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Abstract 

Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis 

and more generally in computer vision. To keep track of changes inside the breast, for example, it is 

important for a computer aided detection system to establish correspondences between regions of 

interest. Shape transformations, computed both with integral invariants (II) and with geodesic 

distance, yield signatures that are invariant to isometric deformations, such as bending and 

articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no 

information about where a particular feature lies on the boundary with regard to the overall shape 

structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic 

distance histograms based on information from inside the shape; but they ignore the boundary 

information. We describe a method that combines the boundary signature of a shape obtained from 

II and structural information from the Ecc to yield results that improve on them separately. 
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1 Introduction 

Shape matching and finding a suitable set of correspondences an important computer vision 

problem that has received considerable attention, particularly over the past few years. Shape 

transformations, computed both with integral invariants (II) and geodesic distances yield signatures 

that are invariant to isometric deformations, such as bending and articulations. Geometric invariant 

functions are generally used to describe the shapes that result from images taken under various 

transformations such as affine, similarity, Euclidean, or a range of projection types. Shape matching 

applications, for example in medical image analysis, necessitates shape description. If we consider 

images of two similar objects, or of the same object taken at different times, angles, and from 

varying distances, we expect to find changes in the extracted shapes. Of course, the use of projective 

invariants can cope with many such changes. However, shape variations may be in the form of 

missing data, with complete or partial articulations, and in many practical applications, particularly in 

medicine and biology, such changes are significant. For example, in oncology, such changes may 

indicate regions of new growth. Past efforts to compare two shapes have typically involved image 

registration techniques, for example (Mardia and Dryden 1989; Mumford 1991). 

However, most such approaches depend upon a ‘shape space’ and require (often extensive) training 

data before actual comparisons are possible (Kendall 1984). Most published algorithms that are 

based either on rigid or non-rigid image registration typically yield a dense warp map, establishing 

correspondences for all pixels in the shapes. Typically, they focus on shape matching rather than 

localizing matching to regions. Indeed, there appears to have been little or no research aimed at 

identifying and quantifying new growths and partial occlusions by comparing two planar shapes 

regardless of scale, spatial variations, and orientation. 

We are particularly interested in describing and comparing two planar contours with no self-

intersections in a two dimensional space. Shape descriptors can be used to find point-wise 
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correspondences typically in terms of extremizing a shape distance or matching cost between the 

two shapes. Our main interest is in descriptors that define edges, corners, peaks and ridges. The 

sensitivity of differential measures to small perturbations due to noise limits their use in shape 

matching and generally does not produce adequate results at increasing scale. 

We have used (circular) II to describe the boundaries of shapes. This creates a scale space in which 

the integral invariant defines features for the shape at a range of scales. The particular application 

on which we focus is mammographic analysis: matching potential masses (benign or malignant). 

Though II have been used to describe the shape boundary, they provide no information 

about where a particular feature on the boundary lies with regard to the overall shape structure. 

Conversely, eccentricity transforms (Ecc) can be used to match shapes by signatures of geodesic 

distance histograms based on information from inside the shape; but they ignore the boundary 

information. In this paper, we describe a method that combines the boundary signature of a shape 

obtained from II and structural information from the Ecc to yield results that improve on them 

separately. 

2 Background 

As our method involves the use of II, the Ecc, and the Fast Marching Algorithm (FMA) for shape 

matching and establishing correspondences, the spectrum of existing related work is naturally 

extensive. A comprehensive review is provided in the first author’s PhD thesis; here, we must 

necessarily be selective. 

3 Shape Representation 

We assume that the shapes of interest assume the form of closed 2-D planar contours. We further 

assume that the shape describes a single entity that has a geometrical pattern (Xu 2008), which 

persists modulo some suitable transformation group (Amanatiadis et al. 2011; Duci et al. 2003; 

Kendall 1984; Mardia and Dryden 1989; Mumford 1991; Sharon and Mumford 2006; Zhang and 

Lu 2004). Mathematically, shapes are described in the form of descriptors that are ideally invariant 

to scale, rotation, translation, and, where appropriate, reflection. Such descriptors are applied at 

several scales, in order to make explicit anatomical structures at different levels of observation. A 

detailed review of shape representation and description techniques along with their categorical 

classification is given in Amanatiadis et al. (2011) and Zhang and Lu (2004). Figure 1 shows one 

classification of current methods for shape description. 
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Fig. 1 

List of shape analysis method and their classification (mostly described in Zhang and Lu 2004) 

Several contour-based methods have been reported. Duci et al. (2003) suggested embedded closed 

planar contours that possess a linear signature as a subset of harmonic functions of which the 

original contour is a zero level-set. Sharon and Mumford (2006) generated a series of conformal 

maps, starting from mapping the object to a unit circle in the complex plane, then from the 

boundary of the object to the exterior of the circle, so that the final boundary is a diffeomorphism 

from the unit circle to itself. They call this the finger print of the shape. B-Splines are widely used for 

shape representation and curve matching (Cohen and Wang 1994; Gu and Tjahjadi 2000; Huang and 

Cohen 1996; Wang et al. 2004, 2001; Wang and Teoh 2004). Biological sequence dynamic alignment 

(Zhang and Ma 2000) and Chain codes have also been used for contour based shape representation 

(Yu et al. 2010; Zhang and Ma 2000; Arrebola and Sandoval 2005) though they are not considered 

reliable for shape matching, mainly because they suffer from discretization errors with respect to 

rotation and scale (Fig. 2). Typically, in shape matching applications, curvature functions of the 

contour are used to encode the boundary of an object (Mokhtarian et al. 1997; Mokhtarian and 

Mackworth 1986). Such a differential representation is attractive because it represents an object in a 

well investigated mathematical framework (Olver 1995; Thomas 1934; Amanatiadis et al. 2011). 

However, a major practical shortcoming of differential invariants is that they are based on 

derivatives which are sensitive to noise and small perturbations. The global behaviour of differential 

invariants reduces its robustness to noise. It is known that any orders of differential invariants on a 

plane are functions of curvature (Weiss 1993). 
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Fig. 2 

a An example of the number 2 drawn in different ways and illustrating two curves that are to be put 

in correspondence. b An example of the discrete alignment curve in (a) given as a shortest path in a 

graph. c Multiple “shortest” network paths, showing how Dynamic programming suffers from the 

city block distance problem. d The optimal diagonal path is the result of the FMA (Frenkel and 

Basri 2003) 

In contrast to this, Maney et al. (2004) used Integral Invariants to describe shapes with similar 

invariant properties as their differential counterparts. This approach has been used for shape 

reconstruction (Huang et al. 2006) and found to be more robust to noise (Manay et al. 2006, 2004; 

Yang et al. 2006). Sato and Cipolla (Sato and Cipolla 1997, 1996) showed that II out-perform 

differential invariants because of their lower noise sensitivity. Recently, it has been shown that 

circular II provide a unique representation for each shape (Bauer et al. 2011), as do conic II (Huang et 

al. 2006). Integral Invariants may be viewed as a structural approach since they represent a shape in 

terms of boundary primitives. 

An advantage of such a structural invariant approach is the ability to handle occlusions and 

possibility of partial matching in shapes. These are of considerable importance in medical imaging. 

More recently, Ecc (Ion et al. 2011, 2008, 2007), Bending invariants (Elad and Kimmel 2003; 

Rosin 2011) and Skeletonization (Sundar et al. 2003; Xu et al. 2010) of shapes have been applied 

with success for shape description and retrieval. They take advantage of the information from inside 

of a shape. In this paper we use the Ecc because of its undistorted representation of a shape. 

3.1 Shape Invariants 

Usually, invariants refer to properties that remain unchanged under an appropriate class of 

transformations (such as similarity transformations) (Sonka et al. 1999). Transformations collectively 

form a group, such as the projective groups used widely in computer vision, because 

transformations can be composed and inverted. Such groups provide mathematical tools (group 

actions) for generating invariants that are applied to a range of applications (Alferez and Wang 1999; 

Belongie et al. 2002; Bengtsson and Eklundh 1991; Brandt and Lin 1996; Bruckstein et al. 1997; 

Chetverikov and Khenokh 1999; Cohignac et al. 1994; Li 1999; Mumford et al. 1984; Reiss 1993) and 

are considered to be the basis of invariant theory (Amanatiadis et al. 2011; Helgason 1984). 

Invariants are described by the number of features that define their order. 

A broad review of different type of invariants used for shape description for the purposes of 

matching is given in Li (1999). The four most common types of invariants are: 

1. (1) 
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Algebraic invariants (Forsyth et al. 1990; Nielsen and Sparr 1991; Sonka et al. 1999; Squire and 

Caelli 2000) such as Eigenvalues, trace, and determinant. Algebraic invariants additionally require 

the correspondence of distinguished points to establish matching of two shapes. 

  

2. (2) 

Geometric invariants (Huang and Huang 1998; Li 1999) such as distance transforms, measurement 

ratios, and invariants computed from a combination of coplanar points or planes (Forsyth et 

al. 1991, 1990; Gool et al. 1996; Lasenby et al. 1996; Nielsen and Sparr 1991; Rothwell et 

al. 1995, 1992; Shashua and Navab 1996; Zisserman et al. 1995) 

  

3. (3) 

Differential invariants that are essentially invariant to Lie group actions, such as torsion, Gaussian 

measures and curvature (Belongie et al. 2002; Calabi et al. 1998; Cao et al. 2011; Cole et al. 1991; 

Kanatani 1990; Lenz 1990; Olver 1995; Trucco 1995; White et al. 2004). Differential invariants do not 

require correspondence of image features; however, they are based on higher order derivatives that 

make them sensitive to noise. 

  

4. (4) 

Integral invariant such as semi-local affine (Sato and Cipolla 1996), integral moments (Taubin and 

Cooper 1991), circular (Manay et al. 2004) and conic invariants (Fidler et al. 2007). 

  

Also, almost all invariants of types (1–3) are sensitive to boundary noise. However, II are 

comparatively robust to noise. Circular II are similar to the SUSAN feature detector (Smith and 

Brady 1997) which has been used in a range applications (Arun and Sarath 2011; Zhou et al. 2011; 

Mansoory et al. 2011; Rezai-Rad and Aghababaie 2006; Si-ming et al. 2011; Xu et al. 2006; Zeng and 

Li 2011) and reproduced with various enhancements (Qu et al. 2011; Rafajlowicz 2007; Xingfang et 

al. 2010; Zeng and Li 2011). One of the major limitations of the SUSAN method for our application is 

that it assumes that the pixels which belong to a circular region are homogeneous (i.e. have 

relatively uniform brightness), which is generally not the case in medical images, which are generally 

piecewise homogeneous. One major issue with invariants when they are used for shape matching is 

that they have to be formulated as the intrinsically NP-complete problem (Li 1992) of finding the 

relationship between parts of shapes and of establishing a one-to-one correspondence for producing 

a matching cost. This reduces the problem to searching for an acceptable match rather than a 

definite solution given in a reasonable time. To deal with this problem and to partially reduce the 

computational cost, shape signatures have been proposed (Bauer et al. 2011; Davies 2004; Fidler et 

al. 2007; Kliot and Rivlin 1998; Manay et al. 2004; Squire and Caelli 2000). 

