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Abstract

Nowadays images provide more and more information about this world. Often

multiple images share the same scene observed from different angles, at different

times or with different devices. Image registration is a method of aligning two

or more images of the same scene into the same coordinate system so that the

aligned images can be directly compared and combined. It is a fundamental step

in many image analysis tasks in which the final knowledge has to be gained from

the combination of multiple data sources. Identifying the correspondence between

two images is simple for human visual system but challenging for computer algo-

rithms. In general, four components are important for a typical image registration

framework: image feature extraction, similarity metric, transformation model and

optimization strategy. Due to the variety of image types and application domains,

it is impossible to design a universal method for all image registration tasks.

In this thesis, we have developed several contributions to the field of image reg-

istration. These contributions stand on their own as valuable components within

vii
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their particular application domains, but are linked under the common theme of

image registration. First, we have developed a method which is capable of estimat-

ing the skew distortion and orientation of printed document images. It registers a

skewed document image with an imaginary image that would be captured if the

document was posed in exactly upright position during the scanning procedure.

Within this method, we have presented a novel image feature called interline white

run to perform this registration task. Interline white run can be accurately derived

from white run histograms which are obtained through one-time fast scanning of

the document. Although the new feature seems simple, our experiments on real-

world documents have demonstrated its efficiency in estimating the skew angle of

printed document images.

We have also developed a framework to register the two sides of a double-sided

historical document. As historical document images are usually degraded by vari-

ous noises and distortions, we have designed an algorithm to extract salient control

points from historical images for the purpose of registration. For documents with

slight geometric distortions, a representative block is selected and used to estimate

a rigid transformation model. When severe local deformation is present, mainly

warping effects and local uneven surfaces, a fine registration procedure which com-

bines salient points extraction, free-form transformation model and residual com-

plexity similarity measure is additionally applied. Our experiments have shown

that this registration framework significantly improves the performances of subse-

quent bleed-through correction methods.

Finally, we have proposed a groupwise image registration framework to build a

brain CT atlas with the CT scans of multiple patients. The groupwise registration

method is built upon a non-rigid pairwise image registration method which shares

the same transformation model with the method we have proposed for historical
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document images. CT slices which are from normal study cases and labeled with

the same level number are first clustered into different groups. Among each group,

all slices are registered to the center of the group and an intermediate average

slice is computed for the group. The final average slice for a particular level is the

combination of the average slices of all groups on this level. With the built atlas, we

can efficiently estimate the level of an input CT slice in the axial direction of brain,

which will significantly speed up subsequent content based retrieval systems. In

addition, by comparing the input slice which are affected by traumatic brain injury

against the atlas, we can identify the abnormal regions on the input slice.
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CHAPTER 1

Introduction

1.1 Image Registration

Image registration refers to the process of overlaying two or more images of the

same scene (or similar scenes) that are taken at different times, from different

perspectives and by different sensors for the purpose of comparison or fusion [ZF03].

With two images to be registered, one of them is usually called the reference image

and kept untouched, and the other image is called the target image and transformed

to the coordinate system where the reference image is. When multiple images

need to be registered, they are often uniformly called the subject images. Image

registration is a crucial step in many image analysis tasks and has been studied

in various research areas, such as remotely sensed data processing, medical image

analysis, computer vision and pattern recognition. Within different applications,

image registration can also be called image alignment, matching, stabilization,

fusion or stitching. In general, the applications of image registration could be

1
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divided into four main groups, according to the manner of the image acquisition:

• Different viewpoints: Images of the same scene are captured from different

viewpoints. Registering such kind of images is usually to gain a larger or a

higher dimensional representation of the scene. Representative applications

include image mosaicing in remote sensing and 3D shape recovery in computer

vision.

• Different times: Images of the same scene are acquired at different times

and probably under different conditions. One of the purposes of registering

such images is to detect changes in the consecutively acquired images. Ex-

amples of applications include detecting scene changes for security purpose

in compute vision and monitoring the healing therapy or the evolution of

tumors in medical imaging.

• Different sensors: Images of the same scene are obtained with different

types of sensors. These images are registered so that more complex or detailed

scene representation can be achieved by integrating all the information from

different sources. One example of such applications is registering computer

tomography (CT) scans to magnetic resonance image (MRI) scans to get

detailed information on anatomical structures.

• Different scenes: Images to be registered are captured from different scenes.

One typical situation is to register multiple medical scans, e.g. MRIs from dif-

ferent patients. The aim is to construct an atlas which describes the anatom-

ical variations of populations. The other situation of registering images from

different scenes is to register the image of a scene and a model of the scene.

The model can be a computer representation of the scene, such as a CT at-

las, the imaginary image of a skewed document posed in precisely upright
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position (as in Chapter 3). The aim of registering these images is to localize

the target image in the scene or model for comparison.

In spite of large amount of work and relative success, the problem of image

registration is far from being solved [CHH04, Hol08]. Many challenges remain in

the definition of the correspondences between image elements, of similarity mea-

sures and of the transformation models between the two images to be registered.

For instance, in medical imaging domain, the correspondences between anatomical

components are difficult to be formulated mathematically. Meanwhile, real-world

images are often corrupted by noise, illumination changes and spatially varying bias

fields. Furthermore, if the two images to be registered are from different modalities,

they can have completely different intensities. An image can also be corrupted by

outliers, e.g. contrast agent, growing tumor or moving cells, which might have no

matching counterparts in the other image. All these circumstances make the defi-

nition of a metric measuring the similarity between the two images to be registered

complicated and challenging. What’s most difficult is that the true underlying de-

formation between the two images to be registered is often unknown. Currently,

researchers tend to assume a certain transformation model that produces physi-

cally realizable adequate approximation for a particular application, e.g. smooth

or locally rigid deformation. Comprehensive surveys on image registration and its

applications can be found in [Bro92,MV98,HBHH01,ZF03,CHH04,Sze06].

1.2 Contributions

Most of the contributions of this thesis have been successfully completed and re-

ported during the course of the research. In summary, the following concrete and

substantial contributions to the study of image registration techniques and their



1.2 Contributions 4

applications have been made:

Interline White Runs for Skewed Document Registration: We have

proposed a novel image feature, called Interline White Runs for the skew correction

of degraded document images. With this feature, we register a skewed document

to an imaginary image of the document posed in precisely upright position to

achieve the purpose of skew correction. This feature accurately captures the spatial

relationship between the two images to be registered, and it can be efficiently and

accurately extracted from document images. In addition, this image feature is

capable of detecting the orientation of document images. We have developed a

skew correction system using interline white runs and compared its performance

with other skew correction methods. Experiments on real-world documents have

shown that our system is much faster and estimate more accurate skew angles.

Non-rigid Pairwise Registration for Historical Document Restora-

tion: We have filled in the gap between document capturing and historical doc-

ument restoration by providing fully automated techniques for the registration of

the two sides of a document. First we have developed an algorithm to automat-

ically extract and match control point pairs from the two images of a historical

document. The algorithm takes into account the image characteristics of the docu-

ment images and the forming mechanism of the bleed-through distortions on these

images. Then with the detected control point pairs, we have designed a non-rigid

image registration framework which combines the advantages of Residual Complex-

ity and Free-form transformation model. We have integrated the whole registration

algorithm with a wavelet based bleed-through correction method and evaluated the

overall performance of document restoration on real-world historical documents.

Groupwise Registration for Brain CT Atlas Construction: We have
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developed a cluster based groupwise image registration approach to construct a

brain CT atlas with the medical scans of different patients. The groupwise regis-

tration method has been built upon a non-rigid pairwise registration method and

a hierarchical cluster structure. Free-form transformation model and normalized

mutual information are employed in the pairwise registration method. The built

atlas has been used to estimate the position of an input slice on the axial direction

of the brain. This procedure is referred to as slice indexing which significantly

accelerates content based image retrieval systems or computer-assisted diagnosis

systems. We have also demonstrated that by registering an input slice that is af-

fected by traumatic brain injury to the atlas, the abnormal regions on the slice can

be identified and located.

A Unified Framework for Historical Document Restoration: We have

developed a useful image processing tool to restore historical document images. It

incorporates multiple preprocessing functions, the proposed coarse and fine regis-

tration methods, several bleed-through correction methods and some postprocess-

ing routines. It is convenient for the users to try different processing methods or

the combination of them on real-world historical documents. If large amount of

documents need to be processed for experiments or practical use, the system can

also conduct batch processing without interrupting the users.

1.3 Thesis Outline

Chapter 2 gives an overview of the general image registration framework which

consists of four major components: feature detection, feature matching, mapping

function estimation and re-sampling. The essential ideas and existing techniques

for each component is discussed. The idea of groupwise image registration is also
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introduced in this chapter.

In Chapter 3, we introduce a new image feature, called Interline White Run.

We present the method to extract this feature from document images and the

method of using the detected features to estimate documents’ skew angles. Then

we evaluate the proposed skew estimation method with real-world skewed document

images and compare its performance with other skew correction methods.

In Chapter 4, we present a framework to register the two side images of a

historical document. The registration framework consists of a coarse rigid reg-

istration procedure and a fine non-rigid registration procedure. For the coarse

registration procedure, we extract a pair of sub-images from the two images and

use them to estimate an Euclidean transformation model. The fine registration

method incorporates a control point selection method, a spline-based free-form

transformation model and a similarity measure based on residual complexity. To

evaluate the performance of the proposed registration approaches, we build a uni-

fied document restoration framework which incorporates image preprocessing rou-

tines, the proposed registration methods, several bleed-through correction methods

and some post-processing methods. With this restoration framework, we quanti-

tatively show that the proposed image registration method significantly improves

the bleed-through correction results.

Chapter 5 describes a cluster-based groupwise registration method which is

capable of constructing a brain CT atlas by registering multiple CT scans from

different patients. As the groupwise registration method is built upon pairwise

registration techniques, the underlying pairwise image registration method is in-

troduced first. Later in this chapter, we demonstrate that the built atlas can be

used to determine the position of an input slice on the axial direction of the brain
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and also to identify the abnormal regions on the slices that are affected by traumatic

brain injury.

Chapter 6 summarizes the contributions of this thesis and suggests some pos-

sible extensions to this work and several future directions.



CHAPTER 2

Background

As described in Chapter 1, image registration has been well studied in various re-

search areas because of its importance in image analysis tasks and its complicated

nature. According to the database of the Institute of Scientific Information (ISI),

in the last 10 years more than 1000 papers were published on this topic [ZF03]. In

early days, image registration was mainly approached by correlation based meth-

ods. These methods are mostly reviewed in the first survey paper on image regis-

tration presented by Ghaffary et al. [GS83]. Later, Brown provides a much more

comprehensive survey of the general-purpose image registration methods [Bro92].

In particular, registration techniques applied in medical imaging are summarized

in [EPV93, MF93, MV98]. Zitova et al. provide probably the latest survey paper

which covers the majority of the recently emerged as well as some classic methods

to image registration [ZF03].

8



2.1 General Framework 9

2.1 General Framework

As mentioned before, designing a proper image registration framework to a partic-

ular application should take into account the assumed type of geometric deforma-

tion between images to be registered, the radiometric deformation and application-

dependent data characteristics. Therefore, it is impossible to develop a universal

approach which is applicable to all image registration tasks. Nevertheless, most

image registration techniques share the same framework which consists of four

components as follows:

• Feature detection: Depending on the source of information used, the ap-

proaches to image registration fall into two categories: feature-based and

intensity-based ones [CHH04]. Feature-based image registration methods

need to extract a set of geometrical features from the two images to be regis-

tered. These features are usually distinctive objects such as corners, edges or

anatomical tissues and described with their point representatives (centers of

gravity, line endings, distinctive points), also known as control points (CPs) in

the literature. Section 2.2 summarizes different types of image features which

have been used for image registration and the strategies of detecting these

features. The key advantage of feature-based methods is their dimensionality

reduction property, which significantly reduces the computational cost and

load. Whereas, the major problem with these methods is that they heavily

rely on the precise extraction and matching of the image features. Auto-

matic feature extraction and correspondence estimation themselves however

are large research areas in computer vision.

In contrast, intensity-based methods directly register images with their inten-

sities and need no feature extraction procedures. These methods are popular
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as dense intensity information is not only readily available at each pixel but

also more accurate in estimating local deformations. One of the major dis-

advantages of intensity-based methods is the extremely high computational

cost and computer memory consumed especially when tremendous number of

images or 3D volumes are involved. Another challenge with intensity-based

methods is the definition of similarity measures, as in many image registra-

tion tasks, especially multi-modal registration applications, the intensities of

the subject images are significantly different.

• Feature matching: With feature-based image registration methods, the fea-

ture sets detected in the previous component should be matched so that the

correspondences between them can be used to estimate the transformation

between the images. To establish the correspondences, a similarity measure

and an optimization strategy are required. A similarity measure is usually

an objective function which achieves its optimum when two objects (features

or images) verify a certain relationship. In Section 2.3, we discuss some com-

monly used similarity measures such as L2 norm, sum-of-squared-differences,

correlation coefficients and mutual information. The optimization method is

an algorithm to find a set of parameters which optimize a given similarity

measure with the observed data. Popular optimization methods include Gra-

dient Descent, Quasi-Newton, Conjugate Gradient, Levenberg-Marquardt,

BFGS and Stochastic Gradient Descent methods [KSP07].

• Mapping function estimation: In order to align two or more images, a

transformation model which consists of a transformation or a set of trans-

formations needs to be defined and estimated. We discuss several typical

transformation models in Section 2.4. Transformation models can be subdi-

vided into rigid and non-rigid ones. Rigid transformations include only rota-
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tions, translations, or their combination (sometimes called roto-translations).

The simplest non-rigid transformation is affine which also allows anisotropic

scaling. In real-world applications, non-rigid transformation is more often

used and challenging. For instance, medical images are usually related with

non-rigid transformations due to the physical properties of body organs and

tissues. With simple transformation types, the parameters may be directly

computed with the detected features. In most cases, search strategies and

optimization methods are required to find the optimal value for these param-

eters. Therefore, appropriate search strategy and optimization function are

needed to be carefully chosen.

Another vital mechanism in mapping function estimation is regularization

which constrains the estimated transformations to be smooth or invertible.

As the existence and uniqueness of the demanded transformation are not

guaranteed, regularization is essential. In some registration methods, regu-

larization even defines the key properties and behavior of the transformation

model.

• Image re-sampling and interpolation: This component transforms the

target images using the mapping functions (transformation) estimated in the

above component. As transformed coordinates may be fractional, interpola-

tion methods are necessary to obtain the final registered images. Section 2.5

reviews the key strategies for image re-sampling and interpolation.

Figure 2.1 demonstrates the above four components and in the following sec-

tions of this chapter, we discuss them in more details. As any solutions in all other

applications, a complete image registration framework should include proper tech-

niques and measures to verify the system. Therefore, in Section 2.6 we discuss the
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Figure 2.1: Illustration of the four components in a general image registration
framework. In image (2), the matched features are labeled with the same numbers.

components of registration errors and review some most commonly used techniques

and measures to evaluate the accuracy of the proposed registration approaches.

Finally, in many applications, it is not a pair but a set of images to be trans-

formed to a common coordinate system. One typical application in medical imaging

is to construct 3D atlas by registering multiple 2D scans from different study cases.

