813 research outputs found

    Electrophysiological characterization of the hyperdirect pathway and its functional relevance for subthalamic deep brain stimulation

    Get PDF
    The subthalamic nucleus (STN) receives input from various cortical areas via hyperdirect pathway (HDP) which bypasses the basal-ganglia loop. Recently, the HDP has gained increasing interest, because of its relevance for STN deep brain stimulation (DBS). To understand the HDP's role cortical responses evoked by STN-DBS have been investigated. These responses have short (<2 ms), medium (2–15 ms), and long (20–70 ms) latencies. Medium-latency responses are supposed to represent antidromic cortical activations via HDP. Together with long-latency responses the medium responses can potentially be used as biomarker of DBS efficacy as well as side effects. We here propose that the activation sequence of the cortical evoked responses can be conceptualized as high frequency oscillations (HFO) for signal analysis. HFO might therefore serve as marker for antidromic activation. Using existing knowledge on HFO recordings, this approach allows data analyses and physiological modeling to advance the pathophysiological understanding of cortical DBS-evoked high-frequency activity

    State-dependencies of learning across brain scales

    Get PDF
    Learning is a complex brain function operating on different time scales, from milliseconds to years, which induces enduring changes in brain dynamics. The brain also undergoes continuous “spontaneous” shifts in states, which, amongst others, are characterized by rhythmic activity of various frequencies. Besides the most obvious distinct modes of waking and sleep, wake-associated brain states comprise modulations of vigilance and attention. Recent findings show that certain brain states, particularly during sleep, are essential for learning and memory consolidation. Oscillatory activity plays a crucial role on several spatial scales, for example in plasticity at a synaptic level or in communication across brain areas. However, the underlying mechanisms and computational rules linking brain states and rhythms to learning, though relevant for our understanding of brain function and therapeutic approaches in brain disease, have not yet been elucidated. Here we review known mechanisms of how brain states mediate and modulate learning by their characteristic rhythmic signatures. To understand the critical interplay between brain states, brain rhythms, and learning processes, a wide range of experimental and theoretical work in animal models and human subjects from the single synapse to the large-scale cortical level needs to be integrated. By discussing results from experiments and theoretical approaches, we illuminate new avenues for utilizing neuronal learning mechanisms in developing tools and therapies, e.g., for stroke patients and to devise memory enhancement strategies for the elderly

    Localising epileptiform activity and eloquent cortex using magnetoencephalography

    Get PDF
    In patients with drug resistant epilepsy, the surgical resection of epileptogenic cortex allows the possibility for seizure freedom, provided that epileptogenic and eloquent brain tissue can be accurately identified prior to surgery. This is often achieved using various techniques including neuroimaging, electroencephalographic (EEG), neuropsychological and invasive measurements. Over the last 20 years, magnetoencephalography (MEG) has emerged as a non-invasive tool that can provide important clinical information to patients with suspected neocortical epilepsy being considered for surgery. The standard clinical MEG analyses to localise abnormalities are not always successful and therefore the development and evaluation of alternative methods are warranted. There is also a continuous need to develop MEG techniques to delineate eloquent cortex. Based on this rationale, this thesis is concerned with the presurgical evaluation of drug resistant epilepsy patients using MEG and consists of two themes: the first theme focuses on the refinement of techniques to functionally map the brain and the second focuses on evaluating alternative techniques to localise epileptiform activity. The first theme involved the development of an alternative beamformer pipeline to analyse Elekta Neuromag data and was subsequently applied to data acquired using a pre-existing and a novel language task. The findings of the second theme demonstrated how beamformer based measures can objectively localise epileptiform abnormalities. A novel measure, rank vector entropy, was introduced to facilitate the detection of multiple types of abnormal signals (e.g. spikes, slow waves, low amplitude transients). This thesis demonstrates the clinical capacity of MEG and its role in the presurgical evaluation of drug resistant epilepsy patients

    Assessing Neuronal Synchrony and Brain Function Through Local Field Potential and Spike Analysis

    Get PDF
    Studies of neuronal network oscillations and rhythmic neuronal synchronization have led to a number of important insights in recent years, giving us a better understanding of the temporal organization of neuronal activity related to essential brain functions like sensory processing and cognition. Important principles and theories have emerged from these findings, including the communication through coherence hypothesis, which proposes that synchronous oscillations render neuronal communication effective, selective, and precise. The implications of such a theory may be universal for brain function, as the determinants of neuronal communication inextricably shape the neuronal representation of information in the brain. However, the study of communication through coherence is still relatively young. Since its articulation in 2005, the theory has predominantly been applied to assess cortical function and its communication with downstream targets in different sensory and behavioral conditions. The results herein are intended to bolster this hypothesis and explore new ways in which oscillations coordinate neuronal communication in distributed regions. This includes the development of new analytic tools for interpreting electrophysiological patterns, inspired by phase synchronization and spike train analysis. These tools aim to offer fast results with clear statistical and physiological interpretation