3.2 Shape Matching 

Shapes are usually matched by establishing correspondences on points along the boundaries of the 

two shapes. Shape matching either uses the intrinsic statistical properties of the shapes or by 

anatomical modelling and then by corresponding the boundary points to compute a matching cost, a 

standard practice in shape retrieval (Gdalyahu and Weinshall 1999; Petrakis et al. 2002). This is done 
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by identifying salient landmarks (Davis 1977) using various shape descriptors, such as variational 

methods (Veltkamp 2001), phase information(Belongie et al. 2002; Rusinol et al. 2007), Eccentricity 

(Ion et al. 2007), genetic algorithms (Ozcan and Mohan 1997) and curvature (Mokhtarian et al. 1997; 

Mokhtarian and Mackworth 1986, 1992). 

Shape matching depends on the type of descriptor used (Mardia and Dryden 1989). Transformation-

based descriptors, such as Fourier components (Zahn and Roskies 1972), which amplify certain 

features of a shape, usually suppress other important information such as local deformations, 

translation and rotation (Ion et al. 2007). Shape matching that aims to find dense correspondences is 

particularly challenging in the case of articulated shapes. Such correspondence techniques (Belongie 

et al. 2002; Bronstein et al. 2006; Mateus et al. 2008; Ruggeri et al. 2010; Sharma and Horaud 2010; 

Wang et al. 2007) embed 2D or 3D shapes in a canonical domain that largely preserves geodesic 

distances (Bronstein et al. 2008; Hamza and Krim 2006; Osada et al. 2002), angles, and other 

important properties of the structure, and leads to isometric deformations, such as bending (Ling 

and Jacobs 2007; Nasreddine et al. 2009) and articulations. Other techniques involve feature analysis 

based on graph matching (Duchenne et al. 2011; Leordeanu and Hebert 2005; Maciel and 

Costeira 2003; Torresani et al. 2008), which also combines the appearance of shapes. Laplace 

spectra (Reuter et al. 2005), contour flexibility (Xu et al. 2009), shape skeletons (Siddiqi et al. 1999), 

the rolling penetrate descriptor (Chen and Xu 2009), and partial differential equations (Gorelick et 

al. 2006) have been explored. Shape correspondence using histogram geometry for 2D shapes, 

which has also been extended to 3D, decomposes shapes into parts using topographic features and 

eventually registers them (Reuter et al. 2005). Recent evolutionary shape matching techniques, such 

as Ant Colony Optimization (ACO) (Van Kaick et al. 2007; Tian et al. 2011a, b), Bee Colony 

Optimization (BCO) (Davidovic et al. 2010; Shi et al. 2013; Teodorovic et al. 2011) and Artificial Bee 

Colony (ABC) (Xu and Duan 2010) have aroused interest among the shape analysis community. 

Comprehensive surveys of shape matching techniques with respect to correspondence can be found 

in Van Kaick et al. (2011), Mikolajczyk and Schmid (2005) and Veltkamp and Hagedoorn (2001). 

Sebastian (2003) proposed a novel approach to curve correspondence based on alignment criteria 

with respect to a model curve. The optimal correspondence problem was addressed using Dijkstra’s 

algorithm (Dijkstra 1976, 1968, 1959), which solves the functional equation for the shortest path 

problem using dynamic programming. The algorithm was tested on the retrieval of 1,400 shapes 

belonging to 70 different categories each consisting of 20 shapes. The percentage of correct 

correspondences was 78.17 %, which was claimed to be the best published retrieval rate when 

compared to: curvature scale space (Mokhtarian et al. 1997); comparison using visual parts (Latecki 

et al. 2000); and shape contexts (Belongie et al. 2001) which give 75.44, 76.45 and 76.51 % 

respectively. However, one of the limitations of this approach is that it cannot deal with flipped 

shapes and, more seriously, it suffers from the initial alignment problem. Optimal alignment for each 

pair of shapes is found before and after flipping the shape and the one with the lowest cost is 

proposed. However, this multiplies the computational cost of the algorithm. Both the Manay et al. 

(2006) and Sebastian et al. (2003; 2001) algorithms to find correspondences between shapes use 

Dynamic programming based on Dijkstra’s algorithm. However, this algorithm suffers from sub-pixel 

accuracy and the city block distance problem in finding the shortest path to establish point-wise 

correspondences. To address this problem, we use the FMS (Kimmel 2004; Sethian 1999). 

4 Methods 

4.1 Circular Integral Invariant 
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Manay et al. (2006) used circular II for shape matching. These are invariant under a group of 

transformations and suitable for use when the shape is occluded. We are interested in local circular 

area II for their simplicity, robust shape description, and properties of non-emergence and non-

enhancement of extrema in feature space at varying scales. At various points in this paper circular 

integral invariants are used for noise suppression, shape matching, and region matching with a 

multi-scale representation. They resemble a Gaussian kernel in implementation; however, they 

differ substantially in their diffusion properties. 

An Integral Invariant is defined (Manay et al. 2006) by considering a disc Br(p)Br(p) of 

radius rrapplied to every point pp of a closed contour CC. The characteristic function is then given 

by, 

χ(Br(p),C)(x)={1ifxϵ{Br(p)∩C˙}0otherwiseχ(Br(p),C)(x)={1ifxϵ{Br(p)∩C˙}0otherwise 

(1) 

where C˙C˙ is the interior of the curve CC. The local integral area Ir(C)Ir(C) of the curve C is given by 

the function Ir(p)Ir(p) at every point pϵCpϵC with integral kernel χχ as follows: 

Ir(p)=∫Ωχ(Br(p),C)(x)dxIr(p)=∫Ωχ(Br(p),C)(x)dx 

(2) 

where ΩΩ is the domain of the curve CC. Figure 3 illustrates II as per (Manay et al. 2004) and Eq. 2. 

