
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

Fall 1-31-2014 

A modeling study of the history-dependence of conduction delay A modeling study of the history-dependence of conduction delay 

in unmyelinated axons in unmyelinated axons 

Yang Zhang 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Zhang, Yang, "A modeling study of the history-dependence of conduction delay in unmyelinated axons" 
(2014). Dissertations. 155. 
https://digitalcommons.njit.edu/dissertations/155 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.njit.edu%2Fdissertations%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/155?utm_source=digitalcommons.njit.edu%2Fdissertations%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



 

ABSTRACT 

 

A MODELING STUDY OF THE HISTORY-DEPENDENCE OF 

CONDUCTION DELAY IN UNMYELINATED AXONS 

 

By 

 

Yang Zhang 

 

Conduction delay in an axon is the time required for an action potential to propagate 

between two positions. It is a function of the axon’s passive membrane properties, 

voltage-gated ion channels and the Na
+
/K

+
 pump, and can be substantially affected by 

neuromodulators. The conduction delay of action potential, generated by the pyloric 

dilator (PD) neuron unmyelinated motor axon in the stomatogastric nervous system, 

shows significant variability with ongoing bursting or Poisson stimulation. When the 

axon is stimulated, the mean value (Dmean) and coefficient variation of conduction delay 

(CV-D) slowly increase with time (slow timescale effect), and the relationship between 

delay and instantaneous stimulus frequency (Finst) is non-monotonic (fast timescale 

effect). This dissertation investigates how the history-dependence of conduction delay is 

generated and the contributions of different ionic currents to conduction delay. 

This dissertation is comprised of three parts. In the first part, we build a 

biophysical model that includes several characterized ionic currents and the Na
+
/K

+
 pump 

in order to unmask the mechanisms underlying the history dependence of conduction 

delay. This model captures both the slow and fast timescale effects of conduction delay 

obtained from the realistic burst stimulation and Poisson stimulation at different mean 

frequencies. Additionally, the effects of a neuromodulator (dopamine) and a channel 

blocker (CsCl) on the history-dependence of conduction delay were also accurately 



 

captured by the biophysical model. Specifically, the Na
+
/K

+
 pump plays a critical role in 

the slow increase of Dmean and CV-D. At the fast timescale, the non-monotonic 

relationship between conduction delay and Finst is captured by the dynamical properties of 

INa. Furthermore, we systematically investigated the contributions of different ionic 

currents on conduction delay and spike shape parameters (i.e., duration, trough and peak 

voltages) with realistic burst stimulation protocols. Specifically, we found that only INa 

substantially affects the variability of conduction delay. 

Based on this observation, in the second part of the dissertation, we intended to 

use the dynamical parameters of INa to build an equation to accurately predict the 

variability of conduction delay. We found that conduction delay is mostly determined by 

the opening rate of the Na
+
 activation variable prior to the action potential (αm(VT)), and 

the closing rate of its inactivation variable at the peak (βh(VP)). Consequently, we 

developed an empirical equation for conduction delay in our model using multivariate 

linear regression of the Poisson stimulation data. The resulting equation accurately 

predicted the history-dependence of conduction delay on novel data. In our model data 

both αm and βh are almost linear functions of their respective voltage variables (VT and 

VP) in the voltage ranges observed. We, therefore, simplified our empirical equation and 

the new equation can also accurately predict the history dependence of conduction delay 

in the model. More importantly, it provides accurate predictions of conduction delay from 

experimental measurements of action potential voltage trajectories in the motor axon 

without need of computational modeling. 

In the third and final part of the dissertation, I will develop a decoding technique 

to investigate the functional relationship between conduction delay and the history 



 

activity in the PD axon. Using biological data obtained from representative experiments 

of the PD axon with Poisson stimulation, all the parameters in the decoding technique are 

determined after a routine optimization process. With these optimized parameters, the 

decoding model can accurately predict the conduction delay only from the stimulus time. 

A similar technique is developed and applied to explore and predict the voltage 

facilitation exposed by the cpv2-a muscle. 

These results show that conduction delay is affected by the short- and long-term 

history activity in the PD axon. The conductance-based biophysical model, the empirical 

equations and the decoding technique, which were developed in this dissertation, provide 

quantitative tools to explore the mechanisms of history-dependence of conduction delay, 

and predict conduction delay both in the model results and in the experimental 

measurements. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1  Research Objectives 

The general objective of this dissertation is to investigate how different ionic currents in 

an unmyelinated axon affect the history-dependence of action potential conduction delay, 

and how to develop a method for predicting how conduction delay depends on prior 

activity. In order to achieve this objective, mathematical and computational methods 

were applied in three major procedures, which include the application of neuroscience 

knowledge, quantitative modeling and computer sciences. First, a conductance-based 

biophysical model was developed to reproduce the history-dependence of conduction 

delay as measured experimentally. Second, different ionic currents of the mathematical 

model were quantitatively investigated to examine which factors lead to the variability of 

conduction delay at different timescales. Third, empirical equations were developed to 

predict the history-dependence of conduction delay, both in the model axon and as 

measured experimentally. Finally, a nonlinear decoding technique was applied to identify 

how conduction delay depends on the history of activity in the Pyloric Dilator (PD) axon. 

 

Objective 1: Build a Conductance-Based Biophysical Model of the PD Axon to Identify 

the Mechanisms of Conduction Delay Variability. 

 

Utilizing cable theory and the Hodgkin-Huxley (H-H) model, a conductance-based 

biophysical model is developed to examine how different ionic currents/pumps in the 

membrane affect the characteristics of conduction delay in the PD axon. Using Poisson 

and realistic burst stimulations, both the long-term and short-term history-dependence of 



2 
 

conduction delay in the PD axon are accurately captured by the model. The contribution 

of different ionic currents to the history-dependence of conduction delay in the PD axon 

is quantitatively investigated using the biophysical model. Specifically, the importance of 

the regular Na
+
/K

+
 pump to the long-term history dependence of conduction delay is 

examined. Additionally, the contribution of the hyperpolarization-activated inward 

current Ih to the history-dependence of conduction delay is explored by changing the 

maximum conductance to mimic the effects of the neuromodulator dopamine and the 

blocker CsCl. Finally, the biophysical model is used to unmask the relationships between 

conduction delay and the mean frequency of Poisson stimulation, as well as the burst 

stimulation protocol. 

 

Objective 2: Develop Empirical Equations to Predict the History-Dependence of 

Conduction Delay both in the Model and in the Experimental Measurements. 

 

Based on the investigation of how different dynamical parameters in the model affect 

conduction delay, two empirical equations are built to predict the history-dependence of 

conduction delay with Poisson stimulation. More than 30 dynamical variables in the 

biophysical model are quantitatively examined and two are found to play crucial roles in 

determining the slow timescale and fast timescale effect of conduction delay, 

respectively. The first empirical equation is developed as a multivariate regression of 

these two variables. Routine optimization method is applied for determining the 

coefficients in the empirical equation. A linearization of the first empirical equation leads 

to the second empirical equation, which can predict history-dependence of conduction 

delay both in the model results and in the experimental measurements without any need 

for computational modeling. 
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Objective 3: Use a Decoding Technique to Explore the Functional Relationships 

Between Conduction Delay and the History of Activity in the PD Axon. 

 

In order to identify a functional relationship between conduction delay and the axon’s 

activity history, a set of biological data, which capture the conduction delay in response 

to Poisson random stimulation at different mean frequencies in the PD axon, are used for 

analysis. The analysis is performed through a nonlinear decoding technique, based on a 

set of kernels in a Volterra series. How these kernels are modified under different 

experimental treatments such as neuromodulation by dopamine or by blocking different 

ion channels are studied. Finally, a similar decoding technique is applied to investigate 

the voltage facilitation exposed by the cpv2-a muscle which is innervated by the PD 

motor axon. 

 

1.2  Significance and Background 

The nervous system is a very important organ system in a multicellular animal’s body. It 

receives signals from the muscles and organs inside the body and sensory inputs from the 

environment. These signals are usually carried by the pattern of action potentials (i.e., the 

inter-spike intervals between action potentials substantially affect the neural 

communication). An action potential is a short-lasting event in which the electrical 

membrane potential of a cell rapidly rises and falls, following a consistent trajectory. For 

paired action potentials, the following one can travel with different velocities compared 

with the first one due to the history effect of the first action potential. Such differences of 

conduction velocities lead to the change of inter-spike interval (ISI) along the 

propagation of action potentials. Because the temporal coding is substantially determined 

by ISIs, it is necessary and important to investigate how action potentials travel in the 
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nervous system, especially how they propagate along axons. 

The trunk and collaterals of an axon are usually assumed to propagate action 

potentials faithfully with high temporal precision. This is indeed the case for the squid 

giant axon, the primary model, developed by Hodgkin and Huxley for action potential 

generation and conduction in axons (Hodgkin and Huxley, 1952d). In recent years, 

however, the advantages of molecular and electrophysiological techniques have given 

greater insight to the functions and properties of axons. Propagation of action potentials 

along the axon can alter spike pattern and conduction velocity, and lead to spike failures 

(Krnjevic and Miledi, 1959; Swadlow et al., 1980). It has been found that the temporal 

fidelity of conduction delay can be altered by different neuromodulators, as well as by 

stimulation protocols with different frequencies (Swadlow et al., 1980; Ballo and Bucher, 

2009). Since the propagation of action potentials can substantially affect neural 

communication, it is important to build a conductance-based biophysical model to 

identify the characteristics of conduction delay variability. Furthermore, it is important to 

develop equations to predict the history-dependence of conduction delay obtained from 

the experimental measurements. 

 

Conduction Delay 

Propagation of action potential leads to conduction delay for neural communication 

between neurons. Conduction delay is determined by the passive membrane parameters 

of an axon such as: axial resistance, membrane capacitance and resistance, diameter and 

the density of ionic channels (Hodgkin, 1939; Katz, 1947; Hodgkin, 1954; Del Castillo 

and Moore, 1959; Rall, 1969; Colquhoun and Ritchie, 1972; Waxman, 1975; 
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Renganathan et al., 2001). Based on these studies, action potentials usually propagate 

faster along the axon with a large length constant but a small time constant. Conduction 

delay can be substantially changed by neuromodulators. For instance, conduction delay 

faithfully propagates along the PD axon with Dopamine but shows variability with CsCl 

(Ballo et al., 2010). Finally, due to the presence of different types of ion channels in the 

membrane of axons, conduction delay is significantly affected by the axon’s complex 

intrinsic membrane properties (Ballo and Bucher, 2009; Ballo et al., 2010). 

 

History-Dependence of Conduction Delay in the PD Axon 

Although conduction delay is usually assumed to be constant, indicating perfect temporal 

fidelity of spike propagation, recent experiments show that conduction delay depends on 

the prior short- and long-term history of activity in the axon, as well as neuromodulators 

(Ballo and Bucher, 2009; Bucher and Goaillard, 2011). Experiments on the motor axon of 

the pyloric dilator (PD) bursting neuron, in the stomatogastric nervous system (STNS) of 

the lobster H. americanus, show that the conduction delay changes substantially (up to 

30%) over a 4-5 cm axon length, both within single burst and between bursts (Ballo and 

Bucher, 2009). Stimulations of this axon with Poisson patterns at different rates show 

history-dependence of conduction delay at two different timescales (Ballo et al., 2012). 

At the slow timescale, the mean value and variance of conduction delay increase slowly 

as a function of time until they reach a steady state at about 5 min post stimulation; at the 

fast timescale, conduction delay has a non-monotonic relationship with instantaneous 

stimulus frequency with a minimum at Finst of ~ 40 Hz. Therefore, the unmyelinated PD 

axon is an ideal object to investigate the mechanisms of conduction delay variability, 
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which directly determines the temporal fidelity of neural communication. In this 

dissertation, the variability of conduction delay will be quantitatively explored, and the 

corresponding experimental results will be analyzed as well. 

 

Temporal Fidelity of Conduction Delay 

Temporal fidelity of conduction delay plays a crucial role for temporal coding and neural 

communication. The conduction delay of each action potential, which may depend on the 

prior short- and long-term activity history of the axon, is closely correlated with temporal 

coding in the nervous system. Temporal fidelity of conduction delay is considered good if 

action potentials have consistent latency along the axon. Violation of temporal fidelity 

leads to substantial variations in inter-spike intervals which has potential impact on 

temporal neural activity (Bucher and Goaillard, 2011). Specifically, the complex voltage- 

and time- dependence of diverse ionic currents in the axonal membrane can result in 

changes in spike shape and action potential velocity, which then affects the temporal 

fidelity of conduction delay and can lead to changes in the temporal structure of spike 

patterns. Therefore, temporal fidelity of conduction delay is substantially determined by 

the intrinsic properties of the axonal membrane and the ionic currents. 

 Due to the conduction velocity aftereffects of previous impulse activity, different 

spikes in the train propagate at different conduction velocities. Thus, the inter-spike 

interval between paired spikes can change substantially during propagation (George, 

1977). Specifically, ISI of paired spikes increases if the following spike is initiated in the 

region of membrane made refractory by the first one (Tasaki, 1953). Conversely, ISI 

decreases if the second spike is stimulated in the “supernormal” period after the first one 
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(Bullock, 1951; Gardner-Medwin, 1972). With Poisson stimulation, the distribution of 

inter-spike intervals was significantly changed during long-distance propagation: the 

stochastic properties of the spike train became less Poisson-like with propagation 

distance (Moradmand and Goldfinger, 1995). Although the pattern of Poisson stimulation 

was modified during long-distance propagation, its mean rate was conserved and no 

spikes were added or lost during the propagation. Using H-H Equations and paired-pulse 

stimulation method, ISI increased or decreased due to different inter-stimulus intervals, 

and eventually approach stabilization (Bucher and Goaillard, 2011). In addition to the 

paired-pulse stimulation, similar results were also experimentally observed in the PD 

axon with train-pulse stimulation (Ballo et al., 2012). These results indicate that in H-H 

model and experimental observations, ISI can change along the long-term propagation of 

action potentials. Therefore, with Poisson stimulation or other simpler stimulation 

methods, the temporal fidelity of conduction delay can be really poor during the 

propagation process. 

 However, the variability of ISI only has been studied in the H-H model with 

simple stimulation protocols (George, 1977). The mechanism is not fully clear and the 

corresponding quantitative analysis is absent. Although the PD axon shows larger 

variability of ISI than the H-H model does, it was only studied experimentally by Bucher 

lab. In this dissertation, we will build a conductance-based biophysical model for the PD 

axon to mathematically investigate how ISI changes when action potential propagates 

along the axon. Additionally, we will explore the mechanism of the variability of ISI at 

the theoretical level. 
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As a widely accepted concept, neural information is encoded in the timing of 

action potentials (Harris, 2002). In other words, temporal coding and neural 

communication in the nervous system are predominantly affected by the change of ISI. 

Constant ISI indicates high temporal precision and vice versa. It is, therefore, important 

to investigate the mechanisms of how does ISI change along the length of the axon as it 

propagates both experimentally and theoretically. 

 

Advantages of Invertebrate Nervous Systems and Unmyelinated Axon 

The complexity of the mammalian nervous system limits scientists’ research capabilities. 

Because of the huge number of neurons and the complex connections between them, it is 

hard to distinguish a certain neuron from the network and record neural activity in these 

axons. Fortunately, because neural communication and conduction delay also exist in the 

invertebrate animals which have less complex nervous systems, neuroscientists are able 

to investigate their properties in convenient ways (Ballo and Bucher, 2009; Ballo et al., 

2010; Bucher and Goaillard, 2011; Ballo et al., 2012). 

Compared with the unmyelinated axon, the myelinated axon is encapsulated by a 

fatty layer called the myelin sheath. Since the myelinated section acts as a simple resistor, 

action potentials actually ‘jump’ rather than continuously propagating along the 

myelinated axon. Thus, the myelinated axon usually conducts action potentials faster than 

unmyelinated axon does. This node-to-node propagation is called saltatory, which is 

harder to model because one has to properly handle the discontinuity of conduction in the 

myelinated axon (Keener and Sneyd, 1998). Therefore, in this dissertation, as an 

unmyelinated axon, the PD motor axon in the crustacean stomatogastric ganglion (STG) 
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system is used as the prototype of the modeling axon. The passive properties of the PD 

axon, as well as the ionic currents and the Na
+
/K

+
 pump in the membrane are modeled 

and studied mathematically. 

 

Diversity of Axons 

The basic functions of the axons are introduced using the stomatogastric nervous system 

of the lobster, Homarus americanus. This system is valuable for neuroscientists because 

of its small neuronal network and clear rhythmic behavior (Marder and Calabrese, 1996). 

Morphology of axons and properties of ion channels have led to relevant diversity in 

these unique neuronal structures. There are different sizes and diameters of axons in both 

vertebrates and invertebrates. For example, the axons of the mammalian cortical neurons 

are only a few hundred micrometers in length, and the axons of local interneurons in 

small invertebrate are even smaller (Bucher and Goaillard, 2011). However, the axons of 

sensory, motor neurons and descending neurons in the spinal cord can be more than 1 

meter long. The axon is important for neuronal communication in a number of ways: (1) 

initiation of an action potential due to integration of synaptic inputs; (2) the propagation 

of the spike along the axon’s trunk; (3) and action potential-mediated transmitter release 

(Bucher and Goaillard, 2011) (Figure 1.1A). 

The history-dependence of conduction delay generated by the propagation of 

action potential in the unmyelinated motor axon of the PD neuron in the STG is 

systematically investigated. Both the biophysical model and the decoding technique are 

applied to the experimental data from the Bucher lab recording in the STNS of the 

lobster, H. americanus (Figure 1.1B). Poisson stimulation and realistic burst stimulation 
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are applied to the experimental PD axon and the biophysical model axon. For instance, 

realistic burst stimulation has 300 bursts at 1Hz, and each burst contains 19 spikes with 

parabolic interval structure. Note that when we applied Poisson stimulation or realistic 

burst stimulation to the PD axon, we injected the stimulations at pdn (Figure 1.1B) and 

measured the conduction delays from electrode 2 (close to the terminal of the axon) to 

electrode 1 (close to the soma of the PD neuron). 

 

Figure 1.1 Schematic of spike propagation and STNS. A: This graph shows a neuron 

with spike initiation and proximal integration of synaptic input. Action potentials are 

transmitted along the axon to the distal terminals, where release neurotransmitter due to 

the depolarization. B: This graph shows the stomatogastric nervous system of the lobster, 

H. americanus. The unmyelinated motor axon of the pyloric dilator neuron in the 

stomatogastric ganglion has sufficient receptors for Dopamine, which can enhance the 

effect of hyperpolarization activated inward current (Bucher et al., 2003). When the PD 

soma naturally bursts, the conduction delay is measured from electrode 1 (close to the 

soma of the PD neuron) to electrode 2 (close to the terminal of the axon) (modified from 

(Bucher and Goaillard, 2011)). 
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Diversity of Axonal Voltage-Gated Ion Channels 

Action potential arises from changes of permeability of different ion channels in the 

membrane. Such channels include: a fast sodium current and a delayed rectifier 

potassium current in the squid giant axon (Hodgkin and Huxley, 1952e) (Figure 1.2A), 

and an transient potassium current (A-current) in the walking leg axons of crabs (Connor, 

1975; Connor et al., 1977). Recent studies have shown that many axons, including 

unmyelinated and myelinated, peripheral and central, invertebrate and vertebrate, have a 

substantially more complex complement of ion channels, which involves voltage- and 

time- dependences of their gating properties (Bucher and Goaillard, 2011) (Figure 1.2B). 

However, the contributions of these ion channels to spike propagation along the axon are 

still unclear. Exhaustive exploration of which types of ion channels have been found in 

the PD axon is not the purpose of this dissertation. The H-H type currents and other ionic 

currents, which have been experimentally characterized in the PD axon (Bucher et al., 

2003; Ballo and Bucher, 2009; Ballo et al., 2010; Bucher and Goaillard, 2011; Ballo et 

al., 2012), are used to build the conductance-based biophysical model. Such a model is 

used as a tool to investigate the history-dependence of conduction delay at the theoretical 

level. 
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Figure 1.2 Diversity of ion channels in axons. A: The delayed rectifier potassium current 

(red) and the fast sodium current (green) in the squid giant axon in response to the 

depolarizing voltage step. B: More complex complement of channels in response to the 

depolarizing voltage step. Note that these channels have very different activation and 

inactivation time constants (modified from (Bucher and Goaillard, 2011)). 

 

Hodgkin-Huxley Model 

In neurons, action potential plays a central role in cell-to-cell communication. To 

understand how the nervous system works, it is necessary to know how an action 

potential is initiated and propagated. By using the space and voltage clamp techniques, 

Hodgkin and Huxley carried out an elegant series of electrophysiological experiments on 

the squid giant axon (~ 0.5 mm). Specifically, they measured the kinetics of sodium and 

potassium currents in the giant axon of squid (Hodgkin and Huxley, 1952a; Hodgkin et 

al., 1952). They proved that both sodium and potassium conductances are continuous 

functions of time (Hodgkin and Huxley, 1952b). Furthermore, they experimentally 

showed that both sodium conductance and potassium conductance increase when the 

membrane potential is depolarized and decrease when it is repolarized (Hodgkin and 

Huxley, 1952b). After the detailed quantitative measurements of ionic currents in squid 

giant axon (Hodgkin, 1939, 1947; Hodgkin and Katz, 1949), they concluded a series of 

classic papers which describe the flow of ionic currents through the membrane of squid 
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giant axon (Hodgkin and Huxley, 1952a, b, c; Hodgkin et al., 1952). They introduced the 

equations for the space clamped axon (Figure 1.3A, (Hodgkin and Huxley, 1952e)): 

4 3( ) ( ) ( )

(1 ) z,    z , ,

m K K Na Na leak leak app

z z

V
C g n V E g m h V E g V E I

t

dz
z n m h

dt
 


       



   

  (1.1) 

where Cm is the membrane capacitance per unit area, V is the voltage difference between 

intracellular and extracellular membrane, t is the time, EK, ENa and Eleak are equilibrium 

potentials of IK (slow rectifier potassium current), INa (fast sodium current) and Ileak (leak 

current), respectively (Figure 1.3A). Kg , Nag  and leakg  are maximum conductance of IK, 

INa and Ileak, respectively (Figure 1.3A). Iapp is the applied current. x  and x  are 

functions of V (not shown). 

As a masterpiece of scientific art, Eq. (1.1) describes n, m, h form the core 

mathematical framework for modern biophysically based neural modeling. It 

quantitatively unraveled the dynamic ionic conductance that generates the nerve action 

potential, and furthermore describes how action potentials initiated and evaluated within 

the space clamped unmyelinated axon. As biology has few quantitatively predictive 

theories, Hodgkin-Huxley Equation is one of the most successful combinations of 

experiment and theory (Keener and Sneyd, 1998). 
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Figure 1.3 Basic components of the Hodgkin-Huxley Model. A: The biophysical 

characteristic of neuron membrane is represented by the Hodgkin-Huxley model. B: 

Schematic diagram of the cable properties of an unmyelinated axon. 

 

Cable Theory 

A cable is the structure that has a one-dimensional pathway for electrical signal 

communication, and most neurons can be thought of as similar to cables (Keener and 

Sneyd, 1998). 

Action potential propagation in neurons can be mathematically analyzed with 

cable theory, which describes how spatial distribution affects the cable behavior 

(Hodgkin and Rushton, 1946; Rall, 1957, 1959, 1960, 1969). Because axons are usually 

thin enough that variations of the potential in radial directions are negligible compared to 

longitudinal variations, the membrane potential (V(x, t)) along the cable-like axon is 

expressed as a function of time, t, and a single spatial variable, x. The core conductor 

assumption, which is the most important assumption of cable theory, assumes that the 

membrane potential only depends on the length variable and not on angular or radial 

variables (Rall, 1977). Therefore, the cable (axon) can be viewed as one-dimensional. 

Based on the Ohm’s law and Kirchhoff’s law, the cable equation is given as below 

(Keener and Sneyd, 1998; Dayan and Abbott, 2001): 
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where 
m m mR C   (Rm: membrane resistivity, defined as the resistance of a unit square 

area of membrane, Ωcm
2
; Cm: membrane capacitance per unit area, F/cm

2
) has units of 

time and is called the membrane time constant, / 2m m iaR R   (a: axon radius; Ri: 

cytoplasmic resistivity, Ωcm) has units of distance and is called the cable space constant.

 Defining X = x/λm and T = t/τm, Eq. (1.2) is non-dimensionalized as 
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2
( , )
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F V T

T X

 
 

 
      (1.3) 

Although F is expressed as a function of voltage and time, it is usually a function of 

voltage only in many simple cases. The action potential is affected both by the form of 

Eq. (1.3) (i.e., the form of F(V,T)) and the boundary conditions imposed at terminations 

and branching nodes. 

Basic cable properties of the unmyelinated axon, squid giant axon, were described 

in a series of classic papers (Cole and Curtis, 1939; Cole and Hodgkin, 1939; Hodgkin 

and Rushton, 1946), which provide the starting point of the theoretical analysis of action 

potential propagation in axons. Conventionally, the electrical manifestations of the 

discrete change in the axon membrane are incorporated into the cable-like electrical 

circuits to represent the electrical properties of the unmyelinated axon. Specifically, the 

interaction of local currents between the resting and active zones play a crucial role 

during the axon conduction process (Tasaki, 1953). 

 Understanding how action potentials propagate along the axons is a core topic in 

modern neuroscience studies. The simplest case is an isolated action potential that 

propagates along an unmyelinated axon. It is well established that both the propagation of 
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action potential and the change of membrane potential are result from the complicated 

dynamic processes of ionic currents in the axon membrane (Katz, 1966). 

Although Eq. (1.1) governs how an action potential is initiated and evaluated 

within a clamped space, it cannot describe how an action potential propagates along the 

spatially distributed squid giant axon. Based on the experimental results that the squid 

giant axon possesses cable properties (Figure 1.3B), Hodgkin and Huxley combined Eq. 

(1.1) with the cable equation in order to describe the spread of ionic current in the squid 

giant axon. They introduced the nonlinear cable equation which can be used to calculate 

the shape and velocity of the propagating action potentials (Hodgkin and Huxley, 1952e): 
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 (1.4) 

where all parameters are same as the ones in Eq. (1.1). Additionally, a is the radius of 

axon and x is the distance along the axon. 

 As a highly nonlinear partial differential equation, Eq. (1.4) quantitatively 

describes the propagation of action potentials, as well as the voltage-dependent kinetics 

of sodium and potassium channels measured in these experiments. However, it is 

impossible to solve analytically due to its complicated form. Even for the numerical 

simulations, they were widely performed in recent years due to the rapid improvement of 

computers. Nevertheless, analytical solutions that give functional dependencies of the 

action potential properties (i.e., velocity, amplitude) on the model variables are still 

highly desired. 

 Based on Eq. (1.4), which is the benchmark model used to describe the 

propagation of action potentials in the unmyelinated axon, we will develop our own 
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conductance-based biophysical model for the experimental PD axon. In addition to 

reproducing the history-dependence of conduction delay shown by the experimental PD 

axon at different timescales, we will also use our model axon to investigate and more 

importantly, predict the conduction velocities of action potentials in the model axon. 

 

Passive and Active Propagation of the Action Potential 

When the membrane of an axon or neuron is assumed to be an Ohmic resistor (i.e., 

F(V,T) = -V in Eq. (1.3)), the electrical activity is called the passive activity. Therefore, 

Eq. (1.3) becomes the following linear cable equation: 
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 
 

 
 

This equation indicates that ionic currents passively flow along the cable and leak to the 

extracellular space at a linear rate. For instance, the spread of ionic current in the 

neuronal dendritic (network) is (usually) a passive process, which is described by the 

diffusion of electricity in a leaky cable. For other cases, the electrical activity is passive 

only when the membrane potential is close to resting (Keener and Sneyd, 1998). 

 Because the electrical activities in the axon (usually) actively propagate along the 

axon, it can be much more complicated than the current flows in the dendritic network. 

To completely describe the spatial distribution of a cable-like structure, one has to specify 

how the electrical currents depend on time and voltage. For instance, the function F(V,T) 

in Eq. (1.4) are highly nonlinear function of m, n, h and V. Specific forms of F(V,T) 

ensures action potentials to propagate along the axon with certain velocities. The 

initiation and propagation of action potentials require the input of energy to the axon, 

which also needs to consume energy to maintain the proper concentrations of different 
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ions for excitation. Therefore, these action potentials are active waves, and this process is 

called active propagation. As an excitable membrane incorporated with a nonlinear cable 

equation, the spatially distributed H-H Equation (1.4) describes a space clamped action 

potential, and more importantly, gives rise to action potentials which actively propagate 

along the axon with certain velocities, which in turn can be calculated. 

 The simplest model of wave propagation is the bistable equation, which is used to 

describe the wave front. Wave front is an important type of traveling wave in the 

excitable systems and has two steady states (before and after the wave). Note that the 

recovery variable is fixed at steady state in the bistable equation. However, if the 

recovery variable is allowed to vary, the bistable equation becomes a popular 

simplification of Eq. (1.4): the spatially distributed Fitzhugh-Nagumo type equations, 

which can be used to find the traveling pulses (another type of traveling wave in excitable 

systems). Fitzhugh-Nagumo type equations are widely used to explain the traveling wave 

phenomena in excitable systems in neurosciences, as well as in physics and chemistry. 

Although the Fitzhugh-Nagumo type models give qualitative explanations of the 

excitability of the nerve membrane and the mechanisms of the wave propagation, they 

fail to provide any quantitative predictions for the conduction velocity of a propagating 

action potential in the axon. Note that wave propagation in the Fitzhugh-Nagumo model 

is not completely explored, especially in higher-dimensional domains (Keener and Sneyd, 

1998). 

The highest complexity (level) studies of wave propagation are based on the 

spatially distributed models of the H-H type (Eq. (1.4)), which cannot be solved 
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analytically. Thus, one has to apply the numerical methods which will be discussed in the 

next section. 

 

Multi-Compartment Conductance-Based Models 

Consider a single-compartment neuron with a single variable, its membrane potential (V) 

can be described by integrating the following equation: 

m m app

dV
C I I

dt
        (1.5) 

where Im is the membrane current. However, membrane potential can vary substantially 

along the long, narrow and cable-like structures of an axon (Dayan and Abbott, 2001). 

 The general H-H Equation (1.4) can only be analytically solved in relatively 

simple situations. Generally, the model membrane contains complex conductances and 

Eq. (1.4) has to be solved numerically. For such purposes, the model neuron or axon 

needs to be split into separate regions or compartments. The continuous membrane 

potential ( , )V x t  is approximated by discrete values, which represent the membrane 

potential in different compartments. Note that each compartment has to be small enough 

so that the variation of the crossing membrane potential is negligible. Therefore, the 

precision of such multi-compartment model is based on how many compartments are 

involved and their size relative to the space constant of the model axon or neuron. 

 In a multi-compartment model axon, each compartment has its own membrane 

potential ( , )kV x t  and current k

mI , which is governed by their gating variables. Compared 

with the membrane potential in the single-compartment model (Eq. (1.5)), the membrane 

potentials in different compartments of the multi-compartment model satisfies the 

following equation: 
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where k represents the k-th compartment. Note that the compartments at two ends are 

only coupled with one neighboring compartment. In this dissertation, for simplicity, we 

assume that all compartments are identical. Therefore, the constants 
, 1k kg 

 and 
, 1k kg 

 are 

equal to each other and can be expressed by / (2 )ia Rl , where a is the radius of one 

compartment, l is the length of one compartment and Ri is the intracellular resistivity 

(Dayan and Abbott, 2001). 

 

Prediction of Conduction Velocity 

As an equivalent concept, conduction velocity of an action potential is naturally defined 

as the ratio of propagation distance to conduction delay. It is not a new topic to calculate 

the conduction velocities of propagating action potentials in the axon. In the myelinated 

axons, the conduction velocity is predominantly determined by the discontinuous 

variation of the cable properties in the nodes of Ranvier (Hodler et al., 1952; Goldman 

and Albus, 1968). Based on the cable equation for unmyelinated axon, the linear 

relationship between conduction velocity and the square root of the axon diameter was 

found (Rushton, 1951). Specifically, the propagation speed of action potentials in the 

unmyelinated axon is proportional to the ratio of the cable space constant to the 

membrane time constant (Dayan and Abbott, 2001): 
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where all parameters are same as before. 
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When the propagation of an action potential is at the steady state, Eq. (1.4), which 

is a partial differential equation, becomes an ordinary differential equation. Therefore, 

Hodgkin and Huxley introduced an equation to calculate conduction velocity of an action 

potential in the axon (Hodgkin and Huxley, 1952e): 

2 i m

Ka
v

R C
       (1.6) 

where v is the conduction velocity, a is the radius of axon, Ri is the axial resistivity of the 

axon interior and Cm is the membrane capacitance per unit area. However, the constant K 

(= 10.47 msec
-1

) depends on the conductance ( , )Nag V t  (which is an intricate function of 

V and t), need to be fixed experimentally and varies with different experiments. As a 

result, Eq. (1.6) is hard to apply due to the experimental measurement of constant K. 

 A well-known equation for predicting conduction delay in a general model axon 

was introduced by Matsumoto and Tasaki (Matsumoto and Tasaki, 1977; Tasaki and 

Matsumoto, 2002; Tasaki, 2004). By considering an unmyelinated axon as a continuous 

cable which consisted of resting, transitional and excited zones, they derived the 

conduction velocity equation from the distribution of the local current, which links the 

resting zone of the unmyelinated axon with its excited zone: 

28 total i m

d
v

R R C
  

where Ri and Cm are same as above, d is the diameter of the axon and Rtotal is the total 

resistance of the membrane of unit area in the excited state. In addition to the passive 

parameters, the Matsumoto-Tasaki Equation involves the activities of all ionic currents in 

the axon (Rtotal). However, their equation does not require any information about the 
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time-dependent processes of axon excitation. Note that comparing Eq. (1.6) and 

Matsumoto-Tasaki Equation, the constant K in Eq. (1.6) is equal to (2RtotalCm)
-1

. 

 A recent analytical study on predicting conduction velocity of action potentials in 

H-H model was done by Muratov (Muratov, 2000). He assumes that compared with the 

time constant of m (~ 0.2 ms, activation variable of INa), the time constants of h (~ 5 ms, 

inactivation variable of INa) and n (~ 3 ms, activation variable of IK) are slow enough to 

set as constants. As a result, the simplified H-H Equations, which contain V (voltage, 

time constant ~ 0.01 ms) and m, were explicitly solved through asymptotic method, 

yielding velocity: 

1/8
4 3

0

4 5

2

3 16

m Na

i m

a g h
v

R C

 
  

 
 

where a, Ri and Cm are same as above, Nag is the maximum conductance of the fast 

sodium current INa, h0 is the value of h at the rest state and 

( ) ( ),   m m Na m rest m

m

m
E V   


    

where ENa is the sodium equilibrium potential and Vrest is the resting membrane potential. 

Compared with Matsumoto-Tasaki Equation, which explicitly depends on all ionic 

currents, the Muratov Equation only involves the activities of INa ( m  and h0), as well as 

the passive properties of the axon. 

 Matsumoto-Tasaki Equation and Muratov Equation have two common 

assumptions, or constraints. First, there is only one isolated action potential in the axon, 

which means the conduction velocity of the action potential is not affected by any 

history-activities in the axon. Second, the axon is Hodgkin-Huxley type (i.e., there are 
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only standard H-H INa, IK and Ileak in the axon). Indeed, both of these two equations can 

accurately predict the conduction velocity of one action potential in the H-H axon. 

However, their equations fail to predict the variability of conduction delay (even for the 

H-H model). If there are many action potentials in the axon, and they are close to each 

other, then neither of these two equations predicts the conduction velocities accurately. 

The third is that neither Rtotal nor 
m /h0 is easy to measure in the experiments. 

 Due to the constraints of Matsumoto-Tasaki Equation and Muratov Equation 

introduced above, in order to predict the conduction delay of action potentials with 

general conditions, we intend to develop a new equation in this dissertation with three 

advantages. First, in addition to the H-H model axon, our equation can predict conduction 

delay in unmyelinated axons. Second, in addition to predicting the velocity of one action 

potential, our equation should be able to predict the history-dependence of conduction 

delay of many action potentials. Finally, we intend to develop an equation that only 

contains the “friendly” variables, which are easy to measure in the experiments. 

Therefore, our equation can be applied to predict the conduction delays of action 

potentials both in the model axons and in the experimental measurements. 

 

Summary 

This dissertation includes detailed research for understanding how conduction delay in 

unmyelinated axons are modulated by the membrane passive properties, different ionic 

currents, Na
+
/K

+
 pump and neuromodulators. Exploration and prediction of history-

dependence of conduction delay are also systematically performed biologically and 

mathematically. A highlight of this research can be generally described as using the 
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knowledge of mathematics and computing science to analyze and predict some 

widespread but not well-studied biological phenomena, such as short- and long-term 

history-dependence of conduction delay. Developing appropriate mathematical and 

computational models helps scientists to understand the mechanisms of conduction delay 

variability, and choosing a simple nervous system allows biologists to perform relevant 

experiments to verify the modeling results. 
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CHAPTER 2 

HISTORY-DEPENDENCE OF CONDUCTION DELAY IN THE PD AXON 

 

2.1  Introduction 

Although the action potential is usually assumed to faithfully conduct along the axon, 

which is true for the propagation of action potentials in the squid giant axon (Hodgkin 

and Huxley, 1952e), recent experiments on the motor axon of PD neuron in STG show 

that the conduction delay changes substantially (up to 30%) over a 4-5 cm axon length, 

both within single burst and between bursts (Ballo and Bucher, 2009). To reproduce and 

investigate the mechanisms underlying the variability of conduction delay (i.e., non-

faithfulness propagation of action potentials), in this chapter we will first introduce the 

experimental observations of history-dependence of conduction delay in the PD axon at 

different timescales. The relationships between conduction delay and different 

neuromodulators, as well as different stimulation frequencies are also shown in this 

chapter. All representative experiments were performed by Bucher lab (Ballo et al., 2010; 

Ballo et al., 2012). 

 

Neuromodulator and Blocker 

Neuromodulator is a substance released by a neuron at a synapse and transfers signals to 

adjacent or distant neuron(s). Neuromodulators exist in both vertebrate and invertebrate 

animals, and they change the intrinsic properties of individual neurons and/or the strength 

of the synapses between them (Pearson, 1993; Marder and Calabrese, 1996; Nusbaum 

and Beenhakker, 2002). For instance, Dopamine (DA) reduces the maximum 
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conductance of a hyperpolarization-activated inward current (Ih) in PD axon. However, 

due to the shift of the activation curve to more depolarized potentials and the change in 

the slope, the conductance of Ih was increased at biologically relevant membrane 

potentials (Ballo et al., 2010). Channel blockers are chemicals which can be used to block 

or attenuate certain channel(s). For instance, CsCl blocks almost all the Ih channels in the 

PD axon (Ballo et al., 2010). 

 

Complex Properties of the PD Axon 

The axon trunk and lower order branches are usually assumed to faithfully conduct action 

potentials, but recent studies show that the complex voltage- and time-dependence due to 

the properties of different ion channels in the membrane can substantially affect spike 

shape and conduction (Bucher and Goaillard, 2011). During the process of spike 

propagation, short- and long-term dynamics of neuronal communication are affected by 

the properties of non-synaptic axonal membrane (Ballo and Bucher, 2009). Specifically, 

the PD neuron in the STG usually bursts with a period of about 1 s and is rhythmically 

active, its spike amplitude, duration and trough (the membrane potential from which each 

spike is fired) change over the process of a single burst, as has been shown by 

intracellular axon recording (Ballo et al., 2012). Additionally, the resting membrane 

potential slowly hyperpolarizes and reaches its steady state after several minutes of 

Poisson stimulation or realistic burst pattern stimulation (see Figure 2.2A). 
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Poisson Stimulation 

To describe the history dependence of conduction delay, we used a Poisson stimulation 

protocol (Figure 2.1A) (George, 1977; Moradmand and Goldfinger, 1995) for 

experimental PD axon, as well as the simulation process for the biophysical model (see 

Figure 3.1). A Poisson stimulation is defined by ISIs (of paired spikes in the stimulation 

protocol), which obey the Poisson distribution. As the reciprocal of ISI, the distribution 

of Finst is shown in Figure 2.1B. The resulting spike sequence is called a ‘Poisson-like’ 

spike train and is highly variable because of the complete independence between the 

times of occurrence of neighboring spikes. However, real spike trains usually have inter-

spike intervals that are not independent from each other but may depend on the preceding 

inter-spike intervals. Although the spikes propagated in the axon under naturally 

occurring conditions never follow a Poisson distribution, we still choose Poisson 

stimulation because we can use it to identify how conduction delay depends on the 

history of activity in the PD axon. 

There are three main properties of Poisson stimulation. First, we can set the mean 

frequency ( Poissf ) for each Poisson stimulation process. For instance, we used three Poissf : 

5, 10 and 19 Hz, the latter similar to the natural spike frequency of the biological PD 

neuron (Ballo et al., 2012). Due to its simplicity, the neuronal response variability is often 

compared to the variability of a Poisson spike train. Second, in a typical 300 s Poisson 

stimulation protocol, the range of ISIs is between 1.4 and 80 Hz, which is sufficiently 

large to identify the functional relationship between the conduction delay and the activity 

history of the PD axon. Finally, the most important property of the Poisson stimulation is 

that during the protocol, any two stimuli are independent of each other. As a result, we 
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can conclude that any possible correlations between conduction delay and Finst is 

generated by the properties of the PD axon, rather than the dependence between stimuli 

of the Poisson stimulation. Also note that the Poisson stimulation protocol provides larger 

range of ISIs than the natural rhythmic pattern does. 

 
Figure 2.1 Poisson stimulation. A: Schematic of a Poisson stimulation protocol. ISIs 

obey the Poisson stimulation. Finst is defined as the reciprocal of ISI. B: The histogram 

(left y-axis) of Finst  (data in panel A) approximately fits the probability density function 

(right y-axis) of a Poisson stimulation (with mean = variance = 10 Hz). There are 3,010 

stimuli in this simulation process. 

 

Calculating the Attributes of the Slow- and Fast-Timescale Effects 

The entire protocol process (300 s) of a Poisson stimulation is divided into fifteen 20 s 

time bins. For the slow timescale (STS) effect, Dmean was calculated as the mean value of 

conduction delay in each time bin; CV-D was the coefficient of variation of delay in each 

time bin. For the fast timescale (FTS) effect, because the experimental PD axon reached 

the steady state at the end of the stimulation protocol, only the data of the 5
th

 minute of 

stimulation was used. In order to investigate the data quantitatively at FTS, we fitted the 

nonlinear relationship between delay and Finst with a quadratic function. Fmin was 

calculated as the minimum frequency of the fit and Dmin as the value of delay 

corresponding to the minimum. As a standard measurement of nonlinearity, the curvature 
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of the minimum (κ
min

) was also calculated. Note that the minimum could occur at the 

boundary. 

 

2.2  The Slow and Fast Timescale Effects of Conduction Delay 

To examine dependence of a discrete process on the history of prior activity it is common 

to use Poisson stimulation protocol which, by definition, includes stimulation patterns 

with a large range of inherent frequencies. A 5 min Poisson stimulation was applied in an 

example experiment of the PD axon by Bucher lab. Conduction delay of each action 

potential between two recording sites (Figure 1.1B) and the voltage activities were 

measured intracellularly. Both the peak voltage and the resting membrane potential (Vm) 

are hyperpolarized during stimulation at the STS (Figure 2.2A, lower panel). At the short 

timescale, VT is more hyperpolarized when the corresponding action potential has a 

smaller ISI (Figure 2.2A, upper panel). Furthermore, the action potential shows an after-

depolarization (ADP) (Figure 2.2A, upper panel) at fast timescale. At slow timescale, the 

resting membrane potential of the PD axon shows a slow after-hyperpolarization (sAHP) 

(Figure 2.2A, lower panel). As an important characteristic of the PD axon, such sAHP 

substantially affects the variability of conduction delay in the PD axon (the details will be 

discussed in the following chapters). 

In response to Poisson stimulations, the action potential conduction delay in the 

PD axon shows both STS and FTS history dependent effects (Ballo et al., 2012). The STS 

effect refers to the fact that both Dmean and CV-D (see introduction) increase over a 

timescale of minutes following the onset of the stimuli (Figure 2.2B). The FTS effect 

refers to the presence of a nonlinear and non-monotonic relationship between delay and 



30 
 

Finst: conduction delay of the PD axon has a minimum value for Finst around 40 Hz but 

higher values for lower or higher Finst (Figure 2.2C). 

In this experiment, Poissf  was set at 10 Hz and CsCl was applied to block Ih (Ballo 

et al., 2010). In addition to conduction delay and voltage activity of each action potential, 

many other parameters were recorded in order to build the biophysical model and the 

empirical equations (Chapters 3-5). These variables include: ti, the time when we inject 

electrical stimulus into the end of the axon; Finst of each stimulus; VT and Vp, the trough 

(the trough voltage of each spike is defined as the membrane potential from which each 

spike is fired) and peak voltage of each action potential, respectively (therefore, the 

amplitude of each action potential can be calculated from VT and Vp); and lastly the 

duration of each action potential. 
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Figure 2.2 STS and FTS effects of conduction delay in the PD axon. A: Upper panel: 

action potential in the experimental PD axon shows ADP; Lower panel: voltage trace of 

the PD axon during a 5 min/10 Hz Poisson stimulation. The Vm shows sAHP. Both the 

peak voltage and the resting membrane potential are slowly hyperpolarized during the 

stimulation process and recover after the event.  B: The conduction delay of action 

potentials shown as a function of time. The conduction delay values during the 1
st
 and 5

th
 

minutes of stimulation are marked in color. C: The data in panel A, plotted as a function 

of Finst, show a non-monotonic relationship between delay and Finst (data are modified 

from Bucher lab). 

  

2.3  Experimental Results for Different Neuromodulators 

In order to investigate how the conduction delays in PD axon affected by the activity 

level of Ih, three representative experiments were performed (by Bucher lab) to the PD 

axon with same Poisson stimulation (as used in Figure 2.2, Poissf  = 10 Hz). In addition to 

the experiment with control saline, two more experiments were performed with different 

chemical applications: the first experiment applied DA, which increases the activity level 
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of Ih in the PD axon (see introduction); the second experiment, on the other hand, applied 

CsCl, which blocks Ih channels in the PD axon (Ballo et al., 2010). 

 Figure 2.3 shows the relationship between the variability of conduction delay and 

the level of Ih in the PD axon. At STS, with control saline or CsCl, both Dmean and CV-D 

increase with time. Though, they keep constants with the application of DA. Thus, within 

same stimulus time length, both Dmean and CV-D increase when Ih is reduced (Figure 

2.3A-B). 

 At FTS, comparing with the result obtained from the experiment with control 

saline, the relationship between conduction delay and Finst with CsCl is more nonlinear 

(control: κmin = 0.0051; CsCl: κmin = 0.01). Additionally, when experiment was performed 

with CsCl, the difference between the maximum delay (~50 ms) and minimum delay 

(~37 ms) is larger than the corresponding result obtained from control saline (Figure 

2.3C). However, application of DA leads to an almost linear and monotonic relationship 

between delay and Finst (DA: κmin = 0.001, Figure 2.3C). Furthermore, the difference 

between the maximum delay (~40 ms) and minimum delay (~35 ms) is smaller than in 

the previous cases. Therefore, we conclude that Ih can substantially improve the temporal 

fidelity of conduction delay in the PD axon. 
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Figure 2.3 History-dependence of conduction delay affected by the Ih level. A-B: At the 

STS, DA results in an increase of hg  which, in turn, causes Dmean and CV-D to stay as 

constants. In contrast, blocking Ih with CsCl results in an increase in Dmean and CV-D 

(Ballo et al., 2012). C: Changes in hg  levels by DA or CsCl result in changes in Dmin and 

κmin values in the delay vs. Finst plots (for the 5
th

 minute of a 10 Hz Poisson stimulation). 

Quadratic fit of each group of data is plotted in colored curve (data are modified from 

Bucher lab). 

 

2.4  Experimental Results for Different Frequencies of Poisson Stimulation 

In addition to DA and CsCl, the history-dependence of conduction delay is substantially 

affected by the frequency of stimulation protocol (Ballo et al., 2012). The representative 

experiment was performed (by Bucher lab) with the same PD axon in CsCl using Poisson 

stimulation at different mean frequencies: 5 Hz, 10 Hz and 19 Hz. 

 For experimental results obtained from different Poisson stimulations, Dmean 

increases with time at STS. However, within same stimulus length, Dmean increases faster 

with high frequency stimulation (Figure 2.4A). CV-D increases with time when the mean 

frequency of the Poisson stimulation is high (10Hz and 19 Hz), but it keeps constant with 

low frequency stimulation (5Hz, Figure 2.4B). At FTS, both Dmin and κmin increase with 

the mean rate of Poisson stimulation (Figure 2.4C). Therefore, the mean frequency of 

stimulation protocol significantly affects the temporal fidelity of the conduction delay 

along the PD axon: the higher the mean frequency, the worse the temporal fidelity will 

be. 
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Figure 2.4 Temporal fidelity of conduction delay affected by the stimulation frequency. 

A-B: At the slow timescale, Dmean and CV-D increase with stimulation rates. C: 

Temporal fidelity of conduction delay decreases with the increase of stimulation rates. 

Quadratic fit of each group of data is plotted in colored curve (data are modified from 

Bucher lab). 

 

2.5  Stimulation with Realistic Burst Patterns 

After the detailed discussion about conduction delay in the PD axon with Poisson 

stimulation, one should note that the PD axon usually does not perform in such a manner 

under natural conditions. Therefore the experimental results of realistic burst stimulation 

are still necessary to analyze. In order to stimulate the axon with a pattern as realistic as 

possible, Bucher lab (Ballo et al., 2012) designed a protocol that mimicked ongoing 

pyloric activity. Both the burst timing and the spike interval structure of PD have been 

described in detail in H. americanus (Bucher et al., 2005; Bucher et al., 2006; Ballo and 

Bucher, 2009). The 5 min protocol consisted of 300 trains at 1 Hz train frequency. Each 

train is 360 ms long and consisted of 19 pulses. The trains were designed to mimic the 

parabolic frequency structure of PD bursts (Szucs et al., 2003; Ballo and Bucher, 2009), 

with Finst increasing from 32 Hz at the beginning to 63 Hz at the middle of the train and 

then decreasing to 32 Hz again toward the end (Figure 2.5A, lower panel). 

 A representative experiment is shown in Figure 2.5.  Similar as the experiments 

with Poisson stimulation (Figure 2.3), in order to investigate how DA and CsCl change 
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the activity level of Ih, which further lead to the variability of conduction delay, we also 

applied DA and CsCl to the PD axon with realistic burst stimulation (Figure 2.5). 

Intracellular PD axon recordings of responses to the 1
st
 and 300

th
 stimulus train under 

different pharmacological conditions are shown in Figure 2.5A1-C1. The resting 

membrane potential in control saline before stimulation are marked by dashed lines, 

which indicate a hyperpolarization of the resting potential attributable to the axonal 

stimulation. Hyperpolarization from 1
st
 to 300

th
 burst is increased in CsCl and decreased 

in DA compared with control saline. At this timescale, there is almost no change in the 

spike patterns within the burst except the substantial decrease of the 1
st
 spike interval in 

the 300
th

 burst in CsCl (asterisk). 

 Same data as stacked multiple sweeps triggered by the pdn stimulation are shown 

in Figure 2.5A2-C2. The variability of conduction delays becomes apparent in the plots. 

At the 300
th

 burst, the variability is primarily increased in CsCl and control saline: 

particularly apparent is the much larger delay of the 1
st
 spike in the burst, which take 

more than 40% longer to reach intracellular recording site in CsCl (asterisk) and more 

than 10% longer in control saline. However, this variability of conduction delay of the 1
st
 

spike in burst is absent in DA, which indicates that DA also increases the temporal 

fidelity of conduction delay in PD axon with realistic burst stimulation. 

 The conduction delays in PD axon as a function of time over the burst for all 300 

bursts in each treatment are shown in Figure 2.5A3-C3. As Dmean is increasing, the 

variability of delay within each burst gradually builds up during the 300 bursts 

stimulation. Again, both the total increase and the variability of conduction delay within 

each burst in DA are significantly reduced. In conclusion, similar to the experimental 
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observations obtained from Poisson stimulation (Figure 2.4), the temporal fidelity of 

conduction delays are also affected by the activity level of Ih with realistic burst 

stimulation. 

 

Figure 2.5 Delay changes during realistic burst stimulations. A1-C1: Example traces 

from one experiment. This panel shows the 1
st
 and 300

th
 bursts of 5 min stimulations with 

a realistic burst pattern (19 pulses, parabolic Finst structure). Note the differences in 

baseline hyperpolarization from the 1
st
 and 300

th
 bursts across control, CsCl and DA. A2-

C2: This panel shows the same data as staggered multiple sweeps, triggered at the 

stimulus time. Note the substantial change in delay over the course of the 300
th

 burst in 

control and CsCl, particularly for the 1
st
 spike (asterisk in the CsCl traces). A3-C3: This 

panel shows plots of delay over burst time for all 300 bursts in each treatment. (modified 

from (Ballo et al., 2012).) 

 

2.6  Summary 

Conduction delay is evoked by the generation of action potential. The temporal fidelity of 

conduction delay substantially affects temporal coding and neural communication. 

Although inter-pulse delay is assumed to conduct faithfully along the axon, the 

representative experiments of PD axon with different conditions performed by Bucher lab 

provide us a new stage to investigate the variability of conduction delay during the 

propagation of action potential along axons. 
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In this chapter we have discussed the history-dependence of conduction delay 

exposed by the PD axon with different experimental conditions. At STS, conduction 

delay depends on the previous long-term history activities: the slow increase of Dmean and 

CV-D indicates the decrease of temporal fidelity of conduction delay with ongoing 

stimulation. At FTS, conduction delay nonlinearly and non-monotonically depends on 

Finst, which is used to describe the short-term activity of the axon. Moreover, conduction 

delay is significantly affected by the activity level of Ih through different 

neuromodulators. This is shown by Dmean and CV-D increasing with time when PD is 

measured in CsCl, but they decrease with time in DA, which increases Ih. These 

observations are confirmed both with Poisson stimulation and realistic burst stimulation. 

Additionally, both Dmean and CV-D positively depend on the mean frequency of the 

stimulation protocol. 

The correlation between delay and neuromodulators indicates that Ih plays crucial 

role in shaping the activity variability of conduction delay. Furthermore, the relationship 

between delay and stimulation rates suggests that the Na
+
/K

+
 pump is a possible factor 

(will be discussed in Chapter 4) which can be used to unmask the mechanisms of how 

conduction delay depends on the activity history in PD axon. Depending on these 

observations, we will build a conductance-based biophysical model and quantitatively 

investigate how Ih and Na
+
/K

+
 pump affect conduction delay in the following chapters. 
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CHAPTER 3 

A CONDUCTANCE-BASED BIOPHYSICAL MODEL FOR THE PD AXON 

 

3.1  Introduction 

Based on the experimental observations of conduction delay variability discussed in 

Chapter 2, a conductance-based biophysical model of the PD axon is built in this chapter. 

Such a model axon is used to reproduce the history-dependence of conduction delay at 

different timescales. It is also used to examine the factors that lead to the variability of 

the conduction delay. In addition to the hyperpolarization of Vm during the simulation 

process and the ADP exposed by action potentials in the PD axon, we have shown that 

conduction delay and its temporal fidelity can be altered by the stimulation frequency, as 

well as by different ionic currents. Specifically, the predicted delay as a function of time 

and Finst is substantially altered by Ih, yet the history-dependence of conduction delay is 

not determined by Ih. All these experimental results are accurately captured by the model 

PD axon quantitatively. Using the biophysical model built in this chapter, we will show 

which current leads to these observations. 

 

3.2  Biophysical Model 

The complex intrinsic membrane properties of the PD axon are determined by the 

characteristics of its voltage-gated membrane currents and other membrane properties. In 

order to identify the mechanisms of conduction delay variability, a conductance-based 

biophysical model of the PD axon is constructed in this dissertation to examine the role 

of different ionic currents in shaping the history-dependence of conduction delay. 



39 
 

3.2.1  The Principal Equation and Component Currents 

The model is based on standard cable equations (Koch, 1999) for an unmyelinated axon. 

2
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In addition to the standard Hodgkin-Huxley leak (ILeak), fast sodium (INa), and delayed-

rectifier potassium (IKd) currents, this model incorporates two additional voltage-gated 

ionic currents, a transient potassium current IA and a hyperpolarization-activated inward 

current Ih, both of which have been shown experimentally to be present in this axon 

(Figure 3.1C) (Ballo and Bucher, 2009; Ballo et al., 2010). Additionally, a is the radius 

(= 5 μm, (Bucher and Goaillard, 2011)) of the model axon, Ri (= 80 Ωcm) is the specific 

intracellular resistivity, Rm (= 8000 Ωcm
2
) is the specific membrane resistivity used to 

calculate the leak conductance, and Cm (= 1 μF/cm
2
) is the membrane capacitance (per 

unit area). These values result in the (passive) length constant of λ = 1581 μm. 

All currents are Hodgkin-Huxley type (Hodgkin and Huxley, 1952e) and 

governed by the following equations 

( )

;     z ,

p q

ion ion ion

z

I g m h V E

z zdz
m h
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

 


 

 

where Iion represents the type of one component current; iong is the maximum 

conductance of the corresponding current; Eion is the reversal potential of the 

corresponding current; m and n are the activation and inactivation variables, respectively; 

p and q are non-negative integers. 



40 
 

0
1 (nA), [ , ]

( )
0,          otherwise

i i

app

t t t dt
I t

 
 


 

0

appI  is the applied stimulation current applied at “left” end of the axon and ti and dt (= 1 

msec) are, respectively, the stimulus time and duration. The parameters of all component 

currents in the biophysical model are listed in Table 3.1. 

Table 3.1 Voltage Dependencies for the Steady-State Activation (m), Inactivation (h), 

Maximum Conductance and the Reversal Potential of the Dynamical Currents in the 

Model 
 m, h x  x  [ms] xg  [S/cm

2
] Ex [mV] 

INa m
3
 1

1 exp( ( 35) / 8.5)V  

 

0.132

cosh(( 35) /18)

0.03

1 exp( ( 20) / 4)

V

V




  

 

1.4e-2 Dynamical  

(~45) 

h 1

1 exp(( 50) / 7)V 
 

10

cosh(( 55) /17)V 
 

IKd m
4
 1

1 exp( ( 47) /10)V  
 

50

cosh(( 73) /15)V 
 

5e-4 -70 

IA m
3
 1

1 exp( ( 63) /15)V  
 

58
18

1 exp(( 61) / 20)V


 

 

7.5e-3 -70 

h 1

1 exp(( 80) / 8)V 
 

50 

Ih m 1

1 exp(( 80) / 5.5)V 
 

3700 2.5e-5 -32 ctrl 

-25 DA 

IKs m 1

1 exp( ( 47) /10)V  
 

5000

cosh(( 73) /15)V 
 

5e-4 -70 

ILeak    1.25e-4 -65 

 

A schematic of the model axon is shown in Figure 3.1. The length (L) of model 

axon is 2 cm (in the range of the recorded segments of the biological PD axon (Ballo et 
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al., 2012)), which was divided into 201 identical compartments for simulations. In order 

to apply the finite difference method to solve the model equations numerically, each 

compartment is assumed to be isopotential during the simulation process. We stimulated 

the 1
st
 compartment (left end) of the model axon, and recorded the activity of action 

potentials at two different sites along the axon (0.3 and 0.7 times the length of the axon, 

Figure 3.1B upper panel). All simulations were done in NEURON (Hines and Carnevale, 

1997, 2001). Conduction delay of each action potential was measured as the difference of 

the action potential peak time at the two recording sites (Figure 3.1B lower panel). 

Therefore, the conduction velocity of each action potential is the distance between the 

recording sites divided by the conduction delay. With a 5 min Poisson stimulation at 10 

Hz, the voltage activity measured at the record site 1 is shown in Figure 3.1A. At long 

timescales, both VP and Vm are hyperpolarized (i.e., sAHP) with time during the 

stimulation process (Figure 3.1A, lower panel). At short timescale, action potentials show 

the ADP as observed in the experiments (Figure 2.2A, upper panel). 
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Figure 3.1 Schematic diagrams of the model axon and voltage response with Poisson 

stimulation. A: A sample spike train recorded at record site 1 of the biophysical model 

with a 5 min/10 Hz Poisson stimulation. B: A 2-cm model axon was stimulated at one 

end and the action potential delay was measured between two positions at 0.3 and 0.7 

times the length of the axon. Bottom panel shows the Poisson stimulation and delays of 

two consecutive action potentials measured at the two recording sites. C: Schematic of 

the ionic currents and the Na
+
/K

+
 pump in the model axon membrane. 

 

3.2.2  The Na
+
/K

+
 Pump in Unmyelinated Axons 

Because the electrical current generated by the Na
+
/K

+
 pump is small, in most situations, 

the Na
+
/K

+
 pump plays no role for generating the action potentials and only has very 

weak direct effect on the resting membrane potential. However, under special 

circumstances, the membrane potential can be significantly influenced by the Na
+
/K

+
 

pump (Purves et al., 2008). For instance, the resting membrane potential of small 

unmyelinated axons can be substantially hyperpolarized with a long-term stimulation 

(Rang and Ritchie, 1968). For axons with a small diameter, which leads to a large 

surface-to-volume ratio, the intracellular sodium concentration usually rises to higher 
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levels than the normal levels in other cells. In this circumstance, the electrical currents 

generated by the Na
+
/K

+
 pump can significantly contribute to the axon membrane 

potential (Gouaux and Mackinnon, 2005). 

 The Poisson stimulation in the representative experiments of the unmyelinated PD 

axon lasted for 5 min, which is a long-term protocol. The ratio of surface-to-volume is 

large for our model axon. Furthermore, based on the experimental observations of the 

membrane potential of the PD axon (Figure 2.2A), which shows the ADP at FTS and 

sAHP at STS, it is natural to include the Na
+
/K

+
 pump in our biophysical model to mimic 

the hyperpolarization of the membrane potential. Mathematically, because we use a 

dynamical equilibrium potential for sodium, governed by the intracellular sodium 

concentration, we need the Na
+
/K

+
 model pump to maintain the proper concentrations of 

sodium and potassium ions both intracellularly and extracellularly. This  model pump is 

described in the following section. 

 

3.2.3  The Na
+
/K

+
 Pump Model 

The Na
+
/K

+
 pump model was modified from a previous modeling study (Angstadt and 

Friesen, 1991). The current produced by the pump is given by the following equation 

1/2

max

[ ] [ ]

[ ]
1 exp( )in

S

pump Na Na

Na

I
I

 







 

where Imax (= 1 mA/cm
2
) is the maximum current, [Na

+
]in is the intracellular sodium 

concentration, [Na
+
]1/2 (= 80 mM), the concentration at which the pump is half active and 

[Na
+
]S (= 1.6 mM), the sensitivity of the pump to alterations of intracellular sodium 

concentrations. The rate of change for [Na
+
]in is governed by 



44 
 

3[ ] Na pumpin
I Id Na

dt F Vol

 
 


 

where INa is the activity level of sodium current, F (= 96485C/mol) is Faraday’s constant, 

Vol (= 2.5e-4 cm
3
) is the volume of one compartment of the model axon. At steady state, 

the level of Ipump will approximately equal to one third of the mean level of INa. For the 

Na
+
/K

+
 pump, in addition to the fast sodium current, INa is usually assumed to be the total 

sodium current, which also includes the persistent current and the sodium leak current 

INa,Leak (Yao et al., 2011). We do not have a separate persistent sodium current in the 

model and the INa,Leak is ignored in our calculation of INa due to its small magnitude. 

 The reversal potential of Na
+
 in the model axon is calculated according to the 

change in intracellular sodium concentration from the Nernst equation assuming, the 

extracellular sodium concentration is constant due to the assumption that the extracellular 

volume is infinite: 

10

[ ]
58log

[ ]

out
Na

in

Na
E

Na




  

 

3.3  Poisson Stimulation Results 

3.3.1  Simulation Results of the Model Axon 

After we established the biophysical model for an unmyelinated motor axon, we used it 

to generate an example spike train using Poisson stimulation (Figure 3.1A). We can also 

compare the spike train generated using Poisson stimulation of both the biophysical 

model and the experimental data (Figure 2.2A). We note that many properties of the 

action potentials generated by our model coincide with the properties of the spike 
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activities recorded experimentally. For instance, the model captures the ADP of each 

action potential and the sAHP of Vm as observed in the experimental data. 

In order to validate the biophysical model, the same Poisson stimulation ( Poissf  = 

10 Hz) in Figure 2.2 was applied to the model axon. The biophysical model qualitatively 

captures both the STS and the FTS history-dependence of conduction delay observed in 

the experiments (Figure 2.2B-C): at STS, both Dmean and CV-D increase with time 

(Figure 3.2A1); at FTS, the simulation results also show a nonlinear-non-monotonic 

relationship between delay and Finst (Figure 3.2B1). The model provided a very good 

match of the changes in Dmean over the 5 min stimulation interval and also captured the 

increase in variability for the first half of the stimulation interval (Figure 3.2A2-B2). 

 

3.3.2  Simulation Results of the Hodgkin-Huxley Axon 

In order to compare the simulation results between our model and the Hodgkin-Huxley 

model, we also built a Hodgkin-Huxley model axon with standard Hodgkin-Huxley fast 

sodium current, delayed-rectifier potassium current and leak current (Hodgkin and 

Huxley, 1952e), but with the same cable properties as our conductance-based biophysical 

model. Using Hodgkin-Huxley values for the cable resulted in qualitatively similar 

results and is not shown. 

To see if the STS and FTS history dependence are inherent properties of all 

axons, the same Poisson stimulation was applied to the Hodgkin-Huxley model axon. The 

results of this simulation indicated that the Hodgkin-Huxley model axon shows no slow 

history dependence (Figure 3.2A3). On the other hand, the Hodgkin-Huxley model axon 

did show a weak FTS history dependence for Finst values larger than 37Hz (Figure 
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3.2B3). This effect is qualitatively similar to the FTS effect seen in the PD model axon 

(Figure 3.2B1). 

In order to unmask the factor that leads to the history-dependence of conduction 

delay at different timescales, we intend to reproduce the experimental observations 

(Figure 2.2B-C) by the biophysical model with as few ionic currents as possible. Note 

that we set 0hg   in the model during this stimulation process. Therefore, comparing 

with the Hodgkin-Huxley model, the PD model axon only has two more components: the 

Na
+
/K

+
 pump and IA. Furthermore, the PD model axon without IA can also generate both 

STS and FTS effects of conduction delay with Poisson stimulation (not shown). As a 

result, the Na
+
/K

+
 pump is presumably the factor that determines the variability of 

conduction delay in the PD model axon (more details will be explained in Chapter 4). 
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Figure 3.2 Model comparisons with experimental results (simulations in this figure were 

done with 0hg  ). A1: The same Poisson stimulation as in Figure 2.2 was applied to the 

biophysical model produces results that are qualitatively similar to the experimental data. 

The conduction delay values during the 1
st
 and 5

th
 minutes of stimulation are marked in 

colors. B1: The data in panel A1, plotted as a function of Finst, show a non-monotonic 

relationship between delay and Finst. A2-B2: The mean value (Dmean) and the coefficient 

variation (CV-D) of conduction delay increase with time (following the onset of 

stimulation). Dmean and CV-D are calculated by binning the data in panel A1 in 20 s 

intervals. The model matches the biological data (as in Figure 2.2B-C) for Dmean for the 

entire duration of stimulation and for CV-D up to 150 s. A3: The same Poisson 

stimulation applied to the Hodgkin-Huxley model axon does not show the slow timescale 

effect of conduction delay (panel A1). B3: The Hodgkin-Huxley model axon does show a 

small nonlinear effect at FST when Finst is high. 

 

3.4  Simulation Results for Different Experimental Conditions 

In the last section, the history-dependence of conduction delay was successfully captured 

by the biophysical model without Ih. We would like to know whether the positive 

relationship between Dmean/CV-D and the activity level of Ih also can be predicted by the 

PD model axon. In this section we will add Ih with different levels to the biophysical 

model and discuss the corresponding simulation results. 
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3.4.1  Simulation Results for Different Levels of Ih 

Neuromodulation plays a crucial role in shaping both the activity and the history-

dependence of conduction delay in the PD axon (Bucher et al., 2003; Ballo and Bucher, 

2009). Conduction delay varies dramatically by changing the level of Ih through the 

application of DA (applied at 10
-9

 M) or CsCl (Figure 2.3). DA increases the Ih levels in 

the PD axon in the normal voltage range of each spike, while CsCl blocks the Ih channels 

(Ballo et al., 2010). As an approximation, in our model we changed hg , the maximum 

conductance of Ih, to mimic the application of DA (double the hg ) or CsCl (set to  

0hg  ). Note that this model was not intended to provide a perfect quantitative match of 

the biological axon. 

 We examined how the STS and FTS effects in the model were changed by 

changing the levels of hg and compared these effects with the experimental application of 

DA or CsCl. The same Poisson stimulation protocol ( Poissf  = 10 Hz) as in Figure 2.2 was 

applied to the biophysical model with different levels of Ih. Changing the level of Ih 

strongly influenced the STS effect of conduction delay obtained from the PD model axon 

(Figure 3.3A-B). Removing Ih increased both Dmean and CV-D in the model, an effect that 

qualitatively matched the experimental application of CsCl (Figure 2.3A-B). In contrast, 

increasing hg  (as with experimental application of DA) had the opposite effect. To 

examine the influence of hg on the FTS effect, we focused on the data in the 5
th

 minute of 

the Poisson stimulation. Removing Ih increased the nonlinearity in the Finst-delay 

relationship (control: κmin = 0.0066; 0hg  : κmin = 0.0096), whereas increasing hg

decreased this nonlinearity (2*control hg : κmin = 0.0042; Figure 3.3C). These effects 
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quantitatively mimic the influence of CsCl and DA on the FTS effect in experiments 

(Figure 2.3C). 

 The biophysical model qualitatively captured almost all STS and FTS effects seen 

in biological experiments. The only notable exception was how doubling the value of hg

changed the FTS effect. In the experimental data, the influence of DA is to effectively 

linearize the Finst-delay relationship (Figure 2.3C) yet doubling hg did not completely 

remove the nonlinearity seen in this relationship (Figure 3.3C). Even further increases in 

hg (not shown) never resulted in an Finst-delay relationship that as linear (i.e., low κmin) as 

that seen experimentally. 

 

Figure 3.3 Changing the maximum conductance level of Ih in the model mimics the 

experimental effects of CsCl and DA. A-B: At STS, increase of g  in the model results in 

an increase in Dmean and CV-D (Ballo et al., 2012). C: Changes of g  levels in the model 

result in changes in Dmin and κmin values in the delay vs. Finst plots (for the 5
th

 minute of a 

10 Hz Poisson stimulation). Colored curves are quadratic fits of each group of data. 

  

3.4.2  Simulation Results for Different Frequencies of Poisson stimulation 

The biophysical model also captures the relationships between the mean frequencies of 

Poisson stimulation and the history-dependence of conduction delay (see Figure 4.1) as 

observed in the experiments. We will qualitatively and quantitatively relate these results 
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in the next chapter with the significance of Na
+
/K

+
 pump, which plays the crucial role in 

shaping the variability of conduction delay in the PD axon. 

 

3.5  Improvement of the Model 

Our present model can successfully capture most features of the history-dependence of 

conduction delay in the PD axon with different stimulation frequencies and different 

neuromodulators. However, there are shortcomings in our model compared with the 

experimental observations: at STS, the simulation results obtained from the model axon 

do not show the sharp increase of delay at the beginning of stimulation (see Figure 2.2B). 

Furthermore, CV-D of the simulation results keeps constant at the last 2 min of Poisson 

stimulation. More importantly, the trough voltage of each action potential in the 

biophysical model is too negative compared with the real experimental measurements of 

the PD axon. 

Although we do not intend to build a perfect mathematical model to capture all 

experimental details, these disadvantages indicate that it is necessary to improve the 

present biophysical model in order to capture these important properties of conduction 

delay. These modifications will be two-fold. First, we will adjust the parameters of the 

existing model to determine if a different range of parameters may result in better range 

of VT for each action potential. Second, we will use additional ionic and other currents in 

the model to explore their effects on conduction delay. 
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3.5.1  Application of the Genetic Algorithms 

In order to make the properties (i.e., VT, spike amplitude, threshold and duration of action 

potential, etc.) of our spike train (Figure 3.1A) closer to experimental spike train (Figure 

2.2A), we intend to build a realistic model for the PD axon. In addition to tuning the 

parameter of the model by hand, as was done in the present modeling results, one can 

search for “best”-fit parameters using Genetic Algorithms. By using two software 

programs, MATLAB and NEURON (Carnevale and Hines, 2005), we can implement the 

Genetic Algorithms to evaluate the parameters of all ionic currents in our model 

stochastically. The input should include all currents/pump in our present model, and the 

parameters of an experimental spike train that we want to use to build the corresponding 

realistic model. 

Due to the large size of the solution space, there are several possible factors that 

may affect the efficiency and accuracy of the solution, such as the number of stimuli for 

each simulation process; the complexity of the evaluation function; and the number of 

generations. Generally, the most precise solution may not be reached if the generation 

number is too small, while the computation time may be unnecessarily long if the 

generation number is too large. Therefore, we need to set appropriate numbers for the 

generation. Additionally, the evaluation function should be optimized and precise to 

calculate the fitness value in each generation. Finally, a termination function should be 

set in the computational program for the ending condition. 
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3.5.2  Improve the Na
+
/K

+
 Pump with both Fast and Slow Rates 

To capture the sharp increase of conduction delay at the beginning of Poisson 

stimulation, as well as the lasting increase of CV-D during the last 2 min of stimulation 

observed in the experiment, two possible strategies can be applied. First, a new Na
+
/K

+
 

pump with a very fast time constant can be added into the model to capture the fast 

increase of delay at the beginning of stimulation. Second, we can develop a new Na
+
/K

+
 

pump model with multiple time constants: a slow time constant captures the slow 

increase of CV-D with time during the 5 min Poisson stimulation; and a fast time 

constant captures the fast increase of delay at the beginning of the stimulation. 

 We can also build other possible ionic current which also accumulates slowly as 

Ipump (see Figure 4.1). However, we will prove that a slow potassium current cannot 

replace the Na
+
/K

+
 pump in the PD model axon to reproduce the history-dependence of 

conduction delay (see Section 4.2.2). 

 

3.6  Discussion 

Comparison with Hodgkin-Huxley Model 

A reduced model of the axon that includes standard Hodgkin-Huxley ionic currents with 

a Na
+
/K

+
 pump is capable of reproducing both the slow- and fast-time-scale history 

dependence of the conduction velocity (not shown, the contribution of Ipump to STS and 

FTS effects of delay will be discussed in Chapters 4 and 5 biologically and 

mathematically). Consequently, our model indicates that the additional ionic currents IA 

and Ih are not directly responsible for the history dependence of conduction delay but 

provide targets for the modulation of temporal fidelity in the axon. In addition to the 
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Na
+
/K

+
 pump, we will discuss the significance of INa and ILeak for their contributions on 

history-dependence of conduction delay in an unmyelinated axon with Poisson 

stimulation in the following chapters. 

 

Significance of the Na
+
/K

+
 Pump 

The Na
+
/K

+
 pump is necessary for the biophysical model to produce the variability of 

conduction delay, as well as the hyperpolarization of Vm. The model does not show the 

history-dependence of conduction delay without the Na
+
/K

+
 pump (not shown): at STS, 

both Dmean and CV-D keep constant with time; at FTS, the relationship between delay and 

Finst is monotonic and almost linear (conduction delay only increases when Finst is high). 

Note that either the Na
+
/K

+
 pump or a direct (constant outward) current is capable 

of generating the nonlinear and non-monotonic relationship between conduction delay 

and Finst as observed experimentally (not shown). However, both Dmean and CV-D keep 

constant with Poisson stimulation if the Na
+
/K

+
 pump is replaced by a constant direct 

current (i.e., the STS effect of conduction delay is absent). Therefore, the Na
+
/K

+
 pump is 

necessary for the PD model axon to generate the STS effect observed experimentally. 

 

3.7  Summary 

In this chapter, we introduced the development of the conductance-based biophysical 

model of the PD axon. With Poisson stimulation, our model captures almost all the 

properties and characteristics of the voltage activities exposed by the experimental PD 

axon. As a quantitative tool, the biophysical model accurately captures both STS and FTS 

effects of conduction delay observed in the representative experiments of PD axon. 
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Furthermore, it also captures the effects of different neuromodulators and different 

stimulation frequencies on conduction delay variability. 

Although the history-dependence of conduction delay has been successfully 

reproduced by the biophysical model, the underlying mechanisms of the conduction delay 

variability and how different factors in the model axon affect the history-dependence of 

conduction delay are still unclear. In order to quantitatively unmask these questions, we 

will first quantitatively discuss the significance of ionic currents/pump in next chapter. 

Then we will develop empirical equations in Chapter 5 to predict history-dependence of 

conduction delay both in model axon and in experimental measurements. 
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CHAPTER 4 

QUANTITATIVE ANALYSIS OF HISTORY-DEPENDENCE 

OF CONDUCTION DELAY 

 

 

 

4.1  Introduction 

We have discussed the simulation results of the biophysical model with Poisson 

stimulation at the phenomenal level in the last chapter. In this chapter the parameters in 

the model axon are quantitatively investigated in order to unmask their contributions to 

the history-dependence of conduction delay. First, we will discuss the relevant 

contribution of the Na
+
/K

+
 pump to STS effect of conduction delay obtained from 

Poisson stimulation. Second, two simple stimulation methods are used to predict the 

variability of conduction delay exposed by Poisson stimulation and realistic burst 

stimulation. Finally, we will discuss how conduction delay is affected by different levels 

of ionic currents in the model axon. 

 

4.2  Significance of the Na
+
/K

+
 Pump 

4.2.1  STS Effect is determined by the Activity Level of the Na
+
/K

+
 Pump 

The STS effect occurs over a timescale of minutes and should be related to a slow 

activity-dependent process in the PD axon. In our model, this slow effect is caused by the 

accumulation of the current due to the Na
+
/K

+
 pump; without the pump, the PD model 

axon does not show the STS effect (not shown). The activity level of Ipump is determined 

by the sodium current (see Section 3.2.2). Therefore, different Ipump levels are produced 

by applying Poisson stimulations with different mean rates (Figure 4.1A, marked in 

colors). Figure 4.1A also shows that the Ipump level increases with time. Both Dmean and 
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CV-D also show an increase with time and the stimulation rate (Figure 4.1B-C) which 

can be shown to be strongly correlated with the value of Ipump. We do not quantify this 

correlation and instead show a more direct dependence below. 

With increased stimulation, Ipump produces a hyperpolarization of the baseline 

membrane potential (Figure 4.1D), which can potentially explain the STS increase of 

conduction delay. In order to see how the values of Dmean and CV-D depend on different 

levels of Ipump, we removed the dynamics of Ipump from the model and set its value to a 

constant. When the Poisson stimulation was applied with constant values of Ipump, both 

Dmean and CV-D increased as a function of Ipump (Figure 4.1E-F). The positive and linear 

relationship between Dmean /CV-D and Ipump shows that the STS effect of conduction 

delay is in fact determined by the activity level of Ipump. Furthermore, the temporal 

fidelity of conduction delay negatively correlates with the activity level of Ipump: the 

higher the Ipump level, the worse the temporal fidelity of conduction delay will be. 
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Figure 4.1 Dmean and CV-D are strongly dependent on the activity level of Ipump at all 

Poisson stimulation frequencies. A: The activity level of Ipump for Poisson stimulations 

with different mean rates. B-C: Dmean and CV-D increase with time as well as with the 

mean rate of Poisson stimulation. D: The baseline membrane potential is hyperpolarized 

as the level of Ipump is increased. E-F: Dmean and CV-D linearly increase with the activity 

level of Ipump (set to constant values in each simulation run). 

 

4.2.2  Can the Na
+
/K

+
 Pump be Replaced by a Slow Potassium Current? 

The slow action of the pump resulting in the STS effect of conduction delay is due to a 

slow outward (hyperpolarizing) current (Figure 4.1A). This raised the question of 

whether a slow activity-dependent outward ionic current may result in a similar effect. To 

address this question, we considered a slow cumulative outward current. Specifically, we 

replaced the Na
+
/K

+
 pump with a very slow potassium current (IKs). The IKs was modeled 

to obey equations similar to those governing IKd (see Table 3.1): 

( )Ks Ks K

Ks

m

I g m V E

m mdm

dt 


 



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where 
Ksg is the maximum conductance of IKs; EK is the reversal potential of IKs; m is the 

activation variable with power 1. In order to produce a slow accumulation effect as in 

Ipump, the time constant Ks

m  of the IKs activation variable was set to be 100 times slower 

than the time constant Kd

m of the IKd activation variable. 

We replaced the Na
+
/K

+
 pump by IKs described above to build a new conductance-

based biophysical model and stimulated the model axon with the same Poisson pattern (

Poissf  = 10 Hz) as in Figure 4.1. The conductance and activation variable m of IKs slowly 

increased with time (Figure 4.2A), and the maximum IKs of each spike increased with 

time as well (Figure 4.2B). All of these factors mimic the slow cumulative process as 

Ipump. However, unlike the slow increase of Ipump which accumulates both during action 

potentials and in the intervals in between, the value of IKs increased during each action 

potential and rapidly decayed in the interval following each spike due to the small driving 

force of IKs in these intervals (Figure 2B, right panel). As such, the effect of IKs was only 

significant during each action potential and affected the amplitude of the action potentials 

but had no effect on the baseline membrane potential. We saw no significant effect of this 

current on the STS effect (data not shown), indicating, as suggested by the Ipump data, that 

the STS effect strongly depends on the baseline membrane potential. Because all outward 

currents are due to either K
+
 or Cl

-
 whose equilibrium potentials are near the resting 

membrane potential of the axon, this result implies that the STS effect of conduction 

delay is unlikely to be captured with IKs or any other slow outward ionic current. 
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Figure 4.2 Recordings of IKs with the Poisson stimulation. A: A 5 min/10 Hz Poisson 

stimulation was applied to the biophysical model without the Na
+
/K

+
 pump, but with IKs. 

Both the conductance (blue, left y-axis) and activation variable m (green, right y-axis) of 

IKs are plotted with time. B: The current strength of the entire stimulation process is 

plotted with time. A detailed activity of IKs in a small time window is showed in the right 

panel. 

  

4.3  Significance of INa 

4.3.1  Paired- and Train-Pulse Stimulation 

Before investigating the simulation results of the model axon generated from Poisson 

stimulation and realistic bursting stimulation, we introduce two simple stimulation 

methods: paired-pulse stimulation, a conditioning pulse and a subsequent test pulse at 

varying intervals; and train-pulse stimulation, a 10 s/10 Hz train of conditioning pulses 

and a subsequent test pulse at varying intervals (Figure 4.3). Such measurements have 

historically been used to describe activity-dependent changes in axon excitability and 

conduction delay (Adrian, 1921; Bullock, 1951; Raymond, 1979) and are still widely 

used as a diagnostic tool for peripheral neuropathies (Bostock et al., 1998; Krishnan et 

al., 2009). Schematic diagrams of these two measurements are shown in Figure 4.3. The 

stimulation trials are aligned at the conditioning pulse. 
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Figure 4.3 Schematic diagram of paired-pulse and train-pulse stimulation. A: Stimulation 

trials of paired-pulse stimulation with different intervals are aligned at the unique 

condition pulse (red). B: Stimulation trials of train-pulse stimulation with different 

intervals are aligned at the 10 s/10 Hz train of conditioning pulses. 

 

4.3.2  Predict FTS Effects of Conduction Delay by Simple Stimulation Protocols 

Changes in action potential conduction velocity have been historically examined with 

paired-pulse stimulation method (Moradmand and Goldfinger, 1995; Bucher and 

Goaillard, 2011). Because the FTS effect (Figure 2.2C) occurs at timescales similar to the 

effects typically observed with paired-pulse protocols, we decided to find out whether 

these two effects are basically the same. In order to mimic the different activity levels of 

the dynamical pump over the 5 min Poisson stimulation, we ran the paired-pulse protocol 

with two different constant values of Ipump: Ipump,LO was set to the mean value of Ipump 

during minute 1 of the Poisson stimulation while Ipump,HI was set to the mean value during 

minute 5. 

Figure 4.4A1 shows the conduction velocity of test pulses as a function of the ISI. 

The conduction velocity of the conditioning pulse is shown as a horizontal line. The 

conduction velocity of the test pulse was smaller than the velocity of the conditioning 

pulse when the ISI was small (Figure 4.4A1). This period is called the refractory phase 

and is primarily resulted by the refractory period of INa (Moradmand and Goldfinger, 

1995). For larger ISI, the test pulse propagated faster than the conditioning pulse. This is 

the supernormal phase which results in faster action potentials because more sodium 
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channels are available for activation than during the conditioning pulse (Bucher and 

Goaillard, 2011). As the ISI is increased further, the history dependent influence of the 

conditioning pulse on the axon vanishes and the speed of the test pulse converges back to 

that of the conditioning pulse. 

Consistent with the STS effects of Ipump, the velocities of the conditioning and test 

pulse were higher with Ipump,LO than with Ipump,HI (Figure 4.4A1). Note also that with 

different levels of Ipump, the peak conduction velocity of the test pulse corresponded to 

different ISIs and that the difference between the velocity of conditioning pulse and the 

peak velocity of the test pulse is larger with Ipump,HI. 

In order to compare the paired-pulse data with the FTS effect seen in the delay vs. 

Finst relationship of the Poisson stimulation (Figure 2.2C), the data in Figure 4.4A1 were 

also plotted as delay vs. Finst and fit with a quadratic function (Figure 4.4A2). The fits of 

the data for Ipump,LO and Ipump,HI were then compared with the data for the 1
st
 and the 5

th
 

minutes of the Poisson stimulation. This comparison showed that the quadratic fits of the 

paired-pulse data provided a very good prediction of the FTS effect seen in the Poisson 

stimulation (Figure 4.4A3; R
2 
= 0.76 for minute 1 and Ipump,LO; R

2 
= 0.85 for minute 5 and 

Ipump,HI). Furthermore, the nonlinearity observed in the paired-pulse data (Figure 4.4A2) 

corresponds to the refractory and supernormal phases (Figure 4.4A1, ISI and conduction 

velocity are reciprocals of Finst and conduction delay, respectively). Therefore, the FTS 

effect is dominated by the dynamical properties of INa. 

In contrast with the paired-pulse stimulation protocol, a representative stimulus in 

the Poisson stimulation protocol typically follows a large number of stimuli which may 

influence conduction velocity. In order to see if the FTS effect depends on more than one 
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prior stimulus, we used another well-known protocol for axon stimulation: the train-pulse 

protocol. In this protocol, the conditioning pulse of the paired-pulse stimulation is 

replaced with a train of pulses applied at a fixed frequency and followed by a test pulse 

applied at different ISIs (Figure 4.3B). To compare these results with the FTS effect 

shown in Figure 2.2C, the conditioning pulses were applied at 10 Hz (same as the mean 

Poisson rate of Figure 2.2C) for an interval of 10 s (Ballo et al., 2012). 

As with the paired-pulse stimulations, the train-pulse stimulations were applied 

for two different values of Ipump. For the test pulses, the train-pulse protocol produced 

results (Figure 4.4B1, curves) that were qualitatively and quantitatively similar to those 

of the paired-pulse protocol (Figure 4.4A1 curves). Nevertheless, due to the effect of the 

history activities of the 10 s/10 Hz training protocol, the conduction velocities (Figure 

4.4B1, dashed lines) of the last conditioning pulse produced by train-pulse protocol are 

larger than the corresponding conduction velocities produced by paired-pulse protocol 

(Figure 4.4A1, dashed lines). Therefore, as expected, the conduction velocity of the test 

pulse produced by train-pulse protocol approached the “steady-state” velocity of the 

conditioning pulse in paired-pulse protocol (horizontal lines in Figure 4.4A1) with very 

large ISI values, rather than the velocity of the last conditioning pulse produced by train-

pulse protocol (horizontal lines in Figure 4.4B1). As before, a comparison between the 

train-pulse data plotted as delay vs. Finst (Figure 4.4B2) provided a good estimate of the 

nonlinear FTS relationship between delay and Finst seen in the Poisson stimulation 

(Figure 4.4B3). However, the train-pulse stimulation fits did not provide a better estimate 

of the FTS effect (R
2 

= 0.77 for minute 1 and Ipump,LO; R
2 

= 0.84 for minute 5 and Ipump,HI), 

indicating that the FTS effect is primarily due to the last action potential before the 
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stimulus. In other words, the conduction delay of one action potential is predominately 

determined by the history activity close to itself. 

We also compared the effect of paired- and train-pulse stimulations for the 

Hodgkin Huxley model axon (see Section 3.3.2). These results showed that there was 

practically no difference between the velocity of the test pulse in the paired- and train-

pulse protocols (Figure 4.4C1) and both data sets perfectly matched the Poisson-

stimulation FTS effect of the Hodgkin-Huxley model axon (Figures 4.4C2 & 3.2B3). 

Overall, these observations indicate that the FTS effect exposed by Poisson stimulation is 

significantly determined by INa, and can be accurately predicted by simpler stimulation 

protocols. 
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Figure 4.4 The FTS effect can be predicted by paired- and train-pulse stimulations. A1: 

Conduction velocity of conditioning and test pulses plotted as a function ISI. Simulation 

were performed with two constant values of Ipump: Ipump,LO and Ipump,HI , respectively equal 

to the mean value of Ipump during minute 1 and minute 5 of the 10 Hz Poisson stimulation 

(Figure 2.2). Horizontal lines show the velocity of the conditioning spike (red horizontal 

lines). A2: Same data in panel A1 plotted as conduction delay vs. Finst. Solid curves are 

quadratic fits (ax
2 

+ bx + c) for each data set (Ipump,LO: a = 0.0024, b = -0.13, c = 39.35; 

Ipump,HI: a = 0.0034, b = -0.29, c = 47.12). A3: R
2
 measured between the quadratic fits of 

panel A2 and the data from minutes 1 and 5 (Figure 2C) of the Poisson stimulation. B1-

B3: As in A1-A3, but for the simulation results generated by trained-pulse stimulation 

(tonic stimuli at 10 Hz for 10 s). The horizontal line shows the velocity of the last 

conditioning pulse. The fit values in B2 are Ipump,LO: a = 0.0026, b = -0.13, c = 39.39; 

Ipump,HI: a = 0.0038, b = -0.32, c = 47.11. C1: Paired- and train-pulse stimulations to the 

Hodgkin-Huxley model axon show identical results. C2: The data from C1 compared 

with the Poisson stimulation data (all 5 min from Figure 3.2B3) of the Hodgkin-Huxley 

model axon show a perfect match. 

 

 



65 
 

4.4  Results of Realistic Burst Stimulation Protocol 

The PD neuron is a member of the pacemaker group of the pyloric network and its 

natural ongoing activity is to produce bursting oscillations with a cycle frequency of ~ 1 

Hz. During the ongoing bursting activity, different action potentials of each burst have 

different conduction delays and a there is a highly nonlinear relationship between the 

conduction delay and the spike number in the burst (Ballo and Bucher, 2009). To 

examine the extent to which our model PD axon reproduced this nonlinear relationship, 

we applied a burst stimulation protocol: the model axon was stimulated for 300 s with a 

cycle period of 1 s (300 bursts; 17 spikes per burst), mimicking traces recorded in the 

biological axon (Figure 4.5A-B). The trough (baseline) voltage of the 1
st
 spike in each 

burst decreased with time due to the increase of Ipump level that slowly hyperpolarized the 

baseline membrane potential. Also note that for either the 1
st
 or the 300

th
 burst, the 

baseline also changed with different levels of Ih due to the varying hg  (Figure 4.5A-B). 

In a single burst, both the peak and the trough voltages of the action potentials had a 

parabolic shape (Figure 4.5A-B) as observed experimentally (Figure 2.5A1-C1) (Ballo 

and Bucher, 2009). 

In exploring the history-dependence of the action potential conduction delay 

under natural bursting conditions, we also considered the effect of neuromodulation of 

the PD neuron on the history-dependence. In the representative experiments, as 

mentioned above, conduction delay in the PD axon is affected by the levels of Ih which is 

modulated by DA and CsCl (Ballo et al., 2010; Ballo et al., 2012). In the simulation 

processes of the PD model axon, we manipulated the activity levels of Ih by changing its 

maximum conductance ( hg ). 
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As with the Poisson stimulation, in response to the burst stimulation protocol, the 

model axon conduction delay varied both for spikes within each burst (similar to the FTS 

effect) and with a slow timescale (following the onset of stimulation: the STS effect). 

These history-dependent effects are seen in Figure 4.5E which shows the conduction 

delay of each spike as a function of time within the burst for all 300 simulated bursts. In 

each burst, the delay of the 1
st
 spike was always larger than the following two or three 

spikes and this difference increased from burst 1 to 300; following the 2
nd

 or 3
rd

 spike, 

conduction delay increased during the burst and reached a local maximum in the middle 

the burst before decreasing again (Figure 4.5E1). Meanwhile, conduction delay also 

slowly increased with time following the onset of the stimulation protocol (Figure 4.5E1). 

These effects were exaggerated by removing Ih (Figure 4.5E2) and attenuated by 

increasing it (Figure 4.5E3). All observed model effects were similar to those observed 

experimentally (Figure 2.5) (Ballo et al., 2012). 

For any fixed hg , the increase in the conduction delay of each subsequent burst 

was due to the slow increase of Ipump with stimulation (not shown). On the other hand, for 

any fixed burst number (for instance, comparing the simulation results of conduction 

delays of the 300
th

 burst, which marked in blue), conduction delay increased as the Ih 

level was decreased (Figure 4.5E1-E2; clearer for later bursts). This is because, in 

contrast to Ipump, which hyperpolarizes the membrane potential of the axon, Ih depolarizes 

the membrane potential. In summary, although Ipump decreases the temporal fidelity of 

conduction delay, Ih opposes this effect and increases this temporal fidelity (Ballo et al., 

2012). 
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As with the FTS effect of the Poisson stimulation, we examined whether the 

nonlinear relationships between conduction delay and time, seen in the burst stimulation 

of the biophysical model, can be predicted by the paired- and train-pulse stimulation 

results. A comparison of the paired- and train-pulse estimates of these relationships for 

the 1
st
 and 300

th
 bursts (marked in dots) is shown in Figure 4.5C-D for all three values of 

hg  and two values of Ipump (set to the mean value of the dynamical Ipump of the 1
st
 and 

300
th

 bursts). The estimates for the paired- and train-pulse stimulations (marked in 

circles) shown in these panels were obtained from the quadratic fits (as in Figure 4.4A2-

B2) and the inter-spike intervals of individual spikes. As seen in the panels, the nonlinear 

relationship between conduction delay and spike number was captured qualitatively in all 

cases (quantitative comparisons are in the figure legend). 
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Figure 4.5 Fast timescale effect exposed by burst stimulation can be largely captured by 

paired- and train-pulse stimulation. A1-A3: The 1
st
 burst of 5 min stimulations with a 

realistic burst pattern (17 pulses, parabolic Finst structure). Ih was set at different levels to 

mimic the application of DA and CsCl in the experiments. B1-B3: The 300
th

 burst from 

the same simulations in panel A1-A3. Note the differences in baseline hyperpolarization 

from the 1
st
 to 300

th
 burst across different levels of Ih. C1-C3: Simulation results of the 

1
st
 and the 300

th
 bursts in panel E1-E3 are marked as stars. Paired-pulse simulations were 

done with a constant low (red) and high (blue) Ipump level equal to the Ipump mean value 

during the 1
st
 and the 300

th
 bursts, respectively. The results of the paired pulse were fit 

with a quadratic equation and used to obtain the plotted predictions. D1-D3: Prediction 

was done by the train-pulse simulations. The train rate was 45 Hz, equal to the mean 

intra-burst spike rate. The inset numbers are L
2
 relative error norm. E1-E3: With 

different Ih levels, conduction delay of each spike in each burst plotted as a function of 

time. Data of the 1
st
 and the 300

th
 bursts are marked in colors. 

 

4.5  Contributions of Different Ionic Currents to the Model Axon 

We have discussed how Ih affects conduction delay and spike shapes of the PD model 

axon with burst stimulation. In this section we will investigate how other ionic currents 

(INa, IKd, IA) in the model contribute to the history-dependence of conduction delay. In 

order to mimic the experimental PD axon in control saline, the same realistic burst 

stimulation protocol as in Figure 4.5 was applied to the model axon with all currents at 

standard levels. Simulation results are shown in Figure 4.6A1-A3. Voltage traces of the 
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first and last 3 bursts are plotted with time (Figure 4.6A1). Note that both the peak and 

trough voltage within each burst show parabolic shape. The conduction delays of each 

spike in the 1
st
 and 300

th
 bursts are plotted with time (Figure 4.6A2). The conduction 

delays of the 300
th

 burst (blue) are entirely larger than the delays of the 1
st
 burst (red). 

Moreover, comparing with the delays of the 1
st
 burst, the conduction delay of the 1

st
 spike 

in the 300
th

 burst is significantly increased. The voltage traces of all spikes in the 1
st
 burst 

are aligned at the stimulation time, and they have similar durations (marked in dashed 

line). As expected, the 2
nd

 spike (red) is slightly delayed compare to the rest of the action 

potentials. After analyzing the simulation results obtained from the standard biophysical 

model, we begin to partially block other ionic currents and discuss the corresponding 

simulation results. 

 

4.5.1  Partial block of INa 

First, we partially blocked the fast sodium current by changing its maximum conductance 

in the model. Significant block (0.4* Nag ) of INa silences the model axon for any 

stimulation. Simulation results of a slight block (0.8* Nag ) of INa are shown in Figure 

4.6B. Note that except INa, all other dynamical currents are kept as their original level. 

Comparing with the simulation results obtained from the standard model (Figure 4.6A1), 

the peak voltages of the 1
st
 and 300

th
 bursts decrease with partial block of INa (Figure 

4.6B1). Nevertheless, the change of peak voltage within a burst is increased (Figure 

4.6B1). Furthermore, decreasing INa in the model axon substantially increases conduction 

delay, and also increases the change of conduction delay within burst (Figure 4.6B2). 

However, the change of INa does not affect the durations of spikes in the 1
st
 burst (dashed 
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line, Figure 4.6B3). In conclusion, both conduction delay and spike shapes of the model 

axon are significantly sensitive to the activity level of INa (
Nag ). These results are 

confirmed in our colleagues’ experiments (not shown, unpublished data, Bucher lab). 

 

4.5.2  Partial block of IKd 

Unlike INa, which substantially effects the spiking in the model axon, different levels of 

IKd successfully maintain bursting behavior with realistic burst stimulation. We set IKd at 

different levels: 0.2* Kdg , 0.4* Kdg  and 0.8* Kdg . Simulation results of a significant block 

(0.4* Kdg ) of IKd are listed in Figure 4.6C. Decreasing IKd in the model axon leads to an 

increase in peak voltage of the first and last 3 bursts, but a decrease in change of peak 

voltage within burst (Figure 4.6C1). Decreasing IKd also leads to a decrease of conduction 

delay of the 1
st
 spike in the 300

th
 burst (Figure 4.6C2). Furthermore, decreasing IKd 

significantly increases the duration of action potential (Figure 4.6C3). In conclusion, the 

temporal fidelity of conduction delay is not sensitive to the activity level of IKd ( Kdg ) in 

the model axon. However, the spike durations are strongly determined by IKd. These 

results are observed in corresponding representative experiments (not shown, 

unpublished data, Bucher lab). 

 

4.5.3  Partial block of IA 

Finally, we set IA at different levels as we did for IKd: 0.2* Ag , 0.4* Ag  and 0.8* Ag . Like 

IKd, the biophysical model is not very sensitive to IA as well: it successfully generates 

bursting behaviors with realistic burst stimulation at different levels of IA. Simulation 

results of a significant block (0.4* Ag ) of IA are listed in Figure 4.6D. Decreasing IA 



71 
 

slightly hyperpolarizes Vm of the first 3 bursts, and decreases the change of peak voltage 

within burst (Figure 4.6D1). Blocking IA slightly increases the conduction delays in the 

1
st
 burst (Figure 4.6D2). Furthermore, decreasing IKd slightly increases the durations of 

action potentials in the 1
st
 burst (Figure 4.6D3). In conclusion, both conduction delay and 

spike shapes are slightly sensitive to the activity level of IA (
Ag ) in the model axon. 

These results are observed in the representative experiments (not shown, unpublished 

data, Bucher lab). 
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Figure 4.6 Contribution of different ionic currents to the burst activity of model axon. 

Simulation results of different models (i.e., with different levels of ionic currents) with 

same realistic burst stimulation protocol are plotted in columns. A1: Same realistic burst 

stimulation in Figure 4.5 was applied to the model axon with all ionic currents at standard 

levels. The voltage traces of the first and last 3 burst are plot with time. A2: Conduction 

delays of the 1
st
 and 300

th
 bursts are plotted with time and marked in different colors. A3: 

Action potentials in the 1
st
 burst are aligned at the stimulation time. Duration of action 

potential is plotted as the dashed line. The 2
nd

 spike is delayed and marked in red. B1-B3: 

Simulation results of the model axon with partially blocked (0.8* Nag ) INa. C1-C3: 

Simulation results of the model axon with partially blocked (0.4* Kdg ) IKd. D1-D3: 

Simulation results of the model axon with partially blocked (0.4* Ag ) IA. 
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4.6  Discussion 

Simulation Results with Different Stimulation Protocols 

To examine the relationship (Figure 4.1E-F) between STS effect of conduction delay and 

the Na
+
/K

+
 pump, a 5 min Poisson stimulation was applied to the model axon (Section 

4.2). With Ipump fixed at different levels, similar results were obtained from the 

simulations with realistic burst protocols, as well as with the paired- and train-pulse 

stimulations (not shown). 

 Paired- and train-pulse stimulation protocols were applied to study the refractory 

and supernormal phases determined by the dynamic of Ina (Section 4.3). After plotting the 

non-monotonic relationship between conduction delay and Finst as the manner of 

conduction velocity vs. ISI, both dynamical phases can be observed in the simulations 

with the Poisson stimulation and realistic burst stimulation (not shown). The reason why 

do we apply the simple stimulation protocols is that there is no very small ISI (i.e., very 

high Finst) in the Poisson stimulation or realistic stimulation protocols, but it can be 

obtained from the paired- and train-pulse stimulation methods. 

 Contributions of different ionic currents to conduction delay and other spike 

shape parameters were investigated with the realistic burst stimulation (Figure 4.6), in 

order to compare with the corresponding experimental observations with different levels 

of ionic currents (not shown, unpublished data from Bucher lab). Similar results (Figure 

4.6) were also observed with the Poisson stimulation protocol (not shown). 
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Contributions of Different Ionic Currents to Conduction Delay 

 As a net outward current, Ipump leads to the hyperpolarization of Vm at STS (i.e., 

sAHP) and depolarization of the tail of each action potential at FTS (i.e., ADP), which 

further generate the history-dependence of conduction delay at STS and FTS, 

respectively. Both STS and FTS effects of the conduction delay are absent without Ipump 

in our model. Therefore, the Na
+
/K

+
 pump plays the crucial role for generating the 

history-dependence of conduction delay in the biophysical model. 

 The variability of conduction delay is substantially affected by Ih. Increasing Ih 

improves the temporal fidelity of conduction delay and vice versa. However, the 

generation of the history-dependence of conduction delay is not determined by Ih, 

because both STS and FTS effects of conduction delay were observed from the model 

without Ih (Figure 3.3). Note that INa also extensively affects the variability of conduction 

delay, especially at the STS (Figure 4.6B2). 

 

4.7  Summary 

Utilizing the conductance-based biophysical model built in Chapter 3, in this chapter we 

have quantitatively investigated the STS and FTS effects of conduction delay obtained 

from different stimulation methods. Based on the mathematical structure of the Na
+
/K

+
 

pump model, we first discussed how it determines the STS effect of conduction delay 

through Poisson stimulation with different mean frequencies. Note that the regular 

Na
+
/K

+
 pump cannot be replaced by a slow potassium current in the biophysical model to 

generate the STS effect of conduction delay. At FTS, we showed that the non-monotonic 

relationship between delay and Finst is significantly determined by the dynamical 



75 
 

properties of INa, but only slightly determined by IA and IKd. More importantly, such 

relationships can be predicted by two simple stimulation methods: the paired- and train-

pulse stimulation methods. In addition to the Na
+
/K

+
 pump, we discussed how the spike 

shapes and conduction delay of the model axon changed by different levels of Ih with 

realistic burst stimulation. Note that the relationship between delay and Finst exposed by 

burst stimulation can also be predicted by paired- and train-pulse stimulations through the 

biophysical model. Finally, we systematically explored the contributions of other ionic 

currents to the model axon: by decreasing the maximum conductance of these currents, 

we showed how spike shapes, conduction delay and action potential durations changed 

with realistic burst stimulations. 

 We have built the mathematical model which successfully captured the variability 

of conduction delay at different timescales, and quantitatively investigated how ionic 

currents and the Na
+
/K

+
 pump model contribute to the model axon with different 

stimulation methods. However, it is still unclear how to predict the conduction delay, 

especially when it is affected by the history-activities in the axon. In the next chapter, we 

will use the parameters of the model axon to build empirical equations, which can 

accurately predict the history-dependence of conduction delay both in the model axon 

and in the experimental measurements.  
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CHAPTER 5 

QUANTITATIVE PREDICTION OF CONDUCTION DELAY 

 

5.1  Introduction 

We have discussed in detail how the ionic currents and the Na
+
/K

+
 pump in the model 

axon affect the history-dependence of conduction delay in the PD axon at different 

timescales. A more challenging task is predicting the variability of conduction delay with 

the model parameters. In unmyelinated axons, conduction velocity increases as a function 

of axon diameter and the velocity of an isolated action potential is usually assumed to be 

constant and independent of the length of the axon (Hodgkin and Huxley, 1952b; 

Hodgkin, 1954). For one isolated action potential in the H-H axon, its conduction 

velocity can be approximated by the axon parameters in the excited state (Matsumoto and 

Tasaki, 1977), or by the dynamical parameters of INa at the rest state (Muratov, 2000). 

However, for propagating action potentials initiated by Poisson stimulation, due to the 

aftereffects of the history impulse activity, the inter-spike intervals between consecutive 

action potentials can vary substantially (George, 1977). Specifically, these inter-spike 

intervals may increase or decrease along the propagation and eventually approach 

stabilization (Moradmand and Goldfinger, 1995). Due to the effect of the activity history, 

previous studies could not predict the conduction velocities of the action potentials 

generated by Poisson stimulations. Therefore, in this chapter we will develop new 

equations to predict the history-dependence of conduction delay with Poisson 

stimulation. 
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  According to these studies, in this chapter we will first investigate the complexity 

of conduction delay in the biophysical model axon. With the conclusion that INa plays a 

crucial role in shaping the FTS effect of conduction delay, we will discuss two key rates 

of INa which can be used to predict conduction delay at different timescales. In addition to 

the empirical equation obtained from these two key rates, other possible empirical 

equations are also discussed. A simplified empirical equation is deduced from 

linearization, which can accurately predict conduction delay obtained from both model 

axon and experimental measurements at different timescales. 

 

5.2  Complexity of Conduction Delay in the PD Model Axon 

5.2.1  Transient Conduction Velocity 

With the PD biophysical model built in Section 3.2, the propagation properties of an 

action potential can be investigated in two equivalent views: conduction delay and 

conduction velocity. In the previous sections we focused on conduction delay, which 

measured from 0.3 to 0.7 of the model axon with axonal length of unit 1 (dimensionless). 

In this section we will investigate the properties of conduction velocity of action potential 

in the PD axon. Specifically, we will investigate the transient conduction velocity of the 

action potential at different sites (0.1*i, i = 1, 2, …, 9) of the model axon. For a fixed 

position of the model axon, the number (for instance, k) of the compartment which 

corresponds to this position was calculated. Therefore, the numbers of the compartments 

before and after the k-th compartment are k-1 and k+1. For an action potential, its 

transient conduction velocity at k-th compartment is defined as the local conduction delay 

measured between k-1-th and k+1-th compartments divided by the length between these 
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two positions. Compared with the more ‘global’ conduction delay (measured from 0.3 to 

0.7 multiplied with the axonal length) used in the previous sections, such transient 

velocity provides us a powerful tool to investigate the local properties of action potentials 

at different sites of the PD model axon. 

 

5.2.2  Variability of Transient Conduction Velocity 

The same Poisson stimulation ( Poissf  = 10 Hz) as in Figure 2.2 was applied to the 

biophysical model without Ih. There are 3,010 stimuli in this stimulation protocol and the 

transient velocities of all action potentials at different sites were measured. To investigate 

the variability of conduction velocity, for each action potential we define: 

max( ( , )) min( ( , ))
( ) ,     1,2,...,3010;  0.1,0.2,...,0.9

( , )

vel i j vel i j
vel i i j

vel i j


     

Where vel(i, j) is the transient velocity of action potential i at position j of the model 

axon. Surprisingly, during this stimulation process, some action potentials were faithfully 

propagated along the axon ( ( )vel i  < 1%, Figure 5.1A, blue), which means their 

conduction velocities were almost constants during the propagation along the axon. 

However, the transient velocities of some action potentials were increased substantially 

during the propagation ( ( )vel i  > 10%, Figure 5.1A, red). With Poisson stimulation, the 

same model axon exposes both faithfulness and variability of conduction velocities for 

action potentials with different Finst. This result indicates that the variability of conduction 

velocity presumably correlates with Finst, and is determined by the dynamical properties 

(the ion channels and pump) of the model axon. 



79 
 

 Total conductance is used as a ‘conventional’ variable to predict the conduction 

velocity for an isolated action potential (Matsumoto and Tasaki, 1977). Therefore, in 

addition to the transient velocity, total conductance was also measured for each action 

potential when they arrived at different sites of the model axon. Specifically, the total 

conductance of the action potentials used in Figure 5.1A is plotted with axonal length 

(Figure 5.1B). These total conductances are at different levels, yet, they are almost 

constants at different sites of the model axon (Figure 5.1B). Similarly to ( )vel i , we 

define: 

max( ( , )) min( ( , ))
( ) ,     1,2,...,3010;  0.1,0.2,...,0.9

( , )

total total
total

total

g i j g i j
g i i j

g i j


     

For each action potential, we measured its transient velocity and total conductance 

at each site of the model axon. We plot the variability of total conductance ( ( )totalg i ) as 

a function of the variability of transient velocity ( ( )vel i ) (Figure 5.1C). It is clear that 

there is no linear relationship between conduction velocity and total conductance: for 

some action potentials, their transient velocities change substantially along the axon with 

same total conductance (Figure 5.1C, red zone); for small amount of action potentials, 

their transient velocities keep constants along the axon with very different total 

conductance (blue zone); however, for the rest action potentials in the simulation process, 

both the conduction velocities and the total conductance are constants along the axon 

(black zone). In conclusion, these “scattered” relationships between conduction velocity 

and total conductance indicate that at least for our model axon with Poisson stimulation 

protocol, gtotal is not sufficient to predict the variability of conduction delay exposed by 

Poisson stimulation. 
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Figure 5.1 Measurements of conduction velocity and total conductance in the PD model 

axon at different sites. Upper panel: Schematic diagram of the model axon. The 

measurements were performed at different sites (0.1-0.9) of the mode axon. A: Transient 

conduction velocities of action potentials with high (red, Δvel. > 10%) and low (blue, 

Δvel. < 1%) variability are plotted with axonal length. B: When those action potentials in 

panel A arrived at different sites of the model axon, the total conductance were measured 

and plotted vs. axonal length. C: Transient conduction velocity and total conductance of 

all action potentials in the simulation process were recorded at different sites (0.1-0.9). 

For each action potential, its conductance variability is plotted as a function of its 

velocity variability. Note that there is no functional relationship between conduction 

velocity and total conductance obtained from this simulation process. Data of the four 

action potentials have large velocity variability in panel A are marked in red in panel C. 

 

5.2.3  Spatial Variation of Inter-Spike Interval in the Model Axon 

As shown in the discussion in the last section, transient conduction velocity is a function 

of local excitability at any given site that is traversed by propagating action potentials. 

Therefore, there is presumably a spatial component in the temporal precision of 

conduction velocity/delay. If consecutive action potentials have different conduction 

velocities, their inter-spike interval should change along the axon. However, the inter-

spike interval does not change linearly with distance. If the following spike propagates 

faster than the previous one, it slows down and eventually keeps a constant distance with 

the first spike. On the other hand, if the second spike travels slower than the first one, 
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their inter-spike interval increases along the axon presumably until both spikes are 

conducted at the same speed. Thus, if the axon is long enough, the tiny variation in spike 

initiation will be compensated along propagation, and paired spikes can be fixed into a 

specific interval (Moradmand and Goldfinger, 1995; Bucher and Goaillard, 2011). 

A theoretical demonstration of this principle can be found in Figure 5.2, obtained 

from our conductance-based biophysical model with paired- and train-pulse stimulation 

protocols. The interval between (the last) conditioning pulse and test pulse changes 

during the propagation along axon (Figure 5.2). Although the results of Figure 5.2 were 

obtained from different models and stimulation methods, they all obey two general 

principles. First, if the test pulse is elicited during the relative refractory period (see 

Figure 4.4) at the stimulation site, its conduction velocity is decreased and the inter-spike 

interval increases to a local extreme value (red circles) with axonal length. Second, when 

the test pulse is evoked during the early supernormal period (see Figure 4.4) at the 

stimulation site, its conduction velocity is increased and the inter-spike interval decrease 

to the same local maximum (red circles) along the axon. Therefore, for small ranges of 

inter-stimulus intervals (12.5-30 ms in our models) generated at the stimulate site, they 

are almost identical when the paired-pulse arrive at the terminal of the model axon. Such 

equalization is called “impulse entrainment” and has been studied in antidromic 

stimulations of efferent visual cortical neurons in the rabbit (Kocsis et al., 1979; Bucher 

and Goaillard, 2011). 

More details are exposed in our models with different stimulation methods. For 

the simulation results obtained from the model with Ih and paired-pulse stimulation, the 

“impulse entrainment” is clearly observed (Figure 5.2A). Furthermore, when the time 
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interval between conditioning pulse and test pulse is large enough (> 30 ms) at the 

simulate site, they propagate with their initial speed and therefore, the inter-spike 

intervals keep constant (Figure 5.2A). 

The spatial variation of inter-spike interval is affected by the activity level of Ih, 

as well as the stimulation methods. Comparing the data in panel 5.2A, the stabilized 

intervals (red circles in Figure 5.2C) obtained from the model (without Ih) with paired-

pulse stimulation is smaller and “tighter”. This observation indicates that without Ih, the 

changes of inter-spike intervals along the propagation are more significant, and the test 

pulses are expected to arrive at the axon’s terminal with the conditioning pulse 

simultaneously. 

With different stimulation protocols and Ih levels, variability of inter-spike 

intervals showed in Figure 5.2 indicates that the conduction delays of conditioning pulse 

and test pulse are not equal to each other. Thus, we intend to build an equation to predict 

the variability of conduction delay with different stimulation methods. 
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Figure 5.2 Variability of inter-spike intervals during the propagation of action potentials 

in the model axon. A: Simulation results were measured from the model axon (with Ih) 

with paired-pulse stimulation. Inter-spike intervals are plotted as a function of distance 

from the stimulation site. B: Simulation results were measured in the same model as 

panel A with train-pulse stimulation. C-D: Simulation results were measured in the 

model axon (without Ih) with paired-pulse and train-pulse stimulation, respectively. 

 

5.3  Non-Monotonic Relationships between Delay and Spike Shape Parameters 

To predict variance of conduction delay obtained from general stimulation method, it is 

natural to ask how the conduction delay depends on other parameters in the biophysical 

model. Instead of applying the simple stimulation methods as used in last section, an 

“unpatterned” Poisson stimulation trains with a mean rate of 19 Hz was applied to the 

example experiment with CsCl. The duration of the stimulation protocol is 5 min, and 19 

Hz is chosen to match the mean frequency used in the burst stimulation experiments 
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(Bucher and Goaillard, 2011). The relationship between conduction delay and Finst, as 

well as three spike shape parameters are listed in Figure 5.3. All three relationships 

between delay and spike shape parameters are nonlinear and non-monotonic (Figure 

5.3A1-A3). Therefore, either the trough voltage, peak voltage or spike duration cannot 

individually be a single predictor of conduction delay. The conduction delay decreases 

when Finst is small but increases when Finst is large (Figure 5.3A4). These observations are 

the same as all previous results from experiments and simulations with different 

stimulation methods. Furthermore, all observed relationships are changed during the 5 

min stimulation protocol. In conclusion, none of these parameters is a good (sufficient) 

predictor of conduction delay. This result is preserved in the experiments in DA/control 

saline with Poisson stimulation at 5/10Hz. 

 In order to examine the experimental observation theoretically, we set the 

biophysical model with different levels of Ih and stimulate the model axon with Poisson 

stimulation at different mean rates. The simulation results are the same as the 

experimental observations. Specifically, the simulation results obtained from the model 

axon (without Ih) with Poisson stimulation at 10 Hz are shown in Figure 5.3B1-B4. The 

simulation results mimic experimental observations except panel B3, which also shows a 

non-monotonic relationship between delay and spike duration, but in a different shape as 

observed experimentally. Therefore, these nonlinear and non-monotonic relationships 

obtained from the biophysical model indicate that none of these parameters, alone, can be 

used to predict conduction delay quantitatively. 
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Figure 5.3 Delay as a function of Finst and spike shape parameters. A1-A4: Data are 

obtained from a representative experiment for a 5 min Poisson stimulation with a mean 

frequency of 19 Hz in CsCl. Different colors represent different time during the 

stimulation protocol. Note that there is no linear relationship between delay and any 

factors involved (modified from (Bucher and Goaillard, 2011)). B1-B4: Data are 

obtained from the biophysical model (without Ih) for 5 min Poisson stimulation with 

mean frequency of 10 Hz. The model results capture the nonlinear and non-monotonic 

relationships between delay and any involved factors observed in the experiments, with 

the exception of panel B3. 

  

5.4  Two Equations for Predicting Conduction Delay 

We have only explored the history-dependence of conduction delay at a 

phenomenological level (Figures 4.1 & 4.4 & 4.5). The power of a model, however, is in 

providing mechanistic descriptions for experimental data. In this section, we will 

examine which ionic current dynamics in the model axon could account for the history-

dependence of conduction delay. A number of theoretical studies have provided 

equations to describe conduction velocity of an action potential. One of the first 

quantitative descriptions was given in Hodgkin and Huxley’s classic paper (Hodgkin and 

Huxley, 1952e). Two more accurate quantitative estimates of conduction velocity have 

been described for a single action potential in the Hodgkin-Huxley model axon. The first 
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model, due to Matsumoto and Tasaki (Matsumoto and Tasaki, 1977), uses the total 

conductance level at the peak of the action potential whereas the second model, due to 

Muratov (Muratov, 2000), uses the value of the Na
+
 inactivation variable hNa at rest (h0) 

together with the Na
+
 activation rate /m mm  , also evaluated at rest. 

 

5.4.1  Matsumoto and Tasaki Equation 

The conduction velocity of an isolated action potential is known to depend on the axon 

parameters, as such, various equations have been developed to estimate conduction 

velocity (Hodgkin and Huxley, 1952e; Huxley, 1959; Rinzel and Keller, 1973; 

Matsumoto and Tasaki, 1977; Muratov, 2000; Tasaki, 2004). Of interest to our discussion 

are two equations that have been shown to provide good approximations for conduction 

velocity in the model axons. The first equation is derived for a general model axon and 

based on boundary matching principles which we will refer to as the Matsumoto-Tasaki 

Equation (Matsumoto and Tasaki, 1977; Tasaki and Matsumoto, 2002; Tasaki, 2004): 

2
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In this equation v is the conduction velocity, d is the diameter of the axon, Rtotal is the 

total resistance of the membrane of unit area in the excited state, Ri is the axial resistivity 

of the axon interior, Cm is the membrane capacitance per unit area and κ is defined as the 

ratio of Rtotal to Rrest, which is the resistance of the membrane of unit area at rest. In our 

evaluations, as in those done by Matsumoto and Tasaki, the value of κ was always very 

close to 1 and did not make any demonstrable difference in the estimations. Therefore, 

we followed Matsumoto and Tasaki’s approach and used the simplified equation 
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5.4.2  Muratov Equation 

Recall the Muratov Equation (Muratov, 2000) introduced in Section 1.2: 
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To use this equation for multiple spikes, we used the trough voltage of each spike as a 

proxy for the resting membrane potential (Vrest). 

 

5.4.3  Prediction of Conduction Delay 

It is possible that the history-dependence of conduction delay is reflected in changes in 

the total conductance level. If so, the Matsumoto-Tasaki Equation should be able to 

predict the STS and FTS effects seen in our simulations. Therefore, we used this equation 

to estimate the delay of each action potential in the 300
th

 second, 10 Hz Poisson 

stimulation of our model (as shown in Figure 3.2A1-B1). We found that the Matsumoto-

Tasaki Equation provided a good first-order estimate of conduction delay but did not 

capture the STS effect in the model axon (Figure 5.4A1). However, this equation did 

capture the FTS effect, especially for the latter half of the simulation duration (Figure 

5.4A2). The overall ability of the Matsumoto and Tasaki Equation in predicting the 

conduction delay in our model was poor (Figure 5.4A3). 
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A different method for estimating conduction velocity in the Hodgkin-Huxley 

model axon is provided by Muratov (Muratov, 2000). This estimate uses the values of the 

Na
+
 inactivation variable hNa and the Na

+
 activation rate /m mm  , both evaluated at 

rest. Figure 5.4B shows a comparison of the delays in the Poisson stimulation of our 

model and the predicted delays using the Muratov Equation. In this case, neither the STS 

effect nor the FTS effect was predicted by the Muratov Equation (Figure 5.4B1-B2). The 

overall ability of this equation to predict the model delays was also poor (Figure 5.4B3). 

In conclusion, although these equations provide good predictions for conduction delay of 

an isolated action potential (not shown), neither could accurately predict the short- and 

long-term history-dependence of conduction delay of the model axon. 

 

Figure 5.4 Predictions of history-dependence of conduction delay by known equations of 

action potential velocity. A1: Conduction delays of the biophysical model (blue) in 

response to 10 Hz Poisson stimulation and delays predicted by the Matsumoto-Tasaki 

Equation (red). A2: Data in panel A1 plotted versus Finst. A3: Simulation delay versus 

delay predicted by Matsumoto-Tasaki Equation. The line is y = x. B1-B3: Comparison 

between simulation delays in the biophysical model (as in A1-C1) and the delays 

predicted by the Muratov Equation. 
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5.5  Two Key Rates of INa 

5.5.1  An Empirical Equation 

Because previously published equations fail to accurately predict the history-dependence 

of conduction delay (Figure 5.4), we explored different variables and parameters in our 

model to see if any of these factors can be used to empirically determine conduction 

delay with some accuracy. We did a correlation analysis of more than 30 factors with the 

conduction delays measured using the Poisson stimulation. These factors included the 

action potential trough (VT) and peak (VP) voltage, the action potential amplitude and 

width, the activation and inactivation variables of the ionic currents and the opening and 

closing rates of these variables, each measured at VT and VP. 

We found that no single factor in the model was a good determinant of the 

dependence of conduction delay on prior history. However, several factors showed 

qualitative changes with the activity history of the axon that were qualitatively 

comparable with the history-dependence of conduction delay. In particular, a strong 

dependence was found for factors that determined the activation and inactivation kinetics 

of the fast sodium current INa. 

Of the factors that determine INa kinetics, two showed the highest history-

dependence: the opening rate of the Na
+
 activation variable ( ( ) ( ) / ( )m T T m TV m V V  ), 

measured prior to the action potential, which describes how fast the sodium channels can 

open at the trough voltage of each spike; and the closing rate of its inactivation variable (

( ) (1 ( )) / ( )h P P m PV h V V   ), measured at the peak, which describes how fast the 

sodium channels can close at the peak voltage of each spike. 
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The time constant, 1/ ( )m TV , associated with the Na
+
 activation opening rate 

showed an STS effect during the Poisson stimulation that was qualitatively similar to that 

of conduction delay (Figure 5.5A1). However, 1/ ( )m TV  only partially captured the FTS 

effect: it decreased when Finst was low, but did not increase when Finst was high (Figure 

5.5A2). Additionally, 1/ ( )m TV  could not predict the overall conduction delay (Figure 

5.5A3). Similarly, the time constant, 1/ ( )h PV , associated with the Na
+
 inactivation 

closing rate, showed an STS effect that was qualitatively similar to that of conduction 

delay. Nevertheless, unlike 1/ ( )m TV , 1/ ( )h PV best matched the changes in the lower 

values of conduction delay (Figure 5.5B1). Also in contrast with 1/ ( )m TV , 1/ ( )h PV  

increased with Finst (Figure 5.5B2). Note that 1/ ( )h PV could not predict the overall 

conduction delay as well (Figure 5.5B3). 

Although neither 1/ ( )m TV  nor 1/ ( )h PV  can be used as a good predictor of 

conduction delay, these two factors captured different aspects of the STS and FTS 

effects. Therefore, we examined whether the combination of the two can be used to 

predict the history-dependence of conduction delay of the model axon. We used the 

following empirical equation to fit the conduction delay of the Poisson stimulation data: 

1 2
3

( ) ( )
est

m T h P

c c
d c

V V 
        (5.1) 

where coefficients ci (i = 1,2,3) were determined with a routine optimization fit (c1 = 

0.0035, c2 = 0.31, c3 = 0.13) and the estimated delay was compared with the simulation 

results (Figure 5.5C). As seen in this figure, both the STS effect (Figure 5.5C1) and the 

FTS effects (Figure 5.5C2) matched the predicted delay of Eq. (5.1). The coefficient of 

determination of 0.95 indicates that these two factors combined can predict 95% of the 
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variability in the simulation data (Figure 5.5C3). Therefore, the history-dependence of 

conduction delay in the biophysical model is quite accurately determined by the opening 

rate of activation variable of INa, as well as the closing rate of its inactivation variable. 

 

5.5.2  Validation Examination of Equation (5.1) 

Because Eq. (5.1) is dependent on ( )m TV  and ( )h PV , we predicted that if the values of 

either of these two rates were changed, then this equation should be able to predict the 

changes in the simulation delay values (without changing the constants c1, c2 and c3). 

Thus, we changed the value of ( )m V in the model (without changing ( )m V  or any other 

factor) and compared the values of the Poisson stimulation data with those estimated 

from Eq. (5.1). 

We found that changing ( )m V  (without changing ( )m V ) by 10% (-10%) 

resulted in an average change in simulation delays of 13.4% (-9.5%) whereas Eq. (5.1) 

predicts a change of 7.4% (-5.0%). Similarly, changing ( )h V  (without changing ( )h V ) 

by 10% (-10%) resulted in an average change in simulation delays of 9.0% (-10.9%) 

whereas Eq. (5.1) predicts a change of 4.1% (-4.5%). Thus, Eq. (5.1) is able to predict 

how changes in Na+ activation/inactivation rates affect the delay rates qualitatively but 

not quantitatively. Note, however, that even though Eq. (5.1) was not re-fit to the new 

data (consequently, c1, c2 and c3 were unchanged), the values of VT and VP in the new 

simulations were different than the values in the original simulation and therefore, 

resulted in different dest values than those predicted by simply rescaling m in Eq. (5.1). 

This change in the membrane potential values in the new simulations probably accounts 
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for the quantitative difference between the simulation delays and those estimated from 

Eq. (5.1). 

 

Figure 5.5 Conduction delay is determined by the INa activation and inactivation 

variables evaluated at the action potential trough (VT) or peak (VP) voltage. A1: 

Superimposed graph of conduction delays of the biophysical model (blue) in response to 

10 Hz Poisson stimulation and the reciprocal of the INa activation opening rate evaluated 

at VT  (1/αm(VT); red). A2: Data in panel A1 plotted as a function of Finst. A3: Conduction 

delay is not directly predicted by 1/αm(VT). B1-B3: Comparison between conduction 

delay (as in A1-A3) and the reciprocal of the INa inactivation closing rate (1/βh(VP)). C1: 

Conduction delay of the model compared with the predicted delay of c1/αm(VT) + 

c2/βh(VP) + c3 (Eq. (5.1); c1 = 0.61, c2 = 54.25, c3 = 22.75). C2: Data in panel C1 plotted as 

a function of Finst. C3: Simulation delays compared with predicted delays from Eq. (5.1) 

(R
2 

= 0.95). The line is y = x. 
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5.6  A Simplified Empirical Equation 

Although Eq. (5.1) accurately predicts the history-dependence of conduction delay in the 

model axon, the activation and inactivation variables cannot be measured experimentally 

and thus this equation is of limited value for experimental predictions. Yet the value of 

Eq. (5.1) was to indicate exactly which factors (and at which time points) are 

determinants of the conduction delay. In this section we describe how this equation can 

be modified to derive an empirical equation that captures the history dependence of 

conduction delay and is experimentally applicable. 

 

5.6.1  Linearization of Equation (5.1) 

We noted that although m  and h  are nonlinear functions, in the range of membrane 

potentials restricted to the trough or peak of the action potential, both ( )m TV  and 

( )h PV  are almost linear functions of their respective variables (Figure 5.6). This allows 

for the substitution of these functions with their linear approximations in Eq. (5.1), 

which, due to the arbitrary nature of the constants, simplifies this equation to the 

following empirical equation: 

1 2
3est

T P

c c
d c

V V
        (5.2) 
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Figure 5.6 Linearization of ( )m TV  and ( )h PV  in their own domains. A: ( )m TV  is 

plotted in the range of trough voltage. The best linear fit is marked in red (R
2 

= 0.95). B: 

( )h PV  is plotted in the range of peak voltage. The best linear fit is marked in red (R
2 

= 

0.99). 

 

5.6.2  Prediction of Conduction Delay by Equation (5.2) 

Using the same optimization process as in Figure 5.5C, the coefficients in Eq. (5.2) were 

determined for the Poisson stimulation data of the model axon (c1 = 15.29, c2 = 2.06, c3 = 

0.3). The prediction (red) of conduction delay by Eq. (5.2) captured the history 

dependence of the model delays with 99% accuracy (Figure 5.6C1-C3). 

As a multivariate regression, it is useful to know the contribution of each variable 

to the fit. Therefore, we examined how well the simulated delays can be fit using only 

1/VT or only 1/VP as the variable. The results of these fits are shown in Figure 5.6A-B and 

are consistent with the results shown in Figure 5.5A-B for the fits restricted to 1/ ( )m TV  

or 1/ ( )h PV . Neither variable perfectly captured the STS effect although this effect was 

better captured with fits using only 1/VT (Figure 5.6A1). For the FTS effect, neither 

variable alone captured the non-monotonic relationship of delay with Finst; however, the 

decrease of delay with Finst was best approximated by 1/VT (Figure 5.6A2) whereas its 

increase was best approximated by 1/VP (Figure 5.6B2). Therefore, although neither 1/VT 
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nor 1/VP can accurately predict conduction delay as a single predictor, the multivariate 

linear regression using both 1/VT and 1/VP provides accurate prediction of history-

dependence of conduction delay in the biophysical model. 

 

Figure 5.7 Conduction delay can be perfectly predicted by the trough and peak voltages 

of the action potentials. A1: Superimposed graph of conduction delays of the biophysical 

model (blue) in response to 10 Hz Poisson stimulation and the predicted delays from the 

single variable regression: d = c1/VT + c2 (c1 = 2290.75, c2 = 68.25). A2: Data in panel A1 

plotted as a function of Finst. A3: Simulation delays (training data) compared with 

predicted delays. B1-B3: Simulation results (same as in A1-A3) compared with predicted 

delays from the single variable regression: d = c1/VP + c2 (c1 = 190.75, c2 = 31.5). C1-C3: 

Simulation results (same as in A1-A3) compared with predicted delays from: d = c1/VT + 

c2/VP + c3 (Eq. (5.2); c1 = 2675.75, c2 = 360.5, c3 = 52.5). The lines in A3, B3, and C3 are 

y = x. 
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5.7  Prediction of Different Phases Exposed by Simple Stimulations 

Although the refractory and supernormal phases exposed by paired- and train-pulse 

stimulation protocols have been previously described and attributed to the dynamical 

properties of INa (Figure 4.4), there has never been a quantitative description of these 

effects. We examined whether our empirical equation (Eq. (5.2)) can accurately predict 

the phases of the paired- and train-pulse stimulations. To do so, we used the estimated 

delays from Eq. (5.2) to predict the results of the paired- and train-pulse stimulations of 

Figure 4.4A-B. 

 

5.7.1  Prediction by Empirical Equation (5.2) 

The coefficients ci (i = 1,2,3) in empirical Eq. (5.2) are independent of the stimulation 

pattern once the model axon is fixed (see Figure 5.9). Therefore, we used coefficients 

obtained by a 1 min Poisson stimulation protocol to predict the conduction velocities of 

the action potentials in the paired- and train-pulse stimulation. Using these coefficients, 

together with the VT and VP values from the paired- or train-pulse stimulation, the 

conduction velocities were accurately predicted (Figure 5.8A1-B1).  

The maximum conductance of Ih was set as 0 in the biophysical model which was 

used in Figure 5.8A1-B1.To understand the contribution of Ih, we also performed the 

paired- and trained-pulse stimulations on the full model (with Ih included; Figure 5.8C1). 

For the train-pulse stimulation results of the model with Ih, following the supernormal 

phase, the conduction velocity of the test pulse decreases to a local minimum, which is 

smaller than the velocity of conditioning pulse, then increases again to converge to the 

steady state (velocity of a naive pulse). This period (marked by the arrows in Figure 
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5.8C1) is referred to as the subnormal phase (Bucher and Goaillard, 2011), and, as seen 

in our model, is presumably due to the presence of Ih. Eq. (5.2) accurately captured all 

phases of the response, including the subnormal phase (Figure 5.8C1). In summary, all 

three phases (refractory, supernormal and subnormal) of the paired- and trained-pulse 

protocols in the biophysical model can be quantitatively predicted by the empirical Eq. 

(5.2). 

In addition to using Eq. (5.2) to predict the conduction delay obtained from the 

simple stimulation methods (Figure 5.8A1-C1) and Poisson stimulation protocols (Figure 

5.7C1-C3), it can also accurately predict the conduction delay in the realistic burst 

stimulation (not shown). Furthermore, Eq. (5.1) is valid for predicting conduction delay 

obtained from these three stimulation protocols as well. 

 

5.7.2  Contributions of VT and VP to Different Phases 

The extent to which either VT or VP can separately predict the Poisson stimulation delays 

was discussed above (Figure 5.7A-B). It is useful to know the extent to which VT and VP 

contribute to the different phases of the paired- and train-pulse stimulation of the axon. 

We restrict this analysis to the paired- and train-pulse simulation results for high levels of 

Ipump (blue stars, Figure 5.8A2-C2). The results with low Ipump levels are similar but not 

shown. 

In order to understand the contribution of VT in determining the different phases 

of the paired-pulse simulation, we set the value of VP to a constant value equal to the 

trough voltage of the test spike in the paired-pulse stimulation. Using the coefficients 

from the Poisson stimulation and VT from the paired-pulse stimulation, the conduction 
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velocity predicted using Eq. (5.2) monotonically decreased with ISI (Figure 5.8A2). This 

implies that the changes in VT capture the supernormal phase. This observation is 

consistent with the results shown in Figure 5.7A2: the conduction delay decreases with 

Finst if only VT is used as the predictor. On the other hand, to capture the contribution of 

VP, we fixed the value of VT to a constant equal to the peak voltage of the last spike in the 

paired-pulse stimulation. Again, using the same coefficients and the VP values from the 

paired-pulse stimulation, we found that the predicted conduction velocity monotonically 

increased with ISI (Figure 5.8A2). Thus the changes in VP capture the refractory phase, 

which is consistent with the results shown in Figure 5.7B2: the predicted delay increases 

with Finst if only Vp is used as the predictor. 

 Similar results are obtained for the train-pulse stimulation (Figure 5.8B2). To see 

which factor captures the subnormal phase observed in the presence of Ih, a similar 

protocol was performed with the full model (as used in Figure 5.8C1). These results show 

that changes in VT capture both the supernormal and the subnormal phases exposed by the 

train-pulse stimulation, whereas the prediction of VP captures only the refractory phase 

(Figure 5.8C2). In summary, the coefficients of the empirical equation are independent of 

the stimulation method. Additionally, the refractory phase of the paired- and train-pulse 

stimulations is quantitatively predicted by the peak voltage of each spike, whereas the 

supernormal and subnormal phases are predicted by the trough voltage of each spike in 

the stimulation process. 
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Figure 5.8 The paired- and train-pulse history dependence is accurately predicted by Eq. 

(5.2). A1-B1: Simulation results (stars; same as Figure 4.4A-B) compared with velocities 

predicted using the delays from Eq. (5.2) (circles). Fit coefficients were calculated from 1 

min of 10 Hz Poisson simulation with Ipump at two different levels (Ipump,Lo: c1 = 2320.5, c2 

= 362.25, c3 = 49; Ipump,Hi: c1 = 2801.75, c2 = 407.75, c3 = 52.5). C1: Conduction velocity 

of conditioning (horizontal lines) and test pulses (stars) for the model including Ih 

compared with velocities predicted using Eq. (5.2) (Ipump,Lo: c1 = 2245.25, c2 = 353.5, c3 = 

49; Ipump,Hi: c1 = 2591.75, c2 = 383.25, c3 = 50.75). The subnormal phase is marked by 

arrows. A2-C2: Simulation results of test pulses at Ipump,Hi compared with predictions 

using only 1/VT or 1/VP. The predictions using only 1/VT (1/VP) use a constant VP (VT) 

value (equal to that for the conditioning pulse). The coefficients are the same as in A1-

C1. With VT fixed, the predictions using 1/VP (green circles) capture the refractory phase. 

With VP fixed, the predictions using 1/VT (magenta circles) capture the supernormal and 

the subnormal (in C2) phases. 

 

5.8  Prediction of Experimental Conduction Delay 

Recall that all of these questions are raised from the experimental observations, although 

our empirical equations can accurately predict the history-dependence of conduction 

delay obtained from model axon with Poisson stimulation, we would like to apply Eq. 

(5.2) to the experimental results directly. Because both Vt and Vp are easily measured 

from experimental intracellular recordings (Ballo et al., 2012), we asked whether Eq. 

(5.2) can be used to predict the history-dependence of conduction delays measured 
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experimentally. We used conduction delays measured in the PD axon with a Poisson 

stimulation at 10 Hz and fit the delay values with Eq. (5.2) (Figure 5.9A1-B1). The fit 

produced an R
2
 value of 0.87 which shows that more than 87% of the variance of the 

experimental delays can be predicted by Eq. (5.2) (Figure 5.9C1). In conclusion, this 

equation can be used to describe the history-dependence of conduction delay in 

experiments without any need for computational modeling. 

 Although the experimental conduction delay can be accurately predicted by Eq. 

(5.2) with Vt and Vp obtained from the same experiment, we still want to know whether 

Eq. (5.2) is capable of “predicting” conduction delay without any optimization for the 

coefficients (i.e., c1-c3). For this purpose, a new Poisson stimulation with same duration 

(5 min) and same mean frequency (10 Hz) was applied to the same experimental PD axon 

as used in Figure 5.9A1-C1. Although this new Poisson stimulation protocol has same 

length and mean rate as the one used in Figure 5.9A1-C1, their patterns (ISIs and time 

series) are totally different. Both conduction delay and characteristic voltages of each 

action potential were measured for the new Poisson stimulation protocol. Conduction 

delays obtained from the same PD axon and the new Poisson stimulation show very 

similar STS and FTS effects as observed in panel A1-B1 (Figure 5.9A2-C2, blue dots). 

Using the coefficients obtained from the panel A1-C1 (training data), along with Vt and 

Vp measured in panel A2-C2 (novel data), conduction delays obtained from the new 

Poisson stimulation can be accurately predicted by Eq. (5.2) (Figure 5.9A2-C2). This 

result indicates that the coefficients in Eq. (5.2) are determined by the intrinsic properties 

of PD axon, but independent of the stimulation method. 
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Figure 5.9 The history dependence of conduction delay in the biological PD axon can be 

predicted by empirical Eq. (5.2) without computational modeling. A1: Conduction delays 

in the biological PD axon in response to a 5 min, 10 Hz, Poisson stimulation (blue; same 

as in Figure 2.2) compared with delays predicted by Eq. (5.2) (c1 = 4817.75, c2 = 500.5, c3 

= 105) using VT and VP from intracellular recordings. B1: Data in panel A1 plotted as a 

function of Finst. C1: Experimental delays plotted versus the predicted delays (R
2 

= 0.87). 

The line is y = x. A2-C2: The novel data. The experimental data, which include 

conduction delay (blue), VT and VP are obtained from the same biological PD axon used 

panel A1-C1 in response to a new Poisson stimulation within (min/10 Hz). New 

conduction delays are accurately predicted (red) by Eq. (5.2) with the same coefficients 

obtained in panel A1-C1 (R
2 

= 0.87). 

 

5.9  Prediction of Experimental Conduction Delay with Different Conditions 

Without any need for computational modeling, in last section we used Eq. (5.2) to predict 

the history-dependence of conduction delay obtained from the experiment with specific 

conditions: the mean frequency of Poisson stimulation is 10 Hz and the PD axon was in 

CsCl. To further examine the validation of Eq. (5.2), it is natural to ask whether the 

successful prediction by Eq. (5.2) is specific to this experiment. Therefore, we use Eq. 

(5.2) to predict conduction delay obtained from different experimental conditions (Figure 

5.10). The representative experiments were performed in different saline: control saline, 
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CsCl and DA. They were also stimulated with Poisson protocol with different mean rates: 

5, 10 and 19 Hz. For each group of conduction delays, Vt and Vp were obtained from each 

of these experiments, we use Eq. (5.2) and the same optimization process to determine 

the corresponding coefficients. The prediction results are plotted with the experimental 

data obtained from different conditions (Figure 5.10). In addition to the prediction and 

experiment results discussed in last section (Figure 5.9), other predictions for the 

corresponding experimental results also have high R
2
 values as well (Figure 5.10). These 

results indicate that Eq. (5.2) is a generally valid tool which can quantitatively predict the 

history-dependence of conduction delay obtained from different experimental conditions 

without any need for computational modeling. 
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Figure 5.10 Prediction of conduction delay obtained from different representative 

experiments. Columns from left to right: experiments were performed with control saline, 

CsCl and DA, respectively. Rows from up to down, experiments were stimulated with 

Poisson stimulation with mean frequencies of 5, 10 and 19 Hz, respectively. VT, VP and 

conduction delay were measured in the representative experiments. Coefficients in Eq. 

(5.2) were optimized with the same method as applied before. Conduction delay obtained 

from different experiments (x-axis) is plotted as a function of the prediction results (y-

axis) by Eq. (5.2). R
2
 are shown in each panel. The lines are y = x. 

 

5.10  Discussion 

Other Possible Empirical Equations 

As an empirical equation for predicting the history-dependence of conduction delay, Eq. 

(5.1) is the best (with highest R
2
) but not the unique one. We systematically investigated 

all the possible parameters in the biophysical model in addition to 1/ ( )m TV  and

1/ ( )h PV  used in Section 5.5. All (total 14) dynamical parameters of INa at VT and VP are 
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listed in Table 5.1. These parameters and their reciprocals (total 28) are plotted both at 

STS (vs. time) and FTS (vs. Finst) and compared with conduction delay as Figure 5.5A-B. 

We found that, at STS, in addition to 1/ ( )m TV , there are 4 other parameters (Table 5.1) 

successfully capturing the STS effect of conduction delay as in Figure 5.5A1 (not 

shown). On the other hand, at FTS, in addition to 1/ ( )h PV , there are 5 other parameters 

capture the FTS effect of conduction delay at high Finst as in Figure 5.5B2 (not shown). 

Table 5.1 All Possible Variables for Empirical Equations to Predict Conduction Delay 

All possible parameters 

(14) 

TV , PV , ( )Tm V , ( )Pm V , ( )Th V , ( )Ph V  

( )m TV , ( )m PV , ( )h TV , ( )h PV  

( )m TV , ( )m PV , ( )h TV , ( )h PV  

Valid STS parameters 1/ ( )Tm V , ( )m TV , 1/ ( )m TV , ( )h TV , 1/ ( )h TV  

Valid FTS parameters 1/ ( )Pm V , ( )m PV , 1/ ( )m PV , ( )h PV , 1/ ( )h PV , 1/ ( )Th V  

 

Like Eq. (5.1), we also built other empirical equations, which include one valid 

STS parameter and one valid FTS parameter. These empirical equations can also predict 

the history-dependence of conduction delay obtained from the model axon with Poisson 

stimulation. For instance, one such possible empirical equation is: 

1
2 3( )

( )
est h P

m T

c
d c V c

V



        (5.3) 

In addition to Eq. (5.1), the experimental results in Figure 5.5 also can be accurately 

predicted by Eq. (5.3) (Figure 5.11). At STS, the prediction of Eq. (5.3) captures the slow 

increase of conduction delay (Figure 5.11A). At FTS, the prediction of Eq. (5.3) shows 

the non-monotonic relationship between delay and Finst (Figure 5.11B). More than 95% 

experimental delay is predicted by Eq. (5.3) (Figure 5.11C). The non-unique possible 

empirical equations indicates that there is a general principle underlying these valid 



105 
 

empirical equations: the conduction delay is determined by the characteristic voltages of 

each action potential, as described by Eq. (5.2). 

 

Figure 5.11 Another possible empirical equation for predicting conduction delay. A: 

Simulation results of conduction delay (blue) are same as Figure 5.5. Prediction of 

conduction delays are obtained from Eq. (5.3) and plotted with time. B: Data in panel A 

are plotted with Finst. C: More than 95% simulation results of conduction delay are 

accurately predicted by Eq. (5.3). The line is y = x. 

 

Validation and Limitation of Known Equations 

Both Matsumoto-Tasaki Equation and Muratov Equation were deduced from the 

assumption that there is only one action potential propagating along the axon, which 

merely imply they cannot predict the history-dependence of conduction delay. Indeed, 

they are valid for predicting the conduction velocity of an isolated potential through our 

biophysical model (not shown), but fail to predict the history-dependence of conduction 

delay obtained from our model. Such disadvantage of these two equations is direct 

because both of them assume that the conduction velocity of action potential is a 

constant. 

Specifically, Matsumoto-Tasaki Equation only focuses on a wave front, which 

contains two steady-state voltages. One is the excited voltage, which is assumed to hold 

the voltage at the peak in the activated zone. The other one is the resting voltage in the 

resting zone of the model axon. Due to this specific assumption of voltage distribution in 
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the model axon, Matsumoto-Tasaki Equation cannot predict the conduction velocities for 

multiple action potentials, especially when they are close to each other. 

Comparing with Matsumoto-Tasaki Equation, which was developed for a general 

axon, Muratov Equation was deduced from the H-H model axon. In Muratov’s 

assumption, slow dynamical variables h (inactivation variable of INa) and n (activation 

variable of IKd) were set as constants. However, in addition to the H-H type INa, IKd and 

Ileak, our model has additional ionic currents (and pump) with other activation and 

inactivation variables, which cannot be set as constants directly. Therefore, Muratov 

Equation cannot predict the history-dependence of conduction delay in our model axon. 

Also note that Matsumoto-Tasaki Equation involves the total resistance of the 

membrane of unit area in the excited state, and Muratov Equation includes the value of 

the inactivation variable h of INa at the rest state. Such variables are impractical to 

measure in experiments in the real PD axon. Although these variables can be recorded or 

calculated during the simulation process of the model axon, neither of these two 

equations can be used to directly predict the history-dependence of conduction delay 

obtain from the experiments. 

 

The Increasing of CV-D  

As a quantitative measurement used to describe the temporal fidelity of conduction delay, 

CV-D is one of the STS factors we focus on. As the poor temporal precision of 

conduction delay shown by the PD axon in CsCl, the CV-D is significantly increased 

from minute 1 to minute 5 (Figure 2.2B). It is natural to ask why this happened and 

which factor leads to this experimental observation. Employing the development of these 
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empirical equations discussed in this chapter, 1/ ( )m TV  shows larger variance at the 5
th

 

minute compared with minute 1 (Figure 5.5A1, red). Therefore, for the biophysical 

model, we conclude that the variability of conduction delay is sensitive to INa, which is a 

function of the trough voltage of each action potential. The same principle can be applied 

to the biological axon: if its fast sodium current is very sensitive to the trough voltage of 

each action potential, then the temporal fidelity of conduction delay in this axon will be 

bad. 

 

5.11  Summary 

In this chapter, we first introduced the complexity of conduction delay in the PD model 

axon through other point of views: the transient conduction velocity and inter-spike 

interval, which change with the propagation of action potentials in the model axon. 

Although conduction velocity is usually considered as depending on the total 

conductance at the excited state of the axon, our simulation results showed that there is 

no linear relationship between delay and any possible variables: total conductance, VP, VT, 

spike duration and Finst. Although Matsumoto-Tasaki Equation and Muratov Equation can 

predict conduction velocity of one isolated action potential, they failed to predict the 

history-dependence of conduction delay in our model with Poisson stimulation. We 

developed an empirical equation which only involves two dynamical variables of INa at 

certain voltage ranges. Our first empirical equation successfully captures both STS and 

FTS effects of conduction delay. After linearization, we deduced a new empirical 

equation which only involves the characteristic voltages of each action potential: VP, VT. 

The second empirical equation can predict the history-dependence of conduction delay 
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obtained from the biophysical model, as well as that obtained from the experimental PD 

axon. Therefore, the empirical equation provides a simple and quantitative tool to predict 

the conduction delay in these experiments without any need for computational modeling. 
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CHAPTER 6 

DECODING CONDUCTION DELAY AND VOLTAGE RESPONSE 

 

6.1  Introduction 

The complex relationship between the conduction delay and the activity history of the PD 

axon has been shown in experimental data (Ballo and Bucher, 2009; Ballo et al., 2012). 

At steady state, the conduction delay shows a nonlinear and non-monotonic relationship 

with the instantaneous firing frequency Finst (Figure 2.2C). Independent of the 

mechanisms underlying the history-dependence of conduction delay, the question can be 

posed as the whether it is possible to predict the conduction delay for an action potential 

by knowing the history of activity in the axon in the immediate past. In this chapter, we 

develop a decoding method in order to predict conduction delay of an action potential as 

a function of the timing of prior action potentials in the past few seconds. We apply this 

technique only assuming the axon has a steady state of activity. Thus, this decoding only 

applies to the history dependence of conduction delay in the fast timescale. 

In the last chapter, we have developed empirical equations to predict the “future” 

conduction delays. However, for such purpose, one has to perform the “future” 

simulation/experiment first to obtain the necessary variables (i.e., 1/ ( )m TV  and 

1/ ( )h PV , VT and VP). The decoding technique developed in this chapter explores the 

relationship of the conduction delay as a function of all prior stimulus times. Therefore, 

to predict the conduction delay, one only needs to know the prior stimulus times without 

performing any simulations or perturbations (i.e., application of the decoding technique 
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for conduction delay does not require the modeling work for the PD axon, as what we did 

in Chapter 3). 

Our approach to decoding will be similar to previously used methods to decode 

the relationship between synaptic strength and the history of activity in the presynaptic 

neuron (Sen et al., 1996). Short-term facilitation and depression can modify the strength 

of synapses and these processes depend on the history of presynaptic activity. By using a 

decoding technique, one should be able to predict the outputs of the postsynaptic neurons 

depend on the history of activity in the presynaptic neuron. In this decoding model (Sen 

et al., 1996), the mathematical prediction of any postsynaptic activity is a linear fit of 

experimental data multiplied by an amplitude factor. The amplitude factor is a time-

dependent nonlinear function determined by a fixed time interval of previous presynaptic 

activity. After optimizing the technique by using a learning algorithm, postsynaptic 

responses can be predicted by putting the presynaptic activities into the decoding 

technique. 

Note that the decoding technique was originally developed to predict the 

postsynaptic voltage and current responses rather than predicting the conduction delay of 

propagating action potentials. With the advantage that any possible functional 

relationship between input (time) and output can be decoded and predicted without any 

work on modeling, we will apply the decoding technique to explore the voltage 

facilitation exposed by the cpv2-a muscle. Similar as the decoding equations developed 

for conduction delay, we will develop a method to decode the response of the cpv2-a 

muscle as a function of the prior history of activity in the motor axon, which provides the 

inputs to the muscle. 
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6.2  Decoding Methods 

To use the decoding technique for conduction delay, its mathematical formalism to 

describe the conduction delay is designed to capture two experimental observations. First, 

that the conduction delay has a nonlinear dependence on the instantaneous spike 

frequency. This dependence is non-monotonic, such that at low or high values of Finst 

delay is longer than in intermediate values. The shape of the nonlinearity is affected by 

the average firing rate and the presence of DA or Cs
+
. The second observation is that the 

conduction delay slowly increases with time after the axon is initially stimulated. To 

capture these effects in a concise manner, we employ a decoding technique similar to that 

described by Sen for decoding the amplitude of synaptic output for synapses with short 

term dynamics (Sen et al., 1996). 

We use the notation Dexp to denote the experimentally measured delay and Dest for 

our mathematical estimation. In our formalism, Dest(t), the delay of an action potential 

that occurs at time t, can be described with a combination of two “kernels” K1 and K2. 

Here K1 is a linear kernel which, for our current approximation (of conduction delay), is 

made constant. This means that if Dest is described only by using the kernel K1, the delay 

values of all action potentials will be the same, independent of timing or history. For 

example, K1 can be set to be the mean value of all delays measured in a given time 

interval. Because Dest is not constant, we use a correction term to describe its value: 

 1( ) [1 ( )]estD t K A t    

The term A(t) describes the deviation of Dest from a constant value, depending on the 

action potential time t. A(t) will depend on the previous spiking history, i.e., on the timing 
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of the previous spikes compared to the spike at t. This dependence is given by the second 

kernel K2 using the following function (as described below): 

2

( ) ( ( ))

( ) ( )
j

j

t t

A t F S t

S t K t t




   

Say that K2 must decay to 0 as a function of   j jt t t  because its effect is additive and 

spikes that have occurred a long time prior to t should have a smaller influence to prevent 

S(t) from growing without bound. A simple choice for K2 would be a single exponential 

decay function. However, such a function would not address the non-monotonic 

dependence of Dest on Finst. We use a double exponential function: 

2 4( ) ( )

2 1 3( )
c t c t

K t c e c e
   

    

where ci, (i = 1, 2, 3, 4) are four positive parameters. Thus, K2 is a nonlinear function of 

inter-spike intervals such that, when t  is large or small (which equivalent to Finst is 

small or large), the value of K2 is large. On other hand, when t  takes the intermediate 

values, the corresponding value of K2 is small. This result fits our observation of the 

experimental data. Notice that we say the value of t  is larger or smaller when compared 

to the intermediate values, and K2 will eventually reach 0 as t is increased to a very 

large value. Therefore, we can introduce the summation of different t  values (i.e., many 

tj before t). 

Intuitively, there should be certain number of spikes which affect the delay 

corresponding to the spike time t. (It is possible that S takes the entire spiking history into 

account but in practice we restrict our model to a finite time interval before each spike.) 

If these earlier spikes happened at times tj, then we will set S(t) to be the summation of 

K2: 
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2( ) ( )
j

j

t t

S t K t t


   

As a first-order approximation we will assume: 

( ) ( ( )) ( )A t F S t S t   

i.e., F is an identity function. Since by equation we get: 

exp

exp

1

( )
( ) 1

D t
A t

K
   

We can then plot Aexp(t) against S(t), and the resulting relationship is not linear, which 

shows that the assumption F = S is not correct and suggests that a different form of the 

function F is needed. In cases that we have studied, F could be fit accurately by adding 

the second term of the Taylor series expansion of F to obtain: 

2

5( ) ( ( )) ( ) ( )A t F S t S t c S t    

with a free parameter c5. Finally, we give our decoding model as below: 

2 4

1

1 exp

2

5

2

( ) ( )

2 1 3

2

exp

( ) [1 ( )]

mean( ( ))

( ) ( ( )) ( ) ( )

( ) ( )

( )

min ( ( ) ( ))

j

j j

j

est

j

t t

c t t c t t

j

obj est

t t

D t K A t

K D t

A t F S t S t c S t

S t K t t

K t t c e c e

f D t D t



   



 



  

 

  

 





                                      (6.1) 

Optimally, we need to minimize the total error (fobj) of conduction delay between 

experimental data and the predicted data generated by the decoding technique. Our 

decoding model is a function of the stimulus time, which is discontinuous. Therefore, the 

total error is described as a function of discontinuous stimulus time. 
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6.3  Decoding Conduction Delay in the PD Axon 

The focus of this dissertation is the conduction delay generated by the propagation of 

spikes in axons. Specifically, we are interested in examining the axon of the PD neuron in 

the STNS. The Bucher lab has already determined the complex intrinsic membrane 

properties of the PD axon (Ballo and Bucher, 2009). In this section, we use these data to 

examine the functional relationship between the conduction delay and the activity history 

of the PD axon. Specifically, we will use the decoding technique developed in Section 

6.2 to identify how conduction delay depends on stimulus time, as well as Finst. 

After establishing the decoding technique, we intend to predict conduction delay 

as a function of Finst and stimulus time for experimental data generated by the use of 

different neuromodulators. In this section, we only show the decoding results of 

experimental data generated by the Poisson stimulation with a mean frequency at 5 Hz 

(the reason is lower frequency corresponding to smaller population of data). We will 

show the decoding results of experimental data under: (1) control condition; (2) blocking 

Ih using CsCl; and (3) enhancing the effect of Ih using DA. 

 

6.3.1  Decoding Results in Control Conditions 

First, we show the decoding result of experimental data under control conditions. Figure 

6.1A shows the decoding relationship between the conduction delay and Finst. Since, at 

the onset of stimulation, the axon is not at steady state, the decoding relationship between 

the delay and Finst generated by the decoding technique at the 1
st
 minute is different from 

the results obtained at steady state (the 5
th

 minute). At 5 min, an excellent fit of the 

functional relationship between delay and Finst between experimental data (blue circles) 
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and decoding results (red crosses) is seen. We also observe that the decoding relationship 

between the delay and stimulus time closely fits the experimental results (Figure 6.1B). 

We give the mathematical equation for the first and second order kernels below: 

0.31169 18.46349

1 239.1 ms, 0.00114 0.07624t tK K e e       

As discussed previously, K1 takes the mean value of the experimental delay of the whole 

simulation process. K2 results from combining two exponential functions and creating a 

nonlinear function. In this decoding process, we took a 5 s activity history for each spike 

to calculate the second order kernel, which eventually affected the formation of the 

objective function that needed to be minimized. Using a routine optimization method, we 

generated all of the parameters in the equation above. 

 

Figure 6.1 Decoding conduction delays obtained in control saline. Blue circles are 

experimental results, and red crosses are prediction of conduction delay generated by 

decoding technique (same for Figures 6.2-6.3). A1-A5: The relationship between 

conduction delay and Finst from the 1
st
 minute to the 5

th
 minute, respectively. Poissf  is 5 

Hz. Since our Finst satisfies the Poisson distribution, we plotted the x-axis in log scale, 

which makes the data distribute evenly. B: Prediction of conduction delay as a function 

of time for the whole simulation process. 
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6.3.2  Decoding Results in DA 

We also decoded the functional relationship between the conduction delay and the 

activity history of the experimental data obtained in DA. For convenience, we only show 

the decoding results for the steady state (5
th

 minute). Figure 6.2A shows that at steady 

state, the decoding relationship between the conduction delay and Finst fits closely with 

the experimental results. The decoding result of the delay as a function of time also fits 

closely with the experimental results (Figure 6.2B). 

We give the mathematical equation for the first and second order kernels below: 

0.18233 17.28669

1 238.7 ms, 0.00174 0.07254t tK K e e     
 

Due to the enhancement of Ih by dopamine, the temporal fidelity is improved compared 

to the control condition. The decrease of the total variance of the delay leads to a K1 value 

in dopamine that is smaller than that in the control condition. In this decoding and 

optimizing process, we still use a 5 s activity history for each spike, and the decoding 

result shows the same feasibility as the result of the control condition.  Because temporal 

fidelity of the conduction delay is improved in dopamine, the 5 s activity history is 

enough to capture the dependence on the history of the activity in the PD axon. 
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Figure 6.2 Decoding conduction delays obtained in DA. A: The relationship between 

conduction delay and Finst at steady state. Experimental data recorded in 10
-9

M DA as 

neuromodulator and Poissf  is 5 Hz. B: Prediction of conduction delay as a function of 

stimulus time for the steady state.
 

 

6.3.3  Decoding Results in CsCl 

Finally, we use the decoding technique to identify the functional relationship between 

conduction delay and the activity history of the experimental data when the axon is 

bathed in CsCl to block Ih and Poissf  is 5 Hz. Figure 6.3A shows that at steady state, the 

decoding relationship between the conduction delay and the Finst only fits the mean value 

of the experimental data. We can observe that the decoding result of delay as a function 

of stimulus time still fits well compare to the experimental data (Figure 6.3B).  

We give the mathematical equations for the first and second order kernels below: 

0.02621 6.93286

1 240.6 ms, 0.00228 0.04339t tK K e e       

Due to the absence of Ih, the temporal fidelity of the conduction delay becomes worse 

when compared to dopamine and control. The increase of the total variance of the delay 

leads to a larger K1 value in the decoding process for the CsCl condition. Additionally, 

the decoding results do not provide as good a fit in this case compared to control or 

dopamine conditions. With the larger variance of the conduction delay, it is harder to 
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decode the relationship between the conduction delay and time/Finst (red crosses), as 

shown by the experimental data (blue circles). In this decoding process, we only used a 

0.5 s activity history for each spike. As a result, the decoding relationship between the 

delay and the stimulus time is comparable to the experimental results. However, the 

decoding relationship does not capture the variance of the experimental data because, for 

each spike, we considered a very short activity history, which is not long enough to 

capture the entire history dependence of the delay. The reason we did not use a longer 

activity history (e.g. 5 s as before) for each spike is because it led to a failure of decoding. 

 

Figure 6.3 Decoding conduction delays obtained in CsCl. A: The relationship between 

conduction delay and Finst for the steady state. Experimental data recorded in the 

experiment by using CsCl as neuromodulator and Poissf  is 5 Hz. B: Prediction of 

conduction delay as a function of stimulus time for the steady state. 

 

6.3.4  Consistency and Validity of the Decoding Technique 

After establishing the decoding technique, we need to insure its consistency and 

feasibility. The consistency of the decoding technique guarantees its stability when we 

use the technique to identify the functional relationship between the conduction delay and 

the activity history of the PD axon. The parameters of a consistent technique should 

change slowly over time. In order to examine the consistency of our decoding model, we 

divided the experimental data recorded in the experiment under control condition with 
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Poissf  equal to 5 Hz into 15 small bins (i.e., each bin last continuously for 20 s). Thus, the 

experimental data was also divided into 15 small groups. For each group of data, we 

repeated the decoding and optimization process and calculated one group of parameters 

(ci, i = 1, 2, 3, 4). Figure 6.4A shows the result of the change of all parameters for the 

entire simulation process, and we can observe that all parameters change slowly with 

increasing stimulus time. Thus, we can conclude that our decoding model is consistent. 

We also need to examine the validity of the decoding technique. The inferences 

made using parameter estimation about a natural process can be prone to mistakes if the 

error values do not obey a normal distribution. We consider the steady state experimental 

data generated by the same experiment as in Figure 6.4A. Figure 6.4B shows the 

histogram of the error values (fobj), which satisfies a normal distribution. Thus, we can 

conclude that our decoding technique and the optimizing method are statistically valid. 

 

Figure 6.4 Validation examination of the decoding technique. A: The parameters of 

second order kernel track the slow change of delay over time. ci (i = 1, 2, 3, 4) are four 

parameters of the second kernel in the decoding technique. The x-axis represents the 5 

min simulation process, which divided into 15 small bins and each bin last for 20 s. For 

each bin, we repeat the decoding and optimizing technique to get a group of parameters 

of ci. The left y-axis shows the value of c1 and c3, while the right y-axis shows the value 

of c2 and c4. B: The histogram of error, which calculated by subtracting experimental 

delay by corresponding prediction of delay generated by decoding technique, obeys the 

normal distribution. 
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6.4  Decoding Voltage Facilitation in the cpv2-a Muscle 

The decoding technique was originally designed for predict the after-synapse voltage and 

current response (Sen et al., 1996). Therefore, in addition to decoding conduction delays, 

it is nature to apply the decoding technique to unmask the facilitation mechanisms of the 

voltage response obtained from the cpv2-a muscle of the STNS. Note that the decoding 

process developed for conduction delay in Section 6.2 can be directly applied to decode 

the voltage facilitation in this section. 

 

6.4.1  Decoding the Response of the cpv2 Muscle to Stimuli 

In the STNS of H. americanus, there are two distinct areas: a dorsal chamber which leads 

to the midgut and a ventral region, and the pyloric filter which leads to ducts entering the 

digestive gland (Johnson and Hooper, 1992). This is the most complicated region of 

foregut and most functions are unclear. The cardiopyloric valve (cpv1 and cpv2) muscles 

are innervated by the PD neurons. The contractions of cpv2 open the cardiopyloric valve 

to allow food to enter the dorsal chamber of the pylorus. However, the mechanisms of 

how the contractions of cpv2 result in the sorting of food particles are still unclear 

(Hooper et al., 1986; Johnson and Hooper, 1992). A photo of cpv2 muscle of lobster, H. 

americanus, is shown in Figure 6.5. 

Recent experiments (Bucher lab) show that as the output, the cpv2-a muscle is 

affected by the history activity in the motor (PD) axon. Specifically, the voltage response 

of the cpv2-a muscle is facilitated by the additional stimuli between realistic burst 

stimulations. Based on the decoding technique developed for conduction delay in the 

Section 6.2, we intend to explore the functional relationship between the stimulus time 
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and the voltage response measured in the cpv2-a muscle. Furthermore, we will examine 

whether the voltage is the only factor that leads to the facilitation output observed in the 

cpv2-a muscle. Note that as an advantage of the decoding technique, we do not need to 

build a model for the cpv2-a muscle to achieve our objective. 

 

Figure 6.5 Cpv2 muscle of lobster, H. americanus. Recordings are from the underside of 

the stomach. The pdn curves around from the posterior end. Stimulation site is about 0.5 

cm from muscle, and muscle recording site another 0.5 cm from the posterior end 

(Bucher lab). 

 

6.4.2  Decoding Voltage Response with the First Kind of K2 

Recall the realistic burst stimulation method introduced in Section 2.5, in this section, we 

slight modify this stimulation protocol. For the new stimulation protocol, during the 300 

s/300 bursts process, the first half (1
st
 – 150

th
 bursts) are the same as the protocol used in 

Section 2.5. However, for the last half (151
th

 – 300
th

 bursts), we added two stimuli 

between two neighboring bursts (Figure 6.6A, inset panel). This modified realistic burst 

stimulation protocol was applied to the representative experiments of cpv2-a muscle. 
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The voltage response of cpv2-a to 20 burst stimulations (10 before additional 

spikes, red; 10 after additional spikes, blue) are shown in Figure 6.6A. The peak voltage 

responses to the burst with additional spikes are larger than the peak voltage 

corresponding with burst without additional spikes (Figure 6.6A). To examine this, we 

averaged the red and blue voltage history in panel A, respectively (Figure 6.6B). It is 

clear that the average voltage of the burst with additional spikes is greater than the 

average voltage of the burst without additional spikes. One possible reason for such 

observation is that the two additional spikes, which were generated from the two isolated 

stimuli, can facilitate the voltage level of the following burst activities (Figure 6.6B, 

unpublished data, Bucher lab). 

To examine this hypothesis, we intend to use the decoding technique introduced 

in Section 6.2 to explore the mechanisms underlying this facilitation shown by the cpv2-a 

muscle. Unlike decoding the conduction delay, which uses a constant as the first order 

kernel, we fitted an isolated action potential obtained from a representative experiment of 

cpv2-a (Figure 6.6E), and we give the equation of K1 below: 

1

11.86 15.03
0.016

27.89 37.85
1 exp( ) 1 exp( )

4.31 24.75
i i

K
t t


  

 
 

 

To unmask the voltage facilitation mechanisms underlying the cpv2-a muscle, we applied 

the decoding technique (Eq. (6.1)) for voltage history of four bursts without the 

additional spikes (not shown). We give the mathematical equation for the second order 

kernels below: 

2 2.29exp( 0.0051( )) 2.36exp( 0.0059( ))i j i jK t t t t       
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The shape of K2 indicates that it produces both depression and facilitation (Figure 6.6F). 

When two responses are close to each other (i.e., ti-tj < 50 ms), the first response 

depresses the following one. If they are not close but not far from each other (i.e., 50 ms 

< ti-tj < 900 ms), the first response facilitates the second one. Specifically, the facilitation 

is the strongest when the two responses locate with a certain distance (i.e., 300 ms < ti-tj < 

500 ms). 

After obtaining the first and second order kernels for this cpv2-a muscle, we 

applied the same stimulation protocol in Figure 6.6A to the decoding model (Eq. (6.1)). 

The detailed voltage responses corresponding to those 20 realistic burst-type stimulations 

are plotted with time (Figure 6.6C). Similar to the experimental observation, the averaged 

voltage trace of the bursts with additional spikes is larger than the averaged voltage 

response with burst stimulation without additional spikes (Figure 6.6D). Therefore, the 

decoding results successfully capture the facilitation effects of voltage history exposed by 

cpv2-a muscle. 

However, there are some constraints of the decoding results, which presumably 

are due to the limitation of mathematical form of K2. Compared to the experimental 

results (Figure 6.6B), the average voltage of the additional spikes are increased 

substantially in the decoding prediction (Figure 6.6D). One possible reason for such 

decoding disadvantage is the strong facilitation effect exposed by K2: if the voltage 

responses of the two additional spikes can facilitate the following burst activity, then the 

two spikes also facilitated by their previous burst activities as well. To solve this 

problem, a different form of K2 is used to predict the facilitation effect of cpv2-a muscle 

which we will discuss in the next section. 
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Figure 6.6 Decoding the facilitation effect in cpv2-a muscle. A: Voltage history of cpv2-

a muscle responses to realistic burst stimulation with and without additional spikes. The 

particular stimulation protocol is shown in lower panel. B: Data in panel A averaged 

before and after the injection of additional spikes. C: Decoding prediction by K1 and K2, 

which decoded from experiment data, with the same stimulation protocol in panel A. D: 

Data in panel C averaged before and after the injection of additional spikes. Note that the 

averaged voltage of burst with additional spikes is increased.  E:  Optimization of the 

first order kernel. F: The second order kernel shows both depression and facilitation 

effects. 

 

6.4.3  Decoding Voltage Response with the Second Kind of K2 

A different representative experiment of cpv2-a muscle also shows the voltage 

facilitation (Figure 6.7A-B). The same decoding technique used in Figure 6.6 was applied 

to this the new data. We give K1 (Figure 6.7E) below: 

1

6.19 7.27
6.38

50.13 84.42
1 exp( ) 1 exp( )

9.5 45.81
i i

K
t t

  
 

  

 

The mathematical equation for the second order kernel is: 

2 0.0096exp( 0.00094( )) 0.022exp( 0.00095( ))i j i jK t t t t       
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Contrast to the second kernel obtained in Figure 6.6F, the K2 in Figure 6.7F only shows 

the facilitation effect within a small time period. Using this new group of K1 and K2, the 

decoding prediction (Eq. (6.1)) also captures the facilitation effect of the two additional 

spikes to the following burst activities (Figure 6.7C-D). More importantly, unlike the 

prediction results in Figure 6.6D, the averaged voltage of the additional spikes of the 

decoding prediction (Figure 6.7D) are similar with the experimental results (Figure 6.7B). 

Note that different forms of K2 (Figures 6.6F & 6.7F) can capture the same 

voltage facilitation effect observed in the experimental data, which indicates that the form 

of K2 is not unique in this decoding technique (Sen et al., 1996). Therefore, the voltage is 

not the only factor which leads to the voltage facilitation in the cpv2-a muscle. 

 

Figure 6.7 Decoding the facilitation effect in cpv2-a muscle obtained from a different 

experiment. A-E:  Experimental data also shows the facilitation effect of the two 

additional spikes to the following voltage responses. Same decoding technique in Figure 

6.6 was applied to the new experimental data. Decoding prediction from the new K1 and 

K2 captures the facilitation effect observed in the experiment. F: Note that the second 

order kernel only shows the facilitation effect. 
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6.5  Discussion 

Difference between Empirical Equations and Decoding Methods 

For the similar purpose, we have developed empirical equations to predict the history-

dependence of conduction delay in the last chapter. However, there are differences 

between using empirical equations and decoding technique, which is developed in this 

chapter, to predict conduction delay. In order to use empirical equations to predict 

conduction delay in the model axon, we need to measure 1/ ( )m TV  and 1/ ( )h PV  during 

the simulation process. Similarly, to predict conduction delay obtained in the 

experiments, we have to measure VT and VP for each action potential. Thus, to predict any 

“future” conduction delays, the application of empirical equations requires one to 

perform the “future” simulation or experiment in advance, in order to obtain the 

necessary variables. On the other hand, note that the only variable in the decoding 

technique is the discontinuous stimulus time. Therefore, once the first and second order 

kernels have been fixed from the history activities of conduction delay, one only needs 

the stimulus time to predict the “future” conduction delays without performing any 

simulations or experiments. In conclusion, the decoding technique is more convenient to 

use (without performing the simulation/experiment to predict the conduction delay), but 

these empirical equations can predict conduction delay more accurately (with very high 

R
2
 values). 
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Non-Uniqueness of the Second Order Kernel 

The decoding results of the voltage facilitation exposed by the cpv2-a muscle indicates 

the second order kernel is non-unique (Figures 6.6F & 6.7F). Due to the structure of the 

decoding method we used (Sen et al., 1996), one has to “guess” the form of the second 

order kernel before applying the decoding technique to the experimental data. The 

advantage of this method is that when the underlying mechanism is simple, the 

“prefixed” form of K2 can significantly save the computational time for determining the 

parameters in the model (Eq. (6.1)). However, when the underlying mechanism is 

complex and there are more than one factors affect the voltage/current levels, fixing the 

form of K2 in advance may lead to worse decoding results. To fix this problem, an 

intuitive idea is using K2 as a free function (i.e., do not constrain the form of K2). A recent 

study (Stern et al., 2009) provides such a technique which can be applied to decode the 

voltage facilitation exposed by the cpv2-a muscle. 

 

6.6  Improvement of the Decoding Methods 

There are several deficiencies of Sen’s decoding technique. For instance, when we use it 

to decode the history-dependence of conduction delay, it is difficult to decode the 

conduction delay as a function of Finst if Poissf  is relatively high (i.e., 19 Hz). 

Additionally, although we can use the present technique to decode the relationship 

between delay and Finst well at low Finst (i.e., 0~60 Hz), the fit is poor when the Finst 

become very high (i.e., greater than 60 Hz). On the other hand, when we apply the 

decoding technique to unmask the facilitation of voltage response obtained from cpv2-a 
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muscle, the second order kernel is not unique (Figures 6.6F & 6.7F). Therefore, we can 

enhance our decoding technique. 

 

Time Series Analysis 

When we use the decoding technique to decode the history-dependence of conduction 

delay, the second order kernel K2 in the decoding technique is a function dependent on 

the activity history of the PD axon. It is very important to determine the proper length of 

the history of the experimental data in different treatment conditions and varying stimulus 

frequencies. Similarly to the discussion of Genetic Algorithms, it is clear that we cannot 

obtain a precise functional relationship between the conduction delay and the activity 

history of the PD axon if the history is not long enough. On the other hand, if the activity 

history of the PD axon is too long, obtaining accurate results will be a lengthy time 

consuming process. One possible method to determine a proper history length is the time 

series analysis, which we can use to improve our decoding technique. For instance, 

decoding the functional relationship between the conduction delay and Finst of the steady 

state only captures the mean value of the experimental results in CsCl condition at 5 Hz 

(Figure 6.3A). In addition to the mean value, we would like to capture the variability of 

experimental results as well. Therefore, we can use time series analysis techniques to 

determine a proper length of time for this decoding process to achieve this goal. 
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Improvement of Decoding Technique for High Frequency Stimulation 

It is difficult to decode the experimental delay generated by high Poissf  using our present 

decoding technique. As the stated in Section 2.4, high Poissf
 
can decrease the temporal 

fidelity of conduction delay. With high frequency stimuli, not only does the variance of 

conduction delay become larger over time (Figures 2.2B & 3.2A1), but the delay 

increases more rapidly as a function of Finst at high Finst values (Figures 2.2C & 3.2B1). In 

our present decoding technique, the functional relationship between the conduction delay 

and the activity history in the PD axon cannot capture the high frequency experimental 

results accurately. We would like to improve our technique to ensure the decoding results 

can capture the correlations between the conduction delay and time/Finst accurately for the 

experimental data generated by high Poissf . For instance, we can add a weight function 

w(t) in the error function. Comparing to the original error function defined in Eq. (6.1), 

we can set the new error function below: 

2

expmin ( )( ( ) ( ))
j

obj est

t t

f w t D t D t


   

Since the predicted relationship between conduction delay and Finst by Eq. (6.1) is weak 

when Finst is greater than 60 Hz compare to the prediction when Finst smaller than 60 Hz, 

we add the weight function w(t) to ensure the error carries more weight when Finst greater 

than 60 Hz. 
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Pattern Selection of Delays as a Function of Frequency by the Axon 

Due to the complex intrinsic membrane properties of the PD axon, there is a complex 

distribution of the relationship between delay values and Finst in the spike train. We 

hypothesize that this distribution converges to a unique pattern at steady state which we 

can unmask using our decoding technique. Specifically, at steady state, the distribution of 

the delay values as a function of Finst approaches a nonlinear relationship that depends on 

Poissf and is captured by our decoding technique (e.g. Figure 6.1A5). We predict that any 

pattern of activity of the PD axon that has a mean frequency equal to this Poissf will 

produce delay values that fall within this distribution pattern. For example, let Poissf  = 5 

Hz. Then we predict that a tonic stimulation at 5 Hz produces steady-state delay values 

that fall within the 95% (or higher) confidence interval of the distribution at Finst = 5 Hz. 

This will be a key prediction of the decoding technique that we can use to ensure that the 

method provides good statistical inference. This hypothesis can be examined both 

experimentally and theoretically. 

 

Use the Biophysical Models and Decoding Kernels to Examine How Lack of Temporal 

Fidelity Affects Neural Coding 

 

We know that the change of temporal fidelity of the conduction delay can substantially 

alter the communication between neurons. However, the mechanism of neural coding and 

the factors that can alter the information carried by spikes along the axon are still unclear. 

There are two ideas we can try. First, we build a model axon and inject a sample stimulus 

train, which contains the information of neural coding carried by the different inter-spike 

intervals. For each sample train injected at one end of the axon, we can record the output 
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as a spike train at the other end. We inject the same stimulus train for many times, then 

for each stimulus train we can get a corresponding spike train as output. If those outputs 

show different patterns of inter-spike intervals, we conclude that this model axon can 

change the temporal fidelity of conduction delay, which further affects neural coding. 

Furthermore, we can build two or multiple model axons that contain different ionic 

currents. We inject the same stimulus train at one end of these model axons and record 

the output at the other end. Due to the different combinations of ionic currents for 

different model axons, the outputs of different model axons should be different. If the 

spike pattern of one output is different from the pattern of stimulus train, we conclude 

that the corresponding model axon can change the temporal fidelity of conduction delay. 

Additionally, by comparing the different outputs generated by different model axons, we 

can find out which ionic current affects neural coding significantly. We can improve our 

biophysical model and decoding technique in order to create a set of tools to identify the 

basic principles of how a lack of temporal fidelity affects neural coding. Parts of these 

ideas have been done through sensitivity examination which will be discussed in the last 

chapter. 

 

6.7  Summary 

In this chapter we first introduced a classic decoding method (Sen et al., 1996). We have 

shown that conduction delay is not linearly correlated with spike frequency, resting 

membrane potential, or spike shape parameters like the amplitudes (Figure 5.3), neither 

during ongoing bursts nor Poisson stimulation. In order to identify a functional 

relationship between conduction delay and the axon’s activity history, we have used a set 
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of biological data that capture the conduction delay in response to Poisson stimulation to 

analyze this relationship. Fortunately, it is possible to implement this decoding technique 

to analyze how conduction delay depends on the short- and long-term history activities 

(Sen et al., 1996; Stern et al., 2009), which provides a combination of linear and 

nonlinear kernels that define delay as a function of all pervious spike activities. 

According to this technique, two components for the history dependence have been 

defined. The short-history component depends on spike history on the order of seconds, 

while the long-history component on the order of minutes. This technique is used to 

describe the non-monotonic relationship between conduction delay and Finst, as well as 

the effects of DA and CsCl on temporal fidelity of spike propagation with Poisson 

stimulation. 

We also applied this decoding technique to predict the voltage facilitation 

exposed by the cpv2-a muscle with realistic burst stimulation protocols. The facilitation 

is accurately captured by the first and second order kernels in the decoding technique. 

The non-unique forms of the second order kernel imply that voltage is not the only factor 

which facilitates the voltage responses of the cpv2-a muscle. 
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CHAPTER 7 

SENSITIVITY EXAMINATION AND DISCUSSION 

 

7.1  Sensitivity Examination 

Although we have quantitatively discussed the contributions of many parameters to the 

history-dependence of conduction delay in previous chapters, we intend to systematically 

investigate the contributions of all parameters in the biophysical model. We will discuss 

how these parameters contribute to the variability of conduction delay at different 

timescales. Sensitivity examination is a standard technique to identify the importance of 

all parameters to a nonlinear system or model. 

 

7.1.1  Methodology of Sensitivity Examination 

The sensitivity analysis was performed in the following manner. Each parameter in the 

(reference) model was decreased or increased by 5% and 10% of its original value while 

other parameters were kept unchanged. This produced four new parameter sets (or 

models). Each new model was subjected to the same Poisson stimulation as the original 

model and attributes (as described above) of the fast and slow timescale effects were 

measured and normalized by their values in the reference model. The resulting four data 

points, together with the reference value (at the origin) were fit with a line and the 

sensitivity to the parameter was defined as the slope of the linear fit. 
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7.1.2  Contribution of Model Parameters on STS and FTS Effects of Conduction 

Delay 

  

To understand which model parameters contribute most to different aspects of the history 

dependence of conduction delay in our model, we systematically examined the 

contributions of these model parameters to the STS effect and FTS effect. The STS effect 

attributes measured were Dmean and CV-D; the FTS attributes measured were Fmin, Dmin 

and κmin (Figure 7.1 upper panel). Note that a small sensitivity value does not imply that 

the model attribute is not dependent on the parameter. It merely implies that small 

changes in the parameter do not affect that attribute strongly. 

The primary result of the sensitivity analysis was that the parameters that produce 

the largest variations in any of the attributes of the STS (Figure 7.1A-B) or FTS (Figure 

7.1C-E) effects are those directly involved with action potential generation, i.e., the 

parameters of INa, IKd and ILeak. Although, as described above, the Na
+
/K

+
 pump and Ih 

contribute greatly to the history dependence of conduction delay, the different attributes 

of history dependence were not greatly sensitive to the parameters of these currents, nor 

to that of the transient potassium current IA. 

The value of Dmean (Figure 7.1A) had a strong, negative correlation with the 

equilibrium potential of potassium (Ek) and the leak reversal potential (ELeak). This 

sensitivity is probably due to the contribution of Ek and ELeak to the membrane potential at 

rest which, when reduced, decreases conduction delay in general. Surprisingly, Dmean also 

had a strong, negative correlation with the equilibrium potential of sodium (ENa) and its 

maximum conductance ( Nag ). This is consistent with the predictions of the Matsumoto-

Tasaki Equation because, an increase in Nag  results in an increase of the total 

conductance, which, if all other factors are unchanged, leads to an increase in conduction 
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velocity (decreased conduction delay). Additionally, Dmean strongly and positively 

correlated on the activation time constant of INa. This is consistent with Eq. (5.1), because 

increasing 
m  results in a slower opening rate of INa activation variable at VT. 

For the STS effect, the sensitivity of the variability of delay values (CV-D) to 

model parameters was not as consistent as that observed for Dmean. Several parameters 

produced different (Ek, ENa, Nag , Na

h ) or even opposite (ELeak, Leakg ) effects on CV-D, 

when the Ipump value was low or high (Figure 7.1B).  

Of the FTS attributes, Fmin (the instantaneous stimulus frequency that produces 

the minimum delay, i.e., the fastest action potentials) was sensitive primarily to three 

parameters: it changed positively with Ek, but negatively with ELeak and Leakg  (Figure 

7.1C). Although it is difficult to gain a clear intuition on how these parameters affect 

Fmin, these observations indicate that, the fastest action potentials can be obtained at a 

higher frequency rate if Ek is increased or ELeak or Leakg  are decreased. 

The parameter Dmin is the delay at Fmin and its dependence on the model 

parameters (Figure 7.1D) is similar to that of Dmean, which was discussed above. The non-

monotonic dependence of delay on the instantaneous stimulus frequency is captured 

primarily by the curvature (at Fmin) of the quadratic fit to this equation. A larger curvature 

κmin implies a larger nonlinearity and, therefore, a larger difference between conduction 

delays at different instantaneous frequencies. κmin is negatively dependent on ELeak, Leakg , 

ENa and Nag , but positively on EK and Na

h , the time constant of INa inactivation (Figure 

7.1E). These dependencies are consistent, but the reasons for their effect on κmin are not 

obvious. Additionally, in some cases the curvature may change and the delay vs. Finst 

curve may shift up or down (as with ELeak or EK; compare Figure 7.1E-D), whereas on 
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other cases the curvature change does not correspond to a shift in this curve (as with  

Leakg ). 

 

Figure 7.1 Sensitivity of the slow and fast timescale effects to the model parameters. A-

B: STS effect. Sensitivity of Dmean and CV-D to model parameters in the 1
st
 and 5

th
 

minutes of a 10 Hz Poisson stimulation. C-E: FTS effect. Sensitivity of Fmin, Dmin and 

κmin to model parameters in the 1
st
 and 5

th
 minutes of a 10 Hz Poisson stimulation. Top 

left inset schematically shows Dmean and variance of data. CV-D is defined as the ratio of 

standard deviation of delay to Dmean. Top right inset schematically shows Fmin, Dmin and 

the curvature κmin of the quadratic fit. 

 

7.1.3  Connection between Sensitivity Examination and Quantitative Analysis 

Based on the results of sensitivity examination, we can confirm our previous quantitative 

analysis of different ionic currents/pump discussed in Chapter 4. We have shown that Ek, 

ELeak, Leakg  and the dynamical variables of INa play crucial roles in shaping the STS and 

FTS effects of conduction delay (Figure 7.1), which confirm our earlier observations. 

First, Ek, ELeak and Leakg  substantially affect the resting membrane potential (Vm) of the 

model axon, which further leads to the change of conduction delay at STS. Second, the 
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dynamical properties of INa significantly affect the FTS effect of conduction delay is 

demonstrated by Figure 4.4. 

 

7.1.4  Connection between Sensitivity Examination and Empirical Equations 

The significance of Ek, ELeak, Leakg  and INa for conduction delay is also captured by the 

empirical equations. First, Ek, ELeak and 
Leakg  directly affect the trough voltage of each 

spike, and 
Nag  affects the peak voltage of each spike. Since we have developed Eq. (5.1) 

which involves VT and VP, this equation is consistent with the results of the sensitivity 

examination. Second, m and h  are defined as functions of m  and h , respectively. 

Therefore, Eq. (5.2) also coincides with the sensitivity examination. In conclusion, the 

sensitivity examinations of different parameters in the computational model demonstrate 

that our empirical equations can be explained biologically and carrying the characteristic 

information of each spike for predicting its conduction delay. 

 

7.2  General Summary of the Dissertation 

Conduction delay is generated by the propagation of action potential. It is determined by 

axial resistance, membrane capacitance and resistance, diameter and the density of ionic 

channels (Hodgkin, 1939; Katz, 1947; Hodgkin, 1954; Del Castillo and Moore, 1959; 

Colquhoun and Ritchie, 1972; Waxman, 1975; Renganathan et al., 2001). Conduction 

delay was usually assumed to faithfully conduct along the axon and consequently, the 

temporal fidelity of conduction delay is high. However, recent experiments in the PD 

axon in the STG show that conduction delay substantially changed along the propagation 

of action potentials along the axon, and the temporal precision of conduction delay is low 
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in the PD axon (Ballo and Bucher, 2009; Ballo et al., 2010; Bucher and Goaillard, 2011; 

Ballo et al., 2012). 

 The representative experiments of the PD axon displayed changes in spike 

amplitude and duration during rhythmic bursts, which was presumably determined by IA. 

Furthermore, due to the functional antagonism between the sAHP and Ih, Vm is 

hyperpolarized with the ongoing spike or burst activity (Ballo and Bucher, 2009). Due to 

the Dopamine receptors in the PD axon, the activity level of Ih, which has been 

characterized in the example experiments, is enhanced by the application of DA but 

ceased by CsCl (Ballo et al., 2010). More importantly, the activity level of Ih can 

substantially affect the temporal fidelity of conduction delay: it improved in DA, but 

decreased in CsCl (Ballo et al., 2012). The propagation of conduction delay in 

experimental axons has been detailed in a recent review paper (Bucher and Goaillard, 

2011). 

 These experimental observations provide a new way to investigate the temporal 

coding and neural communication in the STNS. Temporal coding is determined by two 

factors of rhythmic activity: the spike shapes (i.e., amplitude, duration, peak voltage etc.) 

and the inter-spike interval of paired spikes. The change of conduction delay in PD axon 

varies the inter-spike interval of neighboring action potentials during propagation, and 

consequently changes the temporal coding in the PD axon. Based on the experimental 

results, it is necessary and important to mathematically investigate and summarize the 

principles of propagation of conduction delay in axons. We developed five stages in this 

dissertation to achieve this objective. 
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 The first stage is the systematical introduction of variability of conduction delay 

obtained from the PD axon with different experimental conditions (Chapter 2). We 

applied Poisson stimulation in the example experiment of the PD axon, both Dmean and 

CV-D increase with time at STS. At FTS, conduction delay and Finst shows a non-

monotonic relationship at steady state. Temporal fidelity of conduction delay positively 

correlates with the activity level of Ih, however, it negatively depends on stimulation 

frequency. Similar results were observed in the experiments using realistic burst 

stimulation. 

 In the second stage (Chapter 3), we built a conductance-based biophysical model 

based on cable theory. In addition to the Hodgkin-Huxley type INa, IKd and Ileak, we also 

add Ih and IA, which have been characterized in these experiments, into our model. More 

importantly, we found that a regular Na
+
/K

+
 pump is necessary for our model to generate 

the STS and FTS effects of conduction delay observed in the PD axon. In addition to the 

history-dependence of conduction delay, our model also captures the importance of Ih: 

the temporal fidelity of conduction delay obtained from the simulation was improved by 

high level of Ih but decreased by low level of Ih. 

 After mathematically reproducing the variability of conduction delay shown by 

the PD axon, we begin to quantitatively investigate how different ionic currents and the 

Na
+
/K

+
 pump affect the history-dependence of conduction delay (Chapter 4). We first 

showed that both Dmean and CV-D are determined by the activity level of Ipump, which is 

further affected by INa due to the mathematical structure of the Na
+
/K

+
 pump. Second, we 

proved that both refractory and supernormal phases are determined by the dynamical 

properties of INa. Furthermore, the nonlinear relationship between delay and Finst obtained 
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from Poisson stimulation can be quantitatively predicted by train- and paired-pulse 

stimulations. Therefore, INa plays crucial role in shaping the history-dependence of 

conduction delay both in the experimental PD axon and in the biophysical model. We 

also examined the contribution of other ionic currents in the model axon with realistic 

burst stimulation. 

 Although the conduction velocity of one isolated action potential can be 

accurately predicted by previous equations (Matsumoto and Tasaki, 1977; Muratov, 

2000), they fail to predict the history-dependence of conduction delay with Poisson 

stimulation. Therefore, we developed new empirical equations to predict the variability of 

conduction delay both in the model axon and in the experimental measurements (Chapter 

5). Depending on the significance of INa proved in Chapter 3, we focus on two gating 

rates of the activation/inactivation variables of INa. The first empirical equation is 

developed as a multivariate regression of 1/ ( )m TV  and 1/ ( )h PV , which both have units 

of time. Although this equation can predict the history-dependence of conduction delay 

obtained from the biophysical model, the variables it involves are impractical to measure 

in experiments. Due to the linear relationships between ( )m TV  and VT, as well as 

1/ ( )h PV  and VP, we simplified the first empirical equation to the second one which only 

involves the characteristic voltages of each potential: VT and VP. The new empirical 

equation can accurately predict the variability of conduction delay obtained from the 

model axon both with Poisson stimulation and with simple stimulation methods. More 

importantly, this equation can predict the conduction delay obtained from experiments of 

PD axon without need for any computational models. 
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 In the last stage (Chapter 6), we applied a decoding technique to unmask the 

mechanisms of how conduction delay depends on the activity history of the PD axon. The 

prediction of conduction delay from the decoding methods captures the history-

dependence of experimental delay both at STS and FTS. However, the decoding results 

from Sen’s method become worse for the experimental data obtained from high 

frequency stimulation and low activity level of Ih. There are two reasons why Sen’s 

decoding method is not good enough for decoding conduction delay: first, when 

experimental delays show poor temporal fidelity (i.e., conduction delays show very high 

variability), it is hard to decode by Sen’s method. Second, the “pre-fixed” form of the 

second order kernel in Sen’s technique requires user to guess the shape of the K2 

accurately in advance, which is usually not possible. Note that for a nonlinear system has 

“memory”, this decoding technique can be used to explore any possible function 

relationship between input and output without any modeling work. Therefore, we also 

used a similar decoding technique to explain the voltage facilitation exposed by the cpv2-

a muscle. The decoding results show that voltage is not the only factor which leads to the 

facilitation in the cpv2-a muscle. 

