151 research outputs found

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    Enhanced Fuzzy Feature Match Algorithm for Mehndi Fingerprints

    Get PDF
    The performance of biometric system is degraded by the distortions occurred in finger print image acquisition. This paper focuses on nonlinear distortions occurred due to �Mehndi / Heena drawn on the palm/fingers. The present invention is to detect and rectify such distortions using feedback paradigm. If image is of good quality, there is no need to renovate features. So, quality of whole image is checked by generating exponential similarity distribution. Quality of local region is checked by the ridge continuity map and ridge clarity map. Then, we check whether feedback is needed or not. The desired features such as ridge structure, minutiae point, orientation, etc. are renovated using feedback paradigm. Feedback is taken from top K matched template fingerprints registered in the database. Fuzzy logic handles uncertainties and imperfections in images. For matching, we have proposed the Enhanced Fuzzy Feature Match (EFFM) for estimating triangular feature set of distance between minutiae, orientation angle of minutiae, angle between the direction of minutiae points, angle between the interior bisector of triangle and the direction of minutiae, and a minutiae type. The proposed algorithm incorporates an additional parameter minutiae type that assists to improve accuracy of matching algorithm. The experimentation on 300 Mehndi fingerprints acquired using Secugen fingerprint scanner is conducted. The results positively support EEFM for its efficiency and reliability to handle distorted fingerprints matching

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Partial Shape Matching Without Point-Wise Correspondence

    Get PDF
    Partial similarity of shapes is a challenging problem arising in many important applications in computer vision, shape analysis, and graphics, e.g. When one has to deal with partial information and acquisition artifacts. The problem is especially hard when the underlying shapes are non-rigid and are given up to a deformation. Partial matching is usually approached by computing local descriptors on a pair of shapes and then establishing a point-wise non-bijective correspondence between the two, taking into account possibly different parts. In this paper, we introduce an alternative correspondence-less approach to matching fragments to an entire shape undergoing a non-rigid deformation. We use region-wise local descriptors and optimize over the integration domains on which the integral descriptors of the two parts match. The problem is regularized using the Mumford-Shah functional. We show an efficient discretization based on the Ambrosio-Tortorelli approximation generalized to triangular point clouds and meshes, and present experiments demonstrating the success of the proposed metho

    Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition

    Get PDF
    This thesis explores object deformation and lighting change in images, proposing methods that account for both variabilities within a single framework. We construct a deformation- and lighting-insensitive metric that assigns a cost to a pair of images based on their similarity. The primary applications discussed will be in the domain of face recognition, because faces provide a good and important example of highly structured yet deformable objects with readily available datasets. However, our methods can be applied to any domain with deformations and lighting change. In order to model variations in expression, establishing point correspondences between faces is essential, and a primary goal of this thesis is to determine dense correspondences between pairs of face images, assigning a cost to each point pairing based on a novel image metric. We show that an image manifold can be defined to model deformations and illumination changes. Images are considered as points on a high-dimensional manifold given local structure by our new metric, where costs are based on changes in shape and intensity. Curves on this manifold describe transformations such as deformations and lighting changes to connect nearby images, or larger identity changes connecting images far apart. This allows deformations to be introduced gradually over the course of several images, where correspondences are well-defined between every pair of adjacent images along a path. The similarity between two images on the manifold can be defined as the length of the geodesic that connects them. The new local metric is validated in an optical flow-like framework where it is used to determine a dense correspondence vector field between pairs of images. We then demonstrate how to find geodesics between pairs of images on a Riemannian image manifold. The new lighting-insensitive metric is described in the wavelet domain where it is able to handle moderate amounts of deformation, and allows us to derive an algorithm where the analytic geodesics between images can be computed extremely efficiently. To handle larger deformations in addition to changes in illumination, we consider an algorithmic framework where deformations are modeled with diffeomorphisms. We present preliminary implementations of the diffeomorphic framework, and suggest how this work can be extended for further applications

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Image registration: Features and applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore