytic expression for the optimal feedfor-
ward signal. However, for large tasks the computational load increases rapidly
for increasing task lengths, compared to the low computational load associated
with so-called frequency-domain ILC designs. The aim of this chapter is to solve
norm-optimal ILC through a Riccati-based approach for a general performance
criterion. The approach leads to exactly the same solution as found through
lifted ILC, but at a much smaller computational load: O(N) versus O(N3) for
both linear time-invariant (LTI) and linear time-varying (LTV) systems. In-
terestingly, the approach involves solving a two-point boundary value problem
(TPBVP). This is shown to have close connections to stable inversion presented
in Section 3.4.2, which is central in typical frequency-domain ILC designs. The
proposed approach is implemented on an industrial flatbed printer with large
tasks, which cannot be implemented using traditional lifted ILC solutions. The
proposed methodologies and results are applicable to both ILC and rational
feedforward techniques by applying them to suitable closed-loop or open-loop
system representations. In addition, they are applied to a position-dependent
system, revealing necessity of addressing position-dependent dynamics and con-
firming the potential of LTV approaches in this situation. The results constitute
Contribution IV.D.

The contents of this chapter are published in:
Jurgen van Zundert, Joost Bolder, Sjirk Koekebakker, and Tom Oomen. Resource-efficient ILC
for LTI/LTV systems through LQ tracking and stable inversion: Enabling large feedforward
tasks on a position-dependent printer. IFAC Mechatronics, 38:76–90, 2016.
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10.1 Introduction

10.1.1 Iterative learning control in mechatronic
applications

Mechatronic systems can be accurately positioned using control. With feedback
control the command signal is updated based on past errors, namely the dif-
ference between the measured and desired output. With feedforward control
information of the desired output is used to anticipate on future errors, which
enables accurate positioning. In this chapter, the main focus is on learning such
a feedforward command signal from data via iterative learning control (ILC).

ILC algorithms often achieve exceptional performance for systems that op-
erate repetitively, i.e., systems that perform the same task over and over again.
ILC exploits the repetitive behavior of the system by learning from past execu-
tions (Bristow et al., 2006; Moore, 1993). Many successful ILC applications in
mechatronics have been reported, including wafer scanners (Mishra et al., 2007;
De Roover and Bosgra, 2000), H-drive pick and place machines (Steinbuch and
Van de Molengraft, 2000), and printing systems (Sutanto and Alleyne, 2015;
Bolder et al., 2014).

An important class in ILC is norm-optimal ILC (Norrlöf and Gunnarsson,
2002; Owens et al., 2013), where the optimal feedforward is determined on the
basis of a performance criterion. When representing the system in the lifted
framework (Tousain et al., 2001), an analytic expression can be directly obtained
for the optimal ILC controller (Gunnarsson and Norrlöf, 2001). However, the
implementation of lifted ILC involves multiplication and inversion of N × N -
matrices, with N the task length. Since the matrices scale with the task length,
lifted ILC is impractical for large tasks. The need for computationally efficient
techniques is well-recognized, see, for example, Barton et al. (2010). In addition,
efficient techniques for the computation of the ILC convergence condition are
developed, see, for example, Rice and Van Wingerden (2013).

10.1.2 Iterative learning control for large tasks

Several approaches in ILC have been used that have a significantly smaller com-
putational burden compared to standard norm-optimal ILC algorithms. On the
one hand, norm-optimal ILC has been extended in several ways. Basis functions
in lifted ILC (Chapter 9; Bolder and Oomen, 2015) lead to smaller computa-
tional burden. However, these basis functions are typically used to enhance
extrapolation properties of ILC, at expense of performance. Alternatively, the
Toeplitz/Hankel structure of the involved matrices can be exploited, see Vande-
bril et al. (2008), as is done in Haber et al. (2012).

On the other hand, alternative approaches to ILC are typically based on
(non-optimal) two-step approaches. These approaches include a learning filter
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obtained via typically noncausal plant inversion techniques and is completed by a
robustness filter to guarantee convergence of the iteration. For instance, preview
based control approaches such as zero phase error tracking control (ZPETC) are
often applied in ILC. ZPETC was originally developed for noncausal feedforward
compensation of nonminimum-phase systems (Tomizuka, 1987). See Blanken
et al. (2016b) for a multivariable extension and Butterworth et al. (2012) for
related methods. Such ZPETC-related algorithms enable the design of noncausal
filters and have computationally complexity O(N). However, they typically
introduce approximation errors and are only applicable to linear time-invariant
(LTI) systems.

Interestingly, stable inversion (Tien et al., 2005; Hunt et al., 1996; Zou and
Devasia, 1999) has been abundantly used in ILC and feedforward, see, for exam-
ple, Chapter 9; Boeren et al. (2015); Bolder et al. (2017); Blanken et al. (2016b)
for high-tech motion control applications, and Marro et al. (2002); Blanken et al.
(2016a) for multivariable extensions. Such inversion methods enable noncausal
inverses for square multivariable systems and some immediately generalize to
linear time-varying (LTV) systems. These methods essentially provide an exact
inverse over a bi-infinite time horizon, but still introduce approximation errors
for finite tasks. These errors are caused by incompatible initial conditions in the
finite-time case as a result of mixed causal/noncausal filtering.

10.1.3 Contributions

Although several frameworks and associated algorithms have been developed
for ILC, there seems to be a trade-off between computational requirements and
accuracy. One either has to accept a large computational time or approximation
errors for non-optimal approaches. The aim of this chapter is to develop an
optimal design algorithm for joint design of the learning and robustness filter.
The algorithm exploits noncausality, is directly applicable to LTV systems, and
addresses the finite-time interval behavior through LTV designs for both LTI and
LTV systems, while providing computational complexity O(N). In addition,
the underlying solution involves solving a two-point boundary value problem
(TPBVP). This is shown to have a direct connection to LTI/LTV stable inversion
techniques, revealing very similar underlying mechanisms and proving a unified
framework for both approaches.

The main contribution of this chapter is to provide a systematic resource-
efficient norm-optimal ILC framework, which is implementable for large tasks,
and is applicable to both LTI and LTV systems. The following five subcontri-
butions are identified.

10.I The resource-efficient ILC approach is presented for LTI and LTV systems
with general performance criteria, including derivations and proofs.

10.II Connections to stable inversion are established, revealing very similar un-
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derlying mechanisms. These inversion techniques have recently received
significant attention in ILC and feedforward. This in turn leads to a
unified framework of norm-optimal ILC and stable inversion. Hence the
techniques in this chapter apply to a large class of LTI/LTV ILC algo-
rithms.

10.III Through application of the resource-efficient ILC approach on an indus-
trial flatbed printer with large tasks, the practical relevance is demon-
strated as lifting techniques are unsuitable.

10.IV The relevance of LTV feedforward and ILC is demonstrated on a position-
dependent printing system, confirming the necessity to address position-
dependent effects in this situation.

10.V The computational load of the lifted ILC and the resource-efficient ILC
approach are compared, revealing the significant advantages of the pro-
posed approach.

The proposed approach is foreseen to facilitate the resource-efficient imple-
mentation of optimal ILC for LTI/LTV systems. Due to its inherent connection
with stable inversion, it also enables the direct implementation of both square
and non-square rational feedforward controllers (Boeren et al., 2014; Blanken
et al., 2017a). Finally, it is foreseen for use as system inversion technique in
frequency-domain ILC designs.

10.1.4 Related results

Several results related to the ones presented here have appeared in the literature.
As in typical ILC designs, the proposed approach is based on noncausal feed-
forward techniques for reference tracking, but then applied iteratively and on a
closed-loop system transfer function. This is similar to applying ZPETC and
stable inversion. In this chapter, the approach is based on the classical linear
quadratic (LQ) tracking controller (Athans and Falb, 1966, Chapter 9), which
is well-known to be noncausal. It builds on the ILC approaches in Amann et al.
(1996); Oomen et al. (2011) and exploits optimal control theory for comput-
ing the optimal feedforward signal. Since the state-space instead of the lifting
framework is used for describing the system, the computational burden is much
smaller. In particular, it extends the result in Amann et al. (1996) for a more
general performance criterion, including input weighting, and LTV systems. In
Oomen et al. (2011), a related theoretical development is presented, linked to
sampled-data ILC with intersample behavior. Finally, related results are devel-
oped in Dijkstra and Bosgra (2002), where a different LQ criterion is posed and
in Van de Wijdeven et al. (2011), where an H∞-type criterion is employed.

The LTV case is of particular importance for certain systems, including the
position-dependent printer considered here, but also in very different applica-
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tions, including nuclear fusion (Felici and Oomen, 2015) and rehabilitation (Xu
et al., 2014). More general criteria with dedicated optimizations can be found in
Zou and Liu (2016). Finally, in Brinkerhoff and Devasia (2000), stable inversion
is extended to deal with non-square systems to address non-square systems with
more actuators using infinite horizon LQ theory. In this chapter, possible trunca-
tion effects for finite-time implementations are explicitly addressed. It thereby
possibly extends the results in Brinkerhoff and Devasia (2000) for situations
where these boundary effects have a significant influence on the performance, as
occasionally occurs in ILC.

10.1.5 Outline

The outline of this chapter is as follows. In Section 10.2, ILC and norm-optimal
ILC are formulated and the well-known analytic solution of lifted norm-optimal
ILC is presented. Analysis of this solution reveals the computational chal-
lenges that come with actual implementation and motivates the development
of a resource-efficient ILC approach. In Section 10.3, the resource-efficient ILC
approach for LTI and LTV systems is presented based on LQ tracking, which
constitutes Contribution 10.I. Also, in Section 10.3, connections to stable in-
version and a simulation case study of both approaches are presented, leading
to Contribution 10.II. Many systems, including the position-dependent flatbed
printer considered in this chapter, can be modeled as LTV systems. The ex-
perimental setup of the flatbed printer is described in Section 10.4. The devel-
oped resource-efficient ILC approach can directly be applied on LTV models,
which significantly enhances the performance for LTV systems, as shown in Sec-
tion 10.5, which constitutes Contribution 10.III. In Section 10.6, the potential of
resource-efficient ILC is demonstrated on the industrial flatbed printer involving
large tasks (N = 100 000), constituting Contribution 10.IV. Finally, the com-
putational load of resource-efficient ILC is compared with that of lifted ILC in
Section 10.7 to illustrate the significant saving in computational time, leading
to Contribution 10.V. Conclusions and an outlook are given in Section 10.8.

Notation. The considered systems are linear, in discrete time, have ni inputs
and no outputs. Let x[k] denote a signal x at time k. Let hij(k, l) ∈ Rno×ni be
the impulse response of the time-varying systemHij [k] from the jth input uj [l] at
time l, to the ith output yi[k] at time k. The output yi[k] of the response ofHij [k]
to input uj is given by yi[k] =

∑∞
l=−∞ hij(k, l)uj [l]. Let N ∈ Z+ denote the trial

length, i.e., the number of samples per trial. Many results directly generalize to
the continuous-time case. Variables related to the lifted framework, also called
supervector notation (Moore, 1993), are underlined. Define the stacked input
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signal

u[k] =


u1[k]
u2[k]
...

uni [k]

 ∈ Rni×1 (10.1)

and similarly y[k] ∈ Rno×1 and h(k, l) ∈ Rno×ni . Assuming u[l] = 0 for l < 0
and l > N − 1, then the input-output relation in lifted notation is given by

y[0]

y[1]

...
y[N−1]


︸ ︷︷ ︸

y

=

 h(0,0) h(0,1) ... h(0,N−1)
h(1,0) h(1,1) ... h(1,N−1)

...
...

. . .
...

h(N−1,0) h(N−1,1) ... h(N−1,N−1)


︸ ︷︷ ︸

H

 u[0]
u[1]

...
u[N−1]


︸ ︷︷ ︸

u

. (10.2)

If system H is LTI, then hij(k, l) reduces to hij(k − l), i.e., only depends on
the relative time, and in which case H is Toeplitz. Let ‖x‖2W := x>Wx, where

x ∈ RNnx and W = W> ∈ RNnx×Nnx . W is positive definite (W � 0) if and
only if x>Wx > 0, for all x 6= 0, and positive semi-definite (W � 0) if and only
if x>Wx ≥ 0, for all x.

10.2 Problem formulation

In this section, the problem is formulated by defining the ILC design problem and
the norm-optimal performance criterion, and deriving and analyzing the analytic
optimal solution for lifted ILC. This reveals the computational challenges of this
solution, which in turn motivates the development of the resource-efficient ILC
approach.

10.2.1 ILC and norm-optimal ILC

Consider the closed-loop configuration depicted in Figure 10.1, with G the ni-
input, no-output system to control with outputs yj+1, C a stabilizing feedback
controller, and ej+1 = r − yj+1 the error signal to be minimized. For repetitive
tasks, the reference signal r has finite length and is independent of j. Each rep-
etition/execution is called a trial and indicated with a subscript j = 0, 1, 2, . . ..
In ILC, the goal is to minimize error ej+1 by design of the ni-dimensional feed-
forward fj+1 based on data of previous trials, i.e., ej , fj . Typically, approximate
models G and C are used.

In lifted notation, see Section 10.1, the error at trial j is

ej = Sr − SGf
j

(10.3a)

= Sr − Jf
j
, (10.3b)
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fj+1

+

G
r

C
+

−

+ej+1 yj+1uj+1

Figure 10.1. ILC control diagram. The goal for trial j + 1 is to minimize the
error ej+1 by design of feedforward fj+1.

with (output) sensitivity S =
(
INno +GC

)−1
and (output) process sensitivity

J = SG. Since r is trial-invariant, it follows that

ej+1 = Sr − Jf
j+1

(10.4a)

= ej − J(f
j+1
− f

j
). (10.4b)

Hence, to minimize ej+1, f
j+1

can be based on a model J and data ej , f j .

10.2.2 Lifted norm-optimal ILC

An important class of ILC is norm-optimal ILC in which f
j+1

follows from

minimizing a performance criterion as given in Definition 10.1.

Definition 10.1 (Performance criterion). A general performance criterion in
norm-optimal ILC is given by

J (f
j+1

) = ‖ej+1‖2We
+ ‖f

j+1
‖2Wf

+ ‖f
j+1
− f

j
‖2W∆f

, (10.5)

with We � 0, Wf ,W∆f � 0, and ej+1 given by (10.4b).

Since ej+1 is affine in f
j+1

, J (f
j+1

) is quadratic in f
j+1

and hence the

optimal feedforward signal f
j+1,opt

can be computed analytically, as in, e.g.,

Gunnarsson and Norrlöf (2001), from

dJ (f
j+1

)

df
j+1

∣∣∣∣∣
f
j+1

=f
j+1,opt

= 0 (10.6)

with solution provided by Theorem 10.2.

Theorem 10.2 (Solution lifted ILC). Given J>WeJ + Wf + W∆f � 0, an
LTI or LTV model J , and measurement data f

j
, ej, the optimal f

j+1,opt
for the

performance criterion of Definition 10.1 is

f
j+1,opt

= Qf
j

+ Lej , (10.7)
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with

Γ =
(
J>WeJ +Wf +W∆f

)−1

, (10.8a)

Q = Γ
(
J>WeJ +W∆f

)
, (10.8b)

L = ΓJ>We. (10.8c)

Proof. Substitute (10.4b) in (10.5) and solve (10.6) for f
j+1,opt

= f
j+1

.

Two key observations can be made from Theorem 10.2. First, the solution
of Theorem 10.2 is time-varying, i.e., Q, L are not Toeplitz, even if model J is

LTI, i.e., J is Toeplitz. This is caused by the transpose J> and the inverse Γ.
Second, the solution in Theorem 10.2 is noncausal, i.e., Q, L are not necessarily
lower triangular, even if the model J is causal, i.e., J is lower triangular.

10.2.3 Computational challenges in lifted ILC

The derivation and calculation of f
j+1,opt

in Theorem 10.2 is elementary and in-

volves straightforward matrix algebra. However, its direct implementation may
be challenging from a computational perspective. For instance, the Nni ×Nni
matrix inversion in Γ via the Gauss-Jordan method has time complexity w = 3,
i.e., the computational time grows as O(N3), see Sharma et al. (2013). Al-
though many methods have been developed to reduce the computational time,
currently a time complexity of w = 2.4 seems to be the limit (Sharma et al.,
2013). Also the matrix multiplications via Schoolbook matrix multiplication
grow as O(N3). Even when pre-computing Q and L off-line, a direct implemen-
tation of Theorem 10.2 is impractical when N becomes large since matrix-vector
multiplication, via Schoolbook matrix multiplication, grows as O(N2). These
observations are experimentally demonstrated in Section 10.6, and intensively
analyzed in Section 10.7.

In lifted ILC, matrices with dimensions in the order of N × N are used to
describe the system J and the fact that a resource-efficient system with McMillan
degree nx underlies this input-output system is not recognized. Since typically
nx � N , lifted ILC is a resource-inefficient norm-optimal ILC approach, as will
be shown in Section 10.7. In the following section, an alternative to Theorem 10.2
is presented that builds on well-known results in optimal control. The approach
exploits state-space descriptions and provides a resource-efficient norm-optimal
ILC approach.
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10.3 Resource-efficient ILC

In this section, the resource-efficient ILC approach is presented, i.e., Contribu-
tion 10.I. The approach is an alternative to the lifted ILC approach, see Theo-
rem 10.2, providing identical optimal performance, but at significantly smaller
computational load. This makes resource-efficient ILC practical for experimental
implementation of large tasks, as is demonstrated in Section 10.6. The difference
in computational load is analyzed and demonstrated in Section 10.7. In the cur-
rent section, also connections and a simulation comparison to stable inversion
techniques are presented, constituting Contribution 10.II.

Remark 10.3. In the remainder of this chapter, the argument [k] is suppressed
for the system matrices. This is done to emphasize that the optimal ILC con-
troller for an LTI system is LTV, which is an important property of such finite-
time optimal ILC controllers.

10.3.1 State-space description

In resource-efficient ILC, the system J is described using a state-space descrip-
tion as provided by Lemma 10.4.

Lemma 10.4. Let the LTV system G and the feedback controller C in Fig-
ure 10.1 be described by the state-space realizations

G
z
=

[
AG BG
CG DG

]
and C

z
=

[
AC BC
CC DC

]
. (10.9)

Then, a state-space realization of the process sensitivity J is given by

J
z
=

[
A B
C D

]
, (10.10a)

with

A =

[
AG −BG (Ini +DCDG)

−1
DCCG

−BC (Ino +DGDC)
−1
CG

BG (Ini +DCDG)
−1
CC

AC −BC (Ino +DGDC)
−1
DGCC

]
,

(10.10b)

B =

[
BG (Ini +DCDG)

−1

−BC (Ino +DGDC)
−1
DG

]
, (10.10c)

C =
[
(Ino +DGDC)

−1
CG (Ino +DGDC)

−1
DGCC

]
, (10.10d)

D = (Ino +DGDC)
−1
DG, (10.10e)
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and for DG = 0

J
z
=

[
A B
C D

]
=

 AG −BGDCCG BGCC BG
−BCCG AC 0
CG 0 0

 . (10.11)

Proof. See Appendix 10.A.

10.3.2 Optimal solution

Typically, diagonal performance weights are chosen in Definition 10.1, see, e.g.,
Bolder and Oomen (2015); Gunnarsson and Norrlöf (2001), i.e., We =
diag{we[k]} with we[k] ∈ Rno×no , Wf = diag{wf [k]} with wf [k] ∈ Rni×ni , and
W∆f = diag{w∆f [k]} with w∆f [k] ∈ Rni×ni . For this choice, Definition 10.1 is
equivalent to Definition 10.5.

Definition 10.5 (Performance criterion diagonal weights). The performance
criterion with diagonal weights is given by

J (fj+1) =
N−1∑
k=0

e>j+1[k]we[k]ej+1[k] + f>j+1[k]wf [k]fj+1[k]

+ (fj+1[k]− fj [k])
>
w∆f [k] (fj+1[k]− fj [k]) ,

(10.12)

with we[k] > 0, wf [k] ≥ 0, w∆f [k] ≥ 0, for all k.

Resource-efficient ILC determines the optimal feedforward for the perfor-
mance criterion of Definition 10.5 and is provided by Theorem 10.6.

Theorem 10.6 (Solution resource-efficient LTI/LTV ILC). Let the model J
of the process sensitivity have the LTI/LTV state-space realization (A,B,C,D),
with ni inputs, no outputs, and state dimension nx, see also Lemma 10.4. Then,
for the performance criterion of Definition 10.5, fj+1,opt is the output of the
state-space system[

A−BL[k] −BLf [k] BLe[k] BLg[k]
−L[k] Ini − Lf [k] Le[k] Lg[k]

]
, (10.13)

with zero initial state for input

 fj [k]
ej [k]

gj+1[k + 1]

, where

L[k] =
(
γ−1[k] +B>P [k + 1]B

)−1 (
D>we[k]C +B>P [k + 1]A

)
, (10.14a)

Lf [k] =
(
γ−1[k] +B>P [k + 1]B

)−1
wf [k], (10.14b)

Le[k] =
(
γ−1[k] +B>P [k + 1]B

)−1
D>we[k], (10.14c)

Lg[k] =
(
γ−1[k] +B>P [k + 1]B

)−1
B>, (10.14d)

γ[k] =
(
D>we[k]D + wf [k] + w∆f [k]

)−1
, (10.14e)
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with

gj+1[k] =
(
A> −Kg[k]B>

)
gj+1[k + 1]

+ C>we[k]ej [k] +Kg[k]wf [k]fj [k],
(10.15a)

gj+1[N ] = 0nx×1, (10.15b)

where

Kg[k] =
(
A> − C>we[k]Dγ[k]B>

)
P [k + 1]

×
(
Inx +Bγ[k]B>P [k + 1]

)−1
Bγ[k],

(10.16)

and P [k] the solution of the matrix difference Riccati equation

P [k] =
(
A> − C>we[k]Dγ[k]B>

)
P [k + 1]

×
(
Inx −B

(
γ−1[k] +B>P [k + 1]B

)−1
B>P [k + 1]

)
×
(
A−Bγ[k]D>we[k]C

)
+ C>we[k]C − C>we[k]Dγ[k]D>we[k]C,

(10.17a)

P [N ] = 0nx×nx . (10.17b)

Proof. See Appendix 10.B.

Note that time index k is explicitly indicated only for some elements in
(10.13), while it is suppressed for others. The main reason is to illustrate the
following interesting aspects, see also Remark 10.3. If G and C are LTI, then
optimal ILC in (10.13) is LTV, and time variance of any of the matrices in
(10.9) affects all elements in (10.13) through L[k], Lf [k], Le[k], Lg[k]. Note that
LTV designs are a key advantage for LTI systems, since these essentially handle
the boundary effects for finite-time trials (Wallén et al., 2013). To see this, by
definition of the optimal feedforward, the result of Theorem 10.6 is the same
as the result of Theorem 10.2, computed using a different approach. It is well-
known that lifted ILC allows for time-varying and noncausal feedforward signals.
This is reflected in the matrices Q and L of (10.8) being not Toeplitz and not
lower-triangular, respectively. These aspects can also be observed in the results
of Theorem 10.6: the dependence on k of the state-space matrices (10.13) reflects
time variance, whereas solving part of the equations backwards in time reflects
noncausality and is closely related to stable inversion techniques.

Algorithm 10.7 provides a step-by-step procedure for implementing the re-
sults of Theorem 10.6. Note that step 1 can be performed off-line whereas step 2
and step 3 form the trial update.

Algorithm 10.7 (Resource-efficient approach). The resource-efficient fj+1,opt

is calculated by the following steps.
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1. Solve the matrix difference Riccati equation (10.17a) backwards in time.