The size of the integral kernel rr can be varied, yielding a scale space, without worrying about 

amplification of noise. In fact, results show that by increasing the range and scale of integration, the 

kernel suppresses noise and gives more robust results; however it adversely affects the shape 

details. The value of the Integral Invariant for shape description is if the circle is centred not on a 

point along the curve but near to it, so that the circle overlaps the shape interior. Two examples of 

integral invariant shape description are shown in Fig. 4. 

 

Fig. 3 

Area integral invariant defined in Eq. 2 
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Fig. 4 

a, c are two examples of closed polygons with integration kernels imposed on them and highlighting 

the integration area in red, b, d are the corresponding Integral Invariant for the complete curves. c is 

the outline of a segmented mass in mdb010 from the Mini-MIAS mammographic database (Janan 

and Brady 2012) (Color figure online) 

It will be shown that II have strong expressive power to encode a shape and that it is closely related 

to representations using curvature. In fact, in a certain sense, it is a weighted reciprocal of curvature. 

The maxima of integral invariant are the minima of curvature; but they have far greater resistance to 

noise. A problem with II is scale selection. There is a certain ratio of the size of the shape and 

integration kernel that has to be maintained. The size of the kernel should be small enough to make 

explicit localized changes, yet large enough to establish the global position of a shape region in an 

image. As the size of the kernel is increased, its sensitivity to noise decreases. Results show that, 

compared to differential invariants, integral invariants are robust to noise and are that they are 
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effective for shape correspondence. A detailed mathematical comparison of projective curvature 

and II is given in Hann and Hickman (2002) and with applications in Pottmann et al. (2009). 

Circular II can also be obtained by the differentiation of area invariants as given in Bronstein et al. 

(2008). Figure 4 demonstrates the application of II to two example shapes. 

4.2 Eccentricity Transform 

Eccentricity transforms are also robust to noise (Ion et al. 2011). Ecc determines the geodesic 

distance for each point within a shape, to every other point on the boundary. Figure 5 illustrates the 

geodesic as compared to Euclidean distance inside a shape. It then assigns to each point a distance 

to the point farthest away from it. Instead of assigning the maximum distance, the mean, median or 

minimum distance may also be used as shown in Fig. 6. 

 

Fig. 5 

A Euclidean and geodesic space representation. a Euclidean distance shown in level contours inside 

the shape from the red dot in the bottom-left end of the shape. b Geodesic counterpart of the shape 

on the left, which is attained using the Fast Marching Algorithm (FMA). c Illustration of geodesic 

paths to various points on the shape boundary 
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Fig. 6 

Eccentricity transformed shapes and their corresponding histograms underneath each shape. 

The top column shows what type of distance is taken into account from the feature space while 

finding shape transformations 

The geodesic distances are calculated using the Fast Marching Algorithm (FMA). The Ecc shape 

matching algorithm, matches histograms obtained from Ecc transformed images. Such a geodesic 

distance histogram does not explicitly contain boundary information, including information such as 

curvature. They do not appear to have been used previously for establishing point-wise shape 

correspondences between shapes. 
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Adrian (Ion et al. 2007) defines the Ecc by considering a shape S⊂R2S⊂R2 with a smooth 

boundary ∂S∂S, where SS may be an image fsfs of n∗mn∗m pixels, such that, 

fs(x)={1forx∈S0otherwisefs(x)={1forx∈S0otherwise 

(3) 

The geodesic distance ds(x,y)ds(x,y), between any two points xx and yy on the shape S is given by, 

ds(x,y)=defminγ∈p(x,y)L(γ)whereL(γ)=def∫10|γ′,(t)|dtds(x,y)=def⁡minγ∈p(x,y)L(γ)whereL(γ)=def⁡∫0

1⁡|γ′,(t)|dt 

(4) 

where, p(x,y)p(x,y) is the set of paths γ(t)γ(t) from xx to yy, such that 

y(t)y(t)=x,fort=0=y,fort=1y(t)=x,fort=0y(t)=y,fort=1 

(5) 

Inside the shape, and for any starting point x0x0, the distance 

function U(x)=defd(x0,x)U(x)=def⁡d(x0,x) can be computed by the finding the solution to the Eikonal 

equation, 

∀x∈S,∇U(x)=1,andU(0)=0∀x∈S,∇U(x)=1,andU(0)=0 

(6) 

The FMA is used to solve the above Eikonal equation to find the minimum path 

between x0andxx0andx. 

The Ecc of SS to each point p∈Sp∈S is the shortest geodesic distance to the point on SS, farthest 

away from it. 

The feature set is calculated as follows: the distance for each point inside the shape is calculated to 

every point in the boundary, thus forming In×Im×nIn×Im×n feature space, where In×ImIn×Im are the 

image dimensions and nn is the parameterization of the boundary curve ∂S∂S. 

EccS(x)=defmaxy∈Sds(x,y)=maxy∈∂Sds(x,y)EccS(x)=def⁡maxy∈Sds(x,y)=maxy∈∂Sds(x,y) 

(7) 

The original paper (Ion et al. 2007) on Ecc shape matching calculates a histogram to calculate the 

shape signature, without giving boundary correspondences. We have used II to perform shape 

matching and to establish boundary correspondences. 