The technique that solves this problem is called groupwise image registration which

is usually built upon conventional pairwise image registration. In Section 2.7, we

briefly review some groupwise image registration approaches.

2.2 Feature Selection and Detection

As we have discussed, the first step of feature-based image registration method is to

extract proper image feature sets from the images to be registered. Features refer
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to salient structures or objects, which capture the spatial relationship between the

images to be registered. In term of pure image concepts, they can be classified into

three categories.

Region Features: A classical region feature is the result of the projections

of general high contrast, closed boundary regions of an appropriate size [GS85,

GSP86]. Region features are usually detected by means of segmentation methods

[PP93] and represented with their centroids or centers of gravity.

Line Features: Commonly used line features include line segments [HMP92,

MH97, WC97], object contours [LMM95, DK97, GSC98]. In particular, Lu et al.

[LT03] detect line segments connecting the centroids of the nearest connected com-

ponents to estimate the skew distortion on document images. In this thesis, we

use the line segments exactly lying between the baseline and xline of adjacent text

lines to register a skewed document with its correctly-posed imaginary image.

Point Features: Traditional point features are line intersections [VZB98],

centroids of connected components [LTW94,Bai87], corners [WSYR83,BS97].

Choosing proper feature sets to use in a particular image registration applica-

tion depends on the characteristics of images to be registered. In general, if typical

images in the application contain a lot of details, for instance, in remote sens-

ing domain, distinctive objects such as lakes, roads, rivers are usually selected as

matching features for the purpose of image registration. While in medical imaging

domain, since most images are dominated by homogeneous areas and are not rich

in details, regions with prominent illumination changes are often employed.

However, some criteria should be commonly satisfied by all features used for

image registration. Firstly, since they are used to estimate the mapping func-

tions between images, the chosen features should be invariant to the deformation
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assumed in the application. Table 2.1 summarizes most commonly used trans-

formation models and their corresponding invariants. Secondly, features should

be distinctive enough so that the correspondence between them can be precisely

established. This also helps to accurately locate these features on the target im-

age and reference image. Thirdly, the chosen features should spread all over the

reference image as well as the target image so that sufficient number of common

elements can be identified. As the images to be registered are usually dissimilar,

missing of matching candidates is always a serious problem of image registration.

Take the registration of historical documents for example, the registration is actu-

ally between the foreground strokes and their corresponding blurred seeped ones.

In many cases, the ink do not seep to the reverse side, so for many strokes, there

are no corresponding points. We have to make sure there are enough number of

common elements. On the other hand, the number of features should not be too

large. Otherwise, too much computation will be involved and the probability of

mismatches also increases. Fourthly, the chosen features should be easily detected

from both images to be registered. Moreover, the accuracy of feature location can

significantly influence the resulting registration. Usually features are independently

pre-detected and remain constant in the whole registration procedure. Goshtasby

et al. [GSP86] proposes a refinement approach where feature detection is iteratively

conducted together with the registration. It is claimed that subpixel accuracy of

registration could be achieved with this method.

2.3 Feature Matching

As discussed in Section 2.1, the feature sets detected in the first step of feature-

based image registration methods need to be matched before they can be used
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to estimate the transformation of images. The aim of feature matching is to find

pairwise correspondences between the detected features. To achieve this, usu-

ally a matching metric such as similarity measure, dissimilarity or cost function

is predefined and certain searching strategies are adopted to optimize the metric.

Apart from feature matching, the subsequent transformation estimation procedure

in these methods also need a proper similarity measure. Intensity-based image

registration methods don’t detect and match features but still need a similarity

measure for transformation estimation. Therefore, in this section, we review and

discuss some commonly used similarity measures. The reviewed works are orga-

nized based on the core ideas they use.

2.3.1 Feature-based Similarity Measures

When advanced image features other than pixel intensity are used for registration,

similarity measures are usually defined directly based on the geometric features

extracted. One of the simplest similarity measure is the L2 norm between the

corresponding pairs of landmarks.

Esim =
K∑
k=1

‖τ(cjk)− c
i
k‖2 (2.1)

where cjk and cik are the locations of feature points extracted from the image J

and I. One of the major advantages of L2 norm is that the optimal transforma-

tion model can be found in closed form for both rigid and some non-rigid pa-

rameterizations [BM92]. Robust distance measures including L1 norm can also be

used [Kar01]. These measures assume that the two images to be registered have

the same number of feature points with known correspondences. In real-world

however, a feature extraction engine often detects different number of points from
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the two images and the correspondences between the two sets of points are usually

unknown. Therefore, point set matching methods are required. A simple way is

to assign the correspondences based on the nearest distance criterion. Alterna-

tively, the correspondences can be represented with the probabilities of all possible

combinations of points [MS10]. Accordingly, the similarity measure is generalized

as:

Esim =
K∑
k=1

l∑
l=1

Pkl‖τ(cjk)− c
i
k‖2 (2.2)

where Pkl is the probability of point cjk corresponding to point cik. Some point

set matching methods only estimate the correspondences between the extracted

feature points, whereas advanced methods simultaneously estimate the correspon-

dences and the transformation model. Usually, the methods based on simultane-

ous estimation alteratively update the estimated correspondences and optimize the

similarity measure with the new correspondences.

2.3.2 Sum-of-squared-differences

As we have mentioned in Section 2.1, intensity-based image registration methods

register images directly with the dense intensities of the images. Accordingly, these

methods use dense pixel-wise (voxel-wise for 3D registration) similarity measures

which are suitable to estimate local dense deformation regions. One of the simplest

intensity-based similarity measures is the sum-of-squared-differences (SSD):

ESSD(τ) =
N∑
n=1

(In − τ(Jn))2 (2.3)

where In and Jn are the intensities of the nth pixel on the two images to be registered

and τ is the transformation model to be estimated.
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SSD is widely used in image registration methods for it simplicity in terms of

understanding and implementation. SSD is a good choice for image registration

methods of which the input images only differ by Gaussian noise. A downside

of this similarity measure is its sensitivity to outliers and image artifacts due to

the squaring of each term which actually weights large errors more heavily than

small ones. To reduce this bad effect, researchers have proposed sum-of-absolute-

differences (SAD):

ESAD(τ) =
N∑
n=1

‖(In − τ(Jn))‖ (2.4)

Like SSD, SAD also achieves the best performance when the images to be registered

have identical dense intensities if they are perfectly aligned. In the real-world

however, especially in multi-modal image registration tasks, the images are often

inherently different in term of dense intensities, which limits the usage of this type

of mean squared measures including SSD and SAD.

2.3.3 Correlation Coefficient

Cross correlation is a classical similarity metric for template-based image registra-

tion. Its application is first motivated by squared Euclidean distance and the most

commonly used version of this measure, which is the normalized cross correlation

(NCC) can be represented as [Lew95]:

γ(u, v) =

∑
x,y(f(x, y)− f̄u,v)(t(x− u, y − v)− t̄)√∑

x,y(f(x, y)− f̄u,v)2
√∑

x,y(t(x− u, y − v)− t̄)2
. (2.5)

where f is the image and the sum is over (x, y) under the window containing the

feature t positioned at (u, v). t̄ is the mean of the feature and f̄u,v is the mean of

f(x, y) in the region under the feature.
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As shown in Equation 2.5, this metric measures the similarity between a pair of

windows, of which one is on the target image and the other is on the reference image.

In order to register two images, this measure is computed for each possible pair

of windows and the window pairs with the maximum are set as the corresponding

ones.

Correlation-like methods are popular in that they directly make use of image

intensities and thus no feature detection is needed. Also, it can be efficiently im-

plemented in the spatial domain and transformation domain. However it has a

serious limitation and two major disadvantages. First, it can only register images

with only translation distortion and possibly slight rotation distortion. Second,

it is quite sensitive to the intensities differences between the target image and

reference image. Third, it is highly computational complicated. Therefore, enor-

mous generalizations are made to this metric to tackle the limitation and the two

disadvantages.

The method presented in [Sim96,Ber98] mainly aim to extend correlation-based

registration methods to images with more complicated geometric deformations. In

order to reduce the computational cost, Pratt [Pra74] applied filters on noisy images

to reduce the size of source data. Meanwhile, Wie [WS77] and Anuta [Anu70]

improve the efficiency of correlation-based registration methods by applying them

on edges extracted instead of the original images. Apart from these generalization,

other metrics similar to correlation are also employed to improve the registration

accuracy in particular application areas. Such examples include the correlation

ratio metric used in multimodal registration [RMPA98] and Hausdorff distance

(HD) [HKR93] for images with perturbed pixel locations.
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2.3.4 Mutual Information

Mutual Information (MI) is the recently emerged similarity metric for image regis-

tration. It measures the statistical dependency between two images and is particu-

larly suitable for the registration of medical images. The MI between two random

variables X and Y is defined as [ZF03]:

MI(X, Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y ) (2.6)

where H(X) = −EX(log(P (X))) represents the entropy of the random variable X

and P (X) is the probability distribution of X. H(Y |X) = −EY |X(log(P (Y |X)))

represents the conditional entropy and H(X, Y ) = −EX,Y (log(P (X, Y ))) is the

joint entropy. Similar to correlation, the matching pairs with maximum MI value

are set as corresponding ones. The major issue with this metric is the even

higher computational cost than correlation based methods. Therefore, much effort

have been made to speed up the MI optimization procedure. Generally speak-

ing, pyramidal approaches are used for this purpose, such as Marquardt-Levenberg

method [TU98] and the method combining hierarchical search and simulated an-

nealing [ROC+99].

2.3.5 Speedup Techniques

Due to the large size and number of document images to be processed, speed-up

strategies are usually employed in most registration approaches in order to reduce

computational cost. In general, pyramidal methods also known as coarse-to-fine

hierarchial approaches are used. For instance, a sub-window is first used to find

probable candidates of the corresponding window in the reference image and then
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the full-size window was applied.

In general, this coarse-to-fine hierarchical strategy applies the usual registration

methods, but it starts with the reference and sensed images on a coarse resolution.

Then they gradually improve the estimates of the correspondence or of the mapping

function parameters while going up to the finer resolutions. At every level, they

considerably decrease the search space and thus save the necessary computational

time. Another important advantage resides in the fact that the registration with

respect to large-scale features is achieved first and then small corrections are made

for finer details. On the other hand, this strategy fails if a false match is identified

on a coarse level. To overcome this, a backtracking or consistency check should be

incorporated into the algorithms.

Due to its inherent multi-resolution character, wavelet decomposition of the

images has been recommended for the pyramidal approach. Methods can differ in

the type of the applied wavelet and the set of wavelet coefficients used for finding the

correspondence. Most frequently used methods decompose the image recursively

into four sets of coefficients by filtering the image successively with two filters, a

low-pass filter and a high-pass filter H, both working along the image rows and

columns.

2.4 Mapping Function Estimation

Mapping function defines the way to deform the target image to match the reference

image. In general, the type of the mapping functions should be chosen according to

the priori knowledge about the image acquisition process and the expected image

degradations. If no such priori information is available, the model should be flexible
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and general enough to handle all possible degradations which might appear. After

the correspondences between features have been established, the parameters of the

assumed mapping function are estimated. This mapping function is expected to

overlay the sensed image over the reference image as close as possible. In order to

achieve this, the correspondences between features and the constraint conditions

like the continuity are employed in the process. Therefore, the task to be solved

consists of choosing the proper type of mapping functions and accurately estimating

their parameters. Deciding the proper type of mapping functions for the input

images should take into account the assumed geometric deformation, the method

of image acquisition and the required accuracy of the registration.

According to the amount of image data they use as their support, transfor-

mation models can be categorized into global models and local models. Global

models use all features to estimate one set of transformation parameters that are

assumed to be valid for the entire image. On the other hand, the local models treat

the image as a composition of patches and the transformation parameters depend

on the location of their supporting features in the image. Global transformation

models require the tessellation of the image, like a triangulation, and the defining

of mapping functions for each patch separately.

Aside from the source of information used, transformation models are also sub-

divided into rigid ones and non-rigid ones based on the behaviors of the transfor-

mations. Historically, rigid transformation models such as Euclidean and similarity

transformations are used in many applications. These models have a small set of

parameters including rotation and translation parameters. For their simplicity,

rigid transformation models are good candidates for global transformation models.

The simplest non-rigid transformation model is affine transformation which also

allows skews and shearing. Figure 2.1 illustrates some of the commonly used trans-
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formation models and their behaviors and invariant values. In practice, however,

affine transformation is often regarded as rigid due to its simplicity. The most

popular non-rigid transformation models are piecewise affine, radial basis function

(RBF) and B-splines. In the following parts of this section, we discuss some of

these transformation models in more details.

Table 2.1: Geometric properties of commonly occurring planar transformations
[HZ04]. The matrix A = [aij] is an invertible 2 ∗ 2 matrix, R = [rij] is a 2D
rotation matrix, and (tx, ty) a 2D translation. The distortion column shows the
typical effects of the transformations on a square. Transformations higher in the
table can produce all the actions of the below ones. These range from Euclidean,
where only translations and rotations occur, to projective where the square can be
transformed to any arbitrary quadrilateral (provided no three points are collinear).

2.4.1 Global/Local Mapping Function

In general, the number of CPs is usually bigger than the minimum number of

CPs that are required by the determination of the transformation model. The

parameters of the transformation functions are then computed by means of least-

quare fit, so that the polynomials minimize the sum of squared errors at the CPs.

Higher order polynomials usually are not used in practical applications because
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they may unnecessarily warp the sensed image in areas away from the CPs when

aligning with the reference image.

In many cases, a global mapping cannot properly handle the local deformation

on the images. This happens in historical documents where uneven surfaces are

formed near the spine areas and in medical images where the growth of a intrac-

erebral hemorrhage (ICH) locally affects the image. In this case, the least square

technique used for global mapping function estimation actually averages out the

local geometric distortion equally over the entire image, which is obviously unde-

sired. Currently proposed local mapping functions include Goshtasby’s piecewise

linear mapping [GSP86] and piecewise cubic mapping [Gos87] and Akima’s quintic

approach [WRSS96]. These methods require the images being subdivided into rect-

angular or triangular blocks and apply a simple transformation (usually rigid ones)

to each block. Such methods are usually fast but tend to introduce approximation

errors to the truly non-rigid deformations.

2.4.2 Radial Basis Function

Radial basis functions are the representatives of globally estimated and locally

sensitive mapping functions. The estimated mapping function can be represented

with a linear combination of translated radially symmetric function plus a low-

degree polynomial [ZF03]:

(u, v) = a0 + a1x+ a2y +
N∑
i=1

cig(x, xi) (2.7)

where ai and ci are unknown parameters and g(x, xi) is the basis function

which can be Gaussian kernel, multiquadric and thin-plate spline. The most often
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used representatives of the radial basis functions are the thin-plate splines (TPS),

where the 2D radial terms have the form:

g(x, xi) =‖ x− xi ‖2 ln(‖ x− xi ‖) (2.8)

The TPS can be viewed as a very thin plate, which is fixed at the positions

determined by the CPs in the reference image in the heights that are given by the

x or y coordinates of the corresponding CPs in the reference image [Gos88]. These

methods are first used in mechanic and engineering for the interpolation of irregular

surfaces and now are widely used for medical image registration [Kar01]. One of

the reasons that TPS is popular is that it can be decomposed into linear and non-

linear parts. However, as each CPs has a global influence on the transformation,

TPS transformation suffers a high computational cost when large number of CPs

are used for mapping function estimation. Therefore, TPS transformation is more

suitable for feature-based image registration methods where a set of feature points

are extracted and matched.