2. Calculate gj+1[k] by solving (10.15a) backward in time.

3. Calculate fj+1,opt[k] forward in time as the output of state-space system
(10.13).

It should be noted that the solutions of Theorem 10.2 and Theorem 10.6 are
exactly the same. Hence, no performance is sacrificed, however the computa-
tional approaches do differ. In particular, the calculations in Theorem 10.6 scale
with N instead of N3 as in Theorem 10.2, see also Section 10.2.3. Therefore the
resource-efficient ILC approach delivers a significant reduction in computational
cost at a small expense of diagonal time-varying weighting filters, see Defini-
tion 10.5. As a result, resource-efficient ILC is well-suited for large tasks as will
be demonstrated in Section 10.6 by implementing the approach on an industrial
setup. Next, connections to stable inversion are highlighted.

Remark 10.8. For D = 0 and wf [k] + w∆f [k] = R, (10.17a) reduces to

P [k] = C>we[k]C +A>P [k + 1]A

−A>P [k + 1]B
(
B>P [k + 1]B +R

)−1
B>P [k + 1]A,

(10.18)

which is the well-known discrete-time dynamic Riccati equation.

10.3.3 Stable inversion

Theorem 10.6 reveals that resource-efficient ILC solution for both LTI and LTV
systems grows as O(N). Interestingly, the results and proof of Theorem 10.6
have a very close connection to algorithms used in, i.a., frequency-domain ILC
designs and rational feedforward control (Blanken et al., 2017a). In particu-
lar, in both cases a rational model H has to be inverted as F = H−1, where
H = G for rational feedforward and H = J−1 = (SG)−1 for the ILC structure
in Section 10.2. Let H be square, invertible, and have state-space realization
(AH [k], BH [k], CH [k], DH [k]), then,

F
z
=

[
AH [k]−BH [k]D−1

H [k]CH [k] BH [k]D−1
H [k]

−D−1
H [k]CH [k] D−1

H [k]

]
. (10.19)

Note that the system F in (10.19) may be unstable. For instance, in the case
where H is LTI and has nonminimum-phase zeros, then F has unstable poles.

A traditional solution in feedforward and ILC to deal with such unstable
poles is ZPETC (Tomizuka, 1987), which leads to an approximate inverse that
is noncausal with a certain finite preview. However, it is by definition an ap-
proximation, see also Butterworth et al. (2012) where different approximations
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are evaluated, and does not address the finite-time aspect of practical feedfor-
ward and ILC implementations. In addition, extension to multivariable systems
is practically not trivial, see Blanken et al. (2016b) for results in this direction.
See Chapter 3 for a complete overview.

In stable inversion, the unstable part is seen as a noncausal operator and
solved backwards in time as a stable system. For the general time-varying system
(10.19), this means that the system has to be split in a stable and unstable part,
which is not trivial for time-varying systems (Devasia and Paden, 1998; Halanay
and Ionescu, 1994). If such a split is found, Theorem 10.9 can be applied. When
poles are on the unit circle, the techniques in Devasia (1997b); Jetto et al. (2014)
can be exploited. Note that if the state matrix of F in (10.19) is independent
of k, then such a split follows directly from an eigenvalue decomposition as in
Corollary 10.10.

Theorem 10.9. Let an LTV system be split as

xs[k + 1] = Ass[k]xs[k] +Asu[k]xu[k] +Bsu[k], (10.20a)

xu[k + 1] = Aus[k]xs[k] +Auu[k]xu[k] +Buu[k], (10.20b)

y[k] =
[
Cs[k] Cu[k]

] [xs[k]
xu[k]

]
+D[k]u[k], (10.20c)

where xs[k] is picking up the stable part with xs[0] = xs,0 and xu[k] the unstable
part with xu[N ] = 0. Then, to find the bounded solution y[k], solve for P [k]
backward in time using

P [k] = (Auu[k]− P [k + 1]Asu[k])
−1

(P [k + 1]Ass[k]−Aus[k]) , (10.21a)

P [N ] = 0, (10.21b)

and for g[k] backward in time using

g[k] = (P [k + 1]Asu[k]−Auu[k])
−1

× (Bu[k]u[k]− P [k + 1]Bs[k]u[k]− g[k + 1]) ,
(10.22a)

g[N ] = 0. (10.22b)

Then, xs[k] can be solved forward in time from

xs[k + 1] = (Ass[k] +Asu[k]P [k])xs[k] +Bs[k]u[k] +Asu[k]g[k] (10.23a)

xs[0] = xs,0, (10.23b)

and xu[k] follows from

xu[k] = P [k]xs[k] + g[k]. (10.24)

Output y[k] follows directly from

y[k] =
[
Cs[k] Cu[k]

] [xs[k]
xu[k]

]
+D[k]u[k]. (10.25)
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Proof. See Appendix 10.C.

Corollary 10.10. For systems F with time-invariant state matrix, the following
procedure can be followed.

1. Let F have the state-space realization

x[k + 1] = Ax[k] +B[k]u[k], (10.26a)

y[k] = C[k]x[k] +D[k]u[k], (10.26b)

with x[k] = x0.

2. Introduce the state transformation

x[k] = T

[
xs[k]
xu[k]

]
, (10.27)

where T contains eigenvectors of A as columns such that[
xs[k + 1]
xu[k + 1]

]
=

[
As 0
0 Au

] [
xs[k]
xu[k]

]
+

[
Bs[k]
Bu[k]

]
u[k], (10.28a)

y[k] =
[
Cs[k] Cu[k]

] [xs[k]
xu[k]

]
+D[k]u[k], (10.28b)

with λ(As) ⊂ D̄ and λ(Au) ∩ D̄ = ∅, where D̄ is the closed unit disk and
λ(·) the set of eigenvalues, i.e., all stable poles are contained in As and all
unstable poles in Au.

3. Solve

xs[k + 1] = Asxs[k] +Bs[k]u[k], xs[0] = xs,0 (10.29)

forward in time,

xu[k + 1] = Auxu[k] +Bu[k]u[k], xu[N ] = xu,N (10.30)

backward in time via

xu[k] = A−1
u xu[k + 1]−A−1

u Bu[k]u[k]. (10.31)

Then, y[k] follows directly from

y[k] =
[
Cs[k] Cu[k]

] [xs[k]
xu[k]

]
+D[k]u[k]. (10.32)

A key observation is that both the results in Theorem 10.6, Theorem 10.9,
and Corollary 10.10 involve a two-point boundary value problem. In addition,
a very similar sweep method is used for the actual solution, albeit applied to
a system with smaller dimension in case of Theorem 10.9 and Corollary 10.10.
The following remarks are appropriate.
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(i) The stable inversion approach provides an exact inverse in the case where
the initial conditions are taken at xs[−∞] and xu[∞] in Theorem 10.9.
In the case where they are finite, as is specified in Theorem 10.9 and
Corollary 10.10, then this may lead to an incorrect initial state, leading to
an inexact inverse and boundary effects. These boundary effects depend
on the location of the nonminimum-phase zeros and can be mitigated if
the preview length is extended, i.e., by preceding the input with zeros, see,
e.g., Middleton et al. (2004), or by using an approach as in Theorem 10.6.

(ii) The stable inversion technique yields an LTI inverse in case the system
is LTI, whereas the approach in Theorem 10.6, i.e., LQ tracking based,
generally yields an LTV solution, even if the original system is LTI.

(iii) In case the original system is LTV, then notice that time variance of any
of the entries, i.e., A, B, C, or D, implies that the inverse has a time-
dependent state matrix, see F in (10.19), in which case Theorem 10.9
has to be used instead of the simpler version in Corollary 10.10. This
in turn necessitates the dichotomic split in stable and unstable dynamics
in (10.20). This split is not necessary in case Theorem 10.6 is applied,
which may be preferred in practical applications, e.g., systems with varying
sensor locations or actuators, such as the moving-mass mechatronic stage
in Oomen et al. (2014).

(iv) Both Theorem 10.9 and Corollary 10.10 require that DH is invertible. This
requires that H is square. In the case that DH is non-invertible, additional
steps of preview can be added, i.e., forward shift operators, as is done in,
e.g., ZPETC (Tomizuka, 1987).

(v) In contrast to stable inversion in Theorem 10.9 and Corollary 10.10, the
optimal approach in Theorem 10.6 does not require the system to be square
or strictly proper due to the input weighting. As a result, it also applies
to next-generation motion systems where additional sensors and actuators
will be exploited (Oomen et al., 2014, Section I; Van Herpen et al., 2014).

(vi) Theorem 10.6 is very closely related to LQ optimal control, for which it is
well-known that the LQ solution mirrors the unstable poles with respect to
the unit disc, see also Anderson and Moore (1989, Section 6.1) for vanish-
ing input weight. As a result, it is very closely related to the solution of the
stable inversion approach in Theorem 10.9, where essentially a slightly dif-
ferent split is made. Notice that in this case, the TPBVP in Theorem 10.6
is twice the size of the one in Theorem 10.9. In this case, both solutions
are present in the TPBVP, where a suitable selection is made in standard
feedback control. Interestingly, the solution to the stable inversion problem
is thus contained in the LQ tracking solution, where a different selection
is made.
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(vii) Stable inversion can also be directly seen in an input-output setting. In
the LTI case, H is decomposed as Hstab, Hunstab, which essentially can
be solved using a bi-lateral instead of a uni-lateral Laplace/Z-transform
(Sogo, 2010), see also Vinnicombe (2001, Section 1.5).

Remark 10.11. The result of Corollary 10.10 is a special case of Theorem 10.9
with Ass[k] = As, Asu[k] = 0, Aus[k] = 0, Auu[k] = Au, yielding P [k] = 0, for
all k, and xu[k] = g[k].

Remark 10.12. For motion control systems, the states typically represent time-
derivatives of the position such as velocity and acceleration. Hence, if the system
is initially at rest, then xs,0 = 0. The terminal condition xu,N should ideally
be chosen such that xu[0] matches with x[0]. It can, however, not be derived a
priori from xu[0] since this requires forward simulation of the unstable system.

10.3.4 Resource-efficient ILC and stable inversion

The stable inversion techniques presented in the previous section can be used
to determine an exact bounded inverse of a nonminimum-phase system. In
the previous section, it is highlighted that these techniques are very similar to
those used in the proposed resource-efficient ILC solution, see Section 10.3.2.
In particular, for vanishing input weighting, the resource-efficient ILC solution
converges to the optimal, possibly noncausal, inverse solution, as is shown in
this section via a simulation example.

Consider the mechanical system shown in Figure 10.2, with parameters listed
in Table 10.1. The continuous-time state-space realization (Ac, Bc, Cc, Dc) of the

linearized system dynamics with input F , state q =
[
x ẋ φ φ̇

]>
, and output

y is

[
Ac Bc
Cc Dc

]
=


0 1 0 0 0
0 0 0 0 1

m
0 0 0 1 0

0 0 − 1
2
kl2

I − 1
2
dl2

I
1
2
l
I

1 0 − 1
2 l 0 0

 . (10.33)

Assuming zero-order-hold on the input, system G has discrete state-space real-
ization

G
z
=

[
A B
C D

]
=

[
eAcδ A−1

c (A− I)Bc
Cc Dc

]
, (10.34)

with sampling interval δ = 0.001 s. The system is in open-loop, i.e., C = 0
in Figure 10.1, with reference trajectory r as depicted in Figure 10.3(a), and
feedforward signal f = u. The resulting system SG has one nonminimum-phase
zero and no direct feedthrough (D = 0). Since D = 0, stable inversion requires
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l

φ
x

l

k d k d

m, I

Figure 10.2. The flexible cart system, consisting of a single mass mounted on
two spring-damper combinations, is subject to input force u and has translation
and rotation freedom x and φ, respectively. Position y is the output.

Table 10.1. Parameter values of the flexible cart system.

Parameter Symbol Value Unit

Mass m 8 kg
Inertia I 0.0133 kgm2

Spring constant k 104 N/m
Damping constant d 10 Ns/m

Length l 0.1 m

additional preview steps, see also remark (iv) at the end of the previous section.
Note that preview information is not required for resource-efficient ILC.

Due to the nonminimum-phase zero, causal inversion yields an unbounded
feedforward signal f , see Figure 10.3(b). With stable inversion, i.e., Corol-
lary 10.10, bounded input f and error e shown in Figure 10.3(b) and Fig-
ure 10.3(c) are obtained. By selecting w∆f [k] = 0, for all k, in resource-efficient
ILC, see Theorem 10.6 and Algorithm 10.7, one-step convergence of f is ob-
tained. The result for we[k] = 1, wf [k] = 10−12, w∆f [k] = 0, for all k, is also
shown in Figure 10.3(b) and Figure 10.3(c). The small error indicates the high
quality of the inverse.

Due to the finite-length task, the solution for stable inversion is not exact.
The inverse system (SG)−1 contains one unstable state, which is simulated as
a stable system backwards in time with zero terminal condition, see also Corol-
lary 10.10. The evolution of the unstable state is depicted in Figure 10.3(d).
For determining the response of system SG, zero initial state is assumed. How-
ever, since the unstable state of (SG)−1, see Figure 10.3(d), is not exactly zero at
t = 0 (xu(t = 0) = −0.0158), this assumption is violated resulting in a non-exact
output as shown in Figure 10.3(c).

Consider the case where preview information is available, i.e., the reference
is zero for t < 0, then the unstable state converges to zero for decreasing t since
the system is stable in backward time. The result when Npre = 50 samples are
introduced prior to the reference task of Figure 10.3 is shown in Figure 10.4.
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(a) Reference trajectory r is a fourth-order forward-backward movement.
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(b) Feedforward f with stable inversion ( ) and resource-efficient ILC ( ) are
bounded and almost equal. For regular inversion ( ), f is unbounded.
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(c) Error e with stable inversion ( ) is nonzero, whereas with resource-efficient ILC
( ) it is almost zero.
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(d) Unstable state for stable inversion converges to zero when t→ −∞.

Figure 10.3. Regular inversion yields an unbounded f . The error with stable
inversion is larger than for resource-efficient ILC due to the nonzero unstable
state at t = 0.
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Here, xu(t = −0.05) = −1.73 · 10−4. This confirms that for Npre → ∞ exact
results are obtained.

This simulation case study shows that stable inversion yields non-exact re-
sults for finite-length tasks, whereas the proposed resource-efficient approach
handles finite-time conditions approximately.

10.4 Experimental setup: Industrial flatbed
printer

In the next sections, the resource-efficient ILC approach introduced in the pre-
vious section is validated on an industrial printer, namely the Océ Arizona 550
GT flatbed printer shown in Figure 10.5.

In contrast to conventional consumer printers, the medium on the flatbed
printer is fixed on the printing surface using vacuum and the print heads move
in two directions. The print heads are located in the carriage, which can move
in one direction over the gantry, which moves in perpendicular direction over the
printing surface. The moving mass of the carriage is approximately 32 kg, the
maximum medium size is 2.5× 1.25 m, and the maximum medium thickness is
50.8 mm. A schematic top view of the system is provided in Figure 10.5(b). The
system is controlled via Matlab/Simulink that is running on a host computer
connected to a separate xPC target computer. On the target computer the
application runs in real-time with a sampling frequency of 1000 Hz. After each
trial, the ILC algorithm is executed on the host computer and the resulting
feedforward signals are uploaded to a lookup table on the target computer via
Ethernet. During the real-time execution of the task, the feedforward signals
are read from the lookup table.

The validation of resource-efficient ILC is based on the gantry system of the
flatbed printer since (i) printer tasks are typically large, (ii) it is a MIMO sys-
tem, (iii) it is position-dependent, and (iv) it is a practically relevant system.
The gantry position is controlled through two brushed DC motors (u1 and u2)
and the position is measured through linear encoders with a resolution of 1 µm.
Decoupling into a gantry translation and rotation yields a system with inputs
ux, uϕ (ni = 2) and outputs x, ϕ (no = 2). Depending on the application, differ-
ent models G of the gantry system are used and introduced when appropriate.

For both the time-varying system model considered in Section 10.5 as well
as the actual experimental system considered in Section 10.6, the same feedback
controller C is used, shown in Figure 10.6. The controller achieves a bandwidth
(first 0 dB crossing over the open-loop) of approximately 5 Hz for the diagonal
terms. A diagonal controller suffices since for low frequencies the system is
decoupled and feedback is only effective until the bandwidth. ILC is effective
until much higher frequencies where interaction also plays a significant role.
Hence, the full MIMO model is used in ILC.
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(a) Npre = 50 additional zero samples are added prior to the reference in Fig-
ure 10.3(a).
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(b) Feedforward f with stable inversion ( ) and resource-efficient ILC ( ) are
more alike than in Figure 10.3(b). For regular inversion ( ) f is unbounded.
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(c) Preview information reduces the error for both stable inversion ( ) and resource-
efficient ILC ( ).

Figure 10.4. Regular inversion yields an unbounded f . Preview information
significantly reduces the error for stable inversion.
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gantry carriage printing surface

(a) The print heads of the Arizona flatbed printer are located in the carriage, which
can move over the gantry. The gantry can move in perpendicular direction and rotate
over small angles around the vertical axis.

u1

u2

carriage

gantry x

ϕ

y

(b) Schematic top view of the flatbed printer. The gantry translation x and rotation
ϕ are controlled via DC motors u1, u2.

Figure 10.5. Océ Arizona 550 GT industrial flatbed printer.

10.5 Resource-efficient ILC simulation for the
position-dependent printing system

In this section, resource-efficient ILC based on LTI and LTV models is simu-
lated on an LTV model of the flatbed printer, constituting Contribution 10.III.
The system is position-dependent, i.e., the dynamics vary during motion. The
results reveal the potential of using LTV models based on linearization around
trajectories when compared to LTI models for fixed positions.

10.5.1 Position-dependent system

The flatbed printing system introduced in the previous section is considered,
see also Figure 10.5. Since the system is inherently position-dependent, a first-
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Figure 10.6. Bode diagram of diagonal controller C. Note that the off-
diagonals Cxϕ and Cϕx are empty.
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Figure 10.7. Parametric closed-loop gantry model J for carriage position
y = 1.6 m ( ) and y = 6 m ( ). For y = 1.6 m, there is no cross-coupling.

principles model is derived to analyze its effect in a simulation study. Due to
the moving carriage mass, this model is position dependent. Given a trajectory
y, the first principles model can be linearized around this trajectory resulting in
an LTV model of the gantry system. Note that linearization around a trajectory
is also done in, for example, Felici and Oomen (2015). Figure 10.7 shows Bode
diagrams of the closed-loop gantry system J for different carriage positions y,
with y = 0 at the left side of the table. The feedback controller in Figure 10.6
is used for feedback.

10.5.2 Reference trajectories and performance weights

The carriage trajectory is designed to cover the whole range area of 3.2 m in y
direction and 0.8 m in x direction, see Figure 10.8. To keep the results insightful,
the rotation ϕ is controlled using feedback only, with rϕ[k] = 0, for all k, and ILC
is only applied in x direction. The simulated system is thus a multi-input, multi-
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Figure 10.8. Reference trajectory ry ( ) introduces position-dependent
dynamics due to the moving carriage mass. Reference rx ( ) is a forward-
backward movement. Rotation ϕ is suppressed, i.e., rϕ = 0.

output system (2× 2) and ILC is applied to a multi-input, single-output system
(1× 2). Note that, although ILC is only applied to x, position y influences the
system model through position dependency and rotation ϕ through the strong
cross-coupling (except for y ≈ 1.6 m), see Figure 10.7.

The weights in (10.12) are selected as we[k] = 1010, wf [k] = 10−10, w∆f [k] =
0 in order to achieve high performance in the error norm and fast convergence.
After convergence, fj is in the order of 100 and ej is in the order of 10−6.

10.5.3 Results

Figure 10.9 shows the performance criterion for ILC based on LTI models at
several positions y, together with ILC based on the LTV model. When based
on the LTV model ( ), one-step convergence is obtained since the model is
exact and w∆f = 0. In this case, an accurate LTV model is available due
to the fact that a first-principles model is derived. As will become clear in
Section 10.6, such models are not straightforward to obtain in practice. Since in
y direction the carriage covers the whole working range (from 0 m to 3.2 m), an
obvious choice when using an LTI model would be to use the LTI model with
the carriage positioned in the middle of the gantry, i.e., y = 1.6 m. With ILC
based on this ‘averaged’ LTI model the convergence is slower ( ), due to the
model mismatch, but eventually the same high performance as with the LTV
model is obtained. If a poor LTI model is chosen, for example at y = 6 m,
there is no convergence ( ). Convergence can be guaranteed by introducing
robustness through increasing wf (Van de Wijdeven and Bosgra, 2010). Indeed,
for wf = 102 there is convergence ( ), but at the cost of performance. Note
that y = 6 m is not feasible for the current system, but might become so for
larger printing systems. The result stresses the need for identification of accurate
position-dependent models, which is part of future research.

The simulation example shows the benefit of ILC based on an LTV model
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Figure 10.9. Performance criterion for simulations on an LTV system with ILC
based on: LTV model, wf = 10−10 ( ); LTI model at y = 1.6 m, wf = 10−10

( ); LTI model at y = 6 m, wf = 10−10 ( ); and LTI model at y = 6 m,
wf = 102 ( ). The LTI model at y = 6 m requires additional robustness
(larger wf ) to converge.

when the system to control is LTV. For accurate LTI models, high performance
is still achievable but at the cost of slower convergence, whereas for inaccurate
LTI models performance needs to be sacrificed to guarantee convergence. Im-
portantly, resource-efficient ILC in Algorithm 10.7 can directly be applied to
LTV models, while preserving computational cost O(N).

10.6 Experimental implementation

In this section, the resource-efficient ILC approach is applied to the industrial
flatbed printer in an experiment with task length N = 100 000 which constitutes
Contribution 10.IV.

10.6.1 System modeling

The previous section shows the importance of an accurate system model to ob-
tain both fast convergence and high performance in the error norm. However,
the accuracy of the derived position-dependent model based on first principles
is limited and identification of accurate position-dependent models is part of on-
going research. Still, for the considered range of operation, the simulation study
in Section 10.5 reveals that an LTI model is sufficiently accurate to guarantee
convergence, albeit at a lower rate compared to the LTV model, see Figure 10.9.
This validates the use of LTI models in the present experimental study. For the
experiments in this chapter, ILC is based on an LTI model derived from an av-
eraged frequency response function measurement, see Figure 10.10 for the Bode
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Figure 10.10. Bode diagram of the system G for the 2 × 2 Arizona gantry
based on an averaged frequency response function measurement.

diagram of the model G. For feedback, the feedback controller in Figure 10.6 is
used.

10.6.2 Experiment design

Contrary to the simulation case study in Section 10.5, where ILC is applied to a
multi-input, single output system, in the experiments ILC is applied to a multi-
input, multi-output system. During printing the gantry position is typically
fixed while the carriage with the print heads moves over the gantry. In between
the printing, the gantry performs a stepping motion in x direction in order
to cover the next part of the medium. Without controlling the carriage, this
results in the reference trajectories as shown in Figure 10.11, with task length
N = 100 000. The small rotation in ϕ during printing can be used for correcting
misalignments.
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Figure 10.11. The gantry performs a stepping movement in x direction ( ),
while small rotations in ϕ ( ) can be used for correcting misalignments. The
task length is N = 100 000.

The performance weights in Definition 10.5 are selected as

we =

[
105 0
0 5× 105

]
, wf =

[
10−4 0

0 5× 10−5

]
, w∆f = 0, (10.35)

for all k. The choice w∆f = 0 results in fast convergence of the ILC update,
whereas the combination of we and wf ensures minimization of the error, with
minimal restriction of the feedforward signal. Note that since an LTI model is
used on a position-dependent system, additional robustness (wf > 0) is used to
enhance robust convergence properties. As shown in the previous section, this
will degrade the performance in terms of the error norm.

10.6.3 Results

The performance criterion when applying resource-efficient ILC is shown in Fig-
ure 10.12 for ten trials. Two important aspects are to be noted. First, the
decrease in J indicates convergence of the ILC algorithm, which is enforced by
selecting wf sufficiently high. Second, despite w∆f = 0, several iteration steps
are required to converge to a steady state value due to model mismatches since
an LTI model is used.

The time-domain errors are shown in Figure 10.13. In the first trial, j = 0,
no feedforward is applied, i.e., fj [k] = 0, for all k, yielding J = 2272, ‖ex‖∞ =
1122 µm, and ‖eϕ‖∞ = 506 µrad. After several trials the performance criterion
is decreased by a factor 1000 to J = 2.2 at trial j = 9, with ‖ex‖∞ = 48 µm,
and ‖eϕ‖∞ = 24 µrad.

The results show a significant performance enhancement for the position-
dependent printing system, even with an LTI model. The performance may
be further increased, where the parameter wf can be used to tune robustness.
Either this has to be chosen at a reasonably high value to guarantee robustness
for position-dependent dynamics, or an LTV model of the printer has to be made.
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Figure 10.12. The performance criterion J decreases significantly (more than
a factor 1000) over the trials indicating convergence and high performance.

0 2 4 6 8 10

−1,000

0

1,000

Time [s]

e x
[µ

m
]/

e ϕ
[µ

ra
d]

(a) Without ILC; feedback only (j = 0).

0 2 4 6 8 10
−40

−20

0

20

40

Time [s]

e x
[µ

m
]/

e ϕ
[µ

ra
d]

(b) After ten ILC trials (j = 9).

Figure 10.13. After several ILC trials both the error signal in x direction
( ) and ϕ direction ( ) are significantly reduced (note the scales). Only
the first ten seconds is shown.
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The latter is presently under investigation. In addition, a w∆f weighting may be
introduced to reduce trial-varying disturbances. This is not done in the present
research as the focus is on the computation load rather than performance, but
it is noted that changing this value may improve performance.

Importantly, the results show that resource-efficient ILC is practical for large
tasks (here N = 100 000). For such large tasks, lifted ILC is impractical, as is
shown in the next section, since it would involve matrices of dimensions 200 000×
200 000 (ni = no = 2).

10.7 Computational requirements

In this section, the computational load of lifted ILC and resource-efficient ILC are
compared, constituting Contribution 10.V. The total computational load ∆tot is
split into two parts: ∆tot = ∆init + ∆trial ntrial, where ∆init is the initialization
of the algorithm, i.e., all calculations that can be computed a priori off-line,
∆trial the on-line update, i.e., all calculations that need to be executed each
trial, and ntrial the number of trials.

10.7.1 Analysis of computational complexity

For lifted ILC in Theorem 10.2 the initialization is given by (10.8) since Q and L
are trial-invariant and the trial update is given by (10.7). The initialization (10.8)
is dominated by matrix multiplication and inversion, hence ∆init,lif ∼ O(N3),
when using Schoolbook matrix multiplication and Gauss-Jordan elimination,
respectively, see also Strassen (1969). The trial update (10.7) is dominated by
matrix-vector multiplication, hence ∆trial,lif ∼ O(N2), when using Schoolbook
matrix multiplication.

For resource-efficient ILC in Theorem 10.6 the initialization is given by step 1
in Algorithm 10.7 and the trial update by step 2 and step 3 in Algorithm 10.7.
Note that the state-space matrices of (10.13) and (10.15a) are trial-invariant
and can hence be determined off-line during initialization. The dimensions in
all steps are in the order of nx. Hence, for nx � N , ∆init,low ∼ O(N) and
∆trial,low ∼ O(N). The analysis is experimentally validated in the next section.

10.7.2 Comparison of computational cost

In this section, the analysis of the previous section is supported by numerical
simulations. For the experiment, see Section 10.6, the initialization and trial
update time of both approaches were measured on the full signals (N = 100 000)
as well as on parts of it, i.e., for smaller N . Results for ∆tot = ∆init + ∆trial,
i.e., ntrial = 1, are depicted in Figure 10.14. As the analysis in the previous
section indicates, the computation time of lifted ILC for large N is dominated
by ∆init,lif such that ∆tot,lif ∼ O(N3), see also the fit ∆tot,lif = clifN

3 ( ).
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Figure 10.14. The computation time ∆tot = ∆init + ∆trial for lifted ILC ( )
grows as O(N3), see the fit , whereas for resource-efficient ILC ( ) it grows
as O(N), see the fit .

Furthermore, the analysis indicates that ∆tot,low ∼ O(N), as is confirmed by
Figure 10.14, see also the fit ∆tot,low = clowN ( ). Hence, especially for large
N , the resource-efficient ILC approach is computationally significantly faster
than the lifted ILC approach. For comparison, in one hour of calculation time,
an experiment with a single trial of length N ≈ 29 000 can be calculated with
lifted ILC, and of length N ≈ 15 · 106 with resource-efficient ILC, which is over
530 times as large.

The computation time for the initialization and trial update step are dis-
played separately in Figure 10.15 and Figure 10.16, respectively. The results
confirm the analysis of the previous section with respect to the dependence on
N , see the fitted lines. Note that O(Nn) corresponds to a slope n on the dou-
ble logarithmic scale. For large N , there is insufficient random-access memory
(RAM) available for lifted ILC resulting in large computation times ∆init,lif ,
∆trial,lif .

For the full experiment task length N = 100 000, ∆tot,low = 23.3 seconds
whereas ∆tot,lif is estimated at 40 hours, under the assumption of sufficient
RAM.

10.8 Conclusion and outlook

In this chapter, a unified approach to resource-efficient ILC techniques for LTI/-
LTV systems and optimal and general frequency-domain designs is developed.
In particular, first it is shown that using the lifted framework, an analytic ex-
pression for the optimal feedforward signal for generic norm-based performance
criteria can be derived by solving a set of linear equations. However, the ac-
tual implementation is troublesome for large tasks since the computation load
increases as O(N3), with N the task length. In this chapter, an alternative
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Figure 10.15. The initialization time ∆init for lifted ILC ( ) evolves as O(N3)
as shown by the fit . For resource-efficient ILC ( ) it evolves as O(N) as
shown by the fit . For large N , there is insufficient RAM available for the
initialization of lifted ILC resulting in large computation times.
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Figure 10.16. The trial update time ∆trial for lifted ILC ( ) evolves as O(N2)
as shown by the fit . For resource-efficient ILC ( ) it evolves as O(N) as
shown by the fit .
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approach based on optimal control theory is presented that yields the same
command signal, but at significantly lower computational cost, namely O(N),
for both LTI and LTV systems.

A further analysis of this solution reveals that it is very similar, both in
terms of computational techniques as well as the underlying theoretical devel-
opments, to common stable inversion techniques. The connections are explicitly
established and analyzed, leading to a unified solution for many ILC approaches,
both lifted and classical frequency-domain based, for both LTI and LTV systems.

Practical use is demonstrated by successfully applying resource-efficient ILC
on an industrial flatbed printer. Simulation results on a position-dependent
model reveal that LTV techniques can be very beneficial when applying ILC
on position-dependent systems. Since the required first principles model is not
sufficiently accurate for ILC design, an LTI model of the experimental system is
used. The proposed algorithm, which is O(N), can be successfully implemented
on a large task (here, N = 100 000, with two inputs and two outputs), for
which traditional lifted norm-optimal ILC breaks down and is thus impractical
to implement.

Ongoing work focuses on further development of feedforward and ILC for
position-varying systems, as occurring in, e.g., next-generation motion systems
(Oomen et al., 2014). Indeed, LTV models for these type of systems enable high
performance, whereas LTI models require additional robustness at the cost of
performance as also shown in experiments. These results motivate the ongoing
research to development of new identification techniques for position-dependent
systems, see, e.g., Groot Wassink et al. (2005) for important steps, and develop-
ment of ILC techniques compatible with these models.

10.A Proof of Lemma 10.4

In Figure 10.1, J is the transfer function f 7→ y. Let xG and xC denote the state
of G and C, respectively, then using (10.9)

y[k] = CGxG[k] +DGu[k] +DGf [k], (10.36)

u[k] = CCxC [k]−DCy[k], (10.37)

which can be combined to

y[k] = (Ino +DGDC)
−1

(CGxG[k] +DGCCxC [k] +DGf [k]) , (10.38)

u[k] = (Ini +DCDG)
−1

(−DCCGxG[k] + CCxC [k]−DCDGf [k]) . (10.39)
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Substitution of these relations into the state equations, rewriting and using the
relation I − (I +X)−1X = (I +X)−1 yields

xG[k + 1] = AGxG[k] +BGu[k] +BGf [k] (10.40a)

= (AG −BG(Ini +DCDGCG)−1DC)xG[k]

+BG(Ini +DCDG)−1(CCxC [k] + f [k]),
(10.40b)

xC [k + 1] = ACxC [k]−BCy[k] (10.41a)

= (AC −BC(Ino +DGDC)−1DGCC)xC [k]

−BC(Ino +DGDC)−1(CGxG[k] +DGf [k]).
(10.41b)

Combining the above state equations and output equation (10.38), and introduc-

ing state x[k] =

[
xG[k]
xC [k]

]
yields the state-space realization of J in Lemma 10.4.

10.B Proof of Theorem 10.6

10.B.1 Problem setup

The system dynamics are given by

xj+1[k + 1] = Axj+1[k] +Bfj+1[k], (10.42a)

yj+1[k] = Cxj+1[k] +Dfj+1[k], (10.42b)

with initial state xj+1[0] = x0 and (A,B,C,D) a state-space representation of
the process sensitivity J . Define

∆xj+1[k] := xj+1[k]− xj [k], (10.43)

∆fj+1[k] := fj+1[k]− fj [k], (10.44)

then

∆xj+1[k + 1] = A∆xj+1[k] +B∆fj+1[k], (10.45a)

∆yj+1[k] = C∆xj+1[k] +D∆fj+1[k], (10.45b)

with ∆xj+1[0] = 0nx×1. Since r is trial-invariant,

ej+1[k] = Sr[k]− yj+1[k] (10.46a)

= ej [k]− C∆xj+1[k]−D∆fj+1[k]. (10.46b)

In the remainder of the proof the subscript j + 1 in general, and index [k]
for we[k], wf [k], w∆f [k] are omitted for notational convenience. Note that this
is not a restriction on the developed results.
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The optimal input is given by

fopt = arg min
f
J (f) = fj + arg min

∆f
J ′(∆f), (10.47)

where

J ′(∆f) := 1
2J (fj+1) =

N−1∑
k=0

L(∆x[k],∆f [k]), (10.48)

with

L(∆x[k],∆f [k]) = 1
2 (ej [k]− C∆x[k]−D∆f [k])>we

× (ej [k]− C∆x[k]−D∆f [k])

+ 1
2 (∆f [k] + fj [k])>wf (∆f [k] + fj [k])

+ 1
2 (∆f [k])>w∆f (∆f [k]).

(10.49)

The steps followed are along the lines of Naidu (2003, Section 5.5).

10.B.2 Hamiltonian, state, costate and open-loop optimal
control

Let the Hamiltonian be defined as

H(∆x[k],λ[k + 1],∆f [k])

= λ>[k + 1](A∆x[k] +B∆f [k]) + L(∆x[k],∆f [k]).
(10.50)

Let Hopt = H(∆xopt[k], λopt[k+ 1],∆fopt[k]), then the optimal state is given by

∆xopt[k + 1] =
∂Hopt

∂λopt[k + 1]
(10.51a)

= A∆xopt[k] +B∆fopt[k], (10.51b)

with

∆xopt[0] = 0nx×1, (10.52)

and the optimal costate by

λopt[k] =
∂Hopt

∂∆xopt[k]
(10.53a)

= A>λopt[k + 1]− C>we (ej [k]− C∆xopt[k]−D∆fopt[k]) , (10.53b)

with

λopt[N ] = 0nx×1. (10.54)
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The optimal input satisfies

∂Hopt
∂∆fopt[k]

= 0, (10.55)

from which follows

∆fopt[k] = γ
(
D>weej [k]−D>weC∆xopt[k]

− wffj [k]−B>λopt[k + 1]
)
,

(10.56)

with

γ =
(
D>weD + wf + w∆f

)−1
. (10.57)

With substitution of (10.56), relations (10.51b) and (10.53), with boundary con-
ditions (10.52) and (10.54), form the Hamiltonian system[

∆xopt[k + 1]
λopt[k]

]
=

[
A−BγD>weC −BγB>

C>we
(
I −DγD>we

)
C A> − C>weDγB>

] [
∆xopt[k]
λopt[k + 1]

]
+

[
−Bγwf BγD>we

−C>weDγwf C>weDγD>we − C>we

] [
fj [k] ej [k]

]
,

(10.58a)

∆xopt[0] = 0nx×1, (10.58b)

λopt[N ] = 0nx×1. (10.58c)

10.B.3 Riccati and vector equations

Next, the co-state is eliminated from (10.58a) using the sweep method (Lewis
and Syrmos, 1995) by applying the transformation

λopt[k] = P [k]∆xopt[k]− g[k], (10.59)

which yields

∆xopt[k + 1] =
(
I +BγB>P [k + 1]

)−1
[ (
A−BγD>weC

)
∆xopt[k]

+BγD>weej [k]−Bγwffj [k] +BγB>g[k + 1]
]
.

(10.60)
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Substituting (10.60) and (10.59) in the expression of λopt[k] in (10.58a) and
rewriting yields[

P [k]−
(
A> − C>weDγB>

)
P [k + 1]

(
I +BγB>P [k + 1]

)−1

×
(
A−BγD>weC

)
− C>weC + C>weDγD

>weC
]
∆xopt[k]

= g[k]−
(
C>we −Kg[k]D>we − C>weDγD>we

)
ej [k]

−
(
Kg[k]wf + C>weDγwf

)
fj [k]

−
(
A> − C>weDγB> −Kg[k]B>

)
g[k + 1],

(10.61)

where

Kg[k] =
(
A> − C>weDγB>

)
P [k + 1]

(
I +BγB>P [k + 1]

)−1
Bγ. (10.62)

Relation (10.61) holds for all values ∆xopt[k], for all k. Hence, the left-hand side
of (10.61) should be zero for all k, leading to

P [k] =
(
A> − C>weDγB>

)
P [k + 1]

(
I +BγB>P [k + 1]

)−1

×
(
A−BγD>weC

)
+ C>weC − C>weDγD>weC,

(10.63)

where the matrix identity

(A+ BCD)
−1

= A−1 −A−1B
(
C−1 +DA−1B

)−1DA−1, (10.64)

leads to the matrix difference Riccati equation (10.17a). Also, the right-hand
side of (10.61) should vanish for all k, leading to the vector difference equation
(10.15a). Evaluating (10.59) at time instance k = N yields

λopt[N ] = P [N ]∆xopt[N ]− g[N ], (10.65)

which holds for all ∆xopt[N ] and given the boundary condition from (10.54)
yields terminal conditions

P [N ] = 0nx×nx , (10.66)

g[N ] = 0nx×1. (10.67)

10.B.4 Closed-loop optimal control

The closed-loop optimal control follows by substituting (10.59) at k + 1 and
(10.51b) in (10.56), and solving for ∆fopt[k]:

∆fopt[k] = −L[k]∆xopt[k]− Lf [k]fj [k] + Le[k]ej [k] + Lg[k]g[k + 1], (10.68)

with L[k], Lf [k], Le[k], and Lg[k] given by (10.14).
Combining (10.51b) with (10.68) yields the state-space system (10.13) with

state ∆xopt[k], inputs fj [k], ej [k], g[k + 1], and output fopt[k] = fj [k] + ∆fopt[k]
as given by (10.13).
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10.C Proof of Theorem 10.9

The proof is similar to that of Chen (1993) for continuous-time systems. Since
xs[k] and xu[k] are linearly coupled, the solution is found by applying the sweep
method (Lewis and Syrmos, 1995) with

xu[k] = P [k]xs[k] + g[k], (10.69)

which holds for all xs[k] and since xu[N ] = 0,

P [N ] = 0, g[N ] = 0. (10.70)

Evaluating (10.69) at k + 1 and substituting the dynamics (10.20) yields(
Aus +AuuP [k]− P [k + 1]Ass − P [k + 1]AsuP [k]

)
xs[k]

= −Auug[k]−Buu[k] + P [k + 1]Asug[k] + P [k + 1]Bsu[k] + g[k + 1],
(10.71)

which holds for all xs[k] and therefore both sides should vanish. From the left-
hand side follows (10.21) and from the right-hande side follows (10.22). State
xs[k] follows from substituting (10.69) into xs[k + 1] in (10.20) and solving for-
ward in time. State xu[k] directly follows from (10.69).





Chapter 11

The role of feedforward, learning,
and feedback in inferential control

The combination of feedback control with inverse model feedforward control or
iterative learning control is known to yield high performance. The aim of this
chapter is to clarify the role of feedback control in the design of feedforward
controllers, with specific attention to the inferential situation. Recent devel-
opments in optimal feedforward control are combined with feedback control to
jointly optimize a single performance criterion. Analysis and application show
that the joint design addresses the specific control objectives. The combined
design is essential in control and in particular in inferential control. The results
constitute Contribution IV.E.

11.1 Introduction

Many control applications involve both feedback and feedforward controllers.
Both are often tuned separately using specific approaches and based on different
control goals, e.g., different norms. An example is iterative learning control
(ILC) where the feedforward is designed as an add-on to feedback. This chapter
addresses the fundamental role of feedback in combination with feedforward and
ILC, both for regular and inferential control.

The role of feedback is often assumed fixed in feedforward and ILC design,
see e.g., Van der Meulen et al. (2008); Bristow et al. (2006), but also related

The contents of this chapter are published in:
Jurgen van Zundert and Tom Oomen. On Optimal Feedforward and ILC: The Role of Feedback
for Optimal Performance and Inferential Control. IFAC-PapersOnLine (20th World Congress),
50(1):6093–6098, 2017.
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approaches in Boeren et al. (2017). In fact, in Boeren et al. (2017) the perfor-
mance of the feedforward controller depends on the feedback controller, which
is required to satisfy a certain assumption. Notable exceptions are Rogers et al.
(2007); Bolder and Oomen (2016), where it is advocated to use a 2D framework,
and research on equivalent feedback (Goldsmith, 2002). In this chapter, the aim
is to connect feedback and feedforward control design.

Recent interest in inferential control, e.g., for mechatronics (Oomen et al.,
2015; Ronde et al., 2012; Voorhoeve et al., 2016), has led to a new interest
in controller structures. Inferential control imposes an additional constraint on
how to design feedforward and feedback controllers that jointly optimize a single
performance criterion, which is not immediate in such situations as pointed out in
Bolder and Oomen (2016). However, at present limited guidelines are available
on how to actually design the controller. In this chapter, the joint design of
feedback with feedforward/ILC in a two degrees-of-freedom inferential control
architecture is investigated.

Although there have been important developments in ILC and feedforward
design frameworks, the role of feedback control is often not explicitly addressed.
The aim of this chapter is to clarify the role of feedback control in the design of
feedforward controllers, with specific attention to both the regular and the infer-
ential situation. The method follows from recent developments of norm-optimal
ILC and feedforward algorithms, see also Chapter 10. The algorithms are used
to show the role of feedback and feedforward control in achieving optimal per-
formance, thereby confirming the claim related to the assumption SH = 1 in
Boeren et al. (2017). It is also shown that this gives a direct solution to the
inferential control problem, providing a solution that falls within the controller
structures outlined in the framework of Oomen et al. (2015). As such, this
chapter extends Chapter 10 in these two aspects.

The outline of the chapter is as follows. In Section 11.2, the regular and
inferential control problems are formulated. The inferential control application
of a wafer stage is presented in Section 11.3. In Section 11.4, the control design
for the regular case z = y is presented. In Section 11.5, the control design for
the inferential case z 6= y is presented. Application to iterative learning control
(ILC) is presented in Section 11.6. Section 11.7 contains conclusions and an
outlook.

11.2 Problem formulation

In this section, the control objective is formulated. The formulation is split into
two parts: the standard control problem with z = y and the inferential control
problem with z 6= y.
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Figure 11.1. Two degrees-of-freedom tracking control architecture for z = y
with inputs reference trajectory r and measurement ym. The control objective
is tracking r with y.

11.2.1 Control for z = y

Consider the system

x[k + 1] = Ax[k] +Bu[k] +Bww[k], (11.1a)

y[k] = Cyx[k] +Hyw[k], (11.1b)

ym[k] = y[k] + v[k], (11.1c)

with state x[k] ∈ Rnx , input u[k] ∈ Rni , output y[k] ∈ Rno , output measurement
ym[k] ∈ Rno , process noise w[k] ∈ Rnx , and measurement noise v[k] ∈ Rno , where

w ∼ N (0, σ2
wInx), v ∼ N (0, σ2

vIno), (11.2)

with variances σ2
w, σ

2
v ∈ R+.

In order to have y track a pre-specified reference trajectory r, the two degrees-
of-freedom control architecture in Figure 11.1 is considered where

G
z
=

[
A B
Cy 0

]
, H

z
=

[
A Bw
Cy Hy

]
. (11.3)

The control objective is the design of controller Ky to minimize ey = r− y, with
measurement ym of y available.

Remark 11.1. For notation convenience, it is assumed that system (11.1) is
time invariant and without direct feedthrough from u. However, all results can
readily be extended to the more general case of time-varying systems and systems
with direct feedthrough.

11.2.2 Control for z 6= y

In inferential control, there are no means to directly measure the point of interest
z. Instead, only measurements y of other locations are available. This control
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y1 y2
z

(a) High accelerations of the print heads induce deformations of the gantry causing
mismatches between measured positions y1, y2 and the actual print head position z.

sensory

z

(b) In wafer scanner systems, an optical column directs light to the light sensitive
layers of the wafer. The optical column hampers position measurement of the exposed
performance location z. Instead, the edge of the wafer stage y is measured.

Figure 11.2. Examples of inferential control problems. Performance location
z cannot be measured and only measurements y are available.

challenge may arise from undesired flexibility in the system, as in the printer
application of Figure 11.2(a), or from the inability to measure at the desired
location, as in the wafer stage application of Figure 11.2(b).

For an inferential setting, z 6= y, (11.1) is extended with

z[k] = Czx[k]. (11.4)

The extended control architecture is shown in Figure 11.3, where

Gz
z
=

[
A B
Cz 0

]
, Hz

z
=

[
A Bw
Cz 0

]
. (11.5)

The control objective is the design of Kz to minimize ez = r − z, with only
measurements ym of y available.

11.3 Wafer stage application

Wafer stages are key components in wafer scanners used for the production
of integrated circuits (Butler, 2011). The stages accurately position the wafer
during exposure.
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Figure 11.3. Two degrees-of-freedom tracking control architecture for infer-
ential control where the performance variables and measurements are different:
z 6= y. The control objective is tracking r with z.

The considered system is a simplified version of the wafer stage in Fig-
ure 11.2(b) which is assumed to be a rigid body, see Figure 11.4. The wafer
stage is actuated by force u and can translate in q1, q2 and rotate in φ. The
point of interest z cannot be measured due to the optical column used for expo-
sure. Instead, the edge of the stage y is measured with a sensor that is located
on the fixed world yielding measurement ym. Note that if there are no rotations,
i.e., φ = 0, then z = y, otherwise z 6= y.

A linearized model of the system in Figure 11.4 is considered. The continu-
ous-time state-space realization of the linearized system dynamics with input u,

state q =
[
q1 q̇1 φ φ̇

]>
, and output y is

[
Ac Bc
Cy,c 0

]
=


0 1 0 0 0
0 0 0 0 1

m
0 0 0 1 0

0 0 − 1
2
kl2

I − 1
2
dl2

I
1
2
l
I

1 0 0 0 0

 . (11.6)

Assuming zero-order-hold on the input, the discretized system has a state-space
realization

Gy
z
=

[
A B
Cy 0

]
=

[
eAcδ A−1

c (A− I)Bc
Cy,c 0

]
, (11.7)

with sample time δ = 0.001 s. The parameters are listed in Table 11.1. Further-
more, Bw = I4 and Hy = 01×4 in (11.1), with noise variances σ2

w = 10−6, σ2
v =

10−10.
The reference trajectory r consists of a fourth-order forward and backward

motion and is provided in Figure 11.5.
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(a) Position y corresponds with
point of interest z: z = y.

u

y φ

q1

q2
z

(b) Rotations of the stage introduce
a mismatch in position: z 6= y.

Figure 11.4. Top view of wafer stage model revealing the inferential control
challenge as z 6= y for φ 6= 0.

Table 11.1. Parameter values of the wafer stage model.

Parameter Symbol Value Unit

Mass m 8 kg
Inertia I 0.0133 kgm2

Spring constant k 104 N/m
Damping constant d 100 Ns/m

Length l 0.1 m

0 0.5 1 1.5 2
0

0.5

1

Time [s]

r
[m

]

Figure 11.5. Reference trajectory r of length N = 2001 samples.
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Figure 11.6. Standard feedback/feedforward control.

11.4 Application to z = y

In this section, it is assumed that performance variable z can be measured, i.e.,
z = y (Cz = Cy).

11.4.1 Analysis

A common control architecture consisting of feedback controller C and feedfor-
ward f is shown in Figure 11.6. Implementation of this controller in the diagram
of Figure 11.1 yields

ey = S(r −Gf)− SHw + SGCv, (11.8)

with sensitivity S = (I +GC)
−1

.

The first term in (11.8) is completely deterministic and can be influenced by
both feedback and feedforward. Note that the term cannot be fully eliminated
using feedback C since S = 0 is not feasible due to Bode’s sensitivity integral
(Seron et al., 1997). In contrast, the term can be fully eliminated by feedforward
f = G−1r.

The second and third term in (11.8) are stochastic and can therefore not be
completely eliminated. Both terms can only be influenced by feedback. Assum-
ing that the first term in (11.8) is eliminated by feedforward f = G−1r and that
there is no measurement noise, i.e., v = 0, then ey = −SHw. This error has
minimal variance if it is white. This imposes the condition

SH = c ∈ R, (11.9)

corresponding to Assumption 2.1 in Boeren et al. (2017) where SH = 1.

11.4.2 Optimal control

The optimal control law is derived from norm-optimal ILC.
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11.4.2.1 ILC

Given data ej , fj of current trial j, norm-optimal ILC determines feedforward
fj+1 for next trial j+1 that minimizes

‖ej+1‖2we + ‖fj+1‖2wf + ‖fj+1 − fj‖2w∆f
, (11.10)

with we, wf , w∆f ∈ R+, where ‖(·)‖2w = (·)>w(·). A common solution method
for norm-optimal ILC is lifted ILC which is based on describing input-output
relations in lifted/supervector notation (Moore, 1993). In Chapter 10, it is shown
that the computation time of the lifted solution method grows as O(N3), with
N the task length. Moreover, an alternative resource-efficient solution method
based on Riccati equations is presented. The method yields exactly the same
results, but the computation time grows as O(N). In the remainder of this
section and Section 11.5, the focus is on feedforward control. See Section 11.6
for ILC.

11.4.2.2 Feedforward

Feedforward can be seen as a special case of ILC in which only one trial is
performed, i.e., with w∆f = 0. Consequently, (11.10) reduces to the LQ criterion

N−1∑
k=0

e>y [k]Qey[k] + u>[k]Ru[k]. (11.11)

The weights are selected as Q = we = 1010, R = wf = 10−10 to minimize ey
with minimal restriction on u. The optimal resource-efficient solution is given
by Lemma 11.2.

Lemma 11.2 (Optimal feedforward). Input u for (11.1) with w, v = 0 that
minimizes (11.11) is given by

uopt[k] = −K[k]x[k] + Lg[k]g[k + 1], (11.12)

with

P [k] = −A>P [k + 1]B(R+B>P [k + 1]B)−1B>P [k + 1]A

+A>P [k + 1]A+ C>y QCy,
(11.13)

P [N ] = 0nx×nx , (11.14)

g[k] =
(
−A>P [k + 1]

(
I +BR−1B>P [k + 1]

)−1
BR−1B> +A>

)
× g[k + 1] + C>y Qr[k],

(11.15)

g[N ] = 0nx×1, (11.16)

K[k] =
(
R+B>P [k + 1]B

)−1
B>P [k + 1]A, (11.17)

Lg[k] =
(
R+B>P [k + 1]B

)−1
B>. (11.18)
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Figure 11.7. Perfect tracking for (11.20) on the system without noise ( )
deteriorates under the presence of noise ( ).

Proof. Follows from setting w∆f = 0 and D = 0 in Theorem 10.6.

Next, optimal input (11.12) is used for design of Ky in Figure 11.1.

11.4.3 Feedforward approach

For the case without noise, i.e., v, w = 0, (11.8) reduces to

ey = S(r −Gf), (11.19)

which is completely deterministic. Perfect tracking can be obtained through
feedforward only by selecting, see also Lemma 11.2,

u[k] = fopt[k], (11.20)

with

fopt[k] = −K[k]xopt[k] + Lg[k]g[k + 1]. (11.21)

Since (11.1) is completely deterministic for v, w = 0, optimal state xopt can be
calculated a priori as

xopt[k + 1] = (A−BK[k])xopt[k] +BLg[k]g[k + 1]. (11.22)

Note that this approach is also followed in Chapter 10 for feedforward design.
Figure 11.7 shows excellent tracking for (11.20) on the wafer stage system of

Section 11.3 without noise (v, w = 0). Note that ey = 0 if Q
R → ∞ in (11.11),

whereas Lemma 11.2 requires R > 0 to avoid singularity. The results confirm
the analysis in Section 11.4.1 that the first term in (11.8) can be fully eliminated
by feedforward.
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Figure 11.7 also shows the results for (11.20) on the true system with noise
(v, w 6= 0). Clearly, the high performance is deteriorated by the noise. Note that
since (11.20) consists of feedforward only, C = 0, S = 1 in (11.8) such that

ey = (r −Gf)−Hw = −Hw, (11.23)

since (11.20) eliminates the first term as shown by the simulation without noise.

11.4.4 Combined feedforward and feedback

The previous section shows that feedforward control can eliminate all reference
induced errors, but cannot compensate for noise induced errors. In contrast,
feedback control can compensate for noise induced errors, see also Section 11.4.1.
A key observation is that (11.12) includes state feedback on state x, but that
this is not exploited in (11.20) by replacing x with xopt in (11.22) assuming a
noise free system. In the proposed approach, feedback in (11.12) is exploited to
suppress the noise induced errors.

11.4.4.1 Combined feedforward and optimal state feedback

Optimal control law (11.12) can be rewritten as

u[k] = −K[k]∆x[k] + fopt[k], (11.24)

with fopt[k] in (11.21) and

∆x[k] = x[k]− xopt[k] (11.25)

the deviation of the true state from the optimal state (11.22). Control input
(11.24) consists of feedforward and state feedback, and assumes that x is avail-
able. Since (11.24) uses state x rather than ym for feedback, v is not fed back
in (11.8) such that

ey = S(r −Gf)− SHw. (11.26)

Feedforward fopt eliminates all reference induced errors, i.e., the first term, as
shown by Section 11.4.3. Since the feedback control is optimal it satisfies (11.9),
and yields minimal variance on ey by creating SH = c ∈ R.

The spectrum of ey for application on the wafer stage system of Section 11.3 is
shown in Figure 11.8. The figure shows that the feedback control in (11.24) yields
a flat spectrum of ey, confirming whiteness and thus optimality. Figure 11.8 also
shows that the spectrum of ey is not flat for (11.20), indicating non-optimality
of the feedforward only approach.
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Figure 11.8. The spectrum of ey for (11.24) ( ) is flat confirming optimality,
whereas for (11.20) ( ) it is colored confirming non-optimality.

11.4.4.2 Combined feedforward and output feedback

Control (11.24) assumes that true state x is available, which is generally not
the case. Therefore, x is replaced by an estimate x̂ that is obtained through a
Kalman filter on the measurable output ym as given by Lemma 11.3.

Lemma 11.3 (Kalman filter). State x and output y of system (11.1) can be
estimated from ym by

x̂[k + 1] = Ax̂[k] +Bu[k] + L[k](ym[k]− ŷ[k]), (11.27a)

ŷ[k] = Cyx̂[k], (11.27b)

with gain matrix

L[k] = (X[k]C>y + N̄)(CyX[k]C>y + R̄)−1, (11.28)

where X is the solution of the discrete-time dynamic Riccati equation

X[k + 1] = −AX[k]C>y (CyX[k]C>y +Rn)−1CyX[k]A>

+AX[k]A> +Qn,
(11.29a)

X[0] = 0nx×nx , (11.29b)

and

R̄ = Rn +HyNn +N>n H
>
y +HyQnH

>
y , (11.30)

N̄ = Bw(QnH
>
y +Nn), (11.31)

Qn = σ2
wInx , (11.32)

Rn = σ2
vIno , (11.33)

Nn = 0nx×no . (11.34)
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Figure 11.9. Optimal feedforward control and observer based output feedback
control implementation. The feedback control is based on state estimate ∆x̂
obtained through a Kalman filter from measurement ym.

Proof. See, for example, Anderson and Moore (1989).

Replacing ∆x in (11.24) by ∆x̂[k] = x̂[k]− xopt[k] yields

u[k] = −K[k]∆x̂[k] + fopt[k]. (11.35)

This combination of feedforward control and observer based output feedback
control is similar to linear quadratic Gaussian (LQG) control, with the key
difference that here an explicit split in feedback and feedforward is made. The
complete control structure is shown in Figure 11.9.

Controller (11.35) consists of feedback and feedforward. Feedforward fopt[k]
eliminates all reference induced errors, as shown in Section 11.4.3. Feedback
control −K[k]∆x̂[k] yields minimal variance on ey if v = 0 since then x̂ = x and
(11.23) is recovered. Similar as for the traditional feedback controller, optimality
of Kalman filter (11.27) is achieved when the input, i.e., innovation ym − ŷ is
white.

Figure 11.10 and Figure 11.11 show the results for (11.35) on the wafer
stage application of Section 11.3. Figure 11.10 shows that the innovation indeed
has a flat spectrum, confirming optimality of the Kalman filter. Figure 11.11
shows that the combined feedforward/feedback approach (11.35) outperforms
the feedforward only approach (11.20) since it compensates for disturbances
through feedback.

In summary: controller Ky with optimal feedforward requires feedback con-
trol to whiten trial-varying disturbances and a Kalman filter to whiten measure-
ment noise.

11.5 Application to z 6= y

In this section, the inferential control problem is considered where performance
variable z differs from output y, i.e., z 6= y. Here,

Cz =
[
1 0 2

5 l 0
]
. (11.36)
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Figure 11.10. Innovation ym−ŷ of the Kalman filter (11.27) under control
(11.35) has a flat spectrum confirming optimality.
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Figure 11.11. The combined feedback and feedforward approach (11.35)
( ) achieves high performance, outperforming the feedforward only approach
(11.20) ( ).

Figure 11.11 shows that (11.35) yields excellent performance in terms of ey.
However, Figure 11.12 shows that the performance in terms of ez = r−z is poor.
The results indicate the importance of proper control architecture design.