4.3 Fast Marching Algorithm 

The FMA computes the viscosity solution of the Eikonal equation. Assume a two dimensional real 

domain ΩΩ where Ω⊂ R2Ω⊂ R2 and a set of source points XoXo and for each 

point x∈Ωx∈Ω measures its distance from XoXo to T(x)T(x) then solving the Eikonal equation (Frenkel 

and Basri 2003; Kimmel 2004; Kimmel and Sethian 1996; Peyré 2011; Peyré et al. 2010; Sebastian et 

al. 2001; Sethian 1999) 

∇ΩT(x,y)=1,T(X0)=0∇ΩT(x,y)=1,T(X0)=0 

(8) 
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Let ΩΩ be imagined to be a uniformly distributed forest and suppose that at time T = 0 it catches fire 

at least one point, defining the initial conditions. The fire then progresses from that point and never 

again visits the initial point. T(x) is then the time at which the fire reaches point x in the forest, the 

fire front may take a new direction with new adjacent and far points. Hence there are points that are 

burnt, points next to fire and points far from fire—yet to be explored. This process continues until all 

points are reached and explored. This simulation is the core idea underlying the FMA. The output of 

a Fast Marching Algorithm is a distance map starting from initial point to the final point, exploring all 

points in the map. (Fig. 7) 

 

Fig. 7 

Illustration of Fast Marching Algorithm exploring an animal shape 

The FMA is computationally more efficient than previous attempts to solve the Eikonal equation 

(Helmsen et al. 1996; Tsitsiklis 1995), including: the Fast Sweeping Algorithm (Boué and 

Dupuis 1999; Tsai et al. 2003; Zhao 2005), and Dynamic Programing (Bertsekas 1995; Hadley 1964; 

Petrakis et al. 2002; Sniedovich 2010). FMA has been applied to active contours (Cohen and 

Kimmel 1997) and to shape from shading (Kimmel and Sethian 2001). Frenkel and Basri (2003) used 

FMA to solve the Eikonal equation to align handwriting shapes. It implements curvature information 

to match closed curves, morphs one curve into another, and can find the average curve for a group. 

Experiments were carried out on 110 shapes and the results of 13 experiments performed on the 

complete database were promising. The behaviour of open shapes with arms and teeth (numbers 

and alphabets) led to interesting conclusions about the relationship between curvature and shape 

correspondence. However, the method failed to quantify the difference between two shapes other 

than matching cost. In this paper, we develop a framework that can match, and then quantify, real 

shape differences. 

5 Implementation 

We match shapes in a two-step procedure. First, the Ecc is applied to each shape separately to 

define the spatial layout of regions inside each of them. Second, pointwise correspondences of the 

boundary points are established using II, hence for regions inside the shapes, as well as generating a 

matching cost. We first describe the process of establishing pointwise correspondences, as it is also 

used subsequently to explain the viability of Ecc. 
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5.1 Pointwise Correspondence 

The following steps adapted from Peyré (2011) establish pointwise correspondences between Shape 

1 and Shape 2 (Table 1). 

Table 1 

Establishing point-wise correspondence 

Algorithm 

1. Parameterize the boundaries of Shapes 1 and Shape 2 so that they both have nn points. 

2. Select a set of kk scales and for each scale apply Integral Invariants to Shape 1 and Shape 2 at that scale; this 

results in kk signatures for each shape. 

3. The Integral Invariant difference for comparing points P1 and P2 in Shape 1 and Shape 2 is computed at 

all kk scales, resulting in a difference vector. Compute the largest singular value by singular value 

decomposition of the 1xk1xk difference vector. This is considered to be the largest feature difference between 

points P1 and P2. This process is continued until the largest singular value feature difference is found for every 

point in Shape 1 against every point in Shape 2 

4. The result of this process is an n×nn×n feature matrix, such that at each point in the matrix contains the largest 

feature difference for the two associated points in Shape 1 and Shape 2 at all given scales. 

5. The Fast Marching Algorithm is applied to the nxnnxn feature matrix, creating a distance map. 

6. The geodesic distance along the diagonal of the distance map is found using gradient descent. This indicates the 

lowest match cost while mapping points on two shapes. 

7. The geodesic path maps points of Shape 1 to points on Shape 2 and establish a point wise correspondence 

between the two shapes. 

The singular value for the difference vector, which is the Integral Invariant difference for a proposed 

correspondence at all scales, gives the distance of that point from the origin in feature space. For a 

three dimensional feature vector xx, the singular value decomposition (svd) is, x=[x1x2x3]x=[x1x2x3] 

svd(x)=norm(x)=x21+x22+x23−−−−−−−−−−√svd(x)=norm(x)=x12+x22+x32 

(9) 

It is well known that the norm of a matrix is its largest svd value. However, for a one dimensional 

matrix it is a single value. The cost matrix is the arrangement of svd values of the difference vectors 

of the II of the two shapes, for each point of one shape against every point of the other shape. Here, 

the shape correspondence addresses three major issues in shape matching problems. 

5.1.1 Speed of Matching 
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Pointwise correspondences should have the property that an occlusion in one part of a shape should 

not affect point-wise correspondences in other regions and the speed of matching should not 

degrade sharply. We have found that the FMA has the advantage over the more commonly-used 

Dijkstra’s algorithm that it matches all regions independently rather than sequentially, as shown in 

Fig. 8. In this example, the occluded leg of the red shape is matched with the complete leg of the 

blue shape. Note that this has not affected the process of establishing correspondences in other 

regions. An example geodesic path obtained by the FMA overlaid over a feature map for this pair of 

shapes is given in Fig. 9. The geodesic path in the feature map is found using a gradient descent 

algorithm, as shown in Fig. 10. The twist in the path near the bottom indicates the high cost of 

matching, and reflects the apparent mismatch because of the occluded leg. 