2.4.3 Regularization

As we have discussed in Section 2.1, regularization plays an important role in image

registration. It enforces certain properties of the estimated transformation model

such as smoothness, rigidity and continuity. In particular, when we try to esti-

mate a transformation model with a set of CPs or feature points, the existence

and uniqueness of the transformation model are not guarantied. In other words,

there may be infinite number of transformations that can match the CPs or fea-

ture points but have different behaviors in other pixels of the images. Therefore,

by constraining on the behavior of the transformation model through regulariza-
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tion procedures, we attempt to find precise and unique transformation model that

exactly describes the deformation between the two images.

Actually, regularization is a key components in many research areas such as

machine learning and computer vision. Many problems in these research areas

are ill-posed [CH02]. By ill-posed, we mean the solutions to these problems don’t

satisfy all the three conditions: existence, uniqueness and continuity. The theory of

regularization was first proposed by Tikhonov [Tik77]. A traditional regularization

method is to add a regularization term to the optimization procedure. In this way,

the cost function to be optimized becomes:

C(f) = S(f) + αR(f) (2.9)

where S(f) is the original objective function to be optimized and R(f) is the

regularization term. α represents the trade-off between the two terms. A popular

operator for R(f) is the first or second order derivative operator.

2.5 Image Re-sampling and Interpolation

Once the mapping functions between images are estimated, they are used to trans-

form the target image to obtain the registered new image. The transformation can

be realized in a forward or backward manner. Forward transformation is straight-

forward in theory but complicated to implement. With this strategy, the coordi-

nates of each pixel in the target image are mapped to compute the coordinates of

corresponding point on the registered image. As the transformed coordinates are

not always integers, discretization and rounding are inevitable to happen. There-

fore, holes will be formed at places where no transformed coordinates are discredited
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to. Meanwhile, overlaps occur at points which multiple transformed coordinates

are discredited to. The simple way to address this problem is to detect these holes

and overlaps and then interpolate the gray value at these positions using the gray

values of nearby non-hole/overlap points on the registered image.

No holes or overlaps will be formed on the registered image if background

re-sampling strategy is used. With this method, the registered image is in the

same coordinate systems with the reference image. For each point on the regis-

tered image, the coordinates of its counterpart on the target image is computed by

applying the inverse of the estimated mapping function to its coordinates. Simi-

larly, the transformed coordinates may be not integers, therefore, its gray value is

interpolated from other points on the target image.

Interpolation is usually realized via convolution of the image with an interpola-

tion kernel. An ideal interpolation kernel such as sinc function is difficult to imple-

ment in practice because it spatially is unlimited. Therefore, truncated and win-

dowed sinc interpolators are investigated as reported in the literature. Most com-

monly used interpolation methods include nearest neighbor function, the bilinear

and bicubic functions, quadratic splines [BB95, Dod97], cubic B-splines [UAE91],

higher-order B-splines [CP04], Catmull-Rom cardinal splines [RU98], Gaussian

[App96]. As interpolation methods are essential for medical image processing,

proposed interpolation methods are usually compared and evaluated with experi-

ments on medical images [LCS99]. Generally speaking, nearest neighbor function

should be avoided when medical images are registered. Bilinear interpolation is

most commonly used for it’s probably the best trade-off between accuracy and

computational complexity. Cubic interpolation is recommended when the geomet-

ric transformation involves a significant enlargement of the sensed image. Nearest

neighbor interpolation should be considered only when the number of intensities is
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low.

2.6 Evaluation of Registration Accuracy

Regardless of the types of images to be processed, the registration approaches

adopted and the application areas, an evaluation method is needed to illustrate

how accurate the proposed registration methods are. This problem is non-trivial

as each component of the image registration framework could introduce errors to

the final registration results.

Firstly, localization error referring to the inaccurate detection of features will

result from imperfect feature detectors. It is impossible to directly measure this

error with given images. Even if we manage to adopt well-implemented feature

detectors, this localization error is inevitable as there is always a trade-off between

the number of detected features and the quality of detected features. For some

applications, large number of low-quality features may produce better registration

results than small number of high-quality features.

Secondly, matching errors which is due to mismatches could be introduced

in the feature matching procedure. In certain cases, this error can be measured

with the number of mismatches. As this error significantly affects the registration

accuracy and even leads to failure of the registration process, they should always

be avoided. To correct this error, consistency check or cross-validation approaches

could be used to identify mismatches. If multiple matching methods for given im-

ages are available, they all are applied to the given images and only the feature

pairs agreed by most or all matching methods are considered as valid corresponding

ones. If no other reliable matching methods are suitable for the particular applica-
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tion, each time one pair of features are excluded from the calculation of mapping

parameters and are used to check the mapping function. If the displacement of

this excluded feature pairs is below a given threshold, they are accepted as a valid

corresponding pair.

Thirdly, modeling error is introduced by the component estimating the map-

ping functions between images. It refers to the difference between the estimated

mapping function and the actual geometric deformation between images. This

error consists of two parts. First, the chosen mapping function type may not

precisely represent the actual geometric deformation. Second, the parameters of

chosen mapping function may not be accurately estimated. The first error is due to

the lack of priori knowledge about the geometric distortion and the later one may

be caused by the small number of detected features or the low quality of detected

features. Traditionally, modeling error is measured with mean square error at con-

trol points (CP), known as control point errors (CPE) or test point error (TPE).

These metrics however actually quantifies how the features can be fitted by the

chosen mapping function instead of how the mapping function reflects the actual

deformation. Moreover, the localization error of these test points may negatively

affect this measure.

Fourthly, with rounding and interpolation approaches employed, additional

error will be inevitably added to the total registration error. As no ground truths

about the deformation between images are available in most image registration

tasks, this error cannot be quantified.

Finally, although the error of image registration approaches is complicated in

nature, there are some ways to measure it. First of all, we can always visually

assess and compare the performance of different image registration approaches.
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Then similar to the evaluation of matching errors, consistency check and cross-

validation are also adoptable. The only difference is now they are conducted be-

tween multiple entire image registration frameworks instead of different feature

matching approaches. Different variations of consistency check approaches are

available in [BCT+98,HHD+00].

To sum up this section, estimation of accuracy of registration algorithm is

a substantial part of registration process. Without quantitative evaluation, no

registration method can be accepted for practical utilization. A lot of work has

been done on validation of rigid-body registration while validation of non-linear,

local and elastic registration methods is still at its infancy [ZF03].

2.7 Groupwise Image Registration

As indicated by their names, groupwise image registration methods register more

than two images to a common coordinate system. It is not a single transformation

but a group of transformations that need to be determined [ZLMGW05,TCM+06].

A typical application of groupwise image registration is to register multiple medical

scans, e.g. MRIs from different patients to construct an atlas which describes the

anatomical variations of populations.

There are several approaches to groupwise image registration. The simplest

way is selecting a certain image (the first or random one) as the reference image and

then registering the remaining images to the reference image using pairwise image

registration. In other words, such approaches organize the images to be registered

in a centralized and flat structure. On the one hand, the centralized structure makes

these approaches lose the variations of the target images, which is a crucial problem
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with atlas construction applications. More importantly, these approaches are very

sensitive to the choice of the reference image. If an outlier image is chosen as the

reference image, the built atlas could be completely wrong. On the other hand,

as all target images are equal in the flat structure, these groupwise registration

methods neglect the possible relationship between the images to be registered. For

instance, if the images to be registered are acquired at consecutive time instance,

two consecutive images should be close to each other in terms of the underlying

transformation.

As an improvement, sequential image registration is then proposed in research

areas such as remote sensing or time lapse video imaging. The idea is to sequentially

register next image to the previous one and track the deformation field over time.

This approach is supported by the fact that two neighboring images usually have

a large overlap, whereas some distant frames have small or zero overlap due to

the progressive object or camera shift. Sequential image registration not only

significantly improves the processing speed, but also benefits from a large area

overlap between the consecutive frames in contrast to the fixed-reference-image

approach. To further improve the robustness of this approach, one can register

the next image to the average of previously aligned images. The main benefit of

averaging is to remove noise and artifacts, while the disadvantage is the reduction

of the texture statistics.

To address the centralization problem, so-called ’true’ groupwise image regis-

tration methods register all images simultaneously [JDJG04,ZLMGW05,TCM+06,

MTT06]. These approaches fundamentally reduce the bias of choosing any par-

ticular reference image. Twining et al. [TCM+06] proposed to use a Minimum

Description Length (MDL) to align the target images. The MDL principle states

that the transmission of a model of the data, together with the parameters of the
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model should be as short as possible. Zollei et al. [ZLMGW05] presented the con-

gealing approach for groupwise image registration. They used the total element-

wise entropy of the input image sequence as the objective function to optimize.

The entropies are computed at each coordinate location and then added together.

Vedaldi et al. [VS07] improved the congealing approach by minimizing the total

complexity of the data set together with the amount of image distortions. Joshi et

al. [JDJG04] computed the sum of the SSDs between all images and the reference

image simultaneously with the registration procedure. By choosing the SSD sim-

ilarity measure the reference image can be found analytically as an arithmetical

average of all the images.

2.8 Summary

In this chapter, we mainly reviewed the four essential components in the gen-

eral framework of image registration. They are feature selection, feature matching,

mapping function estimation and image re-sampling. For each of these components,

we briefly described its workflow and then discussed its commonly used methods,

measures and models. To complete this general introduction to image registration,

we also included some discussion on analyzing registration errors and evaluating

registration methods. Finally, we introduced the idea of groupwise image registra-

tion and gave a brief overview on the major methods used in this problem.



CHAPTER 3

Single Registration of Printed Documents

As mentioned in Section 1.1, some image registration methods register the images

of a scene to a model of the same scene. A typical application of this kind in

medical imaging is to register an input scan to an atlas, such as brain CT or lung

MRI. The model can also be a computer representation of the scene, such as an

imaginary image that would be captured if the skewed document was posed in

precisely upright position. By registering the skewed document to this imaginary

image of itself, we actually correct the skew distortion on the skewed document

image. Based on this idea, in this chapter, we present a new image feature called

inter white run and use it to estimate the skew angle of a skewed document image.

In this application, the transformation model between the two images to be regis-

tered is rigid and has only one parameter for rotation, which significantly simplifies

the mapping function estimation procedure. In real implementation, we can even

directly compute the transformation model with the feature we extract.

As in this chapter and the next one, we are both dealing with document images,
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we give a brief overview to document imaging and document image restoration

in Section 3.1. In section 3.2, we review the four groups of methods that have

been widely used for document skew correction. The new feature is presented in

Section 3.3.1 and we estimate the skew angle of a degraded document images with

it through the method described in Section 3.3.2. We evaluate the proposed feature

and skew correction method with real-world data and provide some discussion on

the experimental results in Section 3.4. Finally, we conclude this chapter with a

summary of the contributions and some potential future research directions related

to this work.

3.1 Document Imaging

In this digital age, more and more information is captured and stored in electronic

forms, which can be conveniently accessed and modified on-line through digital

libraries or other web services. However, there are still a large collection of docu-

ments that are printed or handwritten in physical media and therefore are difficult

to locate and access [Bai03]. This is particularly true for many historical documents

that are of great value but either out of print, deteriorated, or sealed in archives for

preservation. A useful digital library is expected to integrate these resources into a

database so that they are searchable, readable or even modifiable by a worldwide

large population. As a result, document digitization is playing an important role

in the advancement of current digital libraries.

In general, a complete digitization cycle consists of three phases: imaging

phase, recognition phase and content recovery phase [DWPL04]. First, electronic

images or microfilms of physical resources are acquired using scanners or cameras.

These images are usually produced in batches and the digitizing devices are hardly
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aware of the content of the material, which makes indexing a difficult task. In the

second phase, the content of these resources are extracted. For this purpose, image

processing techniques are firstly applied to remove noises and to correct various

distortions that may affect the subsequent document image analysis tasks. Then

text regions or images can be detected and extracted from these images using some

layout analysis methods. The extracted text regions or blocks can be fed to Optical

Character Recognition (OCR) engines for recognition. Some image enhancement

procedures may be applied prior to the recognition step. Upon finishing, plain

text is available for reading and editing purposes. As structural information is

usually important for human perception and useful for information preservation

and dissemination, the third phase is employed to convert the plain text to logical

or physical formats. In this way, the original physical document is completely

converted to its electronic form, which can be easily accessed from the large on-line

database by a wide range of users. Nevertheless, a link between the reconstructed

electronic document and its original image form may still be maintained for further

verification purposes.

The traditional way of converting a physical document to its electronic form

is through flatbed scanners, which usually consist of a glass pane, an underneath

bright light across the pane and a moving optical array being either a charge-

coupled device (CCD) or contact image sensor (CIS). Images to be scanned are

placed face down to the scanning plane and the sensor array and light source move

through the pane to capture the entire area. In practice, this procedure usually

introduce various geometric and photometric distortions to the captured images.

On the one hand, photometric distortions are caused when non-planar materials,

such as rolled scripts and folded papers, could not be flattened on the scanning

plane. This is the case for thick bounded documents which can hardly be pressed
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down near the spine regions. It is especially true for delicate historical materials

which are so fragile that they could be easily damaged under external forces thus

resulting in a permanent loss of information. On the other hand, imprecise po-

sitioning of documents or different settings in the scanning process often lead to

errors, such as translation, rotation, and scaling.

These distortions must be removed to facilitate human perception and ma-

chine recognition. On one hand, clean and well-posed images are necessary to

enable human readability. On the other hand, most document analysis tasks are

extremely sensitive to these distortions. A large-scale test of current commercial

OCR systems [G. 99] has demonstrated that the accuracy of current OCR devices

falls abruptly when image defects exist, such as heavy and light print, stray marks,

curved baselines, and shaded background. Improved image processing techniques

are thus needed to alleviate the effects of such distortions in the pre-processing step

prior to the subsequent document analysis tasks.

3.2 Document Skew Correction

Document skew, as shown in Figure 3.4 is a kind of rotation-induced geometric

distortion that has been introduced during the digitizing process. As discussed

in the previous section, the existence of skew distortions degrades and complicates

subsequent document analysis tasks, therefore they must be detected and corrected

before the ensuing document processing tasks such as document layout analysis,

OCR and document image retrieval. Theoretically, correcting the skew distortion

on a degraded document image can be solved by registering the document to an

imaginary image that would be captured if the document was posed in exactly

upright position. In this image registration task, the usually used image features
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include the line segments connecting the centroids of the nearest connected com-

ponents [LT03], the centroids of the connected components [Bai87] and the points

of the last black runs [LTW94]. As only global skew distortion is considered, the

mapping function between the two images to be registered is rigid and can be de-

scribed with an one-parameter Euclidean transformation. The single parameter

corresponds to the skew angle by which the document was deformed.

(a) (b)

Figure 3.1: Two sample images that are degraded by skew distortions. The left
image was cropped from a larger image.

In the literature, three groups of registration methods have been proposed to

estimate the skew angle of degraded document images. The first group of methods

which are based on projection profile analysis [Bai87] search for the projection an-

gle by which the resultant projection profile forms the most distinguishable peaks

and troughs. These methods commonly assume that the documents’ skew angles

lie within a small range. When the skew angle is large, the computational load

increases dramatically and the registration accuracy decreases significantly. The

second group of skew correction methods are based on hough transform analy-

sis [LTW94]. Such methods calculate the orientations of the normals from the

origin to all possible lines crossing a point on the text line and inspect for local

maxima, which represent the orientations orthogonal to text lines. These methods
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have no detectable angle restriction, however, they are computationally intensive

even with some data reduction techniques. A common limitation shared by hough

transform based methods and projection profile based methods is that they require

sufficient number of text lines on the document to function well. The third group of

skew correction methods are called nearest neighbor based methods [LT03]. They

fit straight line segments that connect the centroids of the nearest connected com-

ponents and the slant angles of the detected line segments vote for the skew angle

of the document image. Such kind of methods can detect skew angles in very high

precision only if the connected components on the document can be accurately

detected. Furthermore, connected component analysis is highly time consuming

and thus these skew correction methods are usually slow. In addition, all these

three types of method assume that document images are captured in an upright

orientation. As a result, few of them can deal with documents that were captured

upside-down.

3.3 Registration with Interline White Runs

In this chapter, we present a new method to correct the skew distortion on degraded

document images. This method registers the skewed document to an imaginary

image of the document itself posed in exactly upright orientation using a new

image feature called Interline White Run (IWR). IWRs are the continuous white

pixels that lie exactly between the baseline and x line of adjacent text lines. In

order to extract this feature, we horizontally scan the document and accumulate all

the white runs to form the white run histogram. As the transformation between the

two images to be registered has one single rotation parameter, we directly compute

this parameter with the extracted IWRs.
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3.3.1 White Run Histogram

At the very beginning, the input document images need to be preprocessed to re-

move certain noises before any ensuing analysis. In particular, small-sized noises

such as salt and pepper noise should be suppressed with a global mean filter. Then

we binarize the input images in order to detect white runs. Plenty of document im-

age binarization methods [TT95,WJC02] have been reported to server this purpose

in the literature. In this work, we adopt Niblack’s text binarization algorithm [W.

86], as experiments have shown that Niblack’s thresholding technique generally

outperforms most of other global and local thresholding techniques in terms of

accuracy and efficiency.

(a) (b)

Figure 3.2: Illustration of the three types of white runs. The ones labeled with
2© are called interline white runs which produce the second peak in the white run

histograms and are used to estimate the skew angles of degraded document images.
The ones labeled with 3© are used to detect the orientations of document images.

A white run refers to a continuous sequence of white pixels along the direction

by which a document image is scanned. It can be identified by a beginning pixel

(black-to-white pixel) and an ending pixel (white-to-black pixel) as shown in Figure

3.2(a). The length of a white run can be determined with the Euclidean distance

between the beginning pixel and the ending pixel. Figure 3.2(b) illustrates three

types of white runs and the definitions of base line and x line (also known as
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top line) of text lines. Base line and x line can be seen as the lower and upper

boundary lines of character ’x’ in the direction that is perpendicular to that of the

straight lines (as the straight line in character ’m’) of the text. [LCK05] has proven

that these two lines connect the eigen-points of half number of characters and the

direction of them is the most close to the direction of text lines. Therefore, by

estimating the direction of base lines or x lines, we can determine the direction of

text lines and compute the skew angle with respect to horizontal direction.

As shown in Figure 3.2(b), the white runs labeled with 2© span exactly between

the base line of a text line and the x line of the adjacent text line. We define this

type of white runs as interline white run (IWR). In this work, we use this image

feature to fit base line and x line for the purpose of skew angle estimation. In

order to extract IWR, we first scan the input image horizontally and vertically to

generate two sets of white runs with various lengths. Then we collect all occurring

white run lengths in two accumulator arrays with which we construct the white

run histograms on horizontal direction and vertical direction. Figure 3.3 shows two

examples of the obtained histograms for a document image skewed by 20◦ and 80◦

respectively. In the figure, the X-axis represents all possible white run lengths and

Y-axis represents the corresponding frequency of occurring.

As shown in Figure 3.3, two evident peaks are present in either the horizontal

histogram or the vertical histogram of a distorted document image. To be specific,

if the document’s skew angle is large, horizontal histogram will show two peaks

(as shown in Figure 3.3(a)) and vertical histogram will do so if the skew angle

is small (as shown in Figure 3.3(c)). The first peak corresponding to small run

length is caused by the white runs occurring within text lines, as labeled with 1©

in Figure 3.2(b). The second peak corresponds to the white runs that exactly span

interline spacings (ie. IWR) because text documents normally hold a large amount
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(a) (b)

(c) (d)

Figure 3.3: Horizontal and vertical white run histograms for the documents shown
in Figure 3.4. Images (a-b) are for the document in Figure 3.4(a); Images (c-d) are
for the document shown in Figure 3.4(c).
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of equidistant interline spacings. Furthermore, most white runs that lie between the

two peak bins normally cross interline spacings and span over character ascenders

or descenders as labeled by 3© in Figure 3.2(b).

(a) (b)

(c) (d)

Figure 3.4: Two skewed document images and the interline white runs that were
identified from their horizontal or vertical white run histograms
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3.3.2 Skew Angle Estimation

As discussed in Section 3.3.1, we estimate document skew by fitting base lines or

x lines with the starting points or the ending points of the detected IWR. Also we

know from the previous section that IWR corresponds to the second peak on the

horizontal or vertical white run histogram. Therefore, in order to detect the white

runs exactly spanning the interline spacing, we need to locate the second peak on

the white run histograms first. For this purpose, we search for a thresholding white

run length kth which maximizes the inter-class variance σs(k) of the constructed

white run histogram:

σs(k) =
(ϕ(k)

∑S
i=1(i · p(i))−

∑k
i=1 i · p(i))2

ϕ(k)(1− ϕ(k))
(3.1)

where S refers to the maximum length of the detected white runs. p(i) gives the

normalized density of the white run histogram and ϕ(k) gives the zeroth-order

cumulative moment of the histogram as follows:

p(i) = n(i)/Nt;ϕ(k) =
k∑
i=1

p(i) (3.2)

where Nt denotes the number of the white runs detected and n(i) gives the number

of the white runs with length i. We search for the global maxima (Y-axis value)

among the histogram bins with white run length (X-axis value) larger than the

threshold determined in Equation 3.1. The X-axis value corresponding to this

maxima is the length of IWR.

As we have mentioned, the beginning or ending pixels of the peak runs that

exactly span a specific interline spacing normally lie along the x line or the base line

of the text lines adjacent to the interline spacing. At the same time, the orientations
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of those x lines or base lines exactly represent the document skew angle. Therefore,

the document skew can be estimated by fitting straight lines to the beginning or

ending pixels of the peak runs that belong to the same interline spacing.

Firstly, we built a local cluster for each peak run with a distance threshold set

exactly equal to the length of the peak runs. In this way, the peak runs within the

adjacent interline spacings will not be included. Therefore, the peak runs satisfying

the following constraint are included into the local cluster:

LC = R(x, y) : |x− x0| < L
∧
|y − y0| < L (3.3)

where R(x, y) refers to all peak runs and P denotes the length of the peak runs.

(x0, y0) is the coordinate of the beginning pixel of a peak run. After the clustering

is specified, a local cluster is constructed for each peak run and then sorted based

on their size. Those first C% (G is set at 10 in our system) largest local clusters

are chosen for document skew estimation. The orientation of the straight line is

estimated as follows by using the least square algorithm:

k =

∑N
i=1 xiyi − nx̄y∑N
i=1−n(x̄)2

(3.4)

where (xi; yi) refers to the coordinate of the beginning pixel of peak runs within the

local cluster under study. x and y refer to the mean of the x and y coordinate of

the beginning pixel of those peak runs. Document skew can therefore be estimated

using the median of those straight line orientations as follows:

θ = arctan(median(K)) (3.5)

where K, [k1, k2, · · · , kn] refers to the straight line orientations estimated by using
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the first G% largest local clusters.

3.3.3 Orientation Estimation

As mentioned in Section 3.2, most skew estimation methods can not deal with

document images that were captured upside-down. They usually assume the skew

angles of all degraded document images are within small ranges such as 0◦ to 15◦.

However, in real-world, capturing a document upside-down is common. Therefore,

in this section, we present a document orientation detection method which also uses

the white runs that can be extracted from the histograms. Our method is based

on the observation that the number of character ascenders is statistically much

larger than that of character descenders in English. In particular, the number of

character ascenders and descenders can be estimated by the number of white runs

crossing interline spacings, but lying over character ascender and descenders, which

normally lie between the two histogram peaks. Such kind of white runs (labeled

as 3 in Figure 3.2(b)) normally satisfy three constraints. Firstly, they are usually

longer than the white runs lying within text lines (labeled as 1 in Figure 3.2(b))

but shorter than those exactly spanning interline spacings (labeled as 2 in Figure

3.2(b)). Therefore, they normally lie between the two histogram peaks. Secondly,

their midpoints lie within the interline spacing since they cross interline spacings.

Thirdly, their beginning or the ending pixel normally lie a bit below or above the

base line and x line of two adjacent text lines.

The detection of the white runs lying over character ascenders and descenders

can be summarized as follows. For each white runs lying between the two histogram

peaks, the nearest peak run is first located. The x line xl and base line bl of the

two adjacent text lines are then estimated by using the beginning and ending
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pixel of the nearest peak run and the skew angle θ estimated in Equation 3.5.

Thus, the white run under study is detected to lie over character ascenders if its

midpoint lies between xl and bl and its ending pixel lies a bit higher than the xl.

On the other hand, it is detected to lie over character descenders if its midpoint

lies between xl and bl and its beginning pixel lies a bit lower than the bl. Figure

3.4(c) shows the white runs lying over character ascenders and descenders and

Figure 3.4(d) gives the close-up view of the rectangle labeled in Figure 3.4(c).

The numbers of character ascenders and character descenders can thus be roughly

estimated as the numbers of white runs lying over character ascenders and character

descenders, respectively. Based on the character ascender and descender statistics,

the orientation of document images can be determined as follow:

DO =

 upright if ASwr > DSwr

upside− down if ASwr < DSwr

(3.6)

where DO refers to the orientation of the document image under study. ASwr and

DSwr instead denote the number of white runs lying over character ascenders and

descenders and crossing interline spacings, respectively. Combined with the skew

angle estimated in Equation 3.5 in the last subsection, the skew angle can be finally

estimated as:

θd =

 θ if upright

180 + θ if upside - down
(3.7)

3.4 Experiments and Discussion

To evaluate the proposed skew correction method, we have created a small data

set consisting of 38 document images that were downloaded from our university

digital library and 14 downloaded from the Internet. All these images contain at
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least 15 text lines as well as some non-text components such as tables and graphics.

Such an image is shown in Figure 3.4. For generality, the texts on these documents

are in different fonts, styles, and sizes. For quantitative evaluation, we deliberately

rotated these documents with known angles using Adobe Photoshop to form the

‘ground truth’. The rotation angle ranged from 0 degrees to 360 degrees and 21 test

documents are positioned upsidedown. We have implemented the proposed method

in C++ and tested it on an AMD Opteron CPU 2GHz machine with 2GB RAM.

We also implemented other typical skew estimation methods for comparison. They

were Lu’s connected component based method, Baird’s projection profile based

method and Le’s Hough transform based method.

Experimental results have shown that our skew correction method is signifi-

cantly faster than the three other methods. Averaging on the 52 test images, our

method took approximately 0.038 second to correct the skew distortion of a doc-

ument image, while the other three methods took 5.42, 11.28, and 18.37 seconds,

respectively. The high speed of the proposed method should be mainly ascribed

to the efficient extraction of image features for registration. Apparently, detect-

ing IWR from images is much faster than Hough transform, connected component

labeling and projection on multiple angles.

Although the image feature used seemed simple, our skew estimation technique

were proven by the experiments to be quite accurate. Table 3.1 shows the actual

and estimated skew angles of a few typical test documents. For comparison, the

estimated results of the other three methods are also listed. As it shows, the

proposed method outperformed other estimation methods by providing estimated

skew angles which are most closed to the actual skew angles in most cases. In

particular, Baird’s projection profile based method is less accurate in most cases.
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Actual Angle Le’s Lu’s Baird’s Ours

45 44.9714 45.3004 44.0951 44.9766
35 34.9429 34.9429 35.4239 34.9641
25 24.9286 24.8053 24.5243 24.9588
15 14.9429 14.8145 14.6435 14.9825
5 4.9857 5.0737 5.3492 4.9828
2 1.9714 1.8757 2.5402 1.9874
-2 -1.9687 -2.1582 -2.6089 -1.9718
-5 -4.9870 -4.8944 -5.4783 -4.9774
-15 -14.9379 -14.8278 -14.6531 -14.9612
-25 -24.9306 -24.6069 -25.4390 -24.9832
-35 -34.9348 -34.8252 -34.3365 -34.9729
-45 -44.9489 -44.6196 -44.1889 -44.9681

Table 3.1: Experimental results of the proposed method to document skew estima-
tion

The proposed method is further examined on the orientation detection of de-

graded document images. In our experiment, the orientations of 47 of the 52 test

documents were correctly detected. When examining the five images which failed

our proposed method, we found they all contained too little texts. In this case,

statistics of character ascenders and descenders may not be captured properly,

therefore, the estimation of orientation may fail. As a comparison, most reported

skew estimation methods assume that the skew angle lies within a reasonable range,

therefore, few of them are able to deal with documents that are captured upside-

down.

In addition, our proposed method can be easily extended to deal with docu-

ments that are printed in languages other than English. We have tested the method

with 12 documents that were printed in Chinese and achieved promising results.

The orientation of these documents, however, is almost impossible to be detected

as no character ascenders and descenders exist in this language.
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3.5 Conclusion

In this chapter, we have defined a new image feature, called interline white run,

to estimate the skew angle of a degraded document image by registering it with

an imaginary image of the document posed in exactly upright orientation. The

key advantage of this new feature is its simplicity in terms of both computational

complexity (O(N)) and implementation. On the one hand, interline white runs

can be easily detected from white run histograms which are obtained by scanning

the document image once. On the other hand, this new feature has shown robust

and accurate performance on estimating the skew angles of real-world document

images. In particular, interline white runs can also be used to detect the document’s

orientation.

The proposed method can be extended to deal with document images with mul-

tiple skew angles. To achieve this, we need to explore more sophisticated clustering

methods to extract multiple interline white runs from the white run histograms. Al-

teratively, we need a segmentation procedure to separate text blocks with different

skew angles before constructing the white run histograms. As we have discussed,

the proposed method can also be applied on documents printed in other languages

like Chinese or Korean. To make the method work better with documents in these

scripts, a possible way is to blur the text lines on these documents before scanning

them.



CHAPTER 4

Pairwise Registration of Historical Documents

In the previous chapter, we presented a method to register a skewed document

image to an imaginary image of itself. Although the registration method is a very

special case because of the extremely simple transformation model and the direct

computing of the transformation parameter, strictly speaking, the method is still

feature-based. As we have discussed in Section 2.1, feature-based image registration

methods rely on the precise extraction of image features. So a key factor in the

success of the method is the easy and accurate detection of the new feature we

proposed.

In this chapter, we are also working on document images. The aim is to

register the two side images of a double-sided historical document. As shown in

Section 3.1, historical documents are valuable and important but usually degraded

by various noises and distortions. Especially due to the long-term preservation

and aging, the ink on one side of the document seeped through the paper and

mixed with the content on the other side. So in this work, we actually attempt to

49
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match the foreground text on one side of a document with the interfering strokes

caused by the foreground text itself. Compared with the image registration task of

aligning two images (one is imaginary image) with exactly the same scene but being

degraded by a global rotation distortion in Chapter 3, the registration task in this

work is different in three ways. First, the two images to be registered in this work

have significantly different intensities. Second, it is difficult to extract sophisticated

image features from the two input images (historical document images). Third, the

transformation model between the two sides of a historical document is much more

complicated and non-rigid local transformation is required. We elaborate on these

three points in Section 4.2. For these reasons, we present a two-parts intensity-

based method to register the two sides of a historical document. The method

combines rigid coarse registration (in Section 4.4) and non-rigid fine registration

(in Section 4.5). The rigid registration method extracts a pair of representative

sub-images from the two images and estimates an Euclidean transformation model

with them. In contrast, the non-rigid registration method extracts salient points

from the two images, matches them and estimates a transformation which combines

affine and spline-based transformations.

4.1 Bleed-through Distortion

As discussed in Section 3.1, document images are usually subject to various pho-

tometric distortions and geometric distortions including background noises, trans-

lation/rotation displacement and warping effects. In particular, for a double-sided

historical document, the foreground contents on one side are additionally impaired

by the showing of the contents on the other side of the document. This type of

image distortion is usually called bleed-through distortion or show-through distor-
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tion, as shown in Figure 4.1. Furthermore, if the document is printed, the term of

show-through distortion is used. Otherwise, it is called bleed-through distortion if

the document is handwritten. Show-through distortion and bleed-through distor-

tion are mainly caused by the transparency and thinness of the carrying medium

and the seeping of the ink that was used to print or write. Moist environment and

long-term preservation also contribute to the form of these distortions.

These distortions annoy human users by making it difficult to understand these

documents. Under extreme situations as in Figure 4.1(c), they even make the docu-

ment completely unreadable. More importantly, bleed-through distortions severely

impair subsequent document analysis tasks like text extraction or content recog-

nition. Take Figure 4.1(a) for example, the foreground texts are even lighter than

the bleed-through interferences that were caused by the texts on the other side.

This phenomenon could probably fail the ensuing binarization procedure which

may mistakenly treat bleed-through interferences as foreground texts. Therefore,

as discussed before, bleed-through distortions should be corrected with all means

that are available.

4.2 Historical Document Restoration

In the literature, many approaches have been proposed to remove bleed-through

distortions from historical documents. At first, thresholding-like methods [FK01,

Don01, LVPG02] were presented to remove all background noise including bleed-

through strokes on the document images. This type of methods are quite effective

when the gray intensities of the bleed-through strokes (caused by the texts on the

other side) are significantly different from those of the foreground texts. Especially,

when the gray intensities of bleed-through interferences are lower than those of
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(a) (b)

(c) (d)

Figure 4.1: Sample document images that are impaired by bleed-through distor-
tions. Image (a) is the recto side of document 1; Image (b) is the flipped verso side
of document 1; Image (c) is the recto side of document 2; Image (d) is the flipped
verso side of document 2
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the foreground texts, these method can achieve their best performance. On the

contrary however, when the intensities of bleed-through strokes and foreground

texts are similar, these methods tend to either remove many foreground texts or

leave too many bleed-through strokes.

Considering the fact that bleed-through strokes on one side were caused by

the foreground texts on the reverse side of a document, sophisticated separation

methods like directional wavelet decomposition [TCS02], ICA (Independent Com-

ponent Analysis) [TBS04,TSB07] were then proposed to segment foreground texts

from bleed-through strokes. Since more information is employed in the classifica-

tion procedure, this class of methods are believed to be much more accurate. Most

importantly, they are more robust to work on both slightly degraded documents

and severely degraded documents. The bottleneck of these methods however is that

the two sides of a document need to be perfectly aligned before any classification

based restoration procedure.

Perfectly registering the two sides of a document is difficult for five reasons.

From the very beginning, we should be clearly aware that the matching components

in this image registration application is the foreground text on one side and the

corresponding bleed-through shown on the other side. Then we elaborate on these

five reasons as follows. First, unlike other image registration applications such as

panoramic image creation, image features used for image registration are difficult to

be accurately extracted from historical documents. In general, both the foreground

texts which cause bleed-through and the caused bleed-through interferences are

blur, which makes it difficult to precisely locate image features such as corners,

boundaries. Second, the gray intensities of matching components are generically

highly different, which also raises the requirement for image similarity.
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Third, the high frequency of missing matchable counterparts can even fail the

image registration procedure. Depending on the practical condition of each docu-

ment, the total number of and the severity of the bleed-through interferences are

various. Fourth, the transformation model between the two images to be registered

is unknown and complicated. On the one hand, due to long-term preservation, es-

pecially in moist environment, these documents variously stretched/shrank and

formed uneven surfaces, which resulted non-linear local deformation on captured

images. On the other hand, most historical documents are too fragile to be pressed

flattened on scanning planes, which causes geometrical distortions like warping ef-

fects, translation/rotation displacements. Fifth, although pixel-level registration

accuracy is required, there are no proper ways to evaluate the performance of the

proposed registration method. Given a distorted document, there is no such ground

truth as the deformation pattern and parameters of the document. Nor could we

determine which registered document is the best.

For the reasons discussed above, currently the registration task for historical

document restoration is mostly done manually. In the image processing tool box

of Matlab, there is a function routine called ‘cpselect’ which provides a GUI for

users to select control points from a pair of images. Then by providing the type

of a transformation model, another routine can estimate the parameters of the

selected transformation model. The first problem with this semi-automatic strategy

is that in most cases, the type of transformation model is unknown. What’s more

important is that there are only two rigid transformation models available right

now.

To fill in the gap between historical document capturing and historical doc-

ument restoration, a few studies on automating this registration procedure have

been made [WT01]. However, a common problem remains as that the accura-
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cies of these methods are unsatisfactory due to the rigid transformation models

they used. Therefore, in this chapter, we present a unified framework which com-

bines rigid coarse registration and non-rigid fine registration methods for historical

manuscripts to be effectively restored without human intervention.

4.3 Framework Overview

At the beginning, we manually pair the two side images of a document and roughly

align them. Based on the layout of the document, we vertically or horizontally flip

one of the images to get its mirror image. Without losing generality, we refer the

flipped image as target image (verso image) and the intact side one as reference

image (recto image). The two images first go through a rigid coarse registration

procedure as presented in Section 4.4. In this procedure, a similarity transformation

is estimated so that the global translation and rotation deformations between the

two images are corrected. In many cases, this coarse registration is sufficient for

subsequent bleed-through correction tasks. However, with documents that are

severely distorted by local deformations such as uneven surfaces or warping effects,

a fine registration as presented in Section 4.5 is required.

For the fine registration of these documents, we first extract certain number

of salient control points from the two images and establish the correspondences

between them by minimizing a combined distance measure (as shown in Section

4.5.1). These matched point pairs are then used to estimate a free-form transfor-

mation model that is based on B-splines. During this procedure, we use residual

complexity (RC) as similarity measure and regular the estimated transform with

smoothness constrain. Once the two images of a historical document have been

precisely registered, we apply a wavelet-based method (as in Section 4.6) to cor-
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Figure 4.2: The built framework for historical document image restoration.
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rect the bleed-through distortions on the two images. Figure 4.2 shows the general

structure of the proposed historical document restoration framework.

4.4 Rigid Coarse Registration

As we have discussed in the previous section, one major problem that arises when

aligning the two sides of an old handwritten document is the varying intensities

of the interfering strokes relative to the corresponding original strokes. In certain

cases, the interfering strokes have very similar intensity to the original strokes.

While in other cases, interfering strokes are very faint or can hardly be found

because their original strokes slightly seeped or did not seep through the page. As

the alignment is actually between the interfering strokes and the corresponding

original strokes, weak or lacking of interfering strokes will significantly impair the

alignment accuracy, especially for documents without dominant text areas.

To overcome this problem, at this coarse registration stage, we use a pair of

extracted anchors instead of the two whole images to globally align the document.

The anchors are defined as a pair of sub-images that are located at the same

position of the recto image and the verso image respectively. These two sub-images

are expected to capture all and only capture the global transformation between the

two images of a document, such as translation distortion and rotation deformation.

In our approach, we chose the anchors in an intensively overlapping region, where

the observed “texts” on both sides of the document have the highest intensity.

The high intensity is generally caused by the combination of foreground strokes

and bleed-through strokes. As the interfering strokes on both sides are intensive,

the extracted anchors capture more information on the correspondence between

the original strokes and their bleeding strokes. Moreover, since only a pair of small
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(a) recto (b) verso

Figure 4.3: Illustration of the extracted main text areas, the intensively overlapping
regions and the search window on the verso image.
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sub-images are involved in computation, this strategy can significantly reduce the

processing time and memory consumed by considerably large images.

To extract the anchors from the recto image and the verso image, we need to

identify the intensively overlapping region. For this purpose, the main text areas

on the two images are detected using a global thresholding technique. The size

of this overlapping region is automatically adjusted based on the minimum size of

main text areas on the two images and the average intensities of the two images,

as shown in Equation 4.1:

Sover ∝ min{Srmain
, Svmain

} (4.1)

with constraints Iro > αIr and Ivo > αIv, where Iro and Ivo are the average identities

of the overlapping region on the recto image and the verso image respectively. α

is a constant and is set to 1.2 in our experiments.

By computing the average intensities of all sub-images with size equal to Sover

and globally searching on the two images to be registered, an optimal solution

that satisfies the above requirements can be achieved. This procedure, however, is

extremely computationally expensive even dynamic programming techniques are

applied to reduce the computational load. Therefore, in our method, we search

for a local optimal solution. The detailed procedure to search for this overlapping

region can be described as follows:

• Step 0: set the target images to be the two original images and the grid size

to be 200*200;

• Step 1: divide the target images into grids;

• Step 2: search for the grids with the highest intensities on the two target
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images;

• Step 3: merge all neighboring grids of the most intensive grid to form new

target images;

• Step 4: decrease the grid size and go to step 1;

• Step 5: iterate the above steps until the current grid size reaches the specified

value;

It is noticed that when selecting the overlapping region, boundary areas should

be avoided, because warping distortion due to binding effect usually appear in these

areas and this local warping deformation should not be interpolated to the whole

image.

(a) recto (b) verso

Figure 4.4: A pair of sub-images that have been extracted from the recto image
and the verso image of the document shown in Figure 4.3

Once such a region is found, the sub-image that centers at this location on

the recto image is chosen as one of the anchors, which is shown in Figure 4.3(a).

Then we search for the corresponding sub-image on the verso image of the same
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document. The searching procedure is performed within a window with a larger size

than the recto anchor, as shown in Figure 4.3(b). At this coarse registration stage,

we only focus on the global translation and rotation deformations between the two

images, therefore, only candidate sub-images in the area as shown in Figure 4.5 are

examined. The similarities between the recto anchor and the matching candidates

on the verso image are measured using block matching strategy. In particular, we

adopt the normalized correlation coefficients that are defined as follows for this

purpose:
m∑
i=1

n∑
j=1

(Irij − Ir)(Ivij − Iv)√√√√ m∑
i=1

n∑
j=1

(Irij − Ir)2 ·

√√√√ m∑
i=1

n∑
j=1

(Ivij − Iv)2
(4.2)

where Ir, Iv are the average intensities of the recto and verso images respectively.

Figure 4.4 shows a pair of extracted anchors. The correspondence between them

now can be used to align the recto and verso images.

(a) translation (b) rotation

Figure 4.5: Illustration of the search strategies to correct the global translation and
rotation deformations on a document image.

To show the effect of this coarse registration procedure, we apply a bleed-

through correction technique (as presented in Section 4.6) to the originally un-
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aligned document images and the coarsely registered images and compare the re-

sults. As we can see from Figure 4.6, this coarse registration procedure significantly

improves the performance of the subsequent bleed-through correction procedure.

However, as also shown in the figure, many bleed-through strokes still remain. In

particular, in some areas, such as the circled regions in Figure 4.6(b), 4.6(d), orig-

inally only bleed-through strokes are present in these regions and the intensities of

these interfering strokes are very similar to those of the corresponding foreground

strokes originating from the reverse side of the paper. Using our bleed-through

correction method, these bleed-through interferences should be fully removed, if

the two sides of the document are precisely aligned. Therefore, finer registration of

the recto and verso image is essential to fully remove bleed-through interferences.

4.5 Non-rigid Fine Registration

As we have discussed in Section 4.4, some historical documents that were degraded

by severe local deformations need a finer registration method so that the present

bleed-through distortions can be fully removed. These local deformations are usu-

ally caused by stains (water, coffee or other liquids), moist environment and binding

effects. The first two factors make a historical document locally uneven through

long-term preservation in the archives. Meanwhile, due to aging, these documents

become too fragile or these documents were bound in too many pages so that they

can not be pressed flat towards the scanning plane, which also causes local warp

in the captured images. These local deformations are non-rigid and can not be

estimated with the coarse registration method described in the previous section.

Therefore, in this section, we present a non-rigid fine registration method that is

tailored to severely degraded document images.
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(a) no alignment (b) coarse alignment

(c) no alignment (d) coarse alignment

Figure 4.6: Resultant images after applying bleed-through removal technique on
the originally unaligned images and the coarsely aligned images. Images (a-b) are
for sample image 1; Images (c-d) are for sample image 2
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4.5.1 Control Point Selection

As we have mentioned before, the components to be registered in this application

are the foreground texts on one side of a document and the bleed-through inter-

ferences that are present on the other side of the document. As discussed in the

previous section, depending on the conditions of the physical documents, the in-

tensity patterns of the showing bleed-through interferences are highly different. On

the one hand, both the original foreground strokes which cause bleed-through in-

terferences on the other side and the corresponding bleed-through strokes are blur.

On the other hand, as these documents are handwritten, characters, words or even

text lines are often connected, which makes automatic component detection or ob-

ject labeling almost impossible. Therefore sophisticated image features that can

be used for image registration such as corners, object boundaries are difficult to be

precisely extracted from these historical document images. Meanwhile, as we have

said historical documents are often affected by unevenness effect which is caused by

moist environment during long-term preservation. This unevenness effect usually

results local deformations between the two side images of a document. In order to

address these local deformations, pixel-level image registration accuracy is required

in this application.