The performance is often improved by design of feedforward fopt for z such
that it minimizes ez, see Figure 11.13. However, the design in Figure 11.13
creates a hazardous situation since the feedforward regulates for z, while the
feedback regulates for y. Indeed, if the feedforward is optimal and yields ez = 0,
then it is counteracted by feedback control since generally ey 6= 0 if ez = 0
and the high performance of feedforward is deteriorated. Instead, feedback and
feedforward control should have a common objective.

Both the feedback and feedforward control should be designed for z as shown
in Figure 11.14. The combined feedback and feedforward design proposed in
Section 11.4 guarantees a common objective for feedback and feedforward. For
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Figure 11.12. The performance in terms of ez for (11.35) is poor when based
on Cy ( ), but good when based on Cz ( ).
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Figure 11.13. Controller implementation in an inferential setting z 6= y, where
the feedforward is optimized for z and the feedback for y.

z 6= y, criterion (11.11) changes to

N−1∑
k=0

e>z [k]Qez[k] + u>[k]Ru[k]. (11.37)

The optimal solution that minimizes (11.37) directly follows from replacing Cy
in Lemma 11.2 with Cz. Note that this indeed affects both feedback and feed-
forward in (11.35), see also Figure 11.14. Importantly, Lemma 11.3 remains
unchanged since it uses measurement ym and should therefore be based on Cy.

Figure 11.12 shows the results for the combined control approach based on

u
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−KCz
[k]

(·)Cz

Kalman
∆x̂

Kz

ym +
−

(·)Cz

x̂

fopt

xopt

Figure 11.14. Controller implementation in an inferential setting z 6= y, where
both feedback and feedforward are explicitly designed for z.
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criterion (11.37). As a result of the common objective in feedback and feedfor-
ward, the explicit design for z outperforms the design for y in terms of ez.

In summary, a two degrees-of-freedom control architecture is crucial in infer-
ential control, in conjunction with the whitening of the feedback and Kalman
filter of Section 11.4.

11.6 Iterative learning control

In this section, the combined design in an ILC setting is analyzed. Whereas
inverse model feedforward requires high quality models, ILC can compensate for
model mismatches.

The inferential case z 6= y is of particular interest due to the feedback mech-
anism over trials present in the feedforward update. As pointed out in Bolder
and Oomen (2016), the feedback action on y is iteratively compensated by the
feedforward update, resulting in counteracting feedback and feedforward action.
Similar as for feedforward, both feedback and ILC should be designed on z. The
ILC performance objective in terms of ez,j+1[k] reads

N−1∑
k=0

e>z,j+1[k]weez,j+1[k] + u>j+1[k]wuuj+1[k]

+ (uj+1[k]− uj [k])>w∆u(uj+1[k]− uj [k]),

(11.38)

where j indicates the current trial and j+1 the next trial. The solution is a
straightforward extension of the results for the feedforward case, see Section 11.4
and Section 11.5.

11.7 Conclusion and outlook

The role of feedforward, learning and feedback is important, especially for infer-
ential control applications. For the regular case z = y, the combined feedback
and feedforward controller Ky should be designed such that trial-varying distur-
bances are whitened by feedback. For the inferential case z 6= y, a two degrees-
of-freedom control architecture is crucial, in conjunction with the whitening
of feedback. Norm-optimal ILC automatically provides this solution, but care
should be taken, see also Doyle (1978).

In ILC, the rationale is that the system model is approximate, which is
compensated through iterations, motivating that alternative frameworks may
be essential, see also Doyle (1978). Still, the results are of conceptual interest:
(i) SH = c ∈ R is a sensible assumption/control goal for disturbance rejection,
and (ii) inferential control needs additional attention on controller structures.
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Ongoing research focuses on the connection between the various control de-
sign approaches for systems that go beyond equidistant sampling, developed in
the other chapters, in an inferential control setting.



Chapter 12

Conclusions and
recommendations

12.1 Conclusions

The developed resource-aware motion control design framework facilitates to
go beyond the performance/cost trade-off present in traditional designs. The
framework incorporates feedback control, feedforward control, and learning con-
trol design for periodic, non-equidistant sampling schemes. In this section, the
main contributions regarding each of these aspects are presented.

12.1.1 Feedback control

Feedback control provides robustness against model uncertainties and unknown
disturbances. A loop-shaping control design for linear periodically time-varying
(LPTV) systems is presented in Chapter 2, which constitutes Contribution I.
The design approach includes stability assessment and performance evaluation
based on frequency response function (FRF) measurements and systematic loop-
shaping design guidelines similar to well-known guidelines for linear time-invari-
ant (LTI) systems. Experimental validation on a motion system demonstrates
the potential of the design approach.

12.1.2 Feedforward control

Feedforward control enables high performance for arbitrary tasks. An important
aspect in feedforward control is system inversion. In Chapter 3, an overview and
comparison of existing and novel system inversion approaches for nonminimum-
phase systems are presented. The approaches are evaluated in view of their
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subsequent use, showing inappropriate use that is previously overlooked. This
leads to different insights and new approaches for both feedforward and learning
control. Extensions to multivariable and time-varying systems are presented as
well. The results constitute Contribution II and are extensively used in both
feedforward and learning control design approaches.

A variety of feedforward control designs is proposed, which together consti-
tute Contribution III. The system inversion techniques in Chapter 3 enable ex-
act inversion with bounded inputs, even for nonminimum-phase systems, but are
mainly restricted to LTI systems. In Chapter 4, exact inversion of nonminimum-
phase LPTV systems is presented, which forms Contribution III.A. Despite per-
fect on-sample tracking, for some systems the approach in Contribution III.A
yields poor intersample behavior, especially for non-equidistantly sampled sys-
tems. In Chapter 5, a discrete-time inversion approach is proposed that balances
the on-sample and intersample performance and constitutes Contribution III.B.

A key observation is that the inversion techniques in Chapter 3 require pre-
actuation to enable perfect tracking for nonminimum-phase systems. However,
in many applications pre-actuation is absent or undesired. Therefore, the use
of pre-actuation is eliminated in Chapter 6, while maintaining perfect tracking.
The approach exploits the additional design freedom in overactuated systems
and constitutes Contribution III.C.

12.1.3 Learning control

Conventional learning control yields superior performance for exactly repeating
tasks. Extending learning control with basis functions enhances the flexibil-
ity with respect to task variations. Several learning control approaches, with
and without basis functions, are presented, which together constitute Contribu-
tion IV.

The performance/cost trade-off can be enhanced by using different sampling
frequencies in different control loops to balance the performance and cost over
the different control loops. In Chapter 7, optimal learning control design for such
multirate systems is presented. The design includes basis functions for enhanced
task flexibility and is experimentally validated on an industrial setup of a wafer
stage system. The results constitute Contribution IV.A. Multirate systems are
a special case of LPTV systems. In Chapter 8, basis functions for general LPTV
systems are presented. The approach yields high performance for a variety of
tasks and constitutes Contribution IV.B.

Typically, basis functions are selected to be linear in the parameters to enable
fast computation of the optimal solution. The performance is, however, limited
due to a limited design space. In Chapter 9, rational basis functions are used
to increase the design space and thereby enhance the performance. The optimal
solution is obtained by solving a sequence of convex optimization problems. This
results in high performance and task flexibility at low computational cost and
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constitutes Contribution IV.C.
Learning control approaches in which the feedforward signal, rather than the

feedforward filter, is learned achieve superior performance for exactly repeating
tasks. However, the conventional implementation based on lifted system descrip-
tions is computationally involved, which limits the applicability to large indus-
trial tasks. In Chapter 10, a resource-efficient ILC approach is presented, which
significantly reduces the computational load, without affecting performance. The
approach enables ILC for large tasks as experimentally demonstrated on an in-
dustrial flatbed printing system. The results constitute Contribution IV.D.

Finally, connections between feedforward, learning, and feedback control are
presented in Chapter 11. The understanding is essential in inferential control
where performance variables cannot be directly measured. A joint design for
feedforward, learning, and feedback control is presented, which constitutes Con-
tribution IV.E.

12.2 Recommendations

The presented resource-aware control design framework enhances the perfor-
mance/cost trade-off in motion systems. The developments have led to new
insights and result in the following directions for future research.

12.2.1 Sampling sequence design

Co-design of the controller and the sampling sequence is envisioned to further
improve the performance/cost trade-off. In the present framework, the main
focus is on the control aspect and often a priori known sampling sequences are
considered. However, this is suboptimal in terms of the performance/cost trade-
off. For a co-design, a clear understanding of the possibilities and limitations
of digital controller implementations is needed, which emphasizes the need to
bridge the gap between control design and embedded software.

The main question is how to design the sampling sequence. Relevant aspects
include resource availability, performance requirements, uncertainty, and stabil-
ity. The uncertainty aspect is not only related to uncertain system dynamics, as
in the classical robust control theory, but also to uncertainty in sampling times.
The latter might require a probabilistic rather than a deterministic approach
and also relates to the impact of deadline misses on the performance as con-
sidered in, for example, Geelen et al. (2016). The stability aspect is related to
closed-loop stability. Note that for feedforward and learning control there is no
stability issue and the design may be based on a performance criterion as done
in, for example, sparse ILC (Oomen and Rojas, 2017). However, the selection
of such a criterion is often nontrivial, especially if fast computations of the so-
lution are required. In feedback control, closed-loop stability is a key aspect
and a co-design of the sampling sequence and the controller is challenging, see
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also Valencia et al. (2016). In summary, the co-design of the controller and the
sampling sequence has potential, but the design is nontrivial and poses many
research challenges.

12.2.2 Shared resources

Sharing resources has the potential to enhance the performance/cost trade-off,
for example through implementing multiple applications on a single platform.
However, it also requires a scheduling policy to allocate resources to the different
applications, which necessitates additional control layers. In the present work,
often static scheduling policies are considered. From the perspective of resource
utilization, other strategies such as dynamic scheduling policies, for example
event-triggered or self-triggered policies, may be desired.

12.2.3 Vertical bridges: Connecting different layers of
control

Control is present at many abstraction levels. In the present work, the focus is
mainly on the low-level motion control design directly connected to the physi-
cal actuators and sensors. On top of this low-level control, there is typically a
supervisory control layer in which the individual low-level controllers are mon-
itored and where the operation between the controllers is coordinated. This
requires a systematic approach to supervisory control design as in, for example,
Van der Sanden (2018), in combination with a systematic motion control design
approach.

The present work contributes to bridging the gap between the controller
design and the embedded software domain. From the perspective of hierarchy,
this bridge is in horizontal direction. For an optimal control system design,
bridges in vertical direction, e.g., between the low-level control layers and the
supervisory layers, are required as well. This allows to raise the abstraction
level at which (sub)systems are specified, explored, analyzed, and synthesized.
Moreover, it allows for control design and decision making at higher abstraction
levels, for example system level, in an early stage of the design process as in
Bastos (2018).

Model-based approaches are common across all layers. For the envisioned
integrated designs, changes at one of the control layers directly affects other
control layers. The evolution of (domain specific) languages or models at one
layer requires co-evolution at other layers. Due to the complexity, automated
co-evolution of languages and models as in Mengerink (2018) is essential.
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12.2.4 Towards Industry 4.0

The amount of data, computational power, and connectivity is constantly in-
creasing in the manufacturing industries. It is often referred to as a new tech-
nological revolution called Industry 4.0. It is the fourth major technological
disruption after the lean revolution in the 1970s, the outsourcing phenomenon
in the 1990s, and the automation in the 2000s. Industry 4.0 includes the de-
velopments with respect to cyber-physical systems considered in this research
and the internet of things (Pfister, 2011; McEwen and Cassimally, 2013). The
internet of things is made up of devices connected to the internet, including tem-
perature sensors, scales, cameras, washing machines, lighting, and smartphones.
The result is an abundance of distributed data where resource-aware control
design and communication will play a major role. The present framework is
envisioned to facilitate optimal control design in conjunction with the sampling
communication aspects.
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