 

Fig. 8 

Two shapes corresponded using Integral Invariant and Fast Marching Algorithm 

 

Fig. 9 
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Geodesic distance map calculated by the Fast Marching Algorithm for shapes corresponded in Fig. 5, 

along with the shortest path superimposed as a white line on the feature map, which follows the 

lowest values or matching cost 

 

Fig. 10 

Distance map created by FMA, where Geodesic path is being calculated using Gradient Descent, 

shown as a blue line passing across the diagonal (Color figure online) 

Figures 11 and 12 show examples of matching cost calculated for a family of quadrupeds and fish 

using the proposed method. Strong intra group similarity and intergroup dissimilarity is observed in 

the example. 
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Fig. 11 

Matching cost of the two shape families that are matched in the presence of noise using Fast 

Marching Algorithm. The differences are easily observed in Fig. 12 in a false coloring model 
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Fig. 12 

The matching cost is color coded. It can be seen that strong matching is observed (shown in blue) 

along the diagonal 

5.1.2 Initial Alignment 

A shape is a closed planar contour that can have any point designated as a starting point. However in 

shape correspondence problems, the starting points of the two shapes should match. Point-wise 

correspondence using II and FMA can be established even if two shapes are unaligned to a certain 

extent. However, if the shapes are substantially out of alignment, or one or both contain major 

occlusions, then a correct correspondence is difficult to achieve. This is precisely the problem we 

have addressed. The shape signature is divided into regions based on causal peaks of Integral 

invariant scale space and the starting points of the best matching regions in two shapes are 

designated as the points of initial alignment. Causality of a scale space means that finer scales of 

observation directly reflect what happens at the coarse scale. Integral invariants are applied at 

varying scales of observation (kernel size) to the shapes described for matching and the causal peaks 

describe its general overall structure. Figure 13 illustrates a shape correspondence of two hands, 

with and without initial alignment. From Fig. 13e, f, the geodesic path for initially aligned hands is 

quite short (straight) in diagonal, showing a closer match. 
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Fig. 13 

Shape correspondence example of two hand shapes that are out of phase to each other. Shapes are 

wrongly corresponded without an initial alignment in the first column, while correctly corresponded 

in the second column after initial alignment. The second row compares the shape signature at the 

coarsest scale for both shapes, whereas, the third row contains the shortest path superimposed on 

the feature space and compares the point-wise correspondence results, which is better for (f) 

5.1.3 Scale Selection 

A range of integral invariant scales is used to obtain the feature space given in Fig. 13 and 

consequently to maximize the difference between two shapes. Larger scales are locate and 

differentiate larger regions, whereas smaller scales are essential to distinguish fine details. Scale 

space reflects the saliency of regions that maintain causal peaks at all given scales. Shapes are 

divided into regions based upon peaks at the coarsest scale. Finding a suitable single coarse scale to 

correspond shapes with significantly large size ratios is tedious. Let rmaxrmax be the maximum scale 

indicator, then comparing shapes (S1, S2)(S1, S2) for correspondence where the area of shape to 

integral invariant ratio (SIR) is fixed, rmaxrmax is, 

rmax=⌈mean(rS1max, rS2max)⌉,rmax=⌈mean(rS1max, rS2max)⌉, 

(10) 

where rSimax=Area of SiSIR ∗π−−−−−−−−−√, i=[1,2]where rSimax=Area of SiSIR ∗π, i=[1,2] 

(11) 

Though to a large extent, scale selection depends upon the size of the shape, we have observed 

experimentally that it also depends upon the variability in the shape boundary. To date, we have not 

found a generalized relationship between the two and consider it application dependent. This will 

form part of our future work. 

5.2 Computing Eccentricity Transformations 

The computation of Ecc was outlined in Sect. 3.2. First, geodesic distances for each point in a shape 

to every point on the boundary are calculated. As the goal is to find the farthest point; there is no 

reason to find distances between the points inside the boundary. Figure 14 shows the feature set, 

where geodesic distance of each point on the boundary to every point inside the shape is found. The 

result is a feature array for each point inside the shape with size 1×n1×n, where nn is the total 

number of samples on the boundary. The image size in this example is 200 ×× 200 and nn = 500. The 

Ecc shape signatures are computed from this feature space, depending upon the type of distance 

used. To date, we have used the mean distance across the 1xn array, however other distances may 

also be used, as shown in Fig. 14. 
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Fig. 14 

Feature set of all the geodesic distances inside the shape to every point on the boundary. The 

farthest point, or the maximum distance, is calculated along the direction of the feature array. The 

first two dimensions are the size of the image, the third is the number of feature points on the 

shape, whereas each point inside each shape describes a distance, normalized and presented in 

the false colour map with a colour bar on the right hand side of the figure (Color figure online) 

5.3 Combining Eccentricity Transform and Integral Invariant 

A fundamental limitation of II is that they relate only to the boundary and do not take into account 

the information from inside the shape. As a result, two similar geometric features on a shape 

boundary, but at very different locations, will produce the same shape signature. This may result in 

false point-wise shape correspondences. On the other hand, the Ecc has been used successfully used 

for shape matching and retrieval; however, it cannot find differences between two shapes. For 

example, Fig. 15 shows two rabbit shapes with different occluded features; their Ecc signatures are 

shown underneath. It can be seen that the given shape signatures do not indicate shape differences. 

http://link.springer.com/article/10.1007%2Fs11263-014-0773-x#Fig15
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Fig. 15 