Therefore, as complex image features are difficult to be located in historical

document images and as pixel-level registration accuracy is required, in this work,

we use corresponding control points to perform the registration task. According

to our experience on manually selecting control points from historical document

images, points which contain pure foreground text or pure bleed-through interfer-

ence are much easier to be accurately detected. Such points are also easier to be

perfectly matched due to their simple local structures. Meanwhile, due to people’s

writing pattern in English, foreground strokes that slant at particular angles are
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Figure 4.7: Illustration of the procedure to detect control points from the two
images of a document. Images (a-b) are the two side images of a document; Images
(c-d) are the binary versions of the two side images; Images (e-f) are the gradient
direction maps of the two images; Images (g-h) show the candidate control points
that have been identified from the two images.

usually much stronger than other foreground strokes and thus have more chances

to cause bleed-through distortions on the other side of the page. Therefore, points

that satisfy these two conditions are in high probability of having a matching com-

ponent and are easier to be accurately located. Based on these heuristic knowledge,

we select corresponding control points from the two images to be registered with

the algorithm described as follows:

• Identify candidate control points that satisfy the following conditions from

the two images:


θxy ⊗ (θxy > θl)⊗ (θxy < θh)⊗Bxy 6= 0

Mxy ⊗ (θxy > θl)⊗ (θxy < θh)⊗Bxy 6= 0

Ixy ⊗ (θxy > θl)⊗ (θxy < θh)⊗Bxy 6= 0

(4.3)
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where θxy, Mxy, Ixy and Bxy represent the gradient direction, gradient mag-

nitude, dense intensity and binarized value of point (x, y). To compute Bxy,

we binarize the images with an adaptive binarization procedure [Ots79]. Pa-

rameters θl and θh are thresholds to filter the gradient direction maps and ⊗

represents Hadamard product. In our experiments, θl and θh have been set

as −1.8 and −0.5 (approximately 120◦ and 150◦). According to our experi-

ence and experiments, points satisfying these conditions are most possible to

cause strong bleed-through interference. Therefore, in this way, we make sure

that most selected control points on the reference image have a correspond-

ing point on the target image. Figure 4.7 illustrates this feature selection

procedure and shows some detected candidate points.

• Establish the correspondences between the selected points on the reference

image and the selected points on the target image by minimizing a distance

measure that combines gray intensity I, gradient magnitude M , gradient

direction θ and displacements x− x′, y − y′:

Dis = wi(Ixy − I ′x′y′) + wm(Mxy −M ′
x′y′)

+wθ(θxy − θ′x′y′) + wd
√

(x− x′)2 + (y − y′)2
(4.4)

where wi,wm,wθ,wd are the weights that specify the relative importance of

gray intensity, gradient magnitude, gradient direction and displacement when

determining the correspondences between points. In our experiments, we

have empirically chosen [1, 3, 10, 20] corresponding to [wi, wm, wθ, wd].

• Check the displacements of each point pair block by block to correct non-

collectively occurring mismatches. As the established correspondences are

supposed to be locally continuous, point pairs that have a displacement larger
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than the median displacement of the local block are regarded as mismatches

and discarded. To achieve this, we group the detected points into 8×8 blocks

and compute the median displacements of each block as:

 dxB = Median(xi − x′i)

dyB = Median(yi − y′i)
(4.5)

where i = 1 · · · n. n is the number of control points in each block. The

detected point pairs with displacements larger than 2dxB or 2dyB are removed

as mismatches.

• Switch the roles of recto image and verso image to conduct consistency check-

ing. This step is useful for documents with severe bleed-through distortions

on both sides and could further refine detected control point pairs.

The number of the detected control points can be controlled by thresholding

on Dis or directly set. Figure 4.8 shows some of the detected corresponding control

points with small distances. It is noticed that the control points that have been

extracted for now are randomly distributed. However the subsequent cost function

estimation procedure is based on uniform control point meshes. Therefore, we

employ a cubic interpolation method to construct control point meshes with the

detected control points:

P (x, y) =
3∑
i=0

3∑
j=0

aijx
iyj (4.6)

where aij are 16 coefficients which are determined by the values and derivatives of

the functions at the four corners of the square centering at point (x, y).
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Figure 4.8: Illustration of the matched control point pairs.

4.5.2 Free-form Mapping Function

We model the spatial relationship between the two images to be registered with

a free-form transformation model which is based on a 3 hierarchical levels of B-

spline [RSH+99]. The transformation model consists of two components which are

sequently optimized in a hierarchical structure (coarse to fine).

T (x, y) = Tglobal(x, y) + Tlocal(x, y) (4.7)

Tglobal is an affine transformation (as shown in Equation 5.6) which is supposed

to capture the global rotation, translation and non-isotropic scaling deformations

between the two images.

Tglobal(x, y) =


a11 a12 tx

a21 a22 ty

0 0 1




x

y

1

 (4.8)

Tlocal is defined as the tensor product of the cubic B-splines (as shown in

Equation 5.7), which is expected to describe the local deformations between the
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two images. Such a transformation model is chosen as it is flexible enough to

capture the local deformations as much as possible and meanwhile it is capable

of producing a locally smooth and continuous transformation. Apart from these

factors, B-splines are locally controlled, which makes them computationally efficient

for a large number of control points.

Tlocal(x, y) =
3∑

m=0

3∑
n=0

Bn(u)Bm(v)φi+n,j+m (4.9)

where i = bx/nxc − 1, j = by/nyc − 1, u = x/nx − bx/nxc, v = y/ny − by/nyc and

[nx, ny] is the size of the control mesh. φ denotes the mesh of control points and

Bi refers to the ith basis function as shown below.



B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

(4.10)

4.5.3 Cost Function Optimization

In order to estimate the parameters in the transformation model that has been

defined in Section 4.5.2, we define a cost function that also consists of two compo-

nents.

C = Csim(Ixy, T (Ixy)) + λCsmo(T ) (4.11)

where Csim refers to the similarity of the registered images, which ensures an ac-

curate transformation model. Csmo is a regularization term to make sure the esti-

mated transformation model is smooth. λ weights the relative importance of the

two constrains and was set to 0.02 in our experiments.
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The similarity measure used in this work is residual complexity which is the

compression complexity of the residual images between the two registered im-

ages [MS09]. This similarity measure is used as the intensities of the matching

components (foreground strokes vs bleed-through interferences as we have dis-

cussed before) in this application are significantly different, dependent and non-

stationarily distorted. To be specific, residual complexity can be summarized as

follows:

Csim =
∑N

n=1 log((qTnr)2/α + 1)

qn = dctn(r)

r = Iref − T (Itar)

(4.12)

where r refers to the residual image and dctn is the multidimensional DCTs. α is

a trade-off parameter and is set to 0.05 in our experiments.

For implementation simplicity and time efficiency, Csmo is currently chosen as

the space integral of the square of the second order derivatives:

Csmo = 1
s

∫ ∫
[(∂

2T
∂x2

)2 + (∂
2T
∂y2

)2 + 2(∂
2T
∂xy

)2]dxdy (4.13)

where s denotes the area of the image domain and T represents the estimated trans-

formation. For the purpose of function optimization, gradient descent method is

adopted and the estimated transformation model is iteratively refined with in-

creasing size of control points. In our implementation, the optimization procedure

terminates when the relative function difference is larger than a threshold or the

maximum number of iterations has been reached. We avoid finding some local

minima by reducing the optimization step size and slightly increasing the value of

the objective function. Figure 5.8 shows an example of the fine registration result.
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Figure 4.9: Illustration of the fine registration procedure. The images from top
to bottom and left to right are: the reference image (the one to be registered to),
the target image (the one to be registered), the registered target image and the
estimated transformation map

4.6 Ink Bleed-through Correction

Once the two images of a document have been registered, we employ the wavelet-

based method as proposed in [TCS02] to correct the bleed-through distortions

on the document. In general, this method suppresses bleed-through distortions

and enhances foreground texts by modifying the wavelet detail coefficients of the

document images. The detailed steps for this approach is summarized as follows:

• Compute the foreground overlay image a(x, y) for the recto image f(x, y) of
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a document as:

a(x, y) = flip(invert(b(x, y))) + f(x, y) (4.14)

where b(x, y) refers to the registered verso image of the same document. This

step actually conducts a subtraction between the two images, which coarsely

cancel some bleed-through interferences.

• Further weaken the suspected bleed-through interferences on the foreground

overlay image a(x, y) by scaling it with a nonlinear transformation as follows:

curve(x) = 2k − 1− ((2k − 1)2 − x2)0.5 (4.15)

This step is supposed to increase the density differences between the fore-

ground texts and the bleed-through distortions, which means the foreground

texts get enhanced and the bleed-through distortions get suppressed.

• Detect the foreground strokes on the foreground overlay image a(x, y) using

a modified canny edge detector that is regularized with orientation filters

and other constraints [CTWS00,TCS+00] to form the “enhancement feature

image”, E(x, y).

• Switch the roles of f(x, y) and b(x, y) and conduct the above steps on the

registered verso image b(x, y) to gain the “smearing feature image”, S(x, y).

• Decompose an original image (f(x, y) or b(x, y)) into wavelet domain while

retaining the size of the image as:

wf(x, y) = {Cj(x, y), Dk
j (x, y), j = 0, · · · , k = 1, 2, 3}
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Figure 4.10: A degraded document image (cropped from a larger image) and the
resultant image after fine registration and bleed-through correction.

where Cj(x, y) is the wavelet approximation coefficient and Dk
j (x, y), (k =

1, 2, 3) are the wavelet detail coefficients at scale j of the wavelet decomposi-

tion.

• Modify the wavelet detail coefficients by referring to E(x, y) and S(x, y):

Dk
j (x, y) =

 ekjD
k
j (x, y) if E(x, y) == 1

skjD
k
j (x, y) if S(x, y) == 1

(4.16)

where j = 0, · · · , J ; k = 1, 2, 3.

• Reconstruct the wavelet representation of the original image with the modi-

fied wavelet detail coefficients.

• Iteratively repeat the decomposition and reconstruction procedure at most 15

times to get the restored images with foreground texts enhanced and bleed-

through distortion reduced.

• Apply the same edge detector to the enhanced images to obtain the final

output images. Figure 4.10 shows a document image that is degraded by

severe bleed-through distortions and the restored image after fine registration
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and bleed-through correction. As we can see from the figure, although some

foreground strokes are mistakenly broke, the restored image is much better

for human perception than the original one. With certain recovering methods

that can connect the broke foreground strokes, the quality of the resultant

images can be further improved.

4.7 Experiments and Results

We have tested the proposed framework with 28 double-sided historical documents

(56 images) from the national archives and the experimental results are encourag-

ing. Our experiments were conducted on a Pentium 4GHZ CPU with MATLAB.

Typically, it takes 5 minutes to process a pair of images scanned at 150dpi and

with a size of 1800× 2800. This speed is acceptable since most document restora-

tion tasks are conducted off-line and with more powerful machines and parallel

strategies, this time cost can be further reduced. To assess the proposed frame-

work, visual assessment was first performed by the experts working at the achieves

for qualitative evaluation. In particular, we compared the results from this new

framework with those of other three methods [TCS+00,WBT09,WT01]. As shown

in figure 4.11, this new framework produced better results for most testing images.

No. of words 47 241 134 79 83 257 209 189 217 145 97 89 Average

Precision Q Wang [14] 87 57 63 76 82 47 58 76 62 64 71 68 62.4
(%) J Wang [12] 92 79 84 89 88 73 81 79 78 86 84 90 83.6

Proposed 97 88 89 95 93 81 87 90 87 84 88 89 89
Recall Q Wang [14] 91 65 80 82 85 72 69 77 79 68 83 81 77.7
(%) J Wang [12] 96 76 87 91 90 79 73 87 81 79 91 86 84.7

Proposed 95 83 93 97 89 86 84 92 87 84 96 94 90

Table 4.1: Quantitative evaluation and comparison of the proposed bleed-through
correction method with other methods

For quantitative assessment, we manually labeled 12 documents (4 slightly
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(a) Tan [TCS02] (b) Q Wang [WT01]

(c) J Wang [WBT09] (d) Proposed

Figure 4.11: The comparison of the resultant images that have been produced by
different bleed-through correction methods.
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degraded, 4 moderately affected and 4 severely impaired as shown in Figure 4.1)

with “ground truth”. To be specific, we counted the following numbers: the total

number of foreground words Nfgd on the image; the number of words detected

after applying this restoration method Ndetect; the number of words correctly de-

tected after restoration Ncorrect. When calculating these numbers, connected words

were counted separately. Ndetect included fully detected foreground words and par-

tially or fully detected interfering words. However, only fully detected foreground

words were counted in Ncorrect. With these numbers, the proposed framework was

evaluated with the traditional document analysis metrics as:

Precision =
Ncorrect

Ndetect

, Recall =
Ncorrect

Nfgd

(4.17)

Table 4.1 lists the results of 12 degraded documents from the new framework

and the other two methods in [WBT09,WT01]. As we can see, the average restora-

tion precision and recall of the proposed framework are 89 and 90, respectively,

which are higher than those of the other methods. Moreover, experiments show

that when working on severely degraded manuscripts, the new framework is more

robust.

4.8 Conclusion and Discussion

In this chapter, we have presented a unified framework which consists of rigid and

non-rigid methods to register the two sides of a historical document so that the

bleed-through distortion on the document can be fully corrected. The rigid reg-

istration method in the framework can handle historical document images with

slight geometric distortions. It selects a sub-image with high intensities on both
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(a) (b)

Figure 4.12: A historical document image that has been impaired by severe bleed-
through distortions and background noise and the resultant image that was pro-
duced by our restoration framework.
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sides and uses it to estimate an affine transformation. For document images with

severe geometric distortions, mainly warping effects and local uneven surfaces, the

non-rigid image registration method is also applied to further fine the registration

result. The non-rigid method makes use of the gradient maps of the document

images and people’s writing pattern to detect salient control points for registra-

tion. To capture the local deformations on severely degraded document images,

we employ a free-form transformation model which combines affine and B-splines.

As the two images to be registered are of different intensities, residual complexity

is used for similarity measure. The estimated transformation model is regularized

by the space integral of the square of the second order derivatives to ensure the

smoothness of the transformation. We have evaluated the proposed method by ap-

plying a wavelet-based bleed-through correction method to the registered images

and calculating restoration accuracy and recall.

In this work, we assessed the registration framework by evaluating the re-

sultant images after bleed-through correction. On the one hand, counting those

numbers (as in Section 4.7) is time consuming. On the other hand, the final ac-

curacy is contributed by the registration procedure and bleed-through correction

procedure. So technically, we didn’t actually evaluate the registration framework.

As shown in Figure 4.11, although most interfering strokes have been removed from

the document, many foreground texts are also mistakenly broken. So we are con-

sidering adding a post-processing routine to recover broke foreground strokes after

this restoration procedure so that the quality of resultant images could be further

improved.



CHAPTER 5

Groupwise Registration of Brain CT Scans

As shown in Section 1.1, image registration is a fundamental task in medical imag-

ing. Nowadays, the commonly used medical tests include Computed Tomography

(CT) scans, Positron Emission Tomography (PET) scans, and Magnetic Resonance

Imaging (MRI) scans. Each of these tests serves different diagnosis procedure. For

instance, head CT scans are suitable for bone fracture detection and tumor identifi-

cation. In contrast, brain MRI scans are more popular in evaluating and diagnosing

the presence of certain diseases as they produce detailed pictures of organs, soft

tissues and all other internal body structures. In general, the image registration

methods used in medical domain fall into two groups: single-modal and multi-

modal ones. A typical application of single-modal image registration methods is to

build an atlas with the sample images. For instance, in this work, we attempt to

construct a head CT atlas with the scans from different study cases. Multi-modal

image registration is to transform scans that were taken by different medical tests

to the same coordinate system for comparison and fusion. For instance, we often

need to register CT scans to MRI scans to get more structural details.