    Brain–Computer Interface (BCI) Applications in Mapping of Epileptic Brain Networks Based on Intracranial-EEG: An Update

    Get PDF
    The main applications of the Brain–Computer Interface (BCI) have been in the domain of rehabilitation, control of prosthetics, and in neuro-feedback. Only a few clinical applications presently exist for the management of drug-resistant epilepsy. Epilepsy surgery can be a life-changing procedure in the subset of millions of patients who are medically intractable. Recording of seizures and localization of the Seizure Onset Zone (SOZ) in the subgroup of “surgical” patients, who require intracranial-EEG (icEEG) evaluations, remain to date the best available surrogate marker of the epileptogenic tissue. icEEG presents certain risks and challenges making it a frontier that will benefit from optimization. Despite the presentation of several novel biomarkers for the localization of epileptic brain regions (HFOs-spikes vs. Spikes for instance), integration of most in practices is not at the prime time as it requires a degree of knowledge about signal and computation. The clinical care remains inspired by the original practices of recording the seizures and expert visual analysis of rhythms at onset. It is becoming increasingly evident, however, that there is more to infer from the large amount of EEG data sampled at rates in the order of less than 1 ms and collected over several days of invasive EEG recordings than commonly done in practice. This opens the door for interesting areas at the intersection of neuroscience, computation, engineering and clinical care. Brain–Computer interface (BCI) has the potential of enabling the processing of a large amount of data in a short period of time and providing insights that are not possible otherwise by human expert readers. Our practices suggest that implementation of BCI and Real-Time processing of EEG data is possible and suitable for most standard clinical applications, in fact, often the performance is comparable to a highly qualified human readers with the advantage of producing the results in real-time reliably and tirelessly. This is of utmost importance in specific environments such as in the operating room (OR) among other applications. In this review, we will present the readers with potential targets for BCI in caring for patients with surgical epilepsy

    Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats

    Get PDF
    Low intensity electric fields have been suggested to affect the ongoing neuronal activity in vitro and in human studies. However, the physiological mechanism of how weak electrical fields affect and interact with intact brain activity is not well understood. We performed in vivo extracellular and intracellular recordings from the neocortex and hippocampus of anesthetized rats and extracellular recordings in behaving rats. Electric fields were generated by sinusoid patterns at slow frequency (0.8, 1.25 or 1.7 Hz) via electrodes placed on the surface of the skull or the dura. Transcranial electric stimulation (TES) reliably entrained neurons in widespread cortical areas, including the hippocampus. The percentage of TES phase-locked neurons increased with stimulus intensity and depended on the behavioral state of the animal. TES-induced voltage gradient, as low as 1 mV/mm at the recording sites, was sufficient to phase-bias neuronal spiking. Intracellular recordings showed that both spiking and subthreshold activity were under the combined influence of TES forced fields and network activity. We suggest that TES in chronic preparations may be used for experimental and therapeutic control of brain activity

    Localization of the Epileptogenic Zone Using High Frequency Oscillations

    Get PDF
    For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40–50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization

    Doctor of Philosophy

    Get PDF
    dissertationRecording the neural activity of human subjects is indispensable for fundamental neuroscience research and clinical applications. Human studies range from examining the neural activity of large regions of the cortex using electroencephalography (EEG) or electrocorticography (ECoG) to single neurons or small populations of neurons using microelectrode arrays. In this dissertation, microscale recordings in the human cortex were analyzed during administration of propofol anesthesia and articulate movements such as speech, finger flexion, and arm reach. Recordings were performed on epilepsy patients who required long-term electrocorticographic monitoring and were implanted with penetrating or surface microelectrode arrays. We used penetrating microelectrode arrays to investigate the effects of propofol anesthesia on action potentials (APs) and local field potentials (LFPs). Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, as well as the generation of large amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol anesthesia. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased, and the AP-LFP relationship became more predictable, firing rate encoding capacity was impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness. We also demonstrated that speech, finger, and arm movements can be decoded from LFPs recorded with dense grids of microelectrodes placed on the surface of human cerebral cortex for brain computer interface (BCI) applications using LFPs recorded over face-motor area, vocalized articulations of ten different words and silence were classified on a trial-by-trial basis with 82.4% accuracy. Using LFPs recorded over the hand area of motor cortex, three individual finger movements and rest were classified on a trial-by-trial basis with 62% accuracy. LFPs recorded over the arm area of motor cortex were used to continuously decode the arm trajectory with a maximum correlation coefficient of 0.82 in the x-direction and 0.76 in the y-direction. These findings demonstrate that LFPs recorded by micro-ECoG grids from the surface of the cerebral cortex contain sufficient information to provide rapid and intuitive control a BCI communication or motor prosthesis
    • …
    corecore