Shape histogram signatures of two shapes from Kimia database. The Eccentricity transform fails to 

describe the difference in a meaningful way between the two shapes 

We combine these two ideas, tuning Integral Invariant boundary signatures based on the 

eccentricity information about the locations within a shape. Figure 16 shows a shape with two 

pointed peaks, which have similar features, though in different locations. In the Eccentricity 

transformed version of shape; it is immediately apparent that the two peaks now contain different 

values in the false colour model. If we look at the Integral Invariant Signatures of the same shape 

before and after the application of Eccentricity transform, as shown in Fig. 17, the difference is 

evident and peaks are now distinguishable. The Integral Invariant shape signature, shown in blue, 

cannot differentiate between points ‘a’ and ‘b ’, giving no clue about the location of these points 

inside a shape. The shape signature after applying the Eccentricity transform gives them a distinct 

meaning. Figure 18 shows two shapes, S1S1 and S2S2, with a pair of corresponding points, where we 

expect that a1a1 corresponds to a2a2 and b1b1 corresponds to b2b2. The method results in correct 

correspondences, rather than corresponding a1a1 to b2b2 and a2a2 to b1b1. 

 

Fig. 16 

A shape (i), with Eccentricity (Ecc) transformation in (ii) 
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Fig. 17 

Normalized II signature (blue) of the original shape in Fig. 11. The II invariant signature of the Ecc 

version (II-on-Ecc—red). The portions aa and bb, show how two similar features on a shape may be 

tuned to have distinct signatures based on their locality using proposed method (Color figure online) 

 

Fig. 18 

Two Ecc transformed shapes (left) and its correct correspondence (right) using II and Fast Marching 

Algorithm. II without Ecc will incorrectly match points b1b1 to a2a2 and a1a1 to b2b2 
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5.4 Shape Matching Cost 

Once an Ecc image is acquired, a multi-scale approach is used for Integral Invariant (II) shape 

correspondence. The kernel size rr is varied to span a range of apertures. As a result, the Integral 

Invariant creates a scale space where for every two points x∈S1x∈S1 and y∈S2y∈S2, the sum of 

squared difference of the Integral Invariant is computed, and this forms a feature vector VSVS. 

Since VSVS is a vector, it has a unique singular value and there is no need for computation of the 

largest singular value, which is considered to be the maximum distance between xx and yy. In this 

way a similarity/distance matrix D(S1,S2)D(S1,S2) is obtained, which contains the Integral Invariant 

difference for each point between two shapes. For shape correspondence, the FMA is applied to the 

similarity/distance matrix to find a distance map Dˆ(S1,S2)D^(S1,S2), and then the shortest geodesic 

path G(S1,S2)G(S1,S2) from D(0,0)D(0,0) to D(n,n)D(n,n) is calculated using gradient descent, 

where nn is the parameterization of the curves ∂S1∂S1 and ∂S2∂S2. The matching cost between two 

shapes is given by, 

C(S1,S2)=def∫D(S1,S2)G(S1(t),S2(t))dtC(S1,S2)=def⁡∫D(S1,S2)G(S1(t),S2(t))dt 

(12) 

II-on-Ecc takes into account the grey level values which is the resultant of the Ecc transformation on 

the shape, unlike the conventional II method which, as noted above, is blind to the shape contents. 

6 Results 

6.1 Application to Synthetic Images 

We applied the algorithm to 36 shapes from the Kimia database—4 shapes each from the 9 shape 

categories. As the method is quite general, a broader evaluation may be carried out to evaluate 

precision of this method for a specific application. Though we have developed this algorithm to find 

corresponding regions of interest in pairs of mammograms taken at different times, we have used 

the Kimia database as it is currently considered to be a standard to assess shape matching 

algorithms. All pairs of shapes are compared and a matching cost is calculated for II, Ecc and II-on-

Ecc matching. We find that II-on-Ecc gives the strongest intra group matching. Figure 19summarizes 

the results. The dark blocks along the diagonal reflect the low cost of matching within a specific 

shape group, which means higher similarity. It can be seen that the application of the Eccentricity 

transform has enhanced the inter-group similarity. Figure 20 shows the shape retrieval results for 

this method. However, for our application, the method is focused on reducing correspondence 

errors, for which it shows considerable promise. 
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Fig. 19 

Shape matching results of methods mentioned above. Dark pixels reflect a low matching cost and 

higher shape similarity, which is greater for II-on-Ecc. Refer to Fig. 20 for shape retrieval details 
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Fig. 20 
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Shape retrieval results using mentioned methods. a Integral Invariant shape retrieval with 

noise. b Eccentricity transform shape retrieval with noise. c Integral Invariant on Eccentricity 

transform shape retrieval with noise 

The charts in Fig. 20 show shape retrieval using: Integral Invariant; Eccentricity transforms; and 

finally Integral Invariant on Eccentricity transform shapes. The X and Y axis of the chart consists of 

shapes, which are indexed consecutively from 1 to 36 in 9 different shape groups from Kimia 

database. Each box represents a shape on the x-axis, and its height (range) on the y axis represent 

top 4 matches among all 36 shapes. The red bar in each box shows the median shape value of 

retrieved matches. Categories of Rabbits, Aliens, Tools, Men and Kite have perfect group retrieval 

results for II-on-Ecc method. Overall, using the Eccentricity transform prior to Integral Invariant 

improves the results. 