79
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In this chapter, we develop a groupwise image registration framework which

is capable of constructing a brain CT atlas with multiple CT scans from differ-

ent study cases. The groupwise registration framework is built upon a non-rigid

pairwise image registration method which is presented in Section 5.4. To achieve

this, we first group CT scans which are normal or have minor abnormalities into

different clusters. Within each cluster, we register all the slices in the cluster to

the central slice of the cluster and compute an intermediate average slice with all

the registered slices. The final atlas is the combination of all these intermediate

average slices as shown in Section 5.3. We have demonstrated that the built atlas

can be used to index the input slice in the axial direction of the brain (as shown in

Section 5.5). The atlas is also useful in detecting the abnormalities on the input

slices which are affected by severe traumatic brain injury (presented in Section 5.6).

5.1 Introduction

Due to their importance in the diagnosis of traumatic brain injury (TBI), large

amount of computed tomography (CT) scans are stacked in the hospital radiol-

ogy department. To facilitate convenient access of these CT data, a variety of

retrieval systems have been proposed. In particular, content-based image retrieval

(CBIR) systems have been widely studied and have demonstrated promising re-

sults [LGW+10]. One major advantage of CBIR systems is they provide the re-

trieval function called ‘query by example’ by which CT slices that are visually or

anatomically similar to the input slice are searched and retrieved. This function is

useful for doctors’ diagnosing procedure and the training of medical students.

In general, one axial CT scan contains 19 to 24 slices that are captured at

different heights along the axial direction of the brain. Figure 5.1 shows the 18 slices
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of one study case. Thus the search space of a CBIR system could be huge when

extremely large scale data set is involved. Meanwhile, time efficiency is critical

for all real-time CBIR systems and computer-assisted diagnosis (CAD) systems.

Therefore, reducing the search spaces of CBIR systems is essential. Slice indexing

refers to the procedure of determining the heights of the input slices along the

axial direction of the brain. It functions as a preprocessing step in CBIR or CAD

systems to reduce the search space and regularize retrieval results. Based on these

knowledge, it is known that the performance of slice indexing will significantly

affect the overall efficiency and precision of the whole retrieval system.

Figure 5.1: The 18 brain CT slices of a real-world study case. The numbers below
the images indicate their heights in the axial direction of the brain. The number
increases as the height that the slice was taken increases.

When reviewing the existing methods for slice indexing, we found two lines

of approaches that can be represented by [LLP+10, GKN08]. The first group of

methods attempt to register 2-D slices to a 3-D atlas with planar-to-curved surface

alignment method and PDE-based registration technique [GKN08]. The major

problem with this approach is the time efficiency, which makes it difficult to be
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applied in real-time systems. The other group of methods extract anatomical

features such as basal cistern, frontal horn and cerebrospinal fluid (CSF) from the

input slices. Based on these features, the input slices are grouped into predefined

levels with classifiers like SVM [LLP+10]. Compared against methods in the first

group, this approach is relatively faster, however, segmenting these anatomical

features from the image is still time consuming. More importantly, the robustness

of this approach is questionable when the input slices are significantly distorted due

to severe TBI. In this scenario, distorted anatomical features either are difficult to

be precisely extracted or severely impair the classification results.

In this chapter, we build a brain CT atlas by registering multiple CT scans

which are normal or with minor abnormalities. As we have discussed before, regis-

tering multiple images requires a strategy for groupwise registration. In this work,

we propose a cluster-structured groupwise registration method which is built on

free-form pairwise image registration. First, CT slices from normal study cases

are normalized with method presented in section 5.2 to correct pose difference.

Normalized slices which are at the same height along axial direction are then cate-

gorized into clusters with a k-means classifier. Within each cluster, all slices (from

different study cases) are registered to the center of the cluster with a free-form

pairwise image registration method described in section 5.4. Following the steps

in section 5.3, a brain CT atlas is built by computing an average image for each

height along the axial direction. All the above work are conducted off-line once.

Given an input slice with abnormalities, we can determine its height along the

axial direction of the brain by registering the slice to the atlas. Furthermore, by

comparing the input slice with the standard slice in the atlas, we can locate and

identify the abnormal regions in the input slice.
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5.2 Slice Normalization

All the CT slices used in this work are real data directly extracted from GE cen-

tricity DICOM (Digital Imaging and Communications in Medicine) system. Apart

from the intrinsic differences caused by the variety of the study cases, other defor-

mations have also been introduced in the scanning procedure such as pose differ-

ences, different starting positions in the axial direction etc. Therefore, all the input

slices need to be normalized before any subsequent analysis tasks. To achieve this,

we first fit an ellipse to the inner boundary of the skull with a numerically stable

non-iterative method [HF00]. The method is based on a least squares minimization

method [HF00] to solve the problem:

arg min
α
‖Dα‖2 subject to α>Cα = 1 (5.1)

where α = (a b c d e f)>, representing the coefficients of the ellipse:

F (x, y) = ax2 + bxy+ cy2 + dx+ ey+ f = 0 with constraint b2− 4ac < 0 (5.2)

In Equation 5.1, C represents the constraint matrix (6*6):

D =

 C1 0

0 0

 where C1 =


0 0 2

0 1 0

2 0 0

 (5.3)

and D, also known as design matrix, is a N ∗ 6 matrix (x2i xiyi y
2
i xi yi 1). As no

iterative steps and computational ambiguity are involved in the method, the fitting

method is very fast and stable. With the axes and centroid of the fitted ellipse, we

then estimate the rotation angle and translation displacements of the input slice.
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Figure 5.2 shows the ellipse we fit and the corrected slice. After pose correction,

we resize all slices to [350 350].

Figure 5.2: The pose correction of an input CT slice with an ellipse fitting method.
Image (a) is the original slice; Image (b) shows the inner boundary of the skull and
the fitted ellipse (drawn in blue); Image (c) is the slice after pose correction.

Figure 5.3: Samples of the normalized slices.
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5.3 Groupwise Registration for Atlas Construc-

tion

As mentioned in Section 2.7, one of the typical applications of groupwise image

registration is to construct an atlas which describes the anatomical variations of

populations by registering multiple scans from different patients. In this work, we

develop a cluster-based groupwise registration framework to build a brain CT atlas

with the scans from different study cases. For this purpose, we have selected 63

series of CT scans which are normal or have minor abnormalities. Each of these

scans consists of 19 slices that are captured at increasing heights along the axial

direction of the brain. Figure 5.4 shows some of the slices that we have chosen for

the 6th level. With the method proposed in Section 5.2, we normalize these slices.

Some of the normalized slices are shown in Figure 5.6.

Unlike MRI scans, the CT scans that most hospitals are using are very sparse,

which makes the inter-slice interpolation results either too blur or contain too much

edge halos. Therefore, our strategy of building a brain CT atlas is to calculate an

average slice for each level along axial direction of the brain instead of constructing a

truly 3D model. The simplest way to compute such an average slice is to uniformly

averaging on all the normal slices that are labeled with the same level number.

Figure 5.5 shows part of the atlas resulting from this direct averaging method. As

we can see from the figure, the resultant average slices are very blur and lose most

details especially in the boundary regions and tissue areas. Therefore, registering

the slices that are labeled with the same level number before computing the average

slice is essential.

As discussed in Section 2.7, a simple way to register a set of slices is to register
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Figure 5.4: Samples of the selected normal (or with minor abnorlity) slices for level
6 (along the axial direction of the brain).
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Figure 5.5: The average slices of level 6 to level 13 in the built atlas that was
constructed with a direct averaging method.

all the slices (at the same level) to one particular slice. The referenced image (the

one that all slices are registered to) could be the first one or a random one in the

image set. For instance, an image that is the closest to the geometric mean of the

image population is selected as a template and all other images are registered to

it [PBIM05]. As mentioned in Section 2.7, this type of groupwise image registration

methods inevitably introduce bias to the registration results due to the use of a

particular template. This situation can be even worse in our registration task. Due

to the variety of patients’ heads, the starting positions where the first CT slice was

taken can be very different, which means even the slices with the same level number

(along the axial direction of the brain) can be greatly different. If the reference slice

we choose is far from the majority of the slice population, the computed average

slice will fail to describe the anatomical variations of populations. An extreme

method to reduce the registration bias is to perform pairwise registration on all
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possible image pairs and each image is deformed by all the deformations that are

estimated between the image and all other images [SAM+04]. This method however

suffers from the extensive computational cost and severe blurring effects.

Alternatively, the procedures of registering and averaging can follow certain

structures like a tree and intermediate templates are used to connect individual

slices [WCS09, MTW09]. For instance, [WCS09] constructs a tree of images by

clustering images hierarchically into small-scale sub-groups and registration starts

from the sub-groups on the leaf nodes. A more sophisticated method of this kind is

to build a minimum spanning tree (MST) where each node represents an image and

the edge between two nodes denotes the distance between the two images [MTW09].

The root node represents the final registration result, which can be determined by

selecting a node that has the minimal edge length to all other nodes. [JWWS10]

has shown that cluster-based groupwise registration methods usually outperform

centralized registration methods.

In our work, as the slices labeled with the same level number have great varia-

tions, we organize the slices in a three-level tree where the leaf nodes are grouped

into different clusters and the root represents the final average slice. The interme-

diate nodes in the second level of the tree are the average slices of each cluster.

The edges between these intermediate nodes and the root denote the importance of

the intermediate nodes, which are now computed as the probability of the cluster

that the intermediate node belongs to. Within each cluster, for the time being, we

manually assign the centroid of the cluster and all the other slices in the cluster

are registered to the central slice with pairwise registration methods that will be

presented in Section 5.4. Figure 5.6 shows the three clusters and some of their

members for slices at level 6 in the axial direction of the brain.
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Figure 5.6: The three groups of normal slices at level 6. The slices in the same row
belong to the same group and the first slice in each row represents the centroid of
the group.
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With the registered slices in one cluster, an intermediate average slice is com-

puted for that cluster by averaging all the registered slices. The final average slice

for a particular level is calculated as:

I =
N∑
i=1

Ni

N
Ii where N = sumN

i=1Ni (5.4)

where Ii is the intermediate average slice of the ith cluster and Ni is the number of

slices in this particular cluster. Perform the above steps with all the 12 levels, we

can build an atlas as partially shown in Figure 5.7.

As we can see, compared with the atlas shown in Figure 5.5, this new atlas

constructed with groupwise registration procedure is much clearer and contain more

details on the brain tissues. In Section 5.5, we will show how this atlas can be used

to determine the axial level of an input slice. Moreover, a fine atlas like this can

also contribute to the detection and location of the abnormal regions on an input

slice that is affected by TBI. We will briefly show this in Section 5.6.

5.4 Pairwise Registration of Brain CT Scans

As discussed in the previous sections of this chapter, we build the groupwise image

registration framework upon a non-rigid pairwise registration method. In this

section, we present this pairwise registration method in details.

As we can see from the above images, brain CT scans contain a lot of ho-

mogeneous areas, which makes it difficult to extract image features or anatomical

structures. Therefore, in this work, we conduct pairwise registration on pixel level

and use the dense intensity information. As we will discuss in Section 5.7, this step

can be improved by using some salient control points instead of randomly selected
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Figure 5.7: The average slices for level 6 to level 14 in the atlas that has been
constructed with our groupwise image registration method.
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points.

5.4.1 Transformation Model

As in other applications, in order to register two CT slices, we need to define a

transformation model which can describe the deformations between the two images.

Since the two CT slices to be registered were taken from different study cases ie.

different patients, the transformation between them is unpredictable and nonuni-

form and rigid transformation models are inadequate to capture the deformation

between them. Therefore, in this work, we employ the free-form transformation

model as the one we used in Chapter 4:

T (x, y) = Tglobal(x, y) + Tlocal(x, y) (5.5)

As we have explained in the previous chapter, the final transformation model con-

sists of the affine-based global transformation (as shown in Equation 5.6) and the

B-splines based local deformation (as shown in Equation 5.7). These two transfor-

mations together are expected to capture all the deformations between slices.

Tglobal(x, y) =


a11 a12 tx

a21 a22 ty

0 0 1




x

y

1

 (5.6)

In Section 4.5.2, we have explained that this transformation model was used

as it usually produces smooth and continuous transformation and B-splines are

locally controlled. Apart from these reasons, this transformation model is chosen

for this registration task for splines are more suitable to describe the soft-tissue
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type of deformations between slices from different patients. However, compared to

the work in Chapter 4, the transformation model estimated in this work needs to

be smooth and continuous in larger size of sub-images or even the whole image.

Tlocal(x, y) =
3∑

m=0

3∑
n=0

Bn(u)Bm(v)φi+n,j+m (5.7)

where i = bx/nxc − 1, j = by/nyc − 1, u = x/nx − bx/nxc, v = y/ny − by/nyc and

[nx, ny] is the size of the control mesh. φ denotes the mesh of control points and

Bi refers to ith basis function as:



B0(x) = (1− x)3/6

B1(x) = (3x3 − 6x2 + 4)/6

B2(x) = (−3x3 + 3x2 + 3x+ 1)/6

B3(x) = x3/6

(5.8)

5.4.2 Cost function

Like the transformation model presented in the previous section, we choose a cost

function that is similar to the one we used for historical document registration. As

shown in Equation 5.9, the cost function consists of the similarity part for accurate

matching and the smoothness part for transformation regularization.

C = Csim(Rxy, T (Ixy)) + λCsmo(T ) (5.9)

where Rxy and Ixy stand for reference slice and target slice. λ represents the

relative weight of the two constrains and has been tuned as 0.1 in our experiments.

Only, for historical document registration, we used residual complexity (RC) for

the similarity part. In this work, however, since the two images to be registered
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were actually taken from different subjects (patients) and to reserve the variation of

the populations as much as possible, we use normalized mutual information as the

similarity measure. This is shown in Equation 5.10. Experiments also show that

mutual information is more accurate and robust for multi-modal image registration

and with normalization it is also independent on the overlap of the images.

Csim(A,B) = (H(A) +H(B))/H(A,B) (5.10)

where H(A), H(B) denote the marginal entropies of slice A, B and H(A,B) is their

joint entropy, which is calculated from the joint histogram. For the smoothness

part, we still use the space integral of the square of the second order derivatives:

Csmo = 1
s

∫ ∫
[(∂

2T
∂x2

)2 + (∂
2T
∂y2

)2 + 2(∂
2T
∂xy

)2]dxdy (5.11)

where s denotes the area of the image domain and T represents the estimated

transformation. In this work, we increase the relative weight of the smoothness

part in Equation 5.9 so that the estimated transformation could be more smooth

and more tissue variations could be preserved in the final average slice. The same

with the work in the previous chapter, we only maximizing Csim when estimating

Tglobal to reduce computational cost and cascading registration errors. With the

estimated transformation model, the target slice (the one to be registered) is re-

sampled to obtain the registered slice. Figure 5.8 shows a sample CT slice and its

registered slice.
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Figure 5.8: Sample results from the pairwise registration between slices. Image (a)
is the reference slice (the centroid of each cluster); Image (b) is the target slice;
Image (c) is the registered target slice.