 The above five stages provide a comprehensive study of conduction delay and 

related problems in the unmyelinated axon, which include: the complex intrinsic 

properties (i.e., ionic currents) of PD axon, the hyperpolarization of Vm/VP with ongoing 

stimulation, ADP shown by each action potential, the FTS and STS effects of conduction 

delay, and how different ionic currents/pump contribute to the variability of delay, how to 

accurately predict the history-dependence of conduction delay. The important 

achievements of this study are summarized by answering following questions. 
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What is Necessary for the Biophysical Model to Reproduce the Variability of 

Conduction Delay Observed in the Experiments? 

 

To reproduce the history-dependence of conduction delay, the Na
+
/K

+
 pump is necessary 

for the biophysical model. Without the Na
+
/K

+
 pump, the conduction delays obtained 

from simulation keep constants at STS. At FTS, the simulation results do not decrease 

with Finst, and consequently the relationship between delay and Finst is almost linear. 

In contrast with action potentials, which typically result from the inward current 

INa and outward current IKd, the Na
+
/K

+
 pump leads to a net outward current, and further 

results in the hyperpolarization of Vm by consumption of ATP. Although the Na
+
/K

+
 

pump widely exists in neurons and cells, people usually do not put it into the biophysical 

model due to its minor importance. Our study proves that it is functionally important for 

axons. More importantly, as an innovational work, this dissertation describes how Na
+
/K

+
 

pump determines the history-dependence of conduction delay (Section 4.2). To prove that 

the history-dependence of conduction delay is generated by the Na
+
/K

+
 pump, a fake 

Ipump, which mimics the slow cumulative effect of a regular Na
+
/K

+
 pump, was used to 

replace the Na
+
/K

+
 pump and similar FTS effect of conduction delay were observed. 

However, the model with a direct constant current could not produce the STS effect of 

conduction delay as observed in the PD axon. Therefore, Na
+
/K

+
 pump is necessary for 

reproducing the history-dependence of conduction delay. 
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Which Ionic Current Dominates the Variability of Conduction Delay? How does it 

Accomplish this? 

 

There are five ionic currents in our biophysical axon. Compared with the rest of the 

currents, INa plays a crucial role in shaping the history-dependence of conduction delay at 

FTS (Section 4.3). The non-monotonic relationship between delay and Finst, which is 

equivalent to conduction velocity vs. ISI, is accurately predicted by the refractory and 

supernormal phases. These two phases, along with the subnormal phase, are determined 

by the dynamical properties of INa. 

 

How to Improve or Decrease the Temporal Fidelity of Conduction Delay? 

The temporal fidelity of conduction delay positively correlates with the activity level of 

Ih, but negatively correlates with the stimulation rates. These observations are proved 

both experimentally (Sections 2.3-2.4) and mathematically (Sections 3.4-4.2). Thus, for 

both experiments and the mathematical model, one can change the temporal fidelity of 

conduction delay through changing the activity level of Ih, as well as varying the 

stimulation rate. 

 

How to Accurately Predict the History-Dependence of Conduction Delay in the Model 

Axon, and More Importantly, in the Experimental Measurements? 

 

The history-dependence of conduction delay can be accurately predicted by Eq. (5.1), 

which involves two gating variables of INa. However, this equation is only applicable for 

the biophysical model due to the fact that both 1/ ( )m TV  and 1/ ( )h PV  are impractical 

to measure in the experiments. Therefore, we developed Eq. (5.2), which only involves 

the characteristic voltages of each action potential. Because both VT and VP are easily 
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obtained from experiments, Eq. (5.2) provides a simple but powerful tool to 

quantitatively predict the variability of conduction delay in these experiments, and more 

importantly, without need for any computational models. 

 

Why does the Variance of Conduction Delay Increase with Ongoing Stimulation? 

What Do Our Results Imply for the Biological System? 

 

Based on Eq. (5.1), the STS effect of conduction delay is dominated by the variable of 

1/ ( )m TV  (Figure 5.5). Figure 5.5A1 shows that the variance of 1/ ( )m TV  increases with 

time. On the other hand, Vm is hyperpolarized with ongoing stimulation (Figure 3.1A). 

Therefore, 1/ ( )m TV  is more sensitive to lower VT and leads to the greater variance of 

conduction delay at the end of Poisson stimulation. This result indicates that for an 

experimental axon, the temporal fidelity of conduction delay is determined by how 

sensitive the fast sodium current is to the trough voltage of each action potential. 

 

Conclusion of the dissertation 

Action potentials do not propagate faithfully in the PD axon both with Poisson 

stimulation and realistic burst stimulation, and the temporal fidelity of conduction delay 

decreases with ongoing stimulation. This is due to the existence of the Na
+
/K

+
 pump, 

which was proved at least at the model level: because the Na
+
/K

+
 pump results in a net 

outward current, the resting membrane potential of the axon is hyperpolarized along the 

stimulation. We have proved in Section 7.2.5 that the variance of 1/ ( )m TV  increases 

with the hyperpolarization of Vm, at a result, conduction delay is generated by Ipump. 

Furthermore, the temporal fidelity of conduction delay decreases with the increased 

activity level of Ipump. 
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Utilizing the mathematical model of the Na
+
/K

+
 pump, the activity level of Ipump is 

affected by the activity level of INa (Section 3.2.2). As a result, two consequences are 

obtained: first, temporal fidelity of conduction delay decreases with stimulation rate. This 

is because high stimulation rate leads to the high activity level of INa, which results in 

high level of Ipump and more hyperpolarization of Vm. Second, as an inward current, Ih 

compensates for the hyperpolarization of Vm generated by Ipump and thus improves the 

temporal fidelity of conduction delay. In conclusion, the variability of conduction delay 

strongly depends on the value of Vm, which describes the trend of trough voltage. 

 In addition to the fact that the temporal fidelity of conduction delay is determined 

by the activity level of INa, Empirical Eq. (5.1) indicates that the history-dependence of 

conduction delay is also predicted by the dynamical properties of INa. Since the variability 

of 1/ ( )m TV  negatively correlates with VT, CV-D is greater at the steady state than the 

beginning of the stimulation. Therefore, the temporal fidelity of conduction delay 

decreases with increased activity level of INa. This dissertation systematically investigated 

the significance of INa on determining the temporal fidelity of conduction delay, as well 

as the mechanisms of how INa contributes and predicts the history-dependence of 

conduction delay. 

 

General Summary of the dissertation 

First, the conduction delay in an unmyelinated motor axon shows both short- and long-

term history-dependence. Second, the dependence of conduction delay on the activity 

history can be accurately predicted with computational modeling. Note that all the 

dynamical currents and the Na
+
/K

+
 pump included in our model are widely distributed in 
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other myelinated and unmyelinated axons. Therefore, the conclusions based on our model 

are general principles. Third, variability of conduction delay can be quite important if 

temporal coding is important for the behavior. Fourth, the mechanisms underlying 

variability and history dependence of conduction delay are mostly dependent on the 

dynamics of the fast sodium current. Finally, the roles of other ionic (and pump) currents 

are indirect and through changes in the membrane potential. Furthermore, these currents 

can be subject to neuromodulation to change the level of temporal fidelity (for instance, 

the Ih). 

 

7.3  Discussion and Future Directions 

Although this dissertation has achieved many significant conclusions and principles, 

which were discussed in the last section, there are many questions and future directions 

one can continue. 

 

Temporal Coding and Muscle Contraction 

Generally, a neural code is defined as the minimum number of necessary signals to carry 

all significant information in the nervous system (Theunissen and Miller, 1995). 

Theoretical descriptions usually describe two major encoding methods: rate coding and 

temporal coding (Theunissen and Miller, 1995). These two coding which often work in 

conjunction, for instance, in the gustatory system of mammals (Carleton et al., 2010). In 

temporal coding the precise timing of action potentials is important for coding the input 

stimulus (Dayan and Abbott, 2001). In contrast, rate coding does not depend on the 

timing of action potentials but merely their firing rate for coding the input stimulus. For 
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neurons that fire with high frequencies, rate coding implies that any small variability in 

the firing time is noise and does not carry any meaningful information. However, 

temporal coding provides an alternate description for noise in which such small 

variability is in fact encoded information. Thus, temporal fidelity of conduction delay 

along axons may significantly alter the information encoded by the signal. 

The unmyelinated PD motor axon innervates two muscles: a fast muscle cpv2-a 

and a slow muscle cpv2-b. Compared with the fast muscle, the voltage response in the 

slow muscle is substantially affected by the pattern of action potentials near the terminal 

of the PD axon (Figures 6.6B & 6.7B). The temporal pattern of the action potentials at 

the terminal of the PD axon is determined by two factors: the spike pattern of the action 

potentials from the PD soma in the STG, and the history-dependence of conduction delay 

in the PD axon when these action potentials propagate along the axon. Therefore, the 

voltage activity in the cpv2-b muscle is not only determined by the stimulus input from 

the PD soma, but also affected by the history-dependence of conduction delay generated 

by the PD axon. In other words, the response of the muscle innervated by the PD axon is 

determined by how faithfully the axon can conduct the propagating action potentials, and 

this is an important significance of the dissertation. 

It is important to know how the response in the slow muscle correlates with the 

temporal coding in the PD axon with different neuromodulators. For instance, in natural 

circumstance, the PD axon can be modulated by DA through changing the level of Ih 

(Ballo et al., 2010). Based on the experimental results (Section 2.3), temporal fidelity of 

conduction delay can be improved by DA in the PD axon, which indicates that the spike 

pattern of action potentials from the PD soma can be preserved by DA. Since the voltage 
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response in the slow muscle is very sensitive to the stimulus pattern from the terminal of 

the PD axon, it is also greatly affected by DA. Additionally, the slow muscle itself may 

also be modulated by DA, which leads to possibilities: the slow muscle stimulated by 

different stimulus patterns from the PD axon may generate the same response due to the 

compensation of DA. On the other hand, the slow muscle stimulated by the same input 

pattern from the PD axon may generate different responses due to the modulation of DA. 

 

Roles of the Na
+
/K

+
 Pump and other Ionic Currents 

Ipump is the key component in our biophysical model, which generates the sAHP (at STS) 

and ADP (at FTS) of the voltage. More importantly, both STS and FTS effects of 

conduction delay are generated by the Na
+
/K

+
 pump. As a net outward current, Ipump is 

governed by INa, which is dominated by the stimulation frequency. Compared with 

outward (potassium) ion channel currents, Ipump significantly hyperpolarizes the resting 

membrane potential in our model. As a result, the variance of 1/ ( )m TV  increases with 

time and shows a large post-stimulation value. Based on the quantitative analysis in 

Chapter 4 and the development of Eq. (5.1) in Chapter 5, this is the essential reason of the 

variability of conduction delay. Therefore, the Na
+
/K

+
 pump is the most important 

component of the biophysical model and determines the history-dependence of 

conduction delay at different timescales. 

 The level of Ih can be manipulated through applying DA or CsCl in the PD axon 

(Ballo et al., 2010), which leads to a large difference of variability of conduction delay 

compared to the control saline (Ballo et al., 2012). Note that the history-dependence is 

not generated by Ih because the experimental data in CsCl also show the STS and FTS 
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effects of conduction delay (Figure2.2), and same results were also obtained by the 

biophysical model (Figure 3.1). Nevertheless, the variability of conduction delay is 

substantially affected by the activity level of Ih (Figures 2.3 & 3.3). In contrast to Ipump, Ih, 

as an inward current, depolarizes the resting membrane potential, which further decreases 

the variance of 1/ m  at the trough voltages. Therefore, increasing Ih improves the 

temporal fidelity of conduction delay and vice versa. 

 The maximal conductance of the potassium currents IKs and IA does not have a 

large effect on the conduction delay. In contrast, the equilibrium potential of potassium 

ions greatly contributes to the variability of conduction delay (Figure 7.1). As a result, the 

outward currents IKs and IA in fact do contribute to the temporal fidelity of the axon. 

However, as we discuss below, this contribution is mostly indirect and through the effect 

of these currents on the VP and VT which, in turn, affect the variables of the sodium 

current. 

 In addition to use the dynamical parameters of INa to predict conduction delay, the 

delays are also extensively affected by the activity level of INa both at STS and FTS 

(Figure 4.6). All the parameters of INa, passive (ENa and Nag ) or dynamical ( m  and h ), 

can affect the variability of conduction delay extensively (Figure 7.1). For the passive 

parameters, both STS and FTS (except Fmin) effects of conduction delay negatively 

correlate with ENa and Nag  (Figure 7.1). Based on the simulation results (Figure 5.5), we 

found that the STS (FTS) effect of conduction delay is directly determined by the gating 

variable 1/ m  ( 1/ h ) of INa at the trough (peak) voltages, where 1/ m  ( 1/ h ) are 

defined by m  ( h ), respectively. The change of m  ( h ) directly modifies the sensitivity 

of 1/ m  (1/ h ) at VT (VP), and further lead to the change of variability of conduction 
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delay in the PD model axon. As a result, change of ENa alters the peak voltages of action 

potentials and further leads to the change of temporal fidelity of conduction delay. 

Additionally, 
Nag , as the maximum density of the sodium channels, determines how 

much time the necessary amount of sodium channels needed to be opened (closed) for the 

activation (inactivation) of action potentials, and consequently affects the variability of 

conduction delay. 

 

Necessity of the Na
+
/K

+
 Pump 

Our results indicate that the slow cumulative effect of Ipump (Figure 4.1A) is a necessary 

component of the STS effect of conduction delay. We addressed the possibility that an 

ion channel current, rather than a pump, may be responsible for such a slow effect. To 

examine this possibility, we substituted the slow cumulative effect of Ipump with a slow 

potassium current (Section 4.2.2). We chose a potassium current because it is the main 

outward current (except the chloride current, which is not considered in our model) in 

neurons. We found that the slow outward accumulation of Ipump can never be replaced by 

any voltage-gated potassium current (including IM, IKiR, IKs). We have discussed that the 

STS effect of conduction delay is generated by the hyperpolarization of the baseline 

membrane potential (Section 4.2.1). However, based on the mathematical form of the 

dynamical potassium channels (Section 4.2.2), the driving force always vanishes after 

each action potential due to the equilibrium potential of the potassium ions, which is 

approximately equal to the resting membrane potential of the PD model axon. As a result, 

no dynamical potassium current can achieve the cumulative hyperpolarization of the 

resting membrane potential of the PD model axon. Therefore, the Na
+
/K

+
 pump cannot be 
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replaced by any dynamical potassium currents to generate the STS effect of conduction 

delay. 

 As a necessary component of the biophysical mode, the activity level of Ipump can 

be quantitatively manipulated both explicitly (by stimulation rate) and implicitly (by 

pump rate). Based on our present mathematical model of the Na
+
/K

+
 pump (Section 

3.2.3), the activity level of Ipump is determined by two factors: the value of INa and [Na
+
]in 

(the intracellular sodium concentration). Increasing the mean frequency of the Poisson 

stimulation increases INa and consequently increases the level of Ipump (Figure 4.1). As a 

result, the resting membrane potential is hyperpolarized faster and the temporal fidelity of 

conduction delay is worse. Additionally, although the rate of the pump is not explicitly 

expressed in the model, it still can be controlled implicitly (Section 3.2.3). For example, 

the rate of the Na
+
/K

+
 pump is indirectly affected by the volume of each compartment in 

the model axon. Hence, the rate of pump can be set as needed through changing the 

passive parameters of the model axon. 

 The activity level of the Na
+
/K

+
 pump substantially affects the variability of 

conduction delay. A strong Na
+
/K

+
 pump with fast rate can hyperpolarize the resting 

membrane potential of the model axon quickly. The values of 1/ m  during the post 

stimulation show larger variance comparing with the results at the beginning of the 

stimulation (Figure 5.5A1). Additionally, the value of 1/ m  changes faster at low 

voltages comparing with the results at high voltages (i.e., the slope of the relationship 

between 1/ m  and VT is increased by decreasing VT, indicated by Figure 5.6A). 

Therefore, the variance of 1/ m  is increased with the hyperpolarization of Vm and further 
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leads to the increase of conduction delay variability (indicated by Eq. (5.1)), which is 

equivalent to the decrease of temporal fidelity of conduction delay. 

 To generate the STS and FTS effects of conduction delay in the PD axon as 

observed experimentally, there has to be a slow cumulative outward current in the model 

axon (Sections 3.2 and 4.2). As we have discussed, no voltage-gated dynamical 

potassium current can replace the effect of the Na
+
/K

+
 pump. In axons that show large 

variability of conduction delay during the propagation of action potentials, this variability 

must be due to two factors. First, such axons must have strong outward current(s) to 

hyperpolarize the resting membrane potential quickly. Therefore, 1/ m  of a regular INa 

can show a large variability at the trough voltage of each spike. Second, the fast sodium 

current in these axons must be extremely sensitive to the trough voltage of each action 

potential. As a result, a slight hyperpolarization of the resting membrane potential can 

lead to the large variability of 1/ ( )m TV  and further increase the variability of conduction 

delay. 

 In addition to the pump model applied in this dissertation (Angstadt and Friesen, 

1991), there are other types of quantitative models for the Na
+
/K

+
 pump (Lauger, 1991; 

Koch, 1999). For instance, the mechanisms of the Na
+
/K

+
 pump was studied for the 

cortical spreading depression waves in various brain structures (Yao et al., 2011). In this 

circumstance, Ipump is governed by [K
+
] and [Na

+
] concentrations both intracellularly and 

extracellularly. Furthermore, [K
+
] and [Na

+
] are determined by all the potassium and 

sodium currents involved in the model. In our model, Ipump is governed by [Na
+
]in and INa 

explicitly, but both [Na
+
]out and [K

+
] were ignored for convenience. Although our model 

quantitatively captures the STS and FTS effects of conduction delay in the PD axon, one 
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can improve the Na
+
/K

+
 pump by considering more ion concentrations and proper pump 

rates. Recall that our present PD model axon neither reproduce the sharp increase of 

conduction delay at the very beginning of the stimulation (Figures 2.2B & 3.2A1), nor 

the increasing of CV-D at the second half of the stimulation (Figure 3.2B2). These two 

disadvantages are presumably due to the inaccuracy of the present Na
+
/K

+
 pump model. 

By considering [Na
+
]out and [K

+
] for the Na

+
/K

+
 pump, which are governed by all sodium 

and potassium currents, respectively, our biophysical model should be able to reproduce 

the experimental observations mentioned above. Intuitively, a “finer” Na
+
/K

+
 pump 

model consisted by more ion concentrations can improve the quantitative precision of the 

biophysical model in general. 

 

Conduction Delay and Axonal Structure (Branching) 

The model axon in this dissertation is assumed to be a one-dimensional uniform cable 

without any branches. However, most biological axons can branch extensively both 

locally (near the soma) and near distant targets of the primary axon (Callaway, 2004). We 

have discussed the mechanisms of the history-dependence of conduction delay when 

action potentials propagate along a uniform and non-branching axon. Therefore, it is 

natural to ask how axonal branching can affect the variability of conduction delay. For 

instance, if the action potentials are “divided” from one axon into its branches, then the 

conduction velocities can be modified due to the change of axonal branching diameters 

and densities of different ion channels, and further lead to the vary of history-dependence 

of conduction delay. On the other hand, conduction velocities of action potentials from 

different axonal branches can also be altered when they converge at nodes due to the 
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change of passive and dynamical parameters of the axonal branches (for instance, axonal 

resistivity and membrane capacity). 

 The contribution of axonal branching to history-dependence of conduction delay 

can help us to understand the nervous system more precisely. For instance, axon may 

innervate with a muscle through many branches rather than only one axon. Therefore, the 

stimulus pattern in different branches and the way they arrive (i.e., whether synchronized 

arriving) at the muscle can significantly affect the response in the muscle. 

 

Conduction Delay in Myelinated Axons 

The membrane properties of axons differ based on being myelinated or unmyelinated. 

The impulse conduction in myelinated axons is saltatory, while the conduction in 

unmyelinated axons is continuous (Huxley and Stampfli, 1949; Stampfli, 1954; Bostock 

and Sears, 1978).  Saltatory conduction is fast and spikes propagate much faster in 

myelinated axons and further leads to a smaller variance of conduction delay. 

Unmyelinated axons conduct action potentials more slowly and are prone to less temporal 

precision during rhythmic firing (Keener and Sneyd, 1998).  

Empirically, very few myelinated axons in the CNS are found with diameters 

bigger than 0.3 microns, and the relationship between conduction delay and axonal 

diameter is sub-linear. Conversely, the diameters of most unmyelinated axons in the CNS 

is greater than 0.3 microns, and the relationship between axonal diameter and conduction 

delay is almost linear (Waxman and Bennett, 1972). Thus, along with the increase of 

diameter, action potential can propagate faster in the unmyelinated axons than in the 

myelinated axons with the same diameter. In other words, when the diameter is big 
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enough, Dmean in unmyelinated axons are larger than Dmean in myelinated axons with the 

same diameter. In this dissertation, we used the CV-D to quantitatively measure the 

temporal fidelity of conduction delay. Recall that the CV-D is defined as the ratio of 

standard deviation to the mean value of delay. Hence, the CV-D in myelinated axons can 

be greater than the CV-D in unmyelinated axons if the conduction delays in these axons 

have the same variance. This analysis indicates that the temporal fidelity in myelinated 

axons with large diameters can be large, and the temporal coding is important in such 

axons. 

 We have systematically discussed how to build a biophysical model for an 

unmyelinated axon (Section 3.2), and we intend to generalize such modeling work for a 

myelinated axon. Unlike unmyelinated axons, which usually conduct action potentials 

continuously, action potentials only propagate by jumping between neighboring nodes of 

Ranvier, and travel almost instantaneously through the insulated myelin sheath. Although 

unmyelinated and myelinated axons conduct action potentials through different 

mechanisms, there is no essential difference of generating action potentials in these two 

different kinds of axons: action potential arises from changes of permeability of different 

ion channels in the membrane and governed by the H-H model (Purves et al., 2008). 

Therefore, conduction delays in myelinated axons are presumably due to the generation 

of action potentials in the nodes of Ranvier, because of the opening and closing of 

sodium ion channels at different characteristic voltages. Furthermore, the mechanisms of 

the variability of conduction delay in unmyelinated axon, which are discussed in this 

dissertation, would be true for myelinated axons. As a result (coincides with our 
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discussion in the last paragraph), the temporal fidelity of conduction delay in the 

myelinated axon can as large as in the unmyelinated axons. 

 

Analytical Development of the Empirical Equation 

Although both Eq. (5.1) and Eq. (5.2) can accurately predict the history-dependence of 

conduction delay in the model axon, as well as in the experimental measurements, it is 

still important to analytically develop the empirical equations derived in this dissertation. 

Historically, the discovery of empirical equation has been as an important stepping stone 

to the discovery of the theoretical relationship. An empirical relationship, which is only 

based on observation rather than theory, is just confirmed by experimental data 

irrespective of its theoretical basis. However, important insight can be derived from the 

knowledge of the theoretical underpinning of such empirical relationships.  

 These two empirical equations have indicated the key variables: ( )m TV  and 

( )h PV , as well as VT and VP, which can be used to predict the history-dependence of 

conduction delay in the PD axon. Based on this observation and the equations (Section 

3.2.1) of the biophysical model, we can aim to develop an analytical equation which 

contains these key factors and can predict the conduction velocity of action potential. 

Unlike the previous studies (Hodgkin and Huxley, 1952e; Matsumoto and Tasaki, 1977; 

Muratov, 2000), which aimed for predicting the conduction velocity of an isolated action 

potential, this analytical equation should be able to predict the history-dependence of 

conduction delay. In the analytical development of the empirical equations, assumptions 

need to be proposed properly in order to capture the key factors discussed above but 
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ignore the unimportant variables. In addition to the key factors, the analytical equation 

should have extra parameters to mimic the coefficients in the empirical equations. 

 

Biological Significance and Practical Application 

It is well known that variations in conduction delays in axons of multiple presynaptic 

neurons can result in greatly different responses in the postsynaptic neuron (Izhikevich, 

2007). For instance, the response magnitude of the postsynaptic neuron is critically 

determined by the match between the conduction delays along the axons and the spike 

timing in the presynaptic neurons. Specifically, the presynaptic inputs can trigger a spike 

in the postsynaptic neuron only when these inputs arrive synchronously at the target 

neuron (Izhikevich, 2007). Therefore, distinct temporal activity in the presynaptic 

neurons can be synchronized by the proper axonal delays to generate a time-locked 

pattern in the postsynaptic neurons (Bienenstock, 1995; Schuz and Preissl, 1996). Note 

that the amount of synchronization of these pre-to-postsynaptic inputs can be modified to 

produce different levels or patterns of activity in the postsynaptic neuron (Lubenov and 

Siapas, 2008). The variability of delays of signal transmission also can stabilize neural 

networks and shift oscillation dynamics (Omi and Shinomoto, 2008). These examples 

demonstrate how the conduction delay along an axon can perform important functional 

roles in the nervous system. The results of the current dissertation on the variability of 

conduction delay can additionally help to understand how temporal coding may be 

shaped by axons, and how the history-dependence of conduction delay may affect the 

postsynaptic responses. 
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 In this dissertation, we have systematically investigated the variability of 

conduction in the PD axon both theoretically and experimentally. Since our model is 

consisted of ionic currents and pump, the principles concluded from our model can be 

applied generally. To change the temporal fidelity of conduction delay in a biological 

axon or neuron, one can apply different neuromodulators to manipulate the corresponding 

ionic currents. For instance, blocking INa (by TTX) and Ih (by CsCl) decreases the 

temporal fidelity of conduction delay. On the other hand, the variability of conduction 

delay can be substantially decreased by increasing Ih (by DA). As the key component 

which determines the temporal fidelity of conduction delay in our model, the activity 

level of Ipump also can be changed by applying ouabain. 

 A more general method to investigate conduction delay is using the decoding 

method, which can be used to predict the conduction delay for an action potential by 

knowing the history of activity in the axon in the immediate past. The decoding technique 

developed in this dissertation explores the relationship of the conduction delay as a 

function of all prior stimulus times. Therefore, to predict the conduction delay, one only 

needs to know the prior stimulus times without performing any simulations or 

perturbation. Furthermore, unlike computational modeling, the decoding technique does 

not require any biological information to predict the conduction delay other than the 

history of activity in the axon. Additionally, this method can be applied to either 

myelinated or unmyelinated axons. The decoding method used in this dissertation was 

adapted from that used by Sen et al (1996). In this method, to predict the conduction 

delay, we assumed the first order kernel as a constant which is equals to the Dmean. To 

capture the short- and long-term history-dependence of conduction delay, the second 
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order kernel was set as a double exponential function. Although this method could predict 

the variability of conduction delay at different timescales for the experimental delay with 

high temporal fidelity, the prediction became worse for the experimental data obtained 

from high frequency stimulation protocols or in CsCl. Compared to the decoding 

technique used here, more advanced methods have been developed that have no 

constraints on the forms of kernels, and can predict the outputs through inputs according 

to the history activity in the axon (Stern et al., 2009). Recall that our present decoding 

results are not perfect, which may be due to the improper assumption of the functional 

form for the second order kernel. It is possible that applying the unconstrained decoding 

technique, the outputs of the slow muscle can be predicted more precisely.  

 In conclusion, in this dissertation, we have elucidated the mechanisms that 

underlie the short- and long-term history-dependence of conduction delay in 

unmyelinated motor axons. The conductance-based biophysical model, which can be 

used to quantitatively reproduce and analysis the mechanisms of conduction delay 

variability, explores how dose temporal coding in the axons affect the responses in the 

innervated (following) muscles or postsynaptic neurons. The empirical equations, which 

are used to predict the history-dependence of conduction delay both in the experimental 

and model axons, provides the insights of how temporal fidelity of conduction delay is 

determined by the dynamics of INa, as well as by the hyperpolarization of resting 

membrane potential (due to other ionic currents/pump) of the axons. The decoding 

technique, which is applied to predict the outputs of a nervous system based on the 

stimulus inputs and the history activity, helps us to understand the diagnostic methods 

used to unmask the underlying mechanisms of the unmyelinated axons. 
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