6.2 Application to Mammograms 

Most Computer Aided Detection (CAD) systems use image processing algorithms to detect 

abnormalities in mammograms such as calcifications and masses, and to support the temporal study 

of mammograms and architectural distortions. The use of CAD technologies by radiologists and 

pathologists plays a key role in the early detection of breast cancer and helping to reduce the 

mortality rate among women (Sampat et al. 2005). The aim is to find changes in the region of 

interest, over time or in different views of the same mammogram. Because mammograms are such 

complex images and vary considerably over the population, it is common clinical practice in breast 

radiology to analyze two or more mammograms in order to detect anomalies. While comparing two 

mammograms of the same patient, the breasts may vary in size and in the way they are imaged; but 

the internal structure is quite similar and symmetric over large areas. We address the temporal 

study of mammograms by employing the proposed shape analysis technique for local region 

correspondence and matching in segmented mammograms. 

We applied our Integral Invariant on Eccentricity transform algorithm to density mammograms. In 

this case, the aim is to find changes in regions of interest, over time or in different views of the same 

mammogram. Figure 21 shows a pair of Craniocaudal (CC) and Mediolateral oblique (MLO) breast 

density maps created by the commercial software Volpara®® (Highnam et al. 2010; Jeffreys et 

al. 2010). Both mammograms were automatically segmented using a hierarchical segmentation 

method (topographic approach Hong 2004; Hong and Brady 2003) based on iso-contours. As a 

result, a number of regions were identified and matched using the method described above. Two 

regions, suspected of being abnormalities are shown in Fig. 21, which show Eccentricity transformed 

shapes superimposed on density maps. The correspondence results are very encouraging. It may be 

noticed in Fig. 22 that II-on-Ecc performs better than II alone, where the geodesic path for II-on-Ecc 

shows a more regularised matching and consequently yield a lower matching cost for a closer match 
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Fig. 21 

Segmented pair of CC and MLO views of breast density maps, obtained by Volpara®®, matched and 

corresponded using our proposed method 
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Fig. 22 

Geodesic path drawn over similarity matrix, which shows point-wise correspondence between 

regions in Fig. 21. No results for Ecc are given here, as it cannot establish point-wise correspondence 

of shapes 

The matrices shown in Fig. 22 are the feature maps, that are estimated using the method explained 

in Sect. 4.1. Both shapes, in this case, are parameterized to equal length and each point in these 

matrices is the greatest singular value difference for Integral Invariant values at each corresponding 

pair. Integral Invariant on Eccentricity transform gives a more regularized match, as said above, and 

the geodesic path overlaid on feature map is shorter and tended towards the diagonal. 
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A selection of examples of applying the method to mammograms is given in Fig. 23. A fuller 

assessment of the method applied to mammograms will be presented elsewhere. For the purposes 

of this paper it suffices to state that the method substantially reduces the number of false positive 

matches. 
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Fig. 23 

A few more examples of segmented, temporal mammograms, where regions are matched and 

corresponded against each other using the proposed method 

Though we have applied this method to mammography for which we had resources readily 

available; it could be applied to a wide range of applications, potentially beyond medical imaging. 

One of the intrinsic limitations of temporal mammograms is that two breast images, taken at 

different times, while having the same clinical views, may, not least as a result of different breast 

compression, show different structures resulting in substantially different boundaries. Some of these 

changes are due to a number of biological factors; nevertheless, a change due to the positioning of 

the breast is an inevitable factor which could not be avoided. Difference in the imaging parameters 

also affect the sensitive of segmentation methods which are dependent upon the gradient and 

intensities of mammographic regions, resulting in geometrically different shapes for matching. 

Having this in mind, this is a case study to compare temporal mammograms using the proposed 

method, which aims to emphasis the potential of the mentioned approach and does not argue the 

accuracy of the matched regions acquired after segmentation, which are subject to above 

limitations. A reliable segmentation method would considerably enhance the utility of the proposed 

method. 

Referring to Fig. 22, it is noted that the geodesic path is regular and approaches the diagonal. This 

means that Ecc processing in a certain way compensates for the deformation and generates a kind of 

inverse transformation of these deformations. However, further analysis using deformation model 

remains as future work. 

7 Discussion 

In this paper, we have combined structural and boundary information in a shape matching 

application, and applied the method to establish regional correspondences in temporal pairs of 

mammograms. Both the Integral Invariant and Eccentricity transforms are invariant to isometric 

deformations, such as bending and articulations. However, II are a contour-based local descriptor, 

which relates to the boundary of the shape and do not take into account the inside of a shape. On 

the other hand, Ecc is a global region based descriptor that maps the structural anatomy of a shape, 

however, does not explicitly contain the boundary information, including curvature. We describe a 

method that combines both techniques by tuning the Integral Invariant boundary signature based on 

the eccentric information about regions within the shape. 

The experimental results presented here show qualitative improvement compared to Integral 

Invariant results; however, the main aim of this method is to reduce correspondence errors while 

matching two shapes. Shape matching algorithms usually become stuck in local minima while 

establishing regional correspondences. This method first stretches regional differences within each 

shape, thus emphasizing dissimilarities before comparing them, which reduces the probability of 

false correspondences. This feature is the fundamental strength of our approach. 

We applied the method to shapes from the Kimia database and compared the results to those 

obtained by Integral Invariant and Eccentricity transforms when applied separately. There is an 

overall improvement in results for both inter and intra group shape matching. The Fast Marching 

Algorithm was applied to establish a point-wise correspondence between shapes and to calculate a 

matching cost. The results are encouraging and indicate scope for further improvement. 

http://link.springer.com/article/10.1007%2Fs11263-014-0773-x#Fig22


One of the limitations of our method is that there is a trade-off between the descriptiveness and 

invariance of any shape descriptor. However, since the Eccentricity transform is invariant to 

Euclidean transformations, it is anticipated that the descriptiveness it adds to the Integral Invariant 

signature would not be significant. 
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