5.5 Slice indexing

In this section, we demonstrate how to determine the input slice’s position along

the axial direction of the brain with the built atlas. As we have discussed in Section

5.1, this indexing/locating procedure is used as a pre-processing step in CBIR or

CAD systems and needs to be very fast. In this work, we develop a simple method

to achieve this high speed. To be specific, we compute the density differences

between the input slice and all the average slices in the atlas. The input slice is

labeled with the same level number as the average slice which is the most similar to

the input slice. For this purpose, we first normalize the input slice with the method

presented in Section 5.2 and use correlation coefficients as shown in Equation 5.12

to measure the difference between the two images.

Corr(It, Ir) =

m∑
i=1

n∑
j=1

(Irij − Ir)(Itij − It)√√√√ m∑
i=1

n∑
j=1

(Irij − Ir)2 ·

√√√√ m∑
i=1

n∑
j=1

(Itij − It)2
(5.12)
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where It is the input slice and Ir is an average slice in the atlas. It and Ir are the

expectation of slice It and Ir. During the experiments, we noticed that when we

normalized both the input slice and the average slice in the atlas, useful information

like the size of the skull is thrown away. As we can see from Figure 5.1, the size of

the skull and the ratio of the fitted ellipse’s axes in the beginning slices and in the

ending slices is quite different. Therefore, we use these information to guide the

indexing procedure by determining the coarse position (starting, middle or ending)

of the input slice. These features are the by-product of the normalization step in

Section 5.2, therefore no extra processing time is needed to extract them.

Level IM6 IM7 IM8 IM9 IM10 IM11 IM12 IM13 IM14 IM15 IM16 IM17

Precision (%) 55.92 58.18 56.75 62.49 66.44 72.93 72.16 73.78 71.54 79.76 68.17 53.82
Recall (%) 96.79 74.16 72.77 78.50 84.38 85.63 84.38 86.92 73.93 75.12 67.54 88.42

Table 5.1: Quantitative evaluation of the proposed slice indexing method.

We have tested the proposed slice indexing method with 70 study cases which

consist of 1520 CT slices. Among these study cases, 60 cases have severe TBI.

These cases are the most frequent scenarios that are confronted and concerned by

radiology doctors. To quantitatively evaluate the proposed method, we computed

its indexing precision and recall for each axial level. Table 5.1 shows the results

of level 6 to level 14, which are most important in TBI diagnosis. As seen from

the table, the indexing method is more accurate on slices located at level 11 to

15. It’s probably because slices within this interval are more distinguishable. This

is consistent with the fact that CT slices after level 10 were taken with interval

of 7mm instead of 5mm as for the previous slices. The precisions for slices after

level 16 are relatively low, which is likely caused by the significant difference in the

size of the brain matter between different patients. So far, the overall precision

and recall over all 1520 slices are 67.86% and 79.71%. It worths mentioning that

several test cases actually contain more than 19 slices of which we only used 19.
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Figure 5.9: Sample results for slice indexing. The images in the same row belong
to the same height. From top to bottom, the images was determined to belong to
these levels: IM6, IM8, IM10, IM12
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This partially impaired the overall indexing precision and recall. More importantly,

the precision and recall we computed above are for exact indexing which means the

exact level number of the input slice is determined. If just an interval which the level

number of the input slice lies in as in [LLP+10] is needed, the precision and recall

of our method are around 95% and 98%, which are much higher than the results

in [LLP+10]. In addition, as most time-consuming tasks such as image registration

and atlas building are conducted only once and off-line, the proposed slice indexing

procedure is quite fast. Typically, less than 0.03s is needed for indexing one input

CT slice, which is ten times faster than the method proposed in [LLP+10].

5.6 Abnormality Detection

With the built atlas, we can also detect and locate the abnormal regions on the CT

slices that are affected by severe TBI. Given an input CT slice, we first determine

its height on the axial direction of the brain with the method described in Section

5.5. Then we compare the input slice with the average slice at the same height in

the atlas. For instance, with an input slice X, we determine its level is 6, which

means it is probably the 6th slice in the scan it belongs to. So we compare it

with the ”standard slice” of level 6 in the atlas. In this experiment, we compute

the absolute intensity differences between each pixel of the input slice and the

average slice in the atlas. The regions where the intensity differences are larger

than a threshold are regarded as abnormal areas. Figure 5.10 shows some sample

CT slices that were distorted by TBI and the detected abnormal areas on them.

With a simple classifier which takes into account the size, location and shape of the

abnormal region, we can determine the type (EDH or SDH) of the abnormality.
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Figure 5.10: Sample results for abnormality detection. The images in the odd rows
show the original CT slices and the red regions shown in the images in the even
rows demonstrate the detected abnormal areas.
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5.7 Conclusion and Discussion

In this chapter, we have presented a groupwise registration framework to construct

a brain CT atlas which can be used for slice indexing and abnormality detection.

We built the groupwise registration framework upon a non-rigid pairwise registra-

tion method. In particular, we selected 63 series of CT scans which are normal or

have minor abnormalities and labeled all the slices with the level number indicating

their position in the axial direction of the brain. We organized the slices with the

same level number in a cluster structure. All slices in a cluster were registered

to the center of the cluster and an intermediate average slice was computed with

the registered slices. Combining all the intermediate average slices for a particular

level, we gained the final average slice for the level. We have demonstrated that the

built atlas could be used to index an input slice in the axial direction of the brain.

Experiments on real brain CT scans have shown that this new method is efficient

and accurate enough to be conveniently adopted by CBIR or CAD systems. We

also showed that by registering an input slice which was affected by severe TBI to

the atlas, we can detect and locate the abnormal regions in the slice.



CHAPTER 6

Conclusion and Future Directions

6.1 Summary

In this information age, more information is kept in digital form and the final

knowledge is often gained from the combination of various data sources. There-

fore, for the purpose of comparison and fusion, the ability of relating the images of

the same scene (or similar scenes) is essential. Image registration refers to the pro-

cedure which transforms two or more images captured from different perspectives,

at different time and with different devices into a common coordinate system. It is

a crucial step in many image analysis tasks and has been deeply studied in many

domains including medical imaging, remote sensing and computer vision.

In this thesis, we aim to investigate proper image registration techniques that

are adaptive to document image restoration and brain CT atlas building. To

achieve this goal, we first reviewed the four major components that constitute a

typical image registration framework. For each component, we discussed its general

101



6.1 Summary 102

work flow and reviewed the involved key techniques.

Then we presented a new image feature which can be used to register a skewed

document image with an imaginary image captured by posing the document in

exactly upright direction. The feature is called interline white run which is the

continuous white pixels lying exactly between two neighboring text lines. We lo-

cated this feature on the histograms that were acquired by horizontally scanning the

document image. As the transformation between the two images to be registered

is very simple and has only one parameter for rotation distortion, we directly com-

puted this parameter with the detected white runs. With this image feature, we can

also identify the orientation of the input document. We have tested the proposed

feature and registration method with real-world degraded document images. The

experimental results have demonstrated that the new feature outperforms other

features in estimating the skew angles of the degraded document images in terms

of accuracy and efficiency.

The second approach we have developed precisely registers the recto image and

verso image of a double-sided handwritten document so that bleed-through distor-

tions on the document images can be fully corrected. This registration framework

consists of a rigid coarse registration procedure and a non-rigid fine registration

method. For the coarse registration method, a pair of representative sub-images

were first extracted from the two images. Using the two sub-images and corre-

lation coefficients as similarity measure, we estimated an Affine transformation

for the global deformation between the two images to be registered. This coarse

registration method mainly deal with document images that were degraded by

slight rigid global distortions like translation and rotation. For severely degraded

document images which were impaired by non-rigid local distortions like warping

effects, uneven surfaces, rigid transformation and block-based registration is in-
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sufficient. Therefore, we have developed the fine registration method which uses

residual complexity as similarity measure and a transformation model combining

affine and spline-based local deformation. In particular, we have developed an ac-

curate method to extract and match salient point sets from the two images. Once

the two images of a document have been precisely registered, we corrected the

bleed-through distortions with a wavelet-based restoration method. We indirectly

evaluated the proposed registration framework by visually and quantitatively as-

sessing the final document restoration results.

Based on the pairwise image registration framework that we have developed

for historical document images, we have designed a groupwise image registration

framework for the purpose of constructing a brain CT atlas with multiple CT scans

from different study cases. The built atlas was a set of average slices of which

each describes the anatomical variations of populations at a particular position

along the axial direction of the brain. To build such an atlas, we have labeled a

group of normal (or have minor abnormalities) CT scans with an indexing number

which denotes their position (level) on the axial direction. Then we classified

the slices with the same indexing number into different clusters. Within each

cluster, a central slice was selected and all the remaining slices in that cluster were

then registered to the central slice using a non-rigid registration method. With

the registered images, we computed an intermediate average slice for each cluster.

The final average slice for that particular level was the combination of all the

intermediate average slices that belonged to that level. With the constructed atlas,

we are capable of locating the input slices on the axial direction of the brain. This

slice indexing method will significantly accelerate content based retrieval systems

especially when tremendous number of images are involved in the systems. We

have also demonstrated that the built atlas could be used to detect the abnormal
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regions on the input slices that were affected by traumatic brain injuries. With

certain rule-based methods or simple classifiers, we can further determine the type

of the abnormalities.

6.2 Future Directions

In reference to our earlier discussions in Section 3.5, Section 4.8 and Section 5.7 on

the limitations of the method described in each work, further improvements and

extensions can be explored in all directions as follows.

6.2.1 Future Work on Skew Correction

As discussed in Section 3.5, when the degraded document contains multiple columns,

multiple fonts or multiple font sizes, our registration method based on interline

white run will fail to produce satisfactory results. This is mainly due to the in-

terline white run extraction procedure which is unable to distinguish the different

types of white runs that are obtained from different text blocks. In this case, there

are two directions to address this problem. We can develop more sophisticated

clustering methods to extract the interline white run of each text block. This how-

ever requires more prior knowledge about the layout of the document so that the

interline white runs of a text block with small font size are not counted as the

inner line white runs of a text block with larger font size. Alteratively, we can add

a segmentation procedure before scanning the document to collect white runs. In

this way, we can segment different text blocks and conduct our registration method

on each block. With sufficient text contents on the document, we can still estimate

the global or even local skew angles of the document.
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In Section 3.5, we showed that the proposed skew estimation method is also

limited by its assumption that the skewed document contains sufficient text con-

tents. When there are not enough text lines on the document, the histogram of

white runs may be sensitive to outliers and the peak indicating interline white runs

may not be easy to detect. Under this situation, we can not really do much with

the white run based method. A possible solution to this problem may be using

non-text objects in the document. Actually, if graphics, pictures or tables can be

accurately detected from the document, their boundaries which are usually parallel

to text lines can be used to estimate the skew angle of the document.

Another extension to the presented registration method is to include a script

identification procedure and a supervised training procedure so that the skew esti-

mation method can deal with multi-lingual document images. Being trained with

documents printed in different scripts, the registration method can gain the dis-

tribution pattern of the white runs for each script. With an input document, the

script identification procedure can be applied first and the script information will

guide the registration method to choose proper domain knowledge to estimate the

document’s skew angle.

6.2.2 Future Work on Bleed-through Correction

In Section 4.4, we have shown that some documents that are degraded by severe

local deformations need a fine registration procedure so that the bleed-through

distortions on the documents can be fully corrected. For the time being, whether

an input document needs the fine registration procedure or not is still manually

determined by document analysis experts. We examine both the original docu-

ment and the registered image resulting from the coarse registration procedure to
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decide on this. An automatic algorithm to conduct this task is therefore helpful,

but challenging. To achieve this goal, we need to determine the ‘nature’ of the

deformations that are present on the document. [LBT10] has developed a classi-

fier that can pre-characterize the noises present in a document as: bleed-through,

skew and frames based on a set of human labeled training samples. Defining and

determining the severity of the bleed-through distortion in a document image is

however relatively easier compared to defining and determining the severity of the

local deformations between the two images to be registered.

As can be seen in Section 4.5, we selected and matched the salient control

points mainly based on the directions of their gradients. This method works well

generally for documents that were written in English. The reason is, in a document

that was handwritten in English, the strokes orientating in particular directions

have dense intensities and tend to cause heavy bleed-through distortions on the

other side of the page. With documents written in other scripts however, there are

no such apparent writing behaviors and stroke patterns. Therefore, we need other

prior knowledge to detect salient control points from these document images.

As mentioned in Section 4.8, we indirectly evaluated the proposed historical

document image registration framework. The major disadvantage of this evaluation

strategy is that we can not separate the registration errors with the errors that are

introduced by the subsequent bleed-through correction procedure. The difficulty

of quantitatively assessing the registration results is caused by the lack of ground

truth about the document’s real deformation. Some researchers have proposed to

evaluate newly proposed registration methods with synthetic images. Ideally, by

purposely distorting a document image with image processing softwares, we can

gain the true deformations and then evaluate the proposed registration method.

However, this strategy can actually work only if we knew the way that stains
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(water or coffee), moist environment, aging procedure and image acquisition devices

distorted a document.

Another direction to extend the work on historical document restoration is

to investigate bleed-through correction methods that have a high tolerance for

the displacements between the two sides of a document. Alteratively, we need

to add more advanced post-processing methods after the bleed-through correction

procedure so that the remaining bleed-through distortions can be further removed

and the broken foreground strokes can be recovered. [WT01] has proposed a simple

direction-based edge recovery method, which could be the starting point of this

work.

6.2.3 Future Work on CT Slice Registration

As mentioned in Section 5.4, the underlying pairwise image registration method in

the groupwise registration framework registered two slices with randomly picked

points. Replacing these randomly picked points with salient points which are care-

fully extracted from the slices can further fine the built atlas and thus improve

the accuracy of CT slice indexing and abnormality detection. One possible way is

to segment the present tissues on the middle slices and select control points from

these extracted objects. For the beginning (the first two or three slices) and ending

slices (the last two or three slices), transition points on the skull and points on the

middle line can be used for registration. These points are relatively stable with re-

spect to the variety of human brains and are also easier to be extracted. However,

the number of these points are probably insufficient for fine pairwise registration,

therefore, accurate interpolation methods are required.

In Section 5.3, we mentioned that we manually determined the number of the
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clusters for each level along the axial direction and manually assigned the centroid

for each cluster. This strategy worked well since we only labeled 63 slices for one

particular level. In order to build a finer atlas, we may need more normal CT slices,

which makes a fully unsupervised clustering method essential.

Another direction to extend this work is to explore the registration-based meth-

ods for slice indexing and abnormality detection. As shown in Section 5.5 and

Section 5.6, we currently index the input slice and detect the abnormal regions

on it simply with comparison methods. We have tried to register the input slice

which is affected by TBI to the atlas that we have built and use the registration

errors to determine its level on the axial direction and the abnormal regions on it.

The performances are better than those of the current comparison-based methods.

However, the major problem was the time cost which was almost 100 times as those

of the current methods.
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