528 research outputs found

    Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources

    Get PDF
    In recent theoretical approaches addressing the problem of neural coding, tools from statistical estimation and information theory have been applied to quantify the ability of neurons to transmit information through their spike outputs. These techniques, though fairly general, ignore the specific nature of neuronal processing in terms of its known biophysical properties. However, a systematic study of processing at various stages in a biophysically faithful model of a single neuron can identify the role of each stage in information transfer. Toward this end, we carry out a theoretical analysis of the information loss of a synaptic signal propagating along a linear, one-dimensional, weakly active cable due to neuronal noise sources along the way, using both a signal reconstruction and a signal detection paradigm. Here we begin such an analysis by quantitatively characterizing three sources of membrane noise: (1) thermal noise due to the passive membrane resistance, (2) noise due to stochastic openings and closings of voltage-gated membrane channels (Na^+ and K^+), and (3) noise due to random, background synaptic activity. Using analytical expressions for the power spectral densities of these noise sources, we compare their magnitudes in the case of a patch of membrane from a cortical pyramidal cell and explore their dependence on different biophysical parameters

    Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinson's Disease and Deep Brain Stimulation

    Full text link
    We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinson's disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinson's disease

    Gain modulation of synaptic inputs by network state in auditory cortex in vivo

    Get PDF
    The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; Españ

    Fast-Reset of Pacemaking and Theta-Frequency Resonance Patterns in Cerebellar Golgi Cells: Simulations of their Impact In Vivo

    Get PDF
    The Golgi cells are inhibitory interneurons of the cerebellar granular layer, which respond to afferent stimulation in vivo with a burst-pause sequence interrupting their irregular background low-frequency firing (Vos et al., 1999a. Eur. J. Neurosci. 11, 2621–2634). However, Golgi cells in vitro are regular pacemakers (Forti et al., 2006. J. Physiol. 574, 711–729), raising the question how their ionic mechanisms could impact on responses during physiological activity. Using patch-clamp recordings in cerebellar slices we show that the pacemaker cycle can be suddenly reset by spikes, making the cell highly sensitive to input variations. Moreover, the neuron resonates around the pacemaker frequency, making it specifically sensitive to patterned stimulation in the theta-frequency band. Computational analysis based on a model developed to reproduce Golgi cell pacemaking (Solinas et al., 2008 Front. Neurosci., 2:2) predicted that phase-reset required spike-triggered activation of SK channels and that resonance was sustained by a slow voltage-dependent potassium current and amplified by a persistent sodium current. Adding balanced synaptic noise to mimic the irregular discharge observed in vivo, we found that pacemaking converts into spontaneous irregular discharge, that phase-reset plays an important role in generating the burst-pause pattern evoked by sensory stimulation, and that repetitive stimulation at theta-frequency enhances the time-precision of spike coding in the burst. These results suggest that Golgi cell intrinsic properties exert a profound impact on time-dependent signal processing in the cerebellar granular layer

    A modeling study of the history-dependence of conduction delay in unmyelinated axons

    Get PDF
    Conduction delay in an axon is the time required for an action potential to propagate between two positions. It is a function of the axon’s passive membrane properties, voltage-gated ion channels and the Na+/K+ pump, and can be substantially affected by neuromodulators. The conduction delay of action potential, generated by the pyloric dilator (PD) neuron unmyel i nated motor axon in the stomatogastric nervous system, shows significant variability with ongoing bursting or Poisson stimulation. When the axon is stimulated, the mean value (Dmean) and coefficient variation of conduction delay (CV-D) slowly increase with time (slow timescale effect), and the relationship between delay and instantaneous stimulus frequency (Fi nst) is non-monotonic (fast timescale effect). This dissertation investigates how the history-dependence of conduction delay is generated and the contributions of different ionic currents to conduction delay. This dissertation is comprised of three parts. In the first part, we build a biophysical model that includes several characterized ionic currents and the Na+/K+ pump in order to unmask the mechanisms underlying the history dependence of conduction delay. This model captures both the slow and fast timescale effects of conduction delay obtained from the realistic burst stimulation and Poisson stimulation at different mean frequencies. Additionally, the effects of a neuromodulator (dopamine) and a channel blocker (CsCl) on the history-dependence of conduction delay were also accurately captured by the biophysical model. Specifically, the Na+/K+ pump plays a critical role in the slow increase of Dmean and CV-D. At the fast timescale, the non-monotonic relationship between conduction delay and Finst is captured by the dynamical properties of INa. Furthermore, we systematically investigated the contributions of different ionic currents on conduction delay and spike shape parameters (i.e., duration, trough and peak voltages) with realistic burst stimulation protocols. Specifically, we found that only INa substantially affects the variability of conduction delay. Based on this observation, in the second part of the dissertation, we intended to use the dynamical parameters of INa to build an equation to accurately predict the variability of conduction delay. We found that conduction delay is mostly determined by the opening rate of the Na+ activation variable prior to the action potential (αm(VT)), and the closing rate of its inactivation variable at the peak (flh(VP)). Consequently, we developed an empirical equation for conduction delay in our model using multivariate linear regression of the Poisson stimulation data. The resulting equation accurately predicted the history-dependence of conduction delay on novel data. In our model data both αm and βh are almost linear functions of their respective voltage variables (VT and VP) in the voltage ranges observed. We, therefore, simplified our empirical equation and the new equation can also accurately predict the history dependence of conduction delayin the model. More importantly, it provides accurate predictions of conduction delay from experimental measurements of action potential voltage trajectories in the motor axon without need of computational modeling. In the third and final part of the dissertation, I will develop a decoding technique to investigate the functional relationship between conduction delay and the history activity in the PD axon. Using biological data obtained from representative experiments of the PD axon with Poisson stimulation, all the parameters in the decoding technique are determined after a routine optimization process. With these optimized parameters, the decoding model can accurately predict the conduction delay only from the stimulus time. A similar technique is developed and applied to explore and predict the voltage facilitation exposed by the cpv2-a muscle. These results show that conduction delay is affected by the short- and long-term history activity in the PD axon. The conductance-based biophysical model, the empirical equations and the decoding technique, which were developed in this dissertation, provide quantitative tools to explore the mechanisms of history-dependence of conduction delay, and predict conduction delay both in the model results and in the experimental measurements

    Exact neural mass model for synaptic-based working memory

    Get PDF
    A synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we have developed a neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to get insight on Local Field Potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are associated to stimulus-locked transient oscillations followed by a steady-state activity in the βγ\beta-\gamma band, thus resembling what observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event driven potentials in experiments on humans. Finally we show that the γ\gamma power increases with the number of loaded items, as reported in many experiments, while θ\theta and β\beta power reveal non monotonic behaviours.Comment: 47 pages, 14 figure

    Investigating the role of fast-spiking interneurons in neocortical dynamics

    Get PDF
    PhD ThesisFast-spiking interneurons are the largest interneuronal population in neocortex. It is well documented that this population is crucial in many functions of the neocortex by subserving all aspects of neural computation, like gain control, and by enabling dynamic phenomena, like the generation of high frequency oscillations. Fast-spiking interneurons, which represent mainly the parvalbumin-expressing, soma-targeting basket cells, are also implicated in pathological dynamics, like the propagation of seizures or the impaired coordination of activity in schizophrenia. In the present thesis, I investigate the role of fast-spiking interneurons in such dynamic phenomena by using computational and experimental techniques. First, I introduce a neural mass model of the neocortical microcircuit featuring divisive inhibition, a gain control mechanism, which is thought to be delivered mainly by the soma-targeting interneurons. Its dynamics were analysed at the onset of chaos and during the phenomena of entrainment and long-range synchronization. It is demonstrated that the mechanism of divisive inhibition reduces the sensitivity of the network to parameter changes and enhances the stability and exibility of oscillations. Next, in vitro electrophysiology was used to investigate the propagation of activity in the network of electrically coupled fast-spiking interneurons. Experimental evidence suggests that these interneurons and their gap junctions are involved in the propagation of seizures. Using multi-electrode array recordings and optogenetics, I investigated the possibility of such propagating activity under the conditions of raised extracellular K+ concentration which applies during seizures. Propagated activity was recorded and the involvement of gap junctions was con rmed by pharmacological manipulations. Finally, the interaction between two oscillations was investigated. Two oscillations with di erent frequencies were induced in cortical slices by directly activating the pyramidal cells using optogenetics. Their interaction suggested the possibility of a coincidence detection mechanism at the circuit level. Pharmacological manipulations were used to explore the role of the inhibitory interneurons during this phenomenon. The results, however, showed that the observed phenomenon was not a result of synaptic activity. Nevertheless, the experiments provided some insights about the excitability of the tissue through scattered light while using optogenetics. This investigation provides new insights into the role of fast-spiking interneurons in the neocortex. In particular, it is suggested that the gain control mechanism is important for the physiological oscillatory dynamics of the network and that the gap junctions between these interneurons can potentially contribute to the inhibitory restraint during a seizure.Wellcome Trust

    Integration of Spiking Neural Networks for Understanding Interval Timing

    Get PDF
    The ability to perceive the passage of time in the seconds-to-minutes range is a vital and ubiquitous characteristic of life. This ability allows organisms to make behavioral changes based on the temporal contingencies between stimuli and the potential rewards they predict. While the psychophysical manifestations of time perception have been well-characterized, many aspects of its underlying biology are still poorly understood. A major contributor to this is limitations of current in vivo techniques that do not allow for proper assessment of the di signaling over micro-, meso- and macroscopic spatial scales. Alternatively, the integration of biologically inspired artificial neural networks (ANNs) based on the dynamics and cyto-architecture of brain regions associated with time perception can help mitigate these limitations and, in conjunction, provide a powerful tool for progressing research in the field. To this end, this chapter aims to: (1) provide insight into the biological complexity of interval timing, (2) outline limitations in our ability to accurately assess these neural mechanisms in vivo, and (3) demonstrate potential application of ANNs for better understanding the biological underpinnings of temporal processing

    Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection

    Get PDF
    SummaryThe neural correlates of optimal states for signal detection task performance are largely unknown. One hypothesis holds that optimal states exhibit tonically depolarized cortical neurons with enhanced spiking activity, such as occur during movement. We recorded membrane potentials of auditory cortical neurons in mice trained on a challenging tone-in-noise detection task while assessing arousal with simultaneous pupillometry and hippocampal recordings. Arousal measures accurately predicted multiple modes of membrane potential activity, including rhythmic slow oscillations at low arousal, stable hyperpolarization at intermediate arousal, and depolarization during phasic or tonic periods of hyper-arousal. Walking always occurred during hyper-arousal. Optimal signal detection behavior and sound-evoked responses, at both sub-threshold and spiking levels, occurred at intermediate arousal when pre-decision membrane potentials were stably hyperpolarized. These results reveal a cortical physiological signature of the classically observed inverted-U relationship between task performance and arousal and that optimal detection exhibits enhanced sensory-evoked responses and reduced background synaptic activity.Video Abstrac
    corecore